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Abstract—Micro-expression can reveal underlying genuine
emotions, but those rapid and subtle changes are hard to be
captured by humans. Most existing research focuses on frontal
face micro-expression recognition, which largely prevents the
developed methods from the real applications and ignores the un-
derlying geometry information. In this paper, we propose a multi-
view geometry consistency framework to enable the same emotion
to be recognized under different perspectives, which is difficult
for existing systems. Based on the developed 3D face recon-
struction network, the multi-view micro-expression recognition
framework empowers the emotion recognition capability to learn
from multiple perspectives of the 3D reconstructed faces based on
view-consistency, and a spiking neural network is further applied
to capture omitted tiny and detailed changes. With a sequence
of images, we explore the subtle changes across frames through
optical flow, which, as a clue, enhances the performance of our
designated network for micro-expression recognition. Extensive
experiments on benchmark micro-expression datasets CAS(ME)2
and SMIC demonstrate the proposed method achieves promising
results on novel-view micro-expression recognition where existing
methods mainly fail.

Keywords: Micro-expression Recognition; 3D Face Recon-
struction; Multiple View Geometry; Spiking Neural Networks;

I. INTRODUCTION

Facial expression, as a major human inner state reflection,
has been applied in many applications such as product evalu-
ation, mental health diagnosis, and criminal interrogation, etc.
[1] [2]. In contrast of general macro- expression, facial micro-
expression represents subtle expression changes that only last
for very short time period (e.g., 50 ms) and is difficult to
be observed by human eyes. From another perspective, the
correct recognition of micro-expression can facilitate extensive
services in real life, because it can reflect the true mental
condition and emotion of a person which is very hard to hide.

There are quite limited efforts on micro-expression recog-
nition compared to other recognition tasks due to its complex-
ity and difficulties. Classic feature-based approaches include
utilizing local binary pattern [3], local binary pattern on
three orthogonal planes (LBP-TOP) [4], LBP-Six-Intersection-
Points (LBP-SIP) [5] and directional mean optical flow [6].
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Fig. 1. An illustration of our view-consistent micro-expression recognition.
Our framework is able to achieve accurate micro-expression recognition from
different perspectives that existing methods [7] cannot deal with.

However, such methods which heavily rely on hand-crafted
features and frontal images are insufficient to extract critical
and subtle expression changing information from multi-views
as illustrated in Fig. 1.

Recently, deep neural networks like convolutional neural
networks (CNN) have been widely used to solve relevant tasks
[8] [9] [10] [11] [12] [13] [14]. Compared to the handcraft-
based methods, the deep learning-based methods can obtain
better performance in most of the computer vision problems.
However, those deep learning techniques proposed for facial
micro-expression recognition are mostly trained and tested on
exactly frontal faces by feeding video clips to CNN, RNN or
a combination of them. This requirement is very strict and
limited in the real-world applications.

To address this problem, we developed a method and a
system to recognize micro-expressions from multiple views
and perspectives of video clips. In case of a frontal image,
we developed a method to generate 3D multiple views of
the raw frontal facing face image inputs, which enables the
designed micro-expression recognition network to learn to
recognize the micro-expression from various perspectives.
Besides commonly used CNN modules, we apply 3D CNN
and bidirectional ConvLSTM networks to extract the temporal
information between adjacent frames across the video clips to
facilitate understanding continuous changes in facial expres-
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Fig. 2. Overview of the proposed multi-view consistency micro-expression recognition architecture. Following the multi-view expression generation (Top),
continuous frames and the corresponding optical flows are fed simultaneously to output the final category (Bottom).

sion. A spiking neural network (SNN) is further applied to
deal with the short and tiny changes represented and learned
as spikes. In order to overcome the limitations that micro-
expression may only occur on some key regions of interest
that cannot be reflected on other views during the rotation, we
introduce an interpretable CNN to analyze regions in frontal
faces that play the most important role, and filter out those
views which are invisible in the generated side face image
sequences used for training. Therefore, our proposed pipeline
is able to learn an interpretable and geometry-consistent micro-
expression recognition system from different views.

The main contributions of the proposed method can be
summarized as follows: 1. A view-consistent micro-expression
recognition model is proposed to extract consistent spatial
and temporal information from video clips to capture subtle
and short expression changes, which is infeasible for existing
methods only focusing on frontal faces. 2. We apply an
interpretable CNN to visualize the crucial regions contributing
for micro-expression recognition and filter out the generated
face views that are invisible to the micro-expression, which
helps to better understanding the multi-view micro-expression
under various views. 3. In addition to existing facial micro-
expression datasets with only frontal faces, we contribute with
multi-view micro-expression datasets benefiting from the de-
signed multi-view face generation framework and an efficient
method to generate those datasets with only front-oriented face
images. 4. A designated micro-expression recognition network
is proposed which integrates for the first time optical change
clues with spiking neural networks.

II. RELATED WORK

In this section, we first introduce some techniques for
generating 3D face from images, which is important for
generating our multi-view face data. Then existing approaches
designed to recognize emotion categories are introduced. They
are split into conventional methods using handcrafted visual
features and deep methods to learn a classifier in an end-to-end
network.

A. 3D Face reconstruction methods

3D morphable model (3DMM) [15] is one of the most well-
known model-based techniques in reconstructing 3D faces
from images. Most early works aim to establish the corre-
spondence between 2D images and 3D reconstructions using
facial landmarks [16] [17] [18] or other local features (e.g.,
SIFT and HOG), and apply 3DMM coefficients to fit the
full 3D face geometry, including occluded surfaces. The main
shortcoming for 3DMM is that the results are over smooth
and facial details (e.g., nuances of expression) are likely lost.
Recent learning-based approaches explore to regress 3DMM
coefficient with end-to-end network directly [18] [19]. Other
single-view face reconstruction methods [20] [21] trained a
CNN to generate 3D models fully supervised by ground
truth 3D scans and achieve impressive results, and some
weak-supervised methods [22] [23] proposed to decrease the
dependence of high-quality 3D models during the training.
However, a large amount of annotations are still in need, and
the generalization abilities across dastasets are not good and
stable. Unsupervised approaches are proposed to address the
3D face reconstruction issue by using images from multiple
views. Sanyal et al. [22] enforced the shape consistency
between the same identities and inconsistency among different
people identities to constrain the captured multiple images
from all participants. Wu et al. [24] proposed MVFNet to
utilize photometric consistency between different viewpoints.
More recent work [25] extends [24] to both geometric and
photometric constraints to produce better results from a single
2D image. However, public micro-expression dastasets usually
do not provide avaible multiview constraints or any ground
truth face scans for training.

B. Facial Micro-expression Estimation

In the past years, several works dealt with facial macro-
expressions that use frontal face images only. The works on
micro-expressions can be split into hand-crafted features based
and deep learning methods. Conventional methods on facial



Micro-expression estimation focus on different feature extrac-
tion methods such as local binary pattern [3], local binary
pattern on three orthogonal planes (LBP-TOP) [4], LBP-Six-
Intersection-Points (LBP-SIP) [5] and directional mean optical
flow [6]. Among them, Pfister et al. [26] proposed to use
local binary patterns on three orthogonal planes for micro-
expression feature extraction. LBP is a texture-based image
feature extraction method and considers the size relationship
between the intensity value of a pixel and surrounding neigh-
boring pixels to encode. Liu et al. [6] proposed the main direc-
tional mean optical flow feature for expression recognition and
then applyoptical flow on video clips to train a support vector
machine (SVM) classifier to perform micro-expression esti-
mation. Although these hand-crafted approaches can achieve
good performance, it brings heavy cost in domain specificity
and tedious parameter adjustment.

Deep learning based methods like VGG-19 [27] and ResNet
[28], have achieved remarkable results in computer vision
area, to solve relevant tasks including expression classification
[29], face detection [30], face segmentation [31], and face
reconstruction [32] etc. Among such works, [8] embedded the
landmark information together with the extracted features from
RGB images into the CNN to increase the performance for
micro-recognition. Liong et al. [10] designed a new feature
descriptor to extract flow features from their off-apex network
and then feed the extracted features to a normal CNN structure
for classification output. [11] further inputted the extracted
feature vectors through CNN modules to the long short-term
memory (LSTM) to better learn the temporal information. [12]
targeted at mining the data to solve the class imbalance issue
to extract robust facial features from the processed motion
magnified EAI images. However, existing deep learning based
techniques proposed for facial micro-expression recognition
all focused on recognizing exactly frontal faces, resulting in
a impracticable in real-world scenarios, as strict front-facing
images are very rare in normal lives.

III. THE PROPOSED MULTI-VIEW MICRO-EXPRESSION
RECOGNITION

In this section, we summarize the entire framework and
introduce the major contributions, as shown in Fig. 2. To gen-
erate side face views, we first conduct 3D face reconstruction
via a depth regression network based on a single front-facing
image, which will be applied to project to various perspectives
(Section III-A). Then we apply an interpretable deep learning
model to analyze the key contributed regions in the face
and filter out the occluded sequences (Section III-B). With
the refined multiple view face images and the corresponding
optical flows, a spatial-temporal network for micro-expression
recognition is proposed (Section III-C), and a spiking neural
network (SNN) (Section III-D) is further applied to capture
subtle changes and handle temporal information.

A. Multi-view Expression Generation

To obtain multi-view expressions, we first apply depth
regression network to estimate an accurate depth map given

Fig. 3. First column: processed frontal face images from the CAS(ME)2
micro-expression dataset. Rest columns: the corresponding multi-view face
images ranging from -45 degree to 45 degree generated from 3D reconstruc-
tion face.

a processed frontal facing image, and then recover a 3D
face model with the known camera intrinsics. The 3D face
models are able to be imposed to generate novel views by
projecting the 3D face from different perspectives. To achieve
high-quality and high-accurate reconstruction performance, we
impose depth supervision on the frontal face image input to
recover the face shape. However, as there is no ground truth
depth labels for the existing micro-expression datasets, it is
required to train the depth regression network on the 3D face
dataset with provided face depth labels, and then transfer
the model to the micro-expression recognition datatsets by
constraining the two types of datasets to share same image
properties (e.g., covering regions, image size etc), which leads
to similar image appearance. We utilize a ResNet-18 based
encoder structure and multiple upconvolutional operations to
estimate the final depth. An overview of the network structure
is given in Table I.

To guide the learning process of the depth regression net-
work, we deploy the smoothness L1 loss function. Smoothness
L1 term is widely applied in 2D and 3D bounding box regres-
sion in object detection task which has favorable robustness
and low sensitivity to the outliers. We adopt it to get a balance
both from L1 and L2 losses as:

L(D(p), D̃(p)) =
1

M

M∑
p=1

Ψ(D(p)− D̃(p)) (1)

where,

Ψ(x) =

{
1
2x

2, |x| < 1
|x| = 0.5, else

(2)

To bridge the gap between the 3D face datasets and existing
micro-expression datasets, we first project the reconstructed
3D face models in public 3D face datasets to generate 2D
frontal faces, and apply MTCNN [33] to detect, crop and
resize the face images to share the same region and size.
Simultaneously, we processed the raw images from micro-
expression dataset in the same manner to maintain the appear-
ance commonality. After training, we are able to generate high-
quality 3D faces on micro-expression datasets. Thus multi-
view images can be created by projecting the reconstructed



layer kernel size channel function
Conv1 7×7 64 ReLU

Max pool 3×3 –
Conv 2 3×3 64 –
Conv 3 3×3 128 –
Conv 4 3×3 256 –
Conv 5 3×3 512 –

Upconv 5 3×3 256 ReLU
iconv5 3×3 256 ReLU

Upconv 4 3×3 128 ReLU
iconv4 3×3 128 ReLU

Upconv3 3×3 64 ReLU
iconv3 3×3 64 ReLU

Upconv2 3×3 32 ReLU
iconv2 3×3 32 ReLU

Upconv1 3×3 16 ReLU
iconv1 3×3 16 ReLU
Disp 3×3 1 Sigmoid

TABLE I
THE STRUCTURE OF FACE DEPTH REGRESSION NETWORK. THE LINE IN

THE MIDDLE SEPARATES THE ENCODER AND DECODER.

Fig. 4. Sampled continuous frames from the generated multi-view dataset
(first and third rows), and the corresponding optical flows (second and fourth
rows).

3D face model onto 2D image planes. Generated multi-
view images from CAS(ME)2 micro-expression dataset are
illustrated in Fig. 3.

After projection, the images projected from the 3D models
may contain small offsets, which could affect the micro-
expression recognition effect due to the influence of the
large amount moving pixels caused by the misalignment.
To overcome the misalignment, detected facial landmarks
and ORB features are applied to register the images. The
registration is completed by estimating the homography matrix
between video frames based on corresponding matches after
RANdom SAmple Consensus (RANSAC) [34] filtering. Once
the images are aligned, the small movement on the face surface
and organs will play a significant to the micro-expression
recognition that cannot be easily observed by naked eyes.
To learn more subtle information and fuse them into the
recognition network, we compute the optical flow for each

Fig. 5. An illustration of the attention generated from the interpretable CNN
model, adn the refinement process on the generated side faces. Based on
the attention map on the frontal face, we filter out the top two generated
sequences, and select the bottom two generated sequences.

frame relative to the previous frame, generating a sequence
of optical flows. Then we simultaneously input the raw face
image sequences and the optical flows, and fuse them together
in the flatten layers to output the final classification. The
sampled processed continuous frames and the corresponding
optical flows are illustrated in Fig. 4.

B. Data Refinement with Interpretable CNN

The initial multi-view data generation covers the full angles
from -45 to +45 degrees. However, it ignores the possible
occlusion on the key regions in the multi-view images during
the horizontal rotation. Therefore, we introduce an attention
map to observe the activation maps localizing each micro-
expression class, then observe the regions of interest from the
final convolutional layer, and use the interpretable attention
map to filter out those sequences with occlusion issues.

More specifically, we keep the entire network structure to
be the same as Sec. III-A, except that on the output layer
decisions. Similar as [35], we denote c the classification
class, K representing the corresponding feature maps. The
importance at a position (i, j) of the attention map A can
be computed as a linear combination of the multiplication of
the feature maps from the last convolutional layer C and the
corresponding weights wc

k:

A(i, j) =
∑
k

wc
k · Ck

ij (3)

where the weights wc
k for each particular feature map can be

computed by the following equation:

wc
k =

1

Z

∑
i

∑
j

ϑ(
∑

k w
c
k ·
∑

i

∑
j C

k
ij)

ϑCk
ij

(4)

where Z is a constant of the number pixels in the activation
map. We illustrate the attention map in Figure 5. The top two
side face views that do not contain the indicated important
regions among all the generated views. Other examples of
the visual result of the weighted attention maps from the
interpretable CNN are provided in Figure 6.



Fig. 6. Visual results of the attention map from the interpretable deep learning
models on the micro-expression images. Darker color indicate more important.

C. Spatial-temporal Micro-expression Recognition

3D CNN structure is proved to be effective in processing
video clips for its spatial-and-temporal learning capability [36]
[37], especially for short-term spatial-temporal relationships.
In this work, we start with 3DCNN to learn the local spatial-
temporal features from both raw color image sequences and
optical flow sequences, respectively. As shown in the overview
structure of Fig. 2, the proposed network applies 3D convo-
lutional layers with a kernel size of 3×3×15 followed with
a BatchNorm, a ReLu activation and a 3D max-polling layer
sized in 3×3×3. The shallow temporal length is used to extract
and learn only short and local temporal features from the
continuous frames.

Following the shallow 3DCNN, we further apply a bi-
directional ConvLSTM network to learn long-term feature
representations across the entire sequences. The ConvLSTM
replaces the fully connected layer in the normal LSTM blocks
with convolutional layers to retain the spatial information and
learn holistic and long-term information from the video. The
ConvLSTM network structure can be expressed as:

it = Sigmiod(Convxi ∗ xt + Convhi ∗ ht−1 + bi)

ft = Sigmiod(Convxf ∗ xt + Convhf ∗ ht−1 + bf )

ot = Sigmiod(Convxo ∗ xt + Convho ∗ ht−1 + bo)

Ct = ft�Ct−1+it�tanh(Convxc∗xt+Convhc∗ht−1+bc)

ht = ot � tanh(Ct)
(5)

where ’*’ denotes the operator of convolution, � denotes
the Hadamard product, and Conv(·) is the 2D Convolution
kernel that applies to the input and hidden state respectively.
The bi-direction ConvLSTM is an enhanced version to the
ConvLSTM in which features from two directions extracted
from hidden layers are utilized for each LSTM cell (one for a
forward sequence and the other for a backward sequence). For
each sequence, the features from the forward and backward
hidden states are stacked together and fed into the convolu-
tional layer to generate the final feature representations. Fig.
2 illustrates a general structure of the applied Bi-direction
ConvLSTM in the middle part of our recognition network.

Due to the large spatial dimension from the Bi-ConvLSTM,
a vanilla 2D-CNN structure is applied to reduce the dimen-
sionality for the final micro-expression classification. The 2D-
CNN structure is composed of two same blocks including
a 2D convolutional layer, a batch normalization, a ReLu
activation, and a pooling layer sequentially. Finally, a flatten
layer is connected with the 2D-CNN blocks for both original
face image sequence input and optical flow sequence input,
concatenated together to one vector, and proceeded with dense
and dropout layers to output the final classification with
SoftMax function. Compared with existing 3D-CNN based
structures, the introduced recognition network can learn both
long-term global and short-term local information, and extract
higher-level 2D features map simultaneously from the original
sequences and optical flow maps, leading to highly accurate
and adequate learning. Cross-entropy loss based on each
category (surprise, positive and negative) is used to guide the
training procedure as: −

∑3
i=1 yi · log(ỹi), where yi is the

target labels from the dataset, and ỹi is the corresponding
output from the recognition model.
D. Late Fusion with Spiking Neural Network

To further capture the subtle changes of facial micro-
expression, and better handle the temporal information like
videos and sounds, we propose to apply a spiking neural
network (SNN) on the same inputs as part of the designed
spatial-temporal recognition network, as depicted in Fig. 2.
SNN are suitable for detecting fast and small changes from
streaming data [39] [40].

The input is a 3D tensor with a shape of (u, v, t) where
(u, v) denotes the image coordinate and t is the defined time
resolution within a image sequence. The sampled tensor is then
fed into the SNN and convolved with a 3D spiking convolution
kernel to generate spiking neuronal feature maps. Different
from the conventional feature maps generated from CNN, the
information at each coordinate of a spiking feature map is
represented by a number of neuronal spike trains, which is
more suitable to capture subtle details in the micro-expression
videos. The final recognition is output from a global average
pooling layer and two dense layers following the spiking
feature maps.

To effectively fuse features extracted from different neural
networks, and output the class probabilities of each video
clips, we concatenate the feature maps from both diverse
networks and inputs together following the late fusion structure
to improve the accuracy of the predicted classes. The weights
of various feature maps will be optimized in training.

IV. EXPERIMENTS

In this section, we first briefly introduce the public datasets
and the generated multi-view datasets. Then we introduce
the implementation process of the proposed network for
multi-view consistent micro-expression recognition. Finally,
we evaluate the proposed method on the processed multi-
view dastaset in comparison with both classic and learning-
based methods to demonstrate the advantages of our method
on micro-expression recognition under diverse perspectives.



Fig. 7. Given a single color face image of frontal view, our method can produce a high-quality mesh (depicted in two different perspectives) that contains
correct global shape and detailed textures on organs. Top to bottom: Examples from test split of Facescape dataset; Examples from test split of Stirling ESRC
3D face dataset; Examples from facial micro-expression CAS(ME)2 dataset;

Fig. 8. Qualitative comparisons on facescape dataset (the first row) and on
CAS(ME)2 (the second and third rows) between our proposed method and
recent state-of-the-art methods. Left to right: 2D face input; 3D reconstructed
faces from [32]; 3D faces from [38]; Our 3D face result.

A. Datasets

CAS(ME)2 dataset [41] is the second version of the original
CASME for facial micro expression. We split the entire dataset
containing 206 video clips into three categories based on the
labels: Surprise, Positive and Negative. 80% of data is applied
to generate the multi-view images and then the optical flows
calculated from the multi-view sequential frames. Generated
multi-view frames are then sampled every ten degrees ranging
from 45 degree to 135 degree horizontally. The processed face
images and the optical flows will then be used for training.
Similarly, the rest 20% will be used to build the testing set.

Spontaneous Micro Expression Database (SMIC) [42] is a
dataset composed of spontaneous micro-expressions. Similarly

to CAS(ME)2 dataset, we use a total of 156 videos clips
composed of the same three categories to generate the train
data, maintaining the ratio between training and testing splits
as CAS(ME)2 dataset.

For 3D face datasets, Stirling ESRC 3D face dataset [43] is
composed of 101 scanned subjects (male: 47, female: 54) in
the format of wavefront objects. Facescape [44] is a large-scale
dataset that contains a considerable number of high-quality 3D
face subjects. The entire dataset is composed of 847 subjects
with 20 expressions (totally 16490 models). We split 90% of
all available 3D face models for training, and the rest 10%
for validation. Blender 2.80 is used to project 3D models into
2D images to generate side-view face images together with
their depth map. After our pre-processed introduced in Section
III-A, we are able to train the depth regression network and
utilize the trained network on the front facing images from the
micro-expression datasets to generate multi-view face images.

B. Experimental settings
The network for multi-view face generation is trained for

30 epochs with Adam optimizer [45] and a batch size of 8
on two NVIDIA 1080Ti GPUs. The learning rate for the first
half epochs is 10e-4 and then gradually decreases to 10e-5 for
the rest half. To make the dataset more robust, we perform a
50% possibility for random adjustness of brightness, contrast,
saturation and hue in a range of ±0.2, ±0.2, ±0.2 and ±0.1.

For deep micro-expression recognition network with our
multi-view data, we trained it from scratch on the CAS(ME)2

and SMIC datasets, as stated in the Section III-A. SGD
optimization is applied with a batch size of 32 and learning
rate of 0.01. The recognition network is trained for 100 epochs
and the best model with the lowest validation error is saved
for testing. The spatial size of the input raw and optical flow



Method Type CAS(ME)2 SMIC
LBP-TOP [42] Hand-crafted 0.33 0.30

Takalkar et al. [46] Deep Learning 0.42 / 0.59 0.33 / 0.47
Li et al. [7] Deep Learning 0.39 / 0.56 0.33 / 0.51

MicroExpSTCNN [47] Deep Learning 0.52 / 0.72 0.39 / 0.56
Our full Deep Learning 0.62 / 0.83 0.47 / 0.68

TABLE II
A COMPARISON WITH OTHER METHODS IN MICRO-EXPRESSION

RECOGNITION USING HAND-CRAFTED FEATURES AND DEEP NEURAL
NETWORKS. THE TESTING ACCURACY IS REPORTED ON BOTH CAS(ME)2

AND SMIC DATASETS. FOR DEEP LEARNING BASED METHODS, THE
RESULTS ON THE LEFT SIDE OF ”/” REPRESENT TESTING OUTCOMES THAT
THE METHODS TESTED ON MULTI-VIEW DATASETS BUT ONLY TRAINED ON

THE ORIGINAL MICRO-EXPRESSION DASTASET; THE RIGHT SIDE OF ”/”
MEANS THAT THE METHOD TESTED ON THE MULTI-VIEW DATA IS ALSO

TRAINED ON THE SPLIT. THE BEST RESULT FOR EACH DATASET AND
SETTING IS HIGHLIGHTED IN BOLD.

Negative Positive Surprise
Negative 46 0 2
Positive 3 28 0
Surprise 4 1 36

TABLE III
THE CONFUSION MATRIX OF OUR METHOD TESTING RESULT ON

CAS(ME)2 DATASET. VERTICAL AXIS INDICATES THE TRUE LABEL AND
HORIZONTAL AXIS INDICATES OUR OUTPUTS.

images are resized to be 128 × 128. GPU version and memory
space maintained the same as the 3D face generation.

C. Experimental results

We demoed the performance of our reconstruction on
Facescape and STIR 3D datasets (with ground truth) and
the facial micro-expression dataset (without ground truth), as
depicted in Fig. 7. By sharing the same image property such
as detected region and image size, our method recovers good
global shape on face surface as well as details on organs
like nose and mouth on micro-expression images even without
ground truth labels or multi-view constraints for training.

A comparison of the 3D faces reconstructed by different
approachs from one single facial image is depicted in Fig.
8. Compared with [32], our reconstruction is able to perform
more correct prediction in the depth estimation on nose and
cheek, with full face surface and texture. Compared with [38],
our reconstruction appear more real effect, and prevent the
distortion in forehead and cheek in [38].

First, we evaluate the proposed view-consistent micro-
expression recognition method both on CAS(ME)2 and SMIC
datasets. A comparison of testing accuracy in percentage with
other recent methods [42] [46] [7] [47] is shown in Table II.
As shown in Table II, we first can observe that for current

Negative Positive Surprise
Negative 44 0 4
Positive 4 8 3
Surprise 2 2 23

TABLE IV
THE CONFUSION MATRIX OF OUR METHOD TESTING RESULT ON SMIC

DATASET. VERTICAL AXIS INDICATES THE TRUE LABEL AND HORIZONTAL
AXIS INDICATES OUR OUTPUTS.

Fig. 9. Ablation study on core components of our method in terms of accuracy.

existing works focusing on frontal faces, there is a large gap
in accuracy between the results on frontal faces and the side-
view faces, which demonstrates the benefits of our proposed
method in real application. Meanwhile, it can be noticed that
the proposed deep architecture both achieves the state-of-the-
art accuracy on the testing split of the generated multi-view
with or without training on multi-view data. Specifically, the
proposed method achieves an 11% and 12% improvement
in recognition accuracy compared with the latest approach
[47]. The confusion matrices with our proposed recognition
model on CAS(ME)2 and SMIC datasets are also provided in
Table III and IV respectively, to avoid potentially misleading
results in accuracy because of the unbalanced data. It can be
observed that our method distinguishes positive and negative
expressions very well, but may confuse the surprise and
negative expressions.

An ablation study on key components of our method is
conducted and results presented in Fig. 9. As the additional bi-
direction ConvLSTM and the SNN are main differences from
3DCNN-based approaches, they are considered to contribute to
the extraction of long-term holistic features from video clips.
We observe 4% and 6% improvements on CAS(ME)2 and
SMIC datasets. The proposed methods for multi-view image
data generation and micro-expression recognition result in a
significant improvement on the recognition accuracy, 21% for
both two datasets. In addition, optical flow inputs contribute
with 2% and 3%.

V. CONCLUSION

This work proposes a multi-view geometry micro-
expression recognition framework from videos clips based
on global and local spatial-temporal networks. Benefiting
from our generated multi-view faces, we are able to recog-
nize micro-expression accurately under different perspectives,
which is difficult for other existing methods. The introduced
recognition network leverages both local short-term and global
long-term feature representations and incorporates both in-
tensity information and optical flow information to achieve
higher recognition accuracy. Ablation analysis verified the
effectiveness of each core component designed in our full
method, and extensive experiments on the two benchmark
datasets demonstrate that the proposed method outperforms
recent methods by a large margin on micro-expression recog-
nition tasks, particularly for side-view faces.
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