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et al., 2016; Zehtabian et al., 2010). The country is facing a double challenge: (1) an increasing 38 
water needs due to growing population (Motamed, 2017; Neuve-Eglise, 2007; Saatsaz, 2019) 39 
and (2) an increase of drought frequency over the last two decades and future climate change 40 
scenarios (Golian et al., 2015; Keshavarz and Karami, 2013; Tabari et al., 2012; Amiraslani and 41 
Caiserman, 2018). However, Iran has attempted to increase the agricultural productivity with 42 
greater access to water for irrigation to support food security.  43 

The objective of this paper is to identify sensitive crops which require significant amounts of 44 
irrigation in one of the most important agricultural zones of Iran (Hassanshahi et al., 2015; 45 
Moameni, 1999): the plain of Marvdasht in the Fars Province. For this purpose crop 46 
Evapotranspiration (ETseason) and Net Irrigation Requirements (NIRseason) were computed using 47 
remote sensing. In addition, such an analysis of crop water needs enabled us to assess the total 48 
use of groundwater during that year. The Marvdasht Plain is fully in the prism of climate 49 
change as it records a decrease in rainfall of 1.1 mm/decades over the period 1988-2015 (Roshan 50 
and Negahban, 2015) as well as an increase in temperature of 0.05 to 0.99C°/decades since 1975 51 
(Soltani et al., 2016). Droughts have also been frequent over the last forty years, particularly in 52 
1981, 1982, 1983, 1985, 1987, 2003, 2004 2008 and 2011, during which drought severity strongly 53 
affected agricultural production (Ahani et al., 2012; Keshavarz et al., 2014; Keshavarz and 54 
Karami, 2013). These past and future climate changes make it essential to estimate water use 55 
by agriculture, as  support to political decision-making for the decades to come. Monitoring 56 
water consumption of crops appears as a key issue to highlight the crops which might 57 
exacerbate water shortage, in the name of food security. Moreover, the assessment of water 58 
balance and NIR per crop type is the first attempt in this region. Remote sensing is a useful 59 
tool and has already proven its relevancy to monitor agriculture and water issues, especially 60 
under arid and semi-arid conditions (e.g. Caiserman et al., 2019).  61 

The application of remote sensing in agriculture are subdivided as follows (Asgarian et al., 62 
2016): (1) agricultural dynamics and the evolution of crop areas with low resolution images 63 
such as MODIS (250 m), (2) precision agriculture with high resolutions images such as 64 
Quickbird (0.65), Pleiade (0.7 m) or RapidEye images (5 m) for yields estimations, soil 65 
humidity assessment or weed prevention and (3) crop type classification with medium 66 
resolution images such as Landsat-8 (30 m) or Sentinel-2 (10 m). The present paper is 67 
considering the third approach of agriculture through crop mapping and crop water needs 68 
estimation. Numerous studies have already developed methodology to map crop areas with 69 
satelite images (Belgiu and Csillik, 2018; Hao et al., 2018; Heupel et al., 2018; Kenduiywo et al., 70 
2018; Lamb and Brown, 2001; Panigrahy and Sharma, 1997; Song et al., 2017; Waldhoff et al., 71 
2017; Xie et al., 2007; Zhong, 2012). This paper used a new process, recently developed for 72 
another case of study in Lebanon using Sentinel-2 images for its good resolution (10 m) 73 
(Caiserman et al., 2019). This method was divided in three steps: (a) a new way to extract fields 74 
boundaries by stacking monthly high NDVI pixels to highlight the cultivated areas, (b) the 75 
retrieval of crop calendars and (c) the classification of pixels. The novelty of this methodology 76 
was its simplicity and reproducibility. In addition, this crop mapping process was based on 77 
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field works, increasing the reliability of the outputs. Remote sensing has another role for water 78 
needs estimations. Numerous algorithms have already been developed such as SEBI (Menenti 79 
and Choudhury, 1993), SEBS (Su, 2002), S-SEBI (Roerink et al., 2000), METRIC (Allen et al., 80 
2007), TSM (Norman and Becker, 1995), SAMIR (Simonneaux et al., 2009) and PYSEBAL using 81 
Landsat-8 images (Bastiaanssen et al., 1998a, 1998b; Hessel, 2019; Hessel et al., 2017). This 82 
paper selected the latest version of PYSEBAL since it does not require a significant amount of 83 
data and its accuracy has been assessed in many countries between 85% and 95% on 84 
experimental fields (Liou and Kar, 2014). The validation was conducted with lysimeter 85 
measurements in several countries with Root Mean Square Error (RMSE) of 0.7 in Spain, 0,03 86 
in China, 0.14 in Nigeria or 0,6 in Italy (Water Watch, 2019).  87 

The second section of the paper introduces the chosen region in Iran and the requisite data 88 
from to ground to the satelite images to compute the agricultural water budget. In the third 89 
section, the results of crop mapping and PYSEBAL will be explained and interpreted. 90 
Eventually, the fourth section consists in the discussion of the paper, namely the validation of 91 
crop mapping and PYSEBAL through field works and global literature review, and the 92 
perspectives of these models will be shown in the same part.  93 

2. Methods and materials 94 

2.1 Study area: Marvdasht plain 95 

The study area is located in the Fars Province, southern Iran (29°52'34N - 52°48’22E, elevation: 96 
1600 m) and covers 95000 ha (figure 1). The current climate is the Mediterranean characterised 97 
by two contrasted seasons between wet winters and dry and hot summers. According to local 98 
climate stations, Marvdasht annually receives 440 mm in the northern part and 275 mm in the 99 
more arid area in the southern part and 73% of the precipitation occurs in winter (based on 100 
annual average on 1990-2017 period). Thereby, the irrigation is necessary from May until 101 
October and the annual average of potential evapotranspiration reaches 1680 mm (Attarod et 102 
al., 2016). Nevertheless, precipitations are highly variable and numerous droughts occurred in 103 
the recent decades (Ahani et al., 2012; Keshavarz et al., 2014; Keshavarz and Karami, 2013; 104 
Khosravi et al., 2017). 105 
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 106 

Figure 1. Study area: the Marvdahst Plain, Fars Province and its annual average 107 
precipitations from 1990 to 2017 (Sources: IMO, 2018) 108 

2.2 Sentinel-2 and Landsat-8 imagery 109 

This study has required a double dataset of images: monthly Sentinel-2 images for crop 110 
mapping in spring (images from January to June) and summer (July to December) 2018 and 111 
monthly Landsat-8 imagery over the same year for crop water needs according to PYSEBAL 112 
inputs requisites (Figure 2). First, 11 Sentinels-2 images were downloaded (images in February 113 
were too cloudy, therefore we computed the average between January and March NDVI) to 114 
assess the evolution of pixel’s greenness throughout the season. The images were downloaded 115 
using the USGS Data Explorer (USGS, 2019). This evolution enabled to distinguish them 116 
according to crop types collected on the ground. A field survey was conducted across the 117 
Marvdasht plain during the agricultural season (January-August) in 2018. The aim was to 118 
record GPS-based locations of each crop type in spring and summer (Table 3). The crop 119 
calendars were extracted from interviews with 60 farmers and also from NDVI temporal 120 
profiles of sampled crop types (based on Table 1). 121 

 122 

 123 

 124 

Table.1  Sampled crop types and land uses in Marvdasht plain during the field work in 125 
2018 (January-August) 126 

Farshad
Mention in full in the ref list. Correct all cases in the text if any.

Farshad
Where are tables 2 and 3 ? Table 3 and table 2 cannot be mentioned before table 1 anyway
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Spring Alfalfa Canola Orchard Wheat 
Bare 
soil 

Urban       

(534) 20 24 134 244 26 86       

Summer Alfalfa Orchard Corn Rice 
Sugar 
beet 

Tomato Fallow 
Bare 
soil 

Urban 

(719) 20 134 60 174 100 79 40 26 86 
 127 

 128 

Figure.2 Timefarme of Landsat-8 and Sentinel-2 images for assessing crop water needs 129 
and crop mapping in Marvdasht, 2018 130 

On each ‘Day Of Year’ timeframe, hourly ground data from an indicative station – Sad 131 
Doroudzan (X: 30,17, Y: 52,78, Z:1 600) (Figure 3) – were acquired to compute an instantaneous 132 
ET (ETinst), during the time of overpass (11:00 GMT): solar radiation, wind speed, temperature 133 
and relative humidity (Figure 3). Sad Doroudzan station in Marvdasht plain was chosen as the 134 
reference station due to its proximity to fields and daily data recordings. PYSEBAL computes 135 
ET with a Standardized Penman-Monteith equation (Waters et al., 2002). 136 

 137 



Farshad
Correct as ‘aboveground’ in the WS figure 
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159 

    160 

         161 

     162 

Figure.4 Sentinel-2 NDVI profiles of crop types and landuses from sampled fields in 163 
Marvdasht plain in 2018 164 
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calculate the water requirement of rice and this value to compute PERC on our same study 280 
area. 281 

2.5 Crop classification validation  282 

It was necessary to assess the accuracy of the farm boundaries delineation through the 283 
comparison of areas from 60 automatically extracted and manually digitized fields with 284 
GoogleEarth images. R and R² were calculated to assess the reliability of the fields boundaries 285 
extraction. Once the farm boundaries are validated, the classification itself should be assessed 286 
with the computation of precision, recall and overall accuracy.  287 

2.6 Crop water needs validation  288 

The key point of this research was the validation of PYSEBAL outputs through the comparison 289 
of NIRPYSEBAL and NIR from the field surveys with farmers. The surveys targeted information 290 
about the yields and whenever possible, the irrigation calendar. More importantly, the surveys 291 
aimed to target the amount of irrigated water on crops. Whenever farmers knew the amount 292 
of irrigation they applied on their farms, we took the GPS coordinates and compared the Net 293 
Irrigation Requirements (NIR) from the surveys on these fields to the NIR of PYSEBAL on the 294 
same fields. These information collected from farmers might be incorrect or incomplete. 295 
Consequently, not all of the 60 surveys were retained as accurate and relaible enough to 296 
validate the NIR. However, a group of 5 farmers wrote down and precisely knew these 297 
information (times and volume) that were used to validate NIRPYSEBAL: three fields of wheat, 298 
one of alfalfa and one of corn. On the sampled plots (where farmers knew exactly the amount 299 
of irrigation water they brought), we located and estimated the cultivated surface with 300 
GoogleEarth images (1), we multiplied the frequency of irrigation (number of irrigation session) 301 
with the amount of irrigation water per session (m3) and we obtained the NIR of these fields. 302 
Then, we compared NIRfield with NIRPYSEBAL on the same plot. PYSEBAL outputs match to the 303 
ET and then to the NIR/ha/season (after net rainfall subtraction) per pixel. Therefore, we 304 
compare NIRfields and NIRPYSEBAL per ha and per season. Consequently, despite the lack of 305 
lysimeter data, the accuracy of ETPYSEBAL could be assessed in this study through the 306 
comparison of NIRfield and NIRPYSEBAL. 307 

This lack of lysimetric data led us to consider a second process to validate ETseason of PYSEBAL. 308 
Indeed, this difficulty of the lack of data collected on the ground has already been encountered 309 
in other studies that recommend comparing Daily ET of PYSEBAL with Daily ET of the FAO-310 
56 method (Stancalie et al., 2010) using Allen's method (Allen et al., 1998). This method consists 311 
in calculating Daily ET by calibrating ET0 of the climatic station representative of the plain –  312 
here the Doroudzan station – with the crop coefficients (Kc) taken from the literature. Crop 313 
coefficients are indeed not the same from one crop to another and vary over time according to 314 
the crop phenological stage. It is important to compare the results of PYSEBAL in the 315 
Marvdasht Plain only from plots large enough to match the spatial resolution of Landsat-8 316 
images. Thus, selected plots in the Marvdasht Plain should be larger than 4 hectares (Tasumi, 317 
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2019). The accuracy of PYSEBAL was assessed by calculating Root Mean Square Error (RMSE) 318 
and Mean Average Error (MEA) between Daily ET FAO-56 and the Daily PYSEBAL average 319 
of plots larger than 4 ha. 320 

3. Results 321 

3.1 Crop classification accuracy 322 

Regarding the farm boundaries, with R: 0.95 and R²: 0.91 (Figure 6), one can consider the model 323 
as accurate enough and these automated fields limits can be further used for crop areas 324 
classification. Also, the crop classification accuracy was estimated based on data…….. (Table 325 
3). 326 

 327 

Figure.6 Comparison of automated and digitized farm boundaries in 60 random plots in 328 
Marvdasht plain 329 

 330 

Table 3. Validation of crop areas classification in Marvdahst plain, 2018 331 

(spring) Precision Recall 
Overall 
accuracy 

(summer) Precision Recall 
Overall 
accuracy 

Alfalfa 66.67 0.57 80 Corn 0.56 0.63 80 
Canola 69.23 0.6 75 Rice 0.73 0.98 73.56 

Orchard 93.75 0.94 89.55 Sugar beet 0.84 0.79 84 
Wheat 98.1 0.94 84.43 Tomato 0.86 0.97 82.05 
Urban 100 1 100 Fallow 0.9 1 90 

Bare soil 81.25 0.81 100         
 332 

From spring to summer, the minimal overall accuracy is 73.56% (rice), the minimal recall 0.57 333 
(alfalfa) and the minimal precision 0.56 (corn). In addition, rice and corn could be mixed up 334 
for their very similar crop calendars. Nonetheless, higher NDVI values of rice at mid-summer 335 
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(figure 4) enabled the distinction of these two crop types. Otherwise, the classification of crop 336 
areas appeared as accurate enough to be used to compute the crop and eventually the total 337 
water budget in Marvdasht plain. 338 

Crop mapping can be improved, as showed in the previous case of study that used this 339 
methodology with Sentinel-2 images (Caiserman et al., 2019). In this study, it was assumed 340 
that a greater number of GPS-based points per crop types (for crop calendars extraction) would 341 
enhance the accuracy of maps. Thereby, this paper showed that crops with similar agricultural 342 
calendars remain difficult to be distinguished, but the precision, recall and overall accuracy of 343 
the crop maps in Marvdasht plain were still satisfying and make these maps convenient for 344 
crop water needs estimations. 345 

3.2 PYSEBAL’s results accuracy 346 

In most of the cases, PYSEBAL  underestimates the reality with an average of 10% (table 4). 347 
The best estimation is the plot n°4 (wheat) where PYSEBAL only underestimated the reality of 348 
1.96%. The statements of the farmers and PYSEBAL outputs were highly correlated. On the 349 
other hand, the worst example was another wheat field (overestimation of 17%) where 350 
NIRPYSEBAL was 459 mm/ha/season and NIRfields, 384 mm. This might be due to errors from the 351 
farmers who probably underestimated the amount of irrigated water. The pixels of the outputs 352 
could be also overlapped with other fields and the estimation not accurate. Nonetheless, the 353 
overall estimation is satisfying and PYSEBAL is therefore considered as reliable enough to 354 
compute crop water needs. 355 

Table.4 Comparison of NIRPYSEBAL and NIRfields from the agricultural season in Marvdasht 356 
(2018)  357 

Plot 
n° 

Crop 
type  

X Y Area  Frequency 
Amount 

m3 
NIRfields 

mm/ha 
NIRPYSEBAL 

mm/ha 

Over/under-
estimation 
of NIR (%)  

1 Alfalfa 52.84 29.84 2.443 15 95 1425 1343 -5.92 
2 Corn 52.80 29.93 2.294 6 86.4 518 473 -9.08 
3 Wheat 52.79 29.93 1.418 4 86.4 346 268 -25.4 
4 Wheat 52.84 29.84 1.395 4 90 360 353 -1.96 
5 Wheat 52.84 29.84 3.513 4 96 384 459 17.70 

 358 

Moreover, the comparison between Daily ET FAO-56 and PYSEBAL confirms the 359 
underestimation of PYSEBAL in most cases (Table 5, Figure 7). Indeed, all Daily ET PYSEBAL 360 
values are lower than those of Daily ET FAO-56 except for orchards due to a wider range of 361 
ET PYSEBAL average on account on the variety of fruit trees species in that class. The number 362 
of plots compared by crop type varied according to the importance of the plants. For example, 363 
only 12 plots of canola larger than 4 ha were compared as canola is only marginally grown in 364 
the plain, compared to 917 plots of wheat, a major crop in the plain. In total, the RMSE between 365 
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ET Daily FAO-56 and PYSEBAL was 0.67 mm/day and the MAE 0.52 mm/day. One must take 366 
into account the bias of the FAO-56 method (Allen et al., 1998), which only considers well-367 
irrigated plots with no water deficit, which is not necessarily the case for all the plots compared 368 
in Table 5. However, despite the lack of expensive and scarce lysimetric data in the field, the 369 
relatively low values show the relative accuracy of PYSEBAL in its estimate of Daily ET in 2018 370 
in the Marvdasht Plain.  371 

Table.5 Crop coefficients retrived from the literature for FAO-56 method and Daily ET 372 
from FAO-56 and PYSEBAL in Marvdasht plain in 2018 373 

Crops Kcin Kcmid Kcend 
Length 
(days) 

Plots over 4 
ha 

FAO-56 
Daily ET 

PYSEBAL Daily 
ET 

Alfalfa 0.4 0.95 0.9 60 35 1.72 1.33 
Canola 0.35 1.15 0.35 175 12 3.02 2.99 

Orchard 0.4 1.1 0.45 150 57 3.43 3.61 
Wheat 0.3 1.15 0.32 240 917 1.96 1.78 
Corn 0.3 1.2 0.75 150 267 5.49 4.17 
Rice 1.05 1.2 0.75 150 60 7.13 6.17 

Sugar beet 0.35 1.2 0.7 160 122 6.10 5.74 
Tomato 0.6 1.15 0.8 140 167 4.73 3.94 

 374 

Figure.7 Comparaison of Daily ET FAO-56 and Daily ET PYSEBAL in the Marvdasht plain 375 
in 2018 376 

 377 

3.3. Water balance of Marvdasht plain 378 

The results of the crop classification provide an agricultural census of Marvdasht plain in 2018. 379 
Table 6 shows the areas per crop type and Figures 8 and 9 locate each plot per crop type. In 380 
spring, over 32250 ha was cultivated, mostly wheat (17811 ha, 50.5% of the plain, Figure 8), as 381 
one of the key crops for food security and self-sufficiency in Iran. Rice is also a key-crop for 382 
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food security and is intensively cultivated in Marvdasht. It is a traditional crop, especially in 383 
the northern part of the plain, but the construction of a dam in Doroudzan with a maximum 384 
capacity of one billion m3 (Figures 8 and 9) in the 1970s drastically increased the area of rice, 385 
as another key crop of food security in Iran (Moameni, 1999). Rice cultivation had become 386 
almost industrial and remains as one of the most profitable crops in this region. Summer 387 
vegetables are exclusively composed of tomatoes and sugar beets on mid-areas, 12.8 and 8.6%, 388 
respectively. Overall, the crop choices in Marvdasht are not too diverse and follow clear trends 389 
of food production within a legitimate food security perspective. 390 

Table.6 Spring and summer crop areas in Marvdasht plain based on crop classification 391 
with Sentinel-2 images in 2018 392 

Crops (spring) 
Area 
(ha) 

Area 
(%) 

Crops 
(summer) 

Area (ha) Area (%) 

Wheat 17811 50.5 Corn 7184 22.2 
Spring vegetable 14014 39.8 Rice 5433 16.8 

Orchard 1818 5.2 Tomato 4140 12.8 
Alfalfa 1548 4.4 Sugar beet 2768 8.6 
Canola 59 0.2 Orchard 1818 5.6 
Total 35250 100 Alfalfa 1548 4.8 

      Total 32307 100 
 393 

394 
Figure 8. Crop map in spring 2018                 Figure 9. Crop map in summer 2018  395 

The map (Figure 10) shows the seasonal spatial distribution of the PYSEBAL ETseason and Table 396 
7 shows the water balance information for the Marvdasht Plain. Firstly, it appears that the 397 
plain is more intensively cultivated in spring than in summer due to respective rainfall of 181 398 
































