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Abstract 
The brain's functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can 
provide quick and useful information towards understanding cognition and brain disorders. Volume conduction 
(VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the 
imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real 
part of the coherence leads to negligible FC when the processes are truly connected but with a zero or π-phase 
(modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the 
imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We 
compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and 
weighted PLI (wPLI), using multivariate autoregressive and stochastic neural mass models. Additionally, we create 
realistic simulations where 3 and 5 regions were mapped on a template cortical surface and synthetic MEG signals 
were obtained after computing the electromagnetic leadfield. With these simulations and FC methods, we also 
demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal's 
noise level. However, these results should be interpreted with caution given the known limitations of the sensor-
based FC approach. Overall, we found that EIC and iCOH  methods complement each other and both demonstrate 
superior results with more accurate FC maps. 

Keywords: 

Imaginary coherence, functional and effective connectivity, electroencephalography and magnetoencephalography, 
volume conduction, semi-realistic simulations, Hilbert transform. 

1 Introduction 
Communication of information across the cortex, vital for cognitive function, has been suggested to involve neural 
dynamic oscillations and related (de)synchronization activity (Buzsáki and Draguhn, 2004; Makeig et al., 2004; 
Singer, 1999; Tallon-Baudry and Bertrand, 1999). The basis of continuously changing oscillatory behavior can be 
found in the complex nonlinear and unpredictable interactions among neural populations, whose patterns are still 
unable to be completely disclosed with modern neuroimaging techniques. A successful statistical approach should 
be simple and efficient to deal with massive data analysis and for allowing clear interpretation of the results. 
Functional connectivity (FC) analysis in the frequency domain, based on coherence methods, has been proposed to 
efficiently elucidate such networks of information transfer (Fries, 2005; Jensen et al., 2007; Nunez et al., 1997; 
Rodriguez et al., 1999; Schnitzler and Gross, 2005; Shaw, 1984; Simoes et al., 2003; Stam and van Straaten, 2012; 
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Wheaton et al., 2005). The implicit use of frequency based analytical tools such as wavelets and Fourier transform 
has an important advantage of circumventing issues that arise from the nonlinearity and non-stationarity of the 
underlying neural dynamics (Bendat and Piersol, 2011; Grandchamp and Delorme, 2011). Particularly, the 
computational efficiency of these techniques and their simplicity, allows the analysis of a large number of regions of 
interest (ROIs) and clear-cut interpretation. 

Due to superior time resolution, magnetoencephalography/electroencephalography (M/EEG) is often used to study 
brain dynamics (Lopes da Silva, 2013; Palva and Palva, 2012). However, the mixing and field spreading of the local 
field potentials, eventually reflected at the sensor level, pose a serious challenge for the connectivity analysis. One 
possible solution is to first solve the inverse problem with one of the well-established methods (Friston et al., 2008; 
Grave de Peralta Menendez et al., 2001; Gross et al., 2001; Hämäläinen and Ilmoniemi, 1994; Huang et al., 2014; 
Pascual-Marqui, 2007; Van Veen et al., 1997) and then assess FC from the estimated source activities. Although 
Schoffelen and Gross (2009) suggested that FC must be analyzed at source instead of sensor space, their work also 
warned against excessive optimism mainly due to volume conduction (VC) effects that are still present in the 
estimated source activities. Another important limitation of the latter approach is the lack of realism of currently 
popularly used forward models which could be addressed by using more realistic but complex and time consuming 
finite element methods (Cho et al., 2015; Dannhauer et al., 2011; Lanfer et al., 2012a, 2012b, Vorwerk et al., 2014, 
2012). Other important cause of bias is the presence of deep sources that are not well estimated, and particularly 
may lead to the estimation of a nearby related superficial source or even two or more superficial sources with mixed 
estimated dynamics that deceitfully provide a better fit of the observed M/EEG signals. Obviously, the spread of 
estimated source fields, biased estimation of the number of sources, localization errors and poor separation of mixed 
signals will lead to false connectivity inferences. 

FC analyses in sensor space are important for quick analysis of brain functions, i.e. without resorting to more 
complex source based analyses. They have been robustly addressed by Nolte et al. (2004) who proposed the 
imaginary part of the coherence (iCOH) method as an essential technique to circumvent the VC effects for FC 
estimation. They demonstrated an improved FC estimation using iCOH measure in comparison to coherence 
analysis, and showed transient interactions between left-right motor cortical signals as a function of time and 
frequency in a real dataset. However, due to its exclusive dependency on the imaginary part of the coherence, FC 
estimate based on iCOH becomes negligible in some situations even in the presence of a significant true interaction, 
e.g. the phase difference between two signals is near zero or 𝜋𝜋 (modulus 2𝜋𝜋). Later improvements on this limitation 
were achieved by proposing the phase lag index (PLI) (Stam et al., 2007) and the weighted PLI (wPLI) (Vinck et al., 
2011), demonstrated by simulations based on the Kuramoto-model as well as with real data. 

As further evidence of iCOH based techniques' effectiveness, Haufe et al. (2013) explored iCOH and phase slope 
index (PSI) (Nolte et al., 2008), together with multivariate Granger causality (Granger-MVAR) (Granger, 1969) and 
partial directed coherence (PDC) approaches (Baccalá and Sameshima, 2001) in sensor and source spaces using 
semi-realistic brain simulated data based on only two interacting sources (acting as ground truth). They found that 
Granger-MVAR and PDC have serious problems with VC in sensor and source spaces. Additionally, they showed 
that methods based on the imaginary part of the cross-spectral or complex coherence were able to better identify the 
true interactions. In a more recent simulation study, Haufe and Ewald (2016) proposed a 3-fold procedure to study 
FC, which consisted of: (1) estimating source activity with a reliable M/EEG inverse solver when signal-to-noise 
ratio is sufficiently high for the activity of interest; (2) testing for significant interactions using iCOH while 
comparing against a baseline estimate; and (3) assessing the connectivity direction using PSI. They were able to 
show that their approach can partially recover active regions, identify a possible interaction and determine the 
lagging region. However, their simulations used only two linearly interacting regions and it is unclear whether the 
same procedure can be successfully applied to more realistic nonlinear neural models, and/or with the use of a 
higher number of ROIs and their interactions. 
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From the above, it is clear that iCOH-derived techniques are useful for FC analysis using simulated, real and clinical 
datasets (see also Ewald et al., 2012; Guggisberg et al., 2008; Hardmeier et al., 2014; Olde Dubbelink et al., 2014; 
Polanía et al., 2012; Stam et al., 2008, 2007, 2006; Vinck et al., 2011). But despite current advances, these methods 
are still very dependent on the imaginary part of coherence (or cross-spectral), hence limiting their potential in FC 
analysis.  

In this work, we address the "imaginary-part" limitation by proposing a new iCOH-derived measure: the envelope of 
the imaginary coherence (EIC) operator, defined here as the absolute value of the analytical signal estimated from 
the iCOH measure when the latter is regarded as a function in the frequency domain. We will empirically 
demonstrate that this operator is able to compensate for the missing real part and can readily approximate the 
coherence value between possibly interacting underlying sources. We will also provide arguments against using a 
conventional normalization procedure for the original estimation of the iCOH method while proposing a different 
normalization approach. In a simulation study considering two possibly interacting sources, we will compare our 
proposed EIC method with state-of-the-art coherence based approaches: classical coherence (COH), phase lock 
value (PLV) (Lachaux et al., 1999), iCOH (Nolte et al., 2004), PLI (Stam et al., 2007) and wPLI (Vinck et al., 
2011). A surrogate-based statistical procedure proposed by Lachaux et al., (1999) will be used to assess significant 
FC between two sensors which are assumed to be located nearby the underlying active sources. 

Furthermore, based on synthetically generated M/EEG signals which are more realistic and complex than in 
previous simulation studies, we compare EIC against other iCOH-derived techniques using receiver operating 
curves (ROC) analysis, where the latter was based on ROIs defined over the sensor space. This is done to avoid the 
selection of potential biased thresholds for each FC measure, separately, and to introduce a novel procedure to 
evaluate the feasibility of sensor-based FC analysis. Specifically, we will present simulations of 3 and 5 interacting 
ROIs with neural dynamics described by multivariate autoregressive (MVAR) model and a system of stochastic 
delay differential equations (SDDEs), projected onto 102 MEG channels to compute sensor-based FC measures. 
Throughout, we show that EIC is more robust than other methods in terms of found true FC and reduced spurious 
results, i.e. EIC is robust to VC as other iCOH based measures but distinctly allows to infer significant FC even in 
the presence of zero or 𝜋𝜋-phase interactions. We also showed that the classical iCOH method (Nolte et al., 2004) can 
accurately detect complex FC interactions despite its limitations, thus we recommend to use EIC as a complement to 
iCOH in practical analysis. Overall, our work has shed light on the usefulness and limitations of iCOH-derived 
techniques for analysis of M/EEG data and the feasibility of analysis of FC in sensor space. 

2 Materials and Methods 
In this study, we limit ourselves to the study of brain regional interactions as reflected at sensor space; the estimation 
of these interactions in source space with iCOH methods will be discussed in future work, though interested readers 
can consult the vast existing literature (e.g. Brookes et al., 2014; Colclough et al., 2015; Haufe et al., 2013; Haufe 
and Ewald, 2016; O’Neill et al., 2015; Schoffelen and Gross, 2009; Siems et al., 2016; Van de Steen et al., 2016). In 
Fig. 1 we illustrate an example of the generation of M/EEG signals from active brain sources, which is used to 
introduce the FC estimation in sensor space with iCOH-derived techniques, and illustrates how the VC effects in 
sensor space are directly related to the field spread of local active underlying sources. Specifically, two interacting 
sources are simulated in a sagittal view of the brain together with two nearby sensors located over the scalp in the 
same projection plane. The interactions between the sources as well as local leadfield effect over the sensors are 
indicated with continuous and dashed arrows, respectively. Given the sensor signals, the complete challenge is to 
make inferences about active source locations, their temporal signatures and identifying possible interactions among 
the sources. However, in this work, we shall focus only on the latter problem. 

In this example, the source dynamics (𝑥𝑥 and 𝑦𝑦) can be represented using bivariate autoregressive model or neural 
mass model (NMM) dynamics, while their influences on the sensor measurements (𝑢𝑢 and 𝑣𝑣) are represented as,  
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  𝑢𝑢 = 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝜀𝜀𝑢𝑢 ;  𝜀𝜀𝑢𝑢~𝑁𝑁(0,𝜎𝜎𝑢𝑢2),  (1) 
 𝑣𝑣 = 𝑎𝑎2𝑥𝑥 + 𝑏𝑏2𝑦𝑦 + 𝜀𝜀𝑣𝑣;  𝜀𝜀𝑣𝑣~𝑁𝑁(0,𝜎𝜎𝑣𝑣2), (2) 

which correspond to a local leadfield model, where 𝑎𝑎1, 𝑏𝑏1,𝑎𝑎2,𝑏𝑏2 represent the mixing coefficients, and 𝜀𝜀𝑢𝑢  and 𝜀𝜀𝑣𝑣 are 
white Gaussian noise terms. The expected cross-covariance and cross-spectral estimate of the sensor signals are, 

 𝑅𝑅𝑢𝑢𝑣𝑣 (𝜏𝜏) = Ε[𝑢𝑢(𝑡𝑡)𝑣𝑣(𝑡𝑡 + 𝜏𝜏)]
= 𝑎𝑎1𝑎𝑎2𝑅𝑅𝑥𝑥𝑥𝑥 (𝜏𝜏) + 𝑎𝑎1𝑏𝑏2𝑅𝑅𝑥𝑥𝑦𝑦 (𝜏𝜏) + 𝑎𝑎2𝑏𝑏1𝑅𝑅𝑦𝑦𝑥𝑥 (𝜏𝜏) + 𝑏𝑏1𝑏𝑏2𝑅𝑅𝑦𝑦𝑦𝑦 (𝜏𝜏) (3) 

 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓) = 𝑎𝑎1𝑎𝑎2𝑆𝑆𝑥𝑥𝑥𝑥 (𝑓𝑓) + 𝑎𝑎1𝑏𝑏2𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓) + 𝑎𝑎2𝑏𝑏1𝑆𝑆𝑥𝑥𝑦𝑦∗ (𝑓𝑓) + 𝑏𝑏1𝑏𝑏2𝑆𝑆𝑦𝑦𝑦𝑦 (𝑓𝑓) (4) 

By using the notation 𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓) = ℜ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)� + 𝑗𝑗ℑ{𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)}, we obtain (Bendat et al. 2010): 

 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓) = 𝑎𝑎1𝑎𝑎2𝑆𝑆𝑥𝑥𝑥𝑥 (𝑓𝑓) + 𝑏𝑏1𝑏𝑏2𝑆𝑆𝑦𝑦𝑦𝑦 (𝑓𝑓) + (𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏1)ℜ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)� + 𝑗𝑗(𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1)ℑ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)�. (5) 

As can be observed in this last derivation, the main VC effect is the contamination of the real-part (ℜ) of 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓) 
with auto-spectral terms, whereas the imaginary-part (ℑ) of 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓) (the last term on the right-hand side of the 
equation) is exactly a scaled version of the imaginary-part of 𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓). That means that we can recover very well the 
imaginary part of unknown interacting processes if we are able to obtain measurements from nearby sensors. 
Otherwise, the real part is a combination of terms which include the real-part of interacting underlying sources 
ℜ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)� but this term cannot be easily extracted. The imaginary-part of 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓) hardly goes to zero for all 
frequencies, unless ℑ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)� = 0 for all frequency values, or the determinant of the local leadfield coefficients 
(𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1) is zero, both of which are rare in practice; although the former can be the case for oscillatory signals 
with very narrow bandwidth. Thus, the imaginary-part as measured from the harmonic analysis of the interaction of 
the sensor dynamics, can be used to obtain a measure that captures well the interactions of underlying sources, a fact 
that has been exploited by methods such as iCOH, PLI and wPLI (Nolte et al., 2004; Stam et al., 2007; Vinck et al., 
2011). 

 
Fig. 1. Schematic to demonstrate the M/EEG signal generation using a forward problem restricted to two possibly interacting 
sources (dipoles) and a pair of nearby sensors. Signals 𝒙𝒙(𝒕𝒕) and 𝒚𝒚(𝒕𝒕) represent source activity, whereas 𝒖𝒖(𝒕𝒕) and 𝒗𝒗(𝒕𝒕) represent 
sensor recordings. Continuous and dashed arrows represent interaction from source 𝒚𝒚 to 𝒙𝒙 and influence of source dipoles over 
sensor recorded activity, respectively. 

More generally, the sample estimate of the cross-spectral measure obtained from signals 𝑢𝑢𝑛𝑛(𝑡𝑡) and 𝑣𝑣𝑛𝑛(𝑡𝑡), collected 
across epochs 𝑛𝑛 = 1, … ,𝑁𝑁, is 

 𝑆𝑆𝑢𝑢𝑣𝑣 = 1
𝑁𝑁
∑ 𝑈𝑈𝑛𝑛(𝑓𝑓)𝑉𝑉𝑛𝑛∗(𝑓𝑓)𝑁𝑁
𝑛𝑛=1 , (6) 
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where 𝑈𝑈𝑛𝑛(𝑓𝑓) and 𝑉𝑉𝑛𝑛(𝑓𝑓) are the corresponding Fourier transform of signals 𝑢𝑢𝑛𝑛(𝑡𝑡) and 𝑣𝑣𝑛𝑛(𝑡𝑡) for each epoch. From 
here, the complex-coherence is computed as, 

 𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓) = 𝑆𝑆𝑢𝑢𝑣𝑣 (𝑓𝑓)
�𝑆𝑆𝑢𝑢𝑢𝑢 (𝑓𝑓)𝑆𝑆𝑣𝑣𝑣𝑣(𝑓𝑓)

= ℜ{𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)} + 𝑗𝑗ℑ{𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)}, (7) 

which allows to obtain the coherence estimator |𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)|. In the above example, with the interactions depicted in 
Fig. 1 and in Eqns. (1) and (2), Eqn. (7) becomes 

 𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓) = 𝑎𝑎1𝑎𝑎2𝑆𝑆𝑥𝑥𝑥𝑥 (𝑓𝑓)+𝑏𝑏1𝑏𝑏2𝑆𝑆𝑦𝑦𝑦𝑦 (𝑓𝑓)+(𝑎𝑎1𝑏𝑏2+𝑎𝑎2𝑏𝑏1)ℜ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)�

�𝑆𝑆𝑢𝑢𝑢𝑢 (𝑓𝑓)𝑆𝑆𝑣𝑣𝑣𝑣(𝑓𝑓)
+ 𝑗𝑗

(𝑎𝑎1𝑏𝑏2−𝑎𝑎2𝑏𝑏1)ℑ�𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓)�

�𝑆𝑆𝑢𝑢𝑢𝑢 (𝑓𝑓)𝑆𝑆𝑣𝑣𝑣𝑣(𝑓𝑓)
, (8) 

whereby using the Fourier transform (
ℱ
→) representations for 𝑥𝑥𝑛𝑛(𝑡𝑡) and 𝑦𝑦𝑛𝑛(𝑡𝑡), 

 𝑥𝑥𝑛𝑛(𝑡𝑡)
ℱ
→𝑋𝑋𝑛𝑛(𝑓𝑓) = 𝑅𝑅𝑛𝑛𝑒𝑒𝑗𝑗𝜑𝜑𝑛𝑛 ,𝑦𝑦𝑛𝑛(𝑡𝑡)

ℱ
→𝑌𝑌𝑛𝑛(𝑓𝑓) = 𝑟𝑟𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛 , (9) 

we obtain the individual expression for the auto-spectral and cross-spectral terms: 

𝑆𝑆𝑥𝑥𝑥𝑥 (𝑓𝑓) = 1
𝑁𝑁
∑ 𝑅𝑅𝑛𝑛2𝑛𝑛 , 𝑆𝑆𝑦𝑦𝑦𝑦 (𝑓𝑓) = 1

𝑁𝑁
∑ 𝑟𝑟𝑛𝑛2𝑛𝑛 , 𝑆𝑆𝑥𝑥𝑦𝑦 (𝑓𝑓) = 1

𝑁𝑁
∑ 𝑅𝑅𝑛𝑛𝑟𝑟𝑛𝑛𝑒𝑒𝑗𝑗 (𝜑𝜑𝑛𝑛−𝜃𝜃𝑛𝑛 )
𝑛𝑛 , (10) 

𝑆𝑆𝑢𝑢𝑢𝑢 (𝑓𝑓) = 𝑎𝑎1
2

𝑁𝑁
∑ 𝑅𝑅𝑛𝑛2𝑛𝑛 + 𝑏𝑏1

2

𝑁𝑁
∑ 𝑟𝑟𝑛𝑛2𝑛𝑛 + 2𝑎𝑎1𝑏𝑏1

𝑁𝑁
∑ 𝑅𝑅𝑛𝑛𝑟𝑟𝑛𝑛cos(𝜑𝜑𝑛𝑛−𝜃𝜃𝑛𝑛)𝑛𝑛 + 𝜎𝜎�𝑢𝑢2, (11) 

𝑆𝑆𝑣𝑣𝑣𝑣(𝑓𝑓) = 𝑎𝑎2
2

𝑁𝑁
∑ 𝑅𝑅𝑛𝑛2𝑛𝑛 + 𝑏𝑏2

2

𝑁𝑁
∑ 𝑟𝑟𝑛𝑛2𝑛𝑛 + 2𝑎𝑎2𝑏𝑏2

𝑁𝑁
∑ 𝑅𝑅𝑛𝑛𝑟𝑟𝑛𝑛cos(𝜑𝜑𝑛𝑛−𝜃𝜃𝑛𝑛)𝑛𝑛 + 𝜎𝜎�𝑣𝑣2. (12) 

One important observation from these derivations is that the denominator used for computing the complex 
coherence value, i.e. �𝑆𝑆𝑢𝑢𝑢𝑢 (𝑓𝑓)𝑆𝑆𝑣𝑣𝑣𝑣(𝑓𝑓), is contaminated by a weighted average of the cosine of the phase differences 
of interacting processes across trials, and thus the denominator magnitude fluctuates with dependence of the 
particular value of the phase difference. If we estimate the iCOH measure directly as the imaginary part of the 
complex coherence as originally stated (Nolte et al., 2004), then iCOH will lose its direct relationship to the 
corresponding imaginary-part of possibly interacting underlying sources and can potentially become less stable. 
Therefore, it may be preferable to obtain iCOH directly from the cross-spectra as Ε[ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)}] (without 
normalization) or using a different normalization factor. Notice that a normalization is recommended in order to 
make fair comparisons across frequencies or among groups/conditions and to guarantee that values are in a 
controlled range, i.e. [−1,1] or [0,1]. Therefore, we introduce a more convenient normalization for iCOH in Section 
2.1, which is used in the derivation of the new proposed method. 

In the discussion so far, we have not mentioned a critical problem that is still present and is usually ignored in the 
literature; namely, the rejection of the real-part in current state-of-the-art iCOH-derived techniques causing the loss 
of information that is important for producing better FC maps. A direct consequence of this omission is that these 
measures show negligible values when truly connected processes have a zero or 𝜋𝜋-phase interaction. As a main 
objective in our work, we propose here a new method derived from the imaginary part that allows us to approximate 
and consider the missing real-part of the coherence, and therefore is sensitive to these interactions whilst being 
robust to VC. 

2.1 Coherence and imaginary coherence based measures 
The iCOH measure can be obtained directly either from the imaginary part of the complex coherence (Eqn. (13)) or 
using a more appropriate normalization term as shown below (Eqn. (14)): 

 𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖1(𝑓𝑓) = ℑ{𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)}, (13) 
 𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖2 = Ε[ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)}] Ε[|ℋ(ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)})|]⁄ . (14) 
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The modified iCOH version introduced in Eqn. (14) is normalized conveniently using a denominator estimated by 
using the Hilbert's transform (HT). Here, the function ℋ(∙) produces the analytical signal from the cross-spectral 
imaginary values, while the expected value of its magnitude is taken to produce a robust normalization factor. 
Notice that the HT of a cosine produces a sine and vice versa. Thus, our aim with this operation is to 
(approximately) recover the missing real-part content of possible underlying interacting sources when only the non-
contaminated imaginary-part is used for the reasons discussed above. The theoretical proof on the effectiveness of 
this operation to recover the ignored real-part information is beyond the scope of this paper. However, we will 
empirically show in the next section the feasibility of this approach. 

Within the variety of coherence measures, another useful technique that is commonly used in the literature is the 
phase lock value (Lachaux et al., 1999): 

 𝑃𝑃𝑃𝑃𝑉𝑉(𝑓𝑓) = �Ε[𝑒𝑒𝑗𝑗 (𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒 {𝑈𝑈(𝑓𝑓)}−𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒 {𝑉𝑉(𝑓𝑓)})]�, (15) 

which assumes that the signal amplitude and phase are statistically independent and uses only the phase content for 
estimating a possible interaction. We have used this measure in our comparison study to show that it is similarly 
affected by VC as the coherence estimator. The set of state-of-the-art coherence based FC methods considered in 
this study is completed with the use of the phase lag index (PLI) (Stam et al., 2007), weighted PLI (wPLI) (Vinck et 
al., 2011), and lagged coherence (lCOH) (Pascual-Marqui et al., 2011): 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) = |E[𝑎𝑎𝑠𝑠𝑛𝑛(𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒{𝑈𝑈(𝑓𝑓)} − 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒{𝑉𝑉(𝑓𝑓)})]|, (16) 
 𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) = |Ε[ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)}]| Ε[|ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)}|]⁄ , (17) 
 𝑙𝑙𝐶𝐶𝑖𝑖𝑖𝑖(𝑓𝑓) = ℑ{𝐶𝐶𝑢𝑢𝑣𝑣(𝑓𝑓)}2 (1 −ℜ{𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)}2)⁄ . (18) 

The PLI is obtained from the expected value of the signum of the imaginary part, Ε[𝑎𝑎𝑠𝑠𝑛𝑛(ℑ{𝑈𝑈𝑛𝑛(𝑓𝑓)𝑉𝑉𝑛𝑛∗(𝑓𝑓)})], being 
equivalent to ±E[𝑎𝑎𝑠𝑠𝑛𝑛(𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒{𝑋𝑋(𝑓𝑓)} − 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑒𝑒{𝑌𝑌(𝑓𝑓)})], with a sign indeterminacy (for the example illustrated in 
Fig. 1, this indeterminacy refers to the sign of 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1.). Otherwise, wPLI is its weighted version in order to 
achieve more stability. Finally, we have included the lagged coherence for completeness in our study given its close 
similarity to iCOH measure, but also to explore the effect of using a different normalization that can either improve 
the sensitivity to detect FC or deteriorate performance in different VC or noise level scenarios. 

2.2 Envelope of the imaginary coherence (EIC) operator 
In order to obtain our proposed EIC operator, we compute the envelope of the iCOH function, 𝑧𝑧(𝑓𝑓), as the 
amplitude of the analytical signal ℎ(𝑓𝑓) = 𝑧𝑧(𝑓𝑓) + 𝑗𝑗�̃�𝑧(𝑓𝑓), where �̃�𝑧(𝑓𝑓) is obtained by using the HT function 
(Zygmund, 2002): 

 
�̃�𝑧(𝑓𝑓) = −

1
𝜋𝜋

lim
𝜀𝜀→0

�
𝑧𝑧(𝑓𝑓 + 𝜔𝜔) − 𝑧𝑧(𝑓𝑓 − 𝜔𝜔)

𝜔𝜔

+∞

𝜀𝜀
𝑑𝑑𝜔𝜔 (19) 

The HT is appropriate for constructing the envelope of narrow band signals in time domain. Wavelets analysis has 
been used in more general cases but both techniques have been used after a band-pass filtering to extract the 
oscillatory components within the frequency of interest in the signal. These techniques are applied indistinctively in 
signal processing and particularly for time-frequency decomposition analysis and there is no evidence to state the 
superiority of one approach over the other (Grandchamp and Delorme, 2011). Our focus here is to recover the local 
envelope of the signal represented by the iCOH measure (in frequency domain), in an attempt to partially recover 
and incorporate the information contained in its accompanying real part, as we demonstrate next. 

Fig. 2 illustrates the EIC idea with a simple example. Suppose a 40 Hz sinusoidal function is weighted by a 
Gaussian belt (envelope curve) with mean of 0.5 s and standard deviation of 0.02 s (Fig. 2A). The envelope curve 
can be recovered exactly if the HT is used in the time domain to estimate the analytical signal (Fig. 2B). But instead, 
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we may proceed to analyze the signal in the frequency domain using the Fourier transform (FT) and compute the 
envelope of the imaginary (EI) part as the absolute value of the analytical signal obtained by applying HT only to 
the imaginary part of the FT coefficients (see Fig. 2C). As shown in Fig. 2D, the EI curve quite closely resembles 
the magnitude spectral density (MSD) of the original signal even when the EI curve is computed using only the 
imaginary-part, which shows evidence of the practicability of using HT for recovering information that is lost when 
the real part is ignored like in the example (Fig. 2C). The case concerned in our study is similar to this simple 
example in relation to the imaginary-part of the coherence or cross-spectra. Following a similar reasoning, we 
heuristically support our case that EIC can recover missing information and thus provide more valuable content in 
comparison to other related iCOH-derived techniques. 

 
Fig. 2. A) One second segment of a time-limited signal x(t) which is obtained from an original 40 Hz sinusoidal by weighting 
with a Gaussian distribution function with mean of 0.5 s and standard deviation of 0.02 s. The Gaussian curve can be regarded as 
the envelope of the time-limited curve. B) The envelope can be recovered from the time-limited signal by computing the absolute 
value of the analytical signal of x(t). C) In the frequency domain, the Fourier transform of the signal, x(f), is represented by its 
real and imaginary parts, together with an envelope of the imaginary (EI) part, which is obtained from the absolute value of the 
analytical signal of the imaginary part. D) The magnitude spectral density (MSD) of x(f) is represented together with the positive 
part of the EI curve. Notice that both have similar characteristics and present a peak about 40 Hz. 

In this example, the EI curve shows heavier tails compared to the MSD due to some border effects in the estimation 
of the analytical signal, but the important point is that the peak of both functions occurs nearby the same point. In 
the Supplementary Material, further evidences are provided to show the robustness of the EIC operator (Figs. S.1 
and S.2). In particular, in Fig. S.2, using the same signal as in Fig. 2, we demonstrate that if this type of envelope is 
computed only from the real part (blue curve in Fig. 2C), then the result is similar and we are again able to readily 
recover the information. Therefore, with respect to any frequency of interest, we can be confident that EIC can 
recover information about the FC strength that is lost when the real part is ignored, while being relatively robust 
with respect to the varying local phase and the waxing-waning behavior of the imaginary-part in the frequency 
domain. 

We now introduce two versions of the EIC operator corresponding to each of the discussed versions of iCOH. The 
first definition (𝐸𝐸𝑃𝑃𝐶𝐶1) derives directly from the application of HT on the imaginary part of the complex coherence 
𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓) which was defined in Eqn. (13). This version can present some undesired behaviour as a result of the 
instability induced by the normalization term in the complex coherence estimation as discussed above. The second, 
and our preferred, definition (𝐸𝐸𝑃𝑃𝐶𝐶2), is derived in a similar way but from the new normalized version of the iCOH 
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measure (see Eqn. (14) above). The motivation is to compensate for the missing real-part when the imaginary-part is 
used exclusively. Based on these, two versions of EIC,  𝐸𝐸𝑃𝑃𝐶𝐶1(𝑓𝑓) and 𝐸𝐸𝑃𝑃𝐶𝐶2(𝑓𝑓), are formulated as follows: 

 𝐸𝐸𝑃𝑃𝐶𝐶1(𝑓𝑓) = |ℋ(ℑ{𝐶𝐶𝑢𝑢𝑣𝑣 (𝑓𝑓)})|, (20) 
 𝐸𝐸𝑃𝑃𝐶𝐶2(𝑓𝑓) = |ℋ(Ε[ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)}] Ε[|ℋ(ℑ{𝑈𝑈(𝑓𝑓)𝑉𝑉∗(𝑓𝑓)})|]⁄ )|. (21) 

2.3 Simulation of source activity with autoregressive and neural mass models 
To compare the performance of the coherence based measures, we prepared two types of simulations, one consisting 
of simple (linear) autoregressive model and the other based on more realistic nonlinear neural mass models (NMM) 
(Jansen and Rit, 1995). These models simulate the interaction of activities among sources (e.g. 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) 
represented in Fig. 1), acting as ground truth, while their activities are only observed indirectly (e.g. 𝑢𝑢(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) 
representing either EEG or MEG sensors in Fig. 1). The values for the mixing coefficients are 𝑎𝑎1 = 0.75, 𝑏𝑏1 = 0.5, 
𝑎𝑎2 = 0.5 and 𝑏𝑏2 = 0.75 (see Eqns. (1) and (2)). Dynamics are generated by considering two different cases: (1) 
dependency given by influence from, say process 𝑦𝑦(𝑡𝑡) onto 𝑥𝑥(𝑡𝑡) in Fig. 1, mediated by a connectivity strength 
(𝐶𝐶𝑦𝑦→𝑥𝑥 ≠ 0) and information transmission delay, that can both be varied; and (2) independence of the processes, i.e. 
obtained by setting 𝐶𝐶𝑦𝑦→𝑥𝑥 = 0. To produce stable FC measurements, we simulate 1 s long epochs and 100 trials with 
same parameter values for each model, but using different noise replications. Although we present in this section a 
simulation framework for two regions, this can be straightforwardly extended to simulate any number of ROIs. 

For the dependency case, the generative process for the autoregressive model with 2 sources is described by: 

𝑥𝑥𝑛𝑛(𝑡𝑡) = 1.5𝑥𝑥𝑛𝑛(𝑡𝑡 − 1) − 0.75𝑥𝑥𝑛𝑛(𝑡𝑡 − 2) + 𝐶𝐶𝑦𝑦→𝑥𝑥𝑦𝑦𝑛𝑛(𝑡𝑡 − 𝛿𝛿) + 𝜀𝜀𝑥𝑥(𝑡𝑡); 𝜀𝜀𝑥𝑥~𝑁𝑁(0,𝜎𝜎𝑥𝑥2), 
𝑦𝑦𝑛𝑛(𝑡𝑡) = 1.5𝑦𝑦𝑛𝑛(𝑡𝑡 − 1) − 0.75𝑦𝑦𝑛𝑛(𝑡𝑡 − 2) + 𝜀𝜀𝑦𝑦(𝑡𝑡); 𝜀𝜀𝑦𝑦~𝑁𝑁(0,𝜎𝜎𝑦𝑦2), (22) 

where 𝛿𝛿 represents the transmission delay for 𝑦𝑦 → 𝑥𝑥 and 𝑛𝑛 = 1, … ,𝑁𝑁 indicates the epoch index. In the simulations, 
the sampling frequency is 𝐹𝐹𝑆𝑆 = 250 Hz such that time step is 4 ms, and the range of communication delay is 
𝛿𝛿𝛿𝛿{1, … ,12} such that the fastest transmission delay is 4 ms and the slowest is 48 ms, which is within reasonable 
physiological range (Ringo et al., 1994; Izhikevich and Edelman, 2008). The connectivity strength is set as 𝐶𝐶𝑦𝑦→𝑥𝑥 =
0.5, and 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 1 for each simulation. The coefficient values were chosen to produce 20 Hz oscillations.  

The generative process for the NMM is based on the classic Jansen and Rit (1995) model, but modified with explicit 
transmission delay for communication between ROIs and a stochastic term. The generating SDDEs system is 
described by: 

𝑑𝑑𝑥𝑥1(𝑡𝑡) = 𝑥𝑥4(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑥𝑥2(𝑡𝑡) = 𝑥𝑥5(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑥𝑥3(𝑡𝑡) = 𝑥𝑥6(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑥𝑥4(𝑡𝑡)  = [𝐴𝐴𝑎𝑎 𝑆𝑆{𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡)} − 2𝑎𝑎𝑥𝑥4(𝑡𝑡) − 𝑎𝑎2𝑥𝑥1(𝑡𝑡)] 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑥𝑥5(𝑡𝑡)  = �𝐴𝐴𝑎𝑎�𝑃𝑃𝑥𝑥 + 𝐶𝐶𝑦𝑦→𝑥𝑥𝑦𝑦1(𝑡𝑡 − 𝜏𝜏) + 𝐶𝐶2 𝑆𝑆{𝐶𝐶1𝑥𝑥1(𝑡𝑡)}� − 2𝑎𝑎𝑥𝑥5(𝑡𝑡) − 𝑎𝑎2𝑥𝑥2(𝑡𝑡)� 𝑑𝑑𝑡𝑡 + 𝐴𝐴𝑎𝑎 𝑑𝑑𝑊𝑊𝑥𝑥(𝑡𝑡) 
𝑑𝑑𝑥𝑥6(𝑡𝑡)  = [𝐵𝐵𝑏𝑏(𝐶𝐶4 𝑆𝑆{𝐶𝐶3𝑥𝑥1(𝑡𝑡)}) − 2𝑏𝑏𝑥𝑥6(𝑡𝑡) − 𝑎𝑎2𝑥𝑥3(𝑡𝑡)] 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑦𝑦1(𝑡𝑡) = 𝑦𝑦4(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑦𝑦2(𝑡𝑡) = 𝑦𝑦5(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑦𝑦3(𝑡𝑡) = 𝑦𝑦6(𝑡𝑡) 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑦𝑦4(𝑡𝑡) = [𝐴𝐴𝑎𝑎 𝑆𝑆{𝑦𝑦2(𝑡𝑡) − 𝑦𝑦3(𝑡𝑡)} − 2𝑎𝑎𝑦𝑦4(𝑡𝑡) − 𝑎𝑎2𝑦𝑦1(𝑡𝑡)] 𝑑𝑑𝑡𝑡 
𝑑𝑑𝑦𝑦5(𝑡𝑡) = �𝐴𝐴𝑎𝑎�𝑃𝑃𝑦𝑦 + 𝐶𝐶2 𝑆𝑆{𝐶𝐶1𝑦𝑦1(𝑡𝑡)}� − 2𝑎𝑎𝑦𝑦5(𝑡𝑡) − 𝑎𝑎2𝑦𝑦2(𝑡𝑡)� 𝑑𝑑𝑡𝑡 + 𝐴𝐴𝑎𝑎 𝑑𝑑𝑊𝑊𝑦𝑦(𝑡𝑡) 
𝑑𝑑𝑦𝑦6(𝑡𝑡) = [𝐵𝐵𝑏𝑏(𝐶𝐶4 𝑆𝑆{𝐶𝐶3𝑦𝑦1(𝑡𝑡)}) − 2𝑏𝑏𝑦𝑦6(𝑡𝑡) − 𝑎𝑎2𝑦𝑦3(𝑡𝑡)] 𝑑𝑑𝑡𝑡 

(23) 

where 𝑆𝑆{𝜐𝜐} = 2 𝑒𝑒0 (1 + 𝑒𝑒−𝜌𝜌(𝜐𝜐−𝜐𝜐0))⁄  is the input-output sigmoid function. We used the same values for neural mass 
parameters (𝐴𝐴,𝑎𝑎,𝐵𝐵, 𝑏𝑏, 𝑒𝑒0, 𝜐𝜐0,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4) as in Jansen and Rit (1995), but in our case we added Wiener processes 
𝑊𝑊𝑥𝑥(𝑡𝑡) and 𝑊𝑊𝑦𝑦(𝑡𝑡) to the equations to induce stochastic behaviour. We tuned the variances of 𝑊𝑊𝑥𝑥(𝑡𝑡) and 𝑊𝑊𝑦𝑦(𝑡𝑡) and 
set the average population transmembrane current 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 220 for producing alpha rhythm activity (~10.87 𝑖𝑖𝑧𝑧) 
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(see additional details in Supplementary Material). For a set of simulations used later in the results section, the 
connectivity strength 𝐶𝐶𝑦𝑦→𝑥𝑥  was taken in the range {50, 100, 150, 200, 250, 500} for a transfer delay of 𝜏𝜏 = 20 ms, 
in order to compare the FC measures for the different values. We have also tested other values of the transfer delay 
parameter for consistency and similar results were obtained (see Fig. S9 in Supplementary Material). 

This system of SDDEs was numerically simulated using the Euler-Maruyama (EM) algorithm, which is appropriate 
for generating stochastic dynamics with Wiener processes (Higham, 2001; Mao, 2007; Touboul et al., 2012). 
Furthermore, this SDDEs system was also tested for analysis of stability and convergence as shown in 
Supplementary Material, Section 2. The stochastic integration was done with high time resolution (100 KHz or 
∆𝑡𝑡 = 0.01 ms) and later downsampled to 250 Hz using MATLAB custom code which is also provided in the 
Supplementary Material. Finally, the signals 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) are generated as the local potentials, 𝑥𝑥(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) −
𝑥𝑥3(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) = 𝑦𝑦2(𝑡𝑡) − 𝑦𝑦3(𝑡𝑡), according to the Jansen and Rit (1995) model. 

Additionally, we also used a model-free simulation; particularly to test the robustness of EIC and iCOH measures 
for interacting signals with varying bandwidth (𝜛𝜛), transmission delay (𝛿𝛿) and noise level. Following Gross et al., 
(2001), 𝑥𝑥(𝑡𝑡) is simulated as a filtered white Gaussian noise at a frequency of interest (e.g. 𝜔𝜔 = 15.625 or 1000/64 
Hz) which was obtained using a narrow-band pass filter to extract out the frequency components of 𝜔𝜔 ± 𝜛𝜛/2 Hz, 
while 𝑦𝑦(𝑡𝑡) is directly derived as its delayed version (𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 − 𝛿𝛿)). These signals were mixed to produce signals 
𝑢𝑢(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) using the coefficients 𝑎𝑎1, 𝑏𝑏1,𝑎𝑎2,𝑏𝑏2 as discussed above for the bivariate autoregressive and neural 
mass models. We created 100 trials of 1 s length (𝐹𝐹𝑆𝑆 = 250 Hz, one time step is 4 ms) and collected time-series 𝑢𝑢(𝑡𝑡) 
and 𝑣𝑣(𝑡𝑡) in matrices of 2 × 250 dimensions (𝒀𝒀𝑆𝑆𝛿𝛿ℛ2×250). White Gaussian noise (𝑼𝑼𝛿𝛿ℛ2×250) was added to render 
the measurements: 

 𝒀𝒀𝑀𝑀 = 𝛽𝛽 𝒀𝒀𝑆𝑆
‖𝒀𝒀𝑆𝑆‖

+ (1 − 𝛽𝛽) 𝑼𝑼
‖𝑼𝑼‖

, (24) 

where we have used the Frobenious norm ‖∙‖ and 0 ≤ 𝛽𝛽 ≤ 1 to effectively control the signal-to-noise ratio (SNR). 
The parameter 𝛽𝛽 was selected in the range {0.9, 0.5, 0.1} to approximately generate recordings with 20, 0 and -20 
decibels. In our simulation study, considering that 𝜔𝜔 = 15.625 Hz is the central frequency (one cycle per 64 
milliseconds), we selected 𝛿𝛿 in the range {0, 2, 4, 8, 16, 32}, correspondingly to time delays of 0, 8, 16, 32, 64 and 
128 ms, respectively, or to interactions of 0, 𝜋𝜋/4, 𝜋𝜋/2, 𝜋𝜋, 2𝜋𝜋 and 4𝜋𝜋-phase differences. Lastly, 𝜛𝜛 was selected in 
the range {0.5, 1.0, 2.0, 5.0} Hz to create different scenarios where signals varied from narrow-band to broad-band. 

2.4 Realization of M/EEG signals from realistic head/source model 
We introduce in this section more complex and realistic brain simulations for generating synthetic M/EEG signals. 
First, we use the SPM anatomical template with pre-computed meshes for internal/external skull, skin and cortical 
surfaces. The cortical surface consists of 20484 vertices and 40960 triangles that provided a detailed representation 
of subject's gyri and sulci formation as an excellent space for modelling activity and connectivity patterns in the 
brain. This choice is done for simplicity but it is also supported by the well known fact that pyramidal cells are the 
main contributors of M/EEG signals given their convenient pallisade structure and orientation within the cortical 
surface (Nunez and Srinivasan, 2006). We also took the particular coordinates for an Elekta-Neuromag 102 
magnetometers positions after corregistering appropriately with the anatomical image of a test subject, and 
computed a boundary element method (BEM) leadfield using the Fieldtrip toolbox (Oostenveld et al., 2011). 
Although the realistic simulation study is limited to the MEG case, our conclusions can be extended to analogous 
EEG analysis given their similarities. 

We shall consider several cases in this part of our simulation study with signals generated using the multivariate 
autoregressive (MVAR) and stochastic neural mass models. In particular, we simulate 3 and 5 dipoles or ROIs with 
their interactions as shown in Fig. 3. Dynamics were generated by extending the set of equations that were 
introduced above for bivariate models. In the MVAR case, for 5 ROIs, 5 equations were used by directly extending 
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from Eqn. (22) using the same autoregressive coefficients, while the connectivity (𝐶𝐶) and transfer delay (𝛿𝛿) values 
were selected as 𝐶𝐶1→2 = 𝐶𝐶1→3 = 𝐶𝐶1→4 = 𝐶𝐶4→5 = 0.1, 𝐶𝐶5→4 = −0.1, 𝛿𝛿1→2 = 1, 𝛿𝛿1→3 = 2, 𝛿𝛿1→4 = 3, 𝛿𝛿4→5 = 5, 
𝛿𝛿5→4 = 5. For 3 ROIs, 𝐶𝐶1→2 = 𝐶𝐶2→3 = 0.1, 𝐶𝐶3→2 = −0.1, 𝛿𝛿1→2 = 2, 𝛿𝛿2→3 = 3, 𝛿𝛿3→2 = 3. These values were 
selected to satisfy the stability condition (Lütkepohl, 2005) while setting a sufficiently high value for the 
connectivity parameter. 

For simulation using the SDDEs system, 30 and 18 equations are needed for the 5 and 3 ROIs, respectively (6 
equations per ROI). The NMM parameters are the same as in the bivariate simulation except for the connectivity 
strength (𝐶𝐶) and transfer delay (𝜏𝜏) values: 𝐶𝐶1→2 = 𝐶𝐶1→3 = 𝐶𝐶1→4 = 𝐶𝐶4→5 = 𝐶𝐶5→4 = 200, 𝜏𝜏1→2 = 1 ms, 𝜏𝜏1→3 = 5 ms, 
𝜏𝜏1→4 = 10 ms, 𝜏𝜏4→5 = 20 ms, 𝜏𝜏5→4 = 20 ms for 5 ROIs; and 𝐶𝐶1→2 = 𝐶𝐶2→3 = 𝐶𝐶3→2 = 200, 𝜏𝜏1→2 = 1 ms, 𝜏𝜏2→3 =
10 ms, 𝜏𝜏3→2 = 10 ms for 3 ROIs. 

 
Fig. 3. Location of sources used for 5 ROIs (A) and 3 ROIs (B) based simulations. Insets: connectivity graph for each case. 

Each ROI is represented as a single vertex in the cortical surface and its location is indicated by the red point 
overlaid on the cortical surface (see Figs. 3A and B). Most of the ROIs are located on the left hemisphere (left side 
of figure) and only ROI #5 in the first scenario is located in the right hemisphere. All interactions are unidirectional 
and feedforward except interactions between ROI #4 with ROI #5, and ROI #2 with ROI #3 in the first and second 
scenarios, respectively, reflecting recurrent or feedback connectivity. The latter was enforced to be more realistic 
with respect to true neuronal interactions despite the fact that it might have a negative impact on the FC estimation. 
In general, we generated 1 s long epoch simulation and repeated this 100 times (corresponding to 100 trials) to 
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obtain consistent FC estimators. The simulated signals were centred per epoch and were used as the dynamics for 
the selected ROIs, accordingly, for the 5 and 3 ROIs which were shown in Figs. 3A and B, respectively. We also 
simulated background activity as white Gaussian noise at each of the remaining points in the cortical surface, 
separately for each point, and subsequently combined by controlling the ratio of the signal-to-background-noise 
activity: 

 𝒀𝒀𝐵𝐵 = 𝛼𝛼 𝒀𝒀𝑅𝑅𝑖𝑖𝑃𝑃𝑎𝑎
‖𝒀𝒀𝑅𝑅𝑖𝑖𝑃𝑃𝑎𝑎 ‖

+ (1 − 𝛼𝛼) 𝒀𝒀𝐵𝐵𝐵𝐵
‖𝒀𝒀𝐵𝐵𝐵𝐵 ‖

, (25) 

where 𝒀𝒀𝐵𝐵, 𝒀𝒀𝑅𝑅𝑖𝑖𝑃𝑃𝑎𝑎  and 𝒀𝒀𝐵𝐵𝐵𝐵  are 𝑁𝑁𝑎𝑎 × 𝑁𝑁𝑡𝑡 matrices (𝑁𝑁𝑎𝑎 = 102 sensors and 𝑁𝑁𝑡𝑡 = 250 samples corresponding to 1 s at 
𝐹𝐹𝑎𝑎 = 250 Hz) containing the time-series for the mixed signals, the signals directly originated from simulated neural 
activity at the 5 or 3 ROIs, and the background activity, respectively, generated using the magnetic leadfield. The 
parameter 𝛼𝛼 allows to effectively control the signal-to-background activity ratio and was selected in the range {0.1, 
0.5, 0.9} to simulate different noise levels resembling -20, 0 and 20 decibels (db), respectively. 

Finally, we also have added measurement iid Gaussian white noise 𝑼𝑼, separately for each sensor, to produce more 
realistic synthetic MEG measurements by using the same strategy as above. That is, 

 𝒀𝒀𝑀𝑀𝐸𝐸𝐵𝐵 = 𝛽𝛽 𝒀𝒀𝐵𝐵
‖𝒀𝒀𝐵𝐵‖

+ (1 − 𝛽𝛽) 𝑼𝑼
‖𝑼𝑼‖

, (26) 

where the SNR parameter was settled as 𝛽𝛽 = 0.9 to represent a realistic situation, in which the sensors are well 
calibrated though measurement error is still present. Thus we were able to produce synthetic MEG signals, 𝒀𝒀𝑀𝑀𝐸𝐸𝐵𝐵 , 
which in turn were used in order to estimate the FC maps in the sensor space. 

In parallel, as the data will be observed only in sensor space, we have defined ROIs in this space corresponding to 
the actual source ROIs in the 5 and 3 ROIs scenarios. For example, Fig. 4 shows for the case when the 6 nearest 
sensors (KNS =6) to each underlying source are considered. Later, in a ROC analysis we will consider this number 
as a free parameter to avoid bias. Although the influences are mostly unidirectional as in Fig. 3, the represented 
bidirectional arrows in Fig. 4 show that in the sensor space the association between two regions, as commonly 
reflected by FC methods, lack directionality. More generally, transitivity rule applies to FC measures as discussed 
here, e.g. 𝑥𝑥 → 𝑦𝑦 and 𝑦𝑦 → 𝑧𝑧 interactions might also lead to 𝑥𝑥 → 𝑧𝑧 estimation, which is not shown in the expected 
interactions in Fig. 4 for clarity reasons. 

 
Fig. 4. Nearest 6 sensors corresponding to underlying sources for the 5 ROIs (left) and 3 ROIs (right) based simulations. The 
encircled sensors are the nearest sensors to each of the underlying sources while the polygonal shapes enclose each ROI. 
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2.5 ROC analysis of recovered FC networks 
For each particular FC measure, we defined the full FC map as the graph with nodes corresponding to the MEG 
sensors and edge weights corresponding to the magnitude of estimated FC values. This is a dense graph containing 
all the possible paired connections as all the weights have positive values. Using the full FC map as reference, a 
collection of sparse FC graphs 𝑚𝑚 = 0,1, … ,𝑀𝑀 can be obtained using the (100𝑚𝑚/𝑀𝑀)𝑡𝑡ℎ  percentile to extract out those 
connections corresponding to higher weights, e.g. 0𝑡𝑡ℎ , 50𝑡𝑡ℎ  and 100𝑡𝑡ℎ  percentiles denote the sparse FC maps 
corresponding to all, the 50% more relevant and none of the connections, respectively, as identified in the full FC 
map. Based on the simulated ground truth and selected K nearest sensors (KNS) ROIs, we can classify the sparse 
graph connections as true positive (TP) or false positive (FP), according to whether the identified connections 
connect two different predefined ROIs or not, for some given neighborhood size (e.g. ROIs as represented in Fig. 4 
for KNS=6). Consequently, we can obtain 𝑇𝑇𝑃𝑃(𝑚𝑚) and 𝐹𝐹𝑃𝑃(𝑚𝑚) measurements from each full FC map (see Figs. S12-
S13 in Supplementary Material for an example of classification of full FC graph connections as TP/FP for increasing 
threshold values). To evaluate the performance of each estimated FC measure, we compute the classical receiver 
operator curve (ROC) and its area under the curve (0 ≤ 𝐴𝐴𝑈𝑈𝐶𝐶 ≤ 1) statistics. The ROC is a non-decreasing graphical 
plot of the true positive rate (TPR) as a function of the false positive rate (FPR), where these quantities can be 
directly obtained from our analysis as 𝑇𝑇𝑃𝑃𝑅𝑅(𝑚𝑚) = 𝑇𝑇𝑃𝑃(𝑚𝑚)/𝑇𝑇𝑃𝑃(0) and 𝐹𝐹𝑃𝑃𝑅𝑅(𝑚𝑚) = 𝐹𝐹𝑃𝑃(𝑚𝑚)/𝑇𝑇𝑃𝑃(0). 

3 Results 

3.1 Proposed normalization procedure improves iCOH measure 
Figs. 5A and B show the iCOH and the EIC envelope obtained directly from the complex-coherence (𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖1 and 
𝐸𝐸𝑃𝑃𝐶𝐶1) and using the new normalization procedure introduced here (𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖2 and 𝐸𝐸𝑃𝑃𝐶𝐶2), respectively (see Eqs. (13), 
(14), (20) and (21)). These measures were compared using time-series for 2 interacting sources that were generated 
using the bivariate autoregressive model in Section 2.3. We considered time delays from 4 to 48 ms (𝛿𝛿𝛿𝛿{1, … ,12}, 
time step is 4 ms) to induce changes in the phase difference between the interacting processes. 

It is evident that the classic coherence normalization produces excessive ripples in the imaginary coherence derived 
EIC function (lags from 9 to 12 in second row). Additionally, the unique peak that should be obtained for the main 
component of 20 Hz is not stable for all the considered lags in Fig. 5A. The 𝐸𝐸𝑃𝑃𝐶𝐶1 peak appears at the right side of 
the 20 Hz line for lags from 1 to 3 and left side for subplots corresponding to lags from 6 to 8, and in lags from 9 to 
12 we can observe up to two peaks. However, when we apply the HT-derived normalization, as for the 𝐸𝐸𝑃𝑃𝐶𝐶2 
measure, the peak and curves become stable and unimodal. Importantly, as shown in Fig. 5B, the 𝐸𝐸𝑃𝑃𝐶𝐶2 peak is now 
rightly centered at the 20 Hz (black dashed) line. Due to the superior results, from now onwards we will refer 
implicitly to the 𝐸𝐸𝑃𝑃𝐶𝐶2 version wherever we discuss EIC results. Since iCOH with the new normalization also 
produced negligible FC for zero and 𝜋𝜋-phase interactions, as the original iCOH and similar waxing-waning irregular 
behaviour, we will henceforth only use the original formulation (Nolte et al., 2004). 

3.2 EIC is most robust among iCOH indices for bivariate FC analysis 
The previous simulation based on a bivariate autoregressive model is also a fine example to show the robustness of 
EIC when compared to other iCOH related FC estimators. Similar to the Fig. 5 example, Fig. 6 shows the iCOH and 
EIC curve but in separated rows, together with the ground truth, lCOH, PLI and wPLI estimators for the same 
simulated data. In the first row of Fig. 6, we show the golden true estimator (i.e. source-based coherence measure); 
whereas lCOH, iCOH, PLI, wPLI and EIC were estimated from the signals collected at the sensors (e.g. 𝑢𝑢(𝑡𝑡) and 
𝑣𝑣(𝑡𝑡) represented in Fig. 1), the golden true estimator is the coherence measure that is obtained directly from the 
source signals (e.g. 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) in Fig. 1), which are unknown in a real scenario. The significance of FC values 
are determined by a threshold curve which was computed using the maximum (minimum) value statistics of FC 
values obtained from surrogate data (Lachaux et al., (1999)). We used 1000 randomized samples in our simulation 
and computed this statistics for each frequency, separately. 
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Fig. 5. Imaginary coherence (blue) and its envelope (red) as represented by two versions of iCOH and EIC. The classical 
complex coherence normalization step (A), and proposed HT-derived normalization procedure (B) are used. As a result, curve 
values appear normalized (magnitude values are equal or less than 1) for all frequency values (0 to 125 Hz). Upper and lower 
branches of the envelope are EIC curve and its horizontal mirror image (negative part), respectively. Measures were computed 
from model simulations with different communication delays 𝜹𝜹𝜹𝜹{𝟏𝟏, … ,𝟏𝟏𝟏𝟏} for the processes u(t) and v(t) as represented in Fig. 1. 
Each delay time step constitutes 4 ms. Vertical black dashed line denotes 20 Hz, the dominant component of the simulated 
processes. 

 
Fig. 6. Different FC methods including the ground truth FC estimator for 2 interacting sources in a bivariate autoregressive 
model with varying communication delay and constant connectivity strength 𝑪𝑪𝒚𝒚→𝒙𝒙 = 𝟎𝟎.𝟓𝟓 (see Eqn. (22)). FC measures (blue 
curves) appear normalized according to their formulae so that the magnitude is less than or equal to 1 for all frequency values (0 
to 60 Hz). A threshold curve and main frequency component are denoted with a red and vertical black dashed line in the subplots. 
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Notice that at the communication delays 𝛿𝛿 = 5 and 𝛿𝛿 = 11 (almost 25 ms apart and where signals' phase difference 
is near zero and 𝜋𝜋 (modulus 2𝜋𝜋)) that lCOH, iCOH, PLI and wPLI produced negligible FC whereas EIC correctly 
reflected the true FC value. Also, except EIC the other FC methods exhibited a defective FC curve due to other 
negligible values that appeared, apparently, as a result of the interaction between ongoing and incoming oscillations. 
The most outstanding result shown is that EIC is the FC estimator that most closely resembled the golden true value 
as a consequence of the use of the HT operator to partially recover the ignored real part. 

On the other hand, for data generated from 2 interacting sources with the SDDEs system introduced above (see Eqn. 
(23)), we tested different transfer delays and connectivity values to study the relationship between these parameters 
over the FC estimation. Fig. 7A shows that for iCOH related indices (i.e. lCOH, iCOH, PLI, wPLI and EIC), the 
estimated FC strength at 10.87 Hz increased proportionally for higher values of the connectivity parameter and 
reached the maximum value for 𝐶𝐶𝑦𝑦→𝑥𝑥 = 500. At the same time, their FC estimates were non-significant for the 
lower values, 𝐶𝐶𝑦𝑦→𝑥𝑥 = 50 and 𝐶𝐶𝑦𝑦→𝑥𝑥 = 100, according to the surrogate-based statistics (Lachaux et al., 1999). This is 
consistent with the golden true estimated curve (shown at the first row) which also gradually increased with higher 
values of the connectivity parameter being significant for values 𝐶𝐶𝑦𝑦→𝑥𝑥 ≥ 50. Moreover, COH and PLV showed 
higher values around 10.87 Hz independently of the simulated connectivity strength, which is related to VC as 
further supported in the next example. In general, it can be noticed that EIC seems to be the smoothest across 
frequencies and the most stable estimator compared to the other methods, and was remarkably sharper for the 
estimation of the FC strength at the dominant frequency (i.e. 10.87 Hz); though the other FC indices also showed 
good results for this type of simulation. In the Supplementary Material, we showed the effect of varying the delay on 
the phase difference for a fixed connectivity strength, 𝐶𝐶𝑦𝑦→𝑥𝑥 = 200, which also demonstrated the superior 
performance of EIC (see Fig. S9). 

Interestingly, EIC seems to be affected by the surrogate-based statistics which overestimated the threshold at 10.87 
Hz. The latter might be due to the failure to exactly recover the missing real part using the HT operator, particularly 
for estimating the normalization term. However, it may also arise as an effect of a highly stable synchronization 
which is characterized by an almost constant phase difference (Lachaux et al., 1999). The latter seems to be the 
more plausible explanation given that this situation did not appear for the EIC threshold curve shown in Fig. 6, and 
considering that the bivariate autoregressive model produces broad-band signals whereas the SDDE's signals have 
narrow-band characteristics. For PLI and wPLI, this statistics also showed relative higher values whereas it showed 
smaller values for lCOH, which did not affect the results. 

Next, we consider the specific case when there is no interaction by setting 𝐶𝐶𝑦𝑦→𝑥𝑥 = 0 in the simulation. In Fig. 7B it 
is clear that COH and PLV measures are prone to find spurious connections due to VC – as there should be none or 
very few points of the connectivity curve over the estimated cutoff. Otherwise, the iCOH related indices correctly 
measured the non-interaction. We shall henceforth narrow our study focusing mainly on iCOH indices based FC 
measures using more realistic simulated data. 

Finally, we explored the performance of iCOH and EIC measures only, using signals that were obtained as narrow-
band filtered Gaussian white noise. As presented in Section 2.3, we simulated the interaction between two processes 
for different values of the communication delay, filter bandwidth, and SNR to create different situations. Fig. 8 
showed that iCOH and EIC effectively ignored instantaneous interactions (1st column, lag=0) for the different SNR 
and signal bandwidth values. At the frequency of interest (15.625 Hz), iCOH showed the higher values for lag=2 
(2nd column, 𝜋𝜋/4 phase difference) and lag=4 (3rd column, 𝜋𝜋/2 phase difference). For lags=8,16,32 (corresponding 
to 𝜋𝜋, 2𝜋𝜋 and 4𝜋𝜋-phase interactions) and higher bandwidth values (𝜛𝜛 = 2.0,5.0 Hz), iCOH showed negligible values 
as expected with a clear full oscillation about 15.625 Hz for 𝜋𝜋-phase difference; interestingly EIC showed a very 
clear peak at 15.625 Hz at these values. The only cases where EIC failed to find any interaction are in very noisy 
scenarios (SNR = -20 db) and if the signal bandwidth is too small (𝜛𝜛 = 0.5,1.0 Hz in the simulations). In this 
analysis, we used only iCOH as representation of the other iCOH indices because they similarly failed for zero or 𝜋𝜋-
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phase interactions as evidenced earlier in Fig. 6. As a complement, we showed in the Supplementary Material (Fig. 
S10) the significance of the above results using the surrogate-based statistics. In the latter case, we used the same 
settings but simulating 100 and 1000 trials. 

 
Fig. 7. A) Different FC methods for 2 interacting sources in a SDDEs based neural mass model with signal transmission delay 
𝝉𝝉 = 𝟏𝟏𝟎𝟎 ms (Eqn. (22)) for different values of connectivity strength. Measures appear normalized according to their formulae for 
each case so that the magnitude is less than or equal to 1 for all frequency values (0 to 25 Hz). Blue curve: FC function; red 
curve: surrogate based statistics; black dashed line: 10.87 Hz. B) Similarly but when signals are uncoupled. 
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Fig. 8. Functional connectivity measures (iCOH - blue curve, EIC - red curve) between two processes simulated from a filtered 
white Gaussian noise signal, and its delayed version, for a particular frequency of interest (15.625 Hz, vertical dashed black line) 
and a particular bandwidth. The results correspond to three different SNR levels: A) 20, B) 0 and C) -20 db. Columns: subplots 
arranged according to simulated varying transfer delays from lag=0 to 32 time instants. Rows: subplots arranged according to the 
simulated signals' bandwidths from 0.5 to 5.0 Hz. 

3.3 EIC and iCOH are the most accurate in sensor space 
Now, we demonstrate the methodology introduced here by using a synthetic MEG data generated with a large-scale 
model simulation as presented in Section 2.4. Specifically, we simulated MEG data for 100 trials using different 
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MVAR's or SDDEs' generated signals as the dynamics for the selected 3 and 5 ROIs, as well as different realizations 
of Gaussian noise separately generated for each of the remaining cortical vertices and sensors, for modelling 
background activity and measurement noise. Specifically, the data for the ROIs, background and measurement noise 
signals, were added using Eqns. (25) and (26), to produce the MEG data that was used for the estimation of the FC 
methods under study. Additionally, we produced 100 Monte Carlo realizations of this process in order to compute 
the same amount of ROC curves and AUC statistics in the subsequent performance analysis of the FC measures. 
When creating the 100 Monte Carlo realizations, we kept the same SDDEs' data that was generated for all the trials 
to reduce computational cost, whereas the MVAR's simulated data as well as background and measurement signals 
were independently generated for each realization. 

In the following analysis, we have varied the connectivity threshold in the min-max range to produce ROC curves 
(not shown) as discussed in Section 2.5, and allowed sensor ROIs size to vary in the range KNS=1 to 10 (only 
shown for the range from KNS=6 to 10). Fig. 9 shows boxplots graphs summarizing the outcome of the AUC values 
for the 100 realizations to compare among the FC methods for analyses corresponding to 3 and 5 ROIs, using 
signals generated with VAR and SDDEs models, and different SNR levels corresponding to -20, 0 and 20 db. In 
general, the results for KNS=1,2 are poor for all FC methods due to a higher variance and lower mean AUC (not 
shown), possibly as a consequence of a weak correspondence of the interaction among sources nearest sensors and 
the estimated predominant connections. However, for KNS=6 onwards the results are stable with non-significant 
differences among higher KNS values. Per row, the panels' boxplots use the same y-axis scale so it can be possible 
to make some visual comparisons between the AUC values obtained for MVAR and SDDEs models; though it is 
also possible to visually find some differences among the outcome for the different SNR values, and also between 3 
and 5 ROIs. This graphical outcome is better understood with the results shown in Tables 1-4 as discussed below.  

We conclude our simulation study with a detailed statistical analysis of the differences among the simulated 
scenarios. Recall that in this part we are using 5 different FC measures (iCOH indices), 3 SNR levels (-20, 0, 20 db), 
2 signals generation models (VAR and SDDEs), and 2 ground truth scenarios (3 and 5 ROIs). However, with respect 
to the outcome shown in Fig. 9, for each separated MC realization we are averaging the AUC values corresponding 
to KNS=6 to 10 for all the possible simulated scenarios. For clarity, the analysis has been carried out as follows: 

1. Separately, for each combination of FC measure, signal generation model and ground truth scenario, compare 
AUC values for -20 db (𝛼𝛼 = 0.1) vs. 0 db (𝛼𝛼 = 0.5) vs. 20 db (𝛼𝛼 = 0.9). 

2. Separately, for each combination of FC measure, ground truth scenario and SNR level, compare AUC values 
for MVAR's vs. SDDEs' FC outcome. 

3. Separately, for each combination of FC measure, signal generation model and SNR level, compare AUC values 
for 3 vs. 5 ROIs' outcome. 

4. Separately, for each combination of signal generation model, ground truth scenario and SNR level, compare 
AUC values for paired FC measures, i.e. lCOH vs. iCOH vs. PLI vs. wPLI vs. EIC. 

The statistics used for tests 1-3 was the ranksum test which implements the two-sided Mann-Whitney U test (null 
hypotheses: equal medians) because the data used for computing each population samples differed between them. 
For test 4, we used the two-sided signed rank test (null hypotheses: median of paired samples differences is zero) 
because in this case the AUC samples were produced by applying different FC methods but each pair of matched 
samples was estimated from the same simulated data. 

For Test #1, as evidenced in Fig. 9 and Table 1, AUC values were significantly higher when SNR=0 db for MVAR 
model for all iCOH indices, whereas for SDDEs model the best noise level was SNR=-20 db for most cases. Notice 
that SDDEs' generated signals have much narrower band compared to MVAR's, which then causes the FC estimates 
in this frequency band to be more tolerant to lower SNR. The outcome of Table 2 for Test #2 (first half) is somewhat 
complementary to the above results since for the lowest SNR level (-20 db) the highest AUC values were obtained 
when using SDDEs compared to MVAR model. For SNR=0 or 20 db, highest significant AUC values were 
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achieved for MVAR when 5 ROIs were simulated in most cases, whereas for 3 ROIs and SNR=20 db, again the best 
results were achieved for SDDEs model. Interestingly, Test #3 outcome for 3 vs. 5 ROIs comparison (Table 2, 
second half) showed that highest significant AUC values were obtained when 3 ROIs were simulated for SNR=-20 
or 0 db, which can be interpreted as an increased difficulty for recovering underlying FC networks when more 
ROIs/interactions are involved. 

 
Fig. 9. Boxplots of AUC values for 100 realizations using 5 different FC measures, 2 signal generation models, 2 ground truth 
scenarios and 3 SNR levels. The panels are arranged in two columns corresponding to signals generated using VAR and SDDE 
models (left and right columns). Across rows, the panels show the results when signals were generated using 3 or 5 ROIs, using 
different noise levels, i.e. rows 3A, 3B and 3C show the outcome for 3 ROIs using SNR=-20 db, SNR=0 db and SNR=20 db, 
respectively, and similarly for 5A, 5B and 5C. Per panel, the boxplots are grouped in 5 columns which corresponds to different 
sizes of the sensor neighbourhood (KNS=6 to 10 for columns arranged from left to right) used to classify the connections in TP 
and FP, and thus compute the ROC and AUC values. Each of panels' columns contain 5 subplots corresponding to the different 
FC measures, lCOH, iCOH, PLI, wPLI and EIC, arranged in this order from left to right and with different colours. 
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Table 1: Summary of non-parametric Test #1, showing the SNR level(s) used in the simulations for which each FC measure 
(shown per row) produced higher significant AUC values for all possible combinations of ground truth scenarios and signal 
generation models (the latter two are interleaved across columns). If all the paired tests among the SNR levels are significant 
(using Bonferroni's correction, N=60 pairwise comparisons), the shown value indicates the best SNR level (i.e. corresponding to 
higher significant AUC values); otherwise, the value indicate the "better" SNR levels (i.e. with higher AUC values but the 
comparison between them was non-significant) (e.g. for 3 ROIs, iCOH and SDDE combination, the simulation of SNR=-20 db, 
or correspondingly using parameter 𝜶𝜶 = 𝟎𝟎.𝟏𝟏, produced higher significant AUC values; with similar combination but for EIC, we 
found the higher AUC values for SNR=-20 or 0 db with non-significant differences between them).  

-20 db (𝜶𝜶 = 𝟎𝟎.𝟏𝟏) vs. 0 db (𝜶𝜶 = 𝟎𝟎.𝟓𝟓) vs. 20 db (𝜶𝜶 = 𝟎𝟎.𝟗𝟗) 
 3 ROIs 5 ROIs 
 VAR SDDE VAR SDDE 

lCOH 0 db -20 db, 0 db 0 db -20 db 
iCOH 0 db -20 db 0 db -20 db 
PLI 0 db -20 db, 0 db 0 db -20 db 

wPLI 0 db -20 db 0 db -20 db 
EIC 0 db -20 db, 0 db 0 db -20 db 

Table 2: Summary of non-parametric tests #2 (first half of the table) and #3 (second half). Following the logic presented in Table 
1, the value indicated in each cell corresponds to the population with higher median of AUC values for each analysis if the test is 
significant (Bonferroni's correction, N=30 paired comparisons for both tests #2 and #3) . Otherwise, the value indicates that the 
comparison between the two options was non-significant (NS). 

 Test#2: VAR's vs SDDE's signal generation models  Test#3: 3 vs 5 ROIs 
 -20 db 0 db 20 db  -20 db 0 db 20 db 
 3 ROIs 5 ROIs 3 ROIs 5 ROIs 3 ROIs 5 ROIs  VAR SDDE VAR SDDE VAR SDDE 

lCOH SDDE SDDE SDDE VAR SDDE VAR  3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs NS 
iCOH SDDE SDDE VAR VAR SDDE NS  3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 5 ROIs 
PLI SDDE SDDE NS VAR SDDE VAR  3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 3 ROIs 

wPLI SDDE SDDE NS VAR SDDE VAR  3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 5 ROIs 
EIC SDDE SDDE VAR VAR NS VAR  3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs NS 

Table 3: Score W-L-D (Win-W, Loss-L, Draw-D) results are shown for the pairwise comparisons among FC methods, together 
with the total accumulated W-L-D and points for the classical significance level alpha=0.05 (first half) and Bonferroni's multiple 
comparison correction (second half). Two different point accumulation systems are considered: (1) W adds 3 points and D adds 1 
point like in the European football (e.g. Champions League (CL) competition), and (2) W adds 1 point and D adds 0.5 point like 
in a chess tournament. 

 alpha = 0.05  Bonferroni correction (N=120 pairs) 
 lCOH iCOH PLI wPLI EIC  lCOH iCOH PLI wPLI EIC 

lCOH X 9-3-0 2-8-2 4-7-1 7-3-2  X 9-3-0 2-7-3 3-6-3 6-3-3 
iCOH X X 2-9-1 3-8-1 4-6-2  X X 2-8-2 3-8-1 3-6-3 
PLI X X X 6-2-4 11-1-0  X X X 4-2-6 10-1-1 

wPLI X X X X 10-1-1  X X X X 8-1-3 
EIC X X X X X  X X X X X 

Total 21-22-5 32-12-4 7-34-7 14-27-7 32-11-5  19-20-9 31-11-6 7-29-12 11-24-13 27-11-10 
CL 68 100 28 49 101  66 99 33 46 91 

Chess 23.5 34.0 10.5 17.5 34.5  23.5 34.0 13.0 17.5 32.0 

The comparison among the iCOH indices is conducted in Test #4. We first do an overall summary of each pairwise 
comparison of two iCOH indices using an analogy with a sport competition where the FC method that produced 
highest AUC values is declared the winner of each comparison if the test is significant or both compared methods 
"draw" if it is non-significant. Then we can summarize across all 12 combinations (games) (i.e. 12 = 3 SNR levels x 
2 generation models x 2 ground truth scenarios) where we have compared each pair. Table 3 shows these results 
including scores for the "competition" using two different scoring systems. We can observe that the two clear 
"winners" in this analysis are iCOH and EIC, which stand over the other FC measures. Moreover, Table 4 allows us 
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to study in more detail the above result. In summary, we can observe that iCOH produced the best results for highest 
SNR (20 db) whereas EIC was noticeably better for moderate SNR (0 db). For the lowest SNR (-20 db), several 
methods but mainly iCOH and EIC produced better results. 

Table 4: Overall comparison among the FC methods: one vs. all like in Athletics. Bonferroni correction is used to control for 
multiple comparison (120 pairs). The best measure among iCOH indices is shown for each particular case for combination of 3 
SNR levels, 2 ground truth scenarios, and 2 signal generation models. When there is not a clear winner (the best method is not 
significantly superior to its closest rivals), the group of tie-winners is shown. 

 VAR's MEG generated signals  SDDE's MEG generated signals 
 3 ROIs 5 ROIs  3 ROIs 5 ROIs 

SNR=-20 db (𝜶𝜶 = 𝟎𝟎.𝟏𝟏) lCOH, iCOH, wPLI, EIC iCOH  iCOH, wPLI, EIC iCOH, EIC 
SNR=0 db (𝜶𝜶 = 𝟎𝟎.𝟓𝟓) EIC EIC  EIC iCOH 

SNR=20 db (𝜶𝜶 = 𝟎𝟎.𝟗𝟗) iCOH iCOH  iCOH iCOH 

4 Discussion 
In this study, we have proposed a new technique (EIC) to circumvent the heavy reliance of imaginary coherence 
based functional connectivity methods (lCOH, iCOH, PLI, wPLI) on the imaginary part of the cross-spectral or 
complex coherence. EIC was stated as the absolute value of the analytical signal that was estimated from the iCOH 
function in the frequency domain, which approximately rendered an iCOH envelope. As a result, EIC inherited the 
resilience against volume conduction (VC) effects. We used a simplified representation of the EEG/MEG forward 
problem (Fig. 1, and Eqns. (1) and (2)), to demonstrate that the idea of using the imaginary part was rightly justified 
given that only the imaginary part of the cross-spectrum of two sensor signals is directly related with the imaginary 
part of the cross-spectrum of two possible interacting underlying sources as shown in Eqn. (5). The real part is 
contaminated due to VC and, thus, it is usually ignored by techniques such as lCOH, iCOH, PLI and wPLI, even 
though it contains important information. One immediate negative effect is that these measures show negligible 
connectivity when the phase difference of interacting processes is near zero or 𝜋𝜋-phase (modulus 2𝜋𝜋) (Stam et al., 
2007; Vinck et al., 2011; O'Neill et al., 2017). 

Although the EIC method is estimated only from the imaginary term, we demonstrated that it is able to partially 
recover information from the real part (see Figs. 5, 6 and 8). The main reason is that the EIC is based on the Hilbert's 
transform, which applied on the imaginary-part, is able to roughly produce its counterpart. Particularly, we showed 
with a simple example that the EIC curve can recover very well the magnitude spectrum that is, obviously, estimated 
using both the real and imaginary parts (Fig. 2). In practice, we have shown the superior performance of EIC over 
other iCOH related indices using synthetic signals generated by bivariate autoregressive and SDDEs based neural 
mass models (see Eqns. (22) and (23)). We extended these simulations and comparison framework for the study of 
more realistic simulations that produced synthetic MEG signals based on 3 and 5 simulated ROIs (Fig. 3), which in 
turn were used to evaluate the feasibility of FC analysis in sensor space using these techniques and a novel sensor-
nearest ROIs based ROC analysis. 

4.1 EIC vs. other iCOH related indices 
The main advantage of imaginary coherence indices (lCOH, iCOH, PLI, wPLI, EIC) is their robust performance in 
VC situations, though the usual iCOH measure proposed in the literature may be negatively affected by an unstable 
normalization as discussed in this work (Section 3.1). That can also be claimed as a drawback for lagged coherence 
method (lCOH, Pascual-Marqui et al., 2011), which uses the real part of the coherence in the denominator 
(normalization term) and thus its scale could be affected as result of VC and noise. Phase lag index (PLI) and 
weighted PLI (wPLI) did not suffer the same problem due to their exclusive dependency on the phase difference part 
and proper normalizations. 
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On the other hand, the basic limitation of these measures is that they heavily rely on the imaginary part while 
directly ignoring any useful information that might be contained in the real part. As we demonstrated with 
simulations, the above methods effectively avoid spurious FC due to VC effects in the absence of true connectivity  
(Fig. 7A); however they also fail to capture true connectivity when that happen with zero or 𝜋𝜋-phase interactions 
(Figs. 6 and 8). With the introduction of EIC we solved the latter problem to some extent; particularly we 
demonstrated with the simulation and results shown in Fig. 8 that EIC can capture true interactions despite of zero or 
𝜋𝜋-phase interactions if the signals bandwidth is broad enough, while being robust to VC effects. With EIC method, 
we also highlighted the fact that lCOH, iCOH, PLI and wPLI are point-wise estimators given that their computations 
are made independently from single frequency entries. As can be seen in harmonic analysis of M/EEG signals, 
amplitude and phase tend to vary smoothly across frequency, thus taking into account such smoothness is essential 
to produce more robust estimators that can be more consistent, e.g. in noisy scenarios. From this perspective, EIC is 
potentially a more robust measure which exploits better the content of the imaginary part by implicitly using the 
Hilbert's transform (HT) (see Eqn. (19)). 

The impact of time-delay and the connectivity strength parameter on the coupling of two oscillators has been well 
studied in the literature (Dhamala et al., 2004; Gollo et al., 2014; Strogatz, 2000). Here we studied both parameters 
using bivariate autoregressive and SDDEs based neural mass models and found that only the information transfer 
delay has a visible impact in the phase difference of interacting oscillators. The main effect of the connectivity 
strength is that at least a minimum value is required to guarantee synchronization of the ongoing activity as shown in 
Fig. 7A and Supplementary Material Figs. S7-S8. However, the problem of negligible connectivity found by iCOH 
indices may appear in more complex scenarios and not only caused by time delay, which could hinder interpretation 
(see Fig. 6 and discussion therein). Our newly proposed EIC method was almost non-affected by a varying transfer 
delay as a consequence of exploiting the smooth variability across the frequency domain. Consequently, EIC 
showed more resilience than other iCOH-derived methods, which may translate into improved FC estimation for 
real M/EEG data analysis. We presented here the EIC measure based on the Hilbert's transform, but any operator 
that could produce a robust envelope can do a similar work. The Hilbert' transform is attractive because of its 
mathematical properties and it is particularly useful for computing the envelope of band-limited oscillators. Our 
objective was to "recover" the real part of underlying interacting processes' signal complex coherence when we can 
rely only in a good estimation of its imaginary part. Assuming that the real-part could be approximately recovered 
by using and integrating the content of the imaginary part, the Hilbert's transform can produce the desired effect. 

In other context, it has always been questionable to use linear estimators to study inherently nonlinear systems such 
as brain dynamics. In this sense coherence based measures enjoy a nice duality: on the one hand they are formulated 
directly using linear transforms; but on the other, they are also directly represented in the form of harmonics which 
are ideal for stationary signals regardless of their linear or nonlinear origins. Even in more complex nonlinear/non-
stationary systems analyses, these techniques could find useful applications given their flexibility and properties 
based on established mathematical theory (Bendat and Piersol, 2011; Oppenheim et al., 1983). We have tested the 
robustness of coherence based FC measures using autoregressive (linear) and neural mass (nonlinear) models. In the 
more complex scenario of nonlinear dynamics, we tested bivariate as well as interactions among 3 and 5 ROIs in 
realistic brain simulations. In general, iCOH indices showed robustness in nonlinear situations and, particularly, our 
proposed EIC method showed stable, accurate and superior results for most cases. 

4.2 FC sensor based approach validation with large-scale synthetic data 
With a large-scale simulation that produced synthetic MEG data, a comparative framework among iCOH indices 
was presented to extend our study to a more complex and realistic scenario. We used MVAR and SDDEs based 
simulations to evaluate the performance of all these measures and, particularly, the validity of the FC approach in 
the sensor space. In general, we were able to show with different configurations based on signals generated using 2 
ground truth scenarios (3 and 5 ROIs), 2 signals generation models (MVAR and SDDEs), and 3 SNR levels (-20, 0 
and 20 db), together with a novel sensor-nearest ROIs based ROC analysis (Section 2.5), that the FC estimation in 
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sensor space could provide a good approximation for the map of true connections, particularly with the use of iCOH 
and EIC techniques (see Fig. 9 and discussion therein).  

As an important conclusion, we found that the original iCOH technique (Nolte et al., 2004) was one of the best 
methods of our FC analysis. This is surprising if we realize that PLI and wPLI are built on top of iCOH, and 
consequently we may expect superior results for PLI and wPLI. Specifically, iCOH is derived plainly from 
theoretical arguments whereas PLI and wPLI add extra information that empirically should improve their estimators, 
but these latter transformations seem to cause loss of valuable information as shown by our simulation results. In our 
study, lagged coherence was the method with the 3rd highest performance though "lagging significantly" behind of 
iCOH and EIC according to the results shown in Tables 3 and 4. Unlike PLI and wPLI, lCOH is strictly derived 
from theoretical arguments (Pascual-Marqui et al., 2011) without extra transformations. Otherwise, EIC also adds 
extra information to the iCOH content like PLI and wPLI, but in contrast it seems that the EIC use of Hilbert's 
transform can indeed improve the iCOH estimator, especially under conditions such as broad band signals with 
moderate noise level. Interestingly, our study shows that the presence of noise can "obscure the visibility" of more 
distant sensors (with lower scale factor; see Eqn. (5)). Hence, some moderate level of noise is necessary to render 
good results, whereas too much noise will mask the signal. This is the case for the results shown with the MVAR 
model where we obtained the best results for SNR=0 db but also for SDDE case which was more robust to noise 
than MVAR (Fig. 9 and Tables 1-4). 

An essential step in our study was the use of a heuristic approach based on the ROIs created from sensors in the 
nearest neighborhood of simulated sources. An important justification for the latter is that the separation of a local 
source from nearby sensors has a worse negative impact than its particular dipole orientation (Hillebrand and 
Barnes, 2002). Therefore, we assumed that the closest sensors signals contain a good representation of the 
underlying cortical neural dynamics. The use of this heuristic allowed us to develop a novel sensor-nearest ROIs 
based ROC analysis to evaluate the performance of FC methods under study. As demonstrated using this approach, 
the EIC method could be particularly useful to estimate true interactions among large areas, e.g. brain lobes, but it 
can also be important to detect short-range connectivity as well. 

Furthermore, as evidenced by the significantly high ROC's area under the curve values (Fig. 9), and the connectivity 
distribution of thresholded FC maps that were used for computing the ROC statistics (e.g. see Figs. S12-S13 in 
Supplementary Material), the estimation of sensor-based FC can help to disclose the map of brain region 
interactions. However, we noted that simulated recurrent connections, e.g. between ROIs 4 and 5 in our simulation 
with 5 ROIs, were most difficult to estimate. That may be due to the simulated counter-phase interactions, which can 
also negatively combine with the dipoles orientation, possibly causing a biased projection in sensor space that is 
worsen by the interaction of simultaneous active (anti-phase) dipoles. The latter observation is rooted on the fact that 
similar recurrent interactions, e.g. between ROIs 2 and 3 in our simulation with 3 ROIs, was much better estimated. 
This problem may be worse in practice when using standard iCOH indices as they cannot capture well zero or 𝜋𝜋-
phase (modulus 2𝜋𝜋) interactions as a consequence of simply relying on the imaginary part of the coherence. As 
discussed here, in this situation the EIC method should produce more accurate FC maps according to our simulation 
analysis using narrow-band and broad-band interacting signals (see Fig. 8 and discussion therein). In general, we 
observed that iCOH and EIC can capture well the FC as reflected in sensor space; however we have to be cautious 
with the presence of false connections, which is worsen by the lack of knowledge about the delimitation and 
extension of unknown interacting areas.  

4.3 Limitation of sensor-based FC approach and future work 
According to our results with simulated data, the sensor-based FC approach using iCOH indices has the potential to 
uncover medium and short-range connectivity; though the complex dynamics of the brain (e.g. nonlinear 
interactions among regions in deep/superficial and more/less central areas) are actually oversimplified in the 
connectivity maps observed at the sensor level, which obviously hinder the application of any technique. However, 
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if we have a priori information of active brain regions, and if there is a clear and non-overlapped localization for 
these ROIs, then FC analysis based on imaginary coherence methods, particularly iCOH and EIC, can provide useful 
information about the interacting neural population as shown here. 

An important alternative to sensor-based FC analysis is to estimate the source activity and its FC which will 
eventually allow to combine information from different imaging modalities, including EEG and MEG's 
magnetometers and planar gradiometers, as well as fMRI and other data. For the case of M/EEG data as discussed in 
this work, several issues still must be overcome to make critical progress in source-based FC analysis, i.e. control of 
signal leakage, signal mixing and other volume conduction effects. In any case, the generality of our proposed 
methodology and its robustness to volume conduction, would facilitate its application to source-based FC analysis, 
which will be important to study normal and diseased brain activity. 
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