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Abstract 

Previous work has shown that doping the TiC (001) surface with early transition metals 

significantly affects CO2 adsorption and activation which opens a possible way to control this 

interesting chemistry. In this work we explore other possibilities which include non-transition 

metals elements (Mg, Ca, Sr, Al, Ga, In, Si, Sn) as well as late transition metals (Pd, Pt, Rh, Ir) 

and lanthanides (La, Ce) often used in catalysis. Using periodic slab models with large 

supercells and state-of-the-art density functional theory (DFT) based calculations, we show 

that, in all the studied cases, CO2 appears as bent and, hence, activated. However, the effect is 

especially pronounced for dopants with large ionic crystal radii. These can increase desorption 

temperature by up to 230 K, almost twice the value predicted when early transition metals are 

used as dopants. However, a detailed analysis of the results shows that the main effect does not 

come from electronic structure perturbations but from the distortion that the dopant generates 

into the surface atomic structure. A simple descriptor is proposed that would allow predicting 

the effect of the dopant on the CO2 adsorption energy in transition metal carbide surfaces 

without requiring DFT calculations.  
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1. Introduction 

Finding ways to mitigate global warming, which is primarily driven by the increase in the 

concentration of CO2 in the Earth’s atmosphere as a result of the use of fossil fuels, has become 

a major research topic. Global warming is predicted to trigger harmful consequences such as 

the ocean acidification,1 increases in sea level,2 or increasing temperatures through the cycle-

carbon feedback.3 Finding alternative, environmentally friendly energy sources to ensure a 

sustainable industry has become a hugely significant.4-6 However, although many successes 

have been achieved, the increasing energy demand and the concomitant technical complexity 

makes the translation of such advances into real alternatives to finally overcome the fossil fuel 

energy dependence, in the short-to-medium term, difficult to achieve.  

Meanwhile, new strategies are being explored to address the more immediate issues. In 

particular, CO2 capture and storage (CCS),7-9 and usage (CCU)10 technologies are being 

actively investigated. Several CCS approaches are currently being explored with absorption 

constituting the dominant technology, although adsorption or membrane gas separation are 

other possibilities, which are in a developmental research stage.8,9,11,12 To move forwards by 

adding extra value to the captured CO2, CCU technology is slowly growing due to its important 

industrial and economic potential.10 Reintroducing CO2 to the industrial cycle through 

industrial processes including hydrogenation to methanol or the reverse water gas shift 

(RWGS) reaction would be extremely positive both for the environment as for the industry.  

With CCU in mind, several materials have been tested and Ni, Pd, or Pt nanoparticles 

supported on oxides or sulphides13 are the current industry choice, and have seen significant 

efforts to find an appropriate oxide-support. It is also worth mentioning rather recent 

experiments on model systems which find that small Au, Cu, and Ni nanoparticles supported 

on TiC (001) exhibit improved performance in methanol synthesis compared to a model of the 

conventional Cu/ZnO catalyst.14,15 In addition, bare transition metal carbides such as MoC and 

Mo2C have been found to be active in catalysed CO2 activation16 and conversion as well,17 

being highly appealing as one surpasses the handicap of using scarce and expensive late 

transition metals. 

Indeed, computational studies, carried out in the framework of density functional theory 

(DFT), have shown that early transition metal carbides (TMCs) such as TiC, ZrC, WC, NbC, 

TaC, and, δ-MoC are able to strongly trap and activate CO2.18 Besides, there is experimental 

and/or computational evidence that δ-MoC, β-Mo2C, WC, and NbC (001) surfaces present a 
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high selectivity towards CO2 conversion to CO,16,19,20 a component of synthesis gas used in 

many industrial reactions. It is also worth noticing that model catalysts joining late transition 

metals with TMCs are also attractive, e.g. Pt/Mo2C exhibits high performance towards water 

gas shift (WGS) with high rates when compared to the widely used Pt/CeO2 or Pt/TiO2 

catalysts.21 In conclusion, TMCs bring together three key properties that confers them with 

significant potential for CCU applications, namely high CO2 adsorption capability, competitive 

performance in catalysis, and attractive cost. 

To further enhance the catalytic activity of TMCs, it has been proposed to make use of 

doping,22 a strategy already successfully followed to enhance the catalytic performance of 

metal oxides.23,24 In particular, the effect of doping on the TiC (001) surface with early 

transition metals (Hf, Ta, Zr, Nb, W, Cr, Mo, V) was systematically explored by means of DFT 

calculations on a series of models where the dopant substituted a Ti atom at the surface atomic 

layer.22 Such calculations revealed that the effect was highly local with a strong preference for 

surface substitution and that the adsorption energy could be enhanced or reduced depending on 

whether the dopant was chosen down a group or going along a d series. In addition, a 

relationship between the calculated net charge in the doping metal atom directly interacting 

with CO2 and the corresponding adsorption energy was found, indicating a significant chemical 

effect. To reach a more complete understanding on this issue and broaden the tuning 

capabilities well beyond the limited region of early transition metals, we consider in this work 

the effect of other dopants including s block alkaline earth (Mg, Ca, Sr), p block groups XIII 

(Al, Ga, In) and XIV (Si, Sn) elements, plus some extra late d block transition metals (Pd, Pt, 

Rh, Ir), even f elements such as lanthanides (La, Ce), with the main aim to further assess the 

capabilities of modified TMCs for use in CCS and CCU technologies. 

 

2. Surface Models and Computational Details 

We employ as the dopant host the widely studied TiC (001) surface, as used in an earlier 

work.22 The corresponding doped models and their interaction with CO2 have been studied in 

the framework of DFT with calculations carried out with the broadly used Perdew–Burke–

Ernzerhof (PBE) exchange–correlation functional,25 which is among the best functionals to 

describe bulk and surface properties of TMCs,26,27 including elastic and compressive 

properties,28 and significantly improving earlier descriptions29 based on other generalized 

gradient functionals such as the Perdew-Wang 91 (PW91)30 or the revised PBE (RPBE).31 The 
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PBE functional, including a suitable treatment of dispersive forces, has been found to be 

accurate to assess the experimental interaction of CO2 with diverse TMCs.17,32 However, in the 

present work, it was found convenient to neglect the dispersion contribution to the adsorption 

energy because our previous studies on bare or doped TiC have shown that the main effect of 

dispersion is a nearly constant increase of ca. -0.26 eV in all calculated adsorption energies, 

with negligible effects on the CO2 adsorption strength which arises primarily from the 

formation of C-C covalent bonds, a substrate→CO2 charge transfer, and the CO2
δ- Coulombic 

stabilization with TMC positively charged metal atoms, rather than any dispersion interactions. 

In addition, the effects of dispersion are also not significant when analysing the trends across 

the different dopants.16,18,22 Nevertheless, one should always keep in mind that dispersive 

forces may play a role in the prediction of quantitative interaction energies,33 and that this can 

have some effect on the calculated desorption rates and temperature desorption, as discussed 

in detail in our results.   

The TiC (001) surface is represented by a periodic (3√2×3√2)R45° supercell slab model 

consisting of six stoichiometric atomic layers periodic in surface directions with eight C and 

Ti atoms per layer. To provide an adequate description of the surface relaxations, the four 

uppermost layers were fully allowed to relax during optimizations with the two bottommost 

layers fixed to the pristine TiC bulk structure. To avoid the interaction between the periodically 

repeated slabs in the direction perpendicular to the surface, a vacuum width of 15 Å along the 

vacuum direction has been added.  

Doping has been simulated by substituting one surface Ti atom by the corresponding 

dopant, a choice which is justified by previous work indicating that surface doping was always 

preferred,22 and that subsurface doping has no effect on the CO2 adsorption properties. Indeed, 

explicit calculations for subsurface doping further confirm this prediction, systematically 

finding that surface doping is the most favourable case, see Table 1. This is not surprising as 

surface doping allows a lower energy cost for structural relaxation to adapt to the different 

atomic size of the dopant compared to Ti. The dopant concentration in the different models is 

3.125 at. % which is a common value in doped metal oxides, and low enough so as to neglect 

distortions in the TiC host, see below.  

All structural optimizations have started from the bare TiC optimized geometry as in 

previous work.22 The molecular structure and energy of the CO2 molecule in the gas phase and 

the energy of the isolated metal atoms have been obtained by placing them in an asymmetric 

box 9×10×11 Å to force correct molecular orbital occupation. For the isolated metal atoms, 
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spin-polarized calculations have been performed to properly describe their open shell nature. 

The interaction of CO2 with the different surface models starts by placing the molecule 2 Å 

away from the surface and exploring all possible surface sites and bonding modes as done in 

an earlier studiy.22 

The CO2 adsorption energy, Eads, has been calculated as in Eq. (1) 

௔ௗ௦ܧ    = 	 ஼ைమ/௦௟௔௕ܧ − ௦௟௔௕ܧ) +  ,஼ைమ)    (1)ܧ

where ECO2/slab is the energy of CO2 adsorbed on the slab surface, Eslab is the energy of the 

pristine relaxed TiC slab surface model, and ECO2 is the energy of isolated gas phase CO2. 

Within this notation, the more negative the Eads value, the stronger the interaction. For the most 

stable situations of the adsorbed molecule, net charges were estimated by the Bader atoms-in-

molecules analysis of the total electron density.34 

All calculations employ periodic models and have been carried out by means of the 

Vienna ab initio simulation package (VASP) code35 which uses a plane wave basis set to 

expand the valence electron density,36 and includes the effect of the atomic cores on the valence 

electron density by means of the by Kresse and Joubert37 implementation of the projector 

augmented wave (PAW) approach of Blöchl.38 In all cases the core electron  PAWs are the 

ones recommended by default by the VASP developers. More details are provided at the 

Supporting Information (SI). 

An optimized cut-off kinetic energy of 450 eV has been used for the plane-wave basis 

set expansion and a Monkhorst–Pack39 grid of (2×2×1) special k-point was used to carry out 

the necessary numerical integration in the reciprocal space, so as to ensure adsorption energies 

to be converged below the chemical accuracy of ~0.04 eV In the case of isolated atoms or the 

CO2 molecule, the optimizations were carried out at  point. The structure optimization has 

been carried out until forces on all atoms are smaller than 0.02 eV Å-1. The threshold 

convergence for the electronic energy was set to 10-5 eV. To speed up convergence of the 

calculations, a Gaussian smearing with a width of 0.2 eV has been used and the final energies 

are obtained by removing the smearing, i.e. by extrapolating to 0 K. In the case of isolated 

atoms or molecules, the smearing was reduced to 0.001 eV to ensure proper orbital occupation. 

 

3. Results and Discussion 
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We start this section by considering several features of the doped surfaces including the ionic 

crystal radius of the dopant, the distance between the dopant and its neighbouring atoms, and 

the relative stability of the doping. The latter is defined as  

ௗ௢௣ܧ߂    = ௜ெ஼்ܧ) + (௜்ܧ ௜஼்ܧ)	− +  ,ெ)   (2)ܧ

where ்ܧ௜ெ஼  is the energy of the doped slab; ்ܧ௜  is the energy of a single Ti atom in vacuum; 

௜஼்ܧ  is the energy of the pristine slab surface model; and ܧெ  the energy of the dopant atom in 

vacuum. Within this notation, negative ܧௗ௢௣  values indicate a favourable substitution of a 

single Ti atom by the doping M atom, having atomic reservoirs of both in the vacuum. Notice 

that this is a practical and direct way of qualitatively assessing the relative stabilities of dopants, 

but results in large the ܧ߂ௗ௢௣  values, for example as compared to using other condensed doping 

reservoir sources. 

Thus, results in Table 1 show that the substitution of Ti with the dopants is apparently 

not very thermodynamically favourable, which is not surprising because mixed transition metal 

carbides are scarce although they do exist.40 However, this is not so important since 

experimental processes for preparing doped carbides will follow other already well-established 

routes widely used for doping of metal oxides. The ܧ߂ௗ௢௣ values when allowing cell relaxation 

along the surface directions, ∆ܧௗ௢௣௥௘௟௔௫, change by only ca. ~0.25 eV on average (see Table 1), 

reflecting the small impact of the doping agent on the TiC host crystal structure. The ܧ߂ௗ௢௣ 

results highlight that it is somewhat more favourable to dope with late transition metals or even 

lanthanides, rather than with p block elements or alkaline earth metals.  

Note also that the oxidation state of the dopant reported in Table 1 has been chosen so 

as to correspond to the most common one. Covalent and ionic crystal atomic radius have been 

explored due to the mixed character of the M – C bond.41 An initial analysis of the results in 

Table 1 indicates that the distortion in the C to M dopant atom follows the ionic crystal radii, 

as expected. Si appears to be an exception which may indicate some inaccuracy on the estimate 

of the ionic radius of this element or that the reported ionic radius is not adequate for 

comparison purposes here. 

To get additional information about the effects introduced by the dopant we analyse the 

net charges on these atoms obtained from computed Bader’s charges.34 Table 2 shows that, in 

all cases, the dopant atom is partially oxidized, as expected from the rather ionic character of 

the TiC host.42 Nevertheless, some differences and trends are clear. For instance, the charge on 

the dopant in a given group decreases along the group, being larger for the lighter atoms such 
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as Mg, Al, or Si. For these three elements actually, we employed different pseudopotentials 

with extra core electrons treated in the shell valence electron density to avoid possible artefacts 

produced by the default recommended pseudopotentials, which have only two, three, and four 

valence electrons for these elements, respectively. In any case, Table 2 values provide a first 

qualitative guide to focus on the trends. For all other dopants, the net charge on the dopant is 

smaller than the charge corresponding to Ti in the host crystal, which is likely to have an effect 

on the interaction of the doped surface with CO2. 

The study of CO2 adsorption on the different doped TiC (001) surfaces follows the 

approach used in previous work.22 Thus, three different adsorption modes are tested and these 

are: TopC, TopC-A, and MMC, as indicated in Figure 1. The TopC and TopC-A modes are 

equivalent, except for the relative position of the dopant. In the TopC mode one oxygen from 

the CO2 is directly bonded to the dopant. Note also that in the MMC mode, the CO2 plane is 

slightly bent towards the surface. The summary of results in Table 3 clearly shows that, in all 

cases, the CO2 molecular angle deviates considerably from linearity. In addition, the C-O 

distances in the adsorbed CO2 elongate from 1.20 Å in free CO2 to between 1.43 and 1.52 Å. 

These geometrical changes are a clear sign of charge transfer from the substrate to the adsorbed 

molecule; a feature that is confirmed by the calculated Bader charges. In fact, upon adsorption, 

the CO2 becomes negatively charged, the total net charge in the adsorbate going from -0.76 

and -1.28 e. Moreover, the cases where the presence of the dopant leads to a large charge 

transfer are also those where the adsorption energy is particularly large. 

Not surprisingly, the preferred adsorption mode depends on the nature of each dopant 

as illustrated in the SI. This can be easily explained, as the TopC-A mode will be favoured 

when the interaction between O atoms in CO2 and the surface dopant atom is stronger than 

with surface Ti atoms. Therefore, it is logical to expect some correlation between the net charge 

on the dopant and the adsorption energy. The plot of the Eads vs. qdop results in a very poor 

correlation (not shown). However, an improved correlation is found when plotting Eads versus 

the difference in the net charge of the C atoms in the surface plane surrounding the dopant 

atom, see Figure 2, and values listed in Table 2. This correlation is more useful since a C-C 

bond involving a carbon neighbouring the surface dopant is formed upon CO2 adsorption, and 

the incorporation of the dopant into TiC directly affects the charges on the C atoms 

neighbouring the metal site. In fact, the plot in Figure 2 shows that the adsorption energy is 

related to the charge distribution. The larger the charge on the surface C atoms in the doped 

system relative to the same quantity for the undoped TiC (001) surface, the larger the adsorption 
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energy. Note, however, that Figure 2 only provides a trend which shows that, although the 

electrostatic interactions dominate the differences between the doped systems, they do not fully 

account for these differences. This implies that some chemical effects are also present.  

To further investigate the role of the dopants on modifying the adsorption features of 

CO2 on TiC (001) we analyse the influence of the atomic size. The rationale here is that 

substituting dopants on a Ti site can induce significant distortions to the surface atomic 

structure and the extent of the distortion largely depends on the dopant ionic radius. However, 

a simple plot of Eads versus the dopant radius, and by that using the Rdop values encompassed 

in Table 1, leads again to a very poor correlation. The correlation actually becomes much better 

when considering instead the geometrical distortions caused by the dopant, which also depend 

on the difference in atomic size. To this end, we define ΔR as  

∆ܴ = 	 หܴௗ௢௣ெ − ܴௗ௢௣்௜ ห     (4), 

where ܴௗ௢௣ெ  is the ionic crystal radius of the dopant, whereas ܴௗ௢௣்௜  is that corresponding for Ti, 

both taken from Table 1. Doping involves distortions in the surface plane of TiC, both of the 

convex or concave type. Therefore, it is advisable to consider the effect of the distortions in 

absolute value when analysing its effect on the adsorption energy. The plot of Eads vs. R is 

shown in Figure 3. The left panel of Figure 3 shows a clear trend, yet not really quantitative, 

as, interestingly, Si and In appear as clear outliers.  

To try to understand the origin of this discrepancy we inspected the structure of both 

doped surfaces. In the case of Si, it appears that the angle between the surface C and Si atoms, 

and the C from CO2 is ca. 114º while in the other cases, as well as in the undoped TiC (001) 

surface it is significantly smaller, 90º or less. This is understandable from the well-known trend 

of Si to prefer tetrahedral coordination and represents a clear chemical difference with respect 

to the rest of considered dopants. The case of In can also be understood, as the net charge in In 

for the doped carbide is significantly smaller than its formal oxidation number and, hence, the 

ionic radius does not represent the real size of this element in the doped TiC surface.  

Removing the data for Si and In leads to a largely improved correlation as shown in 

Figure 3. This result is important because it allows one to make a reasonable estimate of the 

effect of a given dopant based on an intrinsic property of that dopant without needing to 

perform any DFT calculations, and thus can be used for a systematic screening of the effect of 

possible dopants towards CO2 adsorption.  
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To further validate the validity of R as a descriptor of CO2 adsorption and activation, 

the results from the early transition metals studied in a previous work using an identical 

computational setup were added in Figure 3.22 Taking into account the empirical character of 

the ionic crystal radii used, cf. Table 1, the existence of the correlation between Eads and R is 

remarkable, providing a useful descriptor for a fast exploration of the effect of a possible 

dopant. The correlation has been deduced for TiC (001), yet it is likely that a similar 

relationship exists for other transition metal carbides. 

To further assess the effect of the dopant on the potential for CCS, we used transition 

state theory (TST) to derive the CO2 desorption rates for each one of the doped TiC surfaces 

and the Hertz–Knudsen equation to estimate the corresponding adsorption rate; further details 

can be found in Ref. 18. Both adsorption and desorption rates depend on the working 

temperature, and the temperature at which both processes become equal, Teq, defines the 

frontier between the two regimes. The variation of both rates with temperature is reported in 

Figure 4 for each of the explored materials using a typical partial pressure of atmospheric CO2 

of 40 Pa.43 For a given surface, T < Teq corresponds to the regime where adsorption is faster 

than desorption, thus fostering CO2 capture, whereas for T > Teq the CO2 desorption would 

dominate.  

Before exploring the T-dependent rates as plot in Figure 4, it is worth pointing out that 

the desorption rates depend on Eads, and this, in turn, is also dependent on the particular DFT 

method used. Specifically, we already discussed that including dispersion terms, not accounted 

for in the present work, would lead to stronger Eads values, and could therefore shift to larger 

Teq values. However, the effect of the DFT method, including the effect of dispersion, will 

equally affect all the studied systems and, since the relevant comparison is Teq for a given 

material relative to Teq for stoichiometric TiC (001), which we will denote as ௘ܶ௤
்௜஼, these 

relative values of Teq are therefore robust to the neglect of dispersion corrections. From Figure 

4, one can see that, for the example, for the Sr-doped TiC (001) surface, Teq is 230 K higher 

than ௘ܶ௤
்௜஼, whereas for In-doped TiC (001), the temperature would be ~80 K lower. In a 

nutshell, this indicates that doping of metal carbides may broaden the tuning of CO2 capture, 

and so can provide a route to further improve their CCS capability. 

 

4. Conclusions  
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A systematic study of the effect of doping on TiC (001) surface by different representative 

elements across the periodic table (Mg, Ca, Sr, Al, Ga, In, Si, Sn, Pd, Pt, Rh, Ir, La, and Ce) on 

CO2 adsorption has been carried in the framework of DFT. The results show that introduction 

of dopants replacing one Ti surface atom has significant effects on the CO2 adsorption 

properties. In particular, dopants may significantly modify the adsorption energy and, hence, 

the desorption rate —at a given temperature— which will have an impact on the CCS capability 

of these materials. Most often, the adsorption energy increases, although it is found to decrease 

when doping with some p block elements such as In and Sn.  

The analysis of the results provided some trends that can be used for further screening. 

Thus, the adsorption energy is reasonable correlated with difference in the net charge of the 

surface carbon atoms comparing the doped and undoped systems. The surface distortions 

introduced by the dopant also plays a major role. In this sense, it has been found that the 

adsorption energy correlates rather well with the difference in the (empirical) atomic radii 

between the dopant and Ti, R. This finding provides a useful descriptor that allows one to 

predict the effect on the adsorption energy of other dopants without needing to carry out any 

DFT calculation. The validity of this descriptor has been confirmed by including the cases of 

early transition metal atoms studied in a previous work. Finally, note that although the R 

descriptor has been deduced for TiC (001) it is likely to hold for other transition metal carbides. 

The final rule of thumb is that the larger the ionic crystal size of the dopant, the larger the CO2 

adsorption energy. 
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Supporting information 

The relevant input and output files corresponding to the optimized geometry for the clean 

doped surface and for CO2 chemisorption thereon have been uploaded to the NOMAD 

repository and can be reached at https://dx.doi.org/10.17172/NOMAD/2020.03.27-1 

 

Additional Supporting Information including the atomic structures and details on PAWs used 

is available free of charge at DOI:XXXXXX. 
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Table 1. Metallic dopants ionic crystal radii, Rdop,a dopant distances to carbon in the surface 

plane distance, d(CM), and doping formation energies, ΔEdop, as well as when allowing surface 

relaxation, ∆ܧௗ௢௣௥௘௟௔௫ 	, and energy difference between subsurface and surface doping, where 

positive values imply a preference for surface doping, ΔEsub-surf. Distances and radii are given 

in Å whereas energies in eV. The Ti4+ dopant refers to the pristine, undoped surface, used as a 

reference. 

 

Dopant Rdop d(CM) ∆࢖࢕ࢊࡱ  ࢌ࢛࢙࢘ି࢈࢛࢙ࡱ∆ 	࢞ࢇ࢒ࢋ࢘࢖࢕ࢊࡱ∆ 	

Ti4+ 0.65 2.17 0 0 0 

Mg2+ 0.80 2.26 11.42 11.09 0.74 

Ca2+ 1.14* 2.39 10.86 10.65 1.99 

Sr2+ 1.32* 2.59 11.64 11.40 1.54 

Al3+ 0.62 2.19 8.66 8.34 0.39 

Ga3+ 0.69 2.22 11.03 10.71 0.99 

In3+ 0.94 2.28 11.85 11.62 1.79 

Si4+ 0.54* 2.12 8.40 8.20 0.65 

Sn4+ 0.76 2.26 11.12 10.90 1.45 

Rh4+ 0.74 * 2.20 6.50 6.17 0.26 

Ir4+ 0.77* 2.19 4.89 4.54 0.44 

Pd4+ 0.76* 2.23 9.84 9.53 0.31 

Pt4+ 0.77* 2.21 7.64 7.30 0.32 

La3+ 1.18* 2.46 7.14 6.94 4.86 

Ce4+ 1.01* 2.33 6.02 5.85 3.28 

 
a The dopants ionic crystal radii reported were provided by the Atomistic Simulation Group 
lead by Prof. Robin Grimes at the Imperial College London. These correspond to surface atoms 
—five-fold coordination— or, when this information is not available, to six-fold coordination, 
the latter are marked with an asterisk. 
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Table 2. Bader charges of the dopant, qdop, and on the C atoms surrounding it at the surface, 

qsurf, and just beneath it, qsub. All values are given in e. 

 

Dopant qsurf qsub qdop 

Ti -1.70 -1.81 +1.81 

Mg -1.71 -1.87 +1.63 

Ca -1.65 -1.74 +1.45 

Sr -1.63 -1.66 +1.40 

Al -1.82 -2.00 +2.23 

Ga -1.61 -1.79 +1.20 

In -1.58 -1.79 +1.20 

Si -1.77 -2.05 +2.32 

Sn -1.63 -1.86 +1.53 

Rh -1.50 -1.53 +0.62 

Ir -1.51 -1.57 +0.80 

Pd -1.48 -1.56 +0.49 

Pt -1.43 -1.52 +0.31 

La -1.65 -1.74 +1.64 

Ce -1.66 -1.76 +1.66 
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Table 3. Preferred adsorption mode, adsorption energy, Eads, in eV, and structural parameters 

of CO2 on the different doped TiC (001) surfaces. The (OCO) stands for the bond angle of 

the adsorbed molecule, given in degrees, whereas d(CC) and d(CO) stand for the distances 

between the C atom of CO2 and the closest C atom of the TiC surface —when the two bonds 

are different, two values are given—, and the average C-O distance in the adsorbed molecule, 

both in Å. The ݍ஼ைమ  term refers to the Bader charge of the CO2 molecule, given in e. 

 

 

 

  

Dopant Mode Eads (OCO) d(CC) d(CO) ࡻ࡯ࢗ૛
 

Ti TopC -0.61 127.5 1.48 1.29 -0.82 

Mg TopC-A -0.77 127.3 1.47 1.29 -0.86 

Ca TopC-A -1.08 124.1 1.44 1.31 -1.17 

Sr TopC-A -1.22 121.7 1.43 1.32 -1.28 

Al TopC-A -0.77 127.7 1.47 1.29 -0.82 

Ga TopC-A -0.72 128.0 1.48 1.29 -0.83 

In TopC -0.50 125.4 1.50 1.29 -0.80 

Si TopC-A -1.02 127.1 1.46 1.29 -0.82 

Sn TopC-A -0.57 128.2 1.48 1.29 -0.90 

Rh TopC-A -0.71 128.1 1.49 1.28 -0.76 

Ir TopC-A -0.62 128.5 1.49 1.28 -0.78 

Pd TopC-A -0.73 128.2 1.49 1.28 -0.81 

Pt TopC-A -0.68 128.4 1.49 1.28 -0.79 

La TopC-A -1.07 123.1 1.44 1.31 -1.25 

Ce TopC -1.10 123.4 1.52 1.29, 1.30 -0.86 
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Figure 1. Schematic top view of the MMC, TopC, and TopC-A adsorption modes, where Ti, 

C, and O atoms are represented by blue, brown, and red spheres, respectively, whereas the 

dopant is shown in pale grey.  
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Figure 2. Adsorption energy, Eads, trend vs. the difference between the net charge of the surface 

carbon bonded to CO2 and net charge of the same carbon for the clean surface, qsurf, i.e. qsurf 

values given in Table 1, plus 1.70 e accounting for the clean surface. Each group of explored 

metals is differentiated by colours, as well as the Ti reference in TiC. 
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Figure 3. Evolution of the computed adsorption energies, Eads, as a function of the absolute 

value of ΔR, as defined in Eq. 4. The left panel includes all studied elements, whereas the 

middle panel shows the improved correlation when neglecting Si and In outliers. Finally, the 

right panel consider the elements from the middle panel plus all the early transition metals 

previously studied.22 Legend is as in Figure 2, except for early transition metals, specified. 
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Figure 4. Calculated CO2 desorption rates, rdes, on doped TiC (001) at the current partial 

pressure of atmospheric CO2 of 40 Pa. Note that the adsorption rate does not depend on the 

adsorption energy and, hence, is the same for all cases. The desorption rates of the undoped 

and doped surfaces are shown color-coded. 
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