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Abstract

Innovation researchers currently make use of various patent classification
schemas, which are hard to replicate. Using machine learning techniques, we
construct a transparent, replicable and adaptable patent taxonomy, and a
new automated methodology for classifying patents. We contrast our new
schema with existing ones using a long-run historical patent dataset. We
find quantitative analyses of patent characteristics are sensitive to the choice
of classification; our interpretation of regression coefficients is
schema-dependant. We suggest much of the innovation literature should be
carefully interpreted in light of our findings.
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1 Introduction

Patent statistics are a widely used proxy for measuring and understanding technological

change (Griliches, 1990). Patents are particularly popular in the field of economic

history where alternative measures of inventive activity are few. Patentable inventions,

however, have heterogeneous characteristics which, if not accurately controlled for, have

the potential to influence any interpretation of patent statistics. For example, the

propensity to patent varies by industry, suggesting the decision to obtain a patent also

varies by industry (Cohen et al., 2000).

Classification systems can account for varying patent characteristics. Innovation

scholars and social scientists can adopt one of two classification approaches: a

taxonomy of their own construction; or patent office classifications, such as the

International Patent Classification (IPC), United States Patent Classification (USPC),

or Cooperative Patent Classification (CPC). The prevalence of both approaches in the

literature raises the following questions: how comparable are existing studies that use

different taxonomies and methods, and which, if any, of the existing taxonomies can

and should be used in future studies?

The use of both manually constructed taxonomies as well as patent office schemas

complicates our ability to interpret the results of patent studies. Manual classification is

subjective, and there is no guarantee any two patent studies would classify the patents

in the same way. Few taxonomies see repeated usage; academic schemas are often not

fully discussed or described, hindering successful replicability as well as adaptability. By

contrast, patent office schemas often see repeated usage, but are prone to problems of

scope, as they usually consist of a few broad categories encompassing thousands of

narrowly defined subclasses. Not only are narrow subclasses too fine-grained for

econometric usage (Benner and Waldfogel, 2008), but the broad classes suffer problems

associated with the purpose of the schema. This problem was first identified by

Schmookler (1966) who observed patents for a toothpaste tube and a manure spreader

to fall into the same class, simply because they both had the same function of

‘dispensing solids’ (Schmookler, 1966, p. 20). Recently, innovation scholars have made



similar comments (e.g., McNamee, 2013), stating ‘the best way forward is to devise

identification systems that avoid entirely technology classification systems that were

devised for the sole purpose of helping examiners locate prior art’ (Thompson and

Fox-Kean, 2005, p. 466).

Patents can be classified under “time-invariant” or “time-variant” schemas.

Time-invariant schemas consist of broad classes, reflecting industry lines, which do not

change over time. By comparison, time-variant schemas encompass fine-grained classes,

reflecting time- or country-specific innovation; patent office schemas are time-variant

since they are used by patent examiners to identify prior art for new patent

applications. This relies on very narrowly defined technology boundaries which must

evolve as newer technologies emerge that defy classification (Strumsky et al., 2012).

Time-variant schemas can also have broad classes, but these are composed of technology

subclasses related by technical function for patent examiner convenience. By contrast,

time-invariant taxonomies are useful for relating patenting to economic phenomena over

time and space, and in the long-run.

Modern patent systems do not vary much, having largely homogenised over time. The

long-run, however, encompasses numerous instances of patent reform. Such events act as

natural experiments, which can provide important insights concerning the optimal design

of patent institutions. The ability to contrast patents throughout history is important

for developing a fuller understanding of how patent systems affect innovation, and how

they have evolved. Innovation historians make extensive use of time-invariant schemas.

Of course, a “one-size-fits-all” schema may not be useful or appropriate for answering

all possible research questions. Patent researchers require a standardised schema that

can be adapted to suit specific research questions while ensuring patents continue to be

classified consistently.

We present a new, time-invariant patent taxonomy for producing more consistent

and comparable results within the innovation literature. Our taxonomy is built on the

principle of transparency, so future investigators can understand its design and

application. In this way, investigators can either: reuse our schema, adapt it for their



own needs, or even develop new schemas using our methods. We also propose to use

machine learning techniques for automating patent classification. Machine learning

techniques minimize the subjective element of classification, reducing the probability of

patents being classified inconsistently. A consistent approach to patent classification

will lead to increased comparability of innovation studies, which helps to strengthen our

understanding of innovation and its relationship with patents. In turn, this can only

benefit policymakers in designing appropriate measures to encourage innovation.

The main focus of this paper is concerned with developing a new taxonomy, and

an automated method for classifying patent data. We use text as data to derive our

set of time-invariant patent classes. Because the literature abounds of alternative patent

taxonomies, we can observe which classes appear frequently. Frequent classes in historical

taxonomies reflect technology groups independent of time or geography, making them

indicative of time-invariant classes. We then test the validity of our schema by applying

machine learning techniques to multiple patent datasets. Patent data have historically

contained rich textual information in their titles. Using these titles, we elicit a set of

common word associations, or “topics”. Topics capture related patents into technology

groups, and can be used to observe whether we have omitted any potential classes. Finally,

we use our machine learning techniques to automate patent classification.

We further investigate whether the choice of schema influences the results of examining

patent characteristics. To test this, we examine the population of British patents granted

between 1700 and 1850. There are several advantages to using this dataset. First, we can

reproduce several taxonomies that have classified the data (e.g Woodcroft, 1860; A Cradle

of Inventions, 2009; Nuvolari and Tartari, 2011). Second, Britain’s patent system remains

relatively unchanged during this time (Dutton, 1984), allowing us to better investigate

the nature of invention over the long-run. Third, the data span the Industrial Revolution

– amongst the most important phenomena in human history (Clark, 2007). Insights from

this period are helpful to address important questions about the origins of the wealth of

nations and the role of innovation in industrialisation.

We contribute to the field of innovation studies through the creation of a new, well-



defined, time-invariant patent taxonomy. We thoroughly describe the development of

our schema to ensure future users understand how it was constructed and how it can be

adapted or adopted to compliment existing work. We also provide a new methodology

for automating the classification of any patent dataset. Our method can lead to more

consistent classification with fewer errors, and decreases the time needed to classify large

patent datasets, facilitating large-scale patent analyses.

We also contribute by documenting the existence of “classification divergence” –

statistical significance, direction of association, and coefficient magnitude are all subject

to the choice of classification used in a regression analysis of patent characteristics. To

our knowledge, we are the first to identify this kind of sensitivity in the innovation

literature, and its implications could be severe. Within the innovation history

literature, divergence complicates our understanding of important historical events

related to inventive activity, such as the Industrial Revolution. Divergence also makes it

difficult for policymakers to develop measures to encourage innovation based on existing

findings.

We also contribute to the growing trend in applying text analytics to patent data.

With the development of more sophisticated text analysis techniques, the rich textual

data contained in patents can be better exploited to advance our understanding of

patent systems. Textual analysis usually centres around quantifying the text contained

in patents to develop ‘similarity’ measures: pairwise correlations of patents based on

their text (Younge and Kuhn, 2016; Arts et al., 2018). Such approaches have strong

applications to developing new measures of innovativeness (Kelly et al., 2018),

identifying knowledge spillover effects (Feng, 2019; Blit and Packalen, 2019),

understanding stock-return variability (Khimich and Bekkerman, 2016), identifying

general or specific purpose technologies (Packalen and Bhattacharya, 2012), and

measures of patent novelty (Balsmeier et al., 2018).

Our paper is closely related to this recent trend, particularly Younge and Kuhn (2016);

Arts et al. (2018); Feng (2019). In their articles, the authors develop measures of patent

similarity using common keywords contained in patent specifications or abstracts – the



detailed technical documents outlining what is new about a particular patented invention

and how to use it. Such methods are useful for studying innovation but have several

drawbacks. First, the articles do not produce long-run classification schemas for use

in historical analysis. Second, whether similarity captures related patents based on the

patent’s technical function or its intended usage is unclear given the authors rely on

the technical patent specifications. Third, similarity measures say nothing about the

comparability of existing studies. By contrast, we endeavour to classify patent data

according to the industry of final use. In doing so we exclusively use patent titles, which

contain fewer references to technicality, and are more likely to help us identify a patent’s

relevant industry.

The paper proceeds as follows: Section 2 surveys existing patent classification

literature. Section 3 outlines our machine learning techniques. Section 4 details our

taxonomy’s construction and validation. Section 5 reports the results of contrasting

patent taxonomies in our analysis of patent classes on patent characteristics. Section 6

interprets our findings and discusses their implications . Section 7 concludes.

2 Patent Classification Literature

In 1830, John D. Craig, the US Superintendent of Patents, gave evidence to the US House

of Representatives regarding the development of the US patent classification schema. In

his evidence, Craig raised two points: the ‘imperceptible shades of difference’ of patent

classes, and that ‘a doubt frequently arose concerning the class to which some of the

patents did properly belong’ (cited in Bailey, 1946, p. 466). Craig was concerned with the

overlapping characteristics of patented inventions. Accurately pinpointing a particular

class for a particular patent is a difficult task.

It is precisely because assigning classes is difficult that a standardised schema and

classification methodology is necessary. The likelihood of inconsistent patent classification

increases without a standard approach. Pearce (1957, p. 1) discusses how the inconsistent

classification of industrial statistics led to any comparisons of industrial data as ‘difficult



and often misleading’, resulting in the creation of the Standard Industrial Classification

(SIC) schema.

This problem persists in the innovation history literature, particularly as patent data

are a popular proxy to study inventive behaviour over the long-run. Innovation historians

desire a classification approach which classifies patent data according to industry of final

use, as this allows them to study patenting and the wider economy. At present, different

authors classify (often the same) patent data in different ways. Patent classes should

account for common characteristics that could influence how we interpret such data. If

scholars do not adopt the same approach to identifying group-specific characteristics,

then studies cannot be easily compared.

2.1 Patent Office Schemas

The development of patent office schemas is primarily to aid patent examiners (WIPO,

1992). Examining patents requires multiple well-trained, professional patent examiners

to engage in the time-consuming search for prior art – old or existing patents likely to

influence or anticipate future ones. Assigned classes are subject to change, as patents are

examined at several different stages throughout the patent application (Righi and Simcoe,

2019). Having thousands of well-defined classes and subclasses facilitates a more efficient

search for prior art. Such classes make fine distinctions between seemingly similar types

of inventions, allowing examiners to find the relevant art more readily.

Patent office schemas are most suitable for time-variant classification because they

primarily classify patents by technical functions. Such methods are extremely useful

for identifying emerging technologies (Strumsky et al., 2012) and cumulative innovation

(Boschma et al., 2014; Rigby, 2015; Youn et al., 2015) and also for observing the increasing

modularisation of technology (Arts and Veugelers, 2015). However, these methods are

less useful for relating patenting and the real economy. Despite this, there have been

growing attempts to utilise time-variant patent office schemas more widely.

Concordances between patent office schemas and industrial classification schemas have

become a popular method to relate patenting to the wider economy (e.g. Verspagen et al.,



1994; Kortum and Putnam, 1997; Johnson, 2002; Schmoch et al., 2003; Costantini et al.,

2015; Leydesdorff et al., 2017). This approach links industrial classes to IPC subclasses,

either manually (Schmoch, 2008) or through probabilistic algorithms matching keywords

from industrial schemas to patent titles (Lybbert and Zolas, 2014). Recent efforts by the

United States Patent and Trademark Office (USPTO) have matched USPC classes to the

popularly used NBER patent classes of Hall et al. (2001) to facilitate long-run analyses

of US patenting behaviour (Marco et al., 2015).

This sub-field, however, relies on existing patent office schemas applied to the data.

For the economic historian concerned with historical patent data, the approach is not

always feasible. Many historical patents do not have patent office classes assigned, and

such classes cannot be easily assigned by academics themselves because of the highly-

skilled and specialised nature of patent office classification. The exception here is the

case of Marco et al. (2015), while their approach is useful for innovation historians, it is

exclusive to US patents.

Figure 1 provides a comparison between the European Patent Office’s (EPO)

PATSTAT Biblio (Autumn 2016) database and an external count of patent grants

pre-1950, for Britain, France, Germany and the United States.1 PATSTAT claims to

contain all patents ever granted in EPO countries, and is a popular data source for

innovation studies.2 However, pre-1900 patent records are incomplete in PATSTAT;

patent office classes are usually unavailable. As the figure shows, PATSTAT is not a

suitable data source for historical patent data, and therefore patent office schemas

cannot be used.

Aside from omitted data, academic studies face further problems using patent office

schemas because they classify patents based on two separate principles:

“application-oriented” and “function-oriented”. The former refers to ‘a thing “in

general”, i.e., characterised by its intrinsic nature or function’ (WIPO, 2016, p. 22); the

latter refers to ‘a thing “specifically adapted for” a particular use of purpose’ and ‘the

incorporation of a thing into a larger system’, where a thing refers to any technical

1Countries chosen due to their popularity in the economic history literature.
2See the online appendix for further information concerning PATSTAT.



(a) United States, 1791-1950 (b) Great Britain, 1791-1950

(c) France, 1791-1950 (d) Germany, 1877-1950

Figure 1: PATSTAT versus Historical Patent Counts, 1791-1950

Notes: Comparison of the counts of patents granted in PATSTAT against the Historical Patent Counts data for the US, Great Britain,
France, and Germany. Germany’s series begins in 1877 since this is when Germany was established.

Source: PATSTAT Biblio Autumn Edition (2016) and Frederico (1964).



subject matter.

Both principles are seemingly jointly applied within the EPO and other patent

examination bodies. While the application-oriented approach is more useful for

academics, the use of the function-oriented principle suggests patents are being grouped

by a function which could apply to multiple industries. Since scholars frequently study

the wider effects of patenting, the use of function-oriented classification hinders the

usefulness of patent office schemas for this purpose.

Patent offices are becoming more aware of this hindrance, as patent examination bodies

are currently adapting their patent classification systems to better capture their final

economic use in new products which combine different technologies. One example of this

is the EPO’s work on the so-called “Internet of Things” (EPO, 2017); another is the work

undertaken at the USPTO (Marco et al., 2015). These adaptations, however, continue

to rely on the function-oriented approach. In the EPO’s case, for example, examiners

produced a concordance between CPC classes and a ‘cartography’ for identifying “Fourth

Industrial Revolution” (4IR) technologies. But identifying 4IR patent applications relies

on an examination of a patent’s CPC codes by patent examiners, who then recommend

which field of the cartography the patent belongs to.

2.2 Classification in Economic History

Patent classification in innovation studies allows researchers to relate patent data to

changes in the economy. For economic historians studying innovation, this necessitates

taxonomies which cover the long-run: time-invariant schemas. Time-invariant schemas

group related inventions, independent of time or country or specific technical functions

for the purpose of economic enquiry. In doing so, researchers are more capable of

identifying and controlling for broad characteristics of different types of inventions,

which simplifies their study, preventing these characteristics from complicating insights

drawn from patent data. For example, mechanical inventions are more likely to be

patented than chemical inventions across time and countries, as machines are more

susceptible to reverse engineering (Moser, 2005). The necessity of using time-invariant



schemas are to control for such unchanging and broad characteristics, which requires a

standardised set of patent classes.

Schmookler (1966) was amongst the first scholars to highlight the fundamental flaw

of using patent office classifications for studying the wider economy. Schmookler’s

observation that unrelated inventions can be grouped together by a patent office,

because of a related functionality, meant social scientists and innovation historians

would need to adopt new taxonomies directly related to industry. One of Schmookler’s

key innovations was to overtly classify patents based on their industry of final use.

In his seminal article, Griliches (1990) builds on Schmookler’s efforts, and outlines

three methods of classification: “Origin”, “Production”, and “Destination”. Origin

groups patents by the industry that produced them. Production groups patents by the

industry most likely to produce the invention, or use within the production of goods or

services. Destination groups patents according to the industry most likely to make use

of, or benefit from, the invention. Destination and Production overlap. The major

difference is the use of an invention does not intrinsically imply its use is in production,

but an invention used within production constitutes Destination. Destination is the

most suitable method for studying patenting within the wider economy, as it is easier to

determine a patent’s intended industry of final use.

However, developing a single standardised, replicable and adaptable taxonomy has

received little attention in the literature. Most studies adopt a set of single-use classes

as controls for their econometrics. What is unclear is how authors have constructed

their taxonomies, defined their classes, and assigned patents to those classes. Without

this information, replicating existing taxonomies is difficult. This leads to two possible

outcomes. Either future investigators apply existing taxonomies incorrectly – leading to

further inconsistencies – or they construct additional taxonomies, further compounding

the problem of incomparability.

Table 1 displays a set of 35 patent and invention taxonomies, which have been used

within the economic history literature.3 This set is representative of the economic history

3The set includes papers which make use of Exhibition invention classes, which are then matched up
with patent classes. Exhibition classes operate similarly to patent ones, and are therefore included.



literature; the papers were compiled from a systematic search of “economic history” and

“patent” keywords in the Econlit and EBSCO databases. We focused on papers observing

patent data on the wider economy, and not specific industries, in an attempt to avoid

very narrow research questions requiring very specific classification. Furthermore, we only

included studies which published their taxonomy, or made reference to another published

taxonomy. The table lists the number of classes in each paper’s taxonomy, the countries

observed, the time-period examined, which of the three methods of classification were

used (if any), and a brief description concerning the construction of the taxonomy and

whether definitions were provided for patent classes.

The table highlights several things. First, the existing patent evidence derives from a

number of countries (14 in total) and a number of different time periods. This

highlights the need for a time-invariant taxonomy to classify similar patents in the same

way, independent of location or time. Second, the Destination method of classification

is the most popular. Most studies explicitly state their classification is based on the

industry of final use, as this is most relevant for relating patents and the real economy.

We should therefore endeavour to construct a taxonomy based on this method. Third,

there is great disparity in the number of classes per taxonomy.

One important question Table 1 raises is how do authors choose the number of classes

in their taxonomy? Another question is how do authors classify their patent data once

they have chosen the structure of their taxonomy? To understand this, each author would

need to detail exactly how they derived and defined their classes, and how they assigned

patents to them. For most studies (see ‘Description’ column), a discussion concerning

taxonomy construction is not provided, and in almost all cases patent class definitions

are not reported. Some authors rely on restructuring existing taxonomies (e.g Moser,

2005; Brunt et al., 2012; Moser, 2012); or use concordances between patent schemas and

industrial schemas (e.g. Nanda and Nicholas, 2014); or IPC headings (e.g. Sáiz, 2014).

In most cases, authors construct new taxonomies without description or explanation.

Future researchers therefore gain limited insights into how to design a taxonomy, how to

classify patents consistently, or how to choose the number of classes for their taxonomy.



Table 1: Classification Literature

Authors Classes Country Time-period Method Brief Description

Woodcroft (1860) 246 England 1617-1852 Destination

The author compiled a complete collection of all patents granted in England prior to 1852. The associated

taxonomy was most likely to reduce search costs for previously granted patents, akin to schemas constructed

by and for patent examiners. Each broad class has an associated list of keywords.

Sokoloff (1988) 4 US 1790-1846 Destination
The author likely uses the NBER patent data schema, although it is not explicitly stated. If not, how the taxonomy was

designed is unclear. Class definitions are not provided.

Sullivan (1990) 7 England 1711-1850 Destination
The author constructs their taxonomy to study six important industries. It is unclear how patents are classified, although

this is based on Woodcroft’s Subject-matter index. Class definitions are not provided.

Basberg (1997) 21 Norway 1839-1860 Destination
The author constructs their own schema based on a combination of broad and narrow classes. It is unclear how the

taxonomy was constructed nor how patents are classified. Class definitions are not provided.

Magee (1999) 32 Australia 1858-1902 Destination

The author constructs their taxonomy based on the standard classification of manufacturing industries used in Australia in

1902. From this the author constructs 32 classes. Keywords are provided for certain classes. It is unclear how the author

assigns patents to classes.

Cantwell (2000) 15
Britain, France, Germany,

Sweden, Switzerland, US
1920-1995 Unclear

The author constructs their taxonomy based on the USPTO classification schema. It is unclear exactly how the author has

derived their classes nor how patents are classified. Class definitions are not provided.

Davids (2000) 16 Dutch Republic 1580-1720 Unclear
The author constructs their own schema. It is unclear how the taxonomy is constructed nor how patents are classified.

Class definitions are not provided.

Khan (2000) 23 US 1870-1895 Destination
The author constructs their own schema. It is unclear how the taxonomy is constructed nor how patents are classified.

Class definitions are not provided.

Moser (2005) 7 England and US 1851, 1876 Unclear

The author uses exhibition data and constructs their taxonomy based on the 1851 Crystal Palace Exhibition classification

scheme. It is unclear why the author chose 7 classes or how these class have been constructed. There is no explicit

discussion concerning how US inventions have been classified according to the schema.

Basberg (2006) 18 Norway 1860-1914 Unclear
The author constructs their taxonomy from the official patent office classification scheme. It is unclear how their taxonomy

has been designed nor how patents are classified. Class definitions are not provided.

Streb et al. (2006) 89 Germany 1877-1918 Production
The author’s patent data has been classified according to the historical German Patent Office classification schema

comprising 89 technological classes. This approach is more likely to capture patent functionality rather than application

Baten et al. (2007) 19 Germany 1895-1913 Origin

The author relies on classifying patents according to the Standard Industrial Classification (SIC) two-digit code of the firm

who held the patent. This method captures the ‘Origin’ of patents. The research question focuses on industry spillover

effects for innovation, so this is likely a reasonable approach.

Nicholas (2008) 4 US 1910-1939 Unclear

The author uses the NBER patent data, and likely constructs their 4 patent classes from this. However, it is not explicitly

described how the classes have been constructed; one class is ‘Other’ which likely captures a number of different

technologies. It is unclear why the author has chosen 4 classes instead of the 6 NBER classes, or even the NBER subclasses.

A Cradle of

Invention (2009)
15 England 1617-1852 Unclear

The compilers of the data constructed a simple taxonomy to make the database more useful. They assert

that their schema is based on their interpretation and so may be flawed. Class definitions are provided.

Continued on next page



Table 1 – continued from previous page

Authors Classes Country Time-period Method Brief Description

Greasley and Oxley

(2010)
8 New Zealand 1861-1939 Destination

The author’s construct their taxonomy to match their commodity output groups. Their taxonomy is based on Magee

(1999), but with fewer classes. It is unclear how patents are classified. Class definitions are provided.

Meisenzahl and

Mokyr (2011)
12 England 1660-1830 Unclear

The author’s construct their own schema. It is unclear how the taxonomy has been designed nor how patents are classified.

Class definitions are not provided.

Nicholas (2011c) 30
Britain, Germany, Japan,

US
1900-1940 Production

The author classifies their patents using 30 main categories of the International Patent Classification (IPC) taxonomy. As

described in the text, the IPC method classifies patents based on functionality, and so may be classifying un-related

technologies as similar.

Nicholas (2011a) 16 US 1921-1938 Origin
The author classifies their patents according to the two-digit SIC code for the firm who held the patent. This method

captures a patent’s origin.

Nuvolari and

Tartari (2011)
21 England 1617-1841 Destination

The author’s construct their taxonomy based on a working paper version of Moser (2012). It is unclear how

they derived their additional classes nor how patents are classified. Class definitions are not provided.

Moser (2012) 10 England and US
1851, 1876, 1893,

1915
Unclear

The author uses exhibition data and constructs their taxonomy based on the 1851 Crystal Palace Exhibition classification

scheme. It is unclear how the author derives their classes. Class definitions are not provided.

Brunt et al. (2012) 12 England 1839-1939 Destination

The author’s examine prize data from the Royal Agricultural Society of England (RASE) compared with patent data from

the British patent office. The author’s construct a taxonomy of 12 classes with 130 subclasses based on the Subject-matter

Index from Woodcroft (1860), which relies on generating a list of keywords for each patent class. This approach likely relies

on a patent’s ‘destination’ for classification.

Burhop and Wolf

(2013)
10 Germany 1884-1913 Unclear

The author’s report 10 active technology fields, although it is unclear whether there are more. It is also unclear how

patents have been classified and according to what kind of taxonomy. Class defintions are not provided.

Khan (2013b) 4 US 1790-1930 Destination
The author reports 4 patent classes in their regression analysis. It is unclear where the classes are derived from, or if any

other patent classes are controlled for in their regressions. Class definitions are not provided

Khan (2013a) 12 US 1837-1874 Destination

The author uses exhibition data and patent data. Their taxonomy classifies inventions which were exhibited at industrial

fairs. Invention’s were classified according to their Destination. It is unclear how the taxonomy was constructed and how

inventions are classified. Class definitions are not provided.

Khan (2014) 12 US 1835-1870 Destination
The author uses both exhibition and patent data. They construct their own schema to classify both datasets. It is unclear

how the taxonomy has been constructed nor how patents are classified. Class definitions are not provided.

Nanda and Nicholas

(2014)
15 US 1921-1938 Origin

The author’s classify their patents according to the two-digit SIC code for the firm who held the patent. This method

captures a patent’s origin.

Khan (2015a) 26/7 Britain, France, US 1754-1852 Unclear

The author surveys prize-giving institutions in Britain, France, and the US. The French exhibition classes for inventions

are those classes produced for the Paris exhibition. For Britain, the invention data are classified according to the Royal

Society of Arts (RSA) own designated technology categories. No US classification is described. It is unclear whether the

inventions in France and Britain are comparable. Class definitions are not provided.

Sáiz (2014) 20 Spain 1820-1930 Destination
The author constructs their schema based on the IPC descriptions and the descriptions in the patent. It is unclear how

they constructed their schema nor how patents are classified. Class definitions are not provided.

Continued on next page



Table 1 – continued from previous page

Authors Classes Country Time-period Method Brief Description

Nuvolari and Vasta

(2015)
14 Italy 1861-1913 Unclear

The author’s construct their schema based on the International Standard Industrial Classification (ISIC). It is unclear how

the classes have been constructed nor how the patents are classified. Class definitions are not provided.

Khan (2016) 10 France 1791-1855 Destination
The author’s patent data are categorised into industry of final use. It is unclear how the taxonomy has been produced nor

how patents are classified. Class definitions are not provided.

Lehmann-Hasemeyer

and Streb (2016)
5 Germany 1892-1913 Origin

The author’s classify their patents according to the industry of the firm who held them. It is not clear how the taxonomy is

formed or how firms are classified. Class descriptions are not provided.

Akcigit et al. (2017) 63 US 1880-1940 Production

The author’s use the United States Patent and Trademark Office (USPTO) classification schema and the NBER aggregate

classes. Using the USPTO codes patents are matched to the two-digit and three-digit SIC codes. This methodology more

likely captures functionality rather than application.

Comino et al. (2017) 17 Venetian Republic 1474-1550 Production
The author’s use the technology classification assigned to those patents by another researcher. The author’s manually

classified their patents, although it is unclear how patents have been assigned. Class definitions are not provided.

Khan (2017) 6 England 1750-1850 Unclear
The author classifies their exhibition data based on the categories used by the RSA to administer prizes to inventions. It is

unclear how these classifies are defined or assigned. Class definitions are not provided.

Donges and Selgert

(2019)
29 Germany 1843-1877 Production

The author’s construct their schema based on the classification scheme of the Imperial Patent Office in 1877. They

construct 30 technology groups to match patent data to industrial data, creating a table describing how their classes are

defined. The author’s assign their schema based on the patent’s technical description.

Notes: The table shows a sample of 35 widely disseminated patent taxonomies. ‘Classes’ shows the number of reported patent classes in each study. ‘Country’ refers to the country or countries observed

in the study. ‘Time-period’ dorefers to the period being studied. ‘Method’ indicates how the taxonomy has been constructed, this column takes one of four values: ‘Destination’, ‘Origin’, ‘Production’ or

‘Unclear’. For a method to be recorded it must be either explicitly stated or based on classifying patents according to the firm’s own industry (the origin approach). The patent taxonomies highlighted in

bold are those used in this study to examine whether the choice of patent classification affects the results from a regression of patent characteristics.

Sources: see Column 1



This is not to say that schemas have been constructed arbitrarily. On the contrary, we

acknowledge that existing taxonomies are the result of a great deal of thought and effort,

and that authors will have selected or developed a schema to answer a specific research

question. The major difficulty, however, is understanding how authors have classified

their patent schemas. Without an understanding of how schemas are constructed or how

classes are defined, the literature is at risk of classifying similar patents in a number

of different and possibly inconsistent ways. Whether this inconsistency matters for

interpreting patent data is explored later in this paper.

3 Text Analysis

Text analysis techniques create structured data from natural language documents. We

apply these techniques to existing patent classification taxonomies to aid the development

of our time-invariant schema. The text describing existing systems is parsed, stemmed

and stripped of stop words for analysis.4 We subsequently use further techniques to

validate the schema, and to assign patents to appropriate classes.

Historically, patent applications contained short, descriptive titles. Under the

European Patent Convention, application titles are accuracy checked by patent

examiners (EPO, 2017) who can amend the title as they see fit. Under Britain’s

historical patent system, patents could be annulled if the invention was not properly

described leading to a standardised approach for writing titles (Dutton, 1984; MacLeod,

2002; Bottomley, 2014b). Therefore, historical patent titles provide a rich source of

textual data that can be used to classify patents according to their industry of final use.

This study relies exclusively on patent titles, rather than the more commonly used

abstracts of patent specifications (see Magerman et al. (2015); Ruckman and McCarthy

(2016); Younge and Kuhn (2016); Arts et al. (2018), for examples). We do so for two

reasons. First, many historical patents do not possess digitally available abstract or

technical specification data – in many cases they do not exist. Using abstracts and

specifications would therefore discriminate heavily against historical patent data. Second,

4See online appendix for a description of these terms.



we wish to avoid a classification system based on the patent’s technical subject matter.

Abstracts and specifications describe how their invention is to be worked, and what

is new compared to the prior art, so they can be easily replicated by those “trained in

the art”. This requires considerable technical detail. Historically, patent titles concisely

state what the patent application is, making them more reflective of potential industries

of final usage.

When working with patent data, topic modelling is an increasingly popular

methodology to approach classification (Wu et al., 2010; Kaplan and Vakili, 2012;

Venugopalan and Rai, 2015; Ruckman and McCarthy, 2016; Wu et al., 2016; Chen

et al., 2017; Suominen et al., 2017). This exploits the tendency of patent titles from

particular industries to consist of distinctive keywords. Our preferred method of topic

derivation is Non-Negative Matrix Factorization (NMF) using the implementation from

scikit-learn (Pedregosa et al., 2011). For a discussion of why NMF was chosen rather

than the more commonly used Latent Dirichlet Allocation (LDA), please refer to the

online appendix.

4 The Taxonomy

In this section, we begin the design, validation, and description of our new, time-invariant

patent taxonomy. The taxonomy should be used to classify patent data according to their

destination based solely on the text contained in patent titles. It should contain a set of

broad, time-invariant classes; those independent of both time and the country granting

the patent rights.

To construct and validate our taxonomy, we take a two-step text analysis approach.

First, we identify a set of commonly occurring patent classes. We do this by constructing

a set of unique words derived from the titles of patent classes contained in the taxonomies

reported in Table 1. The sample is representative of the literature, featuring taxonomies

from different regions and time periods. This allows us to identify which words frequently

appear in the economic history literature by manually grouping together synonyms and



related terms.5 Frequently appearing words in historical patent taxonomies are more

likely to reflect broad technology groups rather than niche ones, making them suitable

candidates for time-invariant classes.

Second, we apply the NMF method to different datasets from PATSTAT covering

different countries and time periods. This robustness check helps to ensure that we have

not omitted any classes, nor that we have included any niche classes that do not represent

the literature, increasing our confidence that we have identified time-invariant classes.

In addition, we use NMF to help construct definitions for our taxonomy. Each topic’s

words are used to assign it to a patent class and are therefore useful to construct the

class description.

The taxonomy itself, however, does not immediately dictate the classification

approach; patent class definitions will determine whether our schema classifies patents

by technical function or industry of final use. The taxonomy will instead derive a set of

broad, adaptable classes which should capture the broad characteristics of patented

technologies.

4.1 Constructing the Taxonomy

To derive our base set of classes, or “word-groups”, we first undertake a counting exercise

on the existing historical taxonomies contained in Table 1.6 This exercise compiles all

patent classes from each taxonomy into a single set of unique words. Stop words are

removed, and stemming applied to avoid duplicate terms. Each unique word is first tallied,

then manually grouped with other related words. This is achieved by treating each unique

word as a patent class of its own, and then identifying which broader group of inventions

each class should belong to. For example, the word ‘agriculture’ is grouped with the terms

‘seeds’, ‘land’, and ‘cultivate’, which are related to the agricultural industry. Within each

word-group, the title derives from the highest tallied term. This acts as a reference point,

5Human judgement has the advantage here because we need to be able to identify related words and
synonyms. A text analysis technique may not be able to do so, because splitting patent class into unique
words strips them of their context or definitions.

6We use the term word-groups to distinguish from a finalised set of patent classes, as word-groups
reflect possible classes which still require verification.



as it provides a noisy estimate of the most commonly occurring classes throughout the

literature.

We have deliberately included both patent office and non-patent office schemas in

our methodology. Patent office schemas classify patents based on function-oriented

characteristics, while non-patent office schemas use application-oriented characteristics;

technology-based versus use-based classification. The class definitions, rather than the

schema itself, dictate whether patents are classified according to their technical

functions or industry of final use. Patent office classes and subclasses consist of multiple

words which identify specific technical functions, while non-patent office schemas rely

on a single broad class title to convey the likely industry of final use. Our approach

decomposes every patent title into unique words, stripping them of their definition,

thereby removing any technology or use-based focus. The decomposition of patent titles

also removes the influence of highly technical terms as these cannot be readily grouped

with other word-groups, reducing the likelihood of our taxonomy being biased by

function-oriented characteristics.

Table 2 reports the result of the counting exercise. Our initial count produced 1,105

unique words, the majority of which appeared only once or twice. The first half of

the table shows the unique words with the highest initial tallies. This tally on its own,

however, is not informative because it does not yet account for synonyms or related text.

The second column of Table 2 shows the results of our manual grouping. As a

provisional check, both authors conducted this exercise independently, twice. Each

exercise resulted in a similar set of 24 word-groups. ‘NA’ reflects unique words too

vague or too technical to assign to any word-groups.7 ‘Aggregate Count’ represents the

total tally of all related words within each word-group. This count indicates how

frequently each word-group appears. Word-groups with lower tallies are less likely to

reflect broad patent classes. ‘Heat’, for example, has the lowest count, as terms related

to ‘Heat’ did not often appear as part of any class within our sample; ‘Heat’ may not be

a suitable patent class.

7To ensure ‘NA’ did not reflect its own word-group, we ran another exercise on the words not assigned
to other groups. Neither author could readily identify any further sets of word-groups.



Table 2: Counting Exercise Results

Raw Count Author’s Count Patent Examiner

Word-group Frequency Word-group Frequency Word-group Frequency

product 47 NA 237 NA 398
metal 38 Hardware 226 Engineering Tools 304
machin 31 Chemicals 218 Manufacturing 288
engin 29 Instruments 211 Transport 151
textil 29 Agriculture 182 Light Industry 150
instrument 28 Textiles 176 Household 143
agricultur 26 Transportation 145 Agriculture 113
chemic 25 Construction 124 Construction 109
equip 25 Goods/Services 117 Organisation 98
mine 24 Machinery 111 Textiles 95
transport 23 Paper 99 Foodstuffs 77
food 23 Power 95 Energy Production 72
electr 22 Manufacturing 79 Construction (resources) 60
machineri 21 Metal 73 Wearables 59
paper 20 Food 70 Chemistry 58
manufactur 19 Health 64 Furniture 52
construct 19 Mining 50 Engineering Components 52
print 18 Utility 47 Metallurgy 51
gas 17 Apparel 43 Mining 49
servic 17 Military 43 Engineering Electrical 48
ship 16 Electricity 40 Medical 47
furnitur 16 Gas 35 Weapons 37
glass 15 Light 22 Engineering Civil 19

Water 19 Telecoms 18
Communications 17 Machines 6
Heat 16 Electrical 5

Notes: The ‘Raw Count’ columns represent our results from the initial frequency counts for words scoring 15 or greater. ‘Author’s Count’
displays the word-groups from our manual assignment. ‘Patent Examiner’ displays the word-groups from our experienced patent examiner’s
second manual assignment attempt. ‘NA’ denotes words too vague to be grouped into word-groups.

Source: See Table 1.



4.2 Taxonomy Validation

We next conduct a series of robustness checks to verify the validity of our word-groups as

representative patent classes. These checks include: inviting a senior international patent

examiner to undertake our counting exercise just described; ascertaining the frequency

of each word-group in our sample of patent taxonomies; and checking whether different

patent datasets can be readily classified using our set of word-groups.

As our first robustness exercise, we invited a patent examiner, with over 30 years of

experience of classifying patents and revising official patent classification schemas, to

conduct our counting exercise. There are several advantages to soliciting an

independent review from a patent examiner. First, they are experts in patent

classification; it is their job. Second, they are constantly developing and updating

classification methodologies, such as their recent work on classifying technologies

relating to the Internet of Things. Third, they are trained to classify patents according

to both function-oriented and application-oriented characteristics. Fourth, they

understand the terminology contained in patent titles. The examiner was made aware

of the purpose of our schema, and instructions were provided for them to complete the

exercise. The examiner was not shown the results of our initial counting exercise, and

was given only the necessary information so as not to bias their attempt. The examiner

undertook our exercise twice, on separate dates receiving feedback only on the number

and breadth of the categories.

In their second attempt, the examiner derived 24 word-groups, of which 17 word-groups

are similar to ours (see final column of Table 2). By comparing the descriptions provided

by the patent examiner with the terms included in each of our word-groups, we could

subsume the examiner’s remaining word-groups into at least one of ours: ‘Construction’

and ‘Construction (resources)’ relates to Construction; ‘Electrical’ relates to Electricity;

‘Energy Production’ relates to Engines; ‘Light Industry’ relates to multiple word-groups;

‘Metallurgy’ relates to Metal; ‘Engineering Civil’ relates to Construction; ‘Engineering

Components’ and ‘Engineering Tools’ are both related to Hardware and Instruments;

‘Engineering Electrical’ is related to Electricity; ‘Furniture’ and ‘Household’ relate to



Table 3: Results from Matching Word-groups to the Literature

Word-groups Total Percentage

Machinery 29 82.86
Textiles 29 82.86
Chemicals 27 77.14
Metal 26 74.29
Agriculture 26 74.29
Instruments 23 65.71
Food 23 65.71
Paper 21 60.00
Construction 19 54.29
Mining 17 48.57
Electricity 16 45.71
Transportation 15 42.86
Health 15 42.86
Goods 12 34.29
Apparel 11 31.43
Military 11 31.43
Manufacturing 11 31.43
Engines 10 28.57
Utility 10 28.57
Hardware 7 20.00
Communications 7 20.00
Gas 4 11.43
Water 4 11.43
Heat 3 8.57
Light 3 8.57

Notes: The table shows how often each word-group appears in our sample
of 35 taxonomies from Table 1. ‘Percentage’ indicate the percentage
of taxonomies each word-group appeared in. Word-groups with higher
scores are considered more robust and representative of the literature.

Source: Authors’ calculations using data from Table 1.

Goods/Services; ‘Organisation’ relates to Goods/Services and Paper; and ‘Wearables’

relates to Apparel.

We next check how often our word-groups appeared as a distinct class in the sample

literature, highlighting whether we derived a schema representative of the literature and

whether our word-group titles are sufficiently broad. We check each word-group against

each taxonomy, and then tabulate how often they appear. The results are reported in

Table 3. For example, 29 out of the 35 sample taxonomies list Machinery as a distinct

class, while Heat appears only three times.



Table 4: Data Used for Topic Analysis

Country Years Source

England (‘EN’) 1617-1852 A Cradle of Inventions (2009)
France (‘FR’) 1855-1938 PATSTAT Biblio
Germany (‘DE’) 1877-1933 PATSTAT Biblio
Great Britain (‘GB’) 1899-1913 PATSTAT Biblio
United States (‘US’) 1790-1900 PATSTAT Biblio

Notes: For France and Germany we took a random sample of patents. For Great Britain
and the US, we included all patents available until the specified end date. This means many
patents were missing for older periods. However, since we care about deriving word-groups,
this omission is not serious as we are still capable of observing patent titles.

Source: See Source column.

As our last verification check, we examine the ability of our word-groups to classify

different patent datasets, using the machine learning methodology described in Section

3 and the online appendix. Specifically, we derive topics from a number of PATSTAT

datasets, and then match these topics to our word-groups. Despite PATSTAT’s

incompleteness, it is a useful source for examining late-nineteenth and twentieth-century

patents from leading industrialised nations. Table 4 shows the data used to verify our

word-groups.

We base the strength of our proposed schema on whether it can suitably classify each

topic. We are particularly concerned with the spanning nature of the proposed classes: we

wish to assign at least one word-group per topic, and are less concerned with instances

where ambiguity arises. Large patent datasets will inevitably contain pioneering and

niche inventions which are more difficult to classify. Such outlier patents are unlikely to

undermine an entire classification schema. Nevertheless, if significant numbers of patents

appear as distinct, unclassifiable topics, then our schema is likely to be undermined.

To check the robustness of our word-groups, we apply NMF to the patent datasets

described in Table 4.8 For France and Germany, we draw a random sample from each

decade. By taking samples, we can ensure each dataset is of a similar manageable size,

and we can generate the same number of topics.

To justify including additional classes, we should observe topics which cannot be

mapped to existing word-groups. Should such a distinct class exist, then we should

8See online appendices for more information.



Table 5: Topic Analysis Results using PATSTAT Datasets

Word-group EN FR DE GB US

Agriculture 7 3 1 3 5
Apparel 2 2 2 3 2
Chemicals 15 17 10 5 2
Communications 0 1 0 2 4
Construction 4 2 3 3 2
Electricity 1 6 3 6 5
Engines 8 4 6 6 6
Food 1 3 4 1 0
Gas 1 1 2 2 1
Goods 3 6 5 7 5
Hardware 17 17 20 25 28
Health 1 2 0 1 3
Heat 1 0 0 2 2
Instruments 9 6 12 11 11
Light 3 1 0 2 1
Machinery 4 3 5 8 13
Manufacturing 1 1 0 1 3
Metal 4 4 4 2 5
Military 2 3 0 2 1
Mining 2 1 2 1 0
Paper 5 3 1 6 3
Textiles 18 2 0 4 5
Transportation 7 9 2 8 8
Utility 2 5 3 8 5
Water 2 1 0 1 1

Note: The table shows how many topics could be classified according to our set of
24 word-groups. For France and Germany, their total will not add up to 120 due to
spurious word associations. This is a result of the difficulties of stemming French and
German patent titles.

observe significant numbers of patents and a distinct language describing them. By

extracting more topics from each dataset than word-groups within the proposed

schema, we attempt to identify any omitted classes.

Table 5 reports our results. Each column represents one of our datasets from Table 4,

and their values indicate how many topics could be assigned to a particular word-group:

for example, seven topics out of 120 were assigned to ‘Agriculture’ for the England data.

For France and Germany there were more unclassifiable topics due to spurious word

associations. For most word-groups, we were able to classify multiple topics across each

dataset. Few word-groups were poorly represented, such as ‘Heat’ and ‘Light’, suggesting



these are unsuitable patent classes.

Our topic analysis confirms the proposed schema is sufficient to capture patents from

a number of diverse datasets.9 We could readily assign each topic to at least one

word-groups, supporting the word-groups as time-invariant classes. Similarly, the

French and German datasets were able to be classified with our proposed word-groups,

further supporting the use of our methods for any patent dataset, irrespective of the

language.

4.3 Finalising the Taxonomy

To determine whether our proposed schema constitutes a time-invariant taxonomy, we

compile the results from each of our exercises into Table 6. The table is sorted by the

column ‘Frequency’ which is a simple score indicating the likelihood of a word-group

reflecting a patent class. To derive scores for the Frequency column, “cut-off points”

are constructed for each exercise. Cut-off points are subjectively determined, and are

intended only to help guide the construction of our patent schema; these are described

in the table notes. When reviewing the results of our exercises, we place less weight on

the Frequency score if word-groups received scores only from the final exercise.

‘Outcome’ records our final decisions regarding the word-groups. Based on our review,

we merge the following classes: ‘Communications’ into ‘Electricity’; ‘Gas’ into ‘Chemicals’

or ‘Utility’; ‘Heat’, ‘Light’ and ‘Water’ into ‘Utility’. For the word-groups ‘Mining’ and

‘Manufacturing’, which had high Frequency scores, we kept these due to their scores in

the first three exercises; both word-groups received the entirety of their score from the

‘Topic Datasets’ exercise. Additionally, we amend the titles of certain word-groups to

broaden their scope as patent classes: ‘Goods/Services’ is renamed ‘Commodities’ and

‘Engines’ is renamed ‘Power’. Our final schema then comprises 20 time-invariant classes.

Finally, we use the topic analysis techniques to help construct class descriptions.

Descriptions should ensure patents are classified by industry of final use, rather than

9To prepare the patents for analysis, patent titles were stripped of non-printing characters and stop
words. Suitable substitutions are applied to reduce all text to a standard character set. Once the topics
are generated, they are then translated into English.



Table 6: Patent Class Methodology Scores

Word-group Tally Patent Examiner Literature Validation
Topic Datasets

Frequency Outcome
EN US GB FR DE

Chemicals 218 1 27 15 2 5 17 10 0 –
Metal 73 1 26 4 5 2 4 4 0 –
Construction 124 1 19 4 2 3 2 3 0 –
Transportation 145 1 15 7 8 8 9 2 0 –
Goods/Services 117 1 12 3 5 7 6 5 0 –
Machinery 111 0 29 4 13 8 3 5 1 –
Textiles 176 1 29 18 5 4 2 0 1 –
Agriculture 182 1 26 7 5 3 3 1 1 –
Instruments 211 0 23 9 11 11 6 12 1 –
Engines 95 0 10 8 6 6 4 6 1 –
Hardware 226 1 7 17 28 25 17 20 1 –
Paper 99 0 21 5 3 6 3 1 2 –
Electricity 40 1 16 1 5 6 6 3 2 –
Apparel 43 0 11 2 2 3 2 2 2 –
Utility 47 0 10 2 5 8 5 3 2 –
Food 70 1 23 1 0 1 3 4 3 –
Health 64 1 15 1 3 1 2 0 3 –
Military 43 1 11 2 1 2 3 0 3 –
Mining 50 1 17 2 0 1 1 2 4 –
Manufacturing 79 1 11 1 3 1 1 0 4 –
Communications 17 1 7 0 4 2 1 0 5 Reassigned to Electricity
Gas 35 0 4 1 1 2 1 2 6 Reassigned to Chemicals and Utility
Heat 16 0 3 1 2 2 0 0 6 Reassigned to Utility
Light 22 0 3 3 1 2 1 0 6 Reassigned to Utility
Water 19 0 4 2 1 1 1 0 7 Reassigned to Utility

Notes: ‘Tally’ refers to our initial derivation of unique word-groups. ‘Patent Examiner’ refers to our patent examiner’s derivation of word-groups, we score a value of 1 if the examiner’s word-group matched ours. ‘Literature
Validation’ refers to counting the number of taxonomies in which each of our 24 word-groups appear. ‘Topic Datasets’ shows how often each of our word-groups classified topics in each of our five patent datasets. ‘Frequency’
is a simple count indicating how likely a word-group reflects a patent class: the higher the score, the less likely the group should be kept. Word-groups can only have a maximum Frequency of eight, as there are seven distinct
exercises. For a word-group to receive a score from any given exercise, we defined “cut-off” points. The cut-off points are defined as follows: ‘Tally’ below 50; ‘Patent Examiner’ score of zero; ‘Literature Validation’ below 10;
‘Topic Datasets’ score of zero or one.



Table 7: Patent Class Definitions

Number Classification Inventions Pertaining To:

(1) Agriculture The growth of crops and raising of livestock; fishing, forestry and hunting;
horticulture; unspecified use of land

(2) Apparel Articles to be worn; articles of clothing for humans and animals; jewellery,
broaches, and the like

(3) Chemicals The development of new chemicals, the applications of chemicals, or products
developed by chemicals processes; organic and inorganic chemistry; gases;
nuclear

(4) Commodities Consumable, durable, and non-durable goods which are not explicitly for
industrial usage, with a focus on inventions to be sold in the market for private
use; intangible services; recreational items

(5) Construction Building; tools for building; civil engineering; construction and building
related accessories; building of infrastructure; construction of items of a
physical nature

(6) Electricity The creation, management, and application of electricity; of electrical
appliances, components, and instruments; aspects of electricity which do
not overlap with other utilities; combinations of electricity with galvanism,
magnetism and the like

(7) Food The production, treatment, and management of foodstuffs and beverages for
consumption; tobacco

(8) Hardware Devices, objects, items or articles that provide a productivity-enhancing or
labour-saving function requiring little or no manual interaction; Machine tools;
Non-mechanical objects

(9) Health Improving the quality of life; life-saving medicines or apparatus; protection
from ailments

(10) Instruments Measuring, gauging, weighing; general devices or objects which reduce the
effort required to perform certain tasks; devices or objects which aid in
productivity of labour; a tool or implement especially for precision work

(11) Machinery Machines which operate on mechanical power, and to their maintenance;
processes conducted by machines

(12) Manufacturing The production of goods or items; large scale and small scale

(13) Metal Metallurgy; extracting metals from their ores; the application of chemical
processes to metals, whether by producing, refining, galvanising or other such
methods

(14) Military Weapons, armaments, armour, and other types of offensive or defensive
articles

(15) Mining The construction of mines, their excavation, management, flood management,
and extraction of natural resources; the raising and lowering of heavy bodies

(16) Paper The use of paper; methods which improve paper; the process of printing; paper
and cardboard production, and to other such related items; physical record
keeping; bills, cheques

(17) Power Generating, regulating, and applying energy for power, speed, or such related
uses

(18) Textiles The creation of fabrics from processes of weaving, spinning, knitting, felting,
etc, and their bleaching or dyeing, and treatment

(19) Transportation Facilitating speedy, or easier, travel across distances; transport infrastructure;
packaging and storage of items for easier transport

(20) Utility The management of public systems, such as sewerage; the creation,
management, and application of gas, heat, light, and water; the regulation of
water, light, heat, gas, and electricity as public goods; and to inventions which
encompass combinations of water, light, heat, gas, and electricity; fireproofing
structures

Notes: Definitions are constructed using the word associations derived from the topic analysis methodology.
Some classes could be further divided using these definitions, or further aggregated.



technical function. Inadequate descriptions lead to a subjective interpretation of how to

apply our taxonomy. Such difficulties would deter adoption of the schema, and

undermine results derived from its application. Topics represent word clusters tending

to appear in combination with one another. Where a topic directly relates to a class the

words comprising the topic act as descriptors. This uncovers the vocabulary used to

connect a patent’s description with its intended classification, from which we derive our

class definitions. Descriptions also grant the schema adaptability; classes can be further

aggregated or disaggregated to aid future users apply an appropriate taxonomy that

suits their research question. Table 7 presents our schema definitions.

5 Comparison of Taxonomies

We now examine whether the choice of patent taxonomy influences how we interpret

patent statistics by examining all British patents granted from 1700 to 1850. We use this

dataset for four reasons. First, the dataset has been used extensively within the historical

innovation literature (Dutton, 1984; Sullivan, 1989, 1990; MacLeod, 2002; Nuvolari and

Tartari, 2011; Meisenzahl and Mokyr, 2011; Bottomley, 2014a; Dowey, 2017; Khan, 2018).

Second, prior studies have classified the patent data. Woodcroft (1860), A Cradle of

Inventions (2009), and Nuvolari and Tartari (2011) have assigned alternative schemas to

the data, allowing for comparisons with our own. Third, the dataset covers the traditional

period of the Industrial Revolution (dated approximately 1760-1830). Any insights from

this era are vital to our understanding of this phenomenon. Fourth, Britain’s patent

system remains relatively unchanged over the period we analyse. Our results are therefore

unlikely to be driven by any institutional changes.

To test for classification divergence, we need to be able to accurately replicate prior

taxonomies. Any degree of inaccuracy severely hinders the conclusions that can be

drawn from this exercise. To this end, we are capable of replicating the three

aforementioned taxonomies: Nuvolari and Tartari (2011); A Cradle of Inventions

(2009) – used in Dowey (2017); and Woodcroft (1860) – used in Sullivan (1989, 1990)



and Brunt et al. (2012). These existing taxonomies do not consistently classify patent

data: the schemas have different classes and presumably different approaches to

classifying patents (see the online appendix for a comparison of these taxonomies).

Consequently, the alternative taxonomies may produce different results when analysing

the same patents.

For the Nuvolari and Tartari (2011) schema, the authors kindly provided their classified

patent data, allowing us to match their patent classes to our data. A Cradle of Inventions

(2009) is a CD-ROM containing the entire population of British patents with their own

taxonomy assigned, henceforth known as ‘COI’. Again, we were able to match up our

schema to that from A Cradle of Invention. The Woodcroft (1860) schema is assigned

based on a unique British patent identifier constructed by Woodcroft contained in our

dataset. Finally, we apply the schema using our machine learning methodology. Topics

were manually assigned to a class based on the alignment of their highest scoring words

to the class descriptions. Patents were then assigned to classes based on their highest

two scoring topics, denoted as “Topic-One” and “Topic-Two”. Thus, patents linked to a

topic dominated by words such as ‘spin, cotton, fibrous, twist, wool’ would be classified

as Textiles.10

To test for any potential divergences, we observe each schema in relation to six

commonly examined patent characteristics concerning the nature of invention: the

citations of patented inventions, the occupational status of patentees, the stock of

patents held by patentees, the number of named inventors per patent, whether a

patentee is considered an insider, and whether a patent is for a capital-saving invention

– for brevity, we report results only for patent citations and capital-saving inventions,

the remaining results are contained in the online appendix. Because each taxonomy

does not have the exact same patent classes, we examine only those classes common to

at least three schemas: Agriculture, Chemicals, Clothing (or Apparel), Engines (or

Power), Food, Instruments, Medicines (or Health), Metal, Military, Mining, Paper, and

Textiles.

10The online appendix details the alternative taxonomies and our own in more detail.



While we could focus on those classes common to all schemas, doing so would remove

useful information concerning the existence and degree of classification divergence. For

all ensuing regressions, we include all patent classes in each schema, but report only the

common classes to clarify our analysis. In addition, all regressions are run on observations

common to all patent schemas.

We contrast the regressions in three ways. First, we contrast results between

taxonomies for a given patent characteristic: how does a common patent class

coefficient’s magnitude, sign, or significance change from one taxonomy to another?

Second, we contrast whether the differences between taxonomies are the same across

patent characteristics: if we observe a particular class’s divergence for one patent

characteristic, do we observe the same class divergence for other characteristics? Third,

we contrast the differences between our Topic-One and Topic-Two classes. This

highlights whether patents spillover technology boundaries: the greater the difference,

the greater the spillover with other technologies is likely to be, suggesting it necessary

to control for both topics simultaneously.

Our interpretation centres around comparisons of coefficient magnitude, statistical

significance, and the direction of association across taxonomies for the same patent

class. When examining coefficients, the size of any difference relative to the coefficients

being compared will provide an indication of magnitude divergence. Changes in

statistical significance across taxonomies highlights inconsistencies in the subject matter

being classified. We consider this to be strong where coefficients fluctuate from no

statistical significance to significance at the one per cent level. The direction of

association will also help us understand the inconsistency of classification. Where

coefficients all have the same sign, this highlights a degree of consistency, but where

they differ it further emphasises the degree of classification inconsistency.

The taxonomies examined in this study are very similar, and so we would expect to

observe no differences if patents are classified in the same manner. But, observing any

divergence, no matter how small, suggests taxonomy similarity is strictly not enough to

ensure consistency, and that divergences between less similar taxonomies are likely to be



considerably larger and perhaps more serious.11

Unfortunately, we are unable to estimate the degree of divergence within the existing

literature, nor exactly how existing results would change had our methodology been

employed. Such an endeavour is beyond the scope of this study. The purpose of our

comparative analysis is to identify whether classification divergence exists between a set

of similar patent taxonomies. If it does, then wider divergence would also be expected

between dissimilar taxonomies.

5.1 The Citations of Patented Inventions

First, we examine how the choice of taxonomy affects an analysis of the citations of

patented inventions. In the innovation literature, patent citations are a popular proxy for

patent quality or value (Hall et al., 2001, 2005; Lach and Schankerman, 2008; Bernstein,

2015; Kogan et al., 2017). In place of citations, the historical British literature has

adopted the Woodcroft Reference Index (WRI), as pioneered by Nuvolari and Tartari

(2011). This index lists how many contemporary scientific and trade journals referenced

a particular patent within our dataset. The references are used to proxy for the technical

and economic significance of a patented invention: more references signals a higher quality

patent. Because the number of references artificially increases over time, we adopt the

approach of Hall et al. (2005); Nuvolari and Tartari (2011), by weighting the total sum of

references on a patent by the average number of references on all patents within a given

time period; the time periods we use are those used in Nuvolari and Tartari (2011).12 To

ensure comparability, all regressions also use the same time periods as time controls.

The quality indicator is a count variable with a skewed distribution; many patents

have few references, and few patents have many references. The negative binomial

model accounts for skewness by relaxing the assumption that the mean and the variance

are equal (Greene, 2008).13 Under this model, our dependent variable is the weighted

11As a further examination of similarities between the alternative schemas, the online appendix
reports a series of regression plots showing correlations between the alternative schemas for the patent
characteristics we examine in this section.

12These time periods are as follows: 1700-1721; 1722-1741; 1742-1761; 1762-1781; 1782-1801; 1802-
1811; 1812-1821; 1822-1831; 1832-1841; 1842-1850.

13We also test the relationship using the poisson model. The results from poisson are equivalent to



number of references for a given patent. Our control variables constitute: whether the

patentee had a prior patent; the patentee’s occupation; whether the patentee’s

occupation directly relates to the class of their invention; their nationality; and time

controls. The explanatory variables are the classes associated with each schema. We

represent patent classes with dummy variables, where Agriculture is the chosen baseline

category.

Table 8 presents our results. Column 1 uses the Woodcroft schema; column 2 the NT

schema; column 3 the COI taxonomy; column 4 the Topic-One taxonomy; column 5 the

Topic-Two taxonomy; and column 6 controls for Topic-One and Topic-Two

simultaneously (henceforth known as “CombinedTopics”). Future investigators who

employ our schema and methodology should run three separate econometric

specifications, using Topic-One, Topic-Two, and then both schemas together as a

robustness check.

At first glance, the table posits consistencies for several classes. Metallurgy and

Textiles patents are the most consistent across taxonomies, perhaps reflecting better

defined technology and industry boundaries compared to other patent classes. Despite

the consistency, both classes still display divergence. For Metallurgy, coefficient

magnitude fluctuates considerably – Metal patents are in the range of 10 to 20 per cent

more valuable than Agricultural ones, dependent on taxonomy. Similarly, under the

COI schema only, Textiles patents are not statistically different from Agricultural ones.

After examining the remaining classes, we find that classification divergences exist.

This divergence affects all aspects related to interpreting regression coefficients. The

magnitude of coefficients fluctuates when comparing Mining inventions, for example.

The COI schema suggests Mining patents have 20 per cent more references per patent

compared to Agricultural patents. One reasonable interpretation is that capital-intensive

inventions are of a greater quality.14 Topic-One, however, suggests Mining patents have

nine per cent fewer references. Capital-intensive inventions, then, are of a lower quality

the negative binomial approach.
14Based on their titles, Mining patents were likely to be highly mechanised during this period. Such

inventions are considered to be capital-intensive, as suggested by Khan (2005), because more capital
than labour is required for their development.



Table 8: Negative Binomial: Dependent Variable is the Weighted Number of References per
Patent

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals 0.090*** 0.105*** - 0.017 0.071*** 0.018
(0.029) (0.023) - (0.020) (0.020) (0.012)

Clothing -0.058 -0.098*** -0.046 -0.151*** 0.033 -0.055*
(0.038) (0.034) (0.039) (0.028) (0.039) (0.032)

Engines 0.009 0.045 - 0.002 0.038 0.010
(0.052) (0.040) - (0.038) (0.033) (0.025)

Food - 0.021 0.026 0.115 0.134*** 0.122
- (0.022) (0.027) (0.164) (0.051) (0.087)

Instruments - 0.041* -0.014 -0.039** 0.017 -0.036***
- (0.023) (0.025) (0.019) (0.023) (0.012)

Medicines -0.104*** -0.069*** -0.031 -0.067** -0.092 -0.098***
(0.027) (0.025) (0.029) (0.028) (0.057) (0.028)

Metallurgy 0.186*** 0.145*** - 0.098*** 0.107*** 0.092***
(0.030) (0.030) - (0.033) (0.038) (0.029)

Military -0.051* -0.019 -0.034 -0.067* -0.010 -0.043**
(0.028) (0.033) (0.038) (0.035) (0.026) (0.019)

Mining 0.092 0.182*** 0.202*** -0.090** 0.004 -0.055*
(0.103) (0.060) (0.056) (0.036) (0.051) (0.030)

Paper 0.210*** 0.077* 0.060 0.023 0.033 0.021
(0.058) (0.040) (0.043) (0.030) (0.028) (0.021)

Textiles -0.111*** -0.066* -0.039 -0.071*** -0.058*** -0.071***
(0.042) (0.039) (0.031) (0.021) (0.022) (0.013)

Constant -0.031 -0.101 -0.084 -0.041 -0.058 -0.034
(0.071) (0.073) (0.065) (0.059) (0.052) (0.052)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 12,937 12,937 12,937 12,937 12,937 12,937
Pseudo R-Squared 0.00667 0.00371 0.00287 0.00292 0.00271 0.00325

Notes: The table shows how the quality of patented inventions varies by technology group. The dependent
variable is the weighted number of references per patent. In each column, the omitted variable is the Agriculture
class. Coefficients are interpreted as the difference in the logs of expected counts of the predictor variable. To
translate into a unit change, the coefficients need to be exponentiated. Robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari (2011);
Woodcroft (1860). All datasets cover 1700-1850.



compared to Agricultural ones.

Statistical significance also exhibits inconsistency. Chemicals patents, for example,

show a statistically significant association under the NT, Topic-Two and Woodcroft

schemas. For Topic-One and CombinedTopics, however, Chemicals patents are not

statistically distinguishable from Agricultural patents, in terms of their respective

number of references. Such a result could lead investigators to consider Chemical

patents as being no different from Agricultural patents. Similar observations are found

when interpreting Clothing, Food, Instruments, Medicines, Military, Paper, and Textile

related patents.

The direction of association of coefficients is also subject to divergence. Three classes

exhibit inconsistency regarding the direction of association: Clothing, Instruments, and

Mining. Mining and Instruments are perhaps the most divergent classes, as not only

does their direction of association fluctuate across taxonomies, but so too does their

statistical significance – both positive and negative statistically significant associations

are shown. Depending on which schema had been adopted, investigators could find

completely contradictory results.

In addition, the results suggest the need for two classes. Should patents have the

same assigned class for both Topics then we would expect to observe similar results.

However, contrasting Topic-One and Topic-Two shows that, for the majority of classes,

there is a significant difference between the coefficients. This suggests that most patents

within the affected patent classes have characteristics that spillover into other technology

boundaries. In such cases, it is necessary to control for a second class to capture potential

spillovers. The potential for spillovers can also be observed in the topic weightings for

each patent. A single dominant topic, or multiple dominant topics mapping to the same

class, suggest a single classification is sufficient. However, in other cases making a single

classification risks ignoring this spillover potential.



5.2 Capital Saving Patents

We next examine whether a patent is explicitly for a capital-saving invention. Invention

during the Industrial Revolution has been viewed as a response to relative factor prices.

According to Allen (2009), Britain had relatively high labour costs and cheap capital.

The relative factor prices, Allen proposes, led to a rise in labour-saving invention and

thus caused the Industrial Revolution.15 This argument has been contested by Mokyr

(2009), who points out that a significant number of inventions were not labour-saving.

In her seminal work, MacLeod (2002) notes that the vast majority of patented inventions

granted in Britain prior to 1800 were for capital-saving inventions.

Understanding which types of technologies are likely to benefit from capital-saving

invention helps us understand the nature of invention. Do people choose to invent, and

then also patent, because certain productive activities have expensive capital inputs?

Considering the rise in capital-related invention during the Industrial Revolution,

examining patent records is an important means to observe this type of inventive

behaviour. Consequently, understanding how interpretations from such data can be

directed by the choice of taxonomy is equally important.

Following the methodology of MacLeod (2002), we construct a dummy variable for

patents which explicitly reference a form of capital-saving embodied in their invention.16

A value of zero represents patents which did not have a stated capital-saving aim, while

labour-saving inventions are controlled for in the analysis.17

We use a probit regression model to examine the probability of patent classes being

associated with capital-saving inventions. Our control variables constitute: whether the

inventor had a prior patent; their nationality; and time controls. The explanatory

variables are patent classes, with the baseline class being Agriculture.

15Labour-saving inventions are those which intend to reduce the amount of labour involved in the
production process. Conversely, capital-saving inventions are intended to cheapen the cost of using
capital.

16Macleod constructed a list of stated aims derived from the titles of patents granted prior to 1800.
This includes: saving time; saving fuel; saving on raw materials; increasing output; increasing power;
reliability of equipment; regularity of output; saving on running costs in general; and saving on fixed
capital. We follow this approach and only classify a patent as capital-saving if it states any of the
aforementioned aims in its title.

17We do not analyse labour-saving patents because they are too few.



The results, reported in Table 9, exhibit classification divergence. When examining

capital-saving patents, divergence is significantly more extreme than prior results (see also

characteristics examined in the online appendix). This is likely because we have fewer

available observations: capital-saving statements cease post-1830, and so drop from our

analysis. This may inhibit the comparability of divergence with the other taxonomies,

but we are still able to contrast across schemas for this metric.

Coefficient magnitude is subject to divergence. For some classes, such as Metal,

Mining, Paper, or Textiles patents, this divergence seems relatively small, while other

classes, such as Chemicals, Clothing, and Medicines, exhibit a greater degree of

divergence. Observing Medicines, for example, the Topic-Two schema suggests that

Medicinal patents are on average three per cent less likely to be capital-saving than

Agricultural patents. However, under the Woodcroft schema, the coefficient estimate for

Medicinal patents is instead 29 per cent – a considerable difference in magnitude.

Statistical significance fluctuates across taxonomies. For most of the common classes,

no statistical significance and statistical significance at the one per cent level are reported.

For example, Clothing patents are statistically significant at either the one per cent or five

per cent level under the Woodcroft, NT, COI, and CombinedTopics schemas. For Topic-

Two the association is not statistically significant at any conventional level. Only Textile

patents remain consistent, exhibiting no statistically significant associations across any

of the alternative taxonomies.

The direction of association is also inconsistent across taxonomies. For Chemicals,

Clothing, Food, Mining, and Paper, both positive and negative associations are

reported. In several of these classes there is an almost even divide between the direction

of association. For example, the Woodcroft and NT schemas report a positive

association between Chemical patents and capital-saving aims. By contrast, the

Topic-One, Topic-Two, and CombinedTopics schemas report the opposite. Additionally,

differences between Topic-One and Topic-Two coefficients continue to suggest many

patents have characteristics which spillover multiple technology boundaries, further

supporting the need to include an additional secondary classification in patent analyses.



Table 9: Probit: Dependent Variable is a Dummy representing a Capital-saving Patent

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals 0.099* 0.093*** - -0.055** -0.127*** -0.165***
(0.056) (0.031) - (0.027) (0.036) (0.032)

Clothing -0.191*** -0.073** -0.102*** 0.059** 0.050 0.062***
(0.028) (0.032) (0.026) (0.028) (0.032) (0.019)

Engines 0.021 0.063** - 0.077** 0.004 0.039***
(0.048) (0.026) - (0.038) (0.033) (0.014)

Food - 0.071 -0.025 0.286* -0.001 0.106**
- (0.049) (0.028) (0.152) (0.067) (0.051)

Instruments - 0.066* 0.024 0.034 -0.001 0.021
- (0.038) (0.042) (0.029) (0.028) (0.015)

Medicines -0.289*** -0.087*** -0.143*** -0.092*** -0.035 -0.076***
(0.033) (0.033) (0.028) (0.017) (0.042) (0.029)

Metal 0.059 0.071* - 0.081** 0.036 0.067***
(0.036) (0.038) - (0.032) (0.034) (0.021)

Military 0.061* 0.034 0.006 0.009 0.032 0.011
(0.036) (0.030) (0.033) (0.029) (0.041) (0.027)

Mining 0.072 0.118 -0.055 0.088** 0.076 0.069***
(0.071) (0.118) (0.054) (0.039) (0.052) (0.017)

Paper 0.013 -0.020 -0.070** -0.032 -0.015 -0.032
(0.068) (0.033) (0.031) (0.025) (0.040) (0.020)

Textiles -0.009 -0.013 -0.024 -0.011 -0.030 -0.010
(0.038) (0.028) (0.028) (0.026) (0.033) (0.019)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 5,379 5,379 5,379 5,379 5,379 5,379
Pseudo R-Squared 0.158 0.119 0.109 0.103 0.103 0.110

Notes: The table shows whether a capital-saving patent varies by technology group. The dependent variable
is a dummy variable indicating whether a patent explicitly stated its purpose was to save capital, following the
approach of MacLeod (2002). There are fewer observations in this instance because capital or labour saving
statements cease post-1830 and so are dropped from the analysis. In each column, the omitted variable is the
“Agriculture” class. Coefficients are interpreted as marginal effects at the means. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari (2011);
Woodcroft (1860). All datasets cover 1700-1830.



6 Discussion

To our knowledge, the present study is the first to show classification divergence exists

in the field of innovation studies. Prior studies have not explicitly addressed the

potential consequences of their choice of taxonomy. This is a serious concern, as

statistical significance, direction of influence, and coefficient magnitude are sensitive to

the chosen schema. In addition, classification divergence is not consistent: the degree of

divergence can vary dependent on what patent characteristics are being investigated.

Depending on which schemas are used, and which patent characteristics are examined,

investigators could find conflicting results.

The extent of classification divergence within the literature is uncertain. Without a

complete understanding of how authors construct their taxonomies, for what purpose,

and the method they use for classifying patents, we cannot determine how significant the

divergence might be. Most academic studies do not provide such detail. Therefore, prior

research articles which do not expressly describe their taxonomy should be interpreted

with caution. Our findings have implications for the field of innovation history, as well

as economic policymaking more generally.

Innovation historians examine patent data to better understand inventive behaviour

and the nature of invention, typically during periods of rapid technological change.

Patents are one of the few available sources of time-series invention data and, as such,

are popularly used throughout innovation history literature. This gives rise to a

significant number of alternative taxonomies which cannot be accurately replicated.

Given the results observed in this study, the number of alternative schemas serves to

complicate our interpretation of patent studies.

The existence of classification divergence within the innovation history literature is

concerning because it calls into question our collective understanding of patent systems

as a means to foster innovation. Given the recent re-evaluation of the importance of

Britain’s patent system in encouraging the Industrial Revolution (Bottomley, 2014b,

2019), and the increasing use of patent indicators to measure inventive behaviour and

technological change more generally (Khan, 2013a; Nuvolari and Vasta, 2015; Dowey,



2017; Murfitt, 2017; Donges and Selgert, 2019; Lane, 2019, for example), the implications

of classification divergence are significant.

To highlight the severity of classification divergence, we can use our results to

contrast how our understanding of the nature of invention may be subject to the choice

of schema. Considering the Industrial Revolution represents a shift away from

agricultural economies toward mechanised ones, we compare Mining patents against

Agricultural patents. Mining was an important industry during the British Industrial

Revolution, and responsible for a number of important technological advancements

(Nuvolari, 2004; Allen, 2009; Mokyr, 2009; de Pleijt et al., 2019). Indeed, James Watt’s

famous separate condenser significantly improved the efficiency of steam engines: one of

the key technologies of the Industrial Revolution, and a mining invention.

Considering first the results from the Woodcroft schema, they reasonably suggest that:

Mining patents were at least of the same economic value as Agricultural patents (Table 8)

and Mining patents were not any more likely to be capital-saving (Table 9). By contrast,

the Topic-One schema reasonably suggests that Mining patents were less economically

valuable than Agricultural patents (Table 8) and more likely to be capital-saving (Table

9).18

The two schemas present competing results, which lead to competing interpretations

concerning the Industrial Revolution and the importance of Mining innovation. For the

economic historian, the competing results can make it difficult to ascertain the nature of

invention, and by extension, the reasons behind British inventive activity.

Aside from the implications for innovation historians, we argue our results have

implications for current innovation studies and economic policymaking. To our

knowledge, there is no commonly accepted patent taxonomy used throughout the

innovation literature, and so may also be subject to classification divergence.

Innovation scholars are interested in understanding the process of innovation and how

best to encourage it. Although patents are not the only metric available that captures

innovative activity, they remain a popular one (Griliches, 1990). From a survey of US

18The online appendices contain further results concerning the nature of invention.



manufacturing firms, Cohen et al. (2000) find that patents are more useful for possible

rent-seeking motives, such as preventing competitors from patenting related inventions,

or to force competitors into negotiations with the patent holders, and different strategies

are used in relation to different technologies. Another possible strategy is to use patents

solely for the purpose of litigating or to defend against possible patent litigation from

competitors. Lanjouw and Schankerman (2001) find litigation rates vary across patent

technology groups, while more recent evidence suggests certain firms purchase patents

solely for purposes of enforcing them against infringers, thereby appropriating their profits

(Fischer and Henkel, 2012; Galasso and Schankerman, 2015). Such strategic patenting

has become an important explanation for the modern day patenting behaviour of firms

(Kingston, 2001; Arundel and Patel, 2003; Blind et al., 2006; Boldrin and Levine, 2008).

The decision to acquire a patent is therefore related to the technology of the

invention in question. Indeed, patenting incentives in the modern innovation literature

are likely more numerous and complex than those identified in innovation history. Such

complexity makes accurately identifying relevant technology groups in a consistent

manner important. To understand and encourage innovative behaviour, scholars and

policymakers need to understand the nature of innovation and what role patents play

within it. If scholars do not classify their patent data in a consistent or transparent

manner, then the comparability of existing studies may be called into question.

Policymakers too, may be confounded by such issues. Returning to our earlier

example, a policymaker tasked with designing measures to encourage innovation would

draw wholly different conclusions from research of this historical period based on their

choice of taxonomy. Of course we are not suggesting that such decisions should be made

on the basis of single sources of evidence, or single episodes from history. However, it

does highlight the potential implications classification divergence has for prescribing

policy, which may result in the misdirection or suboptimal allocation of important

resources, or in extreme cases, inadvertently hinder rather than encourage innovation.

Our recommendations for future patent investigations are as follows. Firstly, creators

of new taxonomies should describe how they design them, ensuring potential



divergences can be identified and their methods are replicable. Descriptions need to

accompany patent classes to ensure a consistent classification of patent data throughout

the literature. Secondly, mitigating potential divergences requires adopting a universal

schema. While the classification procedure may also depend on the research question

being investigated, there still needs to be a consistent classification of the same

technologies. The taxonomy produced here is a useful starting point, and adaptable for

future studies. Thirdly, subjectivity can be reduced by employing machine learning

techniques to improve the consistency of patent classification. Finally, topic analysis

provides a means to both identify appropriate classes and omitted classes, and to

perform the classification of patent datasets in useful ways for economic analysis of

innovation.

7 Conclusion

Our goal has been: to document methods of taxonomy construction; to design and develop

a new and adaptable time-invariant patent taxonomy in a clear and transparent manner;

to develop a new method for classifying all patent data consistently; and to show that

classification divergence exists. We recommend our methodology and taxonomy be used

in future studies. We acknowledge, however, that our schema may not be applicable to

every study. In such cases, future investigators should describe either how they adapt our

schema or any new taxonomies they produce. The machine learning techniques herein

described are adaptable and adoptable for any future researchers.

The implications of classification divergence are likely to be profound for the patents

and innovation literature. Classification divergence exists, at least, in the long-run British

patent data studied here. Whether divergence exists in other datasets necessitates a re-

examination of the existing literature, for clarification. In the case where divergence

is small, interpreting the literature is less problematic, and deriving appropriate policy

measures would remain possible. However, in the extreme case, where all studies are

subject to divergence, the external validity of studies must be questioned. Given the



results shown here, the extreme case seems more likely.

When studies are not comparable, appropriate policy measures cannot be readily

prepared. We recommend existing studies, where possible, be re-examined using our

schema and methodology. This is not to say our schema is “right”, as there can be no

objective measure of this. Our schema is transparent, however, making it

straightforward for any subsequent studies to make use of it, or draw from it, as they

see fit, while our methodology is consistent and replicable. Human error and human

effort is substantially minimised using our machine learning approach. Related patents

will always be identified and grouped together. Compared to humans, the machine is

more consistent.
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Appendix A – Description of Machine Learning

Methodology

The dataset, or “corpus”, is represented as a matrix composed of word frequencies for

each article (row) and word (column). Frequencies can be simple term counts, but

following O’Callaghan et al. (2015) we adopt a log-based term frequency-inverse

document frequency (TF-IDF) representation, which helps to counter the influence of

words that appear more frequently throughout the corpus. “Stop words” are entirely

removed from the corpus. The term stop words is used to describe words which are

most commonly used in a particular language (for example the conjunctions like ‘and’,

‘if’, or ‘when’, and prepositions like ‘to’, ‘with’ or ‘in’). Such words are unhelpful in

understanding the content of the corpus and are therefore ignored. Stop words were

sourced from http://www.ranks.nl/stopwords. The corpus is then stemmed to ensure

words with the same base are not counted separately. 19 We recommend that stemming

and other text manipulation be undertaken with great care and only by those fluent in

the language. For example, text analysis of Dutch patents is complicated by the

prevalence of compound words. We further recommend that translation, where

necessary, only be performed after the application of machine learning techniques where

any single word mistranslation is likely to appear incongruous and therefore easy to

detect.

Two commonly used approaches are Latent Dirichlet Allocation (LDA) and

Non-Negative Matrix Factorization (NMF). Both attempt to model documents as

combinations of topics, where topics are defined by the prevalence of particular words.

LDA, introduced by Blei et al. (2003), assumes a generative process for documents and

estimates the distributions. NMF uses a linear-algebra fitting technique. In preliminary

investigations we found that topics suggested by LDA were more difficult to interpret.

For example, when using 80 topics the 10 most prominent words appearing in the first

topic of each model were:

19For example, ‘cultivate’ and ‘cultivating’ have the same base ‘cultivat’ but different stems, and
would be observed as unique words without stemming.

http://www.ranks.nl/stopwords


NMF: steam, engine, rotary, rotatory, marine, navigable, condense, power, vapour,

part

LDA: igniting, wove, progress, circle, lantern, mache, decorating, multiplying,

insects, check

The NMF topic suggests it has grouped patents for steam engines or other mechanical

inventions. By contrast, the LDA topic does not seem to have derived a singular

technology group, as it consists of a number of non-similar keywords. One reason for

this relative interpretability of topics may be related to the specialist language

necessary to describe inventions. Investigations by O’Callaghan et al. (2015) find that

NMF can produce more coherent topics with associated generality and suggest that it

may be more suitable for such non-mainstream domains. A second reason may be

related to the relatively low average number (5.6) of non-trivial words used in the

patent dataset titles. In experiments conducted over ‘short text’ datasets (with average

word count ranging from 3.4 to 14.3) Chen et al. (2019) found that NMF was inclined

to produce better topics than LDA. We also found that LDA produced more extreme

topics: those that were dominant in either a very small or very large number of

documents. Topics which were dominant in only a small number of documents proved

particularly ambiguous and were not suggestive of a generalizable patent class.

To understand how the NMF approach works, suppose we have a corpus – a collection

of patents in this instance – containing m patent titles, each composed of a set of n

unique words. This corpus is represented by the matrix C, where ci,j represents, for

each document i, the number of occurrences of word j. NMF attempts to factorize the

matrix by approximating it as the product of two smaller non-negative matrices. This is

represented as:

AT ≈ C (1)

where matrix T represents how often each word occurs within each topic. The weights

in matrix A reveal the extent to which a patent relates to each topic. Word associations

define their topics, which allows them to be interpreted by the investigator for further

classification.



The number of topics is calibrated manually. When using topic scores to classify

patents, the number of topics influences where each patent is assigned.20 Initially, we

generated topics in multiples of 20, and manually examined the results. Fewer topics

were associated with less consistent word associations, while additional topics alleviated

this inconsistency. To find the appropriate balance between the number of topics and

consistency of word associations, we rely on three separate measures: the Residual Sum

of Squares (RSS); Entropy scores; and Coherence scores. These are displayed in Figure

A1. Future investigators, when working with datasets of a significantly different size,

should recreate this process to determine their optimal number of topics.

The RSS measures the quality of the approximation to the original document term

frequency matrix, where a higher score suggests a less accurate representation. This

metric decreases with each additional topic. In the case where there is a hidden number

of groups, we may observe an improvement in the score once the number of topics reaches

the number of these groups, with diminishing returns thereafter (Hutchins et al., 2008).

Figure A1a shows the RSS scores to be decreasing in the number of topics, but at a

marginal rate of decline. The slope of the curve becomes relatively flat between 50 and

150 topics, suggesting our optimal number of topics lies within this range.

Entropy is a measure of unpredictability. Information theory shows that changes in

entropy proxy as a measure of information gain. Following Stevens et al. (2012), for topic

model M partitioning data into t groups, where t is the number of topics, entropy can

be measured as:

H(M) =
t∑

i=1

−P (i)logP (i) (2)

Entropy therefore measures the amount of information gained from adding an

additional topic. Figure A1b shows a negative association between the number of topics

and information gain. A lower score suggests little information gain from adding an

extra topic. The figure shows, for each additional topic, the new information received is

diminishing. Between 10 and 60 topics is when the greatest information gain occurs.

This steadily falls between 50 and 100, getting flatter as the number of topics passes

20We generate the optimal number of topics from our British dataset, described in Section ??.



(a) Residual Sum of Squares Scores Per Topic

(b) Entropy Scores Per Topic

(c) Coherence Scores Per Topic

Figure A1: Measures for the Optimal Number of Topics

Source: Author’s calculations using A Cradle of Inventions: British Patents from 1617 to 1894 (2009)



100. Information gain is relatively constant after 130 topics. Based on this measure, the

optimal number of topics likely lies between 100 and 130, but closer to the upper bound.

Finally, we use Coherence-based scores. We can think of topics that make meaningful

connections between words as being coherent. Measures of coherence are based on ‘pairs

of topic descriptor terms that co-occur frequently or are close to each other within a

semantic space are likely to contribute to higher levels of coherence’ (O’Callaghan et al.,

2015, p. 1). Stevens et al. (2012) consider measures of topic coherence which align with

judgements by human investigators. One such measure is the “UMass” measure of Mimno

et al. (2011). For topic T represented by the top n words ti, the measure is defined as:

C(T ) =
n∑

i=2

i−1∑
j=1

log
D(ti, tj) + 1

D(tj)
(3)

where D(ti) is the number of documents featuring word ti, and D(ti, tj) is the number of

documents featuring both words ti and tj. For any given number of topics, we can then

calculate the average topic coherence score.

Figure A1c displays the coherence scores. The overall trend suggests additional topics

lead to less coherent associations. The figure shows a sharp decline in coherence between

10 and 30 topics. The scores steadily fall until 150 topics, where the slope becomes flatter.

There is also a small increase in Coherence between 120 and 140 topics. This measure

suggests the optimal number of topics falls between 120 and 150.

Based on the three metrics, we argue our optimal number of topics is 120. Each score

indicates the range of 100-150 contains the optimal amount. We interpret the scores to

point to 120 as an optimal number, however choosing 110 or 130 is unlikely to cause a

substantial deviation in results. Thus, when we discuss or make use of topic analysis we

will always use 120 topics. This does not mean we will have 120 distinct patent classes.

On the contrary, topics are a means to derive common word associations that we will

then classify according to our final patent schema.



Appendix B – Application of Taxonomy

To prepare the dataset for comparison, we assign each alternative taxonomy as described

in section 5. We assign our schema using our machine learning methodology. After

deriving our 120 topics, we assigned one class per topic.21 Our method creates each topic

and assigns patents to them simultaneously. We then assign the topic’s associated class.

By assigning the top two topic scores to each patent, we can account for any potential

overlap across technology groups. We denote these as “Topic-One” and “Topic-Two”.

We also manually classified the entire dataset, and compared our assignments with the

machine’s. Both authors did so independently. Either of our manually assigned classes

matched either of the assigned topics in 93 per cent of cases.22 The remaining seven per

cent did not match because of too few unique words.

Table B1 presents a comparison of the schemas used in this study. Several classes

appear across most of the taxonomies: Agriculture, Apparel, Chemicals,

Engines/Power, Medical/Health, Metal, Military, Mining, Paper, and Textiles. For

these commonly occurring classes, however, the number of assigned patents are not

identical across taxonomies. The COI schema, for example, assigns 1,676 patents to

Textiles, while our own Topic-One assigns 2,280; approximately 600 patents have been

classified inconsistently across schemas. Food patents exhibit a similar inconsistency

across existing schemas. COI lists 323 patents as Food, while NT lists 754 instead, and

our Topic-One schema lists only 50. The majority of patents also receive a different

Topic-Two assignment, suggesting the characteristics of many patented inventions

overlap multiple technology groups. This suggests that patents should have more than

one assigned classification.

We calculate Herfindahl-Hirschman (HHI) scores for each schema. HHI scores show

how concentrated a particular taxonomy is. A higher score indicates a more skewed

distribution of patents within a particular schema. For example, COI has the highest

21Where a topic was inconsistent in its word associations, it should be labelled ‘Unclear’ and then the
patents assigned to it should be manually reviewed. In our analysis, no topics were labelled Unclear.

22We invited the senior patent examiner to manually classify a random sample of 250 patents according
to our schema. We then checked their classification against the machine’s and found a 70 per cent match.



Table B1: Comparison of Class Assignments

Cradle of Invention Nuvolari Topic-One Topic-Two Woodcroft

Class Count Percent HHI Class Count Percent HHI Class Count Percent HHI Class Count Percent HHI Class Count Percent HHI

AGR 442 3.21 0.001 Agriculture 455 3.30 0.001 Agriculture 597 4.33 0.002 Agriculture 493 3.58 0.001 Agriculture 483 3.55 0.001

BEV 278 2.02 0.000 Carriages 844 6.13 0.004 Apparel 105 0.76 0.000 Apparel 109 0.79 0.000 Apparel 179 1.31 0.000

CLO 279 2.02 0.000 Chemicals 1,152 8.36 0.007 Chemicals 1,189 8.63 0.007 Chemicals 990 7.19 0.005 Chemicals 151 1.11 0.000

COM 80 0.58 0.000 Clothing 344 2.50 0.001 Commodities 482 3.50 0.001 Commodities 217 1.57 0.000 Engines 1,018 7.47 0.006

DOM 1,642 11.92 0.014 Construction 641 4.65 0.002 Construction 564 4.09 0.002 Construction 778 5.65 0.003 Medical 237 1.74 0.000

FOO 323 2.34 0.001 Engines 1,714 12.44 0.015 Electricity 97 0.70 0.000 Electricity 60 0.44 0.000 Metal 432 3.17 0.001

IND 5,875 42.64 0.182 Food 754 5.47 0.003 Food 50 0.36 0.000 Food 77 0.56 0.000 Military 142 1.04 0.000

INS 458 3.32 0.001 Furniture 690 5.01 0.003 Hardware 1421 10.31 0.011 Hardware 1,689 12.26 0.015 Mining 40 0.29 0.000

MED 248 1.80 0.000 Glass 141 1.02 0.000 Health 85 0.62 0.000 Health 141 1.02 0.000 Paper 151 1.11 0.000

MIL 203 1.47 0.000 Hardware 879 6.38 0.004 Instruments 1153 8.37 0.007 Instruments 782 5.68 0.003 Textiles 1,323 9.71 0.009

MIN 207 1.50 0.000 Instruments 623 4.52 0.002 Machinery 666 4.83 0.002 Machinery 1,126 8.17 0.007

MIS 15 0.11 0.000 Leather 224 1.63 0.000 Manufacture 459 3.33 0.001 Manufacture 1,075 7.80 0.006

PAP 530 3.85 0.001 Manufacturing 736 5.34 0.003 Metal 517 3.75 0.001 Metal 484 3.51 0.001

TEX 1,676 12.16 0.015 Medicines 287 2.08 0.000 Military 206 1.50 0.000 Military 116 0.84 0.000

TRA 1,522 11.05 0.012 Metallurgy 719 5.22 0.003 Mining 166 1.20 0.000 Mining 253 1.84 0.000

Military 256 1.86 0.000 Paper 501 3.64 0.001 Paper 410 2.98 0.001

Mining 85 0.62 0.000 Power 1263 9.17 0.008 Power 1,464 10.63 0.011

Paper 504 3.66 0.001 Textiles 2,280 16.55 0.027 Textiles 1,863 13.52 0.018

Pottery 290 2.10 0.000 Transportation 1,080 7.84 0.006 Transportation 844 6.13 0.004

Ships 616 4.47 0.002 Utility 897 6.51 0.004 Utility 807 5.86 0.003

Textiles 1,824 13.24 0.018

HHI 0.229 0.070 0.083 0.080 0.026

Notes: The table displays the Herfindahl-Hirschman Concentration ratios for each taxonomy. Count represents the total number of patents related to each class. This is then represented as a percentage. The individual class HHI
scores are represented. The bottom row displays the HHI ratio for each taxonomy as a whole. For the ‘Woodcroft’ schema, we have included only those classes found in other schemas instead of the entire 146 classes. The HHI for
Woodcroft is still calculated using the whole taxonomy.

Sources: Authors’ calculations using data from A Cradle of Inventions (2009), Nuvolari and Tartari (2011); Woodcroft (1860). All taxonomies cover 1700-1850.



associated HHI score at 0.229, while Woodcroft has the lowest at 0.026. Examining the

COI schema shows ‘Industry’ accounts for 42 per cent of all British patents. No other

schema has such a ‘catch-all’ class.

Appendix C – Patent Data

The patent data used in this study are the EPO’s PATSTAT database – to help

validate the construction of our patent taxonomy – and the entire population of British

patents granted up to 1852 – to test for classification-specific econometric results.

Designing and constructing any new time-invariant patent taxonomy requires

robustness testing to ensure the taxonomy is capable of consistently classifying any and

all historical patent data. PATSTAT is useful for robustness testing, because it contains

the vast majority of all patents ever granted for Europe, the United States, and Japan.

In addition, understanding whether the choice of patent taxonomy influences the results

of any econometric analysis undertaken on patent data requires a dataset which has

been classified according to multiple alternative taxonomies. The British patent data is

useful for this comparative analysis, because it has been classified several times in the

economic history literature.

Appendix C.1 – PATSTAT

PATSTAT is the EPO’s comprehensive patent database. It is alleged to contain all

patents ever granted, although its records are incomplete as shown in section 2.1.

Despite this, PATSTAT is still an incredibly useful dataset because it contains a wealth

of bibliographic patent data. PATSTAT contains over 100 million patents from 90

different patenting authorities, with a large number of patents dating back to the

nineteenth century. However, PATSTAT’s historical coverage is much more complete

from the early twentieth century.

The data contained in PATSTAT are digitised patent records, which can be found on

Espacenet - an online collection of patent records from all member states of the EPO.



The patent records are recorded in their national language, and as such the digitised

records maintain the original language. All patents held in PATSTAT contain their

original patent title, and for the majority of patents the original specification is also

digitised. PATSTAT also records the language patent titles are transcribed in, which is

particularly useful for patents granted in countries which have multiple languages, such

as Switzerland.

Because patents are recorded in their original language this provides a useful

opportunity to extract a number of patent datasets covering a variety languages. As our

goal is to construct a new patent taxonomy and methodology capable of classifying any

and all patents according to a standard set of classes, having access to different national

patent datasets allows us to test the versatility of our methods. If our method cannot

classify patents in different languages in a consistent manner, then it cannot be

considered a standardised or time-invariant taxonomy. For the remainder of this paper,

we will be working with datasets from PATSTAT in their original language, and impose

no translations during our methodology.

Appendix C.2 – British Patent Data

While PATSTAT is used for checking the versatility of our machine learning

methodology, we use the historical British patent data to test whether the choice of

classification influences the results of econometric analyses. This dataset contains all

patents granted in Britain until the Patent Law Reform Act of 1852. Following the

Reform Act, Bennet Woodcroft, then Superintendent of the Patent Office, meticulously

collated all records for patents granted prior to the Act. In doing so, Woodcroft

produced four tomes, each of which provides a wealth of information concerning all

British patents granted. Of these, the tome ‘Titles of Patents of Inventions’, published

in 1854, compiled the patent titles of all British patents, who they were granted to, the

patentee’s occupation(s), and their listed residence. Given this wealth of information,

this tome has been digitised and compiled into a structured patent dataset on multiple

occasions.



The Nuvolari and Tartari (2011) schema covers patents granted from 1617-1850.23

According to their paper, the authors constructed their taxonomy based on a working

paper version of Moser (2012), which relies on a taxonomy derived from the 1851 Crystal

Palace Exhibition schema. The Crystal Palace schema comprises 30 technology groups,

and was designed to encompass all possible inventions and submissions supplied to the

1851 Exhibition. Unfortunately, exactly how either of the aforementioned taxonomies

were constructed is unclear, as is how any patent data have been classified.

A Cradle of Inventions: British Patents from 1617 to 1894 is a CD-ROM containing

the entire population of British patents with the COI taxonomy assigned. Again, we were

able to match up our schema to that from A Cradle of Invention. According to the insert

provided with the CD, the taxonomy has been constructed as a simple means of aiding

users to find relevant patent information. The insert states that the authors do not claim

infallibility of the classification system, and that it is predicated on their interpretation

of patent titles. In addition, class definitions are provided, which help us understand how

patents may be classified, although the overall design of the taxonomy remains unclear.

Finally, Woodcroft (1860) is assigned based on a unique British patent identifier

constructed by Woodcroft. When Woodcroft collated the British patent records, he

assigned a unique number for each patent, for the purposes of linking patents through

each of his four tomes. Each unique identifier is listed against at least one of the 246

classes in Woodcroft (1860), and so we were again able to match this data to ours. We

can therefore be certain that each taxonomy has been accurately replicated. However,

we are much less certain about how Woodcroft designed his taxonomy, but considering

his role as Superintendent of the Patent Office, his goal may have been similar to those

of patent examiners: group technologies based on functionality to help future inventors

locate prior art. Woodcroft’s schema is the largest by a considerable margin, which

suggests the taxonomy was primarily for reference purposes.

23While their paper only covers patents granted until 1841, the dataset which they supplied had
classified all patents up to 1850.



Appendix D – Additional Regressions

Here we present additional results for another four commonly examined patent

characteristics from the economic history literature: patentee occupational status; the

number of patents held by an inventor; the number of inventors listed per patent; and

whether a patentee is considered an insider or an outsider.

Appendix D.1 – Patentee Occupational Status

To ascertain whether classification divergence is unique to examining the citations of

patented inventions, we next examine patentee’s occupations against patent classes.

The innovation literature has examined the role of independent inventors and the types

of industries they are likely to select into, or the types of inventions they are likely to

produce (Schmookler, 1966; Khan and Sokoloff, 2004; Nicholas, 2010, 2011b; Khan,

2018). Our data allow us to conduct a similar examination. The patent data record the

patentee’s occupation alongside their name. This allows us to match occupations to a

statistical measure of potential skills using the HISCLASS schema of Van Leeuwen and

Maas (2011). This metric groups occupations based on their skills, whether they are

manual or non-manual labour, and the degree of supervision required. For simplicity,

we break the HISCLASS codes into manual versus non-manual occupations, following

Klemp and Weisdorf (2012). Non-manual occupations are likely to be higher-skilled

than their manual counterparts (Van Leeuwen and Maas, 2011).

We represent non-manual occupations using a dummy indicator variable.

Consequently, a probit regression model is necessary to derive the probability of patent

classes being associated with non-manual occupations. Our control variables constitute:

whether the inventor had a prior patent; their nationality; and time controls. The

explanatory variables are patent classes, with the baseline class being Agriculture.

Table D1 reports our results. Classification divergence still exists, however it is less

severe for this particular characteristic. This may be due to the skewed distribution

of non-manual occupations: approximately 75 per cent of occupations in the data are



classified as non-manual. Despite this, there exists variation because of class divergence.

Paper patents show a significant range in terms of coefficient size, for example. Under

the COI schema, an average Paper patent is approximately 8.3 per cent more likely to be

associated with a non-manual occupation, when compared to an Agriculture patent. The

size of the result could be considered small, suggesting inventors of Paper patents were

similarly skilled as inventors of Agriculture patents. However, the Woodcroft schema

suggests non-manual occupations were, on average, 34 per cent more likely to produce

Paper patents. While the conclusion remains similar, the contrast between coefficient

sizes can lead to differing interpretations regarding the importance of human capital or

skills when producing paper inventions.

Statistical significance also varies across taxonomies. The majority of patent classes

report fluctuations between significance and non-significance. For example, Food

patents are statistically significant at the one per cent level under the NT and COI

schemas. The remaining schemas, however, are not statistically significant at

conventional levels. Chemicals, Engines, Medicines, and Mining patents are the only

ones to show no variation in statistical significance. This is in clear contrast to their

variation observed against patent citations, suggesting divergences do not appear

consistently when examining various patent characteristics.

The direction of association shows more stability compared with the previous set of

results. Only Food, Instruments, and Paper patents show any variation in direction

across taxonomies. The NT schema suggests Instruments patents were more likely to be

associated with non-manual occupations compared to Agricultural patents. The

remaining schemas, however, suggest the opposite: skilled individuals were less likely to

produce instruments patents.

Appendix D.2 – Patent Stock

The third variable of interest is the stock of patents granted to patentees. This

measures how many patents an individual has held in total each time they obtain a new

patent. Patent stock is often used to control for other patent characteristics, and has



Table D1: Probit: Dependent Variable is a Dummy representing a Non-Manual Occupation

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals 0.381*** 0.189*** - 0.153*** 0.099*** 0.119***
(0.065) (0.045) - (0.046) (0.023) (0.015)

Clothing 0.061 0.051 0.011 0.102** 0.016 0.054*
(0.046) (0.040) (0.041) (0.040) (0.035) (0.031)

Engines 0.214*** 0.183*** - 0.166*** 0.081*** 0.110***
(0.037) (0.040) - (0.043) (0.028) (0.019)

Food - 0.118*** 0.166*** -0.067 0.040 -0.015
- (0.042) (0.050) (0.103) (0.052) (0.032)

Instruments - 0.044 -0.026 -0.017 -0.015 -0.036
- (0.055) (0.059) (0.058) (0.041) (0.026)

Medicines 0.271*** 0.242*** 0.237*** 0.219*** 0.133*** 0.179***
(0.040) (0.036) (0.043) (0.038) (0.030) (0.027)

Metal 0.178*** 0.164*** - 0.137*** 0.069 0.086***
(0.058) (0.052) - (0.051) (0.043) (0.030)

Military -0.064 -0.028 -0.048 -0.114* -0.126** -0.105***
(0.051) (0.064) (0.064) (0.067) (0.053) (0.034)

Mining 0.261*** 0.210*** 0.206*** 0.148*** 0.110*** 0.104***
(0.081) (0.066) (0.060) (0.046) (0.038) (0.022)

Paper 0.341*** 0.130*** 0.083** 0.064 -0.028 0.016
(0.052) (0.043) (0.040) (0.046) (0.026) (0.012)

Textiles -0.042 -0.033 -0.006 -0.050 -0.063 -0.046*
(0.056) (0.075) (0.067) (0.055) (0.054) (0.028)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 12,741 12,741 12,741 12,741 12,741 12,741
Pseudo R-Squared 0.132 0.0906 0.0728 0.0833 0.0698 0.0859

Notes: The table shows how the association between non-manual occupations and technology groups. The
dependent variable is a dummy variable, where a value of 1 indicates a non-manual occupation. In each column,
the omitted variable is the “Agriculture” class. Coefficients are interpreted as marginal effects at the means.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari (2011);
Woodcroft (1860). All datasets cover the period 1700-1850.



been studied in Dutton (1984); MacLeod (2002); Khan and Sokoff (2001); Khan

(2015b). Patent stock is useful for observing the behaviour of professional inventors or

patentees, who are likely to view patents more favourably or as a greater necessity than

other inventors who do not exploit the patent system. These inventors can be more

commonly thought of as “Economic men” (Dutton, 1984, p. 104-117), who respond to

demand-side conditions. Observing what they patent can inform us about inventor

perceptions of profitable avenues of invention.

Patent stock is represented by a simple count variable with a skewed distribution, as

few individuals hold many patents while many hold few. Therefore, we use a negative

binomial model, as when observing patent citations. The control variables constitute:

inventor occupations; their nationality; and time controls. The explanatory variables are

patent classes, with the baseline class being Agriculture. Table D2 reports our results.

Once again, we find evidence of classification divergence. Patent stock shows a

relatively greater degree of divergence compared to our previous results. In terms of

coefficient magnitude, there is substantial variation. Under the Woodcroft schema,

inventors who held Mining patents, for example, are 60 per cent more likely to have had

a greater stock of patents, suggesting inventors of Mining patents may have either

deemed patents as necessary or earned enough profits from their patent stock to

purchase additional patents. By contrast the COI schema suggests these inventors were

only four per cent more likely to have held other patents, while the Topic-Two schema

shows a magnitude less than one per cent.

Statistical significance also fluctuates across taxonomies. There is no single class to

show consistently significant or non-significant results, which stands in contrast to the

previous tables. For example, under the NT schema, Clothing patents are not

statistically significantly different to Agriculture patents, while the Topic-One schema’s

result is significant at the ten per cent level, the COI’s at the five per cent significance,

and Woodcroft’s at the one per cent significance. It would be difficult to conclude

Clothing patents were different to Agricultural ones, given the results.

The direction of association also varies. Compared with prior results, fewer classes



Table D2: Negative Binomial: Dependent Variable is Patent Stock

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals -0.242 0.245 - 0.078 0.351*** -0.002
(0.187) (0.150) - (0.099) (0.092) (0.066)

Clothing -0.429*** 0.200 -0.302* -0.369* 0.109 -0.399***
(0.136) (0.273) (0.161) (0.201) (0.285) (0.129)

Engines 0.085 0.244 - 0.188* 0.298** 0.072
(0.175) (0.191) - (0.096) (0.126) (0.073)

Food - 0.233 -0.138 -0.029 -0.036 -0.265
- (0.166) (0.128) (0.247) (0.206) (0.182)

Instruments - 0.216* 0.175 0.105 0.251** -0.022
- (0.116) (0.153) (0.071) (0.106) (0.047)

Medicines -0.476*** -0.282** -0.495*** -0.381 0.004 -0.336
(0.137) (0.117) (0.127) (0.324) (0.338) (0.298)

Metallurgy 0.093 0.355** - 0.205* 0.374*** 0.149
(0.187) (0.166) - (0.118) (0.107) (0.118)

Military 0.151 0.455** 0.173 0.378*** 0.290* 0.132
(0.152) (0.188) (0.148) (0.113) (0.148) (0.119)

Mining 0.606 0.367 0.075 0.238 -0.011 -0.176***
(0.415) (0.235) (0.195) (0.161) (0.119) (0.057)

Paper -0.078 0.310* 0.244 0.206* 0.221* 0.032
(0.302) (0.164) (0.162) (0.115) (0.114) (0.091)

Textiles 0.404* 0.561** 0.347* 0.448** 0.475*** 0.291**
(0.234) (0.218) (0.205) (0.189) (0.128) (0.146)

Constant -0.480 -0.805* -0.605 -0.650* -0.777** -0.590
(0.430) (0.451) (0.389) (0.363) (0.374) (0.369)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 13,347 13,347 13,347 13,347 13,347 13,347
R-squared 0.091 0.066 0.062 0.064 0.063 0.064

Notes: The table shows how the patent stock held by patentees at a given time varies by technology group.
The dependent variable is the number of patents held by an inventor at the time of their latest patent
grant. In each column, the omitted variable is the “Agriculture” class. Coefficients are interpreted as the
difference in the logs of expected counts of the predictor variable. To translate this into a unit change, the
coefficients need to be exponentiated. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari
(2011); Woodcroft (1860). All datasets cover 1700-1850.



are consistently positive or negative across schemas. For example, Military is

consistently positive, while Clothing exhibits positive and negative associations. This

suggests classification divergences are not consistent when examining different variables

of interest.

Appendix D.3 – The Number of Inventors per Patent

The fourth characteristic we examine is the number of listed inventors per patent.

Woodcroft included all named inventors when compiling patents granted prior to 1852.

There are two plausible reasons why multiple inventors are listed: because either they

helped develop the invention or they contributed to the cost of the patent. Inventor’s

had no claim over a patent right unless their name was also on that patent. Individuals

who contributed to the development of an invention, either through their labour or their

resources, would presumably have wished to retain a legal form of ownership over that

invention. However, having an additional named inventor increased the cost of a patent

by an undisclosed amount (Carpmael, 1842). Despite this, many patents have more

than one named inventor. This suggests the additional cost was either outweighed by

the benefit of retaining ownership or was sufficiently small so that inventors could

effectively split the cost of the patent.

Obtaining a patent in England during our period of observation was expensive, with

an average cost of approximately £100 in 1840 prices (Dutton, 1984). Given the high

costs, either inventors had to be significantly wealthy or have access to additional funds,

which could have been supplied by co-inventors or potential financiers. As part of the

condition to extend financial resources to the prospective patentee, financiers may have

requested their names be attached to the patent right. James Watt’s famous patent,

for example, was originally financed by his friends before Matthew Boulton became his

financial partner (Bottomley, 2014a), but in Watt’s case his friends were not listed on

the patent.

The types of technologies which were likely to entail additional named inventors may

reflect the larger fixed cost of making that invention (Jones, 2009) particularly where



technologies are far more complex and require a team of individuals to develop (Wuchty

et al., 2007). Should additional named inventors be financiers, then correlations between

technology groups and the number of named inventors may provide insights into the

technologies perceived as profitable during our period of observation.

Table D3 reports our results, which show that classification divergence continues to

exist. The divergence here is much milder compared to our prior results. Coefficient

magnitude exhibits divergence. The largest fluctuations are observed in relation to

Clothing, Medicines, Mining, and Textiles. For example, compared to Agricultural

patents, Textiles patents are associated with about 12.5 per cent more named inventors

under the Woodcroft schema. By contrast, the COI schema suggests that only seven

per cent more named inventors are associated with Textile patents, while

‘CombinedTopics’ suggests only five per cent more. In several cases, coefficients are at

least twice the size under one schema compared to another. Comparing two negative

coefficients, for example, Clothing patents range from -0.077 up to -0.002, the latter

being approximately 38 times larger in absolute terms.

Few classes exhibit any statistically significant coefficients across alternative

taxonomies. The Medicines and Textiles classes exhibit the most consistent statistically

significant coefficients, although evidence of divergence remains. Under the Woodcroft

schema, Medicines patents are significant at the ten per cent level of significance, while

both NT and Topic-One are significant at the one per cent level, and the Topic-Two

and CombinedTopics schemas exhibit no statistical significance.

Direction of association also diverges considerably. For the majority of the common

classes, the direction of association is consistently fluctuating. Only Instruments,

Military, and Textiles patents report a consistently positive or negative correlation

across taxonomies.

Appendix D.4 – Insiders versus Outsiders

Our next patent characteristic indicates whether the patentee is an ‘insider’: an inventor

is an insider if their invention relates to their occupation. Physicians patenting medicinal



Table D3: Negative Binomial: The Dependent Variable is the Number of Inventors per Patent

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals 0.059 -0.019 - 0.033 0.022 -0.010
(0.082) (0.044) - (0.034) (0.022) (0.022)

Clothing 0.055 -0.003 -0.044 -0.002 -0.043 -0.077***
(0.056) (0.041) (0.043) (0.049) (0.031) (0.027)

Engines 0.001 -0.005 - 0.008 0.017 -0.022*
(0.039) (0.041) - (0.032) (0.021) (0.013)

Food - -0.029 -0.037 -0.061 0.074 -0.026
- (0.039) (0.039) (0.058) (0.079) (0.053)

Instruments - -0.041 -0.033 -0.002 -0.014 -0.054***
- (0.040) (0.041) (0.034) (0.020) (0.013)

Medicines -0.077* -0.110*** -0.089** -0.115*** 0.018 -0.063
(0.041) (0.040) (0.039) (0.034) (0.067) (0.048)

Metal 0.049 0.011 - 0.070 0.073* 0.037
(0.053) (0.041) - (0.048) (0.039) (0.033)

Military -0.087* -0.095** -0.080 -0.060* -0.076* -0.105***
(0.052) (0.043) (0.049) (0.035) (0.044) (0.023)

Mining -0.083 0.048 -0.008 0.030 0.015 -0.014
(0.069) (0.080) (0.054) (0.047) (0.036) (0.022)

Paper -0.018 -0.028 -0.005 0.012 -0.031 -0.052**
(0.044) (0.050) (0.048) (0.035) (0.034) (0.022)

Textiles 0.125*** 0.112** 0.070 0.099** 0.095*** 0.051**
(0.041) (0.046) (0.045) (0.044) (0.029) (0.025)

Constant 0.018 0.007 0.009 -0.015 -0.022 0.028
(0.070) (0.056) (0.068) (0.067) (0.056) (0.065)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 13,347 13,347 13,347 13,347 13,347 13,347
Pseudo R-Squared 0.00512 0.00347 0.00268 0.00290 0.00260 0.00299

Notes: The table shows whether the number of inventors listed per patent varies by technology group. The
dependent variable is an ordinal variable indicating how many inventors were listed on a given patent. In each
column, the omitted variable is the “Agriculture” class. Coefficients are interpreted as the difference in the logs
of expected counts of the predictor variable. To translate this into a unit change, the coefficients need to be
exponentiated. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari (2011);
Woodcroft (1860). All datasets cover 1700-1850.



inventions or engineers patenting engineering related inventions are considered insiders.

Following the approach of Nuvolari and Tartari (2011), we construct a dummy variable to

indicate whether a patentee’s occupation matched the subject matter of their invention.

In some cases, the occupation or subject matter is too vague to indicate whether the

patentee was an insider. Because of this, we do not directly interpret a value of zero as

reflecting an ‘outsider’.

Whether an invention is developed by an insider has implications for how we

understand the nature of invention. Jewkes et al. (1969) are amongst the earliest to

argue that radical innovations are produced by outsiders, because such individuals are

more willing to challenge accepted ideas. Insiders, by contrast, are too engrained into

the technology to observe opportunities for radical advancement. O’Brien et al. (1996)

have suggested that outsiders were responsible for significant advancements in textiles

technology during the Industrial Revolution, while insiders were responsible for

incremental improvements. Mokyr (2009) echoes this argument and considers outsiders

responsible for “macro-inventions” – inventions responsible for opening up new

technologies – and insiders responsible for “micro-inventions” – inventions which

improved on existing technologies.

The results in Table D4 exhibit a relatively strong degree of divergence compared to the

prior results. Coefficient magnitude displays considerable divergence. Clothing patents

report the most extreme divergence. Under the Woodcroft schema, Clothing patents

are 44-45 per cent more likely to be associated with an Insider than an Agricultural

patent. But, the CombinedTopics schema suggests that Clothing patents are only eight

per cent more likely. Our interpretation of the importance of insiders is then inconsistent;

Woodcroft’s schema suggests insiders are extremely important to Clothing innovation,

while CombinedTopics suggests they are only marginally more important. Even in less

extreme cases, such as Mining or Engine patents, there is significant divergence in terms

of coefficient magnitude.

Statistical significance fluctuates considerably across taxonomies for several classes,

most notably Food, Mining, and Paper patents. For those patent classes, significance



Table D4: Probit: The Dependent Variable is a Dummy representing an Insider

(1) (2) (3) (4) (5) (6)
VARIABLES Woodcroft NT COI Topic-One Topic-Two CombinedTopics

Chemicals 0.028 -0.039 - -0.017 0.001 -0.112***
(0.046) (0.030) - (0.025) (0.027) (0.015)

Clothing 0.448*** 0.228*** 0.253*** 0.237*** 0.213*** 0.082*
(0.043) (0.039) (0.049) (0.062) (0.048) (0.048)

Engines -0.018 -0.002 - 0.044 -0.018 -0.080
(0.030) (0.034) - (0.094) (0.097) (0.051)

Food - -0.075*** -0.018 -0.071 -0.055 -0.124***
- (0.029) (0.042) (0.059) (0.034) (0.037)

Instruments - -0.035 0.012 0.041 0.007 -0.030
- (0.051) (0.061) (0.048) (0.035) (0.036)

Medicines 0.097 0.062 0.146** 0.139*** 0.117*** 0.057*
(0.070) (0.069) (0.065) (0.045) (0.039) (0.034)

Metal 0.133** 0.146*** - 0.139* 0.034 0.013
(0.063) (0.053) - (0.072) (0.069) (0.055)

Military 0.111* 0.070 0.101* 0.082** -0.014 -0.013
(0.057) (0.061) (0.059) (0.039) (0.039) (0.030)

Mining 0.058 0.110* 0.141** 0.197*** 0.145*** 0.085***
(0.084) (0.056) (0.060) (0.038) (0.031) (0.027)

Paper 0.348*** 0.177*** 0.173*** 0.035 0.029 -0.028
(0.065) (0.040) (0.039) (0.036) (0.026) (0.028)

Textiles 0.393*** 0.318*** 0.306*** 0.271*** 0.245*** 0.174***
(0.040) (0.035) (0.038) (0.040) (0.049) (0.034)

Time Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 12,908 12,908 12,908 12,908 12,908 12,908
Pseudo R-Squared 0.225 0.196 0.180 0.182 0.179 0.191

Notes: The table shows whether a patent belonged to an insider as opposed to an outsider, and whether this
varies by technology group. In each column, the omitted variable is the “Agriculture” class. Coefficients are
interpreted as marginal effects at the means. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions (2009) and Nuvolari and Tartari (2011);
Woodcroft (1860). All datasets cover 1700-1850.



ranges from statistical significance at the one per cent level to no statistically significant

association at all. This is most profound for Paper patents, where exactly half of the

examined taxonomies report no significant association while the other half report an

association at the one per cent level. By contrast, Clothing and Textile patents exhibit

consistent levels of statistical significance.

The direction of association of coefficients is also subject to divergence, albeit to a much

lesser degree. Military patents, for example, are inversely correlated with insiders under

the Topic-Two and CombinedTopics schema, when compared to Agricultural patents.

Conversely, the remaining taxonomies yield a positive correlation instead. Chemicals,

Engines, and Instruments patents exhibit a similar division in terms of positive versus

negative correlations.

Appendix E – Regression Plots for Common Patent

Classes

The evidence presented in section 5 supports our assertion that classification divergence

exists, at the very least, in the innovation history literature. The results indicate that

the choice of taxonomy can influence the size, significance, and direction of association

of coefficients in a regression analysis of patent characteristics. However, this approach

relies on contrasting the results of alternative patent schemas independently – no two

schemas are directly examined in relation to each other.

To complement our results, this section directly contrasts patent classes from

alternative schemas against each other. This approach allows us to understand whether

the alternative schemas are correlated, which could highlight how similarly they classify

patents. Observing correlations between taxonomies may be useful for predicting how

much classification divergence we should expect in any regression analysis of patent

characteristics. If correlations can reasonably predict how a particular taxonomy may

yield diverging results compared to another, then this would be useful for identifying

the amount of divergence in the literature. However, such an endeavour would require



access to other alternative schemas not discussed here, which is beyond the scope of our

paper.

To identify the degree of correlation between taxonomies, we report regression plots

which contrast the existing alternative patent schemas. Our model, described in

equation 4, sets the Nuvolari-Tartari (NT) as our baseline schema which we then regress

against each of the alternative schemas used in section 5.24 We run regressions for all

six previously-presented patent characteristic metrics. Only results for patent quality

and capital-saving metrics are reported; the remaining metrics show similar results and

have been omitted for sake of brevity.

We present a series of plots of regression coefficients for each of the 12 common patent

classes previously analysed. For a class to be considered ‘common’, it has to appear in

at least three out of four of the comparable patent schemas. OLS regressions are used

to estimate the degree of correlation between the alternative schemas for each common

patent class and each patent characteristic. The regression equation is as follows:

NTci ∗Metrici = αi + βSci ∗Metrici + µi (4)

Metric represents each of the six patent characteristics individually interacted with

the NT common classes, denoted c, for each patent i that has an NT classification 5.

These characteristics are: the weighted number of citations per patent; the social class

of an inventor’s occupation; the inventor’s current patent stock; the number of inventors

listed per patent; whether an inventor is considered an ‘insider’; and whether the patented

invention is capital-saving.

The variable S denotes each of the other alternative schemas: COI, Woodcroft,

Topic-One, Topic-Two, and CombinedTopics. Each alternative schema’s classes, c, are

also interacted with each of the six patent metrics separately, for all patents i which are

classified according to those schemas. Each interacted alternative schema is then

regressed against the interacted NT schema for each of the six characteristic metrics.

24We chose the NT schema to be our baseline since it contains all the common classes we wish to
observe. We obtain similar results if we change the chosen baseline schema.



This approach allows us to observe the degree of correlation between patent schemas by

focusing exclusively on whether each schema is capturing the same patents as the NT

schema.

In each regression plot, a coefficient score of one suggests that classes from the NT

schema and the comparison schema classify the same patents in the exact same way. By

contrast, a score of zero suggests no correlation, which implies that neither schema is

classifying the same patent into the same technology group. The confidence intervals for

each patent schema’s coefficient are also reported, which helps us to understand whether

a correlation is spurious. We also include a reference line at a value of 0.5 for ease of

interpretation.

It is important to note that the regression coefficients reported in Section 5 are for

dummy variables; they are interpreted compared to the omitted category of Agricultural

patents within each schema. Here the regression coefficients are interpreted against the

baseline of the NT schema, rather than a single patent class within each schema. This

creates difficulties in comparing the results from both methods, and we therefore make

cautious comparisons between the main regression analyses and the regression plots.

Appendix E.1 – The Citations of Patented Inventions

In Table 8, classification divergence considerably influenced coefficient size, significance,

and direction of association when observing the patent quality measure. Therefore, when

examining patent citation measures, our interpretation of those measures is at risk of

being influenced by the choice of schema.

To understand how correlated the alternative schemas are, and whether the degree of

divergence is predictable, Figure E1 exhibits the regression plots from the OLS regression

model for our patent quality measure: the weighted number of references per patent in

the Woodcroft Reference Index. Each sub-figure represents the correlations between the

alternative schema and the NT for each of the common classes. In each sub-figure,

regressions are run separately and then reported collectively on the same plot.

Observing sub-figure E1a, for example, shows both the COI and Woodcroft schemas



are strongly correlated with the NT schema. By contrast, the Topic-One, Topic-Two,

and CombinedTopics schemas are much less correlated with NT. To understand whether

regression plots can be useful for predicting possible divergence, we contrast the plots for

another patent class where the COI or Woodcroft schemas are also strongly correlated

with NT. Medicine patents, for example, show a similar degree of correlation between our

alternative schemas and NT compared to Agricultural patents: COI and Woodcroft are

strongly correlated with NT in both instances. Therefore, we would expect very similar

results for NT, COI, and Woodcroft in a regression analysis on patent quality. Referring

to the results in Table 8, we do not observe such similarity. The Woodcroft coefficient is

larger than the NT coefficient, while the COI coefficient is instead smaller. Furthermore,

the Topic-One schema’s coefficient is more similar in size to the NT coefficient, despite

the lack of correlation observed in the regression plots.

For the majority sub-figures, the COI and Woodcroft schemas are strongly correlated

with the NT schema, while the Topic-One, Topic-Two, and CombinedTopics schemas

generally are not. This difference in correlations does not appear to predict classification

divergence in our main results. For Chemicals, Metallurgy, and Textiles patents, the

Topic-Two schema is not correlated with the NT schema compared to Woodcroft and COI,

but Topic-Two coefficients in Table 8 are similar to the NT coefficients. This suggests

that the regression plot measures are not reliable predictors for degree of classification

divergence.

Appendix E.2 – Capital Saving Patents

The second metric we examine indicates whether a patent is intended to save on capital.

The absolute divergence results for this metric are presented in Table 9. The degree of

divergence for capital-saving patents is much more extreme compared to patent quality.

Figure E2 reports the regression plots for the capital-saving variable. Compared to

the patent quality regression plots, there is a stark difference when observing

capital-saving patents. While the general trend remains similar to the patent quality

metric, the confidence intervals associated with capital-saving coefficients for all of the
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common classes are much larger. This may be because of the nature of the variable;

‘capital-saving’ is a dummy variable, which means the interaction terms with each

patent class are also dummies, while patent quality is a continuous numerical variable.
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Figure E1: Regression plots for the citations of patented inventions

Notes: The plots depict the results from OLS regressions of the Nuvolari-Tartari (NT) schema against
the Cradle of Invention (COI), Woodcroft, Topic-One, Topic-Two, and CombinedTopics schemas. The
variable of interest is the Woodcroft Reference Index. Each plot represents one of the 12 common patent
classes analysed in section 5. A value of zero indicates no correlation between schemas. A value of one
should indicate complete correlation between schemas, suggesting both taxonomies classify patents in
the same way. The confidence intervals for coefficients reflect the fluctuations in terms of significance,
and the position of coefficients represents the fluctuations in terms of size.

Consequently, standard errors may be much larger as we are dealing only with values of

zero and one. In addition, the capital-saving metric is the only metric which reports

both complete and zero correlation coefficients For Clothing patents, in sub-figure E2c,

the Topic-Two schema reports no correlation with the NT schema, which suggests that

they have captured completely different patents. While Medicine patents, E2f, report a

coefficient of zero for Topic-One, and a coefficient of one for Woodcroft. This indicates

significant disparities between schemas, as Woodcroft and NT seem to classify the same

patents, while Topic-One does not capture any similarity at all.

Comparing these results with the regressions in Table 9 may highlight whether the

regression plots could predict the likely degree of classification divergence. Similar to

patent quality, the COI and Woodcroft schemas are correlated with NT, so we may expect



COI

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(a) Agricultural patents

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(b) Chemical patents

COI

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(c) Clothing patents

COI

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(d) Food patents

COI

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(e) Instrument patents

COI

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(f) Medicine patents

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(g) Metal patents

COI

Woodcroft

Topic−One

Topic−Two

CombinedTopics

0 .2 .4 .6 .8 1

(h) Military patents

their results to be similar when compared the machine learning schemas. For example,

the Woodcroft schema is strongly correlated with NT for both Agricultural and Chemical

patents, therefore we may expect to see similar results for Chemical patents in Table 9
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Figure E2: Regression plots for capital saving patents

Notes: The plots depict the results from OLS regressions of the Nuvolari-Tartari (NT) schema against
the Cradle of Invention (COI), Woodcroft, Topic-One, Topic-Two, and CombinedTopics schemas. The
variable of interest is a dummy variable indicating whether a patent is capital-saving. Each plot represents
one of the 12 common patent classes analysed in section 5. A value of zero indicates no correlation
between schemas. A value of one should indicate complete correlation between schemas, suggesting
both taxonomies classify patents in the same way. The confidence intervals for coefficients reflect the
fluctuations in terms of significance, and the position of coefficients represents the fluctuations in terms
of size.

for both of those schemas. Indeed, this is what we observe, as both Woodcroft and NT

report similarly sized coefficients, albeit with some difference in statistical significance.

The regression plots for Metal patents, in sub-figure E2g also show the Woodcroft schema

is more correlated with the NT schema than any of our schemas. But, in Table 9 the

Topic-One schema reports a result much closer to the NT schema’s, even though they

are less correlated in our regression plots. Overall, this suggests that the regression plot

method cannot reliably be used to predict classification divergence outcomes.



Appendix E.3 – Discussion

The regression plots describe the degree of correlation between the NT schema and each of

the alternative patent taxonomies. By creating a series of interaction terms between each

of our six patent metrics and each of the alternative taxonomies, we could then regress

each interacted taxonomy against the interacted NT schema for each metric. Regressing

each interacted schema independently allows us to identify how correlated those patent

schemas are, which is useful for understanding how similarly they classify patents.

Across all six metrics, the degree of correlation is very similar. Generally, the COI

and Woodcroft schemas are found to be more strongly correlated with the NT schema

than Topic-One, Topic-Two, or CombinedTopics. This may indicate that our machine

learning classifies patents in a considerably different way compared with those schemas

which rely more extensively on manual classification. This is not to say our methodology

is ‘correct’, but rather to point out that the differences could be categorised as machine

versus human judgement. Because of the strong similarities in terms of coefficient size,

we opted to report the results only for the patent quality and capital-saving metrics.

The major difference arising from observing the capital-saving metric is the size of the

confidence intervals for all coefficients, which were significantly larger than those observed

in relation to the patent quality metric.

The variation observed in section 5 coupled with the strong similarities for the

regression plots suggest that we cannot use taxonomy correlations to predict the likely

degree of classification divergence. The capital-saving metric, for example, reports the

greatest degree of classification divergence in our main results. But, capital-saving

regression plots are strongly similar to patent quality regression plots, apart from the

differences to confidence intervals. The larger confidence intervals are unlikely to

explain the divergence in terms of coefficient size or direction of association.

Overall, we find that the regression plot method is not a reliable means for predicting

classification divergence outcomes. For all six metrics, there are too many dissimilarities

for this method to predict any outcomes with confidence. As shown for the patent

quality and capital-saving metrics, there are instances where schemas that are correlated



produce similar divergence results, but there are also instances where the opposite is true,

Consequently, the regression plot results are useful for a general understanding of how

patent taxonomies are correlated, but they provide no predictive power for identifying

possible outcomes in relation to classification divergence.


	Introduction
	Patent Classification Literature
	Patent Office Schemas
	Classification in Economic History

	Text Analysis 
	The Taxonomy
	Constructing the Taxonomy
	Taxonomy Validation
	Finalising the Taxonomy

	Comparison of Taxonomies
	The Citations of Patented Inventions
	Capital Saving Patents

	Discussion
	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

