
Exploring Spiking Neural Networks for Prediction of 

Traffic Congestion in Networks-on-Chip 
Aqib Javed*, Jim Harkin, Liam McDaid and Junxiu Liu  

School of Computing, Engineering and Intelligent Systems,  

Ulster University, Magee Campus, Derry, Northern Ireland, United Kingdom 

*Contact: Javed-a@ulster.ac.uk 
Abstract—    Networks-on-Chip (NoC) is the most modular and 

scalable solution for next generation hardware communication 

where significant data traffic loads are shared across many 

communication paths. One key challenge in maximising NoC 

performance is traffic congestion. The management of congestion 

at the earliest stage can significantly minimize the impact on NoC 

throughput. Prediction of NoC congestion offers a pre-emptive 

strategy in maximising NoC throughput. This paper proposes a 

novel spiking neural network (SNN) approach to prediction of 

traffic congestion. The proposed SNN exploits the temporal nature 

of the traffic to identify congestion patterns. The proposed SNN 

explores two models and both are trained and evaluated to predict 

local congestion 30 clock cycles in advance of occurring. Results 

shows that the SNN predictor utilizes 9 times less hardware area 

than previous approaches and can achieved up to 96.59% in 
accuracy.   

I. INTRODUCTION 

The demand of computational intensive devices leads to the 

integration of more components in System-on-Chip (SoC). 

These many-core devices rely on shared communication paths 

for data transmission that can result in latency challenges [1]. 

Different on-chip interconnect solutions were proposed to 

optimize usage of shared network paths. Networks-on-Chip 

(NoC) is proposed as a scalable and modular  communication 

architecture to provide multiple paths between cores and hence 

reduce network latency issues [2]. Depending on the application 

mapping and routing algorithm NoCs can support thousands of 

cores where it is facilitating huge communication workloads, 

that can ultimately cause congestion problems  [3]. Quality of 

Service (QoS) is an important metric to validate NoC 

performance under different traffic status. In NoC, congestion 

can be produced due to non-uniform traffic routing, non-

optimal flow control, inefficient traffic mapping and 

inappropriate network topologies. Congestion occurs at router 

level and can be handled locally (e.g. at router level) or globally 

(e.g. at network level). The management of congestion at the 

earliest stage can significantly minimize the impact on NoC 

throughput [4].  

    Inspired by the temporal computational capability of the 

human brain, neural networks are designed to perform brain 

related complex tasks i.e. data classification, pattern 

recognition [4], [5]. Traditional Artificial Neural Networks 

(ANNs) implicate weighted, rate-based computation to process 

information. However studies show that biological neurons 

communicate in the form of spikes, or action potential [6]. 

Therefore SNNs are proposed where the neurons communicate 

information temporally in the form of timing between spikes. 

SNNs encode neural information in both the spatial and 

temporal dimensions and require more computational power to 

process information as compared to non-spiking neural 

networks [7]. However, they perform temporal classification at 

a low cost in hardware given the advances in compact neural 

hardware implementations [8], [9] 
    NoCs generate temporal communication patterns while 

transporting packetized data traffic across the topology [10], 

[11]. The main advantage of the SNN over ANN is its ability to 

learn the temporal information with great precision [12]. 

Therefore, in this work an SNN based congestion prediction 

methodology is proposed to address NoC congestion. The scope 

of this work explores a cost effective SNN based prediction 

model with high prediction accuracy and low hardware 

overhead. The NoC congestion prediction is based on two levels 

a). Router level: Each router in the NoC has its own SNN to 

predict local congestion and 2). Network level: The entire NoC 

system has one SNN to predict local congestion for each router. 

The output of this work can be used in enhancing the traffic-

load balancing  of the NoCs, i.e. once the congestion is 

predicted, the SNN output can be processed by a congestion 

handling mechanism (e.g. adaptive routing [13]) to supress its 

effect before it can occur. The proposed SNN predictor can 

sense congestion 30 clock cycles in advance to provide enough 

time for a congestion handler to react.    
Section II provides background on existing neural and non-

neural congestion detection\prediction approaches. Section III 

reports on proposed SNN based NoC congestion prediction 

methodology and the experimental setup is outlined in section 

IV. Section V presents simulation results and section VI 

provides a conclusion and outlines of future work. 

II. BACKGROUND AND RELATED WORKS  

This section gives a brief introduction to cause and effects of 

congestion in NoC architectures, and presents an overview of 

existing congestion prediction research.  

NoCs use routing algorithms to establish paths between source 

and destination nodes. Routing algorithms are responsible for 

traffic distribution of routing data. Ideally, NoC communication 

architecture is designed to distribute network traffic uniformly 

across network nodes. Because of application mapping and 

routing algorithm, data traffic pushes towards specific nodes. 

When traffic loads become significant it can lead to congestion 

as routing strategies have minimal time to adapt and often spare 



 
resources to compensate with path diversity [14]. Congestion is 

an important factor in on-chip performance degradation [15] 

and most NoC routers use buffer spaces to temporally store 

incoming data packets at input ports. NoC congestion occurs 

from inside router (arbitrator) to outside the router (buffer). 

Once input buffers are occupied, router stops receiving data to 

cause back-pressure towards neighbouring nodes [3](as shown 

in Fig. 1). Neighbouring nodes are force to keep data or find 

bypass path using adaptive algorithm. One promising solution 

is insertion of more buffering slots to compress back-pressure. 

These additional buffers will help to avoid congestion but cause 

high transmission delays. Data routed towards destination node 

can become part of congestion if it incur with on-path congested 

router. If congestion is not handled at earliest, the back-pressure 

will continue until the whole network get congested.  

 
Fig.1. Effect of congestion and Backpressure.  

Different techniques are developed to optimize effect of NoC 

congestion. These methods use buffer utilization levels, switch 

contention, traffic-flow patterns, traffic tables, task mapping 

etc. as a parameters to identify congestion[16]. Buffer 

utilization level is most appropriate and widely used congestion 

information parameter. An Output Buffer Length (OBL) 

selection function utilizes the next on-path router’s output 

buffer occupancy information to decide the next hop[17]. The 

Neighbour-on-Path (NoP) process free slot information of 

neighbouring routers to identify the least congested routing path 

[17]. Some algorithms uses multiple information to process 

congestion. The Path-Congestion Aware Adaptive Routing 

(PCAR) and an upgraded Odd-Even adaptive routing algorithm 

both use switch contention along with buffer occupancy levels 

to route data through a least congested path [18]. Above 

mentioned techniques are reactive to congestion and only react 

when it detects on-path congestion.  

Network performance (i.e. latency, throughput, QoS) can be 

enhanced by prior information about on-path congestion[15]. 

NoC congestion prediction is on-going research topic with only 

limited reported work to date [19].     

A Traffic-Based Routing Algorithm (TBRA) is proposed to 

predict NoC traffic and dynamically select suitable adaptive 

routing algorithm to route predicted data [20]. Another 

motivation for traffic prediction is to optimize usage of nodes 

and channels thus minimizing operating power. A low-power 

Application Driven Traffic Pattern Table (ATPT) with small 

routing table in-builded inside router to record traffic flow from 

router [21]. Prediction using ATPT helps network to 

dynamically adjust voltage frequency to save up to 86% 

dynamic power. A predictive closed-loop flow control 

mechanism is proposed to predict traffic flow and to minimize 

NoC congestion by avoiding buffer overflow and packet drops 

[22]. Neural network are also involved to predict NoC traffic 

congestion. Artificial Neural Networking (ANN) model use 

buffer occupancy level to predict location of potential hotspot 

router with 65-92% accuracy on synthetic and real-time dataset 

[15]. An Evolving Fuzzy Neural Network (EFuNN), which is 

inspired by the combination of NNs and the fuzzy logic is 

proposed to predict congestion-free minimal path to improve 

network latency [2].  

III. SNN-BASED NOC CONGESTION PREDICTION MODEL 

    NoC Congestion occurs with the concentration of routed data 

towards specific node(s). NoC performance is measured in 

terms of the number of flits per seconds, namely throughput. 

Path congestion increases transmission delays causing network 

latency and throughput issues. Queuing of data at router inputs 

is the foremost factor in performance degradation [23]. 

Research shows that input buffer queuing or buffer utilization 

data is the most effective way to identify congestion and can be 

used to predict local congestion [3]. Utilization data is highly 

dependent on the network architecture and application 

characteristics. This work proposes a novel SNN-based NoC 

congestion prediction model, at two router and network levels, 

using input buffer queuing information. .  
A. SNN model 

SNNs closely mimic biological neurons and transmit 

information in temporal patterns. This work considered the 

Leaky integrate and Fire (LIF) model with exponentially 

decaying (leaky) synaptic current. Spikeprop [24], a popular 

spiking counterpart of ANN’s gradient methods is used as the 

learning algorithm for LIF based neural model. This paper 

contributes on the development, training and testing to validate 

the prediction coverage of the SNN models using traffic data 

from traced-based synthetic and real-world multimedia 

applications.   

B. Congestion criteria 

    The congestion criteria is based on input buffer occupancy 

levels. Buffer occupancy level (buffer utilization) is a key 

indicator of congestion and can be viewed as temporal 

variations of data queuing patterns at router inputs. Fig 2 shows 

a 5-channel (east, west, north, south and core) NoC router with 

four input buffers spaces, where red depicts buffer occupancy 

level. For router X, (3, 2, 2, 3, 1) are the generated buffer 

occupancy patterns for North/West/South/East/Core ports. 

 
Fig. 2. Buffer utilization model with 4-buffer slots for each input (Green are 

free slots; Red are occupied slots) 

Congestion Definition: A router is deemed congested if the 

accumulated value of buffer occupancy levels is more than 60% 

of the total buffering slots in one router, and at least one buffer 

channel is fully occupied.  For example, Router Y has a total of 

20 buffering slots and generates (2, 3, 4, 2, 3) patterns which 

occupy 14 slots in total, i.e. 14/20=70%. If the south port is also 

fully occupied then the router is labelled as congested and the 

generated pattern is classed as congested. Using the proposed 

congestion criteria we can generate congestion patterns that can 

be used for training of the SNN model to predict congestion 30 
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clock cycles in advance of its occurrence.  This provides enough 

time to adapt and avoid or minimise the impact of congestion.  

C. Proposed prediction model 

   The proposed SNN predication model collects the congested 

patterns at two different levels – one is the local router and other 

at the global network level. For the router level, the proposed 

model provides an individual SNNs for every router in the NoC, 

where buffer utilization data extracted from each router input is 

fed directly to SNN, and the SNN output defining the router 

congestion status. Fig. 3(a) shows the connections of the 

proposed model at router level. Since every router has one 

SNN, the SNN size depends on the NoC router location. For 

each SNN, the number of neurons at the input layer is same as 

the number of input channels of the NoC router. For example, 

a 4x4 2D NoC in Fig. 3(a) has 16 routers, where four corner 

routers have 3 inputs, eight routers in the edge are 4-inputs and 

four inner routers have 5-input channels.   

 
               (a)                                                           (b) 

Fig 3. Proposed SNN prediction models (a) Router level and (b) Network level   

   The proposed model also works at the network level, which 

uses one SNN for the whole NoC. Buffer utilization data 

extracted from each router is directly fed to the SNN. The buffer 

utilization data generated by input channels of each router are 

accumulated into a unified value to reduce the number of 

neurons at input layer of SNN. The size of the input and output 

SNN layers are identical to the total number of routers in the 

NoC. A 4x4 NoC in Fig. 3(b) depicts 16-input SNN model, 

where each input connects to one router. The SNNs at both 

levels are trained to predict congestion for each router and their 

performance evaluated on the basis of prediction accuracy.   

IV. EXPERIMENTAL SETUP 

   An experimental setup was established to verify the 

prediction coverage of the proposed SNN models using defined 

congestion criteria. This section explains the experimental 

processes used to perform simulations for the congestion 

prediction models. Simulation results of prediction 

performance and also expected hardware overhead are reported. 

A. Simulation Environment and Setup 

   To evaluate the prediction model on a NoC,  simulations of 

trace-based applications were performed using the NoC 

simulator Noxim [25].  Benchmarks adopted to evaluate the 

proposed prediction model is based on standard synthetic and 

real-time MPSoC applications. These benchmarks include 

transpose-1, transpose-2, shuffle, butterfly, Multi-Media 

Systems (MMS) and Moving Picture Experts Group-4 (MPEG-

4). Application are mapped in Noxim on a 4x4 mesh based NoC 

and simulated using the standard XY-routing algorithm[26]. 

Each router generates and transmits data packets according to 

the application. Every routed data packet has eight flits, and 

each router channel can accumulate four data packets (32 flits) 

at the input buffer. Data is recorded for each router at every 

cycle and each simulation runs for 2,000 clocks with the first 

1,000 clocks used as warm-up cycles. The generated traffic data 

is then used for training and testing of the proposed model.  

 
(a) 

 
(b) 

Fig 4. SNN models at (a) Router level and (b) Network level.   
 To validate the prediction coverage, a 3-layer fully-connected 

LIF based SNN model with spikeprop as a learning algorithm 

is modelled and simulated in MATLAB for training and testing 

of proposed prediction models as shown in Fig 4. Typical router 

model utilizes 5x10x1 SNN (5, 10 and 1 for input, hidden and 

output layer neurons) for each NoC router whereas network 

model is connected to every NoC router through 16x30x16 

SNN (16, 30 and 16 for input, hidden and output layer neurons). 

The output of SNN depicts the predicted congestion status of 

router. This can be forwarded to adaptive routing algorithms to 

avoid prospective network congestion. SNN is trained with 60% 

of simulated dataset and tested on 40% unseen dataset. 

Following results shows prediction accuracy and precision of 

proposed models on 40% unseen dataset. 

B. Performance Analysis  

   To analyse prediction coverage of proposed congestion 

prediction methods, we considered two confusion matrix 

performance parameters: prediction accuracy (𝑃
𝑎
) and 

prediction precision (𝑃
𝑝
). 

𝑃𝑎 =
(∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑(𝑃 + 𝑁)
 (1) 
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Fig 5. Prediction accuracy for router model   
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𝑃𝑝 =
Σ 𝑇𝑃

Σ𝑃
 (2) 

 where congestion patterns are termed as positive (𝑃) and non-

congestion patterns are labelled as negative (𝑁). 𝑇𝑃 and 𝑇𝑁 

defines correct prediction of patterns (𝑃) and (𝑁) respectively. 

Simulation results are formulated in form of prediction 

accuracy and prediction precision of whole mesh network. 

 
Fig 6. Prediction accuracy network model      
    Fig. 5 and Fig. 6 presents prediction accuracy of local 

congestion for router and global level SNN models on synthetic 

and real-time applications respectively. Since, each router 

generate and route data packet according to mapped application 

and generate different patterns. Therefore, Fig. 5-6 explains the 

difference in prediction accuracy of proposed models for each 

local router. It is evident that some router shows 100% 

prediction accuracy whereas some routers shows ~65%. Results 

shows that network model have more routers with local 

prediction accuracy more than 80%. 
 

 
Fig 7. Average prediction accuracy of proposed models   

   Fig. 7 shows prediction accuracy of overall network using 

proposed SNN models. Result shows that router-level SNN (R-

SNN) with 88.28%-96.25% accurately as compared to network 

level SNN (N-SNN) predicted traffic patterns with 89.77%-

96.59% accuracy. It is depicted that network level SNN 

performed exceptionally well in four applications except 

shuffle and MPEG-4 where router-level SNN predicted traffic 

patterns with better accuracy. 
 

 
Fig 8. Average prediction precision of proposed models     

   An average network prediction precision for the router and 

network models are shown in Fig 8. Simulation results shows 

that the router model predicts congested patterns with 82.09%-

96.73% precision compared with 84.74%-92.35% prediction 

precision for the network model. Despite delivering 96.73% 

accuracy by router model in the MPEG-4, the network model 

outperformed in four traced based applications. Therefore, on 

average, the network model comes with prediction precision 

under different traffic conditions.  Simulation results 

demonstrate that the network model predicts local congestion 

with better accuracy and precision. 

C. Hardware Analysis 

   To compute hardware area overhead, a CMOS based synaptic 

LIF model is used [27][8], where one synapse costs 

24×10−8𝑚𝑚2 and one neuron 9×10−6𝑚𝑚2 hardware area. The 

hardware area of 4x4 router NoC is 8.9×10−1𝑚𝑚2 [28]. The 

proposed SNN models (as shown in Fig. 3-4) varies in topology, 

and so in hardware overhead.  
 

      TABLE 1                  HARDWARE OVERHEAD  

Simulator Synaptic Area (𝑚𝑚2) Neural Area (𝑚𝑚2) Total Area (𝑚𝑚2) 

Router model 1.92×10-3 2.16×10-3 4.08×10-3 

Network model 2.30×10-3 5.58×10-4 2.86×10-3 

   Table 1 shows hardware overhead of proposed models. Table 

1 depicts that router model utilize 4.08×10−3𝑚𝑚2 hardware area 

as compared to network model 2.86×10−3𝑚𝑚2 area. Router 

model utilized almost double hardware with respect to network 

model. Difference in hardware is due to the utilizations of more 

neurons in router level. Results suggests that network model is 

more area efficient as compared to router model. 

D. Discussion 

   The proposed model predicts local congestion on synthetic 

and real-time MPSoC application with up to 96.59% accuracy 

as compared to most accurate ANN based congestion prediction 

model which provides ~92% prediction accuracy [15]. SNNs 

are complex and computationally more powerful than 

traditional ANNs [9]. Furthermore, proposed SNNs requires 

0.31%-0.45% hardware as compared to 5.8% of ANN model 

for base 16 router network, which makes SNNs more practical 

and suitable for hardware implementation. 

V. CONCLUSION 

   In this work we proposed a novel SNN based congestion 

prediction model (both router and network models) for NoCs. 

The models were evaluated in term of prediction accuracy and 

hardware overhead. Traced-based synthetic and real-time 

MPSoC applications were mapped to Noxim to generate buffer 

utilization datasets according to the proposed congestion 

criteria. These patterns are used for training and testing of the 

SNN using MATLAB. 

   Results demonstrated that the network model predicts local 

congestion more accurately and precisely compared with the 

router model. Moreover, the router model exhibited ~ 40% 

additional area than that of the network model. Therefore, the 

paper concluded that the SNN at network level with a single 

SNN, for the whole NoC, is more scalable for congestion 

prediction.  

   The scope of this work is limited to identification of high 

performance congestion prediction model. Future work will 

explore the utilization of predicted congestion patterns to 

integrate with congestion aware routing algorithms [13]. Also 

finding low-cost interconnect solution for proposed SNN 

models to integration with NoC. Overall, the focus of the future 

research is to design an efficient SNN based prediction model 

that will predict congestion in advance and utilize predicted 

patterns to provide alternative paths to routing data.  
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