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Summary

This PhD thesis contributes towards the development and analysis of a

neural circuit computational model of perceptual decision uncertainty and

change-of-mind behaviour. This highly-interdisciplinary work integrates

biological neural network modelling, cognitive psychology and neurophysiol-

ogy of metacognitive behaviour, and the mathematics of dynamical systems

theory. The thesis begins with a concise review of the various experimental

observations of decision uncertainty and change-of-mind. This is done

through an overview of the evolution of the experimental tasks that have

been developed over the years to understand decision uncertainty in humans

and animals. This is followed by an overview of the existing models of

decision uncertainty and change-of-mind, with a focus on cognitive models

(dynamical and probabilistic) and neural models. The thesis has led to

three original research contributions. In the first contribution, the first

cortical neural circuit model of decision uncertainty and change-of-mind

is introduced, effectively unifying the two fields of study. The proposed

model accounts for a variety of behavioural and neural signatures of decision

uncertainty and change-of-mind, while explaining the shared neural mecha-

nism that links both metacognitive features. In the second contribution,

more rigorous theoretical analyses of the model are presented. This is done

through systematic variation of key model parameters proposed in the first

contribution. Furthermore, the robustness of the model is highlighted, and

reward rate is investigated to identify the impact of various parameter

values on optimal performance. In the third contribution, changes-of-mind

xiv



are investigated in situations when additional evidence is not available

after the initial decision, a type of situation that has been neglected by

the current theoretical and experimental accounts. Using an experimental

task, it is demonstrated that changes-of-mind can occur in the absence

of new post-decision evidence. Furthermore, using a reduced version of

the proposed neural circuit model, the neural mechanisms underlying such

changes-of-mind are uncovered. In particular, it is shown that changes-of-

mind in the absence of new post-decision evidence are strongly linked to

elevated neural activity in the uncertainty-encoding population of the model,

consistent with recent neurophysiological evidence implicating higher order

networks in change-of-mind behaviour. Overall, the three contributions

shed light on the neural circuit dynamics underlying decision uncertainty

and change-of-mind behaviour, and offer a biologically-motivated theoretical

framework for future investigations.
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1

Chapter 1

Introduction

We make many decisions every day, with varying degrees of complexity.

Our decisions are also often accompanied by a degree of confidence, or

reciprocally, uncertainty, which represents a belief of how likely the decision

will be correct (Grimaldi et al., 2015; Meyniel et al., 2015). Some of

these decisions require more deliberation than others, often inducing an

internal conflict that may lead to revising the initial choice, i.e. a change-

of-mind (Rabbitt, 1966). Such difficult decisions are often associated with

high decision uncertainty, and more errors.

The study of human metacognitive behaviour dates back to the beginning

of the 20th century (Henmon, 1911). Confidence judgements have been

viewed as an important feature of human metacognition, i.e. the ability

to demonstrate awareness of what we experience. That said, for a long

time, such metacognitive behaviour has been viewed as exclusive to humans.

Recently, however, many behavioural studies have suggested that non-

human animals are aware of their sense of confidence, and can use it to make

better decisions (Shields et al., 1997). With novel task paradigms, these

studies have opened up new opportunities for more precise measurements

of neural activities, which helped elucidate the neural correlates of decision

confidence (Kepecs et al., 2008). Importantly, computational models, with

various levels of abstraction, have been developed to account for behavioural
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and neural characteristics of decision uncertainty. For instance, cognitive

computational models have been developed to account for the behavioural

psychophysics of decision confidence and change-of-mind. These models

were often built on previous models of decision making, particularly the

accumulate-to-bound type models (Vickers, 1970; Ratcliff, 1978). Such

models typically quantified decision confidence as the balance between the

two evidence streams corresponding to each choice option at the time of

decision. The same techniques to provide a readout of decision confidence

were also used by more detailed (microscopic) biophysical models of decision

making (Wei & Wang, 2015), leaving unanswered questions about the

structure of the neural circuits involved in such a computation. These

questions were not answered by Bayesian approaches (Meyniel et al., 2015;

Kepecs & Mainen, 2012) to modelling decision making, simply because such

representational models are not constructed to address neural plausibility.

Change-of-mind is another human metacognitive behaviour that has

recently become the focus of intensive research (Fleming, 2016). Consid-

ered by many a hallmark of cognitive flexibility, such behaviour has been

shown to correct impending errors, linking it to previous studies of error

correction (Rabbitt, 1966). More recently, several computational models

have been proposed to account for such flexible behaviour (Resulaj et al.,

2009; Albantakis & Deco, 2011; van den Berg et al., 2016a), providing an

impressive fit to behavioural data from change-of-mind experiments. Such

models have also been used to provide predictions on the neural mecha-

nism underlying changes-of-mind, positing that changes-of-mind are mainly

driven by continuing sensory evidence accumulation after committing to

an initial decision. However, these models, do not explain what alternative

mechanism could be underlying changes-of-mind in situations when new

evidence is not available after the initial decision. Furthermore, the existing

computational models do not link changes-of-mind to decision confidence.

This missing link has recently become more questionable with more recent

neurophysiological evidence showing that ‘higher order’ brain regions, such
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as the prefrontal cortex (Fleming et al., 2018), play a role in change-of-mind

behaviour.

1.1 Motivation, aims, and outline of the the-

sis

As previously discussed in this Chapter, humans’ and animals’ awareness

of their sense of uncertainty is one of their most important metacognitive

features. While recent experimental and modelling work implicated several

brain regions in encoding decision confidence, the neural dynamics underly-

ing how decision uncertainty affects choice behaviour remains elusive. Using

computational modelling, shedding light on this mechanism can have several

implications. First, a better understanding of human metacognitive features

(e.g. awareness of decision uncertainty) allows for a better understanding of

related mental health disorders (e.g. anxiety disorders). Second, if imple-

mented in robots, a flexible decision-making model that is endowed with

real-time decision uncertainty monitoring can potentially lead to self-aware

machines.

This thesis therefore aims to contribute towards the development and

analysis of a neural circuit computational model of perceptual decision

uncertainty and change-of-mind behaviour. The thesis will also provide

insights into the neural circuit dynamics underlying how the brain computes

decision uncertainty, and how this uncertainty can affect the final outcome

of a decision, e.g. leading to a change-of-mind. Furthermore, the thesis will

investigate a type of changes-of-mind that is not explained by current theo-

ries, providing a comprehensive and biologically-motivated computational

framework that can mechanistically account for decision uncertainty and

change-of-mind behaviour.

Three contributing chapters (Chapters 4, 5, and 6) will be discussed.
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These chapters are based on the author’s original research works during

the research programme, which led to a published journal paper, with an

additional submitted manuscript currently under review. An additional

manuscript (briefly introduced in Chapter 7) is also currently under review.

Overall, the thesis is organised as follows:

In Chapter 2, several behavioural and neurophysiological studies of

decision uncertainty and change-of-mind will be discussed. In particular,

the relationship among decision uncertainty, choice accuracy, and response

times will be identified. Similarly, the relationship between change-of-mind

and task difficulty will be presented. Furthermore, the neural correlates of

decision uncertainty and change-of-mind in both human and animal studies

will be discussed.

In Chapter 3, several types of computational models of decision uncer-

tainty and change-of-mind will be studied. Cognitive abstract models and

neural models will be addressed. Importantly, several limitations in the

modelling literature will be identified. These issues will be addressed by

the following three contributing Chapters.

In Chapter 4, the first cortical neural circuit computational model that

can mechanistically quantify and monitor decision uncertainty, which may

subsequently cause a change-of-mind, will be presented. This multi-layer

recurrent network model will be shown to not only account for the key

characteristics of decision uncertainty (Kepecs et al., 2008; Beck et al., 2008;

Wei & Wang, 2015) and change-of-mind (Resulaj et al., 2009; Albantakis

& Deco, 2011) across a wide variety of experiments for both behavioural

and neurophysiological data, but also provide a plausible neural circuit

mechanism explaining the observed phenomena. The results discussed in

this chapter have been published in Atiya et al. (2019a).

In Chapter 5, more rigorous theoretical analyses of the model will be

presented. In particular, a set of key model parameters will be identified

and systematically varied. Additionally, the robustness of the multi-stage

paradigm implementation will be tested. Furthermore, the main modelling
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results will be validated under a shorter stimulus duration. Finally, reward-

rate will be investigated to identify the most optimal values for various sets

of parameters. The results discussed in this chapter are in preparation for

submission as an article to the journal of Neural Computation.

In Chapter 6, a complimentary experimental and modelling approach

will investigate changes-of-mind in the absence of additional post-decision

sensory evidence. In contrast to previous studies, the majority of the

observed changes-of-mind were associated with prolonged initial response

times. Using a neural circuit model, this Chapter will demonstrate that these

changes-of-mind can be attributed to neural feedback control mediated by

decision uncertainty. The Chapter will provide a computational framework

that explains changes-of-mind in the absence of additional post-decision

evidence, from the sensory integration stage up to the motor output. The

results discussed in this chapter have been published in Atiya et al. (2019b).

In Chapter 7, a summary of the work presented in the previous chapters

will be discussed and new directions for future work are proposed.

1.2 List of included works

� Discussed in Chapter 4: Atiya, N. A. A., Rañó, I., Prasad, G., &

Wong-Lin, K. (2019). A neural circuit mo del of decision uncertainty

and change-of-mind. Nature Communications, 10(1), 2287.

� Discussed in Chapter 5: Atiya, N. A. A., Rañó, I., Prasad, G., & Wong-

Lin, K. Uncertainty determines optimal performance. In preparation.

� Discussed in Chapter 6: Atiya, N. A. A., Zgonnikov, A., O’Hora, D.,

& Wong-Lin, K. (2019b). Changes- of-mind in the absence of new

post-decision evidence. bioRxiv. Under review.

� Discussed in Chapter 7: Zgonnikov, A., Atiya, N., O’Hora, D., Rañó,

I., & Wong-Lin, K. (2019). Beyond reach: Do motor costs affect



6 1.2 List of included works

intertemporal choice? a registered report. Judgment and Decision

Making, 14(4), 455-469.
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Chapter 2

Decision uncertainty and

change-of-mind: Behavioural

evidence and neural correlates

This Chapter is a concise review of various studies in humans and animals

towards understanding the behavioural and neurophysiological signatures

of decision uncertainty and change-of-mind, particularly in the context of

perceptual decision making.

2.1 Psychophysics of decision uncertainty

Several studies have investigated human metacognitive performance (Flavell,

1979; Metcalfe et al., 1994; Dunlosky & Nelson, 1997). For instance, in

one of the first studies of metacognitive judgements on humans, Flavell

(1979) showed poor metacognitive performance of younger children com-

pared to older ones, in a study-and-recall task similar to the ones used

on animals (Shields et al., 1997) (see below). Others such as Dunlosky

& Nelson (1997) studied the effect of post-stimulus delay (i.e. memory

decay) on the accuracy of metacognitive judgements, showing improved

metacognitive performance when the delay between the stimulus cue and
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the test cue is longer.

Building on the rich perceptual decision-making task paradigms, several

studies have investigated the effects of decision uncertainty on response

times and choice accuracy. For instance, in a recent combined modelling

and experimental study (Kiani et al., 2014a), human participants reported

their choice and confidence level at the same time (see Fig. 2.1). Specifically,

in addition to reporting their choice using a saccade to the top or bottom of

the screen, their confidence level in the choice would depend on the position

of the saccade relative to a horizontal coloured axis. Participants were

less confident in difficult choices, and took longer to respond when their

confidence levels were low.

Figure 2.1. Experimental task used in Kiani et al. (2014b). Participants observed a visual

stimulus and reported their choice using a saccade to the top or bottom of the screen. Con�dence

(or certainty) is reported simultaneously with choice via the position of the saccade on the horizontal

coloured axis (brighter colours for more con�dence choices). Adapted from Kiani et al. (2014b).

In another combined modelling and experimental study (Sanders et al.,

2016), using a general knowledge task (see Fig. 2.3), participants were

presented with the names of two countries for a fixed duration of time,

and were then asked to name the country with the larger population. On

90% of the trials, participants were asked to report their confidence on a

scale of 1 to 5. Similar to previous studies on decision confidence (Kepecs

et al., 2008; Kiani & Shadlen, 2009), the authors found that participants

were more confident in easy correct choices, and less confident in erroneous
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more difficult ones. Moreover, the participants’ confidence level increased

monotonically with choice accuracy.

(a)

(b)

Figure 2.2. Multi-stage decisions paradigm by van den Berg et al. (2016b).(a) Multi-

stage decisions experimental task. Participants observe a stimulus, then make a decision followed by a

con�dence report. In a percentage of trials, participants have to answer two choices correctly in order

to receive a reward. (b) The results show that participants’ reaction time in their second decisions is

prolonged (shortened), when they believe the �rst decision is correct (error). Blue (red) traces represent

reaction times for second decisions when �rst decision is correct (error). Black traces represent reaction

times for all second decisions. Adapted from van den Berg et al. (2016b)

Researchers have also attempted to test the effect of decision confidence

in one trial over choice behaviour in a following trial (van den Berg et al.,

2016b; Urai et al., 2017). For instance, van den Berg et al. (2016b) proposed

an experimental task where participants have to answer two consecutive

(coupled) trials correctly in order to receive a reward. After reporting their

choice in each trial, participants were also asked to report their confidence

level (see Fig. 2.2a). van den Berg et al. (2016b) found that participants

slow down when making their second decision, if they are confident that

they have answered their first decision correctly (see Fig. 2.2b).

Similarly, several task paradigms were developed to measure and quantify

decision confidence in animals (Shields et al., 1997; Hampton, 2001; Son

& Kornell, 2005; Foote & Crystal, 2007). Due to the animals’ inability

to explicitly communicate their confidence level in a decision, researchers

opted for other implicit methods for inferring confidence levels, such as using
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guaranteed small rewards (Shields et al., 1997), choice to opt-out (Hampton,

2001), and betting (Son & Kornell, 2005; Foote & Crystal, 2007). This is in

contrast to explicit methods for reporting decision confidence in humans,

such as retrospective confidence judgements (Cheesman & Merikle, 1986),

perceptual awareness scale (Ramsøy & Overgaard, 2004), and post-decision

wagering (Persaud et al., 2007).

Figure 2.3. Schematic diagram of experimental task (i.e. general knowledge task) used

in Sanders et al. (2016). Stimulus is names of two countries. Participants report which country has

the larger population. Con�dence reports were required on 90% of the trials. Adapted from Sanders

et al. (2016).

In one of the first decision confidence studies on animals (Shields et al.,

1997), non-human primates (i.e. rhesus monkeys) were trained on a visual

discrimination task, where they had to classify visual stimuli into one of two

categories (i.e. stars or boxes). In some trials, the monkeys were offered a

third choice through which they can receive a small-but-guaranteed reward.

In the most difficult trials that included the third option (i.e when the

stimulus was not clear), the monkeys opted for the third choice. Although

this demonstrated that the monkeys could be aware of their uncertainty

in such trials, such paradigms were also thought to be leading the animals

into associating the small reward with a third option. Such paradigms were

later paired with neural recordings to reveal the neural correlates of decision

confidence (Kiani & Shadlen, 2009), as will be discussed in Section 2.2.
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Figure 2.4. Experimental task paradigm in Hampton (2001). Monkeys �rst observed a picture

(rooster in blue rectangle). After a short delay, monkeys chose wether to undergo a memory test (via

choosing the purple ag) or a sure-but-small reward (red). Adapted from Hampton (2001).

In an attempt to address the shortcoming in the Shields et al. (1997)’s

paradigm (i.e. associating the small reward with a third choice), in a similar

study (Hampton, 2001), monkeys were trained to observe a randomly-

selected picture and touch it three times, and then had to remember and

choose that picture once again after a short delay (34-38s) in order to

receive a reward (see Fig. 2.4). As proxy for high uncertainty, the monkeys

were given the choice to reject the test for a small-but-guaranteed reward.

Intuitively, the highest reject (i.e. opt-out) rates were associated with trials

with a difficult stimulus (i.e. a noisy image). The same protocol was applied

using rats (Foote & Crystal, 2007), with very similar behavioural conclusions

associating the highest opt-out rate with the most difficult trials.

In a different task with different stimuli (Son & Kornell, 2005), monkeys

were trained to bet on the outcome of a trial (see Fig. 2.5). Specifically,

after observing a stimulus that comprised nine lines with different lengths
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on a computer screen, monkeys were trained to choose the longest line.

Upon choosing the longest line, monkeys were then presented with two

options: A high risk bet or a low risk bet. As the name suggests, the high

risk bet would yield the highest reward (loss) in the case of a correct (error)

choice. Son & Kornell (2005) showed that the monkeys consistently placed

small bets (i.e. leading to guaranteed rewards) in the most difficult trials.

Figure 2.5. Task used in Son & Kornell (2005). Monkeys �rst observed nine di�erent lines, and

had to pick the longest one. After a short delay, monkeys then had to choose between a high or low risk

bet. The di�culty of the stimulus was controlled via the variance in length of the nine lines. Adapted

from Son & Kornell (2005).

Taken together, these behavioural studies of decision uncertainty or

confidence revealed that humans and animals alike can be aware of their

sense of uncertainty while making decisions, and in some cases actively

make use of it to make better decisions (e.g., to opt-out). These studies

have also helped reveal the relationship between decision uncertainty and

task difficulty, where the most difficult tasks (i.e. with ambiguous stimuli)

result in the highest levels of uncertainty, i.e. through low bets, high rates

of opt-outs, or explicit low-confidence reports (see Fig. 2.6). Furthermore,
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these studies show that when the participants are most uncertain, this could

lead to prolonging the time needed to respond (i.e. response time) as they

vacillate or try to accumulate more evidence, effectively uncovering a strong

link between high decision uncertainty and long response times (Kiani et al.,

2014a).

Figure 2.6. Common behavioural characteristics of decision uncertainty. Left: Decision

con�dence increases monotonically with choice accuracy. Right: Decision con�dence decreases with

task di�culty for correct choices, but increases with task di�culty for error choices. Thick and thin

lines represent two di�erent model �ts. Adapted from Sanders et al. (2016).

The next Section will discuss studies that attempt to identify the neural

correlates of decision uncertainty.

2.2 Neural correlates of decision uncertainty

The neural correlates of decision uncertainty have been gradually revealed

in humans using several neuroimaging techniques (Shimamura & Squire,

1986; Critchley et al., 2001; Lau & Passingham, 2006; Del Cul et al., 2009;

Rounis et al., 2010; Fleming et al., 2010; Rahnev et al., 2012; McCurdy

et al., 2013; Lak et al., 2014; Fleming et al., 2014; Gherman & Philiastides,

2015; Fleming et al., 2018). Interestingly, many of the these studies have

revealed the involvement of the prefrontal cortical part of the brain in de-

termining the sense of confidence in a decision. For instance, in Shimamura



14 2.2 Neural correlates of decision uncertainty

& Squire (1986), amnesic human subjects (i.e. with lower-than-normal

volume of their thalamus and prefrontal cortical) suffered some deteriora-

tion in their metacognitive performance. Functional magnetic resonance

imaging (fMRI) Blood-oxygen-level-dependent (BOLD) signal correlates of

the prefrontal cortex while reporting decision confidence later suggested the

involvement of the prefrontal cortex region of the brain in encoding decision

confidence (Lau & Passingham, 2006). Furthermore, patients with lesions

in the prefrontal cortex have also been shown to suffer from deterioration

in their metacognitive performance (Del Cul et al., 2009). More recently,

transcranial magnetic stimulation (TMS) to the prefrontal cortex has been

shown to impair metacognitive performance (Rounis et al., 2010). Other

human neuroimaging studies that involved other brain regions have also

investigated the effect of the grey matter volume (Fleming et al., 2010) and

the volume of the frontal polar cortical regions (McCurdy et al., 2013) on

metacognitive performance. Finally, electroencephalogram (EEG) (Gher-

man & Philiastides, 2015) and fMRI (Fleming et al., 2018) recordings have

revealed a strong link between high neural activity in the prefrontal cor-

tex (and medial frontal cortex (Murphy et al., 2015)) and high decision

uncertainty.

As previously discussed, the study of decision uncertainty in animals

allowed for more invasive methods to record more precise measurements

of neural activities. Several neurophysiological studies have leveraged such

invasive methods to identify the neural correlates of decision uncertainty in

animals. The brain regions involved suggested by these studies include the

orbitofrontal cortex (OFC) (Kepecs et al., 2008; Lak et al., 2014), lateral

intraparietal area (area LIP) (Kiani & Shadlen, 2009), the pulvinar (Komura

et al., 2013), supplementary eye field (Middlebrooks & Sommer, 2012),

ventral striatum (Hebart et al., 2014), and MT or V5 (Fetsch et al., 2014;

Zylberberg et al., 2016). For instance, direct microstimulation of the MT

impaired metacognitive performance (Fetsch et al., 2014). More recently, a

neurophysiological study on rodents (Lak et al., 2014) further investigated
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the role of OFC in encoding decision uncertainty (Kepecs et al., 2008), where

the deactivation of a group of neurons in the OFC affected the opt-out rate

of animals in an odour discrimination task.

Figure 2.7. Common neural signature of decision uncertainty. (a) Single neuronal record-

ing from the OFC (Kepecs et al., 2008) during an opt-out task for rodents. Neural activity peaks

around movement initiation time, and is slightly higher for more di�cult trials (bottom panel). (b)

Averaged EEG responses (theta band) from the frontoparietal cortex during a Go or No-Go task with

humans (Murphy et al., 2015). High activity is associated with participants detecting errors (i.e. high

uncertainty trials). Adapted from Kepecs et al. (2008) and Murphy et al. (2015).

Overall, some common signatures have been suggested from the above-

mentioned neurophysiological studies (see Fig 2.7 for some examples). First,

the magnitude of the neural activity increases with the increasing sense

of decision uncertainty. Second, the observed neural activity levels peak

around the time of movement initiation for choice reporting, before reverting

back to a baseline level, essentially leading to a phasic activity profile. Taken

together, those neurophysiological studies suggest that decision uncertainty

could be potentially encoded by multiple regions in the brain via a dis-

tributed network. For instance, some studies suggest that the same brain

regions that encode decision-related information (i.e. in area LIP (Kiani &

Shadlen, 2009)) could also provide a readout of decision confidence, while

other studies suggest the involvement of higher order brain regions, such

as the prefrontal cortex (Del Cul et al., 2009; Rounis et al., 2010; Fleming

et al., 2018). As will be discussed in Chapter 3, various computational
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models have been proposed that provide support for each view.

2.3 Changes-of-mind in perceptual decision

making

Several studies in perceptual decision making have identified the behavioural

patterns of changes-of-mind (Resulaj et al., 2009; Albantakis & Deco, 2011;

van den Berg et al., 2016a; Fleming et al., 2018). Furthermore, such

studies have also proposed neural mechanisms underlying such flexible

behaviour. One highly-used stimulus in the perceptual decision-making

literature is the random dot motion (RDM) stimulus (Salzman et al.,

1992; Carpenter & Williams, 1995) (see Fig. 2.8b). When presented with

this stimulus, participants discriminate the coherent motion of a group of

randomly moving dots, by choosing left or right. In Resulaj et al. (2009),

where a reaction-time task with an RDM stimulus was used (see Fig. 2.8a),

participants were allowed to change their mind after committing to an

initial choice. Participants changed their mind more frequently under more

difficult tasks, and their changes-of-mind were associated with fast initial

responses. Resulaj et al. (2009) concluded that, changes-of-mind occur

due to post-decision noisy sensory evidence accumulation after the initial,

tentative decision. Such delayed processing behaviour is suggested to be

due to signal transduction delays, and mostly leads to the correction of

impending errors.

Similarly, other studies (Albantakis et al., 2012; van den Berg et al.,

2016a) employed a reaction-time task to study changes-of-mind. More

specifically, in Albantakis et al. (2012), a 3-choice reaction-time task in

which human participants reported their choice using hand movements

provided similar conclusions to Resulaj et al. (2009). In van den Berg et al.

(2016a), participants reported their confidence and choice at the same time,
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Figure 2.8. Timecourse of a typical reaction-time task (Resulaj et al., 2009) and samples

of random dot motion (RDM) stimuli (Salzman et al., 1992). (a) After a short random delay,

the stimulus is presented. Reaction (i.e. response) time is equal to the time it takes for the participants

to �rst initiate their movement from stimulus onset time. Movement duration is the time it takes

participants to reach the choice target after initiating their movement. Adapted from Resulaj et al.

(2009). (b) Left: A sample RDM stimulus with 0% coherence between the moving dots, i.e. all dots are

moving randomly. Middle: A sample RDM stimulus with 50% of the dots moving in the same direction.

Right: 100% of the dots are moving in the same direction. Adapted from (Salzman et al., 1992)

and were allowed to change their mind about their choice and confidence level.

Such studies have also attributed changes-of-mind to accumulation of new

post-decision evidence. Overall, a few common characteristics were identified

within the literature of change-of-mind behaviour (see Fig. 2.9). Firstly,

changes-of-mind are more likely to occur when the task is more difficult,

and more often accompanied by correcting an initial impending error choice;

hence more error-to-correct changes than correct-to-error changes (although

the difference has been shown to vary in some cases (Kiani et al., 2014b)).

Further, the likelihood of correct changes-of-mind (to the subsequent correct

choices) may peak slightly at an intermediate level of task difficulty and

then decrease gradually when the task becomes much easier (see Fig. 2.9).

More recently, the neural correlates of change-of-mind behaviour in

humans and primates have been gradually revealed (Kiani et al., 2014b;

Fleming et al., 2018). For instance, in Kiani et al. (2014b), multiunit

neurophysiological recordings in the prearcuate gyrus of macaque monkeys

performing a motion discrimination task (i.e. RDM) have revealed the neural

correlates of change-of-mind behaviour. More specifically, the authors used

a logistic regression to find the hyperplane that best separates the neural

population responses corresponding to the two choice options. The logistic
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Figure 2.9. Common characteristics of change-of-mind behaviour. Data points are averaged

from three participants. Lines are �t of a cognitive model. Changes-of-mind more likely to occur

during di�cult tasks, and become less likely to occur as the task becomes easier, while peaking at an

intermediate task di�culty. Correct changes-of-mind (red) occur more often that ones that introduce

new errors (black). Adapted from Resulaj et al. (2009).

regression is described by:

Logit [Pt (T1)] = � 0(t) +
nX

i=1

� i (t)r i (t) (2.1)

where r i (t) is the firing rate of unit i at time t , n is the number of

recorded units and the � coefficients are model parameters. The authors

then calculated a ‘decision variable’ based on the the distance between the

discriminant hyperplane and the neural population response patterns to

model the responses of each neural population (i.e. representing evidence

for each choice) (see Fig. 2.10). During change-of-mind trials, the switching

of dominance (across the hyperplane) between the decision variables can be

clearly identified, which also predicts the time of change-of-mind.

More recently, in the fMRI study conducted by Fleming et al. (2018),

participants had to decide on the net direction of motion of an RDM stimulus

that was presented for a limited duration. Importantly, participants were

given the chance to view the stimulus shortly after responding (for another

300ms), and were given the option to change their mind. Under such

conditions, fMRI recordings indicated a strong link between changes-of-
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Figure 2.10. Dynamics of the decision variable from Kiani et al. (2014b) during the

course of a single change-of-mind trial. Arrows indicate time of change-of-mind with swapping of

DV dominance. Adapted from Kiani et al. (2014b).

mind and increased activity in the prefrontal cortex (Fleming et al., 2018).

Such findings supported the argument that signals from higher functional

brain regions, or “top-down” signals, could play an important role in error

correction mechanisms (Murphy et al., 2015; Kiani et al., 2014b). Specifically,

similar neural profiles from the medial frontal cortex were observed during

error correction (Murphy et al., 2015).

Overall, despite the neural evidence that associates the neural activity in

the prefrontal cortex (Kiani et al., 2014b; Murphy et al., 2015; Fleming et al.,

2018) to change-of-mind behaviour, there is a lack of theoretical accounts

that explain the mechanism underlying this link. Furthermore, as shall

be discussed in Chapter 3, it is unclear from the existing theoretical work

how subjective confidence is linked to change-of-mind behaviour. Chapter 3

will address existing computational models of decision uncertainty and

change-of-mind.
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Chapter 3

Computational models of

decision uncertainty and

change-of-mind

3.1 Introduction

Several computational models have been developed to account for be-

havioural and neurophysiological data from perceptual decision-making

experiments (Busemeyer & Townsend, 1993; Usher & McClelland, 2001).

So-called accumulate-to-bound models, built on older models (Stone, 1960;

LaBerge, 1962; Edwards, 1965; Laming, 1968; Vickers, 1970; Ratcliff, 1978),

were based on the assumption that a decision between two alternatives

can be described by evidence accumulation over time for each alternative.

A widely-used model, the drift-diffusion model (DDM), assumes noisy ev-

idence accumulation towards one of two decision bounds or thresholds

(Fig. 3.1). When the accumulation supporting one alternative reaches one of

the bounds, a decision is made in favour of that alternative. The DDM can

be easily described (and simulated) by the drift-diffusion equation (Ratcliff,

1978):
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dx = A dt +
p

dt� (3.1)

where x is the internal dynamical (decision) variable, A is the drift rate,

which controls the speed-accuracy trade-off, and � is a random variable

sampled from a normal distribution, which controls the amount of noise

(i.e. diffusion).

Figure 3.1. Three di�erent realisations (black traces) representing the dynamics of three

di�erent decision outcomes in the drift-di�usion model. A fast correct response, a slow error

response, and a slow correct response. A and B are decision boundaries for correct and error choices,

respectively. ‘z’ is the starting point. Adapted from Ratcli� et al. (1999).

The simplicity of the model has allowed elegant mathematical derivations

(e.g. (Ratcliff, 1978; Bogacz et al., 2006)), and the model has provided good

fits to various experimental data (Newsome et al., 1989; Hanes & Schall,

1996; Shadlen & Newsome, 2001; Cook & Maunsell, 2002; Roitman &

Shadlen, 2002; Gold & Shadlen, 2002) despite its small number of model

parameters (3 parameters, and if normalised, 2 parameters). Extended

versions of the DDM have later been developed to account for a wider variety

of phenomena, such as decision urgency (Ditterich et al., 2003; Drugowitsch

et al., 2012).

Another widely-used accumulate-to-bound type model is the race model,

which is an evolution of the recruitment (LaBerge, 1962) and accumula-

tor (Vickers, 1970) models. Unlike the DDM, in the race model, evidence is

accumulated independently for each choice option, i.e. through an indepen-
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dent accumulator for each choice option. A race model simulated under a

two-alternative task (see Fig. 3.2) can be described by (Kepecs et al., 2008):

e+=� (t) =

Z t

0
S+=� (t)dt (3.2)

where S+(t) =
S(t); s(t) > 0

0; s(t) � 0
and s� (t) =

0;s(t) � 0

� s(t);s(t) < 0

Figure 3.2. A simulation of the race model from Kepecs et al. (2008). In a given trial,

two independent decision variables (blue and purple traces) race to reach a prescribed threshold � .

At the time of decision (i.e. one of the variables reaching the threshold), the distance between both

decision variables, �e is used as a proxy for decision con�dence in that trial (see Section 3.2). Adapted

from Kepecs et al. (2008).

Biophysical realisations of accumulate-to-bound models of perceptual

decision making were also developed (Wang, 2002) (see Fig. 3.3). For

instance, Wang (2002) proposed a biophysical detailed model of decision-

making. This cortical circuit model is endowed with slow excitatory re-

verberation, and has a network structure of 1600 excitatory neurons, and

400 inhibitory interneurons. In the model’s simplest form, the network

structure comprises of two subpopulations of neurons that are selective to

rightward/leftward motion, and a nonselective subpopulation of neurons

that does not respond to either direction of stimuli. The neuronal responses
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in the network were modelled to mimic single-unit neuronal recordings

from neuropyshiological studies, and replicates most of their psychophysical

results (Shadlen & Newsome, 2001; Roitman & Shadlen, 2002).

Figure 3.3. Schematic diagram of network structure of biophysical model by Wang (2002).

Two excitatory groups of neurons selective to leftward/rightward motion, and a group of inhibitory

interneurons. Nonselective group of neurons not shown. Adapted from (Wang, 2002)

Importantly, the model was subsequently reduced to allow more rigorous

theoretical analyses and faster computation (Wong & Wang, 2006; Roxin

& Ledberg, 2008). For instance, one reduced model (Wong & Wang,

2006) is described by the two slowest dynamical variables in the model

proposed by Wang (2002). More specifically, using only two dynamical

variables, Wong & Wang (2006) found that most of the behaviours seen

in the original spiking neural network model can be reproduced (Wang,

2002). These two dynamical variables represent the population-averaged

NMDA-mediated synaptic gating variables. The dynamics of these two

variables (neuronal populations) can be described by:

dS1

dt
= �

s1

� s
+ (1 � S1) H (x1; x2) (3.3)

dS2

dt
= �

s2

� s
+ (1 � S2) H (x2; x1) (3.4)

where, assuming a two-choice task, the two excitatory neuronal populations

represent the two choice options and are labelled 1 and 2, and the S’s
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are the population-averaged NMDA-mediated synaptic gating variables.

In a given synapse, many receptor channels can be either in an open or

closed state. S here represents the fraction (i.e. 0-1) of open channels.  is

some fitting constant. � S denotes the synaptic gating time constant (100

ms) constrained by NMDA receptor physiology. H denotes the nonlinear

single-cell input-output function fitted to that of a spiking neuronal model.

The firing rates of the two neuronal populations can be described by these

three equations:

H i =
axi � b

1 � e� d(ax i � b) (3.5)

x i = JN;ii Si � JN;ij Sj + I 0 + I i (3.6)

I i = JA;ext � 0

�
1 �

�
100%

�
(3.7)

where a, b, d are parameters for the input-output function fitted to a leaky

integrate-and-fire neuronal model (Wong & Wang, 2006). The dynamical

variables Si and Sj are from Eqs. 3.3 and 3.4. JN;ii and JN;jj are synaptic

coupling constants from recurrent connections. I 0 denotes a constant value

that represents an effective bias input from the rest of the brain. I i denotes

the excitatory stimulus input to population i , and is proportional to the

evidence quality � , with the stimulus strength constant denoted by � 0 : I i =

JA;ext � 0
�
1 � "

100

�
� JA;ext represents the external synaptic coupling constant.

It should be noted that such reduced (attractor) models (Wong & Wang,

2006; Roxin & Ledberg, 2008) could be theoretically linked back to DDM

under certain conditions and assumptions (Bogacz et al., 2006).

Finally, inspired by the ‘Poisson-like’ statistics in neuronal spiking ac-

tivity (Shadlen & Newsome, 1998; Ma et al., 2006), some computational

models proposed that neural responses can also be represented using prob-

ability distributions (Knill & Pouget, 2004; Ma et al., 2006; Fiser et al.,

2010; Meyniel et al., 2015). Furthermore, Bayesian models have been also



26 3.2 Accumulate-to-bound models of decision con�dence

theoretically linked to drift-diffusion models (Bitzer et al., 2014, 2015). Such

approaches were also used to derive Bayesian inference equations to model

perceptual decision-making (Rao, 2004; Beck et al., 2008; Dayan & Daw,

2008; Brown et al., 2009; Rao, 2010; Kepecs & Mainen, 2012).

Importantly, models of decision uncertainty and change-of-mind are

built on or are extensions of some of the above-mentioned models. These

will be discussed below. In particular, this Chapter will provide a concise

review of computational models of decision uncertainty and change-of-mind.

3.2 Accumulate-to-bound models of decision

confidence

Various theoretical accounts, extending previous accumulate-to-bound mod-

els of perceptual decision making (Vickers, 1970; Ratcliff, 1978; Smith

& Vickers, 1988), have been proposed on how to compute decision con-

fidence (Vickers, 2014; Kepecs et al., 2008; Moreno-Bote, 2010; Pleskac

& Busemeyer, 2010; Zylberberg et al., 2012; Kiani et al., 2014a). These

accounts suggest that decision confidence can be modelled as the balance

(i.e. in some cases explicit difference) between the evidence accumulated

for each choice option at the time of decision, and in some cases, post-

decision (Pleskac & Busemeyer, 2010). For instance, in Kepecs et al. (2008),

using a race model (see Section 3.1), when e+(t) or e� (t) from Eq. 3.2

reaches a prescribed threshold, � , the distance between the two variables,

∆e = je+ (t � ) � e� (t � )j, is used as a proxy for decision confidence. This

framework was also used in later studies of decision uncertainty in animals

and humans (Lak et al., 2014; Urai et al., 2017).

In another study (Pleskac & Busemeyer, 2010), a two-stage model of

decision-making was proposed by extending a DDM to account for the

relationship between post-decision time and confidence reports. More
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specifically, evidence accumulation is assumed to continue after the initial

decision, and the value of the decision variable at the (second) termination

deadline predicts the value of confidence (see Fig. 3.4).

Figure 3.4. A simulation of the two-stage model from Pleskac & Busemeyer (2010). The

model posits that forming a decision and providing a retrospective con�dence rating are two independent

stages. The �rst stage is an accumulation-to-bound stage, i.e. decision is made when the decision

variable (starting from starting point ‘z’) reaches a threshold for one of the two alternatives (A or B).

Accumulation continues onto stage 2, where the con�dence rating is decided by the value of the decision

variable at the end of a temporal deadline (Time 2). Adapted from Pleskac & Busemeyer (2010).

In a more recent work (Kiani et al., 2014a), the race model (see above)

was fitted to the response times from a reaction-time experiment, where

participants simultaneously provided their choice and confidence after ob-

serving an RDM stimulus (see Section 2.1). After fitting the model to

response times, the horizontal position of the saccade on the coloured axis

(S) is predicted via:

S = � 0 + � 1C + � 2T (3.8)

where � 0 and � 1 are parameters resulting from the fit, C is motion coherence,

and T is response time.

Despite providing a good fit to behavioural data from perceptual decision-

making experiments (i.e. response time, choice accuracy and confidence
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ratings), these cognitive models of decision confidence use abstract mathe-

matical relations to compute decision confidence. Such computations may

possibly comprise of very complex neural implementations, i.e. they some-

how imply computing the absolute value of the difference between neural

activities, each encoding the evidence of one of the choice options. Moreover,

models such as the two-stage model of decision-making, cannot account for

error detection, which requires some neural computational architecture in

which the decision and confidence level are encoded in parallel (Charles

et al., 2014). Further, these models do not capture the recent neurophysio-

logical evidence that implicate the involvement of higher order networks,

such as the prefrontal cortex (Del Cul et al., 2009), medial prefrontal cor-

tex (Murphy et al., 2015) or obitofrontal cortex (Kepecs et al., 2008; Lak

et al., 2014) in the representation of decision confidence and error correction

(e.g. change-of-mind).

3.3 Biophysical models of decision confidence

Techniques used above in accumulate-to-bound type models were also

applied to more detailed biophysical models (Wang, 2002) and their reduced

counterparts (Wong & Wang, 2006) (see Section 3.1). More specifically,

and similar to Kepecs et al. (2008), detailed biophysical models have been

extended to estimate decision confidence. Similar to Wang (2002), in Wei

& Wang (2015), a network model with a ring structure was developed to

mimic neuronal responses from the middle-temporal (MT) area in a motion-

discrimination task. The network consists of excitatory cells and a group of

inhibitory neurons, with each excitatory neuron being selective to a specific

motion direction (i.e. ranging from 270� to 90� , see Fig 3.5). After modelling

the external input to each of the neurons in the network, and to mimic

single-unit recordings from Kiani & Shadlen (2009), the average response

of a population of neurons associated with three targets was calculated: TA ,
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TB and Ts for target A, B, and ‘sure-but-small reward’ options, respectively.

RA , RB , and Rs therefore denote average population responses of neurons

associated with targets A, B, and sure-but-small reward, respectively.

Figure 3.5. Network structure of model from Wei & Wang (2015). Excitatory neurons

selective to a motion direction, with a group of inhibitory interneurons. For extensive detail of how the

external inputs to these neurons was modelled, please refer to (Wei & Wang, 2015). Adapted from Wei

& Wang (2015).

For each trial i , choice confidence was however computed as a function

of the instantaneous differential activity jRA � RB j:

cci = f
� �
�Ri

A � Ri
B

�
� � (3.9)

This mathematical measure of confidence is again similar to that in

the above-mentioned accumulate-to-bound models, i.e. it did not resolve

how a neural circuit can compute this confidence. The intuition behind the

computation is that the absolute value of that difference between the average

neural activities would be at its lowest during trials with high uncertainty

or low decision confidence. Such modelled confidence was fitted to data

from Kiani & Shadlen (2009), where monkeys chose a ‘sure’ third option

for small-but-sure reward (see Section 2.1). More recently, such calculation

(i.e. absolute difference) was suggested to be performed by a complex

neural circuit that involves the cortex, pulvinar, and thalamic reticular

nucleus (Jaramillo et al., 2019). Moreover, the nonlinear dynamics of reduced

biophysical models (see Wong & Wang (2006)) have been recently linked to
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decision confidence (Berlemont et al., 2019). In particular, confidence was

modelled as a function of the difference in activity between the winning

and loosing populations at the time of decision. This again is similar to

previous abstract models. In other words, it did not resolve how neural

circuits can realise such computation.

3.4 Bayesian models of decision confidence

Bayesian approaches provide quantitative methods to compute uncer-

tainty (Galvin et al., 2003; Kepecs & Mainen, 2012). Consider the odour-

discrimination two-alternative task in Kepecs et al. (2008), outlined in Sec-

tion 2.2, the authors described how decision uncertainty can be computed

using Bayesian decision theory (Cox, 2006). Specifically, given stimuli A and

B corresponding to choice A and B, respectively, and assuming stimulus A

is normally distributed as P1(sjA) � N (sA ; � A ), and P2(sjB ) � N (sB ; � B )

(see Fig 3.6), Bayesian decision theory proposes that choosing the larger

posterior maximises the choice accuracy. This posterior, for a given stimulus

s, can be evaluated as follows:

choice = A if P(Ajs) > P (Bjs); otherwise B (3.10)

Using Bayes rule:

P(Ajs) =
P(A)P(sjA)

P(s)
(3.11)

and therefore, confidence, which, in this case is the probability of a choice

being correct given a stimulus, can be calculated using:

P(correctjs) = max(P(Ajs); P(Bjs)) (3.12)

Alternatively, an intermediate decision variable can be computed using the
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Figure 3.6. Signal detection theory. In a given trial, a decision variable (DV) is computed from

the perceived stimulus. The DV is then compared to a choice boundary (i.e. criterion, c). Assuming the

stimulus is comprised of signal and Gaussian (i.e. normally distributed) noise, the stimulus for choice A

and B can be modelled as Gaussian distributions. On easy (di�cult) trials (black), the distributions for

A and B can (cannot) be easily distinguishable, due to, for instance, the availability (lack) of sensory

evidence supporting one choice over the other. Adapted from Urai et al. (2017).

log posterior ratio:

d(s) = log
P(sjA)

P(sjB )
+ log

P(A)

P(B )
(3.13)

which simplifies to log-likelihood ratio:

d(s) = log
P(sjA)

P(sjB )
(3.14)

where choice A is chosen if d(s) > 0, and jd(s)j represents the decision

confidence.

Another theory that uses Bayesian inference to model perceptual decision-

making is the probabilistic population codes theory (Ma et al., 2006; Beck

et al., 2008). The theory suggests that in the case of perceiving a motion

discrimination stimulus, each neuron is tuned to a specific orientation, and

the responses from this neuorn encode the likelihood that the stimulus has

a particular orientation (i.e. resulting in a ‘tuning curve’, see Fig. 3.7) (Ma

et al., 2006). Therefore, a population of neurons forms a probabilistic

population code. Other Bayesian theories, e.g. Bayesian sampling the-

ory (Fiser et al., 2010), are similar. Importantly, since neural responses
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can be represented as probability distributions, the precision (i.e. inverse

of variance) of such probability distribution can represent a readout of

decision confidence (Meyniel et al., 2015; Yeung & Summerfield, 2012) (i.e.

distributional confidence, see Fig. 3.7). It is unclear, however, how such a

complex readout can be realised in the brain.

Figure 3.7. Gain and uncertainty in probabilistic population codes. Preferred stimulus is ‘70’.

Left: r is the neural population response to stimulus s in a given trial. Right: posterior probability p(sjr ).

Variance � , or the width of the distribution, is inversely proportional with the gain, g. Con�dence can

be measured by taking the inverse of the � (Meyniel et al., 2015). Adapted from Ma et al. (2006).

It is worth noting that the above does not encapsulate all the current

theoretical accounts that describe how Bayesian statistics can be used to

model decision confidence. For instance, Bayesian approaches are used in

combination with attractor models (Wong & Wang, 2006) to form Bayesian

attractor models (Latham et al., 2003; Bitzer et al., 2015), with ‘built-

in’ uncertainty measurements. Others have proposed Bayesian hierarchal

models (Fleming & Dolan, 2012; Fleming & Daw, 2017), which separate

choice (first-order) from confidence (second-order) processing. However,

Bayesian models have been criticised by connectionists (McClelland et al.,

2010) in that they imply Bayesian optimality in the brain, with no consensus

on how this optimality emerges.

Overall, the above-mentioned models of decision confidence provide good

fits to behavioural data, and in some cases explain the relationship between

choice accuracy, response time and decision confidence. However, current

theoretical accounts do not address how decision confidence is neurally
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implemented in the cortex, or how error correction (e.g. change-of-mind)

can be linked to decision confidence. Before addressing this in detail in

Chapter 4, the next Section will address the current theoretical accounts of

a related topic - change-of-mind.

3.5 Computational models of change-of-mind

Several computational models have been proposed to account for change-of-

mind behaviour (Resulaj et al., 2009; Albantakis & Deco, 2011; Albantakis

et al., 2012; van den Berg et al., 2016a). One of the first cognitive models to

account for change-of-mind behaviour has been recently proposed by Resulaj

et al. (2009). Resulaj et al. (2009) extended the drift-diffusion model of

decision-making (Ratcliff, 1978; Ratcliff et al., 1999), such that noisy sensory

evidence accumulation continues after the initial decision, and in the case

where the accumulated evidence reaches a second prescribed threshold, a

change-of-mind occurs (see Fig. 3.8).

The model by Resulaj et al. (2009) suggests that, in a reaction-time ex-

periment, where the shown stimulus disappears upon participants initiating

their movement towards a choice target, late-arriving sensory information

(i.e. due to signal transduction delays) can lead to the reversal of the

initial decision. Similar to the DDM (see Eq. 3.1), the dynamics of the

decision-making model in Resulaj et al. (2009) is described by the same

equation, with two new parameters control the drift-rate:

dx = dt(kc + � 0) +
p

dt� (3.15)

where k and � 0 are free parameters that control the speed-accuracy trade-

off, fitted to data from individual participants. The accumulation of noisy

sensory evidence continues until a temporal deadline after the initial decision,

tm (see Fig. 3.8). The model provided a good fit to choice accuracy, response

time, and change-of-mind frequency data from three participants performing
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Figure 3.8. A diagram demonstrating the process that leads to a change-of-mind according

to Resulaj et al. (2009). Initially (blue trace), and around the 500ms mark, accumulated evidence

supports the incorrect leftward choice (i.e. an initial decision bound, � B is reached). In the case

of a non-change-of-mind realisation (green trace), for � 300ms, i.e. tm after the initial decision, the

accumulation does not fully reverse the initial decision, i.e. failing to reach the second lower change-of-

mind threshold �B . In the case of a change-of-mind realisation (red trace), the evidence accumulation

reaches the change-of-mind threshold �B , leading to a change-of-mind. Adapted from Resulaj et al.

(2009).

a reaction-time motion discrimination task where participants decided on

the net direction of motion of an RDM stimulus.

More recently, the framework proposed by Resulaj et al. (2009) has been

extended by van den Berg et al. (2016a) to account for not only reversals

in choice (i.e. changes-of-mind) but also changes in levels of confidence. In

a motion discrimination task where participants simultaneously provided

their choice and confidence level on the net direction of motion of an

RDM stimulus, the authors (van den Berg et al., 2016a) show that, using

post-decision accumulation in conjunction with a race model, changes in
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confidence level can also be explained by late-arriving information after

the initial decision (see Fig. 3.9). In order to model the dynamics that

lead to change-of-confidence and change-of-mind, the authors used a log-

odds threshold � , which separated high from low confidence judgments (see

Fig. 3.9, bottom panel). Again, it is unclear how this computation can be

realised by a neural circuit.

Figure 3.9. A diagram showing a realisation with an initial high con�dence correct right-

ward decision followed by a change of con�dence to a rightward (van den Berg et al.,

2016a). Top panel: Two independent race decision variables corresponding to evidence accumulation

for rightward (green trace) and leftward (red trace) choice targets. As with (Resulaj et al., 2009), ac-

cumulation continues after the initial decision (for tm to incorporate late-arriving information, which

could eventually lead to a change-of-mind. Bottom panel: Log-odds of the rightward motion being

correct, calculated based on the decision variable and decision time. Changes in con�dence or choice

level depend on which region the log-odds falls in at the end of the accumulation process �� . Adapted

from van den Berg et al. (2016a).

More realistic computational models (Albantakis & Deco, 2011; Alban-

takis et al., 2012) have also been proposed to account for change-of-mind

behaviour. For instance, in Albantakis & Deco (2011), a biophysical model

based on Wang (2002)’s model was tuned to fit data from Resulaj et al.

(2009) (see Fig. 3.10). Specifically, through a low decision threshold and

noise fluctuations (see Fig. 3.10b), the model was shown to account for choice
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accuracy, response time and frequency of change-of-mind data from Resulaj

et al. (2009).

(a)

(b)

Figure 3.10. Network structure and a sample realisation of the attractor network model

of change-of-mind from Albantakis & Deco (2011). (a) Network structure with 800 external

neurons, and three main neuronal pools: An inhibitory pool (orange), a nonselective excitatory pool

(purple), and a selective excitatory pool (yellow) with two mutually inhibitory neuronal populations

with recurrent excitation (red) selective for choice 1 and 2. (b) A single realisation with change-of-

mind from the model. In some cases, after the initial threshold crossing (at around 44Hz), the initially

winning population (Pool 2, light blue trace) is overtaken by the initially losing population (Pool 1,

blue trace). Adapted from Albantakis & Deco (2011).

To summarise, there are some limitations in the current accounts that

will be addressed by the contributing chapters of this thesis (Chapters 4, 5,

and 6). First, some of the current cognitive and neural computational

models of decision uncertainty use abstract mathematical relations to model

decision uncertainty (Kepecs et al., 2008; Lak et al., 2014; Wei & Wang,

2015). Such techniques imply the subtraction of inputs of some readout

neurons, followed by taking the absolute value. It is not clear how such

computations can be instantiated at the neural circuit level, although recent
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work suggests it involves the complex subcortical structures (Jaramillo

et al., 2019). Other cognitive models (Pleskac & Busemeyer, 2010) compute

the choice and confidence in two separate stages, and therefore, cannot

account for error correction or change-of-mind. Some Bayesian approaches

to model decision confidence offer techniques to model decision uncertainty,

via distributional confidence (Meyniel et al., 2015) (i.e. width of distribution)

or calculating the posterior via Bayes rule. Such models also do not address

the issue of neural plausibility of decision confidence models poised by other

types of models, simply because Bayesian models are constructed to answer

different questions.

In the case of change-of-mind models, most of these models assume

that additional information after the initial decision contribute to the

revision of an initial decision. This could be in the form of additional

noisy sensory evidence (Resulaj et al., 2009; van den Berg et al., 2016a),

or pure noise fluctuations (Albantakis & Deco, 2011). However, in many

situations, additional post-decision evidence may not be available, and

therefore, it is not well understood whether extensions of accumulation-

to-bound models (Resulaj et al., 2009; van den Berg et al., 2016a) can

account for changes-of-mind under such conditions. Importantly, current

theoretical and experimental accounts of change-of-mind have predominantly

focused on revising a decision in response to new sensory evidence, and

used reaction-time tasks to investigate such changes. It is not clear whether

current theoretical accounts extend to other types of tasks, e.g. tasks with

limited viewing duration of stimulus.

In addition to the limitations above, change-of-mind behaviour and

decision uncertainty have so far been investigated and modelled separately.

This will be addressed in Chapter 4. Chapter 4 will discuss a novel neural

circuit model of decision uncertainty and change-of-mind. One important

goal for the modelling work that will be presented in Chapter 4 is to

understand how the neural circuit dynamics and choice behaviour can be

modulated by decision uncertainty. In particular, how decision uncertainty
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can lead to error correction through change-of-mind within a trial. Chapter 5

will provide a more rigorous account of the results presented in Chapter 4,

demonstrating the robustness of the model, and investigating optimal

performance using reward-rate analysis. Finally, Chapter 6 will investigate

changes-of-mind in the absence of new post-decision evidence, a type of

situation neglected by the current theoretical and experimental accounts of

change-of-mind.



39

Chapter 4

A neural circuit model of

decision uncertainty and

change-of-mind

4.1 Introduction

The results discussed in this Chapter have been published in Atiya et al.

(2019a).

As previously discussed, the decisions we make are often accompanied

by a degree of uncertainty on how likely a decision will be correct (Pouget

et al., 2013; Tversky & Kahneman, 1974; Glimcher, 2004). Some deci-

sions are more difficult than others, inducing an internal conflict that may

lead to reconsideration or change-of-mind (Resulaj et al., 2009; Rabbitt,

1966). Likewise, challenging decisions are associated with higher uncer-

tainty, more errors and longer response times (Kepecs et al., 2008; Pouget

et al., 2013; Kiani & Shadlen, 2009). This high uncertainty could also

result in subsequent behavioural adjustments, affecting how quickly and

accurately we make consecutive decisions (Meyniel et al., 2015; Pouget et al.,

2016). As previously discussed in Chapters 2 and 3, several theoretical and
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experimental accounts posit that uncertainty is computed while making

decisions (Beck et al., 2008; Kepecs et al., 2008; Kiani & Shadlen, 2009;

Lak et al., 2014; Kiani et al., 2014a; Rahnev et al., 2012). However, how

decision uncertainty is encoded in the brain and the neural mechanism by

which it affects changes-of-mind and subsequent behavioural adjustments

has, so far, remained elusive (Grimaldi et al., 2015; O’Connell et al., 2018;

Yeung & Summerfield, 2012).

As discussed in Chapter 2, within the studies of perceptual decision

confidence or uncertainty and change-of-mind, there are some common

findings that have been identified (see Fig. 2.6). Firstly, more difficult tasks,

associated with lower (sensory) evidence quality, lead to higher decision

uncertainty, which is also associated with lower choice accuracy (Kepecs

et al., 2008; Fetsch et al., 2014). Secondly, higher decision uncertainty is

associated with lower evidence quality for correct choices while counter-

intuitively associated with better evidence quality for incorrect choices

(forming the often observed ‘< ’ pattern) (see Fig. 2.6 (Kepecs et al., 2008;

Lak et al., 2014; Sanders et al., 2016). Thirdly, changes-of-mind are more

likely to occur when the task is more difficult, and more often accompanied

by correcting an initial impending error choice - hence more error-to-correct

changes than correct-to-error changes (Resulaj et al., 2009; Albantakis

& Deco, 2011) (although the difference has been shown to vary in some

cases (Albantakis & Deco, 2011)). Further, the likelihood of correct changes-

of-mind (to the subsequent correct choices) may peak at an intermediate

level of task difficulty and then decrease gradually when the task becomes

much easier (Fig. 2.9) (Resulaj et al., 2009; Albantakis & Deco, 2011).

Guided by the above findings and related neural data (Fig. 2.7), this

Chapter will present the first cortical neural circuit computational model

that can mechanistically quantify and monitor decision uncertainty, which

may subsequently cause a change-of-mind, hence unifying the two areas of

study. This multi-layer recurrent network model not only accounts for the

abovementioned key characteristics of decision uncertainty (Kepecs et al.,
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2008; Beck et al., 2008; Wei & Wang, 2015) and change-of-mind (Resulaj

et al., 2009; Albantakis & Deco, 2011) across a wide variety of experiments

(of both behavioural and neural data) but also sheds light on their neural

circuit mechanisms. In particular, using dynamical systems analysis, this

Chapter will show that change-of-mind occurs due to the presence of a

transient choice-neutral stable steady state together with noisy fluctuations

within the neuronal network. Interestingly, the analyses showed that the

reversal of competing neural activities encoding the choices (neural basis for

change-of-mind) is more likely to be more distinctive for neurons near the

motor execution area. This is primarily due to the fact that model consists

of multiple layers of neural integrators.

4.2 Materials and methods

4.2.1 Simulated tasks

The proposed model was simulated under two experimental task paradigms.

Unless noted otherwise, the results shown in this Chapter correspond to a

two-choice reaction-time task paradigm. In reaction-time tasks, the stimulus

(which is shown for up to 800 ms) is turned off upon initiating the movement

towards one of the two choice targets.

A subset of the results (where noted) corresponds to a task proposed by

van den Berg et al. (2016b). Under this task, in order for the participant

to receive a reward, two consecutive (coupled) trials have to be answered

correctly.
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4.2.2 Psychometric and chronometric function

A Weibull function (Quick, 1974) was used to fit the model’s psychometric

function, p = 1 � 0:5 exp(� "=a)b, where p is the probability of a correct

choice, � is the evidence quality, which, in the case of the random-dot

stimulus (Ball & Sekuler, 1982; Newsome et al., 1989) is equal to the motion

coherence level (c0). With the parameters used with the proposed model

(see Table 4.1), a (the threshold at which the performance is 85%) is set

to 7.32%, while b, the slope, is equal to 1.32. The model’s response (or

reaction) time was defined as the overall time it took for the sensorimotor

neuronal population activity to reach a threshold value of 35.5 Hz from

stimulus onset time.

4.2.3 Modelling sensorimotor populations using two-

variable model

This multi-layer neural circuit model of decision uncertainty and change-of-

mind was built on top of a neural model of decision making Wong & Wang

(2006). More specifically, the attractor network model, which is described in

detail in Section 3.1, was used to model the sensorimotor populations, with

other simpler models used for the uncertainty-monitoring and motor modules

(see below). Importantly, the uncertainty-monitoring and sensorimotor

module are coupled using a positive feedback loop. Therefore, in addition

to the features in the previous work (Wong & Wang, 2006), the strength of

excitatory feedback from the uncertainty-encoding population is controlled

by a new term, Jmc0 (see Eq. 4.1 below). Hence, decision uncertainty is

monitored and fed back to the sensorimotor populations via excitatory

feedback. The new input-output function of the sensorimotor populations

can therefore be described by:
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x i = JN;il Si � JN;ij Sj + I 0 + I i + Jmc0yU (4.1)

where JN;ii , JN;jj , I 0 are from Eq. 3.6, and I i is from Eq. 3.7. The dynamical

variables Si and Sj are from Eqs. 3.3 and 3.4, denoting the population-

averaged NMDA-mediated synaptic gating variables corresponding to each

sensorimotor neuronal population. Throughout the rest of this Chapter

and following Chapters, subscripts i and j , 1 and 2, and L and R will be

interchangeably used to refer to the neural population selective to leftward

or rightward motion information, respectively.

4.2.4 Uncertainty monitoring neuronal populations

Two neural populations mimicking a canonical cortical microcircuit were

implemented. In order to monitor the level of uncertainty during a trial,

one population, an inhibitory population, integrates the summed output of

the two sensorimotor neuronal populations while another population, and

excitatory population, monitors decision uncertainty. Their dynamics are

described by:

� mc
dyinh

dt
= [JV;inh (H i + H j ) � g]+ � yinh (4.2)

� mc
dyU

dt
= [� � JN;inh yinh � g]+ � yU (4.3)

where yinh and yU are the dynamical variables of the inhibitory neuronal

population and uncertainty-encoding population, respectively. [ ]+ denotes

a threshold-linear input-output function (with a threshold of 0), with its

input argument in units of nA. JV;inh denotes a synaptic coupling constant

from the sensorimotor populations to the inhibitory neuronal population.

H i and H j are the neuronal population firing rates from the sensorimotor

populations i ,j . g represents some top-down inhibition (1000 nA) on the

uncertainty-encoding (and inhibitory) population from beginning of trial,
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which is removed 500ms from Eqs. 4.2 and 4.3 after stimulus onset, respec-

tively. When the activity of one of the sensorimotor neuronal populations

crosses a threshold value (35.5 Hz), g is reactivated (3000 nA). This re-

sults in the activity pattern of uncertainty-monitoring module to mimic

data observed in neural recordings (Kepecs et al., 2008) (see Fig. 2.7, left,

middle panel). JN;inh denotes the inhibition strength from the inhibitory

neuronal population to uncertainty-encoding neuronal population, while

� is some excitatory constant bias input that can be modulated (only in

multi-stage decisions) by decision uncertainty from the first trial in a pair

of coupled-trials (see below).

4.2.5 Motor neuronal populations

Similar to the uncertainty-monitoring neuronal populations, the motor out-

put module was dynamically modelled using threshold-linear functions (with

threshold value of 0). Two neural populations selective for right and left -

with mutual inhibition - were used. The persistent activity can be main-

tained using mutual inhibition to create a line attractor model (Gonçalves

et al., 2014). The dynamics of the neuronal populations for the two choices

(1 and 2) are described by:

� h
dyL

dt
= [JH 1 � JN;LR yR � g]+ � yL (4.4)

� h
dyR

dt
= [JH 2 � JN;RL yL � g]+ � yR (4.5)

where yR and yL are the dynamical variables of the left and right motor

neuronal populations, respectively. H1 and H2 are the firing rates from the

two corresponding sensorimotor populations, and the associated coupling

constant J = 1 nA Hz � 1. JN;ij denotes a coupling constant from population

i to population j . The negative sign indicates connectivity is effectively

inhibitory. Similar to the uncertainty-monitoring module, g represents some
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top-down inhibition (1000 nA) on the motor populations from beginning of

trial and is removed when the activity of one of the sensorimotor neuronal

populations crosses a threshold value (35.5 Hz).

4.2.6 Mapping the activity of the motor module to X

position

The motor module output as a position in the x directional space is approx-

imated by a linear function:

x = q(yL� yR) (4.6)

where q is a constant scaling factor with a value determined by the equation:

q = jTposj =Mth (4.7)

where Tpos is the hypothetical position of the two opposing choice targets.

1366x768 is one of the most commonly used screen resolutions. Therefore,

in the model, this value is set to 750 or -750 (close to the edge of the x

dimension). M th is the motor target threshold, set to 17.4 Hz.

4.2.7 Uncertainty within a single trial

In order to quantify the level of decision uncertainty in a trial, two mea-

sures were used. The first measure was the maximum firing rate value of

the uncertainty-encoding population for each trial n, allowing real-time

monitoring of decision uncertainty. For a specific evidence quality value,

the trial-averaged and SEM of these maximal values were calculated. The

second measure was through calculating the area under the curve of the

firing rate activity over time of the uncertainty-encoding population using

the trapezoidal numerical integration scheme for each trial n. This provides
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an overall quantification of decision confidence after a choice is made. It

also acts as a proxy for any downstream neural integrator that temporally

integrates real-time decision uncertainty information. Again, for each evi-

dence quality value, the mean and SEM of the areas were computed. Either

measure of decision uncertainty is then normalised using feature scaling to

bring all values within the range [0,1]. This is done by:

X 0 =
X � X min

X max � X min
(4.8)

4.2.8 Uncertainty across coupled trials

In coupled trials, the evidence quality of the second trial was selected prob-

abilistically from a uniform distribution, where � 2 [0,3.2,6.4,12.8,25.6,51.2].

In order to transfer the uncertainty level to the next trial, the area under

the curve of the summed activity of the uncertainty-encoding population

at trial n , X n , is transformed and stored into some activity measure C

in the subsequent trial. A simple linear transformation was used. It can

described by:

Cn+1 = �X n + � (4.9)

where n denotes the trial number, � and � are scaling parameters. The

parameter values set in this work are � =0.008 nA and � =0.5 nA. This

value of C(n+1) is then used to modulate the tonic input (and hence baseline

activity) of the uncertainty-encoding population (� , in Eq. 4.3) in the second

trial using the following update:

� ! � + Cn+1 (4.10)

Upon the completion of a pair of coupled trials, the uncertainty bias

C(n+1) , stored in � , is reset to 0.
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4.2.9 Regression and classification of model outputs

In order to fit the model’s decision accuracy as a function of uncertainty,

a smoothing spline function in MATLAB was used. The model behaviour

is identified to have a change-of-mind if there is a reversal in the order of

dominance between the two motor neuronal population firing rates, i.e. if

there is a change in the sign of x (Eq. 4.6), and a choice target is eventually

reached (before a 4 s timeout - see below).

4.2.10 Simulation and analysis

The code to simulate the model was written in MATLAB (version 2018a)

and was run on a Mac OS X workstation. The forward Euler-Maruyama

numerical integration scheme with an integration time step of 0.5 ms

was used for numerical integration of the dynamical equations (describing

dynamics within a trial). Smaller time steps were checked (e.g. 0.01 ms)

without affecting the results. XPPAUT (Ermentrout, 1990) was used to

perform dynamical systems (phase-plane) analysis and for parameter search

on each neural module and for the bifurcation analysis. The model’s

parameter values are summarized in Table 4.1. The model was simulated

under a response-time task paradigm with a timeout of 4 s. The stimulus

appeared 900 ms after a trial has begun. Only 2.2% of the total simulated

trials (8000 trials per condition) were indecision trials in which the motor

activity did not cross the 17.4 Hz threshold, i.e. choice target was not

reached. These simulated trials were discarded and not included in the

analyses.
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4.3 Neural circuit model computes decision

uncertainty

The proposed model is a novel neural circuit model that can encode, quantify,

and monitor decision uncertainty, which is termed the decision uncertainty-

monitoring module (Fig. 4.1a, Uncertainty Monitoring box). This circuit is

built on a previous biologically-motivated neural circuit model of decision-

making that focuses on sensory evidence accumulation (Wong & Wang,

2006)(Fig. 4.1a).

The uncertainty-monitoring module receives input based on the summed

sensorimotor neuronal populations activities (Fig. 4.1a and 4.1b). In par-

ticular, a population of inhibitory neurons (Fig. 4.1a, green circle) inte-

grates these summed activities (Fig. 4.1a, blue and orange pointed arrows;

Section 4.2). This neuronal population in turn inhibits a neighbouring

excitatory neuronal population that encodes decision uncertainty (Fig. 4.1a,

magenta circle). Hence, decision uncertainty can be continuously monitored

(Fig. 4.1b, middle). Together, the network structure with these two neuronal

populations is reminiscent of a cortical column (Wilson & Cowan, 1973).

Further, decision uncertainty information from the uncertainty-

monitoring module is continuously fed back equally to the sensorimotor

neuronal populations (Fig. 4.11a, Sensorimotor box), thus providing, effec-

tively, an excitatory feedback mechanism between the two brain systems,

which consequently may affect the final decision outcome, and in some in-

stances, even lead to change-of-mind, as shall be demonstrated below. This

feedback loop, as in control theory, provides the key computational basis

of linking decision uncertainty and change-of-mind. Without this feedback

loop, the model does not exhibit change-of-mind behaviour. However, it can

still encode decision uncertainty and produce the experimentally-observed

relationship between decision uncertainty and task difficulty. This will be
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addressed in detail in Chapter 5. In addition, the neural circuit model

also has motor-based neuronal populations either located within the same

brain region or downstream in the decision-processing pathway (Fig. 4.1a,

Motor box). Inputs to these populations are temporally integrated based

on the neural firing rate outputs of the associated sensorimotor neuronal

populations (Fig. 4.1b, bottom; Section 4.2).

The general model behaviour, ultimately reported at the motor neuronal

populations, is qualitatively similar to the neuronal firing rates and psy-

chophysical (choice accuracy and response time) data observed in two-choice

reaction time experiments (Roitman & Shadlen, 2002; Resulaj et al., 2009;

Kaufman et al., 2015). Specifically, the neural activity of the winning

(sensorimotor or motor) neuronal population ramps up faster with higher

evidence quality (� =25.6% cf. 3.2%; equivalent to motion coherence in

random dot stimulus - see Section 4.2) (Fig. 4.1b, top and bottom panels);

accuracy increases monotonically with evidence quality (Fig. 4.1c) while

reaction time decreases (with error choices slower than correct choices)

(Fig. 4.1d; compared with (Roitman & Shadlen, 2002; Shadlen & Newsome,

2001)). A choice is considered to be made when one of the activities of the

motor neuronal populations crosses a prescribed threshold of 17.4 Hz. The

motor neuronal population activity is also directly mapped onto the motor

output or positional space (see Section 4.2 and below).

Importantly, the (phasic) activity of the uncertainty-encoding neuronal

population is higher for trials with higher uncertainty (due to lower evidence

quality) (Fig. 4.1b, middle panel). This rise-and-decay activity around the

motor movement onset is consistent with observations from neural recordings

in animal and human studies (Kepecs et al., 2008; Lak et al., 2014; Fleming

et al., 2018; Murphy et al., 2015). More specifically, single neuronal firing

activity in the OFC (from rodents) (Kepecs et al., 2008; Lak et al., 2014),

EEG (Murphy et al., 2015) and fMRI (Fleming et al., 2018) recordings

in humans exhibited this rise-and-decay pattern in experimental studies

of decision-making under uncertainty (Fig. 2.7), and these activities are
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Figure 4.1. Schematic diagram and performance of the distributed neural circuit model.

(a) The uncertainty-monitoring module consists of two neuronal populations. Inhibitory neuronal

population (green) receives excitatory input (straight arrows) from output of sensorimotor module

while inhibiting the uncertainty-encoding neuronal population (lines with �lled circles), which in turn

provides excitatory feedback to sensorimotor module. The uncertainty-encoding population (magenta)

receives a constant tonic excitatory input which varies across trials in speci�c cases (i.e. multi-stage

paradigm, see Section 4.2 and below). Both neuronal populations receive top-down inhibition (black

arrow with �lled circles) that is controlled by variable g (see Section 4.2). The sensorimotor module

consists of two competing (mutually inhibitory) neuronal populations each selective to noisy sensory

information (e.g. rightward or leftward random-dot motion stimulus) favouring one of two (e.g. right

R or left L) choice options. The motor module, receiving inputs from sensorimotor module, also consist

of neural integrators that report the choice made. (b) Timecourse of neuronal population �ring rates

averaged over non-change-of-mind trials with evidence quality, � =25.6% (easy task; solid lines) and

� =3.2% (di�cult task; dashed lines), where � is equivalent to motion coherence in the classic random-

dot stimulus. Faster ramping activity (top and bottom panels) with lower uncertainty quanti�cation

(middle panel; red) with larger � . Colour of activity traces reects the associated neural populations

in (a). To reveal the full network dynamics, the network activities (greyed out) were not reset after a

choice was made. (c) Psychometric function used to �t choice accuracy (using a Weibull function, see

Section 4.2). (d) Response times for correct (black) and error (grey) responses from the model. In this

example, the activation onset times for the inhibitory and uncertainty-encoding neuronal populations

are 400 ms and 500 ms after stimulus onset, respectively. Adapted from Atiya et al. (2019a).
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higher with higher decision uncertainty. This phasic neural activity shall

henceforth be used as an indicator of decision uncertainty monitoring in

real-time, and the temporal integral of its neural activity (i.e. area under the

curve as a proxy for any downstream neural integrator) as a readout of the

decision uncertainty (see Section 4.2). Further, a tonic constant excitatory

bias input to the uncertainty-encoding population (Fig. 4.1a) is required to

provide overall excitation (see Section 4.2). As will be shown below, when

trials are sequentially dependant (i.e. a reward is only received when a

pair of coupled trials result in two correct choices), this same parameter is

linearly varied based on the level of uncertainty in the first trial, influencing

the uncertainty level (and response time) of the second trial (van den Berg

et al., 2016b) (see below and Section 4.2).

4.4 Model accounts for behavioural patterns

of choice uncertainty

Next, the network model is simulated to replicate the key experimental

findings related to decision uncertainty and confidence as discussed in the

Introduction. The proposed model first replicates choice accuracy decreasing

monotonically with decision uncertainty (Fig. 4.2a), while producing the

‘< ’ pattern (Kepecs et al., 2008; Lak et al., 2014; Sanders et al., 2016;

Fleming & Daw, 2017) of decision uncertainty (Fig. 4.2b), in which decision

uncertainty is higher for lower (higher) evidence quality in correct (error)

choices (Kepecs et al., 2008; Sanders et al., 2016) (compared to Fig. 2.6).

This pattern also correlates with the response time pattern in Fig. 4.2d.

To explain the results in Figs. 4.2a and 4.2b, the neural activity of the

uncertainty-encoding population is mapped-out (denoted by the colours in

Figs. 4.2c and 4.2d) with respect to the evidence quality and total input

to the uncertainty-encoding neuronal population. Based on Figs. 4.2c
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Figure 4.2. Model accounts for behavioural patterns of decision uncertainty. (a) Choice

accuracy as a function of decision uncertainty (based on peak value of uncertainty-encoding neuronal

population activity). The break in the horizontal axis is at 0.6. (b) Decision uncertainty as a function

of evidence quality � . Grey (black): error (correct) choices. Bold (dashed): Uncertainty measure based

on averaged peak (peak) or temporal integral (area) of the uncertainty-encoding neuronal population

activity (Section 4.2). Error bars are s.e.m. (c-d) Activity level of uncertainty-encoding population

depends on the total input to the uncertainty-encoding population and evidence quality. Uncertainty

activity level is normalised (see Section 4.2). (c) Correct responses. Activity of uncertainty-encoding

population is higher for correct responses in di�cult tasks (lower � ) due to prolonged response times

(RTs) (Fig. 4.1d), allowing the uncertainty-encoding population longer time to integrate. See text for

more detailed description. (d) Error responses. Activity of uncertainty-encoding population is higher

during errors in easier tasks (higher � due to prolonged RTs (Fig. 4.1d)), allowing the uncertainty-

encoding population longer time to integrate. Adapted from Atiya et al. (2019a).

and 4.2d, it is clear that as long as the total input is high, and there is

sufficient time (i.e. long response time - see Fig. 4.1d) for the uncertainty-

encoding population to integrate its input, the uncertainty level will be high,

regardless of correct or error responses. From the perspective of the network

dynamics, for correct responses with low evidence quality, the inhibition to

the uncertainty-encoding population will initially be higher, i.e. lower total

input. This leads to an initial weaker excitatory feedback to the sensorimotor
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neural populations, causing the ramping-up speed of the latter’s activity

to become slower, which in turn results in a prolonged response time. The

longer response time allows the uncertainty-encoding population to have

more time to integrate and eventually attains a higher activity level, i.e.

encodes higher uncertainty. The activities of the competing sensorimotor

populations will also eventually deviate (i.e. have a clear winner), resulting

in higher total input (i.e. less inhibition) to the uncertainty-encoding

population (moving vertically upwards in Fig. 4.2c, left side). For correct

responses with higher evidence quality, the response times are typically

faster (Fig. 4.1d, black), and hence allowing for less time for the uncertainty-

encoding population to integrate, leading to lower uncertainty activity

levels (moving vertically upwards in Fig. 4.2c, right side). However, for

error responses, the response times are longer for higher evidence quality

(Fig. 4.1d, grey), and that allows for more time for the uncertainty-encoding

population to integrate. This results in higher uncertainty levels (Fig. 4.2d,

right side).

Previous work using a multi-stage decision task paradigm has shown

that the level of decision uncertainty can affect the response time in a

subsequent decision - a form of optimal strategy (van den Berg et al.,

2016b). Specifically, this only occurs if the reward is tied to two consecutive

decisions being answered correctly (i.e. coupled trials). By allowing the

same tonic bias input to the uncertainty-encoding population in the second

trial to vary linearly based on the decision uncertainty in the first trial

of each pair of coupled trials (see Section 4.2), the proposed model can

replicate this behaviour (Fig. 4.3a), exhibiting a prolonged response time in

the second decision if the first decision is correct. (Fig. 4.3a). This trend

holds regardless of the evidence quality, with the exception of the lowest

difficulty level (due to very low uncertainty levels during these tasks; see

Figs. 4.1d and 4.3c). The model naturally accounts for this as the neural

activity encoding the uncertainty level in the first decision is carried over to

the second decision, e.g. higher tonic input with higher decision uncertainty
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level in the previous trial (Section 4.2). This in turn accelerates (decelerates)

the ramping-up of neural activity in the sensorimotor populations and hence

decreases (increases) the response time.

Figure 4.3. Model accounts for and predicts subsequent response times. (a) Normalized

response times of the 2nd decision when the 1st decision is correct (black) and error (grey). The model

exhibits faster response times, when the 1st decision is error compared to correct replicating experi-

mental observations (van den Berg et al., 2016b) (see Fig. 2.2 for comparison). (b) Response times of

the second decisions are further split into error (grey) and correct (black) decisions. Model predicts

a slightly bigger di�erence between 2nd error responses (bold vs. dashed grey lines) than 2nd correct

responses (bold vs. dashed black lines). Error bars are s.e.m. Adapted from Atiya et al. (2019a).

Next, the simulated trials are sorted based on the outcome of both the

1st and 2nd decisions (in each coupled pair) (Fig. 4.3b), i.e. correct-error

combinations. Interestingly, the model predicts a slightly larger difference

when the second responses are error choices (grey lines) than when the

second responses are correct choices (black lines). This difference (between

the correct and error choices) is more pronounced with increasing evidence

quality. This can be explained by Fig. 4.2d: due to the prolonged response

time during error choices with higher evidence quality (Fig. 4.1d) (leading

to longer integration time for the uncertainty-encoding population) and a

higher total input to the uncertainty-encoding population, higher uncertainty

level is reached. Hence, the larger difference.
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4.5 Model accounts for change-of-mind

Previous studies have shown that change-of-mind during decision-making

usually leads to the correction of an impending error (Resulaj et al., 2009;

Albantakis & Deco, 2011). Although previous studies have linked change-

of-mind to the temporal integration of noisy stimulus (Resulaj et al., 2009;

Albantakis & Deco, 2011), this Section demonstrates that the simulated

change-of-mind in this biologically-motivated model is due not only to noise,

but more importantly, to the necessity of an excitatory feedback mecha-

nism induced by decision uncertainty. In particular, the proposed network

model replicates the observation (Resulaj et al., 2009; Albantakis & Deco,

2011) that the probability of change-of-mind decreases monotonically with

evidence quality with the majority of trials leading to ultimately correct

choices (Fig. 4.4a). Further, and consistent with existing observations (Re-

sulaj et al., 2009; Albantakis & Deco, 2011), changes to correct choices

peak at an intermediate evidence quality level before gradually decreasing

(Fig. 4.4a). Moreover, the proposed model predicts that response times

are slower during change-of-mind, regardless of evidence quality (Fig. 4.4b,

overlapping bold and dashed lines). Importantly, a choice-neutral stable

steady state (or attractor) due to nonlinearity may be needed.

Experimental observations have shown that the neural instantiation of

change-of-mind is associated with a reversal of dominance of neural activities

over time within a trial (Kiani et al., 2014b). In the proposed model

simulation with change-of-mind, the firing-rate activities of the competing

sensorimotor neuronal populations reverse their order of dominance over

time within a trial. Fig. 4.5a shows the trial-averaged activity traces of

such reversal condition, which can be directly mapped, via the motor

neuronal population activity (activity is shown in Fig. 4.5a, middle panel)

into a motor output position in the spatial X direction (Fig. 4.5a, bottom).

The switching of neural activity dominance of the sensorimotor neuronal
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Figure 4.4. Model accounts for and predicts key characteristics of change-of-mind. (a)

Probability of change-of-mind with respect to evidence quality. Probability of change-of-mind for a

single evidence quality level is calculated by dividing the total number of change-of-mind trials by the

total number of simulated trials for a speci�c evidence quality level (see Section 4.2). Grey: Total

probability of change-of-mind, consisting of both correct and error choices. Solid black (dashed black):

only subsequent correct (error) change-of-mind choices. Probability of change-of-mind for subsequent

correct choices peak at � =3.2, before decreasing. (b) Response times are slower during change-of-mind

(regardless of whether they are correct (dashed green) or error (bold brown)). Error bars are s.e.m.

Adapted from Atiya et al. (2019a).

populations (Fig. 4.5a, top) can be observed. Note that although the

switching of dominance can be small, the difference in activities is integrated

and amplified by the motor neuronal populations (Fig 4.5a, middle), leading

to an initial bias towards choice 1 or Left (negative X position). Further,

it should be noted that activities of both sensorimotor neural populations

can return to their spontaneous levels - but the activities of the motor

neuronal populations could still continue to integrate over time, magnifying

the difference in sensory evidence, and hence the motor output can move

towards a choice target (Fig. 4.5a, bottom).

4.6 A neural circuit mechanism of change-

of-mind

Next, dynamical systems analysis (Wong & Wang, 2006) is applied to

demonstrate that this reversal phenomenon is caused not only by noise and

strong sensory evidence favouring one population over the other, as indicated
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in previous modelling work (Albantakis & Deco, 2011), but also due to the

effective excitatory feedback of the uncertainty-monitoring module. Similar

to previous work (Wong & Wang, 2006; Wong et al., 2007), the phase

planes of the activities of the sensorimotor neuronal populations - which

are governed by their slow (NMDA-mediated) population-averaged synaptic

gating variables, S1 and S2 were plotted (Figs. 4.5b-d). These gating

variables are monotonic functions of their associated neuronal population

firing rates (Wong & Wang, 2006; Wong et al., 2007). The stimulus is

presented with low evidence quality (� =3.2%). Shown in blue and orange

curves in Figs. 4.5b-d are the nullclines of the sensorimotor module, and

their intersections are the steady states - the middle saddle-like steady state

(or saddle fixed point) in Figs. 4.5b and 4.5d is unstable while the more

off-diagonal ones are stable steady states associated with the choices (or

choice attractor states) (Section 4.2). For the latter, the choice attractor

closer to the S1 (S2) axis represents the stable (final) state for making choice

1 or Left (2 or Right).

With a difficult task (small bias in the phase plane), the sensorimotor

neuronal populations integrate sensory evidence and ramp up their activities

towards one of the two choice attractors, and on average, almost along the

phase-plane diagonal (Fig. 4.5b, black dotted trajectory). Fluctuations due

to noise contribute mainly to the initial dominance in the neural activities,

in this case favouring choice 1 or Left. This leads to high inhibition of

the uncertainty-encoding population and weak excitatory feedback to the

sensorimotor populations. The prolonged ramping up of the activities of

the sensorimotor populations eventually allows integration of the activity

of the uncertainty-encoding neuronal population and provides excitatory

feedback to the sensorimotor module. This leads to the reconfiguration

of the phase space and the creation of a new central and choice-neutral

stable steady state, to which the trajectory of the sensorimotor module

activity is now drawn into (Fig. 4.5c). Notice that the choice attractors

have vanished. Furthermore, while the trajectory is being drawn, it moves
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Figure 4.5. Neural circuit mechanism of change-of-mind behaviour. (a) Trial-averaged (n=17)

timecourse of �ring rates in sensorimotor module (top), motor module (middle) and corresponding motor

trajectory (bottom). Evidence quality � =3.2 (favouring population or choice 2 or Right). Populations

compete after stimulus onset (time 0). As motor starts moving in one direction (without reaching the

target), a reversal of neural activity dominance in sensorimotor module occurs, leading to a change-of-

mind. Note: �nal decision is made by the motor output in X space (bottom). (b) Immediately upon

stimulus onset (� =3.2, favouring choice 2 or Right), the sensorimotor population activity trajectory

(black dotted line) in phase space deviates from phase plane diagonal. Black �lled circles: stable steady

states representing the two choices i.e. choice attractors; grey �lled circle: saddle-like unstable steady

state. Refer to main manuscript regarding content of the phase plane (e.g. nullclines). (c) During the

middle epoch of the trial, large excitatory feedback from uncertainty-monitoring module causes phase

plane to recon�gure, and a new choice-neutral stable steady state appears which aids the initially losing

neural population (population 2). Trajectory is now drawn towards this stable steady state, towards

the phase plane diagonal. Inset: Zoom in. (d) During the later epoch of the trial, both sensorimotor

populations receive lesser excitatory feedback from the uncertainty-monitoring module, resulting in the

phase plane reverting closer to the previous condition during the early epoch of the trial. Adapted

from Atiya et al. (2019a).

closer towards and crosses the diagonal line (Fig. 4.5c). Importantly, the

model suggests that this new stable steady state plays an important role

in change-of-mind - it provides the initially losing neuronal population a

higher chance of winning.

Due to the transient nature of the uncertainty-encoding neuronal popula-

tion activity (Fig. 4.5b, middle), the excitatory feedback returns to baseline

level, and the phase plane reverts to its initial configuration (Fig. 4.5d)

(prior to the activation of the uncertainty-monitoring module (Fig. 4.5b)).

This causes the trajectory to move towards the higher part of the phase

plane and, coupled with noise, leads to a change-of-mind behaviour. Overall,

this is reflected in the reversal of dominance in the neural activities of the
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motor populations (Fig. 4.5a, middle) and motor movement (negative-to-

positive) direction (Fig. 4.5a, bottom). It should be noted that in the model,

the final decision is determined by whether the firing rate of motor neural

populations, which themselves are neural integrators, reach a prescribed

target threshold (see Section 4.2). Thus, change-of-mind could still occur

even if the activity reversal is not clearly observed in the sensorimotor

module.

The analyses shows that the new central choice-neutral stable steady

state is less likely to emerge with higher evidence quality due to shorter re-

sponse time and weaker excitatory feedback from the uncertainty-monitoring

module (Figs. 4.5c and 4.5d). This explains why higher evidence quality

generally leads to lower probability of change-of-mind (Resulaj et al., 2009;

Albantakis & Deco, 2011) (Figs. 4.4a, black). For lower evidence quality, the

phase plane is almost symmetrical (Fig. 4.5b). Thus, the network is likely

to make an error choice initially due to noisy fluctuations. This can lead to

longer integration time for the uncertainty-monitoring module and provides

stronger excitatory feedback - in the form of a transient, centralized attrac-

tor state - and consequently, correcting the decision. Hence, this explains

why there are more correct change-of-mind trials than error change-of-mind

trials. However, increasing the evidence quality leads to lower probability

of change-of-mind, as discussed above. This explains the observed peak in

probability of correct changes-of-mind (Fig. 4.4a).

4.7 Discussion

A seminal paper has shown neuronal firing rates from the OFC (Kepecs et al.,

2008) can signal decision uncertainty encoded through its phasic activity, as

in the proposed model’s uncertainty-encoding population. Specifically, the

magnitude of the firing rates in single neuronal recordings in OFC (Kepecs

et al., 2008), peaking around the response initiation time. This peak is
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higher the longer the animal waits before opting out (a measure of decision

uncertainty level) (see Fig. 2.7). This work was extended (Lak et al., 2014)

by showing that inactivation of OFC neurons during an opt-out waiting task

causally affected the animal opting out (i.e. decision uncertainty reporting)

behaviour. More recently, EEG (theta band) and fMRI recordings have also

shown neural activities exhibiting similar characteristics (Murphy et al.,

2015; Fleming et al., 2018), with phasic activities peaking around the

response initiation times, and the peak was higher with higher reported

uncertainty or when an error was detected by the participants.

The proposed model was able to exhibit higher levels of decision uncer-

tainty and lower choice accuracy with more difficult tasks (Kepecs et al.,

2008; Beck et al., 2008; Wei & Wang, 2015) (Fig. 4.2a). Further, the model

showed higher decision uncertainty with lower evidence quality for correct

choices, but counter-intuitively, lower decision uncertainty for incorrect

choices, in line with the previously observed ‘< ’ pattern (Kepecs et al., 2008;

Lak et al., 2014; Fleming & Daw, 2017; Sanders et al., 2016) (Fig. 4.2b,

Fig. 2.6). This was explained by the faster response times for correct choices,

with lesser integration time for the uncertainty-monitoring module, which

led to lower decision uncertainty (Figs. 4.2c and 4.2d). For error choices, the

integration time was longer with higher evidence quality (Fig. 4.1d). This

led to longer integration time for the uncertainty-monitoring module and

hence higher decision uncertainty. Furthermore, the uncertainty-monitoring

module provided a closed-loop recurrent network mechanism of excita-

tory feedback with the sensorimotor neuronal population, enhancing the

latter’s responses. This was reminiscent of a dynamic gain or urgency

mechanism (Ditterich, 2006; Niyogi & Wong-Lin, 2013). Future work could

test this mechanism, e.g. using a task paradigm that produces fast error

choices (Ratcliff et al., 2015) and determining whether the ‘< ’ pattern is

absent.

By utilising a proxy memory mechanism instantiated in the existing

tonic bias input to the uncertainty-encoding neural population, the proposed
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model was also able to show that decision uncertainty from a correct first

trial caused a slower response time in the second trial, compared to when

the first trial was incorrect (Fig. 4.3a). Moreover, the model predicted

a slightly larger difference in response times when the second responses

were error choices than when the second responses were correct choices

(Fig. 4.3b). This difference was more pronounced with increasing evidence

quality. Future work could test the proposed model’s prediction, for instance,

by direct micro-stimulation or inactivation of the uncertainty-encoding (or

outcome anticipation) neurons in the medial frontal cortex e.g. OFC in

rodents (Kepecs et al., 2008; Lak et al., 2014) or subregions in the human

frontal cortex (Morales et al., 2018).

The results in Figs. 4.3a and 4.3b could be explained by the uncertainty

level mappings (Figs. 4.2b, c and d). Specifically, in pairs of coupled trials,

errors in first decisions led to a higher tonic bias input (and subsequently,

higher overall input, Fig. 4.2d) in second decisions, due to higher uncer-

tainty levels in first error decisions (Fig. 4.2b, grey) than correct decisions

(Fig. 4.2b, black), which resulted in stronger excitatory feedback to the sen-

sorimotor module. This led to faster activity ramping up of the sensorimotor

populations, which in turn caused faster error (than correct) response times

in second decisions. Furthermore, Fig. 4.3b showed that such differential

effect would be more prominent for higher evidence quality.

The same model could exhibit changes-of-mind which were more likely to

occur with lower evidence quality (Resulaj et al., 2009; Albantakis & Deco,

2011) (Fig. 4.4a, grey). Specifically, the model showed that changes-of-mind

were more often accompanied by correcting an impending error choice -

hence more error-to-correct changes than correct-to-error changes (Fig. 4.4a,

bold black vs dashed black), consistent with previous observations (Resulaj

et al., 2009; Albantakis & Deco, 2011). Furthermore, the likelihood of

error-to-correct changes slightly peaked at an intermediate level of evidence

quality before decreasing as the task becomes easier (Albantakis & Deco,

2011; Resulaj et al., 2009) (Fig. 4.4a, bold black). The model predicted
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slower response times during changes-of-mind, regardless of evidence quality

(Fig. 4.4b). Chapter 5 will address the importance of the excitatory feedback

monitoring module to the sensorimotor module in inducing change-of-mind.

Phase-plane analysis was used to explain the change-of-mind phenomenon.

First, the process of change-of-mind could be understood in terms of the

sensorimotor network state being attracted to three distinct basins of at-

traction: the initial choice, then to the central choice-neutral ‘uncertain’

state, and finally to the other choice. With higher evidence quality, the

correct choice attractor dominated the phase plane, with its generally larger

basin of attraction (see Wong & Wang (2006)) and the central attractor

was less likely to appear due to the weaker uncertainty-based excitatory

feedback. This explains the monotonic decrease of the probability of change-

of-mind (Fig. 4.4a). In other words, changes-of-mind did not occur due to

the heavily biased phase plane and fast response times. However, at low

evidence quality levels (� < 4%), the phase plane was almost symmetric

(Fig. 4.5b), which led to more initial errors (Fig. 4.4a). Under such low

evidence quality, it was increasingly likely that the network would make an

initial error choice (Wong & Wang, 2006). This led to longer integration

time of the decision uncertainty-monitoring module and provided stronger

excitatory feedback - in the form of a transient, central choice-neutral stable

steady state - and eventually, correcting the decision (Figs. 4.5c and d).

On the contrary, increasing the evidence quality led to lower probability of

changes-of-mind. This explains the peak in probability of correct changes-

of-mind at an intermediate evidence quality (Fig. 4.4a; Fig. 2.9). The model

further suggested that during changes-of-mind, noisy fluctuation around

the phase-plane diagonal led to subtle deviations early in the trial (Fig. 4.5).

The downstream motor module, which was itself a neural integrator, am-

plified any slight deviation and led to movement being initiated towards a

choice target (Figs. 4.5a).

Fig. 4.6a illustrates a hypothetical decision “potential well” (Wong &

Wang, 2006) that summarizes the key findings for change-of-mind- the
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central attractor, caused by the excitatory feedback from the decision

uncertainty-monitoring module, and coupled with noise, can allow an initial

choice to be altered. The strength and basin of this attractor depends

on the evidence (and elapsed time) for temporal integration based on the

outputs of the sensorimotor neuronal populations. To provide further

insights, a bifurcation (or stability) analysis of the activity of a neuronal

population (selective to choice 1 or Left) in the sensorimotor module, S1,

with respect to the systematic variation (bifurcation parameter) of the

overall excitatory feedback input current from the uncertainty module with

evidence quality � =0 (Fig. 4.6b), is provided. The stable steady states are

denoted by black lines, while dotted lines represent the unstable saddle

steady states. During the initial epoch of a trial, this excitatory feedback

input from the uncertainty-monitoring module (specifically the uncertainty-

encoding neuronal population) to the sensorimotor population is very low

or zero (green vertical dashed line). This is the regular winner-take-all

regime (Wong & Wang, 2006). As sensory evidence is accumulated in the

sensorimotor populations, the uncertainty level is increased, which leads to

higher excitatory feedback from the uncertainty-monitoring module. When

the overall excitatory feedback is sufficiently large (larger than 0.03nA

in the model’s simulations (vertical magenta dashed line)), the network is

attracted towards the only present stable steady state, i.e. the choice-neutral

stable steady state. However, this effect is only transient - in a later epoch of

a trial, the neural activity of the uncertainty-encoding neuronal population

may return towards a lower level, and the decision network would once

again revert to the winner-take-all regime (Wong & Wang, 2006) (vertical

green dashed line).

Unlike previous neurocomputational models (Wang, 2002; Albantakis

& Deco, 2011), the proposed model does not rely on explicitly reversing

the stimulus input to neural populations or having a relatively low (first)

decision threshold (to induce faster errors). Further, it does not rely on

abstract mathematical calculation of decision uncertainty (Kepecs et al.,
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2008). Inspired by neural evidence of decision confidence (Kepecs et al.,

2008; Murphy et al., 2015; Fleming et al., 2018), the proposed model has a

dedicated neural module that has a plausible circuit architecture resembling

a cortical column that monitors and quantifies decision uncertainty and

controls decision dynamics via excitatory feedback.

Figure 4.6. Uncertainty-induced symmetric stable steady state causes change-of-mind. (a)

Top-to-bottom: Hypothetical \potential well" of network changes over epochs within a trial (arrow).

When making a choice between two alternatives, the strength of the stimulus (and noise) drives the

ball towards one of the two wells (in this case, an error choice). A transient strong excitatory input

(due to excitatory feedback from uncertainty-monitoring module) changes the \energy" landscape into

one centralized deep well, allowing a higher chance to change its initial decision. (b) Bifurcation

(or stability) diagram of the activity of a neuronal population selective to choice 1 or Left in the

sensorimotor module, S1 , with respect to variation in the overall excitatory feedback input current

from the uncertainty-monitoring module. Evidence quality � =0. Black bold: stable steady states;

black dotted: unstable saddle steady states. Dashed green: initial low uncertainty-induced excitatory

feedback and lying within the winner-take-all regime. Dashed magenta: intermediate epoch of a trial

with large uncertainty-induced excitatory feedback - only one stable steady state exists. Later epoch of

a trial reverts back to green dashed line. Adapted from Atiya et al. (2019a).

The proposed model complements simpler computational cognitive mod-

els such as the extended drift-diffusion models (Resulaj et al., 2009; Bogacz,

2007; Pleskac & Busemeyer, 2010), by providing a neural circuit perspective

on the neural mechanism behind decision confidence or uncertainty and

change-of-mind. Specifically, the proposed model links to psychophysical

data (Figs. 4.1c, 4.1d, 4.2a, 4.2b, 4.3a, and 4.4a) and also directly relates to

neurophysiological data (Figs. 4.1b and 4.5a), which simpler models cannot
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readily do. Hence, both psychophysical (Figs. 4.3b and 4.4b) and neural

(Figs. 4.1 and 4.5) predictions are naturally embedded in the model. That

said, such biologically-motivated (mean-field) models can be linked back

(through various model reductions and assumptions) to simpler cognitive

models such as the drift-diffusion models (Bogacz, 2007; Wong & Wang,

2006; Wong et al., 2007).

Several cognitive models have been proposed to model different roles of

the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC),

which include error prediction (Alexander & Brown, 2011). However, it

is unclear how the predicted ACC signals (i.e. negative and positive ‘sur-

prise’ signals) in such models can influence the dynamics of decision for-

mation (Brown, 2013). In addition to explicitly modelling the dynamics of

perceptual decision uncertainty, the proposed model provides an account of

the effect of decision uncertainty on the dynamics of the decision formation

process; from sensory evidence integration up to motor output. This results

in decision changes ‘on the fly’ leading to change-of-mind within a trial.

The proposed distributed neural circuit model is more realistic than

other biologically-motivated computational models of decision confidence

or change-of-mind (Albantakis & Deco, 2011; Wang, 2002). Evidence shows

perceptual decisions are performed and distributed across multiple brain

regions (Schall, 2013). Specifically, the activity of the motor module can be

directly transformed to motor positional coordinates, hence directly maps

to physical output. The model’s feedforward connections from sensorimotor

to motor modules suggests that the reversal of neural activities resembling a

change-of-mind could be more clearly identified in more motor-based neurons

than sensory-based neurons (Fig. 4.5). Future experiments could show the

difference in neural dynamics in different brain regions during change-of-

mind tasks, e.g. via dual recordings at the sensory and motor-based brain

regions.

In summary, this Chapter presented a neural circuit model that can

compute decision confidence or uncertainty within and across trials while
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also occasionally exhibiting changes-of-mind. The model can replicate

several important observations of decision confidence and change-of-mind

and is sufficiently simple to allow rigorous understanding of its mechanisms.

Chapter 5 will provide a more rigorous account of the results through further

analyses.
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Chapter 5

Sensitivity, robustness, and

optimality analysis of the

neural circuit model of

decision uncertainty and

change-of-mind

5.1 Introduction

Some of the results discussed in this Chapter have been published in Atiya

et al. (2019a).

Chapter 4 presented a cortical neural circuit computational model that

can mechanistically quantify and monitor decision uncertainty, with high

decision uncertainty possibly leading to change-of-mind, hence unifying

the two areas of study. The proposed model, which comprised multiple

layers of neuronal integrators, was designed to replicate a set of common

characteristics (both behavioural and neural) of decision uncertainty (Kepecs

et al., 2008; Sanders et al., 2016) and change-of-mind (Resulaj et al., 2009;



70 5.1 Introduction

Kiani et al., 2014b). The proposed model, however, contains a number

of parameters that are not adapted from the previous model of decision-

making (Wong & Wang, 2006).

Furthermore, a simple memory mechanism was used to account for

behavioural results from the multi-stage decision task (van den Berg et al.,

2016b). It is unclear from the results in Chapter 4 whether this mechanism

is robust, i.e. how are the results affected by the size of the uncertainty bias?

Importantly, the modelling results presented in Chapter 4 were specific to

one type of task (i.e. reaction-time) and one duration of stimulus (800ms).

Existing studies of perceptual decision-making typically subject their par-

ticipants to stimuli for much shorter durations, given the overwhelming

evidence indicating that the majority of perceptual decisions are made in less

than 300ms (albeit with mostly well-trained monkeys, (Kiani & Shadlen,

2009)). It is unclear to what degree a different stimulus duration can affect

the modelling results (i.e. uncertainty and change-of-mind results).

In this Chapter, a more rigorous account of the modelling results from

Chapter 4 will be presented. In particular, the most sensitive set of pa-

rameters will be identified and systematically varied. Additionally, the

robustness of the multi-stage paradigm implementation will be investigated,

and the main modelling results will be validated under a shorter stimulus

duration, adapting a duration of stimulus used in previous decision-making

studies (Kiani & Shadlen, 2009; Fleming et al., 2018). Finally, optimal

model performance, through reward-rate analysis, will be investigated un-

der various values of the most sensitive uncertainty-monitoring module

parameters.
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5.2 Materials and methods

5.2.1 Simulation of parameter analysis

The proposed model in Chapter 4 was used (see Section 4.2). Unless

noted otherwise, the parameter analysis simulations were run under 8000

trials under one condition (� =6.4%). Results under other evidence quality

conditions can be inferred from the other modelling results presented in

Chapter 4. Parameter values in Table 4.1 are used for all simulations, apart

from the parameter that is being tested or varied.

5.2.2 Linear regression

In order to show response times and decision uncertainty levels correlate, a

linear regression was performed on all simulated response times with decision

uncertainty levels (R2=0.993). The two variables were highly correlated

(Pearson’s r = 0.85, p = 0).

5.2.3 Psychometric function for short-duration stim-

ulus simulations

As shown in the previous chapter (see Section 4.2.2), a Weibull func-

tion (Quick, 1974) was used to fit the psychometric function. For the

short-duration stimulus simulation results, a = 12.55% (the threshold at

which the performance is 85%) and b = 1.232 (the slope) compared to a =

7.32% and b = 1.32 when simulating the model under a reaction-time task

with a stimulus duration of 800ms.
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5.2.4 Reward rate

Reward rate analysis is used to investigate the model’s optimal performance

under various parameter values. For a given block of trials (i.e. evidence

quality level), (mean) reward rate is calculated as the total number of

correct choies divided by the total time taken (Bogacz et al., 2006):

RR =
CC

RT + D + ER � Dp
(5.1)

where CC is the total number of correct choices, RT is the sum of all

response times for correct choices (see Section 4.2.2), D is the inter-trial

interval set to 0 s for simplicity, ER is the total number of error choices,

and Dp is a penalty for making an error choice (set to 1 s).

5.3 Excitatory feedback is necessary for change-

of-mind

Figure 5.1. Excitatory feedback determines model performance. � : tonic input to

the uncertainty-encoding neural population; Jmc 0 : excitatory feedback strength from uncertainty-

monitoring module to sensorimotor module. (a) Probability of changes-of-mind (CoM), P(CoM).

P(CoM) is increased with increasing excitatory feedback strength. (b) Accuracy (probability of correct,

P(Correct)) increases as the excitatory feedback strength from the uncertainty-monitoring module to

sensorimotor module is increased. Saturation at around 77% accuracy due to reaching the �xed decision

threshold (35.5Hz). (c) Faster response times (RTs) are observed when excitatory feedback strength is

increased. Saturation of RTs at 600ms due to reaching the �xed decision threshold (35.5 Hz). Adapted

from Atiya et al. (2019a).

In Chapter 4, the model parameter values were selected to reproduce the
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qualitative aspects of existing common characteristics of decision confidence

or uncertainty and change-of-mind behaviour (Kepecs et al., 2008; Sanders

et al., 2016; Resulaj et al., 2009; Albantakis & Deco, 2011) (Figs. 2.6 and 2.9).

In order to provide a more rigorous account of the model simulation results

presented in Chapter 4, here, the newly-introduced model parameters, in

particular, the strength of the excitatory feedback (Jmc0 from Eq. 4.1) and

tonic input (� from Eq. 4.3) are now varied (see Fig. 5.1). Specifically, for

each simulation, the value of the excitatory feedback was selected from

Jmc0 2 [0:0005; 0:0009; 0:001; 0:002; 0:005; 0:009; 0:02; 0:05; 0:07], and the

tonic input was selected from � 2 [20; 23; 26; 29; 32; 35; 38; 40]. At the end

of each simulation, the performance of the model was determined based on

the probability of change-of-mind, P(CoM), choice accuracy, and response

time.

First, the results (Fig. 5.1a) suggest that increasing the excitatory feed-

back from the uncertainty-monitoring module to the sensorimotor module

leads to increased probability of change-of-mind. Specifically, with lower

excitation strength, there is a lower chance the central attractor appearing,

which would lead to a lower chance of a change-of-mind occurring. The re-

sults (Fig. 5.1b) also suggest that increasing the excitatory feedback strength

from the uncertainty-monitoring module to sensorimotor module leads to

higher choice accuracy. This can be explained by the faster ramping-up

(i.e. due to increased input) of the neuronal activities of the sensorimotor

populations, which could lead to the neuronal population with the positive

input bias (i.e. corresponding to correct choice) to have a higher chance of

‘wining’ the winner-take-all race to the decision boundary. Finally, increas-

ing the strength of the excitatory feedback from the uncertainty-monitoring

module to sensorimotor module leads to shorter response times (Fig. 5.1c).

Due to the increased input caused by the strong excitatory feedback, the

response is then made faster, making this mechanism reminiscent of dynamic

gain modulation or an urgency signal, e.g. as in Niyogi & Wong-Lin (2013)

(see Fig. 5.2). Importantly, both effects (i.e. increasing choice accuracy and
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shortening response times) saturate at 77% and 600ms, respectively, due to

the fixed decision threshold (35.5 Hz).

Figure 5.2. Excitatory feedback is reminiscent of dynamic gain modulation or an urgency

signal. Sample timecourse of �ring rates of the ‘winning’ neural population (i.e. with more input bias)

in the sensorimotor module in the case of excitatory feedback (black solid trace, Jmc 0 = 0.009) and

no excitatory feedback (grey dashed trace, Jmc 0 = 0), with � =12.8%), with the random seed reset for

each simulation. In the case of the trial with excitatory feedback (solid black trace), ramping up is

faster, leading to a quicker response. Neural population �ring rates were calculated by averaging over

a time window of 50 ms, slided with a time step of 5 ms. Note: Due to the time window technique

used, it might appear as if the decision threshold was not reached. What this highlights instead, is that

the in the trial with excitatory feedback (black trace), the activity was sustained around the decision

threshold (35 Hz) for a longer time than in the case of a trial without excitatory feedback (grey trace).

Interestingly, when there is no excitatory feedback from the uncertainty-

monitoring module to the sensorimotor module, the decision uncertainty can

still be encoded (Fig. 5.3), but there is no change-of-mind (Fig. 5.1). This

suggests that for the proposed biophysically-constrained network model,

noisy fluctuation may be necessary but not sufficient to allow significant

change-of-mind behaviour, and a neutral stable steady state (or attractor)

due to nonlinearity may be needed.
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Figure 5.3. Decision uncertainty relationship with evidence quality can be encoded with-

out the excitatory feedback loop. 8000 trials per condition of evidence quality, the excitatory

feedback strength (Jmc 0) was set to 0. Model can encode decision uncertainty without the feedback

loop but with no change-of-mind. Error bars are s.e.m. Adapted from Atiya et al. (2019a).

5.4 Top-down inhibition affects model per-

formance

In the proposed model in Chapter 4, the top-down inhibition is activated in

two stages. In the beginning of a simulated trial (Fig 5.4), the top-down

inhibition is activated until 500ms after the stimulus onset time, after which

the top-down-inhibition is deactivated until a response is made. Similar

to Section 5.3, the two parameters controlling the top-down inhibition

were varied, t INH , which is the time delay from stimulus onset to top-down

inhibition deactivation onset for the inhibitory population in the uncertainty-

monitoring module, and tU , which is that for the excitatory population.

Specifically, for each simulation, the values of the two parameters t INH and

tU were selected from 2 [0; 100; 200; 300; 400; 500; 600]. At the end of each

simulation, the performance of the model was determined based on P(CoM),

choice accuracy, and response time.

The results (Fig. 5.5) suggest that t INH , is the dominant parameter out

of the two, with little to no effect in varying the tU , especially on response

times (Fig. 5.5c). Furthermore, increasing the value of t INH leads to lower

P(CoM) (Fig. 5.5a). Specifically, removing the top-down inhibition as soon
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Figure 5.4. A sample neural activity timecourse during change-of-mind. Sample timecourse

of �ring rates in sensorimotor module (top panel), uncertainty-encoding population (middle panel),

motor module (bottom panel). (� =3.2) exhibiting change-of-mind. Despite the small di�erence in the

dominance of activity in the sensorimotor module, the motor populations continue to integrate over

time, amplifying this di�erence. Top-down inhibition is activated in two stages. Beginning of the trial,

and 500ms after the stimulus onset time. Trial completion time (time target threshold was reached)

at 1637 ms. Neural population �ring rates were calculated by averaging over a time window of 50 ms,

slided with a time step of 5 ms. Integration is shown until 2000ms to reveal the full dynamics (the

phasic nature) of the uncertainty-encoding population activity (middle panel). Adapted from Atiya

et al. (2019a).

as the stimulus is on (i.e. around 0) leads to the longest period of feedback

excitation to the sensorimotor module, therefore increasing the chance of a

central attractor appearing, which is crucial for change-of-mind. The same

increase in t INH positively affects choice accuracy (Fig. 5.5b) and response

times (Fig. 5.5c).

Importantly, the top-down inhibition used in the proposed model serves

as a mechanism to account for the previously-reported strong link between

decision uncertainty level and response time (Kiani et al., 2014a). Specifi-

cally, by deactivating the top-down inhibition on response (Lo & Wang, 2006;

Crapse & Sommer, 2009), the peak firing rate of the uncertainty-monitoring



5.4 Top-down inhibition a�ects model performance 77

Figure 5.5. Deactivation time of top-down inhibition a�ects model performance. tU is

the time delay from stimulus onset to deactivation onset of the uncertainty-encoding population, while

t INH is that for the inhibitory population in the uncertainty-monitoring module. P(CoM) decreases

(a), accuracy increases (b), and RT is slower (c), as the delay t INH is increased. Adapted from Atiya

et al. (2019a).

population depends on how long it takes the network to respond in a given

trial. This, in turn, results in a strong correlation between uncertainty and

response time, as highlighted in Fig. 5.6 (see Section 5.2.2 for details of this

linear regression).

Figure 5.6. Decision uncertainty is strongly linked to response time. Data points (blue) of

individual RTs were obtained from 8000 simulated trials per evidence quality level (48,000 trials). Data

indiscriminately consisted of correct, error, CoM and non-CoM trials. Fit (red line) was performed

using a linear regression of the uncertainty level as a function of RTs. The two variables (uncertainty

level and RT) have a very high (Pearson’s) correlation coe�cient of 0.85 (p = 0) (not shown). Decision

uncertainty was calculated using the maximal activity level (similar results with area under the curve

method { not shown) (see Methods for further detail). High evidence quality trials that resulted in

insigni�cant change (i.e. < 1 Hz) in decision uncertainty levels were excluded from the analysis (6042

trials). See 5.2.2 for details of this linear regression. Adapted from Atiya et al. (2019a).
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5.5 A robust memory mechanism in a multi-

stage decision task

Figure 5.7. Changes to the model’s parameters for the multi-stage memory mechanism do

not signi�cantly a�ect performance. 6000 simulated coupled trials per condition. (a) Response

time of second decision in case of a �rst correct (black) and error (grey) with � = 0.04 and � = 0.25.

The results are qualitatively similar to ones reported in Chapter 4 (see Fig. 4.4). (b) Response time of

second decision in case of a �rst correct (black) and error (grey) decision with � = 0.16 and � = 1.0. A

minor (i.e. expected) increase in the di�erence between the two response times for all conditions, due

to the increase in uncertainty bias with the larger values of � and � .

The simulated multi-stage decision paradigm is a special case of sequen-

tial decision-making (van den Berg et al., 2016b). Specifically, two coupled

decisions have to be correct in order to receive a reward. In van den Berg

et al. (2016b), the time delay from the first choice to the next stimulus onset

(response-stimulus interval, RSI) is sampled from a truncated exponential

distribution (range 0.3� 1.0 s; mean 0.57 s). However, when simulating this

paradigm as presented in Chapter 4, the uncertainty bias is reset upon

the completion of every pair of coupled trials (see Section 4.2.8). This

uncertainty bias is transferred to the second trial in a pair of coupled trials

using a simple memory mechanism. To examine the effect of this memory

mechanism on the simulation results in Chapter 4, the parameters � and �
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from Eq. 4.9 are varied, i.e. a two-fold increase and decrease.

Interestingly, setting � and � to �= 2 and �= 2, respectively, does not

affect the qualitative aspects of the original results (Fig. 5.7a), i.e. the the

response time of the second decision in case of a correct first decision is still

longer than when the first decision is an error. However, setting the values

of � and � to 2� and 2� leads to a slightly bigger difference between the two

response times (Fig. 5.7b). This is due to the larger uncertainty bias that is

being transferred to the second trial in a pair of coupled trials. Importantly,

the qualitative aspects of the results from both sets of parameters are the

same and match the ones reported in Chapter 4. This demonstrates the

robustness of the model.

5.6 Model performance under shorter dura-

tion stimulus

The proposed model in Chapter 4 was simulated under a reaction-time task

with a stimulus duration of 800ms. In order to provide a more rigorous

account of the main modelling results, in this section, the effect of using

a short-duration stimulus is analysed. Specifically, the model is simulated

under a shorter 300 ms duration stimulus (such as one used in Kiani &

Shadlen (2009)). The qualitative aspects of the main results (Fig. 5.8) could

still be reproduced (i.e. choice accuracy (Fig. 5.8a, however, see below for

detailed performance comparison), the ‘< ’ pattern (Fig. 5.8b), P(CoM)

(Fig. 5.8c), and response time (Fig. 5.8d).

However, when simulating the reaction-time task with a stimulus dura-

tion of 300 ms, there is a 50% increase in P(CoM) (Fig. 5.7c). This increase

can be explained by the limited availability of sensory information when

committing to an initial choice, which can then be reversed by the excitatory

feedback from the uncertainty-monitoring population. Overall, the results
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Figure 5.8. Qualitative aspects of the main modelling results are not a�ected when sim-

ulating the proposed model under a 300ms short-duration stimulus. 8000 simulated trials

per condition. (a) A typical pattern of the relationship between choice accuracy and evidence qual-

ity, i.e. choice accuracy increases with evidence quality. (b) The ‘< ’ pattern: With higher evidence

quality, uncertainty increases error choices, and decreases for correct choices. See Section 4.2.7 for

peak and area measurements of decision uncertainty. c P(CoM) increases when simulating the model

under a short-duration stimulus. d Response times of change-of-mind trials are still longer compared

to non-change-of-mind trials under a short-duration 300ms stimulus.

suggest that the proposed model in Chapter 4 is agnostic to the duration of

stimulus, and that the model can be simulated under a variety of tasks. It

should be noted that the onset time of the top-down inhibition (see Sec-

tion 5.4) is adjusted (i.e. activated earlier) in the simulations in this Section,

to account for the shorter duration of the stimulus. In particular, t INH and

tU are both adjusted by 500 ms, i.e. t INH ! t INH � 500 and tU ! tU � 500

(since the new stimulus duration is 500 ms shorter than the one used in

Chapter 4). Finally, it should be noted that the fitted parameters of the

Weibull function (see Section 5.2.3) indicate that the psychometric line fit

is flatter, with b = 1.232 compared to 1.32 in Chapter 4. Such a decline in
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performance has been previously reported in existing studies that employ a

motion-discrimination task (Roitman & Shadlen, 2002; Kiani & Shadlen,

2009).

5.7 Optimal performance is determined by

uncertainty

Figure 5.9. Stronger excitatory feedback leads to more optimal performance. 8000 simulated

trials per condition. Monotonic increase for reward rate with evidence quality. Reward rate is higher

for larger values of excitatory feedback strength. Reward rate improvement saturates at Jmc 0 =0.05

nA Hz-1 (yellow). Overlapping lines for value larger 0.05.

From the sensitivity analysis above (see Sections 5.3 and 5.4), it is clear

that two out of the four analysed parameters significantly affect the model’s

performance, i.e. Jmc0 and t INH . In this section, reward rate is analysed

(see Section 5.2.4) to investigate how various values of these parameters

affect optimal performance. First, reward rate under the same values for

Jmc0 discussed in Section 5.3 is analysed, across all evidence quality levels.

The results (Fig. 5.9) suggest that increasing the excitatory feedback leads

to improved performance, i.e. more rewards per second. However, the

performance saturates around Jmc0 = 0.05 nA Hz-1. As discussed previously

(see Section 5.3 and Fig. 5.1), this is due to the fixed decision threshold (35
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Hz) preventing further changes.

Figure 5.10. Easy trial: a sample activity timecourse. Sample timecourse of �ring rates

in sensorimotor module (top panel), uncertainty-encoding population (middle panel), motor module

(bottom panel). Easiest di�culty (� = 51.2). When the motor activity crosses the 17 Hz threshold,

the motor output is assumed to reach a choice target. Due to faster ramping up of activity, the

response threshold in the sensorimotor population (35.5 Hz) is crossed before the temporal integration

of uncertainty-encoding population begins. Trial completion time (time target threshold was reached)

at 1214 ms. Neural population �ring rates were calculated by averaging over a time window of 50 ms,

slided with a time step of 5 ms. Adapted from Atiya et al. (2019a).

Second, the results (Fig. 5.9) suggest that, under (� =51.2), the model’s

performance is not affected by the parameter Jmc0, i.e. excitatory feedback.

Due to the shorter response time under such high evidence quality conditions,

the response is made before the uncertainty-monitoring module is activated,

effectively leading to no excitatory feedback from the uncertainty-monitoring

module to the sensorimotor module during such trials (see Fig. 5.10 for a

sample trial with high evidence quality).

Next, reward rate is analysed under various values of t INH (see Sec-

tion 5.4). The results (Fig. 5.11) suggest that, with shorter delays to



5.8 Discussion 83

Figure 5.11. Deactivating top-down inhibition early in the trial leads to a higher reward

rate. 8000 simulated trials per condition. Reward rate is higher for lower values of top-down inhibition

deactivation delay.

deactivate the top-down inhibition after stimulus onset, performance is

more optimal, especially at higher evidence quality levels. The effect of low

values of t INH on higher evidence quality levels can be explained by the

fact that, deactivating top-down inhibition early in the trial (i.e. at the

stimulus onset time or shortly after) maximises the effect of the excitatory

feedback during trials with high evidence quality, when choice responses are

made earlier in time. In comparison, under the default value (t INH = 500

ms), in trials with high evidence quality, the response is made before the

top-down inhibition is deactivated, leading to very low uncertainty levels

during such trials, and consequently, low or no excitatory feedback.

5.8 Discussion

The impact of the excitatory feedback from the uncertainty-monitoring

module to the sensorimotor module, characterised by two parameters Jmc0

and � , was first analysed (Fig. 5.1). In particular, the values of both

parameters were systematically varied, and the impact of the main results

was analysed (i.e. P(CoM) (Fig. 5.1a), choice accuracy (Fig. 5.1b), and
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response time (Fig. 5.1c)). Increasing the excitatory strength Jmc0 led to

an increase in P(CoM), choice accuracy and response-time. The increase in

input to the sensorimotor populations increased the chance of the central

attractor appearing (i.e. for inducing change-of-mind), which explains the

increase in P(CoM). Furthermore, the increase in input to the sensorimotor

population accelerates the ramping-up of activities and leads to higher

choice accuracy and shorter response time, both saturating due to the fixed

decision threshold (35.5 Hz). Future work can test these behavioural results

by direct microstimulation (or perturbing) of brain regions or neurons that

encode decision uncertainty (Kepecs et al., 2008; Lak et al., 2014).

This excitatory feedback, shown to be reminiscent of an urgency signal

(Fig. 5.2), was demonstrated to be crucial for inducing changes-of-mind, via

simulating the model with no excitatory feedback, i.e. Jmc0 set to 0. The

results suggested that, under such conditions, the uncertainty relationship

with evidence quality could still be encoded (Fig. 5.3), but there would

be no change-of-mind (Fig. 5.1a). This suggested that noise fluctuations

after the initial decision (as in cognitive models (Resulaj et al., 2009)) may

not be sufficient to induce change-of-mind in a biophysically-constrained

model of decision uncertainty, consistent with recent neurophysilogical

evidence that shows a strong link between high neural activities in the

prefrontal cortex and change-of-mind behaviour (Fleming et al., 2018)).

Therefore, the proposed model could be a reconciliation of the two views

on how changes of mind can occur. In particular, in the proposed model,

bottom-up evidence is continually accumulated after the choice is made

through recurrent excitation and noise fluctuation, while top-down evidence

is accumulated through the excitatory feedback loop (from the uncertainty-

encoding population).

Similarly, the top-down mechanism in the proposed model was also

analysed (Fig. 5.3). The two parameters that control when the top-down

inhibition is removed in the uncertainty-encoding population t INH and

inhibitory population tU were systematically varied. Increasing the onset
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time of the top-down inhibition for the inhibitory population resulted in

lower P(CoM) (Fig. 5.5a), higher choice accuracy (Fig. 5.5b) and longer

response-times (Fig. 5.5a). This suggested that the top-down inhibition

parameters did affect the model’s performance. More importantly, by having

the onset time of the top-down inhibition being dependent on response, the

model was shown to account for the high correlation of decision uncertainty

and response time (Kiani et al., 2014a).

Such an inhibitory mechanism has been proposed to originate from

various brain regions, e.g. involving the superior colliculus and basal

ganglia. For example, the threshold crossing (response threshold in our

model, which triggers top-down inhibition) could be detected by the superior

colliculus via basal ganglia (Lo & Wang, 2006; Crapse & Sommer, 2009).

More complex gating pathways in the brain, including disinhibitory circuits,

have been proposed that also involve subcortical structures, such as the

basal ganglia and thalamus (Jaramillo et al., 2019). The model proposed

in Chapter 4 focused on providing a neural circuit account of uncertainty

and change-of-mind, with the top-down inhibition serving as a proxy to

modelling complex gating mechanisms, which has been shown to be learned

through the basal ganglia (Hazy et al., 2007; Frank, 2005).

In the proposed model, when simulating the multi-stage

paradigm (van den Berg et al., 2016b), upon the completion of a

pair of trials, the uncertainty bias from the first trial in a pair of coupled

trials is reset. The effect of varying the overall size of this uncertainty bias

was shown (Fig. 5.7). A larger uncertainty bias resulted in a slightly larger

difference between the response times of the second decision in case a first

correct decision, compared to when the first decision is an error (Fig. 5.7b).

Hence, the results demonstrated the robustness of the implementation, i.e.

the qualitative aspects of the main results could still be reproduced when

significantly decreasing the size of the uncertainty bias (Fig. 5.7a). Future

work could test this by analysing the effect of varying the response-stimulus

interval on response times in multi-stage decisions, i.e. affecting with longer
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delays leading to stronger memory decay.

The main modelling results in Chapter 4 were validated under the

same reaction-time task, but with a shorter stimulus duration (Fig. 5.8).

The results (Fig. 5.8) demonstrated the robustness of the model, i.e. the

qualitative aspects of the main modelling results were largely unaffected.

However, there was an increase in P(CoM) (Fig. 5.8c). This increase was

explained by the limited availability of sensory information at the time of

the initial decision (i.e. short-duration stimulus) combined with sufficient

time left in the trial for the uncertainty excitatory feedback to help reverse

the decision. Further work can test the model under a variety of tasks and

stimuli. In fact, as part of Chapter 6, the model will be validated under a

motion discrimination task with a stimulus with limited viewing duration.

Finally, reward rate was analysed under various values of the most sensi-

tive parameters identified in Sections 5.3 and 5.4. The analysis revealed that

optimal performance is determined by the newly-introduced parameters in

the uncertainty-monitoring module. In particular, increasing the excitatory

feedback led to improved performance (see Fig. 5.9), especially at low evi-

dence quality levels. The minimal effect on high evidence quality levels was

explained by the low uncertainty levels during such trials (Fig. 5.10). In the

case of the top-down inhibition deactivation delay (Fig. 5.11), the analysis

suggested that deactivating the top-down inhibition early in the trial led

to higher reward rates, especially in the case of trials with high evidence

quality (due to allowing for sufficient time for the uncertainty-monitoring

neuronal populations to integrate). Future theoretical work can identify the

most optimal set of parameters, i.e. combinations of different parameter

values. With regards to future experimental designs, trials mixed with

different stimulus duration could be implemented to study how the uncer-

tainty monitoring activity onset time adapts. For now, Chapter 6 will focus

on changes-of-mind. In particular, Chapter 6 will investigate changes-of-

mind in a motion discrimination task with a stimulus with limited viewing

duration.
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Chapter 6

Changes-of-mind in the

absence of new post-decision

evidence

6.1 Introduction

The results discussed in this Chapter are currently under review, and a part

of the results will be presented in the Society for Neuroscience (SfN) 2019

Annual Meeting. A preprint of the manuscript that is based on this Chapter

is available online (Atiya et al., 2019b). Data collection and preliminary

data analyses were performed by Arkady Zgonnikov in National University

Ireland Galway. Computational modelling and data analysis were performed

by Nadim Atiya. Both Denis O’Hora and KongFatt Wong-Lin provided

supervision of the project and critical feedback on the manuscript.

As discussed in Chapter 2, previous work investigating changes-of-mind

has predominantly focused on revising a decision in response to new sensory

evidence (Resulaj et al., 2009; Albantakis et al., 2012; van den Berg et al.,

2016a; Fleming et al., 2018). Such studies demonstrated that the frequency

of changes-of-mind increases with higher task difficulty, and that the majority
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of such changes improve the impending initial choices. These behavioural

findings were explained by cognitive models (Resulaj et al., 2009; van den

Berg et al., 2016a) which extended the drift-diffusion model of decision

making (Ratcliff, 1978; Ratcliff et al., 1999). As discussed in Chapter 3, it

is not well understood whether the extended drift-diffusion model (eDDM)

can readily account for situations where we reverse an initial decision in

the absence of additional post-decision evidence. Thus, the mechanism

underlying such changes-of-mind in the absence of additional post-decision

evidence remains unclear (Resulaj et al., 2009; Fleming, 2016).

Recently, the neural correlates of change-of-mind behaviour in humans

and primates have been gradually revealed (Kiani et al., 2014b; Fleming

et al., 2018). In particular, fMRI recordings indicated a strong corre-

lation between changes-of-mind and increased activity in the prefrontal

cortex (Fleming et al., 2018). This correlation supported the argument

that top-down signals could play an important role in error correction

mechanisms (Murphy et al., 2015). However, the neural mechanism by

which these top-down signals lead to a change-of-mind has, so far, remained

elusive. Furthermore, it is still unclear how this mechanism is linked to

other metacognitive processes partially mediated by the frontal cortex,

particularly, the encoding of decision uncertainty (or confidence) (Del Cul

et al., 2009; Fleming et al., 2010; Kepecs et al., 2008).

This Chapter will investigate changes-of-mind in the absence of addi-

tional post-decision sensory evidence. In contrast to previous studies, the

majority of the observed changes-of-mind were associated with prolonged

initial response times. Using a neural circuit model, this Chapter will

demonstrate that these changes-of-mind can be attributed to neural feed-

back control mediated by decision uncertainty. This suggests that top-down

uncertainty monitoring could play an important role in inducing changes-of-

mind in the absence of additional post-decision evidence, which is consistent

with recent neurophysiological evidence (Murphy et al., 2015; Fleming et al.,

2018). Overall, this Chapter will provide a computational framework that
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explains changes-of-mind in the absence of additional post-decision evidence,

from sensory integration stage up to motor output.

6.2 Material and methods

Parameter Value Reference or remarks

� S 100ms Adapted from Wong & Wang (2006)

� h 50ms Adapted from Atiya et al. (2019a)

a 270 (V nC)-1 Adapted from Wong & Wang (2006)

b 108 Hz Adapted from Wong & Wang (2006)

d 0.154 s Adapted from Wong & Wang (2006)

I 0 0.3255 nA Adapted from Wong & Wang (2006)

JN; ii 0.248 nA Modified from Wong & Wang (2006)

JN; ij 0.0497 nA Adapted from Wong & Wang (2006)

� 0 30 Adapted from Wong & Wang (2006)

JA; ext 0.00052 nA Hz-1 Adapted from Wong & Wang (2006)

Jmc0 0.002 Adapted from Atiya et al. (2019a)

JN;LR 2 Adapted from Atiya et al. (2019a)

JN;RL 2 Adapted from Atiya et al. (2019a)

Table 6.1. Table of model parameter values.

6.2.1 Participants

Four healthy adults (one male, three female, 29 to 44 years old) were

recruited to participate in the experiment in exchange for a ¿30 gift voucher.

All participants were right-handed, and had normal or corrected-to-normal

vision. The study protocol was approved by National University of Ireland

(NUI) Galway Research Ethics Committee.
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6.2.2 Apparatus

Participants performed the task in a sitting position in front of a desktop

computer. Their head was fixed at 80 cm distance from a 24 inch monitor

(1920 by 1080 pixels) using a chin rest. Mouse cursor coordinates were

sampled at 60 Hz during stimulus presentation and at 100 Hz on the response

screen. Participants’ eye movements were recorded using an eye-tracker, but

were not analyzed. The stimulus presentation software was programmed in

Python using PsychoPy (Peirce, 2007) and PyGaze (Dalmaijer et al., 2014).

6.2.3 Task

Participants performed a perceptual decision-making task (Fig. 6.1a). Each

trial started when a participant clicked the start button located at the

bottom of the screen. After a random delay (uniformly distributed over

700-1000ms), The random dot kinematogram (RDK) was presented for

fixed duration of 800 ms, followed by a screen with two response options.

A participant then moved the mouse cursor from the bottom of the screen

to one of the top corners and then clicked on a response area to indicate

their choice. Immediately after that, the feedback (green circle for correct

responses, red for incorrect) was presented for 300 ms, followed by a fixation

cross for another 300 ms. Participants were instructed to respond as fast

and accurately as possible.

6.2.4 Stimuli and procedure

The RDK algorithm proposed by (Shadlen & Newsome, 2001) and (Roitman

& Shadlen, 2002) was used for stimulus presentation. The dots were

presented in a 5° circular aperture. During each frame, 3 dots were displayed.

The monitor used for stimulus presentation has a refresh rate of 60 Hz. This
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entails that the resulting dot density is 16.7 dots per deg2 per sec. The

dot velocity was set to 5°/sec. Each trial, the direction of the stimulus was

determined randomly. The probability for each dot to move coherently on

a given frame was determined by the coherence parameter. The experiment

consisted of four sessions held on four different days during a calendar week.

Each session included 600 trials, grouped into ten blocks of 60 trials. Each

block contained 10 trials for each of the six coherence levels (0, 0.032, 0.064,

0.128, 0.256, 0.512), randomly shuffled. In total, each participant completed

2400 trials, 400 for each coherence level.

6.2.5 Data analysis

A trial was labeled as a changes-of-mind trial if a response trajectory

extended for more than 100 pixels (in the x-direction) to the side of the

screen with the unchosen option. In total, there were 279 such trials, after

36 trials with double changes-of-mind were excluded from all analyses.

Response time was measured as the time between the stimulus offset and

the response onset. Response onset was determined as the onset of the

first hand movement resulting in a mouse cursor displacement greater than

100 pixels; therefore, small movements resulting, e.g., from hand tremor

did not affect RT measurement. In trials where participants initiated the

response before the stimulus offset, the response time was considered to be

negative. Overall, 9.1% of all trials had negative response time, with 56%

of all negative response times observed at the highest coherence. Among

change-of-mind trials, there were only three trials (1%) with a negative

response time. For linear mixed-effects statistical models (Tables 6.2–6.4),

Rpackage lme4 was used. In all models, random effects of participant were

included to account for individual differences, with the maximum random

effects structure permitting model convergence. For testing the hypothesis

that changes-of-mind improve accuracy, the R implementation of the exact
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binomial test (binom.test ) was used.

6.2.6 A reduced neural circuit model of uncertainty

In this Chapter, models of the sensorimotor and hand modules are unchanged

from Section 4.2.3 and 4.2.5, respectively. As for the uncertainty-monitoring

module, a simplified version of the neural circuit model of decision uncer-

tainty and change-of-mind (Atiya et al., 2019a) presented in Chapter 4

and 5 was used, in which the dynamics of uncertainty-encoding is described

using only one neural population (i.e. dynamical variable). The modelling

of the sensorimotor and motor (i.e. hand) populations was unchanged (see

below). The dynamics of the uncertainty-encoding neural population:

� mc
dyHU

dt
= [JV HU (H i + H j ) � g]+ � yHU (6.1)

where [ ]+ denotes a threshold-linear input-output function. Synaptic cou-

pling constant between the uncertainty-encoding population and the sen-

sorimotor neural populations is denoted by JV HU . H i and H j denote the

neuronal population firing rates of the sensorimotor populations. At the

beginning of a trial, some top-down inhibition is activated (g = 1000 nA)

and 600 ms after stimulus onset from. Further, g is reactivated (with a value

of 3000 nA) when the activity of one of the sensorimotor neural populations

reaches a threshold (37.5 Hz). The result is a phasic activity response of the

high uncertainty-encoding population that is reminiscent of recent neural

recordings from the prefrontal cortex and medial frontal cortex during error

correction post-decisional accumulation (Fleming et al., 2018; Kepecs et al.,

2008; Murphy et al., 2015).



6.2 Material and methods 93

6.2.7 Uncertainty quantification and classifying model

outputs

Uncertainty level quantification is unchanged from how it was presented

in Section 4.2.7. Response time is recorded in the model as the moment

the activity of one the sensorimotor populations reaches 37.5 Hz. In the

simulation of the hand neuronal population, the target is fixed at 37.5 Hz. A

simulated trial is classified as a change-of-mind if a reversal of dominance in

firing rates between the two hand neuronal population occurs. A threshold

of 2 Hz was used for the absolute difference in magnitude to identify a

change-of-mind within trial.

6.2.8 Mapping the activity of the hand neuronal pop-

ulations onto the X positional space

To reproduce the typical trial dynamics observed in the experiment, a simple

linear function was used to approximate the hand X position as a function

of the neuronal firing rate (Atiya et al., 2019a). This approximation can be

described as follows:

x = q(yLH � yRH ) (6.2)

where q is some scaling factor. This scaling factor is determined as follows:

q = jCposj=Hth (6.3)

where Cpos denotes the X position of the choice target (760px). H th is the

hand target threshold (37.5Hz).
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6.2.9 Model simulation and analysis

The code to simulate the model (and analyse its outputs) was written in

MATLAB. The code was tested against one version of MATLAB (2018a,

on a Mac OS X workstation). The model parameters are summarised in

Table 6.1. The model was simulated for 6000 trials per condition, using the

same task specifications outlines above (i.e. 800ms fixed-duration). 3.4% of

the trials were non-decision trials (i.e. target threshold was not reached)

and were discarded. XPPAUT Ermentrout (1990) was used for phase-plane

analysis and parameter search. For within trial dynamics, a forward Euler-

Maruyama numerical integration scheme was used. Integration time step

set to 0.5ms. Smaller time steps did not affect the modelling results.

6.2.10 Extended drift-diffusion model

In the eDDM, the dynamics of evidence accumulation can be described by

Eq. 3.15. The free parameters k, � 0 from that equation are set to 0.30 and

0.005, respectively. The initial decision and decision time are determined by

the threshold B (or � B ) (which is set to 13.2 for Subject S). However, after

the initial decision, evidence accumulation continues until threshold B� is

reached (which is set to 23.3 for Subject S) for confirmation of the initial

decision or a change-of-mind. In particular, the post-decision accumulation

process is driven by late-incoming evidence (and noise fluctuations), with a

change-of-mind deadline of around 300ms.

6.3 Cognitive task and neural circuit model

Four participants completed a perceptual decision-making task (2400 trials)

in which, upon initiating a trial, an RDK stimulus (Shadlen & Newsome,
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(a)

(b)

Figure 6.1. Experimental setup and a schematic diagram of the neural circuit model. (a)

Participants initiated a trial by clicking a start button at the bottom of the screen. After a short ran-

dom delay (uniformly distributed over 700-1000ms), a random dot kinematogram appeared for 800ms.

Participants then chose between two targets: Left or Right. Immediately after the choice, the feedback

(red or green circle) was displayed for 300ms, followed by the �xation point (300ms). (b) The proposed

neural circuit decision-making model consists of three modules. The sensorimotor module (blue box)

consists of two mutually inhibitory (lines with �lled circles) neuronal populations selective for Left-

ward/Rightward motion with recurrent excitation (curled black arrows). The uncertainty-monitoring

population (red circle) receives summed input from the sensorimotor populations. 600ms after stimulus

onset, the summed input is integrated and fed back to the sensorimotor populations (red arrow). The

hand response module (green box) consists of two mutually inhibitory neuronal populations that inte-

grate the output from the corresponding sensorimotor population.Model results in all subsequent �gures

were obtained via simulating the model using a single set of parameters (see Table 6.1 for parameter

values). Adapted from Atiya et al. (2019b).

2001; Roitman & Shadlen, 2002) appeared after a random delay (uniformly

distributed over 700-1000ms). The RDK stimulus was displayed for 800ms,

followed by a choice prompt. Participants then decided whether the majority

of the randomly moving dots were moving towards the right or the left. The
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participants were instructed to respond as quickly and accurately as possible

by moving a computer mouse cursor to one of the two choice target locations

in the top corners of the computer screen and clicking on it (Fig. 6.1a).

The difficulty of the task was varied via the motion coherence parameter,

which controlled the probability of each dot moving in one direction (left

or right, determined randomly in the beginning of the trial). In the vast

majority of the trials, participants responded by moving the mouse cursor

directly to a choice target. However, participants were free to reverse their

initial decision before clicking on one of the choice targets, although they

were not explicitly instructed that this is possible. This resulted in 294

change-of-mind trials (3% of all trials), in which participants reversed the

initial decision.

(a)
(b)

Figure 6.2. Reduced model can account for psychophysics of decision uncertainty. (a) Un-

certainty as a function of coherence level. ‘< ’ pattern: Uncertainty increases (decreases) with coherence

level for error (correct) choices. Error bars indicate binomial proportion standard error of mean. (b)

Response time as a function of uncertainty. Data points are collected from 36,000 trials. Strong correla-

tion between uncertainty and response time (Pearson’s r=0.74). Discarded trials with zero uncertainty.

Adapted from Atiya et al. (2019b).

To shed light on the potential mechanism underlying the observed

changes-of-mind, in this Chapter, a computational model of decision un-

certainty and changes-of-mind that is built on the neural circuit model

proposed in Chapter 4 (Atiya et al., 2019a) (Fig. 6.1b) is simulated and

analysed. The previous model consists of an inhibitory neuronal population
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receiving summed stimulus input from the sensorimotor populations. This

inhibitory population in turn inhibits a neighbouring excitatory uncertainty-

encoding population, which also receives tonic excitatory input. Finally, as

long as the response is not initiated (i.e. response threshold for the activity

of the sensorimotor population has not been reached), the sensorimotor

populations receive equal excitatory feedback from the uncertainty-encoding

population.

This cortical circuit model was previously shown to account for de-

cision uncertainty and change-of-mind behaviour reported in previous

work (Sanders et al., 2016; Kepecs et al., 2008; Fleming & Daw, 2017;

Resulaj et al., 2009), while capturing recent neurophysiological evidence

of encoding decision confidence (Kepecs et al., 2008; Murphy et al., 2015;

Fleming et al., 2018). Here, a more simplified neural circuit architecture is

proposed. Specifically, only one neuronal population is used to encode un-

certainty, termed the uncertainty-monitoring population (Fig. 6.1b). While

less neurally plausible (i.e. not reminiscent of a cortical column), the model

could still replicate the main results in (Atiya et al., 2019a) with appropri-

ate parameter changes (see Fig. 6.2). The next Section will demonstrate

that this model qualitatively accounts for the observed change-of-mind

behaviour.

6.4 Changes-of-mind occur in the absence of

post-decision evidence

First, the motor response trajectories from the experimental data are

investigated (Fig. 6.3). In the case of trials without a change-of-mind,

participants moved the mouse cursor directly towards a choice target. In

change-of-mind trials, participants initially moved the mouse cursor towards

one choice target, but then changed the movement direction to reach the
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Figure 6.3. Motor output of a decision. Top panels: representative mouse cursor trajectories

from the experimental data in the x-y plane. Bottom panels: experimental mouse cursor trajectories in

the x positional space (grey lines with markers) and model-generated motor output (blue solid lines).

Participants reached one of the two choice targets (red or green areas) directly in non-change-of-mind

trials (left), or after reaching towards the opposite target �rst in change-of-mind trials (right). See

Section 6.2 for details on the linear mapping of the �ring rates of the model hand response populations

onto the x positional space. Adapted from Atiya et al. (2019b).

opposite choice target instead.

In the proposed computational model, the output of the neural activity

of the motor populations (Fig. 6.1b, blue box) is mapped onto the hori-

zontal positional space alongside the mouse cursor trajectories from the

experimental data (see Section 6.2). The proposed model could produce

motor response trajectories (along the horizontal line) that are qualitatively

similar to the experimental ones (Fig. 6.3, bottom panels).

Similar to previously-studied paradigms (Resulaj et al., 2009; van den

Berg et al., 2016a; Pleskac & Busemeyer, 2010; Albantakis et al., 2012),

changes-of-mind are observed in a small proportion of trials (3%). However,

these studies investigated changes-of-mind in situations where the response

onset coincided with the stimulus offset (Resulaj et al., 2009; Albantakis

et al., 2012). In such situations, late-arriving evidence (i.e. due to processing

delays) could prompt a reconsideration of the initial decision (i.e. if the
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(a) (b)

Figure 6.4. Changes-of-mind are not associated with impulsive responses. (a) Response

times for change-of-mind and non-change-of-mind trials and (b) number of trials with negative response

time as a function of coherence level. In total, there were only three trials with a change-of-mind which

had negative response time, one per each of three highest coherence levels. Adapted from Atiya et al.

(2019b)

late-arriving evidence is in favour of the opposite choice). In contrast, in

the proposed paradigm, participants were instructed to respond only after

stimulus offset, thereby limiting the potential effect of late-arriving evidence

on changes-of-mind. Although in some trials the participants still started

responding before stimulus offset, this behaviour was not associated with

changes-of-mind (Fig. 6.4). Specifically, early responses were observed only

in three change-of-mind trials out of 294. Furthermore, 96% of all changes-

of-mind in the proposed experiment occurred later than 450ms after the

initial response, suggesting that these changes-of-mind were not associated

with delays in signal transduction and motor preparation (Resulaj et al.,

2009; Gallivan et al., 2018). Taken together, these observations suggest that,

in the proposed experiment, changes-of-mind are not driven by late-arriving

post-decision sensory evidence.
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Estimate Std. Error z value Pr(> jzj)

Intercept 1.1432 0.2486 4.5984 0.0000

Coherence 7.0130 1.5219 4.6080 0.0000

Is CoM -1.0372 0.2547 -4.0729 0.0000

Trial number 0.0491 0.0279 1.7587 0.0786

Coherence by Is CoM -4.3762 1.9690 -2.2225 0.0262

Table 6.2. Parameters of a linear mixed-e�ects model analysing choice accuracy as a

function of coherence, presence or absence of a change-of-mind, and trial number. The

model included random intercept and random slope for coherence.

6.5 Changes-of-mind can correct impending

errors in easy tasks

In change-of-mind trials, error-to-correct changes were more frequent than

correct-to-error changes at 0.128 and 0.256 coherence levels (Fig. 6.5a, left

panel). In contrast, previous studies of changes-of-mind, supposedly caused

by late-arriving evidence, have shown that error-to-correct changes were

more likely than correct-to-error changes starting from the 0.064 coherence

level (Resulaj et al., 2009; van den Berg et al., 2016a). The proposed neural

circuit model could replicate the overall frequency of changes-of-mind from

the experimental data (Fig. 6.5a, right panel). The frequency of erroneous

and correct changes-of-mind is similar to that of the experimental data at

the 0.032 and 0.064 coherence levels, while the difference is more pronounced

at intermediate-to-high coherence (0.128 and 0.256).

To investigate the relationship between changes-of-mind and choice

accuracy more rigorously, choice accuracy was analysed as a function of

coherence level in the presence and absence of changes-of-mind (Table 6.2,

Fig. 6.5b, left panel). In non-change-of-mind trials, accuracy increased with

coherence (b = 7:0; z = 4:6; p < 0:0001, Table 6.2, Fig. 6.5b, left panel),

consistent with previous work on perceptual decision making (Shadlen &
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(a)

(b)

Figure 6.5. Performance in change-of-mind trials. (a) Overall probability of a change-of-mind

sorted into error and correct changes from experimental data (left panel) and model simulations (right

panel). Probability of a change-of-mind peaks at low-to-intermediate coherence levels, and decreases

sharply at high coherence levels, with correct changes being more frequent than error changes at mod-

erate to high coherence levels (0.128 and 0.256). (b) Psychometric function showing choice accuracy

as a function of coherence level in the presence (grey) and absence (black) of a change-of-mind from

the experiment (left panel) and the model (right). Accuracy generally increases as a function of coher-

ence level, but is lower in change-of-mind trials (grey) compared to non-change-of-mind trials (black).

However, for intermediate-to-high coherence levels (0.128 and 0.256), the accuracy of change-of-mind

trials is above chance level (i.e. > 0:5). In both (a) and (b), error bars indicate binomial proportion

standard error of mean. Adapted from Atiya et al. (2019b).

Newsome, 2001; Roitman & Shadlen, 2002). However, in change-of-mind

trials, choice accuracy was on average lower than in non-change-of-mind

trials (b = � 1:0; z = � 4:1; p < 0:0001, Table 6.2, Fig. 6.5b, left panel).

Moreover, at intermediate-to-high coherence levels, the accuracy of changes-

of-mind was above chance level (p = 0:015 for 0.128 coherence, p = 0:001

for 0.256 coherence, see also Fig. 6.5b), demonstrating that these changes-
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of-mind were beneficial to the overall performance, i.e. they corrected an

impending erroneous choice more often than introducing an error. The

proposed neural circuit model readily accounted for these findings (Fig. 6.5b,

right panel). However, although there was an ascending trend for the rate

of correct changes-of-mind with increasing coherence level, the trend was

not as steep as that observed in the experiment.

6.6 Changes-of-mind are associated with slow

decisions

Estimate Std. Error df t value Pr(> jtj)

Intercept 0.5213 0.1094 2.9822 4.7657 0.0178

Coherence -0.1040 0.4185 2.9384 -0.2485 0.8201

Is correct -0.1767 0.0386 2.9667 -4.5750 0.0201

Coherence by Is correct -0.7757 0.1381 3.8177 -5.6154 0.0057

Table 6.3. Parameters of a linear mixed-e�ects model analysing response time as a function

of coherence and choice correctness. The model included random intercept and random slopes for

coherence, correctness, and their interaction.

Next, response times is analysed as a function of coherence level (Ta-

ble 6.3, Fig. 6.6a). In the proposed fixed-duration task, the term “response

time” refers to the time it took participants to initiate a movement to-

wards one of the choice targets after stimulus offset (Fig. 6.1a). For non-

change-of-mind trials, mean response times followed the ‘< ’ pattern (Figure

6.6a, left panel), consistent with previous studies using the reaction-time

task (Shadlen & Newsome, 2001; Resulaj et al., 2009). More specifically,

in correct choices, response times decreased with coherence level, while for

incorrect choices, there was no evidence that response times varied with

coherence level (Fig. 6.6a). However, in the case of change-of-mind trials,

mean response times were prolonged (compared to non-change-of-mind
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(a)

(b)

Figure 6.6. Changes-of-mind were most likely to occur in trials with prolonged initial

response times. (a) Response times (z-scored within each participant; see Section 6.2) for correct

and error change-of-mind and non-change-of-mind trials from the experimental (left) and model (right).

The ‘< ’ pattern of response times in the case of non-change-of-mind trials was consistent with previous

observations (Shadlen & Newsome, 2001; Resulaj et al., 2009). However, there was no di�erence between

correct and error response times in change-of-mind trials, with a more pronounced pattern found in the

model (correct and error change-of-mind data overlap in the right panel). Error bars indicate standard

error of mean. (b) Probability of CoM as a function of coherence level grouped by the tertile of the

initial response time for the experimental data (left panel) and the model (right panel). The majority

of experimental change-of-mind trials occurred when response times were longest. The dominance of

the third tertile in the model was more pronounced. Data for the �rst and second tertile overlap. Error

bars indicate binomial proportion standard error of mean. Adapted from Atiya et al. (2019b).

trials) regardless of the outcome of the trial. The proposed neural circuit

model could account for the response time pattern in the case of non-change-

of-mind trials, as in previous work (Wong & Wang, 2006; Atiya et al., 2019a).

Interestingly, the proposed model qualitatively accounts for the relationship

between response times and coherence level in the case of change-of-mind

trials. Specifically, the model’s response times for change-of-mind trials
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were prolonged (compared to non-change-of-mind trials), and did not vary

between correct and error trials (Fig. 6.6a, right panel, dashed and solid

grey lines overlap). This was due to the tight relationship between high

uncertainty levels and changes-of-mind, as shall be demonstrated later.

Estimate Std. Error z value Pr(> jzj)

Intercept -4.3238 0.6156 -7.0241 0.0000

Coherence -2.7840 0.6161 -4.5186 0.0000

RT 1.4052 0.5945 2.3637 0.0181

Coherence by RT 2.5390 0.9415 2.6966 0.0070

Table 6.4. Parameters of a linear mixed-e�ects model analysing probability of a change-

of-mind as a function of coherence and response time. The model included random intercept

and random slope for response time.

To clarify the relationship between the formation of an initial decision

(as reflected in response times) and the subsequent emergence of a change-

of-mind, the probability of a change-of-mind is analysed as a function of

coherence level and initial response time (Table 6.4, Fig. 6.6b). Confirming

the observation from Fig. 6.5a, the frequency of changes-of-mind decreased

with coherence (b = � 2:78; z = � 4:5; p < 0:0001). Crucially, changes-

of-mind were more likely to occur in trials with a prolonged response

time (b = 1:4; z = 2:4; p = 0:02, Fig. 6.6b, left panel). This is in sharp

contrast with previous studies that linked changes-of-mind to fast initial

responses (Resulaj et al., 2009; Albantakis et al., 2012). This discrepancy

could be attributed to the differences between the experimental tasks

as discussed above, and therefore the potentially different mechanisms

underlying changes-of-mind.

Importantly, the proposed neural circuit model accounted for the ob-

served positive relationship between response time and changes-of-mind

(Fig. 6.6b, right panel). In particular, the model suggests that changes-of-

mind occur exclusively in trials with long response times. The replication

of this finding by the proposed neural circuit model suggests not only that
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the mechanism underlying changes-of-mind in the proposed experiment and

model could be similar, but also that these mechanisms are different from

other mechanisms that rely on post-decision evidence accumulation (Resulaj

et al., 2009; van den Berg et al., 2016a). In contrast, the next Section will

demonstrate that the eDDM does not readily account for change-of-mind

behaviour in the absence of new post-decision evidence.

6.7 eDDM does not readily account for the

experimental results

eDDM has been previously used to fit response times (and choice accuracy)

from change-of-mind trials in reaction-time tasks (Resulaj et al., 2009;

van den Berg et al., 2016a). The eDDM suggested, consistent with the

experimental data in such paradigms, that change-of-mind trials are most

likely to occur during trials with faster response times (compared to non

change-of-mind trials). From the perspective of a drift-diffusion model, this

added urgency is more likely to lead to fast errors. Moreover, with lower

boundaries in the post-decision stage, the majority of the initially-fast-error

trials become later-correct change-of-mind trials. This explains how the

majority of changes-of-mind correct impending errors while, at the same

time, leading to fast initial responses. To gain further insight into this

mechanism, the eDDM (Resulaj et al., 2009) was simulated with parameter

values that are fitted to the data from Subject ‘S’ in that study. As a

validation of the implementation of the eDDM outlined in this Chapter,

first, the probability of change-of-mind and reaction time results for Subject

S are analysed (see Figs. 6.8a and 6.8b. The results presented in this Section

matched those of (Resulaj et al., 2009). Next, in order to understand

the relationship between initial response times and changes-of-mind, the

probability of a change-of-mind was analysed as a function of coherence
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Figure 6.7. Changes-of-mind are associated with fast responses in a reaction-time task.

Probability of change-of-mind as a function of coherence level grouped by tertile of the initial response

time from the extended drift-di�usion model simulation for Subject S in Resulaj et al. (2009). Changes-

of-mind occurred in trials with fast response times (tertiles 1 and 2). Adapted from Atiya et al. (2019b)

level and initial response time. According to eDDM, changes-of-mind occur

in trials with short response-times across all coherence levels, although,

changes-of-mind are slightly more likely to occur in trials with prolonged

response times, at least for c < 0:256 (Fig 6.7).

Importantly, the same model is simulated with one minor change. When

the accumulation reaches the initial decision threshold, the integration of

the stimulus signal is turned off, i.e. kc + � 0 is set to 0. With this change,

the post-decision process would be driven solely by noise fluctuations. The

majority of changes-of-mind in this case were correct-to-error changes, with

increasing frequency of changes-of-mind with coherence level (see Fig. 6.8c).

Furthermore, the majority of change-of-mind trials during high coherence

level had fast initial response times (see Fig. 6.8d). The next Section

will provide a plausible explanation of this relationship between response

times and changes-of-mind. In particular, the importance of a neural

circuit feedback control mechanism via the uncertainty monitoring neuronal

population will be demonstrated.
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(a) (b)

(c) (d)

Figure 6.8. In eDDM, probability of change-of-mind increases with coherence level when

turning o� post-decision stimulus evidence accumulation. Response time (a) and probability

of a change-of-mind (CoM) (b) as a function of coherence for the eDDM (Resulaj et al., 2009) without

turning o� the stimulus post-decision. This implementation of the simulation replicates the results

reported by (Resulaj et al., 2009) for subject S in their Figure 2 and Figure 3, respectively. (c) When

the post-initiation process (PIP) is driven entirely by noise uctuations, the majority of changes-of-mind

are errors. (d) Especially at high coherence levels (i.e. > 0:256), the majority of changes-of-mind occur

in trials with fast initial response times (i.e., the �rst RT tertile). Adapted from Atiya et al. (2019b).

6.8 High uncertainty is associated with slow

changes-of-mind

To clarify the relationship between uncertainty and changes-of-mind in

the proposed model, the pairwise relationships among decision uncertainty,

changes-of-mind, and response times is investigate (see Fig. 6.9).

First, the mean uncertainty level is analysed (see Section 6.2) as a

function of task difficulty (i.e. coherence level) separately for change-of-

mind and non-change-of-mind trials (Fig. 6.9a). On average, uncertainty

levels are higher in the case of change-of-mind trials compared to non-change-
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of-mind trials (Fig. 6.10, middle panel), regardless of the outcome of the trial

(i.e. correct or error). This suggests that in the proposed model, in trials

with a change-of-mind, high uncertainty level played a role in increasing the

competition between the activities of the sensorimotor neuronal populations.

This was further evidenced upon sorting the simulated trials based on

tertiles of decision uncertainty levels; the probability of a change-of-mind

is highly dependent on the decision uncertainty level (Fig. 6.9b). Hence,

the proposed model suggests that changes-of-mind are strongly associated

with high decision uncertainty. This was also reflected in the increased

competition between the sensorimotor neuronal populations (Fig. 6.10).

(a) (b)

Figure 6.9. Model uncertainty is strongly associated with changes-of-mind. (a) Uncertainty

as a function of coherence level split by the type of trial (i.e. change-of-mind vs. non-change-of-mind).

Change-of-mind trials are associated with higher uncertainty levels compared to non-change-of-mind

trials regardless of the coherence level (see Fig. 6.6a, where response times are predicted to be the same

for change-of-mind trials regardless of the coherence level). (b) Probability of a change-of-mind as

a function of coherence level split by the magnitude of uncertainty level (three tertiles). Changes-of-

mind occur only in the highest uncertainty tertile. See Section 6.2 for uncertainty level quanti�cation.

Adapted from Atiya et al. (2019b).

Due to the transient nature of this attractor, upon its disappearance,

the network is given the chance to make the choice once again. In cases

where this choice is different from the initial one, a change-of-mind occurs.

It should be noted that this transient nature of the central attractor is a

direct result of the transient activity profile of the uncertainty monitoring

population (Fig. 6.10).

Overall, the proposed model simulations were not only consistent with
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the findings in the new experiment, but also provided a prediction that the

link between changes-of-mind and long initial response times could be due

to high levels of decision uncertainty. Taken together, these results suggest

a tight relationship among decision uncertainty, initial response times, and

changes-of-mind.

Figure 6.10. Faster ramping up and higher magnitude of activity for the uncertainty-

monitoring neuronal population during low coherence (i.e. di�cult) and change-of-mind

trials. Activity is averaged over 3168 and 5346 non-change-of-mind trials for 0.032 and 0.256 coherence

levels, respectively (left panels), and 120 change-of-mind trials for 0.032 coherence level (right panels).

Blue (orange) colours: left (right) neuronal population. In trials without a change-of-mind, the sen-

sorimotor and hand neuronal populations representing the correct (rightward) choice ramp up faster

and reach higher activations in the case of high (0.256) coherence level compared to trials with a low

(0.032) coherence level. The activity level of the uncertainty-monitoring neuronal population however

is greater in trials with low (0.032) coherence. In change-of-mind trials, high uncertainty levels lead to

high competition between the left and right sensorimotor neuronal population (through equal feedback

excitation). Right panel: Left neuronal population is initially ‘winning’ , with a reversal occurring

late in the trial. In downstream neuronal populations (for motor output), the left neuronal population

reaches choice target, but is eventually suppressed by the rising activity of the right neuronal popula-

tion. Bottom panel: Model-generated trajectories in the x positional space (see Section 6.2). Adapted

from Atiya et al. (2019b).

6.9 Discussion

In the vast majority of trials involving a change-of-mind, the participants

initiated a motor response only after the entire stimulus viewing duration
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was completed. Moreover, more than 99% of the changes-of-mind occurred

later than 450ms after the initial response, which is outside the hypothesised

delayed information processing window (Gallivan et al., 2018). This sup-

ports the notion that the observed changes-of-mind are not associated with

post-decision accumulation of delayed evidence or explicitly provided new

information, as opposed to the previous studies (Resulaj et al., 2009; Alban-

takis et al., 2012; van den Berg et al., 2016a; Fleming et al., 2018). Despite

the absence of new post-decision evidence, changes-of-mind improved the

initial decisions in the trials with intermediate-to-high stimulus coherence

(Fig. 6.5b), which was also the case in previous studies (Resulaj et al., 2009;

Albantakis et al., 2012; van den Berg et al., 2016a). However, in sharp

contrast to these studies, a positive relationship between initial response

times and subsequent changes-of-mind was found (Fig. 6.6a). More specifi-

cally, changes-of-mind were most likely to occur in trials with prolonged

response times (Fig. 6.6b, left panel). Hypothetically, this relationship can

arise when initial response times and the frequency of changes-of-mind are

both associated with high decision uncertainty. Future experimental work

can directly test this hypothesis by requiring participants to report their

confidence retrospectively (Fleming et al., 2018) or in parallel with their

choice (Kiani et al., 2014a; van den Berg et al., 2016a) using the fixed

stimulus viewing duration paradigm employed in this study. In the absence

of such confidence reports in the proposed paradigm, here, a complemen-

tary approach is taken. In particular, the proposed mechanistic model of

decision uncertainty and change-of-mind was demonstrated to account for

the experimental findings.

In the proposed mechanistic model of decision uncertainty and change-

of-mind behaviour, decision uncertainty is continuously monitored by a top-

down uncertainty-monitoring neuronal population. Importantly, through

an excitatory feedback loop, decision uncertainty continuously affects the

neuronal integration dynamics. The model could account for the observed

experimental data, including motor output, choice accuracy, response times,
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frequency of changes-of-mind, and, importantly, the positive relationship

between initial response times and subsequent changes-of-mind.

This model is a variant of the model presented in Chapter 4 (Atiya

et al., 2019a), which was inspired by the neurophysiological recordings

from brain regions encoding decision confidence or, reciprocally, decision

uncertainty (Kepecs et al., 2008; Murphy et al., 2015). In this Chapter, the

uncertainty-monitoring module of the model presented in Chapter 4 was

simplified to reduce the number of model parameters. In addition to the

similarity of the neural profile of the proposed model’s uncertainty-encoding

population (Fig. 6.10, middle panel) to existing recordings (Kepecs et al.,

2008; Murphy et al., 2015), this simplified model accounts for the main

characteristics of decision uncertainty (Sanders et al., 2016; Kepecs et al.,

2008; Kiani et al., 2014a).

The proposed model in this Chapter provides insights into the mech-

anism of changes-of-mind observed in the proposed experiment. Unlike

the extensions of the drift-diffusion model (Resulaj et al., 2009; Ratcliff,

1978; Ratcliff et al., 1999; Pleskac & Busemeyer, 2010) and previous at-

tractor network models (Albantakis & Deco, 2011), the proposed model

does not rely solely on post-decisional sensory evidence accumulation to

induce changes-of-mind. In particular, drift-diffusion-based models rely on

continual evidence accumulation post-decision to account for changes-of-

mind. Importantly, such models do not readily extend to situations where

no additional post-decision evidence is available after the initial decision. In

contrast, in the proposed model, the final outcome of a trial is dynamically

affected by decision uncertainty monitored during the stimulus presentation.

In trials with high levels of uncertainty, strong excitatory feedback from

the uncertainty-monitoring neuronal population leads to a delayed initial

response, due to the high competition between sensorimotor populations

(Fig. 6.10, (Atiya et al., 2019a)). At the same time, this increased uncer-

tainty could lead to a change-of-mind (Fig. 6.9a, (Atiya et al., 2019a)).

Through this mechanism, the proposed neural circuit model accounted for
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the observed positive relationship between initial response time and changes-

of-mind (Fig. 6.6b, right panel). This finding was further supported by the

analysis of the probability of a change-of-mind as a function of uncertainty

level (Fig. 6.9b). More specifically, the proposed model predicted that in

situations where no new stimulus-related evidence could be sampled after

the initial decision, changes-of-mind are most likely to occur during trials

with high levels of uncertainty. Future work could test this by providing

neural recordings of brain regions that encode decision uncertainty (Kepecs

et al., 2008; Murphy et al., 2015) during changes-of-mind in a fixed-duration

perceptual discrimination task.

This Chapter presented a computational framework that explains changes-

of-mind in the absence of new post-decision evidence, from sensory inte-

gration to uncertainty monitoring and motor output, by mechanistically

linking decision uncertainty and changes-of-mind. Taken together, these

findings highlight the role of top-down metacognitive processes in changes-

of-mind (Murphy et al., 2015; Fleming, 2016; Fleming & Daw, 2017; Fleming

et al., 2018).

In the final Chapter, the perspective of the thesis as well as future

directions will be discussed.
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Chapter 7

Summary, general discussion,

and future directions

In Chapter 2, several behavioural and neurophysiological studies of decision

uncertainty and change-of-mind were discussed. Behavioural studies of

decision uncertainty in humans and animals have revealed the behavioural

characteristics associated decision uncertainty (Kiani et al., 2014a). In

particular, the relationship between decision uncertainty, choice accuracy

has been clearly identified, with higher (lower) decision uncertainty being

linked to less (more) accurate choices and prolonged (shorter) response

times. Similarly, neurophysiological studies of decision confidence in hu-

mans and animals have revealed the neural correlates of decision uncertainty.

Such studies implicated several brain regions in encoding decision uncer-

tainty (Kiani & Shadlen, 2009; Kepecs et al., 2008; Del Cul et al., 2009),

such as in area LIP, superior colliculus, supplementary eye field, OFC,

prefrontal cortex, among others. Additionally, existing behavioural studies

of change-of-mind were presented, which revealed several characteristics

of change-of-mind behaviour, the most important being the decreasing

likelihood of change-of-mind occurring with decreasing task difficulty. Fi-

nally, several recent human neuroimaging studies were discussed. These

studied revealed a strong link between high neuronal activities in higher
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order brain regions, such as the prefrontal cortex (Fleming et al., 2018) and

change-of-mind behaviour.

In Chapter 3, several types of models of decision uncertainty and change-

of-mind were studied. Accumulate-to-bound type models of decision un-

certainty were first discussed, which are built on accumulate-to-bound

models of decision making. Such models compute decision confidence as

the balance between the evidence streams supporting each choice option-

a computation that often involves subtraction followed by absolute value

of the difference (Kepecs et al., 2008). Such computations are also used

in more detailed biophysically-constrained models (Wei & Wang, 2015;

Berlemont et al., 2019). However, it is unclear how such a complex neural

circuit that involves subtraction and absolute value can be realised. Other

models use Bayesian approaches to model decision confidence, via evaluat-

ing the posterior probability through Bayes rule, or via the distributional

confidence (Meyniel et al., 2015). Again, it is unclear how such computa-

tions can be realised in the brain, e.g. how would a neuron or group of

neurons compute the width of the distribution. Chapter 3 also discussed sev-

eral computational models of change-of-mind. Both accumulate-to-bound

models and biophysically-constrained models have been used to account

for change-of-mind behaviour, with the assumption that accumulation of

sensory evidence continues after the initial decision. Existing models are

simulated under reaction-time tasks, with a lack of existing theoretical

accounts that explain how changes-of-mind could occur in the absence of

post-decision evidence.

In Chapter 4, a novel neural circuit computational model that encodes

decision uncertainty, has been proposed. Decision uncertainty in the model

can be represented in real-time for online excitatory feedback and for

controlling decision dynamics. The proposed uncertainty-monitoring module

was developed based on transient neural dynamics observed in animal and

human studies (Kepecs et al., 2008; Murphy et al., 2015; Fleming et al.,

2018), and the relationship between choice certainty, evidence and response
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time (Kiani et al., 2014a; Sanders et al., 2016; Fleming & Daw, 2017).

Building on a previous decision-making model (Wong & Wang, 2006),

this extended neural circuit model can account for several observations

commonly found in experimental studies of decision confidence and change-

of-mind (Kepecs et al., 2008; Resulaj et al., 2009; Albantakis & Deco, 2011;

Sanders et al., 2016). The model effectively unifies two fields of study that

are studied separately in the literature. This work is now published in Atiya

et al. (2019a).

In Chapter 5, an account of the impact of some parameter values on

the main modelling results was presented. This was achieved by first

identifying a set of key parameters that either were not present in previous

work (Wong & Wang, 2006), impact the uncertainty-monitoring module of

the model, affect the multi-stage paradigm results, or are specific to the

type of simulated stimulus. Furthermore, reward-rate analysis was used

to investigate optimal performance. Part of these analyses is published

in Atiya et al. (2019a).

Chapter 6 demonstrated that changes-of-mind can occur even in the

absence of additional evidence after the initial decision through a compli-

mentary experimental and modelling approach. Furthermore, these changes-

of-mind were associated with slow initial decisions, unlike changes-of-mind

that are associated with post-decision sensory evidence accumulation. The

neural circuit model proposed in 6 provided insight into the dynamics of

this behaviour, predicting that changes-of-mind in the absence of new post-

decision evidence are associated with high levels of decision uncertainty.

This work is currently submitted and is under review, with a preprint

available online (Atiya et al., 2019b).



116 7.1 Summary of contributions

7.1 Summary of contributions

To summarise, three main contributions as an extension to the field of

computational modelling of decision uncertainty and change-of-mind have

been presented in this thesis. In the first contribution, the first cortical

neural circuit model of decision uncertainty and change-of-mind was in-

troduced. The model accounted for a variety of behavioural and neural

data of decision uncertainty and change-of-mind, while proposing a shared

neural mechanism that links high decision uncertainty to changes-of-mind.

Importantly, the model showed that higher order brain regions play an

important role in changes-of-mind, consistent with recent neurophysiological

evidence. In the second contribution, further analyses of the same model

have been introduced. The results presented in the second contribution

demonstrated the robustness of the model under various parameter values.

Reward-rate analysis revealed that the newly-introduced uncertainty param-

eters significantly affect performance. The third contribution of this thesis

investigated changes-of-mind in the absence of new post-decision evidence.

The results showed that changes-of-mind can occur in the absence of new

post-decision evidence, and importantly, a reduced version of the neural

circuit model was used to provide insights on the mechanism underlying such

changes-of-mind. The model predicted that changes-of-mind in the absence

of new post-decision evidence are strongly associated with high decision

uncertainty, further reinforcing the link presented in the first contribution,

between high decision uncertainty and changes-of-mind. This challenges

existing theoretical accounts of change-of-mind behaviour. In particular, ex-

isting theoretical accounts of change-of-mind behaviour were demonstrated

to not readily account for changes-of-mind under such conditions.
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7.2 Future directions in modelling

The proposed model in Chapter 4 and its reduced version in Chapter 5 were

tuned to fit qualitative aspects of behavioural and neural data. Despite the

good fit provided, and the analyses in Chapter 6, there are limitations to

the work, which will be addressed below, as part of future work.

7.2.1 Integration with optimisation techniques

In this thesis, optimisation algorithms were not used during data fitting.

Bayesian approaches have been previously used to optimise the parameters of

drift-diffusion models models (Lee et al., 2007; Vandekerckhove et al., 2008).

More recently, Berlemont et al. (2019) used a Monte Carlo Markov Chain

fitting procedure (Bogacz & Cohen, 2004) to optimise and fit parameters of

an attractor network model (Wong & Wang, 2006) to performance-related

metrics of individual participants (i.e. mean response time, mean accuracy).

Such optimisation techniques can be used in conjunction with the proposed

model in this thesis (Atiya et al., 2019a,b) for various reasons. First, a better

fit can be provided to a specific dataset from an experimental task, such as

the task presented in Chapter 6. Second, using such optimisation methods, a

set of ‘optimal’ parameters can be determined that will lead to more optimal

decision making under uncertainty, e.g. maximising reward-rate (Bogacz

et al., 2006).

7.2.2 Investigating confidence-driven serial choice bias

In Chapter 4, a task by van den Berg et al. (2016b) was simulated to

investigate the effect of uncertainty on subsequent behavioural adjustments.

In that task, van den Berg et al. (2016b) found that people slow down after

correct choices in a multi-stage decision task, i.e. when two choices have
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to be correct to receive a reward. This effect reflects a strategy specific to

this task setup, in which participants had to make two correct responses in

a row to receive a reward. Therefore, it being careful (i.e. slowing down)

on the second decision if the first one was evaluated as correct is a sensible

strategy to follow. In other more typical circumstances, this strategy would

not be adaptive and it is unlikely to be observed (Gao et al., 2009; Goldfarb

et al., 2012; Braun et al., 2018; Urai et al., 2019). For example, in standard

choice response-time tasks with no sequential dependencies, participants

are commonly observed to respond more slowly after errors (the opposite to

the effect simulated) as they try to optimise their speed-accuracy trade-off.

In future work, the proposed model (Atiya et al., 2019a) can be tested

under such circumstances, i.e. with no serial dependency in the task. Could

the uncertainty-monitoring module replicate behavioural characteristics

of serial choice bias? There is some evidence that the model may work

(see e.g. (Berlemont et al., 2019)). Importantly, since the proposed model

computes uncertainty at the neural circuit level, analysing the model under

such tasks could potentially offer predictions on the neural mechanism

underlying confidence-driven serial choice bias.

7.2.3 Using decision confidence as a proxy for reward

Recently, several studies have investigated the ability of humans to as-

sess their performance in the absence of feedback after making a deci-

sion (Rouault et al., 2019; Zylberberg et al., 2018). Such studies found that,

under these circumstances, participants use their confidence level as proxy,

both to assess their performance and to update their ‘belief’ about how

biased a block of trials is.

Such studies support their claims with hierarchical Bayesian models.

Future work could test whether the proposed model in this thesis can

account for such behaviour, e.g. by transferring the level of confidence to
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the next n trials.

7.3 Future directions in experiments

7.3.1 Applying the model to confidence judgments

The experiment proposed in Chapter 6 can be better linked to the model

if confidence reports had been measured, e.g. via requiring participants

to explicitly report their confidence level after making a choice. Future

work could leverage such reports to better link decision uncertainty to

change-of-mind, and even serial choice bias (see Section 7.2.2).

7.3.2 Experimental validation of the model’s predic-

tions

The modelling work in this thesis offered various predictions that may

be testable in the future via neurophysiological recordings. For instance,

using dual recordings at the sensory and motor-based brain regions, future

experimental work could test whether dynamics of change-of-mind (i.e.

swapping of neural activity dominance) is more distinctive in motor-based

neurons. Such experimental work would require invasive recording methods

on animals while carrying out a motion-discrimination task.

Furthermore, future experimental work could make use of direct electrical

microstimulation techniques or stimulation via optogenetics to test several

decision uncertainty-related model predictions. For instance, direct stimu-

lation of neurons in the OFC could help validate the multistage decision

paradigm results, but also validate whether the strength or (de)activation

time of the excitatory feedback has the proposed effect on behaviour (e.g.

faster responses and higher rate of change-of-mind).
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The above-mentioned suggestions can, in some cases, be applicable to

human neuroimaging studies. For instance, non-invasive techniques such

as fMRI, MEG, and EEG recordings and inhibition with rMTS during

motion-discrimination tasks can help validate the model’s neural predictions

in human studies.

7.3.3 Investigating uncertainty in other motor output

modalities

A recent registered report (with partial contribution from the author of this

thesis) (Zgonnikov et al., 2019) investigated the differences in behaviour

when reporting choices via a computer mouse cursor (i.e. via hand) and via

walking towards a choice. The study (Zgonnikov et al., 2019) found that, de-

spite the fact that walking trajectories do reflect internal decision dynamics

(i.e. similar to mouse cursor trajectories), there are no significant differences

in behaviour between both motor output modalities. In particular, the

additional motor costs incurred when reporting choices through walking do

not lead to more impulsive behaviour. Future work can use the proposed

neural circuit model to investigate differences in decision-uncertainty levels

between both modalities.

7.4 Future directions in machine learnning

Deep neural networks have recently seen an increase in popularity, and

are used in many machine learning applications. One area that has also

benefited from the recent advances in machine learning and deep learning is

reinforcement learning. In reinforcement learning (Sutton & Barto, 2018),

an agent interacts with an environment, generally by observing a state, then

taking an action, and receiving a reward or punishment. The reward or

punishment signal is used to teach the agent what actions to take or avoid.
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Several approaches on how to optimise this interaction have been proposed,

such as Q-learning and Policy Gradients (Sutton & Barto, 2018).

Deep reinforcement learning enabled researchers to use reinforcement

learning in highly complex environments, such as Alpha Go or computer

2D and 3D games. In particular, deep neural networks (DNNs) have been

used to approximate the Q-function that is used to optimise the expected

reward (i.e. Deep Q-Networks (Mnih et al., 2015)), or to approximate the

optimal policy (i.e. Deep Policy Gradients (Lillicrap et al., 2015)).

At the same time, quantifying uncertainty in deep neural networks has

recently gained traction, most recently using dropouts to estimate model

uncertainty in DNNs (Gal & Ghahramani, 2016), with recent work suggest-

ing that it could be used to improve action selection in deep reinforcement

learning algorithms (e.g. DQNs) (Gal & Ghahramani, 2016). Importantly,

a reinforcement learning agent that is endowed with uncertainty-monitoring

(i.e. self-aware), and is able to use it as proxy for reward, is lacking. Such

agents can be made possible in the future by, for instance, by combining

the model presented in this thesis with deep neural networks, to monitor

and quantify decision uncertainty, both for improved action selection (i.e.

exploitation vs. exploration trade-off) and for using it as proxy for reward

in the absence of feedback. Such advanced algorithms could open the door

for self-aware reinforcement learning robots, while also providing better

interpretability or explainability of neural network models, viewed by many

as black-box models.

7.5 Future directions in computational psy-

chiatry

Psychiatry is a medical field that is concerned with treating mental ill-

ness (Rouault et al., 2018). Data-driven approaches have long been used
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to help with mental illness treatments, e.g. determining effective treat-

ments (Iosifescu et al., 2016), and predicting treatment outcomes (Chekroud

et al., 2016). Data-driven (i.e. machine learning) techniques have been

criticised for their black-box nature, i.e. being ‘agnostic’ to the mechanism

that generated the data. A new field is emerging (computational psychiatry)

that is trying to bridge this gap through computational neuroscience. In

particular, theory-driven approaches, i.e. models with various levels of

abstraction, can be used to compliment such data-driven approaches. For

instance, detailed biophysical models can be used to study the interaction

between different neurotransmitters and the effect of their concentration

on a neural circuit, effectively mimicking a mental disorder (Krystal et al.,

2017a,b). Other models, such as cognitive models at a more macroscopic

level, conveniently account for behavioural data, through fitting of a set

of free parameters (Rutledge et al., 2019). Such parameters can then be

fed into data-driven approaches, with recent evidence showing this combi-

nation leading to improvements in performance (Huys et al., 2016). That

said, for instance, future work can fit parameters of the proposed model in

Chapter 4 to data from decision-making experiments to study individual

differences of metacognitive abilities, and the effect of such parameters

on the neural dynamics of uncertainty-monitoring module in the model.

Importantly, recent studies suggest a strong link between metacognition

and mental health (Rouault et al., 2018). In particular, using simple cogni-

tive models, metacognitive performance of participants was shown to be

strongly linked to compulsive disorders and intrusive thoughts. Perhaps

more biologically-motivated models, such as the model presented in this

thesis, can provide more insights on the mechanism underlying such the

link between metacognition and mental illnesses.
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