Latent Growth Modelling of Refractive Error Development in White Children & Young Adults

Sara McCullough1, Gary Adamson2, Lesley Doyle1, Kathryn Saunders1
1 Optometry & Vision Science Research Group, Biomedical Sciences Research Institute, Ulster University
2 School of Psychology, Psychology Research Institute, Ulster University

INTRODUCTION

• Population-based prospective data on children’s eye growth and refractive error development are rare2,3 and no such data exist for white UK based children.
• Growth data are often used from control arms of myopia treatment trials where participants are already myopic and therefore cannot provide predictive data prior to the onset of myopia.3
• Examining growth patterns can be used to profile refractive risk and provide a basis to identify potential myopes prior to onset and stratify emerging myopes according to how fast their myopia is likely to progress. With the emergence of anti-myopia interventions such as low dose atropine, multi-focus contact lenses and lifestyle advice, such data could be used to target treatments to the most appropriate patients.

PURPOSE

• This prospective, observational study modelled the developmental trajectory of spherical equivalent refractive error (SER) and axial length (AL) in a white population of children and young adults. The number of homogenous classes were examined.

METHODS

• The Northern Ireland Childhood Errors of Refraction (NICER) Study used stratified, random cluster sampling to recruit a representative sample of white children aged 6-7 years (younger cohort n=392) and 12-13 years (older cohort n=661) between 2006-2008.
• Cycloplegic autorefraction (Shin-Nippon Nvision-K 5001 Fig.1A) and axial length (IOLMaster v3 Fig. 1B) were assessed at baseline and prospectively at 3, 6 and 9 years after the baseline measure.
• Participants and their parents/guardians completed questionnaires probing family history of myopia, physical activity, time spent doing near work and whether the participant was breastfed.
• Latent growth modelling of SER and AL was conducted using Mplus v7.4.
• The fit of six models (one- to six-class) were used to determine the best fit model for both the younger and older cohorts of children.
• Predictive variables for the emergent classes were explored for the younger cohort (odds ratios and confidence intervals, CI) to determine if certain characteristics could be used to predict those who were emerging myopes.

RESULTS

• Younger cohort (6-16 years)
 • A four-class solution was the best fit for SER with classes labelled as ‘Persistent Emmetropes-PEMM’, ‘Persistent Moderate Hyperopes-PMHYP’, ‘Persistent High Hyperopes-PHSHYP’ and ‘Emerging Myopes-EMYO’. A two-class solution was the best fit for AL (Figures 2 A & B).
 • A five-class solution fitted best for SER with classes labelled as ‘PHHYP’, ‘PMHYP’, ‘PEMM’, Low Progressing Myopes-LPMYO’ and ‘Moderate Progressing Myopes MPMYO’. A four-class solution was the best fit for AL (Figures 3 A & B).

• Older cohort (12-22 years)
 • A five-class solution fitted best for SER with classes labelled as ‘PHHYP’, ‘PMHYP’, ‘PEMM’, Low Progressing Myopes-LPMYO’ and ‘Moderate Progressing Myopes MPMYO’. A four-class solution was the best fit for AL (Figures 3 A & B).

CONCLUSIONS

• Four distinct classes of refractive development were evident from childhood to teenage years and five distinct classes from teenage years to adulthood.
• The two-class solution for AL growth in children 6-16 years (compared to the four-class for SER) suggests other ocular components, such as lens shape are important determinants of SER alongside AL at this age.
• Parental history of myopia and longer AL at 6-7 years are risk factors for emerging myopia in childhood.
• There was no ‘Emerging Myopes’ class for the 12-22 years, reinforcing evidence that myopia onset is occurring at a younger age.
• These population-based data are a useful addition to other refractive growth models and can be used to identify, at an early stage, white children who may benefit from myopia intervention.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the participants and schools involved in the NICER study (Phase 1 to 4). This study was funded by The College of Optometrists and Ulster University.

REFERENCES