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Abstract

Person re-identification (Re-ID) in environments subject to intensive appearance and background variations due to seasons, weather
conditions, illumination and human factors is a challenging task. A wide variety of existing algorithms address this problem either
for appearance changes or background clutter, but neglect to explore a powerful framework to consider solving both cases simul-
taneously. To overcome this limitation, this research introduces an efficient appearance-enriched neural network (AE-Net) with
foreground enhancement based on generative adversarial nets (GANs) and an attention mechanism to enrich the appearance of per-
son images while suppressing the influence of the background. Specifically, a channel-grouped convolution and squeeze weighted
(CGCSW) module is first proposed to extract the powerful feature representation of individuals. Secondly, a foreground-enhanced
and background-suppressed (FEBS) module is proposed to enhance the foreground of individual samples while weakening the
impact of the background. Thirdly, A stage-wise consistency loss is presented to enable our model maintain consistent foreground-
enhanced and background-suppressed stages. Finally, this study evaluates the proposed method and compares it with state-of-the-art
approaches on three public datasets. The experimental results demonstrate the effectiveness and improvements achieved by using
the presented architecture.

Keywords: Person re-identification, Appearance-enriched neural network, Channel-grouped convolution and squeeze weighted
module, Foreground-enhanced and background-suppressed module.

1. Introduction1

Person re-identification (Re-ID) [1] aims to match a per-2

son across non-overlapping camera views, and has recently at-3

tracted widespread attention [2, 3, 4, 5, 6]. It is an exceedingly4

important domain of computer vision, due to its potential ex-5

tensive application prospects in video surveillance [7, 8], au-6

tonomous driving [9], etc. Although great progress has been7

achieved in person Re-ID tasks, it still remains a significant8

challenge in real-world environments with drastic changes in9

the background and individuals appearance (as shown in Fig.10

1). On the one hand, it would be quite difficult to identify a per-11

son whose visual appearance changes between camera views.12

On the other hand, because of the variation in surveillance13

cameras and environmental changes, the subtle differences of14

individuals usually causes difficulty in the identification task.15

Therefore, it is essential to design an effective model to learn16

accurate representations that are robust to variations in appear-17

ance and environment.18

Traditional person Re-ID methods [10, 11] learn features19

directly from local regions of the person, and thus it is dif-20

ficult to obtain features that are robust to significant changes21

such as weather variations, illumination, viewpoint changes22

and pose changes. Deep learning algorithms have made sig-23

nificant progress over local regions for re-identification tasks.24

There are three mainstream deep learning methods based on25

Convolutional Neural Networks (CNNs) to realize person Re- 26

ID. Several algorithms [12, 13] based on CNNs learn body 27

regions to identity features which are obtained by either part 28

area detection, or key points and pose estimation. Some re- 29

searchers [14, 15, 16, 17] designed various methods based on 30

CNNs to extract globally deep features from the whole im- 31

ages. Many CNNs-based attention strategies have been re- 32

ported for reinforcement representation learning, such as the 33

channel-wise feature re-weighting [18, 19, 20] and pixel level 34

attention [20]. Nevertheless, various existing CNN-based meth- 35

ods pay so much attention to the information extraction of hu- 36

man body parts in the image that they have ignored the influ- 37

ence of the background, whereas enhancing the body region in- 38

formation while suppressing the background may bring higher 39

performance improvements. Although some studies such as 40

[21, 22] reveal the effectiveness of extracting features from the 41

foreground body region rather than the background area, the 42

off-line mask acquisition method and the simple removal of 43

background clutter deviate further from real world scenarios. 44

In this research, we focus on end-to-end feature representation 45

enrichment of the individual body in the image while suppress 46

the corresponding complex background at the feature-level. We 47

aim to accurately separate the feature information that focuses 48

on the person body area and the background region so as to 49

selectively perform enhancement and weakening operations. 50

With the rapid development and application of the Generative 51
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Adversarial Nets (GANs) [23], their powerful ability to obtain52

a large amount of augmented data can be considered as a po-53

tential direction to enhance robustness against appearance vari-54

ations thus making it an appropriate choice for person Re-ID.55

Several works [24, 25, 26] employ unconditional GANs to gen-56

erate augmented person examples and assign reasonable label57

distributions to them to assist in improving the performance of58

person Re-ID. Some researchers explore individual pose con-59

ditioned GANs to provide adequate pose coverage to train a60

robust person Re-ID system. The work in [27] indicates the61

effectiveness of unified networks which jointly couple genera-62

tive and discriminative learning, however lack of high degree of63

attention to the background and foreground still results in low64

qualities of generated samples.65

In order to overcome this limitation, we propose an efficient66

appearance-enriched neural network with foreground enhance-67

ment based on an attention mechanism and GANs to enhance68

the foreground of person images while suppressing the influ-69

ence of the background for person Re-ID tasks. Unlike the70

aforementioned approaches that only involve the body region71

or background clutter elimination, this paper aims to learn both72

foreground enhancement and background suppression at the73

feature-level without resorting to pseudo labels of the gener-74

ated samples. Fig. 2 illustrates an overview of the proposed75

framework which contains two main modules. The first mod-76

ule is based on a channel-grouped convolution and squeeze77

weighted (CGCSW) approach (embedded in the Strong Fea-78

ture Representation (SFR) network) that has the capability to79

learn powerful feature representation of the individuals. This80

research mainly attempts to explore rich features that contain81

person information based on the channel and spatial level at-82

tention mechanism. Secondly, a feature separation module is83

presented to expand the distance between the feature informa-84

tion related to the individual body region and the background85

area, so as to selectively perform enhancement and weakening86

operations.87

To summarize, the main contributions of this study are:88

• A channel-grouped convolution and squeeze weighted89

(CGCSW) module is introduced to explore rich features90

of the person appearance information.91

• A foreground-enhanced and background-suppressed92

(FEBS) module is presented to enhance the foreground93

of person samples while weakening the influence of the94

background for the person Re-ID task.95

• A consistency loss is utilized to enable our model to main-96

tain consistency between the foreground-enhanced and97

background-suppressed stages.98

• Extensive experiments are conducted on three representa-99

tive datasets that demonstrate the effectiveness and supe-100

riority of the proposed approach over the state-of-the-art101

methods.102

2. Related work103

In this section, we review the existing works related to person104

re-identification (Re-ID) from three aspects: mask-guided mod-105

(a) Pedestrians who changed clothes across cameras

(c) Background clutters(b) Bright background

Figure 1: Examples when (a) persons changed clothes across cameras; (b) the
background is extremely bright; (c) individuals with quite complex environ-
ments.

els for person Re-ID, visual attention mechanism-based person 106

Re-ID and GAN-based person Re-ID. 107

2.1. Mask-guided person Re-ID 108

As the topic of segmentation has attracted increasing atten- 109

tion recently, its application in person Re-ID has also been 110

particularly widespread. A Mask-guided Contrastive Atten- 111

tion Model (MGCAM) is introduced by Song et al. [21] to 112

extract robust and discriminative features which are invariant 113

to background clutter. The authors are the first to apply the 114

binary mask to the person Re-ID task successfully. Chen et 115

al. [28] present the Mask-Guided Two-Stream CNN model 116

(MGTS) to enhance the representation by merging one stream 117

from the original sample and make full use of another sepa- 118

rate stream from the foreground as the emphasis message. This 119

further provides the model with the ability to extract more rep- 120

resentative features of each persons identity. In [29], Cai et al. 121

propose a multi-scale body-part mask-guided attention network 122

(MMGA), which studies the attention of part-body regions and 123

entire-body areas to assist in extracting local and global fea- 124

tures. In addition, the approach does not require the use of a 125

mask during inference, which makes it particularly effective. 126

Chen et al. [30] report the Confidence Weighted Stream At- 127

tention (CWSA) algorithm to re-weight the two-stream model, 128

which considers the relative importance of the two streams in a 129

more rigorous manner. 130

The majority of these algorithms are primarily concerned 131

with the correspondence between a single sample image and 132

a label, while ignoring the rich global mutual information in an 133

entire dataset. To solve this issue, Bao et al. [31] introduced the 134

Masked Graph Attention Network (MGAT) to employ the rich 135

global mutual information among extracted features. Unlike 136

most previous algorithms that primarily employ a mask-guided 137

approach to extract discriminative and robust features which are 138

invariant to background clutter, this research adopts an appear- 139

ance enrichment with foreground enhancement technique to im- 140
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Figure 2: Overview of the proposed appearance-enriched framework with foreground enhancement (AE-Net), where our proposed channel-grouped convolution
and squeeze weighted (CGCSW) module (embedded into the SFR network) and foreground-enhanced and background-suppressed (FEBS) module are embedded
into the architecture.

prove the performance of the person Re-ID task without the use141

of any external mask.142

2.2. Visual Attention Mechanism-based Person Re-ID143

Motivated by the recently successful application of visual144

attention mechanisms for person Re-ID, a variety of works145

[32, 33, 34, 35, 36, 5] have been presented to achieve accurate146

individual identity matching through precise body region atten-147

tion. Zheng et al. [32] design the Consistent Attentive Siamese148

Network (CASN), which is a novel siamese learning framework149

driven by attention for view-invariant representation learning to150

achieve robust cross-view matching. In [33], the Batch Drop-151

Block (BDB) Network is reported by Dai et al., which is a two152

branch architecture containing both a feature dropping branch153

and a traditional global branch to weaken the suppressed atten-154

tive local features during training. Fu et al. [35] first propose the155

High-Order Attention (HOA) module to utilize high-order sta-156

tistical information in the attention mechanism, and further cap-157

ture subtle differences among individuals and provide discrim-158

inative attention proposals. Li et al. [36] present the harmo-159

nious attention network (HAN) architecture to learn both hard160

area attention and soft pixel attention simultaneously. They fur-161

ther research feature representations to maximize the comple-162

mentary correlated information between feature discrimination163

and attention selection in a compact framework. In order to164

address the problem of recognition difficulty caused by sub-165

tle differences in appearance of different persons, Qian et al. 166

[5] introduce a multi-scale deep learning network (MuDeep) 167

for identity recognition. Although these works have achieved a 168

considerable performance improvements, they still do not meet 169

the current requirements of the person Re-ID task. 170

2.3. GAN-based Person Re-ID 171

In [23], Goodfellow et al. propose the Generative Adver- 172

sarial Nets (GANs) which are able to generate similar exam- 173

ples based on a deep understanding of the network. With in- 174

creasing progress and application of GANs, various research 175

[24, 25, 26, 37, 38, 39, 40, 41] have made use of their pow- 176

erful capability to obtain augmented data and enhance robust- 177

ness against input variations. Zheng et al. [26] design a semi- 178

supervised framework with label smoothing regularization for 179

outliers (LSRO), which assigns the unmarked samples with a 180

uniform label distribution and regularizes the neural network 181

in the training process. Qian et al. [37] introduce a person 182

sample generated architecture named pose-normalization GAN 183

(PN-GAN) to generate pose-normalized samples with the ad- 184

vantages of identity preservation, realism and posture control- 185

lability. In order to more efficiently utilize the generated sam- 186

ples for an improved feature learning and person Re-ID per- 187

formance, Huang et al. [24] and Ding et al. [25] report the 188

Multi-pseudo Regularized Label (MpRL) and Feature Affinity- 189

based Pseudo Labeling (FAPL) algorithms to assign more accu- 190
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Figure 3: Channel-grouped convolution and squeeze weighted (CGCSW) module.

rate labels to the generated artificial samples. Zheng et al. [27]191

present an architecture that integrates generative and discrimi-192

native learning in a unified network named DG-Net. Although193

this paper adopts DG-Net as the baseline approach, our frame-194

work mainly focuses on enhancing the foreground of individual195

samples while weakening the influence of the background and196

simultaneously conducting strong feature representation opera-197

tions, which is very different from the original DG-Net [27].198

3. Technical approach199

We introduce the appearance-enriched neural network with200

foreground enhancement (AE-Net) in detail for the person Re-201

ID task. Specifically, we first report the channel-grouped con-202

volution and squeeze weighted (CGCSW) module to obtain203

powerful feature representations of the persons. Secondly, we204

introduce the foreground-enhanced and background-suppressed205

(FEBS) module to enhance the foreground of the person sam-206

ples while weakening the influence of the background on the207

person Re-ID task. Finally, consistency loss is presented to op-208

timize the FEBS module. The overall framework of the devel-209

oped AE-Net is illustrated in Fig. 2.210

3.1. Channel-grouped Convolution and Squeeze Weighted211

module212

In order to extract powerful feature representations of indi-213

viduals, this study designs a channel-grouped convolution and214

squeeze weighted (CGCSW) module (shown in Fig. 3). The215

proposed CGCSW module is partly inspired from the Efficient216

Pyramid Squeeze Attention (EPSANet) approach [42], which217

designs a Pyramid Squeeze Attention (PSA) module which218

builds a more efficient and effective channel attention mech-219

anism. Nevertheless, unlike EPSANet, we do not adopt the220

Squeeze and Concat (SPC) module which obtains the multi-221

scale feature map through the channel-wise attention vector.222

Instead, we directly adopt the 1 × 1 convolution operation to 223

reduce the number of parameters and add non-linear features 224

while maintaining the dimensionality of the input. This makes 225

full use of the input image to prevent the suppression of input 226

features. Furthermore, we adopt the Spatial Attention Module 227

(SAM) component of the Convolutional Block Attention Mod- 228

ule (CBAM) [43] to focus on the spatially informative part of 229

the image. 230

Fig. 3 illustrates the CGCSW module which consists pri- 231

marily of five steps. Firstly, the channel-grouped convolution 232

feature maps are obtained through the 1 × 1 convolution op- 233

eration, and then all the channel-grouped convolution feature 234

maps are connected in sequence. Secondly, in order to ex- 235

tract the channel attention of the connected feature map, the 236

excited channel-wise attention vector is obtained by execut- 237

ing the SE-Net [44] weighted module. Thirdly, the Softmax 238

function is applied to normalize the channel-wise attention vec- 239

tor to obtain the normalized excitation-weighted attention vec- 240

tor. Fourthly, the element-wise multiplication and channel- 241

wise multiplication are applied to the input, the normalized 242

excitation-weighted attention vector and the connected feature 243

map to obtain the fusion feature map. Finally, the SAM is ap- 244

plied to the fusion feature map to obtain the output feature map, 245

which is sensitive to the channel and spatial features. 246

Specifically, as illustrated in Fig. 3, suppose X ∈ RC×H×W
247

represents the input feature map, where C, H and W represent 248

the channel number, spatial height and width of the input fea- 249

ture map, respectively. The CGCSW module first divides the 250

input feature map X into N groups according to the channel di- 251

mension, i.e., X = [x1, x2, · · · , xN] where the channel-grouped 252

feature map xi ∈ RC/N×H×W (we set the value of C/N to 2, 253

which means that each xi has two channels) and i = 1, 2, · · · ,N. 254

To maintain the dimensionality of the input image while re- 255

ducing the number of parameters and adding non-linear fea- 256

tures, this approach performs the 1 × 1 convolution procedure 257
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on each xi to obtain the channel-grouped convolution feature258

map fi ∈ R2×H×W (i = 1, 2, · · · ,N), and then connects all fi to259

obtain the connected feature map C f p ∈ RC×H×W , which can be260

formulated as follows:261

C f p = CON( fi)
= [ f1, f2, · · · , fN], i = 1, 2, · · · ,N,

(1)

where CON represents the connection process to obtain the C f p.262

This paper employs the excited channel-wise attention vector263

ecwav (expressed in Eq. (5)) obtained by the SE-Net weighted264

module to extract the channel attention of the C f p. Suppose265

fi = [ fi1, fi2], fi1, fi2 ∈ R1×H×W (i = 1, 2, · · · ,N), then the C f p266

can be reformulated as follows:267

C f p = [ f11, f12, f21, f22, · · · , fN1, fN2]
= [ f1, f2, · · · , f2N],

(2)

where each f j ∈ R1×H×W ( j = 1, 2, · · · , 2N). Thus, the chan-268

nel vector cv ∈ RC×1×1 after compressing C f p in the channel269

direction, can be expressed as follows:270

cv = [c1, c2, · · · , c2N], (3)

where each c j ( j = 1, 2, · · · , 2N) is the channel-shrunken ele-271

ment (obtained by the global average pooling to squeeze global272

information) which can be calculated as follows:273

c j =
1

HW

H∑
m=1

W∑
n=1

f j(m, n), (4)

where (m, n) represents the element of the feature map f j. Then274

the excited channel-wise attention vector ecwav ∈ RC×1×1 can be275

expressed as follows:276

ecwav = [e1, e2, · · · , e2N]
= ζ(w2ξ(w1cv)),

(5)

where each ei (i = 1, 2, · · · , 2N) is the i-th element of the ecwav,277

ζ and ξ denote the Sigmoid function and Rectified Linear Unit278

(ReLU) activation function [45], respectively, w1 ∈ R
C
ρ ×C and279

w2 ∈ RC× C
ρ are the parameters of two fully-connected (FC) lay-280

ers, respectively and ρ is the reduction ratio which reduces the281

number of channels by the dimensionality-reduction layer (the282

first FC layer) and thus reduces the computation. Note ρ is pref-283

erentially chosen as 8, and a detailed explanation for this choice284

is provided in the ablation analysis in Section 4.5.2. To fur-285

ther establish long-term channel attention dependence and re-286

alize the information interaction among channel attention, the287

Softmax function η is adopted to normalize the weight of the288

channel attention information for the excited channel-wise at-289

tention vector ecwav. The normalized excitation-weighted vector290

newv ∈ RC×1×1 can be formulated as follows:291

newv = [n1, n2, · · · , n2N]
= η(ecwav)
= η(ζ(w2ξ(w1cv))),

(6)

where each ni (i = 1, 2, · · · , 2N) can be defined as follows:292

ni = η(ei)

=
exp(ei)∑N

i=1 exp(ei)
.

(7)

Thus, the final fusion feature map F f m ∈ RC×H×W which 293

fuses the features of the input feature map X, the connected 294

feature map C f p and the normalized excitation-weighted vector 295

newv can be expressed as follows: 296

F f m = [n1 ⊙ f1 ⊗ x1, n2 ⊙ f2 ⊗ x2, · · · , n2N ⊙ f2N ⊗ x2N], (8)

where the ⊙ and ⊗ represent the channel-wise multiplication 297

and element-wise multiplication, respectively. The SAM is ap- 298

plied to the F f m to focus on the spatially informative part. Thus, 299

the output feature map O f m ∈ RC×H×W which fuses both the 300

channel and spatial information of the input feature map can be 301

formulated as follows: 302

O f m = ζ(Conv7([AP(F f m),MP(F f m)])) ⊗ F f m, (9)

where Conv7 denotes the convolution with the filter size of 7 × 303

7. The AP and MP represent the Average Pooling and the Max 304

Pooling operations, respectively. On the basis of the proposed 305

CGCSW module, which could obtain the powerful feature rep- 306

resentation of persons, this paper will introduce the foreground- 307

enhanced and background-suppressed learning in the next sec- 308

tion. 309

3.2. Foreground-enhanced and background-suppressed learn- 310

ing 311

The complex background of person samples and the cor- 312

responding environmental changes could seriously affect the 313

recognition accuracy of the person Re-ID task. Based a series of 314

experiments that have been completed, we observe that the fea- 315

ture maps in the lower layers of the convolution neural networks 316

(CNNs) represent the apparent properties, while the higher lay- 317

ers of the CNNs reflect the semantic attributes. Meanwhile, we 318

observe that even in the final output feature map, different chan- 319

nels focus on background regions or foreground areas. There- 320

fore, we determined that the Max Pooling operation (equivalent 321

to enhancement) for the channels is concerned with foreground 322

regions and the Average Pooling operation (equivalent to weak- 323

ening) for the channels focuses on the background areas. This 324

approach can actually obtain a significant foreground-enhanced 325

and background-suppressed effect, and further weaken the af- 326

fect of the background on any subsequent re-identification pro- 327

cesses. 328

To reduce the influence of the background regions, this re- 329

search introduces the foreground-enhanced and background- 330

suppressed (FEBS) module (shown in Fig. 4) which can en- 331

hance the information in the foreground while weakening the 332

background of person images. Fig. 4 shows the FEBS mod- 333

ule consists of two branches which use the Stage 1 and Stage 4 334

outputs of the SFR network). These are assigned with similar 335

tasks, i.e., both are employed for the foreground enhancement 336

5
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Figure 4: The diagram of the proposed foreground-enhanced and background-suppressed (FEBS) module.

and background suppression. Each of the two branches is con-337

nected in line with the fact that the lower layers contain appar-338

ent information and the higher layers contain semantic informa-339

tion. Combining these two types of information could further340

improve the recognition capability of the person Re-ID task. In341

general, the proposed FEBS module is primarily comprised of342

two steps. Firstly, the two branches are processed separately to343

obtain the FEBS features by using the separate FC layer and the344

Sigmoid activation function. Secondly, the FEBS features ob-345

tained from the two branches are fused as the final FEBS feature346

map.347

More specifically, suppose X̃ = [x̃1, x̃2, · · · , x̃C̃] and X̌ =348

[x̌1, x̌2, · · · , x̌Č] are the outputs of Stage 1 and Stage 4 of the349

SFR Network, where X̃ ∈ RC̃×H̃×W̃ , X̌ ∈ RČ×Ȟ×W̌ , x̃i ∈350

R1×H̃×W̃ (i = 1, 2, · · · , C̃) and x̌i ∈ R1×Ȟ×W̌ (i = 1, 2, · · · , Č)351

represent a single feature map. C̃ and Č are the number of chan-352

nels of the X̃ and X̌. In order to obtain the FEBS features with353

the same dimensionality from both branches, the dimension of354

X̃ in the channel direction needs to be increased by a 1 × 1 con-355

volution. Hence, X̂ can be obtained after the channel direction356

is increased and is expressed as:357

X̂ = Conv1(X̃)
= [x̂1, x̂2, · · · , x̂Č],

(10)

where X̂ ∈ RČ×H̃×W̃ , Conv1 denotes the convolution with the358

filter size of 1 × 1 and x̂i ∈ R1×H̃×W̃ (i = 1, 2, · · · , Č) repre-359

sents the i-th channel feature map of X̂. For both branches, the 360

separate FC layer corresponding to each channel of X̂ and X̌ is 361

adopted, which is activated by the Sigmoid function. Thus, the 362

2048 dimensional outputs ŝ ∈ RČ×1×1 and š ∈ RČ×1×1 of the 363

two branches can be formulated as follows: 364

ŝ = [ŝ1, ŝ2, · · · , ŝČ]
= ζ(ŵ1(R(x̂1)), ŵ2(R(x̂2)), · · · , ŵČ(R(x̂Č))),

š = [š1, š2, · · · , šČ]
= ζ(w̌1(R(x̌1)), w̌2(R(x̌2)), · · · , w̌Č(R(x̌Č))),

(11)

where each of the ŝi and ši (i = 1, 2, · · · , Č) represents the i-th 365

elements of the ŝ and š, R(x̂i) ∈ RH̃W̃×1×1 and R(x̌i) ∈ RȞW̌×1×1
366

denote channel flat vectors of X̂ and X̌ respectively, ŵi ∈ R1×H̃W̃
367

and w̌i ∈ R1×ȞW̌ (i = 1, 2, · · · , Č) represent the parameters of 368

the separate FC layers and ζ denotes the Sigmoid activation 369

function. 370

In order to make full use of the information fed back from 371

the Sigmoid function and guide the two branches to obtain 372

the FEBS features, we employ two hyperparameters ε1 and ε2, 373

which represent the thresholds to determine whether to perform 374

the Max Pooling (MP) operation for foreground enhancement 375

or the Average Pooling (AP) operation for background suppres- 376

sion in the current channel. Therefore, the feature maps ôi and 377

ǒi are obtained as follows: 378
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f̂i =

MP ŝi ≥ ε1

AP ŝi < ε1
, i = 1, 2, · · · , Č,

f̌i =

MP ši ≥ ε2

AP ši < ε2
, i = 1, 2, · · · , Č,

(12)

where the detailed verification process and explanation of the379

two hyperparameters ε1 and ε2 can be found in Section 4.5.3.380

Then, the two FEBS feature maps F̂ ∈ RČ×H×W and F̌ ∈381

RČ×H×W , obtained by the two branches, can be formulated as382

follows:383

F̂ = [ f̂1, f̂2, · · · , f̂Č],

F̌ = [ f̌1, f̌2, · · · , f̌Č],
(13)

where each of the f̂i ∈ R1×H×W and f̌i ∈ R1×H×W (i =384

1, 2, · · · , Č) denotes the i-th feature maps of the F̂ and F̌ re-385

spectively.386

This research fuses the two FEBS feature maps as the final387

fused FEBS feature map which can be expressed as:388

F f used = F̂ ⊙ F̌, (14)

where the ⊙ denotes the channel-wise multiplication.389

3.3. Stage-wise Consistency Optimization390

To optimize the weights of the proposed FEBS module, this391

paper adopts identification loss to distinguish different identi-392

ties. Thus, the self-identity losses for each of the two branches393

can be respectively formulated as:394

L̂s
id-FEBS = E[− log(p(bm|âm))],

Ľs
id-FEBS = E[− log(p(bm|ǎm))],

(15)

where âm and ǎm denote the input of the higher and lower395

branches, m is the number of samples, bm ∈ [1, L] indicates396

the identity label, L represents the number of identities and397

p(bm|âm) and p(bm|ǎm) are predicted probabilities that âm and398

ǎm belong to the ground-truth class bm. In addition, the cross-399

identity losses of the two branches can be formulated as fol-400

lows:401

L̂c
id-FEBS = E[− log(p(bm|ân

m))],

Ľc
id-FEBS = E[− log(p(bm|ǎn

m))],
(16)

where ân
m and ǎn

m now denote the input of the higher and lower 402

branches corresponding to image n. 403

Since the L̂s
id-FEBS and Ľs

id-FEBS are loss calculations for the
same identity, we propose a stage-wise loss Ls

id-FEBS to com-
bine the stage losses which can be formulated as follows:

Ls
id-FEBS = L̂

s
id-FEBS + Ľ

s
id-FEBS + ||(P̂s − P̌s)||2 (17)

where P̂s and P̌s are the vectors containing p(bm|âm) and
p(bm|ǎm), respectively. Similar to Ls

id-FEBS , another stage-wise
loss Lc

id-FEBS is determined as follows:

Lc
id-FEBS = L̂

c
id-FEBS + Ľ

c
id-FEBS + ||(P̂c − P̌c)||2 (18)

where P̂c and P̌c represent the vectors containing p(bm|âm
n ) and 404

p(bm|ǎm
n ), respectively. 405

In addition to the losses Ls
id-FEBS and Lc

id-FEBS , this study 406

follows the approach of the [27], and includes the loss function 407

LDG-Net. Therefore, the total loss can be expressed as follows: 408

LAE-Net = L
s
id-FEBS +L

c
id-FEBS +LDG-Net. (19)

4. Experimental evaluation 409

This study conducts experiments on three widely recognized 410

large-scale person Re-ID datasets, including Market-1501 [46], 411

DukeMTMC-reID [26] and MSMT17 [47], to validate the ef- 412

fectiveness of the proposed model. Firstly, we introduce these 413

datasets and the corresponding evaluation metrics. Secondly, 414

the experimental set-up details are presented. Thirdly, this pa- 415

per compares the proposed model with state-of-the-art GAN- 416

based person Re-ID methods and other Re-ID approaches. 417

Fourthly, ablation experiments are used to verify the effective- 418

ness of each component. Finally, we report the results from 419

both quantitative and qualitative perspectives. 420

Table 1: Comparison of experimental results with the published state-of-the-art GANs-based methods on the Market-1501 and DukeMTMC-reID datasets. Rank-1,
Rank-5, Rank-10 and mAP are listed. The best results among these methods are highlighted in bold.

Methods References Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

DG-Net [27] CVPR 2019 94.8 - - 86.0 86.6 - - 74.8
MpRL [24] TIP 2019 87.96 - - 81.18 81.28 - - 74.54
CAD-Net [41] ICCV 2019 83.7 92.7 95.8 - 75.6 86.7 89.6 -
FAPL [25] TMM 2019 86.07 - - 77.64 79.04 - - 70.74
FD-GAN [39] NeurIPS 2018 90.5 - - 77.7 80.0 - - 64.5
CamStyle [40] CVPR 2018 89.49 - - 71.55 78.32 - - 57.61
SL [37] ECCV 2018 89.43 - - 72.58 73.58 - 88.75 53.20
Pose-transfer [38] CVPR 2018 87.65 - - 68.92 78.52 - - 56.91
LSRO [26] ICCV 2017 83.97 - - 66.07 67.68 - - 47.13

baseline 94.73 97.92 98.75 86.11 86.52 94.42 96.35 74.69
Ours 97.62 98.52 99.10 89.63 90.88 95.08 96.93 80.41
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Figure 5: The diagram of the proposed powerful feature representation bottle-
neck block architecture.

4.1. Datasets and evaluation metrics421

In order to verify the effectiveness of our proposed model, we422

conduct a series of experiments on three well-known and rep-423

resentative person Re-ID datasets: Market-1501, DukeMTMC-424

reID and MSMT17. The details of each dataset and evaluation425

metrics are as follows:426

Market-1501 includes 36,036 person images of 1,501 iden-427

tities captured by 6 cameras. The dataset is divided into three428

parts: 12,936 training images of 751 individuals, 19,732 testing429

images of 750 individuals and 3,368 query images.430

DukeMTMC-reID contains 36,411 person images of 1,812431

identities from 8 camera views. Those images are split into432

three subsets including the training set (16,522 images, 702433

identities), the gallery set (17,661 images, 1,100 identities (con-434

taining 408 distractor identities)) and the query set (2,228 im-435

ages, 702 identities).436

MSMT17 is composed of 126,411 person images of 4,101437

identities from 15 camera angles of view. There are 32,621438

training images of 1,041 identities, 82,161 testing images of439

3,060 identities and 11,659 query images.440

Evaluation metrics. The Cumulative Matching Character-441

istic (CMC) curve at Rank-1 accuracy, Rank-5 accuracy and442

Rank-10 accuracy and the mean Average Precision (mAP) are443

adopted as the evaluation metrics to determine the performance444

of different person Re-ID models. The Rank-i accuracy repre-445

sents the ratio of one or more exactly matched images appearing446

in the top-i ranked images. The mAP value reports the overall447

accuracy and recall rate, thereby offering a fairly comprehen-448

sive evaluation protocol.449

4.2. Implementation details450

In this paper, the framework of DG-Net [27] is adopted as451

the baseline. This research uses ResNet-50 [14] pre-trained452

on ImageNet [48] as our backbone, and only removes the last453

global average pooling layer and the last fully connected layer454

(replaced by a fully connected layer with the corresponding455

number of identities, i.e., 751 for the Market-1501 dataset, 702456

for the DukeMTMC-reID dataset and 1041 for the MSMT17457

dataset). All the input images are resized to 256 × 128 during458

training. The batchsize and the epoch are set to 8 and 100 re-459

spectively. The reduction ratio ρ of the CGCSW module in Eq.460

(5) is experimentally chosen as 8 and is discussed in detail in461

Section 4.5.2.462

In order to further learn powerful feature representations of463

persons, this research proposes the strong feature representa-464

tion (SFR) network based on the reported CGCSW module.465

The SFR network is partly inspired from ResNet-50 [14], which466

is widely used in computer vision tasks such as classification,467

recognition, detection, segmentation, retrieval, etc. Neverthe- 468

less, unlike the ResNet-50, we do not conduct the 3 × 3 con- 469

volution operation in all blocks of the third and fourth stages, 470

instead, we employ the proposed CGCSW module which could 471

simultaneously focus on the channel and spatial information de- 472

scribed in Section 3.1. This replaces the 3 × 3 convolution to 473

obtain powerful feature representations of individuals for ReID. 474

Specifically, Fig. 5 illustrates our bottleneck block after em- 475

bedding the CGCSW module to replace the 3 × 3 convolution 476

in the corresponding bottleneck block of ResNet-50. This bot- 477

tleneck block could develop remote channel dependencies and 478

extract spatial information at a finer-grained level. Meanwhile, 479

similar to ResNet-50, a strong feature representation (SFR) net- 480

work is presented by embedding the bottleneck block in the 481

third and fourth stages to replace the corresponding stages of 482

ResNet-50. The first and second stages of our SFR network 483

have the same architecture as the corresponding branches of 484

ResNet-50, i.e., the first and second stages have the same three 485

and four blocks, respectively. The proposed SFR network in- 486

herits the superiority of the CGCSW module and can estab- 487

lish long-term channel attention dependencies and realize the 488

information interaction among channel attention. Furthermore, 489

based on the CGCSW module, our SFR network has significant 490

spatial information mining capabilities. In all experiments of 491

this study, the SFR network will also be pre-trained on Ima- 492

geNet. It should be noted that we do not embed the bottleneck 493

block into the first and second stages of the original ResNet-50. 494

The detailed explanation could be found in the ablation experi- 495

ments in Section 4.5.2. 496

For the FEBS module, the hyperparameters ε1 and ε2 in Eq. 497

(12) are preferentially chosen as 0.5 and 0.4, respectively. More 498

detailed explanations of the reason for this choice can be found 499

in Section 4.5.3. 500

4.3. Comparison with state-of-the-art GAN-based methods 501

For performance evaluationm we compare our approach with 502

nine state-of-the-art GAN-based methods on two common and 503

representative person Re-ID datasets, i.e., the Market-1501 and 504

DukeMTMC-reID. Table 1 shows comparative results, indicat- 505

ing that our proposed approach is superior to all state-of-the- 506

art GAN-based algorithms with clear advantages on both the 507

Market-1501 and DukeMTMC-reID datasets. More specifi- 508

cally, the proposed method surpasses the second-best model 509

DG-Net by +2.82% (97.62 - 94.8)/+3.63% (89.63 - 86.0) in 510

Rank-1 accuracy/mAP using Market-1501 and +4.28% (90.88 511

- 86.6)/+5.61% (80.41 - 74.8) in Rank-1 accuracy/mAP us- 512

ing DukeMTMC-reID. In addition, compared with CAD-Net 513

which has the second-best results in Rank-5 accuracy and 514

Rank-10 accuracy, our approach achieves the best improve- 515

ment of +5.82% (98.52 - 92.7)/+3.30% (99.10 - 95.8) in 516

Rank-5 accuracy/Rank-10 accuracy using Market-1501 and 517

+8.38% (95.08 - 86.7)/+7.33% (96.93 - 89.6) in Rank-5 518

accuracy/Rank-10 accuracy using DukeMTMC-reID. It can be 519

seen that the experimental results are not inferior to the other 520

GAN-based methods listed in Table 1. Therefore, these results 521

demonstrate the effectiveness of the proposed AE-Net learning 522

framework in comparison to other approaches. 523
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Table 2: Comparison of experimental results with state-of-the-art methods us-
ing the Market-1501 dataset. Rank-1, Rank-5, Rank-10 and mAP are listed.
Among these results, the first-, second- and third-best results are highlighted in
red, green and blue respectively.

Methods References Market-1501

Rank-1 Rank-5 Rank-10 mAP

BV [49] ICCV 2021 96.0 - - 89.2
ES-Net [50] TIP 2021 95.7 - - 88.6
PAT [51] CVPR 2021 95.4 - - 88.0
TransReID [52] ICCV 2021 95.2 - - 89.5
CDNet [53] CVPR 2021 95.1 - - 86.0
ASSP [54] CVPR 2021 95.0 - - 87.3
ADC [55] CVPR 2021 94.8 97.2 98.0 87.7
PCB+RPP [56] TPAMI 2021 93.8 97.5 98.5 81.6
OAMN [57] ICCV 2021 93.2 - - 79.8
KPM-GSRW [58] TPAMI 2021 93.1 97.2 98.0 84.7
RGA-SC [59] CVPR 2020 96.1 - - 88.4
PISNet [60] ECCV 2020 95.6 - - 87.1
MuDeep [5] TPAMI 2020 95.34 - - 84.66
ISP [61] ECCV 2020 95.3 98.6 - 88.6
GASM [62] ECCV 2020 95.3 - - 84.7
ICT+CE [63] TIP 2020 94.4 - - 84.9
CBN [64] ECCV 2020 94.3 97.9 98.7 83.6
DSA [65] CVPR 2019 95.7 - - 87.6
BDB+Cut [33] ICCV 2019 95.3 - - 86.7
OSNet [66] ICCV 2019 94.8 - - 84.9
CASN [32] CVPR 2019 94.4 - - 82.8
PIE+Siam. [13] TIP 2019 89.06 96.01 97.13 70.69

Ours 97.62 98.52 99.10 89.63

4.4. Comparison with Other State-of-the-art Methods524

This study evaluates the proposed approach against a num-525

ber of state-of-the-art approaches on three well-known and rep-526

resentative person Re-ID datasets including the Market-1501,527

DukeMTMC-reID and MSMT17.528

4.4.1. Evaluation on the Market-1501 dataset529

This research compares our method with 22 state-of-the-530

art approaches using the Market-1501 dataset. The Market-531

1501 is a large-scale person Re-ID dataset with sufficient train-532

ing and testing images, which is especially suitable for data-533

driven deep learning approaches. As can be seen in Table534

2, our method surpasses all the compared state-of-the-art ap-535

proaches with increases in Rank-1 accuracy and slight increases536

both in Rank-10 accuracy and mAP. Specifically, our approach537

achieves improvements of +1.52% (97.62 - 96.1)/+0.40%538

(99.10 - 98.7)/+0.13% (89.63 - 89.5) over the second-539

best RGA-SC/CBN/TransReID in Rank-1 accuracy/Rank-10540

accuracy/mAP. Furthermore, the proposed method performs541

well (ranking second) in Rank-5 accuracy, only +0.08% (98.6542

- 98.52) lower than the best technique, ISP. It can be seen that543

the experimental results of this study are superior to the other544

approaches. This proves the efficacy of the proposed CGCSW545

module, the FEBS module and the stage-wise consistency loss.546

4.4.2. Evaluation using the DukeMTMC-reID dataset547

This study evaluates the proposed approach against 21 state-548

of-the-art methods using the DukeMTMC-reID dataset. Com-549

pared with Market-1501, DukeMTMC-reID has more surveil-550

lance camera views and complex scenes, which leads to signif-551

Table 3: Comparison of experimental results with state-of-the-art methods us-
ing the DukeMTMC-reID dataset. Rank-1, Rank-5, Rank-10 and mAP are
listed. Among these results, the first-, second- and third-best results are high-
lighted in red, green and blue respectively.

Methods References DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP

TransReID [52] ICCV 2021 90.7 - - 82.6
BV [49] ICCV 2021 90.5 - - 80.6
ES-Net [50] TIP 2021 89.2 - - 78.8
PAT [51] CVPR 2021 88.8 - - 78.2
CDNet [53] CVPR 2021 88.6 - - 76.8
ASSP [54] CVPR 2021 88.2 - - 76.1
ADC [55] CVPR 2021 87.4 92.1 95.5 74.9
OAMN [57] ICCV 2021 86.3 - - 72.6
PCB+RPP [56] TPAMI 2021 84.5 - - 71.5
KPM-GSRW [58] TPAMI 2021 83.4 90.0 91.7 71.3
ISP [61] ECCV 2020 89.6 95.5 - 80.0
PISNet [60] ECCV 2020 88.8 - - 78.7
GASM [62] ECCV 2020 88.3 - - 74.4
MuDeep [5] TPAMI 2020 88.19 - - 75.63
ICT+CE [63] TIP 2020 88.1 - - 75.3
CBN [64] ECCV 2020 84.8 92.5 95.2 70.1
BDB+Cut [33] ICCV 2019 89.0 - - 76.0
OSNet [66] ICCV 2019 88.6 - - 73.5
CASN [32] CVPR 2019 87.7 - - 73.7
DSA [65] CVPR 2019 86.2 - - 74.3
PIE [13] TIP 2019 80.84 - - 64.09

Ours 90.88 95.08 96.93 80.41

Table 4: Comparison of experimental results with state-of-the-art methods us-
ing the MSMT17 dataset. Rank-1, Rank-5, Rank-10 and mAP are listed.
Among these results, the first-, second- and third-best results are highlighted
in red, green and blue respectively.

Methods References Rank-1 Rank-5 Rank-10 mAP

ES-Net [50] TIP 2021 80.9 - - 57.3
CDNet [53] CVPR 2021 78.9 - - 54.7
PCB+RPP [56] TPAMI 2021 69.8 83.3 86.7 43.6
KPM-GSRW [58] TPAMI 2021 71.8 83.3 87.0 47.8
RGA-SC [59] CVPR 2020 80.3 - - 57.5
GASM [62] ECCV 2020 79.5 - - 52.5
OSNet [66] ICCV 2019 78.7 - - 52.9
DG-Net [27] CVPR 2019 77.2 87.4 90.5 52.3

Ours 82.09 90.11 92.57 57.82

icant changes in the background and image resolution, mak- 552

ing the person Re-ID task more challenging. The compara- 553

tive results shown in Table 3 indicate that the proposed ap- 554

proach is superior to all the state-of-the-art methods with clear 555

improvements in Rank-10 accuracy and slight improvement in 556

Rank-1 accuracy. More specifically, our method achieves im- 557

provements of +1.43% (96.93 - 95.5)/+0.18% (90.88 - 90.7) 558

over the second-best approaches, ADC/TransReID, in Rank- 559

10 accuracy/Rank-1 accuracy. We observe that the proposed 560

approach achieves the same result compared with the best tech- 561

nique, ISP considering Rank-5 accuracy, surpassing the third- 562

best CBN by an improvement of +2.58% (95.08 - 92.5). In 563

addition, the proposed method performs well (ranking third) in 564

mAP, only +0.19% (80.6 - 80.41) lower than the second-best 565

BV. As shown in Table 3, the proposed approach presented in 566

this research has the best performance compared with others 567

similar techniques. 568
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Table 5: Ablation Experimental results of the proposed AE network both on the Market-1501 and DukeMTMC-reID datasets. Rank-1, Rank-5, Rank-10 and mAP
are listed.

Methods Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

baseline 94.73 97.92 98.75 86.11 86.52 94.42 96.35 74.69
SFR 96.85 98.13 98.94 88,26 89.63 94.87 96.66 78.52

Table 6: Parameter sizes (millions, denoted M) of the CGCSW module in the
AE network and the performance at different reduction ratios on the Market-
1501 dataset.

Ratio ρ Parameters Rank-1 Rank-5 Rank-10 mAP

2 1.19M 96.94 98.09 99.02 88.17
4 0.60M 96.81 98.11 98.90 88.21
8 0.31M 96.85 98.13 98.94 88.26

16 0.16M 96.76 98.03 98.81 88.19

4.4.3. Evaluation on the MSMT17 dataset569

This paper compares the proposed method with eight state-570

of-the-art approaches on the MSMT17 dataset. The MSMT17571

consists of more person images than the other two datasets men-572

tioned above, making it closer to a real situation and thus en-573

abling further validation of the algorithm’s ability to recognize574

real-world scenes. Table 4 shows the comparative results, in-575

dicating that the proposed method surpasses all the compared576

approaches. Specifically, the proposed algorithm surpasses the577

second-best techniques, ES-Net/DG-Net, by +1.19% (82.09578

- 80.9)/ +2.71% (90.11 - 87.4) (and +2.07% (92.57 - 90.5))579

in Rank-1 accuracy/Rank-5 accuracy (and Rank-10 accuracy).580

Additionally, we achieve an advantage in mAP, surpassing the581

second-best technique RGA-SC by +0.32% (57.82 - 57.5). The582

experimental results presented in Table 4 on the MSMT17583

dataset verify the superiority of the proposed AE-Net.584

4.5. Ablation analysis585

In this section, this research conducts ablation analysis on586

the Market-1501 and DukeMTMC-reID datasets. We analyze587

the efficacy of each component of the proposed appearance-588

enriched neural network with foreground enhancement (AE-589

Net), including the strong feature representation (SFR) net-590

work, the channel-grouped convolution and squeeze weighted591

(CGCSW) module along with the foreground-enhanced and592

background-suppressed (FEBS) module.593

4.5.1. Effectiveness of the strong feature representation net-594

work595

We validate the efficacy of the strong feature representa-596

tion (SFR) network using ablation experiments. As can be597

seen in Table 5, the proposed SFR network outperforms the598

baseline with significant advantages both on the Market-1501599

and DukeMTMC-reID datasets. More specifically, the SFR600

network achieves obvious improvements of +2.12% (96.85 -601

94.73)/+2.15% (88.26 - 86.11) over the baseline in Rank-1 ac-602

curacy and mAP using the Market-1501, and +3.11% (89.63 -603

86.52)/+3.83% (78.52 - 74.69) in Rank-1 accuracy and mAP604

using the DukeMTMC-reID. This indicates that our SFR net- 605

work greatly enhances the feature representation, i.e., the SFR 606

network could learn more detailed and distinctive features of 607

the individual representation than the baseline, thereby further 608

providing useful features of individuals for the FEBS module. 609

4.5.2. Effectiveness of the proposed CGCSW module 610

This study discusses the impact of different combinations 611

of the proposed CGCSW module on the person Re-ID task. 612

Fig. 6 shows 14 ablation results using both the Market-1501 613

and DukeMTMC-reID datasets. The abbreviation S 1 repre- 614

sents that the CGCSW module is only embedded in the first 615

stage of the ResNet-50, and the other abbreviations are similar 616

to the S 1 where the corresponding number indicates the stage 617

where CGCSW is embedded, i.e. S 1234 indicates embedding 618

in stages 1, 2, 3 and 4. Specifically, the results of the S 1, 619

S 2 and S 12 are lower than the baseline and the other listed 620

combinations of the CGCSW module, which suggests that our 621

CGCSW module is not suitable for embedding into the first 622

two stages of ResNet-50. Among these various combinations 623

of S 1, S 2, S 3 and S 4, the S 34 obtains the best results com- 624

pared with the baseline and the others. This clarifies the reason 625

why we adopt this combination as the final SFR network. 626

In addition, the value of the reduction ratio ρ reported in Eq. 627

(5) affects performance and computational costs of the CGCSW 628

module. This research conducts comparative experiments using 629

the Market-1501 dataset to obtain the best value of ρ. It can be 630

seen in Table 6 that the performance does not improve mono- 631

tonically with the increase of ρ, especially when the value of ρ 632

is set to 8, a good trade-off between the performance and com- 633

putation is achieved. Therefore, we adopt ρ = 8 as the reduction 634

ratio used in all experiments. 635

4.5.3. Effectiveness of the proposed FEBS module 636

In order to illustrate the efficacy of our FEBS module, we 637

conduct further ablation experiments: (1) adding the FEBS 638

module to the baseline and the SFR network respectively 639

(shown in Table 7); (2) the analysis of the two hyper-parameters 640

ε1 and ε2 on the Market-1501 dataset (shown in Fig. 7). More 641

specifically, the results in Table 7 show that the baseline+FEBS 642

and the SFR+FEBS outperform the baseline and the SFR net- 643

work respectively with significant advantages both in Rank- 644

1 accuracy and mAP. This suggests significant foreground- 645

enhanced and background-suppressed capability of the FEBS 646

module proposed in this paper. Additionally, this study ana- 647

lyzes the effect of the hyperparameters ε1 and ε2 of the FEBS 648

module. Lots of comparative experiments have been conducted 649

using the Market1501 dataset, and the results report that the ac- 650

curacy (Rank-1, Rank-5, Rank-10 and mAP) reaches its highest 651
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Figure 6: Histogram and line chart of the ablation experimental results for the proposed CGCSW module using the Market-1501 and DukeMTMC-reID datasets.

when ε1 = 0.5 and ε2 = 0.4. We found the optimal combina-652

tion of ε1 and ε2 in the range of 0 to 0.9 with a step length of653

0.1. As can be seen in Fig. 7, the accuracy of Rank-1, Rank-5,654

Rank-10 and mAP are obviously lower than our best combina-655

tion (ε1 = 0.5, ε2 = 0.4) when ε1 = ε2 = 0 which means that the656

module ignores the influence of the bright and complex back-657

grounds in the person Re-ID task. These experimental results658

fully validate the significance role of the foreground-enhanced659

and background-suppressed feature module and the suitability660

of the hyperparameter selection.661

4.6. Evaluation of the generated samples662

In this section, we present the evaluation of the samples gen-663

erated by the GAN-based approaches from both a quantitative664

and qualitative perspective.665

Quantitative evaluation. This paper employs the Structural666

Similarity (SSIM) [67] and Fréchet Inception Distance (FID)667

[68] to evaluate the quality of the generated samples. SSIM668

measures the structural similarity between two images. FID669

measures the distance between the feature vectors of a real im- 670

age and a generated image, which means that a lower score has 671

a high correlation with a higher quality image. Table 8 reports 672

the comparative results using the Market-1501 dataset. Specifi- 673

cally, the comparative results are superior to the other methods 674

listed in Table 8. These results indicate the high quality of the 675

generated samples, and thus could help to enhance the overall 676

person Re-ID performance. 677

Qualitative evaluation. Fig. 8 shows examples of real 678

and generated images on the Market-1501 and DukeMTMC- 679

reID datasets, which illustrate the capacity of the proposed net- 680

work. This study presents visualized examples to evaluate the 681

appearance-enriched samples qualitatively. Fig. 9 presents vi- 682

sual comparison results for the same samples from the real, DG- 683

Net and our approach, respectively. It can be seen from Fig. 9 684

that the samples generated by DG-Net contain artifacts and vi- 685

sual blurs (such as hair, hip, shoulder, chest, face, etc.), while 686

our generated samples look more natural. These visual compar- 687

ison results suggest that our AE-Net could learn more detailed 688

and distinctive features of the individuals structure and appear- 689

Table 7: Ablation experimental results for the proposed FEBS module using the Market-1501 and DukeMTMC-reID datasets. Rank-1, Rank-5, Rank-10 and mAP
are listed.

Methods Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

baseline 94.73 97.92 98.75 86.11 86.52 94.42 96.35 74.69
baseline+FEBS 95.82 98.01 98.89 87.76 87.90 94.63 96.48 76.30
SFR 96.85 98.13 98.94 88,26 89.63 94.87 96.66 78.52
SFR+FEBS 97.62 98.52 99.10 89.63 90.88 95.08 96.93 80.41
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Figure 7: Three-dimensional surface plots of ablation results for different combinations of the ε1 and ε2 using the Market-1501 dataset. Rank-1, Rank-5, Rank-10
and mAP are listed.
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Table 8: SSIM and FID results to evaluate the generated samples by the FA-
Net on the Market-1501 dataset. The best results among these methods are
highlighted in bold.

Methods References SSIM FID

DG-Net [27] CVPR 2019 0.360 18.24
SL [37] ECCV 2018 0.335 54.23
FD-GAN [39] NeurIPS 2018 0.247 257.00
PG2-GAN [69] NeurIPS 2017 – 151.16
LSGAN [70] ICCV 2017 – 136.26

Real 0.350 7.22

baseline 0.355 18.72
Ours 0.368 16.19

ance than the DG-Net, thereby further assisting in improving690

the performance of the person Re-ID task.691

5. Conclusions692

This paper introduces how the CGCSW module and the693

FEBS module can be combined to strengthen the recognition694

capacity of our proposed AE-Net. We employ the CGCSW695

module to explore the useful feature representation of persons.696

The FEBS module is reported to enhance the foreground of per-697

son images and weaken the influence of the background simul-698

taneously. Furthermore, the stage-wise consistency loss enables699

our model to be consistent between the foreground-enhanced700

and background-suppressed stages. This research verifies all701

the vital components of the presented framework and performs702

comprehensive experiments on three well-known and represen-703

tative datasets. The experimental results indicate the capability704

of the proposed method, which is superior to many state-of-the-705

art approaches for the task of person Re-ID.706
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