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A B S T R A C T   

Background: Insomnia is a prevalent health concern in the general population associated with a range of adverse 
health effects. New, effective, safe and low-cost treatments, suitable for long-term use, are urgently required. 
Previous studies have shown the potential of electrical vestibular nerve stimulation (VeNS) in improving 
insomnia symptoms, however only one sham-controlled trial has been conducted on people with chronic 
insomnia. 
Objectives/Hypothesis: Repeated VeNS delivered by the Modius Sleep device prior to sleep onset will show su
perior improvement in Insomnia Severity Index (ISI) scores over a 4-week period compared to sham stimulation. 
Methods: In this double-blinded, multi-site, randomised, sham-controlled study, 147 participants with moderate 
to severe insomnia (ISI≥15) were recruited and allocated a VeNS or a sham device (1:1 ratio) which they were 
asked to use at home for 30 min daily (minimum 5 days per week) for 4 weeks. 
Results: After 4 weeks, mean ISI score reduction was 2.26 greater in the VeNS treatment group than the sham 
group (p = 0.002). In the per protocol analysis, the treatment group had a mean ISI score decrease of 5.8 (95 % CI 
[-6.8, − 4.81], approaching the clinically meaningful threshold of a 6-point reduction, with over half achieving a 
clinically significant decrease. Furthermore, the treatment group showed superior improvement to the sham 
group in the SF-36 (Quality of Life) energy/fatigue component (PP p = 0.004, effect size 0.26; ITT p = 0.006, 
effect size 0.22). 
Conclusions: Modius sleep has the potential to provide a viable, non-invasive and safe clinically meaningful 
alternative treatment option for insomnia.   

1. Introduction 

Insomnia is a prevalent health concern; approximately one in three 
adults in the United Kingdom (UK), Hong Kong (HK) and other countries 
report symptoms of insomnia [1–4]. The clinical definition of insomnia 
varies, and so, therefore, do estimates of prevalence. The American 

Psychiatric Association estimates that approximately 10 % of in
dividuals meet their criteria for insomnia disorder, characterised by 
difficulty initiating or maintaining sleep and dissatisfaction with sleep 
quantity or quality [3]. Lack of sleep is associated with multiple adverse 
health effects including lower quality of life [5,6], increased risk of ac
cidents [7–9], depression [10–13], cardiovascular diseases [14–17] and 

Abbreviations: CBT-I, (cognitive behavioural therapy for the treatment of insomnia); VeNS, (electrical vestibular nerve stimulation); ISI, (Insomnia Severity Index); 
PSQI, (Pittsburgh Sleep Quality Index); SF-36, (RAND 36-Item Short Form Survey, Quality of Life); UK, (Ulster University site consisting of participants resident in the 
UK and Ireland); HK, (Hong Kong site consisting of participants resident in Hong Kong); AE, (adverse event); ITT, (intention to treat analysis using last observation 
carried forward); PP, (per protocol analysis); Wk0, (Week 0); Wk2, (Week 2); Wk4, (Week 4); Wk8, (Week 8); Wk16, (Week 16). 
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impaired immune function [18,19]. 
Pharmaceutical treatments are widely used in the treatment of 

insomnia. Although effective short-term, their associated side-effects (e. 
g., daytime fatigue, impaired cognition, impaired driving, dependence, 
withdrawal, and abuse [20–24]) limit their use and long-term use is not 
recommended [23–27]. Cognitive behavioural therapy for insomnia 
(CBT-I) is the first approach in most western countries as it is effective 
with minimal side-effects [1,20,22–24,28,29], but traditional Chinese 
medicine remains the preferred option in HK [30]. However, limitations 
of CBT-I include time, costs, and a shortage of trained clinicians [28]. 
Alternative treatment approaches, that are more clinically and 
economically feasible, are urgently needed. 

The vestibular system detects changes in both head motion and po
sition and is critical for balance and spatial orientation. The vestibular 
system is known to affect sleep, but the mechanism of action is unclear. 
Some hypotheses propose that the daily movement information pro
vided by the vestibular system affects the suprachiasmatic nucleus and 
therefore circadian rhythm [31–33] or influences the orexinergic neu
rons in the hypothalamus, impacting sleep regulation, potentially by the 
build-up of adenosine [34–36]. Previous studies induced vestibular 
activation mechanically, with rocking resulting in accelerated sleep 
onset and increased duration of non-rapid-eye-movement sleep [37–39]. 
Electrical vestibular nerve stimulation (VeNS), a safe and potentially 
effective treatment for insomnia [40–44]; is achieved by delivering 
current to the skin over the mastoid process [45]; however, the only 
sham-controlled study evaluating the effectiveness of VeNS delivered 
prior to sleep was on younger adults with chronic insomnia and was 
performed in an artificial lab setting [44]. The present study aimed to 
explore the effect of repeated VeNS applied at home, on adults experi
encing insomnia symptoms. We hypothesised that repeated use of a 
VeNS device will show superior improvement in Insomnia Severity 
Index (ISI) scores over a 4-week period compared to sham stimulation. 

2. Methods 

2.1. Study design 

This randomised, double-blinded, sham-controlled trial was con
ducted at two sites: Ulster University, UK, and Hong Kong Polytechnic 
University, HK. Participants were asked to use their allocated VeNS 
device at home for 30 min daily over 4 weeks (UK 28 consecutive days; 
HK 5 days/week, 20 days total). Questionnaires; ISI [46], Pittsburgh 
Sleep Quality Index (PSQI) [47] and SF-36 (RAND 36-Item Short Form 
Survey, Quality of Life [QoL]) [48] were completed as indicated in 
Fig. 1. The primary outcome was change in ISI score over 4 weeks 
(Wk0-Wk4). Data were collected via video call (UK); and face-to-face 
(HK). The trial commenced June 2022 and concluded January 2023. 

2.2. Recruitment and participants 

Individuals suffering from chronic, moderate to severe insomnia (as 
defined by ISI≥15) were recruited via social media advertisement, email 
circulations, and on-campus posters/flyers. Eligibility (see Table 1) was 
confirmed via an in-depth screening telephone call. 

2.3. Randomisation and blinding 

Double-blinded randomisation was completed post-enrolment using 
a block method (1:1 allocation; block size: 2 [UK] or 10 [HK]). UK 
participants were stratified by sex and randomised using an indepen
dently provided sealed-envelope system. For HK participants, an inde
pendent statistician used a computer-generated list of random numbers 
(www.random.org, accessed on June 1, 2022) using a stochastic mini
mization programme to balance participants’ sex, age, and ISI scores. At 
Week 4 (Wk4), participants (and [UK] researchers) indicated whether 
they believed they were in the treatment or sham group or were unsure. 

2.4. Intervention and sham control 

The Modius Sleep (MS1000), a portable, battery-operated vestibular 
nerve stimulator, and visually similar sham devices were provided by 
Neurovalens Ltd. (Belfast, UK) (Fig. 2). Table 2 displays the active and 
sham stimulation applied. Participants were trained at Week 0 (Wk0, 
Baseline) on how to operate the device and position the electrode pads. 

2.5. Study outcomes 

2.5.1. Insomnia Severity Index 
The ISI is a validated 7-item self-report questionnaire that measures 

participants’ perception of their insomnia over the previous two-weeks 
[46]. The total ISI score is categorised as not clinically significant (0–7), 
subthreshold (8–14), moderate (15–21), or severe (22–28) insomnia. A 
decrease in score of ≥6 points is considered clinically meaningful [54]. 
Additional data were collected at Wk2 (UK), Wk8 and Wk16 (HK). 

Fig. 1. Participant timeline. Heavier line indicates period where intervention is 
applied. UK – Ulster University site with participants resident in UK and 
Ireland; HK – Hong Kong site with participants resident in Hong Kong; appt – 
appointment; ISI – Insomnia Severity Index; PSQI – Pittsburgh Sleep Quality 
Index; SF-36 – RAND 36-Item Short Form Survey, Quality of Life. 
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2.5.2. Secondary outcomes 

2.5.2.1. Pittsburgh Sleep quality index. The PSQI (completed at Wk0 and 
Wk4) is a validated self-report questionnaire which assesses sleep 
quality over one month [47]. It includes 19 items which generate 7 
component scores: subjective sleep quality, latency, duration, efficiency, 
and disturbances, use of sleeping medication, and daytime dysfunction. 
Component scores are totalled to give a global score where a score >5 
indicates a ‘poor sleeper’ vs a ‘good sleeper’ (diagnostic sensitivity 89.6 

%, specificity 86.5 %) [47]. 

2.5.2.2. Health related quality of life (SF-36). The RAND SF-36 
(completed at Wk0 and Wk4) is a self-report QoL assessment tool. The 
36 items generate 8 separately-assessed component scores: physical 
functioning, role limitations due to physical health, role limitations due 
to emotional problems, energy/fatigue, emotional well-being, social 
functioning, pain, and general health. 

2.5.2.3. Caffeine diaries. Participants (UK) completed caffeine diaries 
(type, amount and time consumed) for one week prior to Wk0 and Wk4 
appointments. Participants were asked not to change their caffeine 
intake during the study. 

2.6. Compliance and adverse events 

Compliance was monitored using the Modius Sleep iOS app. Data 
logs (usage, average current and electrical impedance) were reviewed 

Table 1 
Eligibility criteria.  

Inclusion criteria Exclusion criteria  

• Insomnia Severity Index (ISI) score of 15 or greater  
• Agreement not to do the following during the study:   

o undergo any extreme lifestyle changes during the study that could impact on sleep e. 
g., dietary or exercise changes  

o use sleep trackers for the duration of the study  
o travel to different time zones during the study  

• Ability and willingness to engage with the monitoring company as required to discuss 
usage and technical issues  

• Access to Wi-Fi  
• Access to a mobile device with Bluetooth (HK only)  
• Agreement not to use prescription or over the counter sleep medications for the 

duration of the trial, and haven’t for 4 weeks before the trial  
• Aged 18–80 years (UK); Aged 18–60 years (HK)  
• Ability and willingness to complete all study visits and procedures; in particular, an 

agreement to engage with trying to use the device daily and attend study appointments 
remotely (UK) or in person (HK)  

• Agreement to maintain a familiar sleeping environment/routine throughout the study 
and will not discontinue or begin treatment with new devices used while sleeping 
during the study  

• Able to provide written informed consent  
• Live in UK or Ireland and understand English (UK) or live in Hong Kong, be ethnic 

Chinese and understand Simplified and Traditional Chinese (Mandarin) (HK)  
• Confirmation that insomnia was not related to recent lifestyle changes that may alter 

during trial  

• History of   
o skin breakdown, eczema or other dermatological condition (e.g. psoriasis) affecting 

the skin behind the ears  
o stroke or severe head injury (requiring intensive care or neurosurgery)  
o active migraines with aura  
o epilepsy  
o diagnosed cognitive impairment such as Alzheimer’s disease/dementia  
o vestibular dysfunction or other inner ear disease  
o major depressive disorder, psychotic disorder, bipolar affective disorder, substance 

use disorders, or clinical depression, or a current characterised depressive episode  
• Previous diagnosis of HIV infection or AIDS  
• Presence of permanently implanted battery powered medical device or stimulator (e. 

g., pacemaker, implanted defibrillator, deep brain stimulator, vagal nerve stimulator 
etc.).  

• A diagnosis of myelofibrosis or a myelodysplastic syndrome  
• Previous use of any VeNS device  
• Pregnancy or breast-feeding, or intends to become pregnant  
• Regular use (more than twice a month) of antihistamine medication within the last 6 

months, excluding fexofenadine  
• History or presence of malignancy within the last year (except basal and squamous cell 

skin cancer and in-situ carcinomas)  
• Participation in other clinical trials sponsored by Neurovalens or other insomnia 

studies  
• Use of betablockers/antidepressants/any other medications that may affect the 

neurostimulation  
• Have a member of the same household who is currently participating in this study  
• Significant communicative impairments  

Table 2 
Stimulation and usage parameters for the Modius Sleep and sham devices.   

Modius Sleep 
Device 

Sham Device 

Stimulation 
frequency 

0.25Hz 0.8Hz; reduces likelihood of meaningful 
vestibular stimulation [49, 50] 

Stimulation current 0.1mA–1.0 mA; participant to ↑ in 0.1 mA increments until 
gentle swaying sensation felt indicating modulation of 
vestibular nerve 

Length of 
stimulation 

30 min Total 50 s: 30 s at selected current, ↓ to 
0 mA over next 20 sa 

Placement Bilateral (mastoid processes) 
Usage frequency 30 min daily for 28 days 
Usage pattern While sitting; before sleep 
Post-session 

lockout period 
16 h  

a Due to user accommodation to the current, sensations of tingling/prickling 
typically subside after 30 s [51, 52]; participants are unable to distinguish be
tween a device delivering 20 min of real stimulation, vs a sham device delivering 
30 s of stimulation before switching off [53]. 

Fig. 2. The Modius Sleep device as intended to be worn, with electrode pads 
over the mastoid processes. Modius Sleep and sham devices had this iden
tical appearance. 
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by the clinical team. Duration (minutes) and number of sessions were 
used to calculate participants’ mean number of weekly sessions; par
ticipants using the device <5 days per week were contacted by the study 
team to encourage increased usage. 

Anticipated side effects of VeNS included discomfort/irritation 
behind the ears, vertigo/dizziness, mild-moderate nausea and head
aches. Participants reported non-anticipated adverse events (AEs) and 
serious AE’s as they occurred, and at Wk4. Reporting in UK was 
researcher-led, participants completed a questionnaire listing potential 
AEs; in HK, reporting was participant-led, only participants reporting 
AEs, completed this questionnaire. 

2.7. Statistical analysis 

Sample size was based on a pilot study [55] where baseline ISI score 
SD was 4.7 rounded to 5.0 as an estimate of SD for within-group ISI score 
change. Anticipating that the sham may have some placebo effect in 
reducing ISI score, our trial was powered to detect a difference of 3 
points between the treatment and sham groups. Based on these param
eters, n = 60 per group was required to provide 90 % power to detect the 
stated effect size, significance level of 0.05, using two-tailed two sample 
t-test. Allowing for 15–20 % dropout, target recruitment was n = 144. 

Data were analysed using SPSS 29.0, except for general linear hy
potheses testing for which R (V4.1) was used. A per protocol analysis 
(PP) was carried out on participants who completed the study to Wk4. 
Intention-to-treat (ITT) analysis using last observation carried forward 
was used to address missing data for all participants with baseline-only 
data. Both analyses are presented throughout. For comparison, sensi
tivity analysis using multiple imputation was also performed for missing 
values which did not change study outcomes. Exploratory data collected 
at Wk8 and Wk16 was not statistically analysed due to the volume of 
missing data. Data are presented as mean ± SD. A probability value of 
≤0.05 was considered statistically significant, except where Bonferroni 
corrections were applied for multiple comparisons. 

Internal consistency for the PSQI and SF-36 was determined using 
Cronbach’s alpha. 

Normality testing per intervention group was conducted for contin
uous variables using histograms and Q-Q plots. ISI scores were normally 
distributed, however change in ISI score, PSQI global scores, age, usage 
(average sessions per week), stimulation level and caffeine intake were 
not normally distributed therefore non-parametric tests were used. 

Baseline between-group differences were determined using inde
pendent t-tests for ISI scores; Mann-Whitney U tests for age, caffeine 
intake, PSQI scores, and SF-36 scores; and Х2 tests for sex and ethnicity. 

Associations between change in ISI score and usage and age were 
checked using Pearson Correlation, and between change in ISI score and 
sex using independent t-test. 

Linear mixed modelling was used to compare between-group dif
ference in ISI score over time (Wk0, Wk2 and Wk4). Age, sex, ethnicity, 
site and total usage were included as covariates; however, only age had a 
significant effect and therefore remained in the final model. General 
linear hypotheses testing was completed for between-group difference in 
ISI score from Wk0 to Wk4, in an age-adjusted model. 

Independent t-tests were used to compare change in ISI scores be
tween sites and to characterise those who were most likely to achieve a 
clinically significant reduction in ISI score (≥6) in the treatment group. 

Between-group difference in the number of participants who ach
ieved clinically significant reduction in ISI score was analysed using 
logistic regression. 

For ISI, PSQI and SF-36 scores, Mann-Whitney U tests were con
ducted for between-group differences in the change from Wk0 to Wk4. 
Wilcoxon signed rank tests were used for within-group differences from 
Wk0 to Wk4 for PSQI, SF-36 and caffeine intake. Application of Bon
ferroni corrections gave a significance threshold of p ≤ 0.007 for PSQI 
components, and p ≤ 0.006 for SF-36 components. 

Effect sizes were determined using r = Z/√n. 

Between-site differences in usage and stimulation level were ana
lysed using Mann-Whitney U tests. 

2.8. Ethical consideration 

Ethical approval for the UK was granted by Health and Care Research 
Wales and Wales Research Ethics Committee 7, United Kingdom (22/ 
WA/0022, IRAS ID 301555) and for HK by the Human Subjects Ethics 
Sub-Committee, Hong Kong Polytechnic University, Hong Kong SAR 
(Ref: HSEARS20220320001). The study was registered at https:// 
clinicaltrials.gov (ClinicalTrials.gov Identifier: NCT04452981). The HK 
protocol has been published [56], and the UK protocol is available on 
request. 

The study was conducted in accordance with the Declaration of 
Helsinki and Good Clinical Practice. Participants who met the eligibility 
criteria provided written informed consent at enrolment. 

3. Results 

Of the 149 participants who enrolled, 147 completed a baseline 
appointment and were included in the study analyses (Fig. 3). A total of 
twenty-three participants withdrew before Wk4, meaning 84.6 % 
completed the study to end of intervention. There was no between-group 
significant difference in the number of withdrawals during the inter
vention period (n = 12 (16.4 %) and n = 9 (12.2 %); treatment and sham 
group respectively; Х2 [1, n = 147] = 0.549, p = 0.459). 

Participants were mostly female (66.7 %) and of Asian ethnicity 
(68.0 %); age 40.8 ± 13.5 years (range 19–72 years). At baseline, there 
were no significant differences between intervention groups (Table 3); 
for both cohorts, the mean ISI score category indicated ‘moderate’ 
insomnia, and the mean PSQI score indicated a ‘poor sleeper’. 

Caffeine intake did not change between pre-Wk0 and pre-Wk4 (ITT p 
= 0.725; PP p = 0.587) and therefore was not included as a covariate in 
analyses. 

3.1. Compliance 

For the 126 participants who completed the intervention (PP cohort), 
the mean number of weekly sessions completed was 5.8 ± 1.73 (sham 
group: 5.8 ± 1.48 and treatment group: 5.8 ± 1.97; no significant 
between-group difference, p = 0.393). Almost three quarters (71.4 %) 
achieved a mean of ≥5 sessions/week (80.0 %, 62.3 %; sham and 
treatment groups respectively), and 7.14 % (6.15 %, 8.20 %) had a mean 
of <4 sessions/week (sham and treatment groups respectively). There 
was no significant difference in usage between sites (5.7 ± 1.88 [HK] 
and 6.0 ± 1.42 [UK]; p = 0.071). The mean stimulation level was 4.0 ±
2.5, equating to 0.4 mA (sham group: 3.9 ± 2.6 and treatment group:4.2 
± 2.5; no significant between-group difference, p = 0.351). 

3.2. Adverse events (AEs) 

Twenty-two non-anticipated AEs (n = 20 in UK) were reported 
during the intervention period, and one additional serious AE (minor 
cerebral vascular accident) that was not device related. Most (n = 16) 
AEs were reported by the treatment group and were infrequent head
aches/migraines (Table 4). One participant (treatment group) withdrew 
due to experiencing nausea and headaches after wearing the device. 

3.3. ISI score 

In both groups, ISI score decreased during the intervention (primary 
outcome: 3.14 [17.1 %] vs − 4.85 [24.5 %] [ITT], − 3.52 [19.2 %] vs 
− 5.80 [29.4 %] [PP]; sham and treatment groups respectively; p <
0.001 for both groups) (Fig. 4). However, this improvement was 
significantly greater in the treatment group (p = 0.010), with age having 
a significant overall effect on the model (p = 0.004). General linear 
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hypotheses testing also showed a significant between-group difference 
in change in ISI score from Wk0 to Wk4 (p = 0.002) and estimated a 
participant in the treatment group to have a decrease in ISI score of 2.26 
more than a sham group participant. Mann Whitney U test also showed 
significant between-group difference in change in ISI score from Wk0 to 
Wk4 (PP p = 0.019, effect size 0.21; ITT p = 0.047, effect size 0.16). In 
both intervention groups, ISI score decreased most from Wk0 (18.4, 
19.8) to Wk2 (15.6, 15.2) then further to Wk4 (14.8, 13.9); at Wk8 
(14.1, 13.9) and Wk16, scores remained low (14.2, 13.9) (sham and 
treatment group respectively) (Fig. 4). 

Half of the participants in the treatment group (31/61, PP cohort) 
achieved a clinically significant decrease in ISI score. Those who did 
were more likely than those who did not to have a higher ISI baseline 
score (21.4 ± 3.90 vs 18.0 ± 3.49 respectively, t [59] = -3.50, p =
0.001) and be defined as having severe insomnia (n = 14 vs n = 4), have 
a higher baseline PSQI score (13.8 ± 3.10 vs 11.8 ± 3.48, t [59] = -2.38, 
p = 0.021) and see the greatest improvements, over the intervention, in 
global PSQI score (− 4.61 ± 3.29 vs − 2.07 ± 2.78, t [59] = 3.26, p =
0.002), sleep quality (PSQI Component 1; − 1.06 ± 0.57 vs − 0.50 ±
0.63, t [58] = 3.66, p = 0.001), latency (PSQI Component 2; − 0.81 ±
0.87 vs − 0.23 ± 0.73, t [58] = 2.79, p = 0.007) and duration (PSQI 
Component 3; − 0.81 ± 0.70 vs − 0.37 ± 0.89, t [59] = 2.15, p = 0.036), 
energy/fatigue (SF-36 Component 4; 17.3 ± 13.9 vs 9.33 ± 10.4, t [59] 
= -2.52, p = 0.015) and emotional well-being (SF-36 Component 5; 
16.90 ± 14.2 vs 5.60 ± 12.2, t [59] = -3.33, p = 0.002). 

There was no significant between group difference in the number 
who achieved a clinically significant decrease; p = 0.164. 

There were also improvements in the ISI categories for both inter
vention groups (Fig. 5) with an increase in the number of participants in 
the “none” (+n9 and +n4) and “sub-threshold” (+n9 and +n27) 
insomnia categories, and a decrease in the “moderate” (-n12 and –n16) 
and “severe” (-n6 and –n15) insomnia categories (sham and treatment 
group respectively). 

Change in ISI score (Wk0 to Wk4) was not significantly associated 
with age (ITT sham R = 0.185, p = 0.114; treatment R = − 0.28, p =
0.815; PP sham R = 0.195, p = 0.119; treatment R = 0.062, p = 0.635), 
sex (ITT sham male − 3.42 ± 5.15, female − 2.96 ± 4.64, p = 0.703; 
treatment male − 4.92 ± 4.30, female − 4.81 ± 4.12, p = 0.917; PP sham 
male − 3.90 ± 5.34, female − 3.34 ± 4.77, p = 0.669; treatment male 
− 5.86 ± 4.05, female − 5.78 ± 3.85, p = 0.938) or usage (PP sham R =
0.124, p = 0.327; treatment R = 0.054, p = 0.678). ISI response did not 
differ significantly between sites (ITT sham t [61] = 0.475, p = 0.637, 
treatment t [41] = -0.13 p = 0.990; PP sham t [51] = 0.433, p = 0.667, 
treatment t [32] = -0.055, p = 0.957). 

3.4. PSQI 

Cronbach’s alpha was 0.515 and 0.663 (PP) (ITT 0.541 and 0.690) at 
Wk0 and Wk4 respectively. The number of poor sleepers decreased, and 
the number of good sleepers increased, from WK0 to Wk4 for both 
intervention groups (Table 5). 

The change in global score from Wk0 to Wk4 was − 1.82 (14.6 %) and 
− 2.81 (21.7 %) (ITT), or − 2.08 (16.9 %) and − 3.36 (26.1 %) (PP) (sham 
and treatment respectively). Change in PSQI global score did not differ 
significantly between groups in the ITT (p = 0.118) or PP cohort (p =
0.068). 

An improvement in sleep efficiency was reported in the treatment 
group (ITT p = 0.040, PP p = 0.027), but after Bonferroni corrections 
were applied no significant between-group differences in change in PSQI 
component scores from Wk0 to Wk4 remained (all p > 0.007) (Fig. 6, 
Table 6). 

Within-group analysis showed improvements in all PSQI components 
for the treatment group (p ≤ 0.003), except medication, and improve
ments in sleep quality, latency, duration and disturbance (p ≤ 0.002) in 
the sham group (Table 6). 

Fig. 3. CONSORT flow diagram showing participant numbers at each stage of the study and details of withdrawals. UK – Ulster University site consisting of par
ticipants resident in the UK and Ireland; HK – Hong Kong site consisting of participants resident in Hong Kong; AE – adverse event; PP – per protocol cohort; ITT – 
intention to treat analysis using last observation carried forward cohort. 
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3.5. Health related quality of life 

Cronbach’s alpha was 0.861 and 0.854 (PP) (ITT 0.859 and 0.859) at 
Wk0 and Wk4 respectively. Improvements were observed for several 
items in the QoL (SF-36); after Bonferroni corrections were applied, the 
change in energy/fatigue remained significantly different between 
groups (ITT p = 0.006; PP p = 0.004) (Table 7, Fig. 7). 

Within-group analysis showed improvements in limitation due to 
physical health, energy/fatigue, emotional well-being and social func
tioning (p < 0.001) in the treatment group, and improvements in 
physical functioning, energy/fatigue, social functioning, pain and gen
eral health (p ≤ 0.005) in the sham group (Table 7). 

3.6. Blinding assessment 

Almost two-thirds of participants (56.9 % vs 60.7 %; sham and 
treatment group respectively) correctly guessed their intervention 
group. Researchers (UK) were only able to correctly determine alloca
tion for participants in the treatment group (21.7 % vs 57.4 %; sham and 
treatment group respectively). 

4. Discussion 

After the 4-week intervention, VeNS using the Modius Sleep device 
significantly improved insomnia severity compared to a sham device, 
with the most benefit seen in those with severe insomnia. Participants in 
the treatment group showed a decrease in ISI scores of 24.5 % (4.85) and 
29.4 % (5.80) in the ITT and PP cohorts respectively, compared to 17.1 
% (3.14) and 19.2 % (3.52) in the sham group. The 5.80 decrease in the 
PP cohort approaches the 6-point reduction that indicates clinically 
meaningful improvement [[54]]. Additionally, improvements in ener
gy/fatigue were observed in the treatment group compared to the sham 
group, with increases in score of 37.2 % (11.2) and 15.4 % (5.81) 
respectively (ITT cohort). Though they failed to reach significance after 
Bonferroni corrections, there were slight improvements in sleep effi
ciency (PSQI) and emotional well-being (SF-36) in the treatment group 
compared to the sham group. Improvements seen in the sham group may 
have been due to the routine of sitting for 30 min before sleep. This adds 
to pilot work where Modius Sleep reduced ISI scores by 48.1 % (7.55) 
over a 14-day period, and a randomised sham-controlled trial where ISI 
score in the Modius Sleep group was reduced by 42.1 % (7.23) over 28 
days with significant between-group difference (p < 0.001). Addition
ally, that same RCT observed a significant between-group difference for 
improvement in all aspects of QoL (p < 0.001), not seen in the current 
trial [44,55]. 

While research is limited, studies have shown that impaired vestib
ular function is associated with sleep problems [57–59], suggesting an 
association between sleep and the vestibular system. Vestibular stimu
lation is well-known to promote sleep in infants via rocking, and this 
effect can also be seen in adults [37,38], as well as decreasing sleep 
latency in mice [39]. VeNS has been shown to decrease sleep latency in 
humans with one study showing a mean sleep latency reduction of 18.3 

Table 3 
Baseline (Week 0) characteristics for participants using an electrical vestibular 
stimulation device (treatment) compared to those using a sham control device 
split by analysis.  

Analysis cohort ITT (n = 147) PP (n = 126) 

Intervention group Sham 
(n =
74) 

Treatment 
(n = 73) 

Sham 
(n =
65) 

Treatment 
(n = 61) 

Sex, n (%) Male 24 
(32.4) 

25 (34.2) 21 
(32.3) 

21 (34.4) 

Female 50 
(67.6) 

48 (65.8) 44 
(67.7) 

40 (65.6) 

df, Х2 1, 0.054 1, 0.064 
p-value 0.816 0.801 

Ethnicity, n 
(%) 

Caucasian 23 
(31.1) 

23 (31.5) 19 
(29.2) 

20 (32.8) 

Asian 50 
(67.6) 

50 (68.5) 45 
(69.2) 

41 (67.2) 

Mixed 1 
(1.35) 

0 (0.00) 1 
(1.54) 

0 (0.00)  

df, Х2 2, 0.993 1, 0.140 
p-valuea 1 0.709 

Age in years, 
mean (SD)  

42.0 
(13.0) 

39.6 (13.9) 41.9 
(12.8) 

40.5 (13.1) 

p-value 0.313 0.667 
ISI score, 

mean (SD)  
18.4 
(4.51) 

19.8 (4.14) 18.3 
(4.70) 

19.7 (4.03) 

p-value 0.051 0.078 
PSQI global 

score, 
mean (SD)  

12.5 
(3.16) 

13.0 (3.58) 12.3 
(3.14) 

12.9 (3.42) 

p-value 0.388 0.381 
Caffeine 

intake, 
mean (SD)  

N/A N/A 1.67 
(1.14) 

1.51 (1.32) 

p-value N/A 0.897     

a Note that for ethnicity Х2, the data for ‘Mixed’ ethnicity had to be excluded 
due to low expected cell count therefore the Pearson Х2 values for ethnicity were 
performed with Caucasian and Asian data only. Х2 tests carried out for sex and 
ethnicity, Mann-Whitney U test for age, PSQI global score and caffeine intake, 
and independent t-tests for ISI score,. Caffeine intake was calculated in units 
where one unit is equal to 90 mg of caffeine. Significant at p ≤ 0.05. A per 
protocol analysis (PP) was carried out on participants who completed the study 
to Week 4 (n = 126); and intention to treat analysis using the last observation 
carried forward (LOCF) method was used for the complete cohort (n = 147). SD 
– standard deviation; df – degrees of freedom; ISI – Insomnia Severity Index; 
PSQI – Pittsburgh Sleep Quality Index. 

Table 4 
Number (%) of adverse events according to intervention group (all participants, 
n = 147).   

Adverse Events  Total n 
(%) 

Treatment 
n (%) 

Sham n 
(%) 

HK Nervous System 
Disorders 

Headache/ 
migraine 

1 
(0.68) 

1 (0.68) 0 (0.0) 

Gastrointestinal 
Disorders 

Severe nausea 1 
(0.68) 

1 (0.68) 0 (0.0) 

UK Nervous System 
Disorders 

Headache/ 
migraine 

6 (4.1) 5 (3.4) 1 
(0.68) 

Eye Disorders Flashes in 
peripheral 
vision 

2 (1.4) 2 (1.4) 0 (0.0) 

Shadow in 
peripheral 
vision 

1 
(0.68) 

1 (0.68) 0 (0.0) 

Tingling in eye 1 
(0.68) 

1 (0.68) 0 (0.0) 

Ear disorders Ear pain 2 (1.4) 0 (0.0) 2 (1.4) 
Tinnitus 2 (1.4) 1 (0.68) 1 

(0.68) 
Itching in ear 1 

(0.68) 
0 (0.0) 1 

(0.68) 
Mood disorders Low Mood 2 (1.4) 2 (1.4) 0 (0.0) 
Mouth/dental 
disorders 

Metal fillings 
pulsing 

1 
(0.68) 

0 (0.0) 1 
(0.68) 

Grinding teeth 1 
(0.68) 

1 (0.68) 0 (0.0) 

Other Tingling in 
arm 

1 
(0.68) 

1 (0.68) 0 (0.0)  

Serious Adverse 
Events     

UK Other Minor cerebral 
vascular 
accident 

1 
(0.68) 

1 (0.68) 0 (0.0) 

The minor cerebral vascular accident was determined to be not device related. 
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min after 30 days of 1-h daily VeNS sessions [42,43,60]. In contrast, 
some studies which subjected participants to rotational movements in 
addition to the usual translational movements, did not show significant 
improvement in sleep [61,62] perhaps due to the recruitment of ‘good 
sleepers’ [62] or, alternatively, to the inclusion of rotational movements 
[61], which may impair the beneficial effects of vestibular stimulation. 
Rotation is detected by the semi-circular canals [45], whereas the 
Modius Sleep delivers stimulation at low levels (<3 mA) intended to 
activate specifically the otolith organs of the vestibular apparatus, which 
sense gravity and linear acceleration. 

The mechanism through which the vestibular system impacts sleep is 
unclear and may be multimodal. One hypothesis is that the vestibular 
system influences the suprachiasmatic nucleus, therefore affecting 
circadian rhythm, by providing information on activity and motion 
during the day [31–33]. Another potential mechanism is via the orex
inergic neurons in the hypothalamus which affect sleep regulation by 
maintaining wakefulness and have been shown to project to the 
vestibular nuclei in rats [34–36]. It has been suggested that this pathway 

Fig. 4. Change in mean Insomnia Severity Index (ISI) score from Week 0 by intervention group. Intention to treat not applied: Week 0 n = 147, Week 2 n = 46 (UK), 
Week 4 n = 126, Week 8 n = 80 (HK), Week 16 n = 79 (HK). Error bars show 95 % confidence intervals. *General linear hypotheses testing showed significant 
between-group difference in change from Week 0 to Week 4 in age-adjusted model; p = 0.002. 

Fig. 5. Distribution of Insomnia Severity Index (ISI) scores in categories for sham and treatment group at Week 0 and Week 4 for the intention to treat analysis using 
last observation carried forward (ITT) cohort. 

Table 5 
Number of ‘good sleepers’ and ‘poor sleepers’ based on Pittsburgh Sleep Quality 
Index (PSQI) score before (Week 0) and after (Week 4) intervention for partic
ipants using an electrical vestibular stimulation device compared to those using 
a sham control device.   

Week 0 Week 4 

Good 
sleeper (n) 

Poor sleeper 
(n) 

Good 
sleeper (n) 

Poor sleeper 
(n) 

ITT Sham 1 73 11 63 
Treatment 1 72 10 63 

PP Sham 1 64 11 54 
Treatment 1 60 10 51 

PP – per protocol cohort; ITT – intention to treat analysis using last observation 
carried forward cohort. 
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may be influenced by the vestibular system providing information about 
daily movement, possibly via the accumulation of adenosine [34]. One 
well-documented link is that stimulation of the vestibular system acti
vates the hippocampus [63–65] which in turn influences rapid eye 
movement (REM) sleep [66–68], and stimulation of the vestibular sys
tem can influence REM sleep directly [69–71]. Some studies suggest a 
link between vestibular stimulation and an increase in the vividness of 
dreams, again indicating an effect on REM sleep [71–73]. This suggests 
that sleep quality, not only quantity, may be affected by vestibular 
stimulation. Although the data in this study are subjective, PSQI global 
score showed no significant between-group difference in sleep quality 
improvement over the intervention period. 

The population recruited for this study was those for whom the de
vice is intended, i.e., those with moderate or severe insomnia (ISI score 
≥15), who had experienced symptoms for an extended period. The de
vice does not have a sedative effect comparable to that of sleeping pills 
so it may not overcome external insomnia causes e.g. noise, light. 
Pharmaceutical treatments still have their place in short-term insomnia 
treatment, but for chronic insomnia, pharmaceuticals may not be an 
appropriate solution. The side effects of pharmaceutical sleep treat
ments are well-documented e.g. hypersomnia, reduced cognition, and 
addiction [21,23,25–27]. The Modius Sleep device was well-accepted by 
participants and has fewer reported side effects than pharmaceutical 
treatments. There were few AEs, the majority being mild or moderate, 

Fig. 6. Mean PSQI component score decrease for the treatment and sham groups at Week 0 and Week 4 for the intention to treat analysis using last observation 
carried forward (ITT) cohort. Increased distance from centre of chart indicates a larger decrease and therefore more improvement in that component. Mann-Whitney 
U Tests; all p-values >0.007. 

Table 6 
Change in mean Pittsburgh Sleep Quality Index (PSQI) component scores for participants using an electrical vestibular stimulation device compared to those using a 
sham control device.  

PSQI Component Week 0 Week 4 Within-group change in score Between-group 
difference p-value 

Effect 
size 

Mean (SD) Mean (SD) Mean (SD); p-value 

Sham Treatment Sham Treatment Sham Treatment 

Component 1: Subjective 
sleep quality 

2.36 
(0.563) 

2.41 
(0.642) 

1.84 
(0.844) 

1.75 
(0.703) 

− 0.527 (0.815); 
<0.001 

− 0.658 (0.671); 
<0.001 

0.189 0.11 

Component 2: Sleep latency 2.34 
(0.864) 

2.33 
(0.958) 

1.92 
(1.08) 

1.89 
(0.994) 

− 0.419 (0.844); 
<0.001 

− 0.438 (0.799); 
<0.001 

0.823 0.02 

Component 3: Sleep duration 1.88 
(0.950) 

1.90 
(0.988) 

1.55 
(1.04) 

1.41 (1.07) − 0.324 (0.862); 
0.002 

− 0.493 (0.784); 
<0.001 

0.354 0.08 

Component 4: Sleep 
efficiency 

1.62 
(1.70) 

1.66 (1.27) 1.61 
(1.25) 

1.14 (1.21) − 0.0135 (1.12); 
0.805 

− 0.528 (1.06); 
<0.001 

0.040 0.17 

Component 5: Sleep 
disturbance 

1.61 
(0.593) 

1.66 
(0.671) 

1.41 
(0.571) 

1.47 
(0.647) 

− 0.203 (0.496); 
0.001 

− 0.192 (0.518); 
0.003 

0.786 0.02 

Component 6: Medication 0.905 
(1.25) 

0.932 
(1.31) 

0.757 
(1.21) 

0.795 
(1.26) 

− 0.149 (0.771); 
0.093 

− 0.137 (0.673); 
0.093 

0.711 0.03 

Component 7: Daytime 
dysfunction 

1.76 
(0.773) 

2.05 
(0.724) 

1.57 
(0.812) 

1.68 
(0.762) 

− 0.189 (0.771); 
0.037 

− 0.370 (0.697); 
<0.001 

0.073 0.15 

Global Score 12.5 
(3.16) 

13.0 (3.58) 10.7 
(4.18) 

10.1 (4.02) − 1.82 (3.43) − 2.81 (3.25) 0.118 0.16 

Values displayed for the intention to treat analysis using last observation carried forward (ITT) cohort. P-values considered significant at p ≤ 0.007 after Bonferroni 
corrections are applied for multiple comparisons. P-values for between-group differences in change in score determined using Mann-Whitney U tests for all scores. 
Wilcoxon signed rank tests used for within-group difference. Effect size was calculated using r = Z/√n. PSQI – Pittsburgh Sleep Quality Index; SD – standard deviation. 

G. Curry et al.                                                                                                                                                                                                                                   



Brain Stimulation 17 (2024) 782–793

790

and infrequent. In the treatment group, completion to end of interven
tion was 80.8 %, with 62.3 % of these participants completing a mean of 
≥5 sessions/week. Only one participant withdrew due to a 
device-related AE. This device provides a lower-risk alternative for pa
tients who cannot, or would prefer not to, rely on pharmaceuticals. 

Due to factors including reduced productivity, inability to work and 
increased mortality, the estimated economic loss in the U.S. due to 
insomnia is $280–411 billion annually [74]. CBT-I is demonstrably a 
cost-effective treatment over the long-term [75] and is recommended 
ahead of pharmaceuticals due to its minimal side effects [1,20,22–24,28, 
29], however CBT-I requires time, money, and multiple sessions with 
trained professionals [28]. The NHS states that CBT-I usually lasts for 6 
to 20 sessions [76] with most studies assessing effectivity providing 6–8 

sessions [29]. Participants on this study successfully used the device 
after one training session, though they were given a contact number in 
case of technical issues. Device use could reduce healthcare and eco
nomic costs and increase accessibility. 

4.1. Study strengths and limitations 

There were small between-site protocol differences (Supplementary 
Table 1) but analyses suggest that this did not impact the study 
conclusions. 

Participants successfully operated the device whether they received 
training face-to-face (HK) or by video call (UK), meaning that training 
can be provided off-site. An issue with CBT-I is that patients cannot 

Table 7 
Change in Quality of Life (SF-36) component scores for participants using an electrical vestibular stimulation device compared to those using a sham control device.  

SF-36 Component Week 0 Week 4 Within-group change in score Between group 
difference p-value 

Effect 
size 

Mean (SD) Mean (SD) Mean (SD); p-value 

Sham Treatment Sham Treatment Sham Treatment 

Component 1: Physical functioning 81.6 
(20.1) 

74.2 
(26.2) 

86.5 
(14.2) 

75.1 
(26.6) 

4.93 (13.8); 
0.003 

0.890 (15.6); 
0.431 

0.109 0.13 

Component 2: Role limitations due to 
physical health 

49.7 
(41.5) 

36.6 
(39.5) 

53.0 
(39.5) 

52.1 
(40.3) 

3.38 (37.8); 
0.458 

15.4 (34.4); 
<0.001 

0.062 0.15 

Component 3: Role limitations due to 
emotional problems 

36.5 
(42.1) 

29.7 
(40.3) 

45.5 
(44.3) 

44.7 
(39.8) 

9.01 (46.3); 
0.096 

15.1 (42.0); 
0.007 

0.445 0.06 

Component 4: Energy/fatigue 37.6 
(21.7) 

30.1 
(19.2) 

43.4 
(20.6) 

41.3 
(18.6) 

5.81 (15.9); 
0.003 

11.2 (12.7); 
<0.001 

0.006 0.22 

Component 5: Emotional well-being 53.2 
(21.1) 

47.1 
(21.6) 

57.4 
(20.1) 

56.5 
(19.5) 

4.16 (14.8); 
0.019 

9.48 (13.8); 
<0.001 

0.018 0.20 

Component 6: Social functioning 56.1 
(26.0) 

51.2 
(24.1) 

65.9 
(23.5) 

62.6 
(25.4) 

9.80 (17.5); 
<0.001 

11.3 (17.6); 
<0.001 

0.723 0.03 

Component 7: Pain 64.8 
(24.0) 

62.4 
(27.5) 

73.6 
(24.0) 

64.9 
(27.1) 

8.82 (17.3); 
<0.001 

2.43 (16.3); 
0.120 

0.042 0.17 

Component 8: General health 44.5 
(20.9) 

42.4 
(24.5) 

49.5 
(22.4) 

47.3 
(22.0) 

5.07 (13.7); 
0.005 

4.86 (14.2); 
0.008 

0.978 0.00 

Values displayed for the intention to treat analysis using last observation carried forward (ITT) cohort. P-values considered significant at p ≤ 0.006 after Bonferroni 
corrections are applied for multiple comparisons. P-values were determined using Mann-Whitney U tests for between group differences, and Wilcoxon signed rank tests 
for within-group differences. Effect size was calculated using r = Z/√n for component scores. SD – standard deviation. SF-36; RAND 36-Item Short Form Survey, 
Quality of Life. 

Fig. 7. Mean SF-36 (RAND 36-Item Short Form Survey, Quality of Life) component score change for the treatment and sham groups at Week 0 and Week 4 for the 
intention to treat analysis using last observation carried forward (ITT) cohort. Increased distance from centre of chart indicates a larger change and therefore more 
improvement in that component. *Significant between-group difference in Energy/Fatigue; Mann-Whitney U test; ITT cohort p = 0.006, PP cohort p = 0.004. 
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always access a trained CBT-I professional [28]; the provision of online 
training for the Modius Sleep device removes this barrier. 

The present study outcome measures are based on participant per
ceptions i.e., no laboratory-based sleep monitoring occurred. This, 
however, allowed participants to maintain their usual sleep environ
ment, providing findings applicable to a real-life scenario where patients 
will use the device at home. 

The current eligibility criteria excluded participants with health 
concerns including inner ear disease, epilepsy, and migraines with aura. 
This may limit the generalisability of the results, as the device may be 
unsuitable for people with certain conditions. Additionally, the results 
are subject to the study conditions; without compliance monitoring, 
device usage may be lower, and effectiveness might be reduced. 

4.2. Further research 

The FDA have approved this device for medical treatment of chronic 
insomnia in the U.S. as an outcome of this study (K230826). Further 
research should focus on device effectivity with different types of 
insomnia (onset, middle or late insomnia). The trend in ISI score 
remaining lower than baseline up to 8 weeks post-intervention suggests 
that the device may have an extended effect. Further investigation could 
be made into the optimal usage requirements i.e., how long the effects 
last without usage, and the minimum regular usage required to give the 
desired result. 

5. Conclusions 

The Modius Sleep device improved insomnia severity and energy 
levels compared to a sham device, indicating an improvement in QoL for 
those who use Modius Sleep regularly for a 4-week period. This device 
could provide a low-risk, non-invasive alternative treatment for chronic 
insomnia sufferers. It can be administered at home, providing an option 
to those without access to CBT-I, or for whom pharmaceutical treat
ments are not suitable. The stimulation is well-tolerated, and intensity is 
adjustable by the user to allow optimal stimulation for the individual. It 
therefore provides a viable cost-effective alternative treatment for 
insomnia. 
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