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Abstract

The world is facing an unprecedented challenge where the oldest segment of society
has now become the fasting growing segment of society. This is placing a large burden
on existing healthcare systems who are struggling to deal with the increase in the
elderly. Thus, the concept of Ambient Assisted Living to facilitate aging-in-place
has come to the forefront as a potential solution to ease the burden on healthcare
systems. A novel solution to this challenge using a single, wearable egocentric camera
is presented. This allows a unique �rst-person viewpoint of the environment to
be established which, through the use of �ducial markers, allows the occupant’s
location and current activity to be established. A study is presented assessing the
technical feasibility for accurate indoor localisation to be established through the use
of �ducial markers placed on key objects throughout the environment. This resulted
in an e�ective technique to determine the current location of an occupant within an
indoor environment. The tool developed within this study was then used throughout
the subsequent studies as a core component of this research.

A subsequent study then sought to determine if it was possible to determine if
an occupant/object interaction was a genuine interaction or a result of a cluttered
environment or via navigation of the environment. The Intelligent System for De-
tecting Inhabitant-object Interactions (ISDII) tool was developed to determine if an
interaction was genuine through the use of distance estimation to the object of in-
terest. This study also provided a comparison between the tool developed in the
previous study vs. an o� the shelf algorithm. This study resulted in the improved
performance by reducing the number of False Positives that were detected within the
video stream improving precision.

A �nal study was carried out to not only determine the location of the occupant
but to estimate their current activity. Due to the use of a wearable camera a lot
of noise was introduced into the data via motion blur which resulted in missing or
incorrect marker detection. Dempster-Safer theory was implemented to deal with
uncertainty that was present in the data to determine the belief that an activity was
being carried out. This study demonstrated the ability to reliably detect the correct
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activity with an 84% success rate when tested on unreliable data.
The incorporation of these �ndings into the wider body of knowledge may aid in

the development of future systems with the goal of solving the challenge of aging-in-
place.
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Chapter 1: Introduction

This Chapter o�ers an introduction and overview of the motivation and challenges
behind this research, which investigates wearable vision-based systems for AAL.
This Chapter will follow on to outline the Thesis work
ow and disseminations
which resulted from this work.

1.1 An Aging Population

One of the most important achievements between the 20th and 21st century has
been the remarkable increase in life expectancy throughout the world. This has,
however, resulted in the oldest group of society (aged 85 plus) becoming the most
rapidly expanding sector of the population [13]. The overall burden placed on
health care systems to address health problems associated with an aging society
is expected to increase as this sector of the population continues to expand [13].
One potential solution to ease this burden is postulated to be through the use
of a \smart environment". A smart environment can be de�ned as being one
that is \able to acquire and apply knowledge about the environment and its inhab-
itants in order to improve their experience in that environment" [14]. It is, in the
purest sense, an example of ubiquitous and pervasive computing and represents
the concept of transparent \computing everywhere" [15]. It allows the support of
occupants who would normally require the assistance of carers, to be supported
within their own home through the incorporation of technology-based solutions
[16]. It has the potential to improve quality of life and may extend the period of
time a person remains living within their own home [17].

At the centre of the smart environment paradigm is wearable technology [18]
enabling data to be continuously collected from a user and their immediate en-
vironment. Wearable solutions are particularly useful to support intelligent ap-
plications within smart environments where contextual information is required to
provide relevant support. Contextual information includes the \user’s physical,
social, emotional or informational state" [19]. This information allows an appli-
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cation’s behaviour to be altered to the current situation, providing task relevant
information to the occupant. Beyond detecting context, there exists a number of
challenges related to managing the 
ow and storage of data that typically origi-
nate from heterogeneous sources. Typical wearable solution applications include
monitoring of vital signs, activity, social interactions, sleep patterns, along with
other health indicators [20]. These parameters o�er the potential for tremendous
diagnostic values that were previously only possible within controlled clinical en-
vironments [21].

1.2 Role of Technology

Technology plays an important role supporting occupants within a smart envi-
ronment context, not only allowing information to be collected on the occupant’s
current status, health, and activity but also when it comes to providing support
for the occupant. This support could come in the form of simple reminders, for ex-
ample, reminding an occupant when they are required to take medication or it can
be used in a more holistic approach monitoring the occupant’s physical, mental,
and social health and making recommendations or esclating alerts to the occupant
or carers/family members. The gaining ubiquity of smart phones, along with other
o�-the-shelf smart devices such as smart watches, has allowed this concept to 
our-
ish with the increased normalisation that the greater adaption of smart devices
has brought over recent years which can be utilised to monitor occupants without
them feeling as \watched" due to these devices already being present within the
home. The presence and adaption of IoT devices allows for additional contextual
information to be gathered about the occupants and their daily routines which
can further allow support to be tailored to the occupant with the goal of providing
timely support. This Thesis will focus on the use of smart glasses to aid in the
monitoring of an occupant within an indoor environment via machine-vision meth-
ods. Focusing on the occupants indoor location along with their interaction with
objects to perform activity recognition, this is discussed in detail within Chapter 4
where experiments are carried out to determine the feasibility of the Glass solution
alongside a comparision to traditional methods.

1.3 Ethical Considerations

As mentioned in the previous section care has to be taken with regard to ethical and
privacy concerns when applying a solution which relies on constant monitoring,
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particulary when cameras are involved. A solution which relies on continuous
monitoring can result in the occupant feeling as though they are being \watched"
throughout the day. This can lead to the feeling of a loss of personal space/privacy
but also that of a feeling of a sense of dependancy on the technology itself [22, 23].
Additionally, there are concerns over continuous monitoring leading to a reduction
in the sense of dignity for the occupant, particularly if support is needed in areas
where privacy is much more of a concern, such as a bathroom or bedroom [22, 23].
While there are techniques to mitigate this issue, such only storing event data, it
is important to consider the impact this may have on the occupants willingness
to use the system. There is also a concern over any potential data breach which
may result in personal information being made available publically. This can be
mitigated through techniques such as the anonymisation of the data alongside
techniques such as edge processing to keep more of the processing/data within the
occupants network to minimise any potential data leak [22].

1.4 Wearable Technology

Wearable technology is rapidly becoming part of people’s daily lives with the
increasing popularity and uptake of devices such as smart watches and �tness
trackers [24]. Within the �eld of healthcare wearable devices have long been used
to monitor a condition and intervene if necessary [25]. The immediate detection
and collection of data allows a much more real-time and accurate collection of
data [26]. This allows wearable technologies to have a unique place for monitoring
older people within their home, allowing for accurate, real-time measurement of
their personal health and their activities [27]. This can be leveraged to aid in the
support of older people living independently at home [28], allowing the possibility
of remote monitoring through egocentric cameras on devices such as Google Glass
[29], as presented in Figure 1.1.

1.4.1 Smart Glasses

Smart glasses are considered to be the next breakthrough in wearables [30]. Due
to the popularity of smart devices a range of smart glasses are available such as,
the Vuzix Blade [31], Ray-Ban Stories [32], Bose Frames [33], Snap Spectacles
3 [34], and Amazon Echo Frames [35]. This research will investigate utilising
Google Glass as a sensor modality. Google Glass was initially released as the
\Explorer Edition" initially in 2013, with an \Enterprise Edition" later released
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in 2019. \Glass Enterprise Edition" is currently on it’s second iteration { \Glass
Enterprise Edition 2" [36].

(a) Top view of Google Glass. (b) Bottom view of Google Glass.

Figure 1.1: Google Glass Explorer Edition.

Google Glass takes the form of a pair of \smart glasses" allowing a more traditional
smart-phone to take the form factor of a pair of glasses. The wearer controls the
Glass device through natural language commands or through a touch-pad located
on the side of the device. Google Glass also contains a forward facing camera and
a transparent display located in front of the wearer’s right eye, as displayed on
Figure 1.2.



5

Figure 1.2: Major components of Google Glass Explorer Edition.

A number of alternative smart glass solutions have also become more common
within the consumer market and it is expected to grow by 9.5% through 2028
[37]. This increase in uptake is due to additional features such as voice assistants
along with improved display resolution and battery life [37] moving away from a
pure AR/VR focus thus allowing businesses to see further value in the technology.
There have been a number of recent developments in terms of alternative forms
of smart glasses being made available. Alongside the glasses detailed previously
in this section there have also been some additional o�erings, such as the Xiaomi
Glasses released in 2022 [38] and the EE Nreal Air AR smart glasses which were
also released in 2022 [39].

1.4.2 Limitations of Wearable Technology

There are a number of limitations which must be considered when attempting to
leverage wearable technology. One of the main limitations is that of battery life,
many wearable devices do not have the battery capacity to run continuously for
a 24 hour peroid [40] which can result in occupants being left without support
as well relying on the occupant to remember to charge the device. There can
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also be issues with accuracy and reliability, this can be caused due to factors such
as sensor placement and environmental conditions that could have an impact on
the reliability of the data collected [40]. Lastly, there is also the issue of privacy
and ethical concerns due to the constant monitoring that wearable devices o�er.
This could lead to concerns about privacy along with questions on how the data
is stored and used.

1.5 Importance of Context

Traditionally technology has had a very rigid form of interaction with users, typi-
cally alerting the user with information as soon as that information becomes avail-
able or at a set time interval. The introduction of the concept of context-aware
computing allows technology to detect certain contextutal information. Informa-
tion such as time, date, current activity, and then adjusts its behaviour based on
your context [19]. If we take the example of an older adult living alone, a context-
aware system would be able to know your medication schedule and would then
remind you to take your medication at an appropriate time. While also taking in
to account your current activity to ensure it is not interrupting at a time where
you would be unlikely to take your medication, such as when hosting a visitor. The
goal of context-aware applications is to make technology more intutitive and allow
more timely and relevant assistance by taking into account the current context
with the goal of enhancing safety and improving support for the occupant.

Context has been de�ned in di�erent ways. Brown et al. de�ned context as
\location, identities of the people around the user, the time of day, season, temper-
ature, etc." [41]. Dey and Abowd de�ned context as the \user’s emotional state,
focus of attention, location and orientation, date and time, objects, and people in
the user’s environment" [19]. Although these de�nitions di�er there are common
themes that include location, time and date, current activity, and people in the
user’s immediate environment. Context awareness can therefore be regarded as
the ability of the system to be \aware" of the user’s current details, such as their
location, the time of day, current social situation, and current activity. For ex-
ample, assuming the user has a context aware smartphone, and they are in their
bedroom and it is late at night it can be inferred that they are asleep and therefore
do not wish to be disturbed by noti�cations. Other examples include supporting
medication management where the system can remind users when their medication
is due, or if they have missed a dose an automatic alert can be escalted to care-
givers or family members. Additionally context aware services can o�er additional
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advantages such as o�ering proactive support. If an occupant shows a decline in
physical activity levels the system can prompt them to engage in some light ex-
ercise, such as walking, to aid in maintaining mobility. The inclusion of context
awareness within an application o�ers the impression of a \smart" or \intelligent"
solution, one which can seemingly anticipate the user’s needs and deliver time crit-
ical information in an unobtrusive manner [42]. This type of solution is well placed
for assisting the occupant in their everyday lives, in particular, to provide bespoke
support to those with speci�c caring needs. Some types of contextual information
are more important than others, in particular the location, the identity, the time,
and the activity of the user [19]. Together these make up the where, who, when,
and what respectively of the contextual situation.

1.5.1 Indoor Localisation

Indoor localisation is an important aspect in context aware computing [43], as de-
termining the occupant’s location is key to the system inferring the user’s context.
The occupant’s location has been used as one of the major indicators to infer the
occupant’s activity as there are many areas of a building which are closely linked
to the occupant’s context [44]. For example, there may be core activities that take
place within the kitchen that do not take place elsewhere within a living environ-
ment, such as preparing food. The occupant’s location can also allow for adaptive
automation within a context aware system, such as when the occupant walks into
a room the lighting and heating can be adjusted to the occupant’s preference. The
occupant’s behaviour can also be monitored by learning patterns in their daily
routines and behaviour and can further aid in determining the occupant’s require-
ments. Additionally, the tracking of an occupant’s indoor location can allow for
additional health monitoring by analysing their activity levels and if their routines
are deviating from what is considered normal for the occupant.

1.5.2 Indoor Localisation Technologies

Research investigating the use of indoor localisation have used various technologies
to determine the occupant’s location [45, 46]. Some of the main approaches are the
use of dense sensor placement [43], the use of active tags [47], and machine-vision
techniques [48, 49]. There has been progress made within the �eld of location
tracking technology. Common examples of these technologies include Global Po-
sitioning System (GPS), Radio-Frequency IDenti�cation (RFID), Smart Floors,
Bluetooth triangulation, and Wi-Fi �ngerprinting. However, these technologies
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have limitations when applied to a scenario which requires accurate indoor local-
isation. GPS, while o�ering accurate localisation outdoors su�ers when applied
to an indoor scenario due to problems in acquiring a satellite signal when the
device does not have clear access to the sky [50]. RFID o�ers a low cost, low
power method of performing indoor localisation [50], with the RFID tags being
attached to objects/persons of interest. Using RFID for the purpose of indoor lo-
calisation presents multiple challenges, such as ensuring su�cient coverage of the
environment and interference from other RF emitting devices (such as Wi-Fi access
points). While RFID can o�er a lower cost solution to that of indoor localisation it
may not be suitable for tracking an older occupant living at home. This is due to
the occupant having to remember to carry an additional device that they are not
accustomed to wearing on a daily basis. Smart Floors o�er an accurate method of
obtaining a occupant’s location within an indoor environment, o�ering accuracy
of 1cm over a 1m span [51]. While, however, a Smart Floor can o�er high levels
of accuracy it is an expensive method to implement, both in terms of the cost of
the Smart Floor itself but also in terms of the installation costs, particularly if it
will need to be retro �tting to an existing environment, which may be common
within an aging-in-place situation. Smart 
oors are typically not suitable for an
aging-in-place context due to the aforementioned cost issues being more suitable
to tracking the movements of a number of people, such as in a commerical set-
ting. One common method of determining an occupant’s location is through the
use of signal triangularisation, this can be achieved through the use of Bluetooth
beacons [51]. Bluetooth Low-power Equipment (BLE) o�ers a low-cost, low-power
method of providing signal triangulation within an environment [52]. The use of
BLE for signal triangularisation has challenges, such as ensuring adequate cov-
erage of an environment as well as interference, along with the maintenance of
multiple beacons. Due to the need to maintain a number of receivers within the
environment, coupled with the occupant being required to carry a device that they
are not accustomed to carrying, can result in this method not being as suitable
for monitoring an older occupant at home. Fingerprinting is an existing method
to determine an occupant’s location within an indoor environment [53, 54, 55].
This also relies on the environment having adequate coverage in order to reliably
obtain the occupant’s location as they navigate throughout the environment. Fin-
gerprinting has some issues when being applied to an scenario of monitoring an
occupant living at home. Any changes to the environment will result in having
to rerun the �ngerprinting process due to changes in signal strength from passing
through objects in the environment.
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1.5.3 Identity

The identity of the occupant is of key interest when it comes to determining the
context [56, 57]. Knowing the occupant’s identity allows further personalisation in
order to improve the relevance of the support that can be put in place to assist the
occupant within the environment. Examples of personalisation that can be used
to support decisions include the occupant’s medical history, their social group, as
well as information on their personal daily habits. Additionally the identi�cation
of an occupant can allow personalised assistance to be o�ered, such as medication
schedules, activity, and dietary suggestions [58]. This information can o�er an
insight into what is normal behavior and what is abnormal behavior for the occu-
pant [19, 59, 57]. Once the identity of the occupant has been established it can
o�er a number of advantages in terms of the level of support that can be provided
to the occupant. Once an occupants identity has been con�rmed the system can
tailor the environment to the occupants personal preferences. For example, if an
occupants’ typically prefers a warmer room the system can adjust the thermostat
to increase the temperature to the occupants’ preferred temperature. Addition-
ally, the environment can be further tailored to the occupant’s schedule, such as
raising lighting to wake the occupant at their preferred time along with providing
reminders for their daily schedule. The occupant’s individual lifestyle can also be
taken into consideration when providing support to an occupant. The occupants
dietary preferences can be taken into account, providing relevant recipes or local
restaurant recommendations. Additionally, the occupant’s �tness goals can be
taken into consideration, recommending active time depending on their activity
levels throughout the day or local gyms or relevant sport clubs.

However, there can be challenges in collecting relevant data for supporting
personal preferences and lifestyle factors. The occupant may feel the collection of
this information to be intruding on their privacy and may not be willing to share
this information or may not provide information that is fully accurate. Further
challenges are di�erentiating between permanent changes to the occupant’s routine
and occasional or ad hoc changes to the occupant’s routine which requires constant
data collection and analysis. Lastly, collecting lifestyle/personal information can
require gathering data from various sources such as wearable and environmental
sensors which can introduce challenges in accuracy and consistancy across devices.
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1.5.4 Time

Typically, occupants will have a certain routine that they follow which can be
leveraged to determine if behaviour is abnormal [60]. For example, occupants may
have a set morning routine where they carry out a typical list of activities such as
a personal hygeine routine, making/eating breakfast, and getting ready for work
[61]. A context aware system can use this typical routine to provide timely and
relevant assistance to the occupant. Such as gently raising the lighting within
the bedroom to wake the occupant, suggesting breakfast recipes, and reminding
the occupant of any meetings or appointments that they may have throughout
the day [62]. Additionally, a context aware system can leverage time to provide
reminders at an appropriate time, such as reminders to take medication or sug-
gesting a peroid of higher activity if their activity levels have been low throughout
the day [63]. Time can also be used to directly relate to what is normal and ab-
normal behaviour for the occupant. For example, if they are attempting to make a
meal, the time can determine if this is de�ned as normal behaviour (e.g. at 18:00)
compared to abnormal behaviour (e.g. 03:00). This information can be used to
determine if the occupant would then require further support in terms of inter-
vention [64].The consideration of time can allow context aware systems to make
timely predictions and reminders and can increase the accuracy and relevance of
context aware applications and the support they can o�er.

1.5.5 Activity Recognition

Activity recognition is an important factor in determining the context of a situ-
ation, there are many activities/tasks an occupant can be assumed to be doing
if location, time, and identity are the only factors which are known. Therefore,
it can be di�cult to know what support, if any, the occupant may need at that
time or indeed if the occupant is exhibiting normal or abnormal behaviour at that
moment. For example, it can be classed as normal that an occupant is in the bath-
room at any time of the day but with the additional information of the activity
that the occupant is carrying out we can further de�ne if that is normal or abnor-
mal behaviour. For example, if the occupant is in the bathroom in the early hours
of the morning and it was determined that they are cleaning the bathroom, this
can be classed as abnormal behaviour. Furthermore, it may be de�ned as abnor-
mal or normal activity for the occupant to be in the kitchen in the early hours of
the morning (e.g., 02:00) depending on the activity that the occupant is carrying
out at the time. For example, it could be de�ned as normal that the occupant
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is in the kitchen at this time to get a glass of water yet de�ned as abnormal if
the occupant is in the kitchen at this time and the oven is turned on along with
sensors triggered for fridge/cupboards etc.

Activity recognition has evolved to be a critical issue in Ambient Assisted Liv-
ing (AAL) as activities can give greater contextual meaning to a situation [65] and
can help determine the level of independence of an occupant based on their ability
to complete Activities of Daily Living (ADL) [66]. The measure of an individual
to carry out their ADLs has been de�ned by the Katz Index of independence in
ADLs [66]. This index allows the assessment of an individual’s ability to carry
out their ADLs in order to assess the level of assistance that may be required.
Activity recognition utilises sensors placed within the environment to determine
the activity via sensorised objects within the environment. Typically, this takes
place through dense sensor placement (where low cost contact sensors are applied
to an environment to capture data on object interaction) within an environment
but more advanced techniques, such as machine-vision (using a video camera to
recognise objects or occupants within the video stream) and radar (were radio
waves are used to detect objects or occupants), are becoming more commonplace,
as demonstrated by [67], along with combinations of multiple techniques. The
constant monitoring of occupant’s activities allows a more accurate evaluation of
their current health status through the occupant’s ability to perform ADL inde-
pendently [66].

1.6 Machine-Vision

Machine-vision is a branch of computer science focused on the use of cameras and
image processing to attempt to replicate human vision processing [68]. According
to the Automated Imaging Association, machine-vision includes:

...industrial and non-industrial applications in which a combination
of hardware and software provide operational guidance to devices in
the execution of their functions based on the capture and processing of
images. [69]

This typically relies on digital image sensors to acquire images to allow analysis and
measurements to be carried out with the end goal of informing decision making.
Within the domain of AAL machine-vision can be utilised to monitor occupant’s
location and activities with the goal of supporting their independent living [70,
71, 72, 73]. A common method within machine-vision is that of leveraging feature
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points within an image [74]. These feature points will normally map to a real
location within a scene allowing the comparison of the known features points of
an object of interest with those feature points detected within the scene.

Traditionally utilising features within a machine-vision context consisted of
three major steps, 1) feature detection, 2) feature description, and 3) feature
matching [75].

Feature detection Detection is the process of detecting points of interest in an
image (also known as keypoints) which can be used to uniquely identify
the object of interest within the image, these features will mostly consist
of edges, points, corners, and blobs [74]. Suitable features will have a well
de�ned/localised position in the image, they should be stable under varying
brightness levels and o�er a high degree of repeatability in terms of detection.

Feature description Description is the process of describing the area surround-
ing the feature point in such a way that it will provide robustness to changes
in brightness, scale, and rotation, typically resulting in a feature vector being
produced for the respective feature point [75].

Feature matching Matching involves determining correlations between the known
features and their descriptors of the object of interest against the features
and descriptors detected in the current image.

With the advancement of machine learning techniques many \o�-the-shelf" ma-
chine learning libraries now exist which can be utilised without the need to develop
a unique algorithm for the application of machine-vision to AAL.

1.7 Research Challenges

There are multiple research challenges within the domain of AAL, this Thesis
investigates three key issues. Firstly, the issue of a system being applied to di�ering
environments. This traditionally requires re-training to the new environment in
order to support an occupant within their own home. Secondly, the challenge of
establishing the viability of determining the location of an occupant through an
egocentric camera. Lastly, the challenge of establishing the current activity that
the occupant is undertaking in order to provide relevant support.

Additionally, there is the issue of multiple occupancy [76, 77]. Within the
context of AAL only the occupant of the environment needs support, however,
False Positives (FP) can be generated which can cause irrelevant sensor events
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due to visitors interacting with sensors or faults in sensors. For example, FP’s can
be generated through care workers who may have regular check-ins with the patient
or through visiting friends or family members. Further issues encountered include
a lack of systems which can provide support in real-time or near real-time which is
of key importance when attempting to support occupants with their ADLs. This
lack of real-time support can be caused by a delay in sensor events being collected
or a delay in the processing time required to make a decision.

The need for these systems to perform well in di�ering environments is also a
challenge due to the requirement to be deployed within the occupant’s own home.
There can be no assumption made as to the layout of the environment or to the
existence of objects that are used for location/activity recognition. Traditionally,
this requires a re-training of the system to \learn" the new environment, this not
only takes up time for the training process but depending on the quality of the
training data that has been gathered the performance of the system will vary.
There is also the issue that if any objects are moved within the environment,
the system will then require training for the new room layout. The lack of a
need to train for a new environment also o�ers a further range of bene�ts, such
as ease of use as the system no longer has to be retrained. Which can take a
considerable amount of time due to the need to perform data collection on the new
environment and will allow for a faster deployment. Additionally, as the system
is \pre-trained" this will typically result in a more robust and reliable model [78]
which is of importance when considering the use case of supporting older adults
who would require accurate and timely support.

The proposed research aims to reduce these problems though the use of Google
Glass to provide a �rst-person (egocentric) wearable view, utilising processor o�-
loading and �ducial markers. Fiducial markers take the form of an object which is
placed within the FoV (Field of View) of the camera to provide a unique identity
to that object/scene, an example of a �ducial marker applied to an object can be
seen in Figure 1.3.
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Figure 1.3: A �ducial marker applied to a telephone.

A second research challenge behind the work presented was establishing the fea-
sibility of determining the location of an occupant through a �rst-person wearable
camera. This challenge was further compounded due to the lack of �rst-person per-
spective datasets that were available. In order to overcome this challenge a method
was proposed using \key" objects within the user’s immediate environment which
would then be cross-referenced against a knowledge base to determine their indoor
location. One of the issues surrounding this method is the large variance that is
present in common household objects, such as di�ering manufacturers/models of
various appliances. In order to address this challenge a method was proposed using
�ducial markers placed on \key" objects to allow a common and consistent method
of identifying objects and thus localising the position of the occupant within the
environment.

The �nal research challenge in this piece of work is that of determining the
activity currently being carried out by the occupant. This is key for an AAL
situation as the goal is to assist those in need with their ADLs in order to allow
them to live in their own home independently for longer [79]. A key issue is when
to determine if an object detection is due to the occupant carrying out an activity
or if it is a FP due to random gaze activity or from the occupant navigating
through an environment. This challenge can result in inaccurate locations being
reported. In the case of determining the occupant’s activity this could result in the
wrong activity being determined which could result in confusion for the occupant
is support is o�ered for an incorrect activity.
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1.8 Research Aim

This research aims to investigate the use of machine-vision to support those at
home who may traditionally require assistance to carry out their ADLs through the
use of improved location accuracy and activity recognition via evidential reasoning.
To support this aim, a number of research quetions are posed.

1. Does the use of an egocentric wearable camera o�er the ability to determine
the user’s indoor localisation along with additional context when detecting
activities in comparison to dense sensing approaches?

2. Does the use of �ducial markers within the environment allow the easy adap-
tion to new environments without a period of re-learning the environment?

3. Does the use of an object-distance estimation improve the rate of detection
of object interaction when compared to a non-estimation approach?

4. Does the application of evidential reasoning further improve the state of the
art through improving the accuracy of activity recognition?

1.9 Thesis Work
ow

This Chapter o�ers an introduction and overview of the motivation and challenges
behind this research, which investigates wearable vision-based systems for AAL. A
core research challenge lies in the indoor localisation of an occupant along with the
associated activity that is being carried out within the environment. Addressing
these challenges using a single wearable vision-based sensor is explored, with results
and challenges of such a system explored. This thesis is presented within seven
Chapters. Figure 1.4. provide an illustration highlighting the relationship between
these.

Chapter 2: Technology Based Approaches to Facilitate Ambient As-
sisted Living
This Chapter presents a range of methods and technological developments within
the �eld of AAL, in particular, emphasis is placed on carrying out ADLs within
an occupant’s own home to help assist with Aging in Place.

Chapter 3: Generation of Egocentric Datasets for ADL Research
This Chapter critiques a study of work which involved generating a series of
datasets to be used in a series of further studies. This Chapter includes the design
of the activities and routines that will be used to generate the datasets, along
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with a description of the sensors that will be used to create the data as well as a
description of the environments. Details of the locations in which the dataset is
gathered is presented, Ulster University Pervasive Computing Research Group and
University of Ja�en UJAmI SmartLab. A 
oor-plan layout of the respective labs is
also presented along with the respective sensor locations. A detailed breakdown
of the routines along with their component activities is also presented along with
a technical description of the hardware used in the respective sensing technologies
used within this thesis.

Chapter 4: Towards Indoor Localisation through Fiducial Marker
Detection on Real-Time Video Implementing a Wearable Camera
This Chapter presents a study of work carried out to assess the technical feasibil-
ity of utilising a single wearable camera to determine occupant location via the
detection of objects within the environment. A method of indoor localisation is
presented through the use of an egocentric view of the environment via a single
wearable camera { Google Glass. The Chapter establishes an experimental pro-
tocol to allow the feasibility of the proposed method to be assessed as a means
of indoor localisation. Dense sensor placement is also used to allow a comparison
of methods to be carried out to determine the success of the proposed method.
A series of routines were carried out and data recorded from both the proposed
system and the dense sensor placement. In order to verify if the method is appli-
cable to multiple environments the routines were also carried out at a second test
environment at the UJAmI SmartLab in the University of Ja�en, Spain.

Chapter 5: Comparison of Fiducial Marker Detection and Optimis-
ing Marker and Object Detection Through Enhanced Filtering and Seg-
mentation
This Chapter presents a study of work carried out to compare the proposed method
of determining location via �ducial markers to an o� the shelf method, ArUco, in
order to determine the performance of the proposed system. This Chapter also
presents a method to aid in determining if an occupant-object interaction is genuine
or is a FP generated through the occupant navigating throughout the environment
or through general gaze activity. The presented method is known as the Intelligent
System for Detecting Inhabitant-object Interactions (ISDII), this is based around
the observation that an occupant is generally within a known \interaction range"
with the object of interest. This also takes into account the di�ering forms of
interaction that di�erent objects will require, a phone for instance will have a
much closer interaction range than a TV. A two-stage �lter was also developed
for this stage in order to manage the uncertainly introduced due to missed marker
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detections within the video stream.
Chapter 6: Managing Uncertainty in Activity Recognition Utilising

Dempster-Shafer Theory
This Chapter presents a study of work carried out to investigate the use of DS
theory. This is to minimise the uncertainty introduced through missing sensor
values within a data stream when determining the activity currently being carried
out by an occupant within a smart environment. The Chapter also presents the
concept of DS theory and how it can be applied to an AAL context. This has been
applied to the vision-based dataset within the presented work to try and minimise
the e�ect that miss-classi�cations or missing sensor values have on determining
the activity of interest.

Chapter 7: Conclusion
This Chapter provides a summary of the overall work presented in this Thesis along
with how the overall research aims, objectives, and research questions have been
addressed by this work. The Chapter also discusses the contribution to knowledge
that has been made through this work as well as the limitations and directions for
future work. Figure 1.4 presents the 
ow of work within this thesis demonstrating
how each Chapter is linked.

Figure 1.4: Overview of thesis showing links between Chapters that are presented.
Results from Chapter 3 are used to enable the development of subsequent Chapters.

1.10 Summary of Contributions

This aim of this Thesis is to contribute to knowledge within the domain of AAL
aiming to achieve the following contributions:

1. The design and implementation of a real-time vision based indoor localisa-
tion system via an egocentric camera utilising �ducial markers.
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2. The design and implementation of a method to remove the need to train for
each environment.

3. Benchmarking ORB and Aruco in an AAL scenario along with the develop-
ment of IDSII.

4. Implementation of DS theory to that of an egocentric camera in order to
correctly identify ADLs within a real world smart environment.
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Chapter 2: Technology Based Approaches
to Facilitate Ambient Assisted
Living

2.1 Introduction

This Chapter reviews existing research surrounding technology to promote occu-
pants to live independently within their own homes for longer. This area of research
is commonly known as AAL. AAL promotes the potential to enable inhabitants
to remain within their own home for longer through the use of unobtrusive moni-
toring and support, allowing them to maintain an improved quality of life (QoL).
Thereby reducing the burden on formal care services and delaying the potential
requirement to be re-situated within full time care facilities [80].

AAL is typically realised through the use of sensor technology, which monitors
the occupant’s activities and to a�ord support with task initiation or completion,
if required. AAL technologies can be used to monitor and detect anomalous be-
haviour, for example those relating to health related issues, such as dehydration
and lack of food intake [70].

There are many methods in supporting ADL, however, they all share a common
underlying methodology and with common technology, along with challenges to
this area which require further research.

2.2 What is an Activity of Daily Living

Firstly, it must be de�ned what is an Activity of Daily Living (ADL) and what
activities constitutes ADLs. Along with an overview on how these activities are
supported from a traditional and technological perspective. ADL is a term used
to represent the set of common tasks that comprise of one’s own daily self-care re-
quirements [81]. The ADL concept was initially proposed by Dr. Sidney Katz and
his team at the Benjamin Rose Hospital in Cleveland and has since evolved into

20
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its present categorisation of activities [82]. ADL can be separated into two main
categories: Basic Activities of Daily Living (BADL) and Instrumental Activities
of Daily Living (IADL) [83]. To maintain BADL requires a basic competency of
self-care tasks such as bathing, dressing, eating, and toileting along with the care
for personal devices such as a hearing aid. IADL typically require more advanced
skills as they require use of higher functions such as social skills, use of electronic
devices, and the handling of money, for example. Activities catagorised as a BADL
include bathing, showering, toilet/personal hygiene, eating, and sleep. IADL ac-
tivities include care of others, emergency responses, child rearing, �nancial/health
management, meal preparation, and shopping. The set of activities as de�ned by
the American Occupation Therapy Association (AOTA) [1] for both BADL and
IADL are presented in Table 2.1.

Additionally, it is important to note that the ability to carry out individual
ADL may not degrade in a linear fashion, for example, activities such as bathing
and dressing become increasingly impaired as conditions such as Dementia pro-
gresses whereas activities such as toileting and feeding remain relatively intact
even as their condition deteriorates [84]. A possible explanation for this could be
due to di�erent cognitive areas being associated with the performance on di�ering
ADL, rather than all ADL [84].

Table 2.1: ADL de�ned by the AOTA [1].

BADL IADL

Bathing/Showering Care of Others

Bowel and Bladder Management Emergency Responses

Toilet Hygiene Care of Pets

Dressing Child Rearing

Eating Communication Device Use

Feeding Community Mobility

Functional Mobility Financial Management

Personal Device Care Health Management and Maintenance

Personal Hygiene and Grooming Meal Preparation and Cleanup

Sexual Activity Safety Procedures

Sleep/Rest Shopping
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As a result, the inability to carry out these activities can result in a loss of
self-esteem and instill a deep sense of dependence to the person, along with a
possible disturbance in family roles as partners are frequently required to assume
the position of caregiver when the ability to carry out BADL/IADL is compromised
[83]. Supporting people in their ADL allows them to experience a higher QoL [85],
as ADL performance is directly correlated with QoL [84, 85], promotes a sense of
independence and reduces the burden placed on caregivers. Additionally, a loss
of independence in carrying out ADLs/IADLs has been shown to lead to a loss in
autonomy and can lead to a further dependance on formal or informal care [85].
This can also result in an increase in mortality rate and their associated healthcare
costs [85].

For the purpose of assessing an individual’s ability to perform ADLs a num-
ber of scales have been created. One such scale is the Katz Index [86], which
provides a basis for measuring, predicting, and comparing decline and recovery of
the person’s condition and the level of support that will be required in order for
them to successfully carry out ADL [66]. Additionally, the Bristol ADL scale was
developed in collaboration with caregivers to provide an assessment of people with
mild dementia living in the community [87]. A person’s care requirements di�ers
depending on the degree of cognitive decline with some people losing the ability
to follow instructions, or forgetting the sequence or next step of a task part way
through its completion. Their ability to maintain focus on a task may decline and
they often stop recognising common objects or forget how to interact with them.

However, technology o�ers increasing opportunities within the domain of AAL
to provide increased support for those who require assistance with ADLs [88]. This
is especially true in the earlier stages of cognitive decline when the person is still
able to carry out tasks with a degree of independence and only require reminders
or brief instructions on carrying out a task [89]. Traditionally these reminders
or instructions would have to be given by caregivers, either through one to one
contact or though the use of reminders left throughout the environment such as
post-it notes left on items or instructions left throughout the home. Table 2.2
presents a small comparative list of such support alongside technological means of
o�ering comparative support.

In summary, ADLs comprise essential self-care tasks and the inability for an
occupant to complete these tasks can lead to a reduction in the QoL for the
occupant due to a further reliance on carers or family members. Technology has
been shown as a potential solution to aid those who are struggling to undertake
their ADLs through o�ering reminders/instructions to aid in reducing the burden
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Table 2.2: Comparison of di�ering provisions of care for ADLs from a traditional
and technological perspective [2].

Traditional Care Technological Care

Person to keep a diary for ap-
pointments

Automated calendar reminder
to publish reminders/alerts to
an person’s smart-phone or
display

Important items to be kept in
the same place

Alarmed receiver attached to
important objects to aid in
locating

Put labels on doors/cupboards Wearable camera to recog-
nise and remind persons of
door/cupboard contents

Place important numbers by
the phone

Phone with pre-stored num-
bers represented by familiar
faces

Place note on back of door as
reminder to take keys

Door sensor to remind occu-
pant to take keys when door is
opened

Label family photographs Facial recognition to act as a
reminder

Pin a weekly timetable to the
wall

Automated calendar reminder
to smart-phone or display

Write reminders to lock door
at night, turn o� gas, put rub-
bish out etc.

Automated systems in house
to take action at certain
times, such as turning o�
cookers, locking doors, etc.
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placed on caregivers. Addressing the issue of ADL independence is crucial to
improve the lives of the occupant along with maintaining their independance and
reducing the burden on the healthcare system and carers.

2.3 Leveraging Smart Environments to Support

ADL

The solution of a smart environment has long been proposed as a means to ease the
burden of an aging population, originally proposed by Dr. Mark Weiser in 1991
as a way to integrate computers seemlessly into our lives [15]. The development
and implementation of smart environments are ongoing with contributions from
industry and academia [90, 91, 92, 93, 94, 95], this research will focus on smart
environments which a�ords occupants who would normally require the assistance
of carers to be supported within their own home [96, 97, 98, 99]. This is achieved
through the use of technology based solutions to allow the occupant to gain a
larger degree of independence. This has been brought further into acceptance by
the recent advent of consumer smart home appliances designed to be retro �tted
into existing homes. A smart environment has been de�ned as being one that is
\able to acquire and apply knowledge about the environment and its inhabitants in
order to improve their experience in that environment" [14]. In essence, a smart
environment consists of distributed technology throughout an environment and
encompasses room level equipment such as lighting sensors through to object spe-
ci�c sensors such as automated switches. This can also take the form of sensors
placed on objects within the environment, such as binary contact sensors, in order
to determine the status of the occupant. Additionally, technology such as sen-
sorised 
oors and/or cameras can also be installed within the environment to aid
in determining the occupant’s status, such as detecting falls. Chapter 3 discusses
smart environments in further detail and includes visualisation of various smart
environments. These technologies exist in order to gather information about an
environment, which is then used to automate that environment, such as adjusting
temperature via the heating system. This information can also be relayed back
the person [96].

However, it should be noted that there are some limitations utilising a smart
environment. The acquisition and maintenance costs of implementing a sensorised
environment can be considerable. A large network of embedded sensors is normally
required which results in a system that is costly to maintain, relatively obtrusive (as
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sensors are required on every interactable object), and sensitive to the performance
of the sensors. Section 4.3.1 discusses this limitation in further detail. Additionally,
there is a risk of the occupants becoming overly dependent on the technology
to perform their daily tasks [100]. This over dependance on the technology can
become an issue should the technology malfunction or if there is a failure in the
system.

Regardless of the type of technology implemented the overall goal of a smart
environment is to improve the QoL for those within the environment, in order to
o�er greater levels of independence, and to reduce the need for or delay institu-
tionalisation. This is achieved through wearable and environmental sensors that
allowed the facilitation of preventive care along with the monitoring of chronic
conditions. It is, in the purest sense, an example of ubiquitous and pervasive com-
puting which represents the idea of \computing everywhere", making computing
and communication e�ectively transparent to users [15].

2.4 Technology as an Enabler

Selecting an appropriate technology to assist in supporting ADLs can be challeng-
ing with a wide range of competing technologies available. Generally, the function
of these technologies can be broken down into four main applications [101]:

Ensure Safety
Fristly, ensuring the safety of the occupants is a key concern for assistive
technologies. These technologies ensure that the person is not put at risk
due to declining memory from conditions such as dementia, or general aging,
along with the general concern from persons and family members over an
occupant being left alone [102]. Some possible applications include systems
such as automated door locks that will activate at a certain time [103]. It is
also possible to have a camera installed that will only open the door when the
person has con�rmed that they know who the visitor is, facial recognition
can also be used if the occupant has trouble remembering faces [104]. It
is also possible to detect if the occupant may need medical assistance using
technology to detect falls [105]. Where the system will detect if the occupant
has fallen and contact the relevant authorities, family, or carers [106].

Improve Communication
Secondly, communication is an important factor to consider when support-
ing occupants. Communication technology allows the occupant to keep in
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contact with friends and family to help avoid them feeling alone or isolated.
Simple changes can include the replacement of conventional telephones but-
tons with picture buttons { where a friend/relatives face is printed on the
button with their number stored to assist contact [2]. Facial recognition sys-
tems can also aid in this, using door or wearable cameras the occupant can
be reminded of who the visitor is along with any relevant information, such
as if this is a regular carer visit or if it’s a scheduled appointment.

Multi-Sensory Stimulation
Thirdly, assistive technology can aid in those with cognitive decline. These
technology aids aim to relieve depression and loneliness, promoting physical
well-being, along with improving relationships between people with dementia
and their carers [107, 108, 109]. Examples of these include the creation of an
individualised biographical reminiscence tool which provides videos, audio,
and photographs from the occupant’s past. With the aim to try and trigger
past memories from creating a familiar sense of belonging [97].

Memory Enhancers
Lastly, assistive technology can be used to aid in memory enhancement, par-
ticularly for those with conditions which can cause increased cognitive decline
[110]. Due to the high occurrence of memory related conditions amongst the
elderly segment of society declining memory is a common issue [13, 110]. In
order to help alleviate these issues a range of reminder technology has been
developed. These include electronic calenders where appointment reminders
are prompted to the occupant through a smart-phone or other display [111].
Additionally, to aid in locating important items they can have alarmed re-
ceivers attached to them to aid in locating. These can range to complex
systems where the occupant’s activity is recognised and assistance is then
o�ered if the occupant is determined to be struggling to complete an activity
[112].

However, it should be noted that people may react di�erently to di�ering assistive
technologies. While some people may prefer a complex system, for example, one
consisting of a system that monitors their medication intake and informs them
accordingly, others may prefer a simple timed medicine dispenser that issues tablets
at a set time each day [113]. There is also the problem that the condition of
dementia, in particular, can make people apprehensive to try out new technologies
with concerns over the complexity of such systems and their inability to use them,
or reluctance to admit that they require assistance with ADL [102].
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One potential solution to mitigate the di�ering responses to assistive technology
is to adopt a user-centred design approach. This approach involves engaging with
the target user group to better understand their requirements and their personal
preferences. This can allow personalisation of the system to better �t into the
users needs and lifestyle and allows the user to be involved in the decision making
process. A user-centred design approach also o�ers longer term feedback and co-
development from the user which allows the system to be further personalised and
additional feature development can take place with feedback from the target users.

2.5 The Role of Ambient Intelligence in Making

Environments \Smart"

One of the areas that o�ers a lot of opportunities within the domain of AAL is
Ambient Intelligence (AmI) [114]. AmI is where the environment supports the oc-
cupants through the use of ambient sensors in place of the traditional input/output
of a computer system [115, 116]. A wide range of technologies are needed to enable
AmI, generally comprising of a networked range of sensors along with computa-
tional facilities to interpret the sensor information and take action based on these
readings. AmI can be thought of as an amalgamation of three areas of computer
science, namely | ubiquitous/pervasive computing, sensor technology, and arti�-
cial intelligence [115, 116].

The goal of activity recognition within a smart environment is to detect gradual
changes in behaviour as well as atypical behaviour. Atypical behaviour could be
an early sign to a change in the status of the occupant’s condition or a failure in
sensor equipment. The following factors need to be considered [117, 118]:

� Individuals within the environment will have di�ering routines and behaviour
patterns. Therefore personalised classi�ers for behaviour recognition are re-
quired in order to better learn what features describe an activity for an
individual due [118].

� Behaviour will di�er on di�erent days of the week, such as certain activities
being carried out on set days { these correlations can be learned to better
determine abnormal behaviour [118].

� Occupant’s routines will change over time and will display di�erences in the
activity they undertake, the time the activity is undertaken, and the day of
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the week the activity is undertaken. This will need to be taken into account
when developing AmI systems [119, 118].

When activities are carried out within a similar context, i.e. the same time, loca-
tion or carried out in a series we can then infer normal and abnormal behaviour
[120]. Machine learning models can be trained to recognise what is normal be-
haviour through analysing labelled data [121]. Labelled data is the process of
labelling each data point into predetermined categories, typically representing an
activity or object interaction within the domain of AmI. The labelled data can
then provide a ground truth to describe what is a normal instance of that activity.
With the goal of successfully detecting normal or abnormal instances of behaviour
from the occupant [122]. Additionally, time-series analysis can also be leveraged
to aid in identifying correlations between days of the week and activities that the
occupant carries out [123]. For example, through the occupant’s historical data it
may be discovered that the occupant routinly has visitors on Wednesday. Through
analyising these patterns the system can make activity recommendations based on
the day of the week, or conversly the system may not interrupt/disturb the oc-
cupant with low priority noti�cations. AmI facilitates the continuous monitoring
within the home environment which can aid in early detection of deteriorating
health problems or detect a worsening in chronic health conditions [124]. These
may not be easily detected within a clinical environment, such as unusual be-
haviour such as failing to take medication correctly when there is a visitor, or
failing to carrying out ADL in their daily routine.

2.5.1 Data Driven Approaches for Modelling ADL

The following section will focus on approaches taken within the domain of data
driven approaches for modelling ADLs with the goal of establishing an under-
standing of data driven approaches. Data driven approaches rely on collecting
large amounts of data to \learn" the occupant’s activities and habits [115] through
recognising identi�able features that make up the individual activities. Data min-
ing is applied to the collected data in order to determine and collect patterns.
Machine learning is a common technique used to reason on the data collected,
this includes both supervised, unsupervised, and semi-supervised methods. Su-
pervised methods require a set of labelled data on which to train on, for example,
this consists of sensor data of the person performing activities that can then be
learnt in order to recognise these patterns in real time on unknown data. Super-
vised and unsupervised learning form the basis of data driven approaches, where
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supervised approaches are given examples of activities made up from sensor data,
and unsupervised methods where no example activity data is provided.

A wide range of algorithms that can be used to support supervised learn-
ing/activity recognition, these include Hidden Markov Models (HMM), Decision
Trees, Support Vector Machines (SVM), Deep Learning, and Ensemble approaches
which can combine a number of algorithms [65, 125, 126, 127]. An example of how
an HMM could be used within activity recognition research could be a scenario to
recognise walking, running, and sitting activities from an accelerometer. Firstly,
data will need to be collected which is representative of the three states to detect.
The features will then need to be extracted from the data to determine unique
data points that can be used to identify an individual activity, some example fea-
tures are mean values and standard deviation. The individual states to detect
then need to be de�ned, in this scenrio the three states are walking, running, and
sitting. This is done via training the model using a labelled dataset where data
representive of each state is used so the model can \learn" the unqiue features for
each state. As well as learning the transition properties which represent the transi-
tioning from one state to another. New, unlabelled data can then be inputted into
the HMM to compute what the most likely sequences of activities were undertaken
that explains the observed data. K-Nearest Neighbours (KNN) can also be used
for supervised learning (as well as unsupervised) which classi�es activities through
comparing the features of a new activity with those of its K-Nearest Neighbours
within the dataset. The activity prediction is then based on the majority class
amongst it’s nearest neighbours [128, 129]. Naive Bayes is a probabilistic algo-
rithm which calculates the probability that the current activity being undertaken
corresponds to a known set of features for each activity [130]. It should be noted
that Naive Bayes assumes that all the features used in classi�cation are indepen-
dent of each other which can be an unrealistic assumption as features in many
real world datasets can be correlated [131]. Multilayer Perceptron (MLP) [132] is
a neural network algorithm which consists of multiple layers of arti�cal neurons.
An MLP is capable of learning complex patterns within a dataset which can make
them suitable for tasks such as activity recognition [133]. Lastly, Random Forest
is a ML algorithm that can be utilised within supervised learning, it combines
multiple decision trees to make a prediction on what activity is being carried out
based on the dataset. [134].

Regardless of the algorithm chosen, there is a common set of steps involved
in the establishment of a representative model [65] that can accuratly capture the
essential information/data for what the model is required to represent. The �rst
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step is to acquire a training dataset which will be used to train the system as to
what sensor features make up an activity. This training set should be representa-
tive of the real world application that the system will be deployed within and will
include labelled annotations of what the person does and when. A test dataset
should also be gathered to validate the generalisation ability from the training
dataset (the capacity for the model to perform well on unseen data). Once the
algorithm has learnt the training dataset its performance will then be tested on the
test dataset. It is common to have to repeat these steps with di�ering partitioning
of the training and test dataset to re�ne the algorithms ability to detect activities
while avoiding the problem of over-�tting and improve generalisation [65, 135].

Algorithms for unsupervised learning include K-Means, mixture models, Bayes
networks, and KNN [65]. Unsupervised methods try to recognise and construct
activities from unlabelled data, like supervised methods the �rst stage is to acquire
a dataset but in this case unlabelled. The next stage is to aggregate and trans-
form the sensor data into features and then model them using density estimation
or clustering methods. The goal of this method is to separate the data into di�er-
ing clusters, so while it may not be aware what activity represents each cluster it
can determine that cluster X is a di�erent activity to cluster Y, with the goal of
identifying groups of similar data within a larger dataset. This technique is used
to identify patterns within the data that may not be known within the dataset.
Clustering is achieved via utilising a distance measurement within the data, such
as Hamming or Euclidean distance, in order to determine how similiar each re-
spective data point is. The data is then arranged into clusters depending on their
distance measurement in order to discover hidden patterns within the dataset.
Additionally, density estimation can be utilised for understanding the underlying
data distribution, which involves estimating the liklihood of data points with the
aim of determining how the data is distrubuted within the dataset. One major
challenge using a data driven approach, whether supervised or unsupervised, can
be the requirement to obtain a vast amount of data for training purposes. This
issue is further compounded if attempting to incorporate video and audio data
into the reasoning process [114].

Semi-supervised method are a hybrid approach which combines supervised and
unsupervised learning[136]. This method uses both labelled and unlabelled data,
this is normally used when the labelled data is not comprehensive enough to pro-
duce an accurate model or when accurately labelling the data would be too time
intensive to be feasible. A semi-supervised method uses a limited set of labelled
data to train itself as per a supervised method, resulting in a \partially" trained
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model. This partially trained model then labels the unlabelled data, known as
pseudo-labelled data. The labeled and pseudo-labelled datasets are then com-
bined allowing both the descriptive aspects of supervised learning to be combined
with the predictive aspects of unsupervised learning.

2.5.2 Knowledge Driven Approaches for Modelling ADL

Knowledge driven based systems rely on a series of rules that determines if an
activity is being carried out. Knowledge based systems are designed to utilise do-
main speci�c expertise to make decisions allowing them to make complex decisions
in order to solve problems. One advantage of knowledge driven system is that it
allows you to separate the activity detection from the supporting system thus al-
lowing rules to be reused within the domain with only minimal customisation to
the unique needs that the occupant may require [137, 138]. There are di�ering
methods of knowledge representation within smart environments, however, there
is currently no accepted standard within the domain.

Event-Condition-Action Systems

One form of knowledge driven systems is the Event-Condition-Action (ECA) which
is an architectural pattern for representing context awareness [139, 140]. This
method consists of three modules, an Event, Condition, and action modules | the
Event module is responsible for gathering contextual information such as sensor
data, the Condition module is responsible for the rules and the Action module is
responsible for executing the associated action with each rule [141, 140].

These rules take the form of:

On (event expression)
If (condition)
Do (action)

The reading of these rules are as follows: On detecting a certain event check If
a condition is true and if so then Do the speci�ed action [141, 140]. The On is
de�ned as the rule trigger which is determined to be true if an event occurs that
matches the event expression de�ned in On. The If section of the rule de�nes a
conditional statement that has to be evaluated to true in order to trigger the �nal
statement of the rule which speci�es what action needs to be taken [115]. A simple
example of this would be:
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On (bedSensor == TRUE)
If (TV == ON)
Do (TV = OFF)

This reads as On detection that someone is in bed and If the TV is still on,
then Do turn the TV o�. An example of a traditional implementation of an ECA
system is through the use of HomeRuleML [142] which is an XML based schema
to represent rules within a smart environment. HomeRuleML speci�es a list of
sensor IDs along with a conditional value which when true allows the system to
determine if the conditions of an activity/rule have been speci�ed along with an
action statement for each rule.

Ontology Systems

Another form of knowledge driven AmI is through the use of an ontology based
system, which allows taxonomies and relationships between concepts to be de�ned
[143, 144]. Ontologies o�er several advantages over traditional forms of knowledge
representation, a well-de�ned ontology allows knowledge sharing a re-use [145],
declarative semantics allow multiple policies to support context detection [146],
and ontologies also provide complex inference mechanisms [147, 148].

Limitations

However, it should be noted there are a number of limitations with implementing
and maintaining knowledge based systems. Firstly, acquiring and maintaining the
knowledge required for these systems can be a challenge due to the requirement
to have a domain-expert to provide the knowledge [149]. Gathering the required
knowledge can be a time consuming and costly process, particuraly as knowledge
will change over time which will require the sytem to be regularly updated with
new domain knowledge [150]. There is also the challenge of how to best represent
the domain knowledge in a format that is understandable to machines as well as
humans, particularly when ensuring transparancy in the decision being made by
the system.

2.5.3 Context Driven Approaches for Modelling ADL

When developing context-aware applications the users contextual situation is key
to supporting the occupant. Context-aware approaches rely on information such
as the date, time, occupant’s location, roles of people present, as well as known
objects [115]. As introduced in Chapter 1, Dey and Abowd de�ne context as:
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\...any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user
and application themselves..." [19]

Contextual Categories

Context can be used to represent two main categories within AAL | user-centric
context and environmental context [115].

User-Centric Context
User-centric context revolves around the occupant’s background, current be-
haviour, and emotional state [115]. Background factors such as a user’s
interests or medical conditions can have an e�ect on their current context
or the actions that will need to be taken. For example, should the person
be diabetic, support will be required to ensure that blood glucose levels are
checked at regular intervals and before meals. Current behaviour will factor
in variables such as the person’s current activity. If they are currently in-
volved in an activity viewed as high importance, such as a discussion with
their physician, then the person will not be noti�ed/prompted with items
that are considered low importance. Lastly the person’s emotional state is
taken into account when determining user-centric context from multimodal
sensors and analysis of user features, such as voice or tremors, as you may
not want to further frustrate the person if they are in a poor emotional state.
Sokullu et al. [151] developed a system which o�ered reminders depending
on the serverity of the abnormal behaviour and the occupant’s context. An
example would be if the occupant had left the bathroom tap running, the
system determined that a \mild" reminder would be su�ce when the occu-
pant was near the tap as it not categorised as an immediate danger to the
occupant.

Environmental Context
Environmental context revolves around the occupant’s physical, social, and
computational surroundings [56]. Physical factors include variables such as
the current time, the occupant’s physical location, and temperature. These
can have a large impact on the type of support that is required, as certain
activities will only take place within a certain time frame that is in a certain
location | such as cooking dinner which would normally be within the hours
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of 17:00 { 19:00 within the kitchen [59]. Social factors will involve variables
such as surrounding people, for example, if the occupant is currently being
visited by carers or family members they will most likely not wish to be
disturbed [113]. The �nal environmental factor is that of the person’s imme-
diate computational surroundings, this takes into consideration equipment
such as sensors or displays that are within close proximity. In order to avoid
problems such as sending noti�cations to displays which the person may not
be able to see or that are in a di�erent room to the person’s current location
[115]. Cha et al. [63] developed a system which investigated the contextual
factors relevant to interruptibility when providing a reminder to an occu-
pant, taking into account the environmental context. They found that when
the occupant was co-located with other occupants who are all undertaking
the same activity then the interruptibility of the occupant is dependant on
their engagement with the activity and the urgency.

Dey and Abowd further de�ne the categories for context aware applications [19]
as the following:

Presentation
Is the ability to display information that is relevant to the user, including con-
textual information, and not just a list of information that requires further
user interaction. Presentation involves how the relevant contextual informa-
tion is presented to the occupant to ensure it is understandable, timely, and
useful for the occupant. An example of this would be a mobile device that
allows the display of friends or family member’s location and an awareness of
their activity. For a context aware navigation system could display an indoor

oorplan with route information and turn by turn instructions based on the
occupant’s current location. It is an amalgamation of Schilit’s proximate
selection [152] and Pascoe’s notion of presenting context [153].

Execution
Involves adapting the environment with additional information by associat-
ing particular data with a particular context through the actions and de-
cisions taken by the system. This involved the systems’ ability to adapt
it’s behaviour in a dynamic fashion to respond to the occupants’ current
situation. An example of this would be alerting a person when a visitor is
within a certain distance of their home. A context-aware system the execu-
tion layer could send medication reminders or adjust the occupant’s activity
levels/exercise routines based on the occupant’s current health data or their



35

current level of physical activity. Execution is based on Schilit’s context-
triggered actions, and Pascoe’s contextual adoption.

Tagging
Tagging is the process in which the system records the actions and times
that they were carried out. This involves associating (or labelling) contex-
tual information with the actions or objects that are relevant to the occu-
pant’s activity. This can then be used later to help determine the person’s
behavioural habits and also to help determine if chronic conditions are de-
teriorating. This information can also be used in a data mining approach in
order to recognise patterns, such as online shopping applications which tag
user preferences/purchases allowing the system to suggest other products in
the future which are based on the user’s preferences.

This de�nition of contextual information allows a system’s behaviour to be person-
alised to the users’ current situation through the use of the presentation, execution,
and tagging categories. The presentation category provides a mechanism in which
the users can percieve and understand the data and contextual information. The
execution category provides a mechanisim in which the system can make context-
aware actions, and tagging allows a mechanism to aid in the organisation of the
contextual information to assist in providing enhanced services and experiences.

In practice there are certain contextual variables that are more important than
others. Typically these include: location, identity, time, and the person’s current
activity. For example, location permits nearby objects, people, and activities to
be determined. Their identity then allows other background information to be
inferred, such as contact details, birth date, list of friends, and relationships to
other people within their environment. A computer system that has knowledge of
context is therefore able to sense, and react based on the person’s requirements
within an environment in order to improve their QoL.

2.6 Ethical and Security Issues

One aspect of AAL (using technologies to enable inhabitants to remain within their
own home for longer through the use of unobtrusive monitoring and support) that
is unavoidable is the ethical and security concerns of such intrusive technologies.
This is a deep and wide ranging issue and can only be covered brie
y within the
scope of this chapter.
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2.6.1 Ethical Issues

The implementation of the technology discussed previously in this Chapter raises
several ethical issues pertaining to the privacy and dignity of the occupants. Their
safety outside of supervised care, along with the quality of care that can be pro-
vided. Other complex issues arise such as identi�cation of who is responsible for
the occupant’s well-being as they are no longer solely being treated by medical
sta�/carers. There is also the issue of who will be responsible for the maintenance
of such a system, will carers be called on to both manage the person and to main-
tain the system [154]. The issue of front facing cameras, such as that on smart
glasses, is also a pressing privacy concern. Previous attempts to maintain privacy
include image blurring in sensitve areas or data anonymisation [155]. Additionally,
advancements within edge computing has o�ered increased privacy through a shift
in processing and data storage from the cloud to the end-users or near-user edge
devices [156].

Privacy
One issue is that of the occupant’s privacy, due to the range of sensing
technology that is used within AAL, a range of data is continuously being
collected. There is a challenge in balancing the level of technology and data
that is collected to provide support while respecting the occupant’s right
to privacy. Egocentric cameras which provide a �rst-person view of the
environment can raise particular privacy concerns. Some possible mitigation
strategies could be to blur the images in sensitive areas or to only store event
data and not store the raw vision data.

Unsupervised Safety
The goal of AAL systems is to allow occupants to live independently at home
but there is a concern about the occupants safety when they are no longer
wtihin supervised care. Care and consideration needs to be taken to ensure
that occupants remain safe when not under supervised care, such as ensuring
that they remain able to contact emergency services.

Responsibility
Determining responsibility for an occupant’s wellbeing becomes more com-
plex with the adoption of AAL systems. This is due to responsibility being
no longer the sole domain of the medical sta� caring for the occupant. The
responsibilities of those who are developing, installing, and maintaining these
system will need to be clari�ed within future work.
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2.6.2 Security Issues

One major concern within the domain of AAL is that of security, as a smart
environment will be storing personal information about an occupant, which may
include medical data, therefore security is an utmost priority [157]. While there is
legislation in place to provide guidelines [158] on the access and usage of medical
data, security is still considered a major issue. An overview of some of the major
threats is presented in [159].

Personal Information
While legislation does exist within certain geopolitical areas, such as GDPR
in Europe, safeguarding this data is crucial. Ensuring that there are secure
authentication steps are put in place to avoid unauthorised users from tam-
pering with the system or to prevent them from gaining access to private
data.

Encryption
Data that is transmitted between sensors, devices, or servers must be en-
crypted to mitigate against interception or data leaks. This can aid in pre-
serving the con�dentiality and integrity of the occupant’s personal data.

Physical Security
While the importance of authorisation and encryption cannot be understated
it is important to also consider the physical security of the system. Unatho-
rised physical access can led to malicious actors tampering with the system
or gaining access to private data.

In summary, AAL systems face a range of ethical and security challenges which
comprises issues such as privacy and safety along with corresponding security chal-
lenges such as encryption. To ensure the future adoption and success of AAL sys-
tems a holistic approach will be necessary, addressing both privacy and security
in terms of technological and physical.

2.7 Emerging Trends in Sensor Types

Sensors used to support ADL range from discrete state sensors to those that con-
tinuously record data. There are a range of methods which can be used to support
ADLs within their own home. Table 2.3 presents a summary of commonly used
sensor types, as reported in [160, 3]. One such method is Dense sensor placement
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[161]. A dense sensor system consists of a large array of lost cost sensors (binary
contact sensors in this implementation) which are placed on every object that the
inhabitant may interact with. This allows their location to be determined based
on their object interaction. Contact/pressure sensors will record binary state data
to inform whether an object has been interacted with, such as a door or bed re-
spectively. Accelerometers and gyroscopes [162] are normally combined to assess
how active the occupant is, along with other measures such as gait analysis. There
is also a range of sensing technology used for indoor location. Indoor location can
be key to supporting ADLs due to certain activities having set locations where
they are performed { such as cooking and bathing. Some examples of these are
Bluetooth and Ultrasound beacons that allow a receiver and transmitters to de-
termine location [163]. This is achieved by measuring how long the signal takes to
reach the receiver. Machine-vision systems can also be used to determine location
by using techniques, such as background subtraction, to establish the person’s lo-
cation. Machine-vision also allows you to determine what activity the occupant is
carrying out [164].

An increasing consumer trend that is also witnessing adoption within the do-
main of smart environments is the use of wearable technology [4]. Wearable tech-
nology o�ers new opportunities to AAL by enabling data to be gleaned not only
from the environment but from the occupants of that environment [165]. Wearable
sensors range from consumer activity monitoring devices produced by companies,
such as Fitbit and Apple, which capture data relating to heart rate, sleep mon-
itoring, and activity tracking. Towards complex cutting edge technology that,
for example, embed sensors within fabric [166]. Beyond these, the emergence of
head-mounted wearable technology in the last decade o�ered a new paradigm in
wearable computing. These devices o�er a �rst-person view of the environment, an
eye-level display, along with on-board processing and communication capabilities
[167, 168, 169, 31]. With real-time scene processing, such as object/facial/text
recognition, allows the creation of supporting technology for the purposes of AAL
[9]. One potential methodology which has shown potential is the use of �ducial
markers within an environment when coupled to a wearable camera [170]. This
method of indoor localisation involves a small set-up in which �ducial markers are
placed within known locations within the environment. Cameras are then worn
by the occupant and traditional image processing techniques are applied (such as
feature point recognition). To allow the detection of the feature points within the
FoV. There are then compared to the detected feature points to the known tem-
plate of the �ducial marker. The use of �ducial markers allows for fast detection,
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Table 2.3: Brief overview of commonly used sensors within AAL [3, 4, 5].

Sensor Type Common Use

PIR Person Localisa-
tion/Movement Detection

Ultrasound Person Localisation

Bluetooth Person Localisation/Object
Information

WiFi Person Localisation

Video Person Localisation/Object
Detection/Facial Recogni-
tion/Activity Recognition

RFID Contact/Tag Information

Pressure Chair/Bed/Contact

Contact Door/Cupboard/Opening/Closing

Accelerometers/Gyroscopes Activity Recogni-
tion/Movement Detec-
tion/Object Interaction

Audio Activity Recognition/Fall De-
tection

Radar Occupancy Sensing/Activity
Recognition/Fall Detection
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however, due to the nature of a wearable cameras can result in lost detections
due to motion blur [49]. Wearable technology when combined with machine-vision
techniques has been highlighted in previous works as o�ering potential technologi-
cal developments within the domain of localisation and activity recognition within
an AAL context [4, 136, 7, 49, 171].

2.7.1 Traditional Indoor Localistation Methods

This Section presents a summary of the current state-of-the-art of indoor locali-
sation methods which do not leverage machine-vision approaches. A number of
works are reviewed, which have a focus on applying contemporary technology to
support occupant localisation within the domain of AAL. The selection criteria
for the localisation methods reviewed were that the main focus had to be on the
localisation of the occupant within an indoor home environment.

Rahal et al. implemented a system using anonymous dense sensor placement
along with Bayesian �ltering in order to determine occupant location [172]. The
system was tested using a scenario of an occupant’s daily routine. The routine was
performed by 14 subjects, one at a time. The system showed a mean localisation
accuracy of 0.85, as the authors note, however, the system is only capable of
supporting a single occupant [172] within a �xed environment.

Okeyo et al. developed a dense sensor-based solution incorporating a Multi-
Agent System (MAS) in order to provide services to occupants within smart homes
[173]. A MAS consists of a group of agents which are able to interact with one
another with the goal of achieving their design objectives. Sensors were placed on
speci�c objects that the user would interact with which would then record the time
and location associated with that sensor to build contextual information. While
the overall results were high (1.00, 0.88, 0.88 for Precision, Recall, and Accuracy,
respectively) it still su�ers from the inherent problems that exist with dense sensor-
based methods, such as multiple occupancy and the need for sensor interaction.
Along with the problem of the cost of installation, both in terms of �nancial costs
but also the personal cost of having the system installed in an occupant’s home.
Due to the time taken to perform the installation and the invasion of privacy as
the equipment is installed in the occupant’s own home can also add an additional
burden onto the occupant and could act as a barrier to uptake.

Kanaris et al. [174] developed a system to provide indoor localisation through
the use of BLE (Bluetooth Low Energy) devices and IEEE 802.11 Relative Singnal
Strength Indicator (RSSI) �ngerprinting. This was tested in an indoor environ-
ment of approximately 160m2, six D-Link 802.11 Access Points were used to com-
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prise the 802.11 wireless network while the BLE network consisted of four 802.15
Estimote devices. Each device was placed within a di�erent room within the test
environment. The information provided by the BLE and 802.11 was fused via the
use of a novel i-KNN algorithm, resulting in signi�cantly improved accuracy when
compared to using 802.11 �ngerprinting alone, accuracy was reduced from 4.05m
to 2.33m.

Tariq et al. [175] developed a system to provide indoor localisation utilising
capacitive sensors along with investigating various ML approaches to determine
which algorithm o�ers the best performance in an indoor localisation scenario. To
test the system four capacitive sensors were placed on the wall in a 9m2 room,
the data was labeled with the occupant’s position in order to train the classi�ers.
A range of ML algorithms were tested to determine which would o�er the best
performance, with Random Forest o�ering the best results of accuracy, precision,
and recall all exceeding 93% with an average error rate of 0.05m.

Belmonte-Fern�andez et al. [5] created a system to provide indoor localisation
through the use of Wi-Fi �ngerprinting coupled with a smart-watch to acquire the
AP signal strength. The system was tested in three separate indoor environments
ranging from 62m2 to 120m2. Four di�erent datasets were gathered, two to train
the system (each containing 50 samples for each location) and the remaining two
(each containing 100 samples for each location) to validate the performance of the
system. Results shown an average accuracy of 71.07% across all scenarios for all
the experiments performed.

Antoniazzi et al. [176] created an indoor localisation system to locate occupants
via RFID, the occupant was required to carry an RFID tag on their person that
is detectable by readers throughout the environment. The readers transmit the
coordinates of the detected occupant, reporting an error rate ranging between
12.08% { 21.79%.

Jim�enez et al [177] combined the use of a smart 
oor, binary sensors, and RSSI
received at a smartwatch from BLE beacons deployed within a smart environment,
the smart 
oor device was regarded as the ground truth in order to estimate the
location accuracy of the binary sensors combined with RSSI. The experiment took
place over ten days with each of these days segmented into three distinct periods
(morning, evening, and afternoon), the system accuracy over the ten day period
demonstrated that the system was accurate to within 1.5m in 80% of cases.

Maghdid et al. [178] created a tracking system utilising smartphones, incorpo-
rating the on-board Wi-Fi and sensor devices, such as gyroscopes and accelerom-
eters, to provide indoor localisation for occupants. Their approach used RSSI
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between the smartphone as the receiver and wireless access points within the envi-
ronment combined with a Dead Reckoning (DR) measurement from the on-board
sensors. This fusion of sensor data made use of an extended Kalman Filter which
periodically compensted for the inaccuracies of the DR measurements via the use
of the RSSI data. Their results show a positioning error within 2.5m.

Bianchi et al. [179] created an indoor localisation system utilising RSSI �n-
gerprinting via a ZigBee wireless sensor network (IEEE 802.15.4), the occupant’s
location is also estimated from their interaction with devices within the envi-
ronment. Each occupant within the environment was required to wear a MuSA
(MUltiSensor Assistant) device which allows the occupant to be uniquely identi-
�ed and provides their location through RSSI collected from ZigBee routers placed
throughout the environment. They found they were able to achieve an accuracy
of 98% within a home environment.

Kolakowski [180] developed a system utilising BLE combined with proximity
sensors to provide a higher level of accuracy when compared to a BLE system.
The system requires the occupant to wear a tag which continuously sends out BLE
packets which are measured by receivers within the environment which measures
the RSSI. The proximity sensors also perform independent location estimation.
The measurements from the BLE and proximity sensors are transmitted to the
system controller for the actual location to be determined by combining the BLE
and proximity measurements. The system achieved a trajectory error rate of 0.27m
with approximately 10% of the results having an error rate larger than 1m.

Sansano et al. [181] developed an indoor localisation system combining the
use of Inertial Motion Units (IMU) within a smartwatch combined with Wi-Fi
�ngerprinting. Data was collected by four occupants within their personal homes
for a period of two months, the occupants were asked to manually label intervals
of time during which they were in a particular room performing ADLs with the
system showing an F1 score of 0.92.

Vesa et al. [182] developed an indoor localisation system which utilised a smart-
phone coupled with Bluetooth beacons, they employed a ensemble based solution
which combined a Multilayer Perceptron with Gradient Boosted Regression along
with K Nearest Neighbours. The system was tested in a smart environment of
75m2 which was made up of four main rooms, their solution achieved an average
localistaion error of 0.4m.

Kolakowski et al. [183] created an indoor localisation system which was com-
prised of BLE and UWB (UltraWideBand) nodes which were attached to the
occupant and to various localised objects of interest within the environment. An-
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chor nodes were then placed within the environment to measure the UWB packets
arrival time and measure the BLE signal strength to determine the location of a
particular tag (either the occupant or an object of interest). The system was tested
in an environment of approximately 79m2. Eight anchors were placed within the
environment being �xed to the walls or furniture close to the walls with at least
one anchor was placed within each of the seven rooms. A user was asked to walk
around the environment for ten minutes while wearing a tag as a lanyard. The
system was able to correctly locate the tag in 95% of cases.

Bilbao-Jayo et al. [184] developed a system for indoor localistion leveraging a
smartphone and smartwatch based on BLE technology. Bluetooth beacons were
placed within each room, with multiple beacons being placed in larger rooms, such
as the living room. The MAC address of each beacon was stored in a database along
with its associated location within the environment. The smartphone/smartwatch
devices were set to repeatedly scan for Bluetooth devices for ten seconds with a
15 second interval between scans. If a beacon was detected during the scanning
window the approximate location of the occupant was determined by measuring
the RSSI and TxPower values from the beacons. The system was tested in a home
environment consisting of four rooms (kitchen, bathroom, bedroom, and living
room) gathering a dataset which consisted of 267 location changes. The dataset
was split into an 80/20 ratio for training and testing, achieving an accuracy of
67%.

Ceron et al. [185] presented a system for indoor localistaiton through the use
of BLE beacons and an IMU which was located within the occupant’s shoe. The
system was evaluated within a pilot study consisting of 22 participants made up
of 11 adults and 11 young people. The IMU device was set up to collect the
occupant’s acceleration and angular velocity while the BLE beacons were used
to establish location via RSSI. The system reported a mean localisation error of
1.023m within the older cohort, and 0.986m within the younger cohort. The lack
of a signi�cant di�erence between the two cohorts within the pilot study suggested
that the proposed method is e�ective across broad age ranges.

Parmar et al. [186] developed a system for indoor localisation through the
method of voice �ngerprinting from a single microphone array. The Seed Re-
Speaker 6-mic circular array kit was utilised for data collection with the array
placed centrally within an environment. Data was collected at 15 di�erent train-
ing and testing locations within two scenarios collecting an occupant’s voice from
each location. Deep learning was used to train a Inception-ResNet-v2 model which
resulted in localisation errors from the two scenarios of 1.56 and 1.48 metres.
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From the review literature a number of limitations were found. The most com-
mon limitation is that of the need to install equipment throughout the environment
[172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 186]. An additional limitation
is that of the requirement for the occupant to wear a dedicated device, such as a
tag or smartphone device [5, 176, 178, 179, 183, 181, 182, 183, 184, 185]. There are
also identi�ed challenges with regard to multiple occupancy with some of the sys-
tems [172, 173], particularly the dense sensing approach, due to anonymity of the
data being collected by such a system. A �nal limitation found is that of required
active sensor interaction to determine the location of the occupant [172, 173, 179].
As a result, the proposed apporach must o�er a method of minimising equipment
installation within the occupant’s environment to reduce costs and the intrusive-
ness of the approach. Additionally, the requirement for the occupant to wear a
device should be minimised in order to enhance a feeling of normality for the oc-
cupant. One potential solution to this limitation could be the use of smart glass
as approximatly 74% of the adult population are required to wear corrective lenses
[187]. An additional advantage would be the ability to identify which stream of
data is related to which occupant.

2.7.2 Vision Based Indoor Localisation

This Section presents a summary of the current state-of-the-art solutions that
facilitate indoor localisation utilising a machine-vision approach. A number of
works are reviewed, which have a focus on applying contemporary technology
using machine-vision techniques within the domain of AAL. The selection criteria
for the machine-vision papers reviewed were that the main focus had to be on
the localisation of the user within an indoor home environment via machine-vision
methods.

Leotta and Mecalla [188] developed PLaTHEA (People Localization and Track-
ing for HomE Automation). PLaTHEA is a machine-vision based system that
acquires a stereo video stream from two network attached cameras to provide sup-
port for AAL. Two cameras are placed in each room, working in stereo, in order
to ensure that as much of the room is covered and that occlusions are reduced.
Foreground extraction is then performed to determine if occupants are present in
the scene. PLaTHEA also performs identity recognition using facial recognition.
Facial recognition is performed using SIFT (Scale-Invariant Feature Transform)
features from each face pose, which are then stored within a kd-tree data struc-
ture. At run-time, a Haar classi�er [189] is applied to detect faces in the scene;
when a face is detected SIFT features are extracted and compared to the saved
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features stored in the KD-tree for recognition [188]. There are, however, some po-
tential limitations to the PLaTHEA system. Due to the system relying on static
cameras it may not be possible to ensure that the entirety of the room is viewable
or that occlusions may not occur due to the opening of doors, large furniture, etc.
In addition, an issue that was identi�ed by the authors, was when the system was
monitoring a room with a wall greater than 10 metres then it was not possible
to monitor without the use of costly acquisition hardware [188]. While the issue
of cost is being addressed, there is also the additional cost of having to install
multiple cameras within each room, that support is provided within. There is also
the issue of multiple occupancy, due to the use of foreground extraction to identify
occupants, while this is partially mitigated through the use of facial recognition,
it also requires that all the occupants are known and have SIFT features saved
within the system [188]. There is also the additional problem of the Haar classi�er
being reliant on the occupant’s eyes being clearly viewed by the camera as this
method of face detection will usually fail if the eyes are occluded [190].

Zeb et al. [191] developed a system that supported blind users, holding a
web-cam, to navigating throughout a known environment. The web-cam continu-
ously captured video frames from the environment, which were then processed for
relevant markers. Whenever, a relevant marker was detected, the detection and
identi�cation module compared it to the stored markers in a database, returning
a unique ID that associated the user’s position and direction. While this system
obtained a 98% success reate for detecting and identifying markers it required con-
stant interaction from the user in the form of having to manipulate a handheld
camera at all times, in order for the system to detect markers.

Rivera-Rubio et al. [192] developed a system that estimated the user’s location
through scene recognition. The experiment was carried out using an LG Google
Nexus 4 and Google Glass. A dataset was gathered of the locations by recording
a video of the occupant walking through the location ten times whilst wearing a
recording device (50% split between the Nexus 4 and Google Glass). This included
a combination of day/night acquisitions and occasional strong lighting from win-
dows. The system was tested using multiple descriptor methods (three custom
designed and three standard methods) following a standard bag-of-words, where
low level features (such as colour) are extracted and applied to a visual analogue of
a word, and kernel encoding pipeline, with HOG3D, a spatio-temporal descriptor,
matching used as a baseline [192]. Results show errors as low as 1.6 metres over a
50-metre distance were achieved, however, for the purposes of AAL a greater level
of re�nement is required in order to distinguish where in a room the occupant is
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located and if possible what they are interacting with in order to provide relevant
support. There is also the additional challenge of having to train the system to
each environment that it is to be deployed within.

Zhang et al. [193] proposed a method of indoor location using still images
captured at intervals from a smart-phone worn on a lanyard. This system had
the goal of assisting those with impaired vision to navigate within an indoor en-
vironment. The system relies on collecting map data of a building, that describe
features/descriptors along with their 3D co-ordinates, 
oor plans, and other loca-
tion data. Images are then captured and sent at intervals from the smart-phone
to a server for processing. Images are then matched against the template map of
the building in order to determine location and o�er directions should the user
require them. Whilst this system works well for its intended use there are limita-
tions when applied to an AAL situation. One problem, that the authors noted,
was that there were null spots, were there was not enough features to create a
map image, such as when the user makes a 90 turn, for example in a hallway or
entering a room [193]. One other possible issue for an AAL application is that
of intermittent image capture that may result in missing key information, such as
a room transition or an interaction with an appliance, which could be vital for
context.

Orrite et al. [194] developed a system entitled ‘Memory Lane’ with the goal of
providing a contextualised life-blog for those with special needs. It chronologically
tagged and ordered images and sounds perceived by the user to provide contextual
meaning. A dataset of images of the occupant’s environment was gathered and
SIFT with RANSAC were applied to obtain feature points. During each RANSAC
iteration a candidate fundamental matrix was calculated using the eight-point
algorithm [195], normalising the problem to improve robustness to noise. Their
system consisted of a wearable camera that systematically recorded still images as
the occupant moved throughout the environment which would then be matched
against the previously collected image dataset of the environment. A feature match
correspondence was used to establish the distance of the occupant from the object.
This involves generating a variable circle centred on the average position of the
detected features and comparing it to the average position in the next image. If
the radius increases, it can be determined that the occupant is moving closer to the
object. Some limitations of this solution are the need to gather the dataset of the
environment along with the inherent problems with intermittent image gathering.

Edwards et al. [196] created a �ducial marker system that concentrated on
accuracy over run-time performance and compared the system against the ArUco
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marker detection algorithm [197]. The system was unique as instead of using
corner or edge detection it used a radial sinusoid pattern which allows for a pre-
dictable appearance under perspective projection. The results indicated that, on
average, pose estimation was twice as accurate than �ducial markers that rely on
corner/edge detection, such as the ArUco system. This is achieved via a non-liner
optimisation routine which estimates the �ducial marker’s pose through minimis-
ing the di�erence between the predicted and actual appearance of the marker. The
main limitation of this system is that the markers can not be identi�ed individu-
ally and so need to be paired with a traditional �ducial marker system to provide
an object/location identi�cation.

Rituerto et al. [198] created a system that employed an Android phone, worn
on a lanyard, using the ArUco algorithm to provide location/direction assistance to
those with impaired vision. They created a digitised indoor map that stored infor-
mation such as walls, corridors, room location, location of important sings/�ducial
markers. The initial study was to determine the system feasibility of such a sys-
tem. While the system was successful in providing direction to the occupant’s
it required them to steady the camera in order to return acceptable images, this
would not be ideal in a real world situation due to the occupant’s interacting with
their environment in general daily activities.

Kapidis et al. [199] developed a system which utilised a wearable camera to
determine location from key objects within the scene. They used the ADL dataset
[164] which contains 20 videos of indoor activities with the Darknet framework
[200] used to detect objects within a scene. A comparison was o�ered between
CNN and LSTM based methods, with the CNN method resulting in an overall
accuracy of 76% and the LSTM method o�ering an accuracy of 80%.

Domingo et al. [201] developed a system which combined a static RGB cam-
era to determine the location of an occupant within an environment coupled with
Wi-Fi �ngerprinting to identify the occupant’s identity once located via the RGB
camera. An experiment was carried out using four RGB cameras installed within
each room with the goal of locating 20 people moving freely throughout the envi-
ronment. The system successfully located occupants in 79% of cases. Some issues
were reported regarding occlusions and overlaps due to the static nature of the
RGB cameras.

Martin-Gorostiza et al. [202] developed a system which combined a static cam-
era with IR sensors with the goal of occupant localisation. The system consisted
of a set of �ve IR receivers with a single �xed camera mounted on the ceiling.
The system was able to locate the occupant with a precision of 1.5cm. Some of
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the reported issues include areas of the environment not being covered due to the
�xed location of the camera.

Li et al. [203] developed a system to aid older occupants in keeping track the
state of objects (e.g. oven \on" or \o�") and their past interactions with objects.
The system utilised a wearable camera which was worn around the occupant’s
neck and would continuously detect �ducial markers in the FoV which were placed
beside objects of interest. If a marker was detected then the camera would record
a short video clip starting from when the marker was �rst detected and ends three
seconds after the marker’s last detection. The occupant can then review these
video clips in order to ascertain the status of an object or to view their previous
interactions with the object.

Hu et al. [204] developed a system to aid those with visual impairments nav-
igate through an indoor environment through the use of �ducial markers. A
panoramic ceiling view positioning framework which was based on a panoramic
annular lens was used along with ArUco markers. The camera was head mounted
on a helmet with a 180°FoV which included the ceiling and part of the walls and
doors and did not include the ground within the FoV, with ArUco markers placed
on the walls to de�ne start and end points.

Kunhoth et al. [205] examined the performance and usability of two machine-
vision based systems (CamNav and QRNav) along with a BLE system. CamNav
utilises a trained deep learning model to recognise locations while QRNav makes
use of QR codes as �ducial markers to determine the occupant’s location. The
systems were tested on ten blindfolded users who then had to navigate an indoor
environment. The machine vision systems resulted in 30% less errors than the
BLE system when providing users with real time assistance.

Quero et al. [206] developed a system to recognise daily objects within a smart
environment using a wearable camera (GoPro Hero 5) with the goal of aiding in
the collection large datasets. The occupant applies a bounding box to an object
of interest to identify and label a static object. Background subtraction is then
used to select the masked foreground object.

Buzzelli et al. [70] developed a system which involved the use of a single static
camera placed within an environment with the goal of monitoring the elderly at
home. The �rst stage in the system was to localise a person using a R-CNN
(Regions with CNN features), to select the largest detected subject within the
scene. DeepHAR (Deep Human Activity Recogntion) [207] was used to perform
activity recognition. It infers the action through the explicit representation of
the subject’s inferred skeleton. They found that while the method o�ered high
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accuracy it faced challenges to multiple occupancy, in particular, the visitation of
health care assistants.

Uygur et al. [208] developed a system to provide indoor localisation that uses
input from a 360°camera to localise a user on a 2D map. They found the system
was robust to partial blockage to the camera’s FoV and did not require highly
accurate maps. The sperical camera allows more data to be collected to attempt
to overcome the issue of rooms mostly consisting of blank walls which are typically
featureless. The features the system was designed to recognise were architecture
features such as windows and doors, however, some issues were found such as
doors being common within a large building and were not e�ective in reducing
uncertainty in larger experiments. Other problems such as windows being di�cult
to detect due to their location within a wall and their close proximity to other
windows.

Ko�st’�al and Slab�y [209] presented a system which used novel �ducial markers
to aid in localistation within spatial scenes. They tested their system using a total
of 18 markers with �ve videos being recorded outside and thirteen videos being
recorded inside an environment. The dataset containted 385 training images, with
110 validation images, and 55 test images. The ground truth bounding box on all
images where manually tagged by a human expert. They found that testing with
real world videos were crucial as it introduced motion blur that occur in natural
camera movement, the results demonstrated a precision of 0.981 and a recall value
of 0.927.

Li et al. [210] implemented a system which allows a user’s location to be
determined through a picture of the surrounding environment. An Android mobile
phone (Lenove Phab 2 Pro) was used along with a depth camera (Intel RealSense
D435) and the system was initially tested on the ICL-NUIM dataset which consists
of RGB-D images from two indoor scenes { a living room and an o�ce scene. The
system was then tested in real world scenes within the BJTU lab space where a
total of 144 images are collected, the resulting algorithm achieved an accuracy of
93%.

Zhou et al. [211] presented a system which leveraged machine-vision tools
combined with a Convolutional Neural Network (CNN) to identify markers within
complex scenes. The system was tested on the Pascal VOC dataset which contains
approximately 30,000 images contained within 21 categories. Through testing it
was shown that the system had a strong resistance to complex internal environ-
ments/background along with providing a high accuracy, in terms of positioning,
and a fast processing speed.
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Tabuchi and Hirotomi [212] developed a system utilising �ducial markers to aid
those in cognitive decline to carry out the task of cooking. Fiducial markers were
attached to objects of interest within the kitchen, such as cutting board, sink,
stove, etc.. The system was tested as both a �ducial marker and a markerless
sytems were the object recognition was used to detect the objects of interest. The
results demonstrated that the system utilising �ducial markers operated approx-
imately nine times faster and achieved a higher F-measure than the markerless
system. An overall accuracy result of 70% was achieved by the system in a range
of environmental settings.

From the reviewed literature a number of limitations were found. The most
common limitation was that of training being required before the system can be
applied to an environment, or moved to a new environment [70, 192, 194, 199,
205, 206, 208, 209, 210, 211]. An additional limitation that was found was that
of occlusion within the video stream due to camera angles or objects blocking
the FoV [70, 188, 193, 201, 202, 204, 208]. Intermittant image capture was also
found to be a limitation, reducing the information that can be determined from
the environment and potentially missing interactions [193, 194, 202]. A number
of secondary limitations were also found, such as the issue of multiple occupancy
[70, 188], required interaction by the occupant [191, 206], and the requirement to
wear a device on a day to day basis increasing the burden on the user [198, 210,
204, 206]. The proposed approach must o�er a method of removing the need to
train the system to individual environments, allowing the approach to be applied
to multiple environments without the need to retrain. Additionally the challenge
of occlusion and intermittent image capture will need to be addressed to ensure
that information, such as object interactions, are not missed.

2.7.3 Summary

From the various methods that have been reviewed it can be seen that a wear-
able camera o�ers many advantages over comparative systems, along with some
advantages that are unique to a wearable camera, such as an egocentric view of
the environment. This egocentric view helps reduce occlusions and also o�ers the
ability to view which objects the occupant is interacting with. Additional ad-
vantages include being less sensitive from signal interference from other devices
and minimal cost in terms of installation and long term maintenance [213]. Ta-
ble 2.4 provides an overview of the advantages and disadvantages of the various
localisation methods that have been reviewed in this section.
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2.7.4 Video Based Activity Recognition

This Section will present an overview of activity recognition solutions within the
domain of AAL which leverage machine-vision based approaches. A number of
works are reviewed, which have a focus on applying contemporary technology
using machine-vision techniques within the domain of AAL to perform activity
recognition. The selection criteria for the machine-vision papers reviewed were
that the main focus had to be on activity detection of the user within an indoor
home environment.

Giannakeris et al. [214] developed a system to perform activity recognition
from a wearable camera, the ADL dataset [164] was used to test and evaluate
their system. They used a Bag-of-Micro-Actions scheme using Gaussian Mixture
Models (GMM) clustering with Fisher vector encoding to detect the activities.
Their system achieved an accuracy of 57.14% on the ADL dataset.

Noor and Uddin [215] created a system to detect activities within an egocentric
view using SIFT to detect feature points. The model was trained using an Arti�cial
Neural Network (ANN), and leveraging Hidden Markov Models (HMM) to account
for the various sequences that make up an activity. The system was tested on two
datasets, the TUM Kitchen dataset [216] and the GTEA Gaze+ dataset [217]. The
TUM dataset consisted of �rst and third person videos from �ve cameras with ten
subjects, the GTEA dataset consists of a camera built into a pair of glasses with
data being collected from ten subjects. The results show an accuracy of 96% on
the TUM dataset, and an accuracy of 90% on the GTEA dataset.

Zuo et al. [218] developed a system to detect ADL within an egocentric view.
Their system used an egocentric video stream from a Tobii Pro Glasses 2 [219]
device which is then segmented into a set of video clips, each of which correspond
to a speci�c activity the occupant carried out. An initial training dataset was
gathered containing 50 interaction clips containing the following ADL: greeting,
passing a ball, paying, shaking hands, and talking. These video clips are then
classi�ed as a particular ADL by applying a gaze-informed recognition approach.
The system showed an accuracy of 97.32%.

Yu et al. [220] created a system to detect ADL through the use of an egocentric
camera which supplies data via a photo stream and an IMU using an LSTM
network. The system was tested on two datasets, eButton dataset [221] and the
multimodal egocentric dataset established by Song et al. with Google Glass [222].
Their system achieved an average accuracy of 77% on the eButton dataset and on
the multimodal dataset an average accuracy of 80% was achieved.
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Diete and Stuckenschmidt [223] developed an egocentric multimodal based ap-
proach to activity recognition utilising smart-glasses and a chest mounted tablet.
A pre-trained Neural Network which used the overlap of the subjects hand and the
objects within the frame to determine object interaction was used. Two separate
ADL datasets were used to validate their approach. The �rst dataset was gathered
by the research team, the second was the CMU-MMAC dataset [224]. The system
acheived an F1 measure of 79.6% on their gathered dataset and an F1 measure of
59.4% on the CMU-MMAC dataset.

Yu et al. [225] developed a system using a Kinect v2 sensor to recognise a range
of 12 ADL such as, lie down, get up, comb hair, sweep the 
oor, etc. In order to
attempt to address the issue of occlusion the sensor was mounted on the ceiling
of the environment while being angled as to still o�er a horizontal view plane.
A dataset was collected from an elderly occupant living independently in their
own home with activities being carried out naturally rather than in a prescribed
manner. Their system achieved an average accuracy of 91.64%.

Massardi et al. [226] developed a system which used an Intel RealSense D-435
RGB-D camera mounted on a robot in order to detect activities of an occupant.
They created a dataset of various ADL which included, making tea, making hot
chocolate, and making co�ee. The datasets were split into four di�erent categories
(category one, category two, category three, and category four), category one and
three were used for training the system with categories two and four were used for
testing. On average their system achieved an 80% accuracy.

Su et al. [227] developed a system which used a Deep Neural Network (DNN)
with the aim of recognising ADL for supporting occupants aging independently
at home. The list of activities that the system recognised was, standing, bending,
squatting, sitting, eating, raising one hand, raising two hands, sitting plus drinking,
standing plus drinking, falling. Data was collected containing all ten activities was
gathered and manually labeled, the system showed an average accuracy rate of
95.1%.

From the reviewed literature the main limitation found was that of a need for
the system to be trained for an environment, including a lengthy data collection
phase [214, 215, 218, 220, 223, 225, 226, 227]. Additional limitations that were
found included the issue of occlusion [225, 226] and the necessity to wear a device
[223, 226].
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2.7.5 Dealing with Uncertainty

This Section will present an overview of activity recognition solutions which im-
plement evidential reasoning to aid with handling uncertainty found within real
world data. Multiple techniques exist to deal with uncertainty found within data,
an overview of some common methods are discussed below:

Baye’s Theorem
Baye’s Theorem [228] is a logical approach to revise the probability of a hy-
potheses being true when new evidence is supplied. Initial probabililty values
within Bayes’ Theorem are supplied from historical probabilities within ex-
isting data. Probabilities are then updated as new data becomes available
allowing a method of revising existing predictions when given new or addi-
tional evidence [229]. Within the �eld of activity recognition Baye’s theorem
would use sensor data (such as vision, sound, or contact sensors) to estimate
the probability that an activity has been carried out. As new sensor data is
collected the probabilities of each activity being carried out is updated with
the goal of attempting to determine what activity the occupant is carrying
out in real-time.

Fuzzy Logic
Fuzzy logic can also be used to help with reasoning when uncertainty is
present in the data [230]. One implementation of fuzzy logic is the the fuzzy
Tsukamoto model, which is an alternative method of dealing with uncertainty
by describing the relationship between the input and output via fuzzy \if-
then" rules [231]. Fuzzy logic can be used to create a fuzzy inference system
that evaluates the occupant’s activity levels on a sliding scale rather than
discrete categories. For example, if the system detects increased movement
and social interactions then the system could determine that activity levels
are higher than usual rather than simply stating active or inactive.

Monte Carlo
The Monte Carlo method has also been proposed as a way of dealing with
uncertainty within data [232]. The Monte Carlo method is based on a math-
ematical model that determines the result based on random variables that
can a�ect the outcome. This method is suited to estimating an outcome from
the product of random variables, including sources of uncertainty [233]. In
activity recognition the Monte Carlo technique can be applied to determine
the most likely sequence of activities from sensor data. Typically the tran-
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sitions between di�erent activities are modeled and can use the sensor data
to infer the most likely sequence of activities performed by the occupant.

Dempster-Shafer (DS) theory
DS theory has also been suggested to be a potential solution to dealing with
uncertainty in data [234]. DS theory is an evidence theory framework for
reasoning with uncertainty, the theory allows the combination of evidence
from di�erent sources to determine a degree of belief on the outcome [235].
DS theory o�ers a number of advantages over alternative reasoning tech-
niques, such as the ability to combine various evidence types from various
sources [236]. Additionally, traditional theories typically assign a probability
to one possible event, however, in DS theory probabilities can be correlated
to multiple possible events as well as o�ering the ability to represent the un-
certainty of systems without further assumptions [233]. DS theory also o�ers
additional advantages when applied in a multi-class problem [237]. This is
due to DS theory applying a mass value to every possible class allowing the
most likely class to be easily determined by comparing the mass values and
selecting the class with the highest mass [237].

Due to these advantages DS theory is deemed to be the most suitable for this
research, such as its ability to combine and manage con
icting sources of evi-
dence. Additionally, DS theory allows for di�ering weights to be applied to dif-
ferent sources of evidence allowing for a larger weighting to be applied to markers
that are more reliable or have a larger bearing on the likelihood of the activity
being carried out. Lastly, DS theory is able to deal with situations were there may
not be data available, such as through corruption or sensor failure.

A number of works were reviewed which has a focus on applying DS theory
to the �eld of activity recognition. The selection criteria for the reviewed papers
were that the main focus was on the application of DS theory to support activity
recognition within a home environment.

Alcal�a et al. [238] developed a system to monitor ADL behaviour through
smart meter data on two datasets, the Household Survey dataset and the UK
Domestic Appliance-Level Electricity dataset. DS theory was then implemented
with the goal of detecting abnormal human behaviour within the environment. It
was found that implementing DS theory was shown to be more sensitive to the
pattern deviations of abnormal behaviour and less susceptible to false positives, in
particular when there were long periods of inactivity. However, it was noted that
this method was most suitable to carry out coarse monitoring of older occupants
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with a noticeable reduction in false alarms when compared to other methods due
to DS theory’s ability to handle peroid of inactivity which was modelled as an
increasing uncertaintly.

Zhao and Li [239] implemented an abnormal activity recognition model based
on an ontology and DS theory. An ontology was developed which included a
number of basic activities (e.g. sit down, lie down, run, walk etc.), the location
and duration of the event was then utilised in order to determine if an activity was
normal or abnormal. For example, if an occupant was detected being within the
kitchen and their activity was detected as lying down it could be inferred that the
occupant may in some danger. DS theory was then used to handle the uncertainty
within the sensor data to provide a more accurate estimation of the activity the
occupant was carrying out.

Machot et al. [240] developed a system which uses DS theory within the domain
of active and assisted living to support occupants carrying out their ADLs. Their
implementation was tested upon the HBMS dataset of binary sensor data. The
HBMS dataset contains �ve activities { watching TV, shopping, checking blood
pressure, getting a drink, and preparing a meal. They achieved a 96.76% accuracy
when testing on a subset of 10-day observations from the HBMS dataset. However,
it was noted that the method had the disadvantage of requiring previously collected
knowledge about the occupants’ and the sensors.

Sfar and Bouzeghoub [241] presented a system for the detection of anomalous
behaviour occurring within a smart home environment utilising DS theory. Their
system was tested using the Hadaptic and opportunity dataset containing data
from three participants carrying out three routines. The system was found to
have an accuracy of 91% for the detection of abnormal behaviour when a suitable
time window size was set. It was noted that when the time window fell below 180
seconds that DS theory became less e�cient and was most e�cient when the time
window was proportional to the activities.

Venkatesh et al. [242] implemented a system for activity recognition within a
smart environment using ML methods combined with DS theory to improve the
overall recognition performance. Their approach was validated using a real world
dataset from the UCI ML repository. It was found that combining a Probabilistic
Neural Network (PNN) with DS theory was best in-class solution achieving 91.2%
reliability for the detection of activities compared to an 85% accuracy when the DS
component was not present. Bhowmilk and Mojumder [234] developed a system
to monitor home and health parameters, such as temperature, pulse rate, SpO2,
etc., with DS theory being utilised to aggregate data from multiple environmental
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sensor sources. The goal of the system was to estimate the threat level to occupants
within a smart environment with DS theory was used to monitor four parameters,
temperature, humidity, SpO2, and carbon monoxide. It was shown that DS theory
was capable of dealing with uncertainty in the data, in particularly missing data.

2.8 Challenges and Opportunities

Based on the review of the literature a number of challenges have been identi�ed.
These include the need for extensive training/�ngerprinting for each unique en-
vironment. Multiple occupancy and unreliability in the data (e.g. sensor failure,
interference, data corruption, false positives, etc.). This section will detail these
challenges and present how this thesis aims to mitigate these challenges.

2.8.1 Cold Start

One of the problems that face many systems within the domain of is that of
the \cold start" problem, where no data currently exists to train the system on
[243]. This is a particular issue within data and context driven systems, which,
will require a large amount of data surrounding the problem in order to learn
to recognise locations or activities. As this data normally needs to be gathered
before the system can be used in order to train the system to the environment.
One example of the type of data that is required to be gathered is that of training
data, where a large amount of labelled data is necessary. For example, should the
model want to recognise the activity of cooking then a large amount of data of
the occupant cooking will be required for training. Additionally, during the \cold
start" phase any quality issues within the dataset, such as noise or missing data,
can be more pronounced. In the cases of systems utilsiing RSSI, this phase will
have to be carried out in each new environment due to layout changes within the
environment, which will mean a new, unique set of \�ngerprints" will need to be
learned.

Systems using machine-vision techniques for object/scene recognition will also
have to gather initial training data. While signi�cant e�orts have been made to
produce datasets for this purpose [244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256], additional data will have to be gathered within the environment the
system is to be deployed. This is due to di�erences between objects (e.g. di�erent
manufacturers of products), or in the case of system using natural �ducial markers
within a scene, these will also need to be learned, as they will be unique to that
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environment [70].
Data augmentation has also been proposed as a potential solution to gener-

ating a dataset. Data augmentation involves applying various transformations to
the existing dataset. This could include rotations, scaling, or adding noise in order
to create new training samples [257]. It can be useful when working with imbal-
anced or small datasets; however, it should be noted there are disadvantages of
data augmentation such as that the data quality could be a�ected due to the gen-
eration of unrealistic or irrelevant data. Additionally, as data augmentation can
only generate variations of the existing data this would result in limited diversity
within the dataset despite the increased dataset size [258]. As data augmentation
cannot create new, original data no new features/information, which was not in
the original dataset, would be generated.

This thesis investigates this problem using generic �ducial markers which can be
placed throughout the environment. Each marker will have the ID of a particular
object of interest which are common to the majority of environments. Examples
include: kettle, TV, fridge, microwave, etc. This will mitigate the need for a
training phase as the system will be pre-loaded with the suite of markers which
can be applied in their relevant locations in any environment without the need
to learn the new environment. Chapter Four explored the technical feasibility of
applying �ducial markers for localisation within a live egocentric video stream.
Chapter Five investigated and compared alternative approaches to �ducial marker
design along with the feasibility of applying the system to multiple environments.

2.8.2 Multiple Occupancy

Most current AAL solutions assume the presence of only a single occupant within
the environment [259, 172, 173, 175]. If there are multiple occupants that require
support with ADL then it can be di�cult to identify and o�er appropriate support
to the correct occupant.

Techniques that rely on RSSI have been a popular method to perform indoor
localisation [174, 5, 176, 177, 178, 179, 180, 181, 182, 183]. While RSSI, when
combined with a device such as a smartphone or smartwatch, can go some way to
alleviate the issue of multiple occupancy (as each occupant has a device which can
be assigned a unique ID). A common problem with multiple occupancy is when two
or more occupants interact with objects within the environment within a narrow
time window [260, 6]. If we consider an example where the oven door has been
opened along with a cupboard door opened. There is insu�cient evidence from the
data to indicate which occupant has interacted with which object or even if this is
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indeed a case of multiple occupancy and both objects were coincidentally within
reach at that point in time. This can lead onto further problems when attempting
to learn behaviour as key components of this are when a speci�c occupant carries
out a speci�c activity along with how they undertake that activity. This allows
the detection of an occupant who is having particular trouble completing a speci�c
ADL or if they are not undertaking the activity whatsoever. Due to the con
icts
in sensor data, from having multiple occupants within the same environment, it
can be di�cult to separate these events into occupant speci�c events.

Possible techniques to mitigate this issue include occupant worn ID tags, such
as RFID, that uniquely identify each occupant [261]. Video has also been used
to identify the occupants within the environment [262], however, both these solu-
tions introduce challenges of their own. Video from �xed cameras can su�er from
challenges such as occlusion where the occupant of interest may not be visible due
to objects blocking the camera’s FoV. Typically solutions relying on RSSI are not
able to provide a �ne enough accuracy to reliably distinguish between multiple oc-
cupants who may be in close proximity to each other [263, 54]. This can be further
compounded as RSSI methods can be a�ected by signal interference, layout of the
environment, etc. [263, 54, 6]. These issues can be further compounded when the
occupant has visitors or carers that may call in on a regular basis, as the visitors
will not be recognised by the system but the occupants may still require support.

This thesis aims to mitigate the multiple occupancy challenge by the use of
a wearable egocentric camera which will provide a �rst-person view of occupants
within the environment. This will allow indoor localisation to be applied to each
occupant’s unique view point regardless of how many other occupants there may
be within the environment at that time. As each occupant will have a unique
video feed each marker detection will be associated to the an individual occupant
and thus support can be targetted towards that particular occupant. The use of
an egocentric view will also enable the occupant-object interactions to be collected
allowing activity recognition to be carried out along with the indoor localisation
of the occupant.

2.8.3 Unreliability

As AAL systems are reliant on collecting data from the environment, a common
problem these system will face, will be that of sensor unreliability [175, 181, 226].
Unreliability can take various forms, the simplest of which is that of sensor failure
where sensors may report FP, such as reporting a sensor event when none exists or
conversely failing to report a sensor event when one did take place. This is known
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as a False Negative (FN).
Unreliability can also be introduced through \noise". This can take various

forms depending on the type of sensors used. In the case of RSSI based systems
this can be caused by signal interference, either through other devices utilising
the same frequencies or simply through signal degradation due to passing through
solid objects [7]. In the case of a system utilising vision sensor, noise can take
the form of extreme variation in brightness/colour in images, extreme levels of
motion blur which may render the frames unusable along with issues related to
wearable cameras, such as auto-focus [264]. Additionally, the use of intermittent
image capture can also introduce uncertainty into the data due to missed events.
Additional forms of sensor unreliability can include inaccurate environmental sen-
sors, this can be caused by sensor drift or through sensor malfunctions. This can
be mitigated through the regular calibration and maintenanice of environmental
sensors along with data fusion techniques from multiple sensors in an attempt to
improve accuracy.

A large number of the reviewed systems all reported issues with having to deal
with noise/missing data/incorrect sensor events [172, 176, 178, 180, 182, 194, 196,
202, 204, 70, 208, 218, 223, 225, 227, 177, 188]. Chapter Six details an approach
for taking account for unreliability within sensor data by utilising Dempster-Shafer
theory for reasoning with uncertainty in the data stream. Dempster-Shafer theory
is a framework used to handle uncertainty when there is missing/con
icting infor-
mation, it allows you to combine evidence from di�erent sources to take account
of uncertainty within the data.

Chapter Four details the approach for performing indoor localisation on an
egocentric live video stream, utilising machine-vision techniques. This approach
leverages wearable technology, Google Glass, to facilitate a unique �rst-person view
of the occupant’s immediate environment. Machine-vision techniques are employed
to determine an occupant’s location via environmental object detection. This
method provides additional secondary bene�ts such as �rst person tracking within
the environment and lack of required sensor interaction to determine occupant
location.

Chapter Five also considers distance estimation in order to aid in �ltering
out false interactions. A linear �ltering method is applied along with a fuzzy
membership function to estimate the degree of occupant interaction, to assist in
removing FP generated by the occupant.
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2.9 Conclusion

This chapter has provided an literature review of the technologies and applications
involved within the domain of AAL. It has introduced the concept of ADL along
with the concept of a smart environment and how technology can be applied to
provide support in order to improve QoL for those that would normally require full
time care or institutionalisation. An overview of the technology used has also been
presented along with an overview of the major techniques that can be applied to
AmI, namely, data, knowledge, and context driven approaches. Current methods
of supporting ADL su�er from common problems such as the cost of retro �tting
an environment along with the intrusiveness such an installation will incur. Other
problems exist with current support of ADL such as the \cold start" problem where
a large amount of data needs to be collected for pattern recognition through data
mining. When the system is initially installed there is no data to be processed,
therefore support will not be available.

Key challenges that AAL faces have also been presented and discussed, such
as those of multiple occupancy, training, occlusion, and unreliability in the data.
Future challenges include the personalisation of support to each individual occu-
pant’s needs, each occupant’s condition will deteriorate at di�ering rates therefore
support will need to be tailored to the individual. These challenges will need to
be addressed in the future, if the vision of AAL is to be achieved in a real world
setting.



Chapter 3: Generation of Egocentric Datasets
for ADL Research

3.1 Introduction

Chapter 2 presented the current state-of-the-art in support of ADL within the
home. This Chapter details the approach taken to generate appropriate datasets
for use within this thesis and has been made available to the wider research area 1.
The Chapter includes the design of the activities being recorded and the routines,
along with an overview of the sensor technology that was used and the di�ering
environments that were used to gather a more suitable dataset.

This Chapter will discuss the generation of a dataset using multiple sensor
types within multiple environments, through both real world experiments and
through the use of a simulation tool to generate datasets. While many research
groups are sharing their activity datasets [265, 266, 267], due to the nature of
human activity a diversity in experiment set ups are required in order to attempt
to gather comprehensive datasets. This is also further compounded by the nature
of sensor technology constantly evolving, which, requires additional datasets to be
gathered to take account of the introduction of new technologies, as such no single
dataset exists which is considered adequate [70].

3.2 Routines to Simulate Activities of Daily Liv-

ing

As this research utilised smart glasses (Google Glass), a current dataset did not
exist containing �rst person video footage of a range of ADL being carried out
within a home that could be used. A brief review of common datasets are o�ered
in Table 3.1; only datasets which included ADL were included.

As can be seen none of the currently available datasets are suitable, some of
1https://github.com/cshewell747/VisionData
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Table 3.1: The number of activity classes, instances, and sensor type used in
publicly available ADL datasets.

Dataset Classes Instances Camera

IXMAS [250] 15 396 Fixed RGB

Hollywood 2 [252] 12 1,707 Film clips

ADL [164] 18 10 hours Chest mounted GoPro

MSR [253] 16 320 Fixed Kinect

N-UCLA [268] 10 1,475 Multiple �xed Kinects

UWA3D II [269] 30 1,075 Multiple �xed Kinects

Kinetics [247] 400 306,245 YouTube video clips

DALY [256] 10 3,600 YouTube video clips

Charades [248] 157 9,848 RGB mobile phone

NTU [249] 60 56,880 Fixed Kinect

which are targeted towards a speci�c scenario while others are generalized along
with large variations in data quality and consistency. None of these datasets
are suitable for simulating an elderly occupant performing ADL within an indoor
context. In order to overcome this limitation a dataset consisting of �rst-person
footage, along with additional sensor data to aid in comparing the e�ectiveness of
the machine-vision platform, was generated using the Google Glass platform.

A protocol was designed that was comprised of a range of activities to be
carried out which were representative of daily routines, the protocol was carried
out by a single researcher. With the goal of recognising the component locations
(e.g. drinking water consists of kitchen door, glass cupboard, and sink) within
each activity along with further investigation to determine if the activity could be
determined via the component locations. If for example prepare/drink water is
taken as an example activity, then the component locations would be the kitchen
door, the cup cupboard, the tap, and then �nally the kitchen door again.

The routines were derived from commonly performed household activities which
consist of basic ADLs, such as ambulating and prepareing food [270]. The activities
that make up each of the three routines were selected in a psudo-random method,
ensuring that a range of activities which are representative of a real world routine.

In order to provide a variation in the simulated daily routines three routines
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were created. The �rst contained ten activities and the remaining two contained
eleven activities. The activities ranged from simple activities such as drinking
a glass of water to more complex activities, such as preparing hot food. The
activities considered are presented in Table 3.2, with the full routines presented
in Table 3.3. The routines were generated in an attempt to simulate a wide range
of activities one might encounter within their daily routine, comprising of \basic"
ADL, such as making a meal, to \insturmental" ADL, such as washing dishes and
telelphone communication [270]. A variation in the number of activities that were
carried out within each routine were also introduced to simulate people’s routines
varying on a day to day basis.

Due to issues traditionally faced when migrating a AAL support system from
one environment to a new environment multiple test locations were used in order
to test the robustness of the system. Issues can include the need to retrain the
system to the new environment, along with the intrusiveness of the install within
an occupant’s home along with the associated �nanical cost. The test locations
were the smart lab within the Pervasive Computing Research Centre (PCRC)
lab at Ulster University [271] and the smart lab within the Ambient intelligence
lab at the University of Ja�en [272]. These routines were performed under the
same lighting conditions in order to minimise any potential discrepancy between
identical activities in di�ering routines. The same routines were then carried out
with the UJAmI lab but under varying lighting conditions to judge the e�ect
lighting has on the e�ectiveness of the system.

In order to be able to con�dently label the events and time stamps of the
machine vision and binary sensor location systems, the ground truth was obtained
from a time stamped video which provided a recording of the environment. The
occupant’s location reported from the location systems were then compared to the
ground truth from the video. Each routine was carried out by a single researcher
in a structured manner to ensure repeatability. Table 3.3 details the number of
activities within each routine.

It should be noted that there can be limitations when a single researcher is
performing all of the data collection. One such issue is that of limited objectiv-
ity which can result in a subjective bias being introduced during data collection,
this can be due to issues such as the individual intrepretation of the protocol.
Additional issues that can be faced is that of reduced data diversity as a single
researcher may collect data in a rigid manner which may result in less diversity in
the �nal dataset. For example, activating sensors in a strict order when carrying
out activities that would normally have a level of variation when carried out nat-
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Table 3.2: The full list of activities that were performed during the three routines.

Activity Number Activity

1 Prepare/drink water

2 Prepare/drink tea

3 Prepare/drink hot chocolate

4 Prepare/drink milk

5 Make/receive phone call

6 Prepare/eat cold meal

7 Prepare/eat hot meal

8 Watch TV

9 Wash dishes

urally, such as making a cup of tea. Lastly, having a single researcher collect all
the datasets can result in a smaller dataset simply due to time restrictions when
collecting the data.

3.3 Hardware Used for Data Collection

This Section will detail the hardware used to record the data, including the wear-
able sensor platform and lighting controls that were used when gathering the
datasets within the labs at both recording sites; PCRC and UJAmI.

3.3.1 Binary Contact Sensors { TyneTec

Binary Contact sensors [273], refer to Figure 3.1, were used to provide a bench-
mark method to assess the viability of the machine-vision method to determine
occupant location. Speci�cally, TyneTec binary contact sensors comprise a two-
part magnetic based sensor. One part is a magnet and the other part is the sensor
itself, the sensor is triggered when these two sections are separated. The sensor
activates when the magnet is taken within or without range of the sensor sending
a signal to the receiver which logs the event in a database. The data collected
from the binary contact sensors will be used to provide a gold standard to assess
the performance of the machine-vision system which is discussed in Chapter 4.
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Table 3.3: A breakdown of activities that took place in each routine, along with
the corresponding activity number.

Routine 1 (R1) Routine 2 (R2) Routine 3 (R3)

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

N/A 1 4

Figure 3.1: TyneTec ZXT434 Binary Contact Sensor.

The use of binary contact sensors o�ers a range of bene�ts over alternative tech-
nology solutions. One bene�t is that of simplicity, binary contact sensors consist
of a simple on/o� switch that can detect whether contact is present or has been
broken. This simplicity can make binary contact sensors a cost e�ective solution
which can be simple to install within an environment, requiring a low amount of
retro�tting to the environemnt. Binary contact sensors also o�er high accuracy
for detecting the presence of an occupant via the activiation of a sensor, such as
when opening a door or cupboard. They also o�er an advantage in terms of pri-
vacy as binary contact sensors do not transmit personal or identi�able data. Only
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transmitting that they have been activated along with a timestamp.
However, there also a range of limitations when utilising binary contact sensors.

Due to the nature of binary contact sensors they can only detect two states {
on and o�. This limited level of granularity can make it a challenge to capture
�ner details and requires the occupant to interact with a sensor to collect any
information. They are also limited when it comes to multiple occupancy as they
cannot identify between di�erent occupants, simply reporting that the sensor has
been activiated. This can be a challenge when supporting older adults who may
require assistance from family members or caring sta�.

3.3.2 Wearable Camera { Google Glass

This research employed the Google Glass Explorer Edition [29]. It provides a
�rst-person video camera, in addition to a full sensor suite of accelerometer and
gyroscope, GPS; Table 3.4 provides a full list of the available sensors within Google
Glass. User input can be gathered either through the touch interface or the natural
language commands.

Table 3.4: A breakdown of Google Glass speci�cations.

Component Speci�cation

Operating System Andriod 4.4

Display Himax HX7309 LCoS 640x360

Camera 1280x720

Wi-Fi 802.11b/g

Bluetooth 4.0

Storage 16GB (12GB Available)

CPU OMAP 4430 SoC 1.2Ghz Dual Core (ARM v7)

RAM 1GB

Sensors 3 Axis Gyroscope/Accelerometer/Magnetometer

Audio Bone Conduction Transducer

Battery 570mAh 2.1V (7560 Joule)

The on-board processing capabilities of Google Glass consists of 682MB usable
RAM (1 GB total { 342 MB reserved), and a dual core TI OMAP 4430 1Gz
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processor. The CPU can be set to four frequencies { 300Mhz, 600Mhz, 800MHz,
and 1GHz. At high temperatures the Glass �rmware limits the CPU to 600Mhz or
300MHz in order to cool down via power reduction [274]. The proposed method
outlined in this thesis can be applied to any �rst-person camera, whether this is
provided by an o�-the-shelf solution such as Google Glass or a device as simple as
a webcam. In the presented work Google Glass was streaming live video at a rate
of 20 FPS at a resolution of 640x480.

The use of an o�-the-shelf solution o�ers many advantages, �rstly Google Glass
are designed to be lightweight and ergonomic along with accepting prescription
lenses. Due to the reliance on the occupant wearing the glasses at all times it is
important that the device is comfortable to wear and by accepting prescription
lenses it removes the need to rely on the occupant to remember to use the device
when required. Google Glass also o�ers a user friendly interface allowing com-
mands to be run via voice commands or touchpad controls which is an advantage
given the typically lower levels of technological literacy among the cohort. How-
ever, there are some limitations when using Google Glass within the scope of this
research. The main limitation of Google Glass, and that of other smart glasses,
is that of battery life, due to the need to continuously run the camera alongside
the small form factor of smart glasses results in a reduced battery life. Battery
life can be further extended with external battery packs, however, with the cur-
rent rate of advance in battery technology the battery life of future generations
of wearable devices will be less of a challenge. An additional limitation is that
of device cooling, which is achieved by reducing the clock speed of the CPU. At
high temperatures, the Glass �rmware limits of the CPU to 600Mhz or 300Mhz to
cool down via power reduction which can result in reduced performance from the
device.

The data gathered from the Google Glass device was used to determine the
performance of the Glass device. This was done through comparing the accuracy
of the locations detected by the Glass device with the accuracy of a dense sensing
solution that was placed within the environment, which consisted of TyneTec
sensors placed on objects of interest as detailed in Chapter 4. The data was also
used to provide a comparision of the accuracy of other �ducial marker detection
algorithms as detailed in Chatper 5. Additionally, the data was used in a later
study to perform activity recognition within an environment to determine what
activity an occupant was carrying out and if the use of probability theory could
further improve the accuracy of the system as discussed in Chatper 6.
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3.3.3 Lighting Detection { Sun SPOT

Sun SPOT (Small Programmable Object Technology) sensors [275], refer to Figure
3.2, were developed by Oracle to allow the development of new applications and
devices. They consist of an embedded microprocessor running Java and o�er a
range of technologies such as IEEE 802.15.4 communication, built-in Lithium Ion
battery, built-in ECC public key cryptography, and a range of built-in sensors.
The key Sun SPOT sensor in the scope of this thesis is that of ambient light
detection (wavelength measured in nanometers) to allow the assessment of how
ambient lighting e�ects the accuracy of machine-vision systems.

Figure 3.2: Oracle Sun SPOT UDM3011 sensor.

3.3.4 Lighting Control

In order to facilitate the control of the lighting within the labs, roof mounted

uorescent lighting was used in combination with natural light control through
the use of window blinds. The 
uorescent lighting in each room consisted of a
series of Philips TL5 HE 835 28-watt bulbs producing 86lm/W [276]. Table 3.5
details the lighting details within each room in the environment.

Table 3.5: Details of the lighting in the kitchen and living room section of the
PCRC smart environment.

Room Number of Bulbs Total Watts Total Lumens

Kitchen 3 84 Watts 7,224

Living Room 6 168 Watts 14,448

This allowed a consistent level of light to be controlled throughout the day while
the protocol was being carried out within the PCRC lab. The same method of
controlling the light using 
uorescent lighting along with window blinds were used
with the UJAmI lab to allow di�ering levels of lighting to be set in order to assess
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how this a�ected the performance of the proposed system. In order to create a
\high" level of lighting (approx. 500 lux) for the experiment, all of the 
uorescent
lights were turned on and the window blinds were left fully open. Experiments
were conducted at approximately the same time of day over multiple days in order
to help control the amount of ambient light due to the time of day. To simulate
a \medium" level of lighting (approx. 300 lux) the window blinds were closed
and the 
uorescent lighting remained on, and to simulate \low" levels of lighting
(approx. 150 lux) both the window blinds were closed, and the 
uorescent lighting
were turned o�.

It should be noted that there are some potential limitations of the lighting
control. Due to the exact lighting level at each object of interest not being mea-
sured with only an approximate reading being taken it can be di�cult to know if
the lighting over a particular object of interest was lower or higher than expected.
This could result in a higher or lower accuracy than expected. Additionally, the
reliance on natural light as a component can make it di�cult to ensure consistancy
across all experiments. However, an advantage of this setup is that it allows a more
accurate replication of a real world environment which would consist of natural
lighting alongside ceiling lighting.

3.4 Deployment

Signi�cant e�orts [272, 271, 277, 278] have been focused upon establishing smart
environments which allow the development and testing of emerging technologies
along with the generation of datasets. These can be reduced to three main
categories[271]:

Lab Environments { These are mainly research based environments and are
typically located within research, academic, and industry locations.

Smart Environments { These are living environments which have been created
for the sole purpose of evaluation and demonstrating newly available tech-
nology.

Smart Living Environments { These are living environments which have been
designed to meet the real world living needs of people within their own home,
typically a long-term implementation.

Any institution that is involved with the development or testing of smart environ-
ment technologies would have established some form of lab environment in which
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to perform testing or development of their systems. Lab environments vary in
size and scope, from simply portioning o� a section of a lab to the development
and installation of a fully dedicated smart space. There are a number of notable
examples of smart environments created for evaluation and demonstrating pur-
poses. These allow the development and evaluation of various forms of technology
in order to direct future research. There are notable research groups that have
created these dedicated smart environments, such as the MavHome project [279],
Gator-Tech [277], Aware Home [280], PCRC lab [271]. UJAmI Smart Lab [272],
and the H2AI { Human Health and Activity Laboratory [281].

The �nal categorisation is that of real world homes which will have occupants
living within them on a day-to-day basis, this may require an external care provider
depending on the level of care that the occupant requires and if this can be solely
met by the smart environment. These homes are equipped with various levels
of supporting technologies such as fall detection to fully autonomous homes that
operate doors and windows among others [282], such as those developed by the
University of Zurich [283].

Each of the categories o�ers a range of bene�ts for the development and test-
ing of new technologies. Lab environments o�er controlled conditions to allow for
individual variables to be isolated and controlled to measure their e�ect on the out-
come. This also allows for reproducibility to allow for the modi�cation of individual
variables and also to ensure that results are repeatable and that the technology
operates in a consistant manner. Smart environments allow for the simulation of a
real world setting to provide a more realistic context to test the technology within,
such as performing activities within a home. Smart environments also o�er the
oppourtunity to observe how users interact with the technology in a controlled
environment along with allowing the testing of interoperability between devices or
technologies. Lastly, smart living environments o�er the oppourtunity to perform
real world testing/validation with a target user group. Additionally, it allows for
data collection within a real world setting which can aid in further development
or for training/updating new models.

3.4.1 Ulster University Pervasive Computing Research Cen-

tre Lab

The Smart Environment lab at Ulster University was established in 2009 by the
PCRC, Figure 3.3 shows the layout of the PCRC lab along with the placement
of the various sensors that are available throughout the environment. The lab in
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Ulster o�ers binary contact sensors. The list below details the sensor type and
their location within the PCRC lab. A 
oor pan can be seen in Figure 3.3.

� Binary Contact Sensors - 11

{ D01 { Kitchen door

{ D02 { Cup/glass cupboard

{ D03 { Tap

{ D04 { Tea/Hot Chocolate cupboard

{ D05 { Kettle

{ D06 { Fridge

{ D07 { Microwave

{ D08 { Cutlery cupboard

{ D09 { Living room door

{ D10 { Plate cupboard

{ D11 { Chair

{ D12 { Sofa

{ T02 { Phone

{ TV0 { TV

Figure 3.3: PCRC smart environment 
oor plan with sensor locations.
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3.4.2 University of Ja�en Ambient Intelligence Lab

The Smart Environment lab at the University of Ja�en was created in 2018 by
the Advanced Studies Centre in Information and Communication Technologies
and Engineering (CEATIC). Figure 3.5 shows the layout of the UJAmI Smart
Environment lab along with the placement of the various sensors that are available
throughout the environment. The UJAmI lab o�ers binary contact sensors, Passive
InfraRed (PIR), and Sun SPOT sensors. Images of the environment can been seen
in Figures 3.6a and 3.6b.

(a) Living room view of the Ja�en smart lab.

(b) Kitchen view of the UJAmI smart lab.

Figure 3.4: Images of the living room and kitchen within the UJAmI lab.

The list below details the all the sensor types and their location within Figure
3.5:

� Binary Contact Sensors { 12

{ D01 { Fridge

{ D02 { Microwave
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{ D03 { Wardrobe

{ D04 { Dishwasher

{ D05 { Plate cupboard

{ D07 { Toilet

{ D08 { Groceries cupboard

{ D10 { Cup/glass cupboard

{ K01 { Kettle

{ TV0 { TV

{ M01 { Front door

{ T02 { Telephone

� PIR Sensors { 4

{ SM2 { Bed

{ SM4 { Bedroom door

{ SM5 { Sofa

{ WT0 { Tap

� Sun SPOT Sensors { 6

{ SP1 { Above microwave

{ SP2 { Above PC desk

{ SP3 { Above living room cupboard

{ SP5 { Above cooker

{ SP6 { Above bed

{ SP8 { Bathroom sink
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Figure 3.5: Sensor positions within the UJAmI lab, PIR orientation is shown by
a small arrow.

3.4.3 Simulated Dataset { IESim

Due to the inherent di�cultly of gathering large datasets within a smart environ-
ment a simulated dataset was created in order to provide a suitable large dataset
which would allow the testing of technology and methods. Intelligent Environment
Simulator (IESim) was a tool developed within Ulster University for the simulation
of smart environments and sensor platforms [284]. IESim was designed to aid in
the rapid creation of a simulation of a smart environment which could be popu-
lated with sensors and objects. It provides an interactive visual approach to allow
its use by both technical and non-technical users to create novel environments in
order to perform initial testing. Each routine from Table 3.3 was simulated twice
within IESim simulating binary contact sensor data from a single occupant. Fig-
ure 3.6a and Figure 3.6b presents an example of an environment developed with
the use of IESim. This simulated environment is designed to simulate the PCRC
smart lab.
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(a) Smart kitchen within IESim.

(b) The smart kitchen in the PCRC lab.

Figure 3.6: Images of the living room and kitchen within the PCRC smart Lab.

When compared to the datasets collected by a researcher the simulated datasets
does not contain any missed sensor events and the sensor events are carried out in
a strict order. Due to these issues it was felt that the simulated dataset did not
represent the complexity of a real world scenario were variations may exist within
the data due to the order of sensor activations. Additionally, in a real world
scenario there may be missing or corrupt data, this can be due to many factors
such as hardware/battery failure or interference. This simulated dataset could
potentially be used within future work, one interesting avenue of investigation is
that of utilising the simulated dataset to augment the real world dataset to increase
the size of the dataset for training ML models.

3.5 Datasets Collected

A single participant generated the data in both the PCRC and UJAmI labs. Table
3.3 presents the three routines that were carried out at each lab along with the
corresponding activities (experiment protocol available in Appendix A.). The three
routines contained 175 sensor events in total, resulting in a total of 350 vision
events over both labs. A simulated dataset was also generated through IESim,
which produced a simulated TyneTec dataset of 651 sensor events. In total four
main datasets were gathered:

1. A simulated data that was generated via the use of IESim, to provide a large
dataset of synthetic contact sensor events.

2. A gathered dataset from the PCRC lab which provides a dataset comprised
of egocentric video data from a wearable camera under consistent lighting
conditions. This was coupled with binary contact sensor data to act as
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a ground truth, this was used to determine the technical feasibility of the
system.

3. A gathered dataset from the UJAmI lab which provides a dataset comprised
of egocentric video data from a wearable camera under consistent lighting
conditions. This was used to determine if it could be easily applied to mul-
tiple environments.

4. The gathered dataset from PCRC lab which provides a dataset of egocentric
recordings from a wearable camera under varying lighting conditions with
ArUco and custom �ducial markers to compare systems.

This provides a wide range of data on which to test the system allowing a method
of comparing the ease of set up and installation within di�ering environments.
Along with a wide range of data, complete with varying lighting conditions, on
which to tell the reliability of the system. Further breakdown of the datasets are
presented in Table 3.6.

Table 3.6: The full list of activities that were performed during the three routines.

Dataset ID Classes Instances Sensor

1 9 651 Simulated binary contact

2 9 175 Google Glass

2 9 175 TyneTec ZXT434 Binary Contact

3 9 175 Google Glass

4 3 38 Google Glass

3.6 Summary

This Chapter presented an overview of current, commonly available datasets for
ADL, and produced a novel dataset for indoor localisation and detecting ADL
which have been made publicly available 2. The datasets consisted of an occupant
carrying out ADL while wearing an egocentric camera, along with binary contact
data via TyneTec sensors. The datasets discussed within this Chapter o�er ad-
vantages over other publically available datasets, such as those presented in Table

2https://github.com/cshewell747/VisionData
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3.1, mainly through the use of �ducial markers applied to an environment which
is viewed through a �rst person context. Additionally, the data recorded through
the use of a head mounted wearable camera which o�ers a unique perspective of
the environment along with helping to reduce issues such as occulusion. However,
it should be noted that there are limitations to the collected dataset. Firstly, the
small size of the dataset is a limitation when discussing training ML models which
can require large amounts of data and can result in over�tting. Additionally, the
use of custom �ducial markers restricts what algorithms can be used. As a large
number of �ducial marker detection algorithms rely on pre-designed markers and
typically cannot be modi�ed to accept custom markers. [197]. Chapter 4 presents
use of these datasets to propose a novel form on indoor localisation utilising a
wearable camera and a mechanism to identify \key" objects within the environ-
ment.



Chapter 4: Indoor Localisation through
Fiducial Marker Detection on
Near Real-Time Wearable Video

4.1 Introduction

This Chapter presents a novel, in terms of technology used and method of localisa-
tion, solution to the challenge of occupant localisation within an environment. The
work reported in this chapter has been published in [264] and [285]. The proposed
method leverages smart glasses (Google Glass) and �ducial markers placed on key
objects within the environment to determine location. This is achieved via the live
streaming of a video feed from the front facing camera on the Glass device. The
video feed is then processed and any �ducial markers within the stream identi�ed.
Each marker will have an associated I.D. which details the approximate location
of the occupant. The novelty of this system is the use of a near real-time video
stream to perform localisation through the use of �ducial markers placed on \key"
objects within the environment via a smart glass device.

The main objectives of this Chapter were to present a review of the current
state of the art of machine-vision based solutions that facilitate indoor localisation,
to establish an experimental protocol to assess the viability in applying an indoor
localisation system utilising a wearable camera, along with its feasibility to be
applied to multiple environments. The results were validated at multiple locations
(PCRC and UJAmI labs). Furthermore, a comparison of how the costs of the
presented system compares against the costs of alternative sensor platforms for
occupant localisation is presented as the �nanical cost of such a system will be
key to widespread adoption. The hypothesis considered that the use of a single
wearable camera allows occupant tracking within an environment.

In order to assess the feasibility of the method, a protocol, as discussed in Sec-
tion 3.2 was established to compare the presented method against an established
method of indoor localisation; dense sensor placement [286]. A series of activities

79
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were performed within an environment and the location was recorded by both a
machine-vision localisation system and dense sensor placement. To verify that
the method was applicable to multiple environments (di�ering environmental lay-
outs, lighting conditions, ease of installation, etc.) the experiment was recreated
within two separate smart labs, the labs in the PCRC lab [287] and the UJAmI lab
[272]. This Chapter details the rationale, architecture, methodology, testing, and
evaluation of a system to facilitate indoor localisation through the use of a single
\always-on" egocentric camera, implemented using the Google Glass platform.

4.2 Methodology

This Section proposes a solution to facilitate indoor localisation through the use
of a single \always-on" egocentric camera, implemented using the Google Glass
platform. The occupant location is established through the implementation of
machine-vision techniques to identify reference objects located within the environ-
ment that are then cross-referenced against a knowledge base that contains the
reference object’s known location. The reference objects are identi�ed by �ducial
markers placed upon them. Fiducial markers can be de�ned as arti�cial land-
marks, or reference points, that are added to an environment to aid in tracking,
alignment, and identi�cation within the environment [288]. They can either be
placed upon a �xed point within the environment to enable a moving camera to
allow the location of the camera to be determined or they can be placed on moving
objects to allow the location relative to a �xed/moving camera to be determined
[289]. Within the context of this work, �ducial markers are de�ned as images or
scenes within the environment that support the alignment, identi�cation, and/or
tracking of objects or locations [74]. The need for the occupant’s location is a
high priority for providing relevant assistance due to the nature of activities being
localised to a certain location within the environment; such as making dinner. The
presented approach leverages a wearable camera to o�er an egocentric view of the
environment. This is coupled with �ducial markers placed on \key" objects which
o�er contextual information as to the occupant’s location

In the research presented in this Chapter, the �ducial markers take the form
of multiple overlapping shapes applied to \key" objects within the environment,
refer to Figure 4.1a for an example of a �ducial marker. These markers were then
applied to \key" objects within the environment, as shown in Figure 4.1b. The
overlapping shapes were de�ned through an iterative approach and ad hoc testing
to determine the optimum complexity required. A single shape, such as a cross
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or triangle, did not provide enough unique features points to accurately di�eren-
tiate the markers from each other. Conversely, overly complex shapes resulted in
increased processing time required to identify the shape which resulted in mark-
ers being missed due to the speed the occupant would navigate throughout the
environment. As feature point algorithms, such as FAST, rely on corner detec-
tion methods [290] the shapes were created to maximize the number of corners
that could be detected via overlapping shapes which were slightly o�set from each
other.

(a) Example of a �ducial marker. (b) An example of a �ducial marker applied

to an object.

Figure 4.1: An example of a �ducial marker and how they are applied to objects
of interest within the environment.

As shown in Figure 4.1b the markers can be applied to any object, in this case on
the telephone. If the telephone is detected, we can determine that the occupant
is within the living room and thus can provide the relevant support if/when it
is needed within their context. The method of using �ducial markers to identify
objects within the environment aims to aid in alleviating some of the traditional
problems associated with object detection [291]. One such challenge this method
alleviates is attempting to distinguish between multiple identical objects [288],
such as kitchen cupboards, as well as negating the requirement to recognise various
models of the same appliance that may di�er in their appearance, however, o�er
the same function. Further advantages this method o�ers is the ability to retro�t
it to any object within an environment therefore the need for a fully sensorised
environment is no longer required therefore greatly reducing the cost of applying
such a system to the occupant’s own home. However, there are some negative
issues encountered through implementing the proposed solution. Firstly, a unique
�ducial marker will need to be generated for each object of interest within the
environment. Secondly, e�ort was needed to ensure that the correct markers are
placed on the relevant objects of interest within the environment of interest. The
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markers can be placed by a non-expert user, however, it would be bene�cial if they
are placed by a person who is familiar with the occupant’s routines in order to
ensure all the relevant objects have had a marker attached.

4.2.1 Streaming Data from a Wearable Camera

This research was conducted using the Google Glass device [167], which is equipped
with a �rst-person video camera at eye level, in addition to a full sensor suite such
as accelerometer, gyroscope, and GPS amongst others. Chapter 3 provides a fuller
overview of Google Glass and its technical speci�cation.

4.2.2 Near Real-Time Streaming

In order to determine the location of the occupant the video feed will be streamed
from the Google Glass device showing an egocentric view of the environment.
Any �duciual markers found in the video feed will be detected and the marker’s
associated location will be logged as the occupant’s current location.

In order to o�er relevant, timely support the video feed from the Google Glass
was processed in real time. This functionality was not supported by Google Glass
by default. An app was developed for Google Glass that allowed a video stream to
be captured and then sent via Real Time Streaming Protocol (RTSP) to a cloud-
based server. The video feed was then freely accessible by multiple sources. In
order to process the video, the machine-vision server accesses the video stream via
RTMP (Real Time Messaging Protocol) and performs the video processing. This
approach did, however, introduce a brief latency (<4 seconds) due to Glass’ e�orts
to lower its temperature during high load situations, such as streaming [9].

4.2.3 Server O�oading

As wearable devices are traditionally \resource poor" in comparison with contem-
porary server hardware [9] Google Glass was responsible for capturing the video
stream and delivery of reminders and noti�cations only. This was to avoid intro-
ducing a large delay within the processing time from detecting a marker within
the video stream and determining the location from the marker to establish the lo-
cation of the occupant. The image processing was o�oaded to a server via RTSP
for processing, thus decreasing the time taken for object detection and for the
appropriate response to be given, along with increasing battery life on the Glass
platform. Ha et al. carried out a comparison of an assistive application (OCR:
Optical Character Recognition). They compared the performance and energy use
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of Glass performing the recognition task, both via on board processing and com-
paring this against o�oading the processing to a server via a real-time stream from
Google Glass [9]; their results are shown in Table 4.1.

Table 4.1: Comparison of o�oading vs. on-board processing for Google Glass.
Mean over �ve runs, standard deviation shown in parenthesis [9].

Metric On-Board (seconds) O�oading (seconds)

Per-Image Energy 12.84 (0.36) 1.14 (0.11)

Per-Image Speed 10.49 (0.23) 1.28 (0.12)

As can be seen from Table 4.1, there is almost an order of magnitude di�erence
in both speed and energy used in o�oading compared to on-board processing.
Google Glass o�ers a 2.1V 570mAh (7560 Joule) battery, equating to an 11-minute
battery life when performing on-board processing and an 111 minute battery life
when o�oading to a server, along with an decrease in the processing time required
to perform the recognition [9]. Battery life can be further extended with external
battery packs, however, with the current rate of advance in battery technology the
battery life of future generations of wearable devices will be less of a challenge.

The imagine recognition was carried out using the OpenCV library [292], which
is an open source library aimed at real-time macine-vision, using a desktop ma-
chine as the server. The technical speci�cation of the server was as follows: Intel
Core2Quad (Q9950) 2.83GHz CPU, 8GB RAM. The video was transmitted at
640x480 at 20fps. Due to processing limitations of Google Glass a variable lag
(<3s) was introduced on the video stream. This was due to Google Glass’s ef-
forts to lower the operating temperature, which is achieved by reducing the clock
speed of the CPU. At high temperatures, the Glass �rmware limits of the CPU to
600Mhz or 300Mhz to cool down via power reduction [274].

It should be noted that there can be limitations to o�oading, in particular,
privacy and security. This is due to the data being streamed over a network from
the device to a server which can increase the likelihood of unauthorised access or
data breaches through malicious attacks. Additionally, the occupant could feel
uncomfortable knowing their data is being o�oaded to a server outside of their
control. Particularly given the sensitive nature of a egocentric video stream within
the occupants own home. Certain steps can be taken to reduce the privacy issues,
such as in this research were the video feed is not stored, only the I.D. of the
detected marker along with a timestamp are stored. Additional considerations
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that must be taken into account is the potential costs involved with regards to the
scalability of an o�oading approach should a third party server provider be used.
Especially if mulitiple occupants are being supported within the environment as
this would require mulitiple video streams to be o�oaded and processed.

Within the implementation in this research a desktop server was used within
the occupant’s environment to reduce issues with data privacy and security. As the
data would not be leaving the occupants home network, alongside only recording
the detected marker name and timestamp. This approach was also low cost with
a low spec desktop PC being required, however, if multiple occupants were being
supported a higher speci�cation desktop should be considered.

4.2.4 Comparison of Feature Detection Algorithms

To detect and identify the �ducial markers a feature detection algorithm was re-
quired. To determine the best �t for this purpose, a review of the literature
pointed towards Orientated FAST and Rotated BRIEF (ORB) as being the best
�t for this work [293, 294, 295]. A brief overview and comparison of the algorithms
is presented.

SIFT: Scale-Invariant Feature Transform (SIFT) was developed by Lowe [296]
as a method of extracting distinctive invariant features from images to provide
reliable image matching. The features extracted are invariant to both scale and
rotation, in addition to being robust to the e�ects of a�ne distortion, noise, and
lighting changes [296]. This method also allows for highly distinctive features to be
extracted so that a single feature can be correctly matched against a large database
of features from multiple images. Image matching is performed by matching in-
dividual features against a database of known features using a nearest-neighbour
algorithm along with a Hough transform to identify clusters belonging to a single
known object. Veri�cation is then performed through least-squares solution for
consistent pose parameters [296].

SURF: Speeded Up Robust Features (SURF) was developed by Bay et al. [297]
as scale and rotation invariant feature point detector and descriptor which relies on
integral images for image convolutions. In order to detect interest points an integer
approximation of the determinant of a Hessian blob detector is calculated with
three integer operations utilising a precomputed integral image [297]. Analysis
has shown that it is three times faster than SIFT while performance is comparable
to SIFT. The main advantage of SURF is in handling images with blurring and
rotation; however, it falls down at handling viewpoint change and illumination
change [292].



85

FAST: Features from Accelerated Segment Test (FAST) was created by Rosten
& Drummond [298] to be a low computational method of detecting features in real-
time video via the application of machine learning. FAST creates a decision tree
which can correctly classify all corners in the training set. To classify a corner a
pixel \P" is selected and a circle of 16 pixels is selected around it. Four pixels from
the circle are then examined (1 and 9 �rst, if these are too bright or dark then 5
and 13 are checked) if \P" is a corner then at least three of these pixels should be
brighter or darker than \P". While it is several times faster than other existing
corner detectors it is not robust to high levels of noise and is highly dependent on
a threshold value.

ORB: Orientated FAST and Rotated BRIEF is an alternative to SURF and
SIFT which was proposed by Rublee et al. [293]. ORB uses FAST (Features from
Accelerated Segment Test) in pyramids in order to detect stable key-points and
selects the strongest features using FAST. FAST is an e�cient method of �nding
key-points in images. It is a particularly common solution in real-time systems that
match visual features, however, it must be augmented with pyramid schemes to
take scale into account, and in the case of ORB a Harris corner �lter must be added
to reject edges [293]. ORB employs the Binary Robust Independent Elementary
Features (BRIEF) feature descriptor which employs simple binary tests between
pixels in a smoothed image patch and o�ers robustness towards lighting, blur, and
perspective distortion.

ORB implements the intensity centroid method of corner detection as de�ned
by Rosin [299]. ORB features are invariant to rotation and scale, resulting in
a very fast recogniser which is robust to viewpoint invariance [294], while being
faster than both SIFT and SURF based algorithms while maintaining accuracy
[295]. The intensity centroid assumes that a corner’s intensity is \o" set from its
centre, and that this vector can be used to impute an orientation. A previous study
by Gil et al. [300] has shown that a strength of ORB is its ability to accommodate
low brightness conditions, in part due to ORB implementing the Harris Corner
Detection algorithm which Pribyl et al. has shown to be robust in low lighting
conditions [74].

Tareen and Saleem [10] undertook a study to investigate the computational
cost for a range of feature point algorithms by demonstrating the computational
cost per feature point based on the mean values from a range of images within
multiple datasets as displayed in Table 4.2.

OpenCV [292] provide a hardware and operating system agnostic implemen-
tation of various feature point recognition algorithms thus removing hardware
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Table 4.2: Computational cost per feature point [10].

Algorithm Mean Feature Matching Time (�s)

SIFT 142.02
SURF 89.66
ORB 11.82

platform limitations. Being able to run on smartphones, Raspberry Pi, or more
powerful desktop devices.

Following review of the aforementioned approaches, ORB was selected as the
algorithm of choice. This was due to its lower computational overhead compared
with the alternative approaches while still o�ering a high level of accuracy. Its
robustness to lighting conditions also highlighted it suitableness to the application
of AAL where the occupant would need to be supported at all times of the day
with varying lighting conditions due to di�ering interior lighting and the natural
lighting changing throughout the day.

However, it should be noted that are some limitations when using feature point
algorithms for �ducial marker detection. Firstly, there is a reliance on su�cient
complexity being present within the marker design in order to reliably di�erentiate
the markers from the background. Additionally, scalability can also be an issue
due to the potential limit of the number of unique markers that can be generated
without increasing the number of mistaken detections (false positives). Marker
placement is also a limitation as factors such as lighting and occlusion can result
in reduced performance. Additionally in situations were there may be multiple
�ducial markers in close proximity feature point algorithms can struggle to di�er-
entiate betwen markers. Occlusion can lead to missed detections or false positives
due to the markers being fully or partially occluded within the environment. While
this is a limitation of feature point recognition algorithms it can be possible to de-
tect partially occulded markers through the use of deep learning approaches. Noise
is also an important factor to consider and can be introduced through lighting,
network faults, sensor faults, or arti�cats introduced through compression. The
result of noise within the data can result in reduced performance within feature
matching and detection which can increase the rate of false negatives and false
positives. Image distortion is another factor that can potentially a�ect the per-
formance of a feature point detection algorithm. Distortion can be introduced
through the camera lens a�ecting the detection of the �ducial markers, Chapter 5
discusses how the camera was calibrated to take account of this distortion.
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4.2.5 K-Nearest Neighbour Matching

A KNN algorithm [301] was used to match the detected feature points of a marker
against the known marker templates to determine if a marker is present. A KNN
algorithm can be formally de�ned as �nding the K closest (similar) features to
a query feature among N points in D-dimensional feature space [302]. In the
presented implementation, a simple, from a reasoning perspective, version of a
KNN is used, a Brute Force Matcher which takes a descriptor of one feature in the
�rst set which is then matched with all the other features in the second set using
a distance calculation with the closest match being returned.

Cheng et al. bench-marked multiple algorithms for the purposes of image
matching which shows how the Brute-Force matcher compares to other feature
matching algorithms [303]. A Brute-Force Matcher may be one of the worst per-
forming matchers [303] in terms of time taken to establish a match, though the
detection time as implemented in this research is less than one second, it was con-
cluded that it is the best performer in terms of accurately identifying the correct
matches [303].

The Brute-Force Matcher has been used in this research to compare feature
points for matching pairs. For each feature in the object, the Brute-Force Matcher
locates the closest feature between two pairs by trying every one. The similarity
between two pairs is represented by the Norm Hamming distance. This was more
e�cient, in terms of computation speed, than alternatives as Norm Hamming
distance can be implemented using an XOR followed by a bit count which can be
carried out extremely fast on modern CPUs [304]. A minimum Hamming distance
is set to ensure that only good matches are selected. A match is considered good
when the distance is less than three times the minimum Hamming distance set.
An overview of the process of setting the minimum and maximum distance along
with the good match selection pseudo-code is presented in Algorithm 1.



88

Algorithm 1 The process of setting the minimum and maximum distance along
with the process of selecting a good match.
mindist = 100
maxdist = 0
dist = ;

matches[; ]
for matches do

if dist < min dist then
min dist = dist

end if
if dist > max dist then
max dist = dist

end if
end for
for matches do

if 3xmin dist < matches : distance then
goodMatches[matches]

end if
end for

However, it should be noted there are some limitations with utilising a KNN
algorithm. One such limitation is that of computational complexity due to the
need to calculate the distances between data points, this limitation increases in
cost as the dataset increases in size. This also limits the use of KNN to hardware
with su�cient memory storage for storing the entire dataset and thus it is limited
due to memory consumption in relation to the size of the dataset. KNN can also
be sensitive to noise within the dataset, for example, if there are any outliers
within the dataset this can have an e�ect on the result of the nearest neighour
calculations due to outliers potentially being treated as neighbours which may
distort the boundary. Noise within the data can also result in the noise being
mistaken for a neighbour resulting in misclassi�cation. Additionally, the choice of
the value of K can have a signi�cant impact on the results. A low value of K can
result in the model being adversly a�ected by individual data points, particularly
if the dataset contains outliers, which can result in the model being over�tted to
the dataset. A high value of K can result in the model becoming too general and
can potentially lead to the model under�tting the data. This is due to the high
K value casuing the algorithm to consider a larger number of neighbours and can
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result in reduced accuracy.

4.2.6 Two Stage Filter

During initial testing a high number of False Positives (where a tagged object is
determined to be present when it is not) were occurring. These were found to be
caused by objects in the environment containing a partial match to the �ducial
markers. In order to dismiss the number of FP reported by the system a two-stage
�lter was used. For the �rst stage, the homography was used as a model for correct
matches allowing a transformation to map the points in the template image to the
corresponding points in the frame. The number of inliers that contributed to the
homography were determined and compared against a threshold value (refer to
Algorithm 1). If the number of inliers matched or exceeded this value, then it is
passed onto the second stage.

The second stage employed a Vote Function where any further FP that have
passed through the �rst stage are removed. A batch of frames (three in this
implementation) were processed. The object most likely to be present in each
frame was determined and stored. Once the most likely object for each frame
has been determined a vote count is performed. Once this count passed a pre-
determined (de�ned by a human expert) threshold value the most likely object
was determined to be present. The pseudo-code for the second stage �lter is
presented in Algorithm 2. Figure 6.1 illustrates how these multiple algorithms
were combined as a whole system.

Algorithm 2 Vote function combining multiple frames to determine if an object
is detected.
threshold = �
objectID[; ]
for totalNumberOfObjects do

if detectedObject == objectID then
objectID[detectedObjectCount+ +]

end if
if objectID[detectedObjectCount] == threshold then
objectDetected
objectID[; ]

end if
end for
return ObjectDetected
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It should be noted that there can be potential limitations with the threshold value
being set by a human expert. Firstly, a potential limitation is that is that of
subjectivity as di�erent human experts could have di�ering opinions on what is
an appropriate threshold value. Additionally, a threshold value being set by a
human expert may cause a lack of generalistaion, due to the threshold value being
set based o� a familiar dataset which may not generalise to further datasets. The
threshold being set by a human expert can also result in a bias being introduced
to the system due to the human expert’s bias towards a certain instance or class
within the data. Lastly, it can be a time consuming process to manually set a
threshold value which may not be scalable as the dataset increases in size along
with reducing the level of transparancy within the decision making process.
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Figure 4.2: Overview of the 
ow of data, showing the two stage �ltering process.

4.2.7 Benchmarking

To assess the performance of the proposed work in this thesis a comparative tech-
nique was required as a benchmark. To address this requirement a dense sensor-
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based solution was used to provide a comparison with the machine-vision system.
The dense sensor system consisted of TyneTec binary contact sensors placed on
the ‘key’ objects that also had a �ducial marker attached to them. There was
a total of 14 TyneTec sensors, events were uploaded to a MySQL database for
retrieval. Further details of the objects the TyneTec sensors were attached to and
their location within the PCRC and UJAmI labs can be found in Chapter 3.

The data for both the dense sensor and machine-vision datasets were collected
by a single researcher simultainously. The TyneTec sensors and �ducial markers
were placed within the environment while the researcher performed the study
protocol while streaming from the Google Glass device. The machine-vision video
stream was then process in near real-time to detect any �ducial markers within the
stream and then stored the marker I.D. and timestamp. This allowed a comparision
to be made between the accuracy of the dense sensor based system in comparision
to the machine-vision based system by comparing the number of false negative and
false positive events.

4.2.8 Activities of Daily Living Study Protocol

As was introduced in Chapter Three, a range of nine unique activities were re-
peated within three di�ering routines (activities were duplicated in both PCRC
and UJAmI) that were representative of daily routines [66], with the goal of recog-
nising the component locations that make up each activity. If prepare/drink water
is taken as an example activity, then the component locations would be the kitchen
door, the cup cupboard, the tap, and then �nally the kitchen door again. Three
routines, speci�ed in Chapter 3, were carried out. The �rst containing ten ac-
tivities and the remaining two containing eleven activities (routine two and three
contained repeating activities). The �rst routine did not contain the phone call
activity to simulate phone calls being a typically unscheduled activity in the real
world. These ranged from simple activities such as drinking a glass of water to
more complex activities, such as preparing hot food. The activities are presented
in Table 4.3, with the full routines presented in Table 4.4.

These routines were performed under the same lighting conditions (brightly
lit with arti�cial lighting and partially closed window blinds) to minimise any
potential discrepancy between identical activities in di�ering routines. To promote
the accuracy of the machine-vision and binary sensor location systems, the ground
truth was obtained from a time stamped video. The occupant’s location reported
from the location systems were then compared to the ground truth from the video.
Both the vision and TyneTec data were gathered at the same time, as the researcher
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carried out the activities while wearing Google Glass. The objects were also �tted
with TyneTec sensors, allowing the data to be gathered within the one routine.
All components of the system were time synced with the MySQL server to ensure
that the events were synchronised. Lighting was controlled as discussed in Section
3.3.4.

Table 4.3: Full list of activities that were performed during the three routines, these
were chosen to represent a range of ADL that take place within a kitchen/living
room area.

Activity Number Activity

1 Prepare/drink water

2 Prepare/drink tea

3 Prepare/drink hot chocolate

4 Prepare/drink milk

5 Make/receive phone call

6 Prepare/eat cold meal

7 Prepare/eat hot meal

8 Watch TV

9 Wash dishes

In order to assess the viability in applying the proposed solution to multiple en-
vironments the aforementioned routines were carried out in a second location, the
UJAmI smart lab, University of Ja�en. Ceiling lighting and window blinds were
used to control the lighting conditions. Additionally, activities remained the same
within each routine along with both the markers and wearable sensor, the only
variable being the environmental layout. Ground truth was gathered by the re-
searcher involved from manually annotated video data to ensure the accuracy of
the vision system. As it was the viability of the vision system that was of interest
only the vision results were compared between the results of the experiment in
PCRC and UJAmI.

The resulting true positives, false negatives, and false positives from both the
dense sensor and machine-vision systems were compared as a means to evaluate the
performance of the two systems. Additionally, the recall, precision, and F-measure
for both systems were calculated to provide an additional means to evaluate and
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Table 4.4: Breakdown of activities that took place in each routine.

Routine 1 (R1) Routine 2 (R2) Routine 3 (R3)

3 4 3

1 6 1

7 1 5

9 5 7

8 1 1

1 2 8

8 8 2

6 7 8

9 9 6

1 8 9

N/A 1 4

compare the performance of both systems.

4.3 Results

This Section describes the results of the machine-vision localisation system, along
with details of the results from the dense sensor system when compared with the
ground truth from the annotated video data. Due to the high number of true
negatives (TN) over twenty thousand, from the machine-vision system a skewed
dataset was produced. Due to this the performance was assessed by measuring
recall, precision, and F-Measure. These were focused on to avoid misinterpreting
the high number of TN giving an incorrect weighting to the results.

The results from the machine vision system at the PCRC lab are presented in
Tables 4.5 and 4.6, and the results from the UJAmI lab are presented in Tables
4.7 and 4.8. Tables 4.6 and 4.7 show a total of nine FP from the 350 total events
these were due to a mistake being made in recognising the �ducial markers and
detecting them as a di�erent marker.

As shown in Table 4.9 there was a total of 32 FN (175 total events) within the
PCRC lab. The majority of these (16) were due to corruption within the video
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frame during transmission. The remaining FNs where due to varying reasons, such
as missing frames. There were a total of 59 FNs within the UJAmI lab (Table 4.10),
most of these (47) were due to the camera auto-focus failing to focus. This could
be seen as a weakness of the system as if the camera did not have enough time
to focus on the marker then they may be missed. The rest of the FNs were due
to varying reasons, such as missing frames due to network latency or corrupted
frames.

Table 4.5: Results of Recall, Precision, and F-Measure for the machine vision-
based system { PCRC.

Routine Total Events Recall Precision F-Measure

R1 58 0.74 0.98 0.84

R2 56 0.88 0.94 0.91

R3 61 0.84 0.96 0.89

Total 175 0.82 0.96 0.88

Table 4.6: Breakdown of machine vision sensor classi�cation outcomes including
TP, FN, and FP { PCRC.

Routine Total Events #TP #FN #FP

R1 58 43 15 1

R2 56 49 7 3

R3 61 51 10 2

Total 175 143 32 6

Table 4.8 and 4.10 presents the machine-vision results from the UJAmI lab. As
shown in Tables 4.8 and 4.5 there is reduction of the average Recall and F-Measure
by 0.16 and 0.09 respectively with a rise in Precision of 0.01, suggesting that
it is viable to apply the system to multiple environments. Even though there
was a drop in performance in terms of F-Measure and Recall the system was
still able to accurately determine the occupant’s location. The results from the
binary contact sensors are presented in Tables 4.11 and 4.12. While the binary
contact sensors provided more accurate results this does not fully demonstrate



96

Table 4.7: Breakdown of machine vision sensor classi�cation outcomes including
TP, FN, and FP { UJAmI.

Routine Total Events #TP #FN #FP

R1 58 39 19 1

R2 56 38 18 1

R3 61 39 22 1

Total 175 116 59 3

Table 4.8: Results of Recall, Precision, and F-Measure for the machine vision
based system { UJAmI.

Routine Total Events Recall Precision F-Measure

R1 58 0.67 0.98 0.80

R2 56 0.68 0.97 0.80

R3 61 0.64 0.98 0.77

Total 175 0.66 0.97 0.79

the additional advantages the machine vision system provides over dense sensor
placement.

One of the key advantages that the vision methods o�ers which was uncovered
during the experiments is that interaction with an object is not required to de-
termine the occupant’s location within the environment. This can o�er a timelier
location update compared to dense sensor placement. In the experiments, the
occupant’s location was reported before they had interacted with the object thus
o�ering a timelier update. This was due to the manner in which each system re-
ported an event, with the dense sensor placement an event can only be reported
as the occupant is interacting with the object of interest. With the vision-based
system the interaction could be reported before the occupant has physically in-
teracted with the object, being able to recognise the intention of interaction as
the occupant approached the object. Also, if the occupant became confused or
decided not to use the object their location would still be captured. This would
have otherwise been lost in a traditional sensor based smart environment. Another
potential advantage is that of multiple occupancy. As each occupant will use a
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Table 4.9: A breakdown of FN machine vision events { PCRC.

Cause #FN

Corrupt Frame 16

Other 8

Unknown 8

Total 32

Table 4.10: A breakdown of FN machine vision events { UJAmI.

Cause #FN

Unfocused 47

Unknown 12

Total 59

wearable device it would be possible to locate each occupant within the environ-
ment and to infer their activity from their own �rst-person view. Nevertheless,
this is working under the assumption that only the occupants of the environment
will require support, as any visitors will not have a wearable device. If any sensor
activity is detected without a corresponding machine-vision event, then it would
be assumed that the visitors have activated a sensor and thus that event should
be ignored. While it is possible for the machine-vision system to miss an event,
there would be opportunities for this event to be detected due to the constant
monitoring of the environment through a camera. As the vision system does not
require interaction even if the initial event is missed, follow up events may still be
captured. This additional information is lost in a traditional dense sensor envi-
ronment and once the occupant has �nished interacting with the object there is
no longer any opportunities to detect a follow up event.

4.3.1 Application to Multiple Environments

This study also investigated the viability of translating this solution to other en-
vironments. Occupants generally should be supported within their own home
which needs to be taken into consideration when developing a solution to that of
AAL. The proposed system o�ers reduced �nancial costs in terms of initial equip-
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Table 4.11: Results of Recall, Precision, and F-Measure for the dense sensor based
system.

Routine Total Events Recall Precision F-Measure

R1 58 1.00 1.00 1.00

R2 56 0.93 1.00 0.96

R3 61 0.90 1.00 0.95

Total 175 0.94 1.00 0.97

Table 4.12: Breakdown of dense sensor classi�cation outcomes including TP, FN,
and FP.

Routine Total Events #TP #FN #FP

R1 58 58 0 0

R2 56 52 4 0

R3 61 55 6 0

Total 175 165 10 0

ment purchase and maintenance, along with a reduction in the invasiveness for
the installation compared to traditional indoor localisation methods as discussed
in Chapter Two. Details on the costs of purchasing the relevant equipment and
installation can be found in Table 4.13 vs. the Google Glass Explorer edition cost
of approximatly £1,200 at the time of writing. The issue of multiple occupancy
is also addressed as this solution allows individual support to be given to each
occupant as they have a unique �rst-person view of the environment. This does,
however, assume that only the occupants require support and that any visitors to
the environment can be assumed to not require any assistance allowing support to
be given in the form of noti�cations/reminders to assist with completion of ADL.
This solution aims to improve context aware support through the localisation of
objects within a smart environment.

One aspect of AAL that must be taken into consideration is the acquisition and
maintenance costs of implementing a sensorised environment. A large network of
embedded sensors is normally required which results in a system that is costly to
maintain, relatively obtrusive (as sensors are required on every interactable object),
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Table 4.13: A breakdown of approximate costs with associated sensor platforms
[11].

System Cost Installation

Elk M1 £5,000 DIY

Lagotek £5,000 DIY

Control4 £50,000 DIY

Control4 £98,000 Professional

X10 £250 DIY

Creston £49,000 Professional

EIB Instabus £11,000 Professional

KNX £25,000 Professional

and sensitive to the performance of the sensors [98]. Table 4.13 presents the
estimated costs involved in implementing both dense sensor and �xed video camera
systems within a household. As can been observed from the Table 4.13 there is a
high �nancial cost involved in the purchase and installation of traditional methods
of indoor localisation. While a DIY installation goes a long way to reduce these
costs (Control4 price is reduced by approximately £57,000 from the professional
installation), it must be considered that the occupants that would bene�t from
such as system may not be physically or mentally �t to carry out such an intensive
installation. An additional advantage towards the proposed system, and vision
systems in general, is that generic hardware can be used for multiple applications
to aid of AAL [98].

4.3.2 Multiple Environments

The results from the experiment in the UJAmI lab o�er an insight into the viability
of applying the system to other environments. The results support the hypothesis
that a single wearable camera allows occupant tracking within an environment with
the goal of determining location, subsequently showing consistent results across
multiple environments. As the markers are placed on common objects that are
ubiquitous to every home environment, the markers used in the PCRC experiment
could be directly used when recreating the experiment in the UJAmI lab without
modi�cation. This facilitated a simple and fast set up time (�ve minutes) compared



100

to traditional methods such as dense sensor placement or the installation of static
cameras [188, 191]. Due to the small nature of the dataset, missed events have
a larger impact, resulting in a reduction in recall and F-Measure, however, the
precision was increased which is signi�cant as it is important that the occupant’s
location is correctly identi�ed to o�er relevant support. Despite this the results
suggest that the method is viable across multiple environments. The creation of a
larger dataset is warranted to gain a more accurate picture of the performance.

4.4 Discussion

The contributions o�ered by this Chapter include addressing a problem previously
identi�ed with that of wearable devices such as Google Glass. That is, that their
impact in ubiquitous computing and ambient intelligence systems has been partly
slowed by their lack of streaming [187]. This has been addressed in Section 4.2.1
by the development of live streaming functionality from a wearable device, Google
Glass in this case, which allows the video stream to be accessed by multiple sources
using a media server.

Near real-time vision based indoor localisation through an egocentric camera
utilising �ducial markers. This alleviates the issues identi�ed within Chapter Two,
such as occlusion from �xed cameras where the occupant is not within the camera’s
�eld of view due to large objects occluding the occupant or \blank" areas of the
environment where the camera’s �eld of view does not cover. While there is a risk
of occlusion of the �ducial markers this is greatly reduced through the use of a
�rst-person camera which removes the issue of covering the entire room along with
large items, such as doors/fridges, occluding the object of interest.

An additional advantage the system o�ers is avoiding the need to be trained to
each environment that it is to be deployed within by using �ducial markers. This
allows the system to be quickly and easily deployed within new environments in
comparison to implementing traditional methods of indoor localisation.

Due to the system operating in near real-time it does not encounter the same
issues as intermittent image capture system. Where vital information could be lost
if the occupant interacts with an object or navigates throughout the environment.
In the previously discussed works the method of image capture relied on intermit-
tent captures, e.g. at set time intervals 30 frames were captured. This could cause
vital information to be lost as object interactions may have taken place within
the time period were the system was not capturing information. As the presented
system operates in near real-time every frame is being processed, therefore vital
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information will not be lost through intermittent image capture.
The proposed approach o�ers other secondary advantages when compared to

a traditional method of indoor localisation, such as dense sensor placement, that
are unique to this method. Such as the �rst person view and lack of required
interaction and multiple occupancy, where each occupant that requires support
need only to wear a device to obtain their unique �rst person viewpoint and the
information on what objects they are interacting with. Additionally privacy is
preserved as the video stream is not viewed by anyone with the detection events
being the only information which is stored on the server.

4.5 Conclusion

A method of indoor localisation is presented utilising a wearable camera to deter-
mine location based upon objects viewed within a scene. This was compared with
a traditional method of indoor localisation (dense sensor placement) employing
annotated video data as the ground truth. Thus, it supported the hypothesis that
the use of a single wearable camera allows occupant tracking within an environ-
ment with the goal of determining location. While the machine-vision results were
found to be less accurate than dense sensor placement, they demonstrated that the
proposed method is viable and o�ers other secondary advantages that are unique
to this method, such as the �rst-person view and lack of required interaction.

Further, the work presented demonstrated the viability of applying the solution
to di�ering environments. The performance of the system at the UJAmI lab were
comparable with the previous experiment carried out at the PCRC lab. With the
UJAmI experiment showing an average recall, precision, and F-measure of 0.66,
0.97, and 0.79, respectively in comparison to the PCRC experiment results of recall,
precision, and F-measure of 0.82, 0.96, and 0.88, respectively. The duplication of
the experiment in UJAmI demonstrated the viability of applying the solution to
multiple environments which has been shown to be a challenge within the domain
of AAL, as was discussed in Chapter Two. The lack of training, use of common
objects and hardware are attributed to this success. Additional advantages of this
approach is the ability to generalise to other users due to the lack of personalisation
required. This is due to the system requiring markers be placed on key objects
with no input being required from the user once the application is started. This
is of particular importance when it comes to older users who typically have lower
levels of con�dence with regards to the use of technology.

There were, however, some limitations of using such as static approach to
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storing the object’s location within a knowledge base, such as objects being moved
or certain objects that may not have a static location, for example personal devices.
As the object’s location is assumed to be �xed within the environment and used as
\key" objects within each room. If the location of any of these objects is changed
without being updated within the database, the accuracy of the system will su�er.
This is further compounded with \personal" devices, such as a smart phone, as
they do not have �xed location and therefore cannot be relied upon to �nd a
location update for the occupant. However, these personal devices can still be
leveraged to gain an understanding as to the activity that the occupant may be
carrying out. Another limitation inherent with wearable camera solutions is that
they rely on an \always-wear" approach as the system is reliant on the occupant to
remember to put the Glass on in the morning. This is somewhat mitigated in that
74% of the adult population wear corrective lenses [305] and with the ability to
insert prescription lenses into Google Glass. It could replace their normal glasses
to try and avail of their daily routine of wearing glasses. Additional limitations
include the potential for false positives within the environment, these can be caused
by complex scences where there may be a number of �ducial markers within the
video stream. False positives can also be caused when the occupant is navigating
throughout the environment as �ducial markers could remain within the FoV even
when the occupant is not at that location. A further limitation is the potential for
false negatives which can be caused by corruption within the data stream or via
external factors such as lighting or occulsion. Chapter Six will involve determining
activity based on the objects located within the �eld of view, along with mitigiating
another limitation of the system were false positives could be generated from the
occupant navigating through the environment or through general gaze activity.

4.6 Associated Publications

Shewell, C, Nugent, C, Donnelly, M, Wang, H & Espinilla, M 2017, \Indoor Lo-
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Chapter 5: Optimising Marker and Ob-
ject Detection Through En-
hanced Filtering and Segmen-
tation

5.1 Introduction

Chapter 4 assessed the technical feasibility of leveraging a wearable camera to
provide an egocentric view of the immediate environment, coupled with �ducial
markers placed on \key" objects to allow the approximation of objects and oc-
cupant location within an environment. This chapter re�nes this approach by
assessing the ORB algorithm against another �ducial marker detection algorithm,
ArUco. As well as generating a method to �lter out additional FPs that are caused
by the occupant’s navigation of the environment or through general gaze activ-
ity. During a collaboration with the University of Ja�en the ArUco algorithm [197]
was proposed as a potential improvement over the ORB algorithm, presented in
Chapter 4. ArUco was chosen as a comparision algorithm for a number of reasons.
Firstly, it has been developed as a dedicated �ducial marker detection algorithm
and is an open-source and widely adapted within the computer vision commu-
nity. ArUco also supports a wide range of programming languages along with an
accssible API for the creation and detection of �ducial markers. ArUco is also
optimised for real-time marker detection which is key given the requirements of
supporting an occupant at home with their ADLs. In order to assess the algo-
rithms, recordings were captured of an occupant carrying out a set of ADL, using
Google Glass, introducing levels of varying motion blur and lighting conditions.
To promote a fair comparison, the two-stage �lter system, described in Chapter 4,
was not applied and instead all video was processed on a frame by frame basis.

One challenge that was observed during testing of the system in Chapter 4 was
the detection of FPs when an occupant was navigating throughout an environment

104
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or FPs arising from the wearers general gaze activity as they interacted with objects
during the completion of activities. To address this issue, ISDII was developed.
This chapter details the rationale, methodology, testing, and evaluation of both
the ORB and ArUco algorithms alongside the ISDII system.

5.2 Methodology

This Section details the methodology adopted to develop the system. The design
of the �ducial markers that were used to identify the objects are presented along
with a detailed overview of the algorithms used in the evaluation of the system.
The system identi�es \key" objects within an environment that allows the location
of the occupant to be inferred. For example, the detection of a kettle can allow it
to be inferred that the occupant is in the kitchen. The detection of \key" objects
within the video stream can also allow the current activity to be determined,
with the end goal of o�ering support to occupants’ carrying out their ADLs. Via
assisting the occupant in carrying out the activity or alerting carers to abnormal
activity levels. A description of the feature point identi�cation method along with
the implemented matching process is also presented.

The initial approach compared the performance of two \o�-the-shelf" algo-
rithms for performing �ducial marker recognition. Figure 5.1 illustrates the gen-
eral sequence of events and presents: (i) frames returned from the wearable vision
sensor; (ii) �ducial markers located within the returned frames; (iii) the degree of
occupant-object interaction as a quanti�able metric.

Figure 5.1: Sequence diagram of the wearable vision sensors in ADLs.
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Google Glass (Explorer) was employed to provide a �rst-person view of the occu-
pant’s environment. Google Glass facilitates the recording of high de�nition video
(1280x720) and accepts audio based commands from wearers of the device via nat-
ural spoken language commands. Pertinent information can also be presented to
the wearer via a small prism display that is located directly on the glass in front
of the eye.

Traditionally, the uptake of wearable computing devices has been partly slowed
by their lack of streaming [187]. In an e�ort to overcome this, a \Glass App" was
developed in our previous work [306], as presented in Chapter 4. A Glass app
that supports transmission of live video to a cloud-based server via RTSP. This
approach does, however, introduce a short latency between (<4 seconds) due to
Google Glass in-built mechanism to lower its hardware temperature during high
load situations, such as live-streaming. This results in a reduction of the clock
speed of the CPU, thereby reducing the processing rate [274].

Each �ducial marker has a custom identi�er applied to it to represent the object
it is associated with. The markers were installed on objects of interest throughout
the environment with the marker positioned so it fell within the occupant’s FoV
when the object was interacted wtih. The objects of interest were situated in
a location to better represent a real living environment, whilst this resulted in
scenes were multiple �ducal markers were present in the video stream Chapter
6 discusses how this challenge was dealt with. The occupant’s location is then
estimated by means of a 3D reconstruction method that incorporates the known
size of the markers, along with the calibration parameters of the vision sensor.
Occupant location is of key importance when supporting ADL; in the presented
work distance is estimated to determine the degree of occupant-object interaction.
Two feature point algorithms were employed to detect the markers located in
the environment, using inputs from the vision sensor. What follows is a brief
description of the algorithm’s main features.

The �rst method employed the OpenCV implementation of the ORB algorithm
for both feature detection and description. This method was developed by Rublee
et al. [293], and implements FAST in pyramids to facilitate the detection and
selection of stable key-points. ORB implements the intensity centroid method of
corner detection as de�ned by Rosin [299].

A Brute Force algorithm (K-Nearest Neighbour) [303] was implemented as a
feature point matcher to determine if a marker is present in the frame. A formal
representation of a K-Nearest Neighbour algorithm locates the K nearest features
to a query feature N points in a D-dimensional space. Even though a Brute
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Force matcher is often found to be one of the worst performing algorithms, in
terms of time taken to resolve a match, it often provides high levels of accuracy
in identifying the correct matches. This �nding was reported by Cheng et al.
[303], which benchmarked multiple techniques for the purposes of image matching.
Within this implementation for each feature in the marker, the matcher locates
the closest feature in the scene by systematically trying each feature point. The
similarity between feature points is represented by Norm Hamming distance. A
minimum distance was set to ensure good matches are selected: a match is deemed
to be good when the distance is less than three times the minimum distance set.

In order to reduce the number of FP found by the algorithm, a key-point
match threshold was used, where the number of inliers that contributed to the
homography was calculated and compared against a threshold value [264]. If the
number of inliers met or exceeded the threshold then a marker was deemed to be
present. A strength of the approach is that the markers can be freely designed.
Figure 5.2 o�ers an example of a custom made ORB marker created by overlapping
geometric shapes alongside a pre-made ArUco marker.

The ArUco algorithm is developed under Open Source license: the Berkeley
Software Distribution. It has been deployed in several research and enterprise
projects1,2. ArcUo was developed around the concept of �ducial markers [197].
The markers are automatically generated by ArUco by means of a marker dictio-
nary [307] and focus on extracting the binary code from the rectangles that make
up the �ducial marker as presented in Figure 5.2. The processing involves image
segmentation, based on local adaptive thresholding. In order to increase robust-
ness to varied lighting conditions contour extraction and �ltering is applied, the
marker code is then extracted to obtain the internal binary code, and dictionary
based correction applied once the binary code is extracted.

1http://www.vision4uav.com/?q=node/386
2http://vision4uav.eu/?q=researchline/seeAndAvoid CE MFandRules
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Figure 5.2: A) Example of ORB �ducial marker. B) Example of ArUco �ducial
marker.

5.2.1 Intelligent System for Detecting Inhabitant-Objects

Interactions

During testing of the vision algorithms, as described in Chapter 4, it was discov-
ered that FP were being generated through general gaze activity. This was due to
the occupant looking around the environment when locating an object of interest.
Further FP were generated through the occupant’s navigation of the environment
as various objects came into their �eld of view as they moved through the envi-
ronment. An intelligent �lter was developed with the aim to detect the degree of
interaction between the occupant and the object, based around the observation
that when the occupant is interacting with an object of interest they are assumed
to be in a close proximity with that object. This also aids in taking account of the
di�ering forms of interaction that certain objects require, namely passive or active
interaction. Those objects that require active interaction, such as a microwave,
will have a much closer distance threshold compared to those passive objects which
are interacted with from a larger distance; such as viewing TV. The �lter is known
as the ISDII. ISDII uses a two-stage �lter in order to manage the uncertainty
introduced through FP detections. It is able to determine if an occupant-object
interaction is a TP or if it was generated through navigation/gaze activity in real
time. It also takes into account the di�ering forms of interaction that objects may
have, for example making a phone call is an active interaction as the occupant has
to be in very close proximity to the phone in order to dial the phone number. This
is opposed to watching TV which is a passive activity as the occupant would be
viewing the TV from a much larger distance than takes place with normal activity
object interactions. The output from the marker detection algorithms serve as
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the input for the ISDII system. These consist of a unique ID associated with the
detected markers and the distance of the occupant to the marker. A three stage
process is employed:

1. The �rst stage is to collect and analyse the scenes where interaction occured
between the occupant and the object.

2. Thresholds are then determined by a technical expert, establishing the dis-
tance at which occupant-object interaction is known to be occurring.

3. Once the threshold distances have been established, ISDII is able to identify
interaction on a real-time basis.

In order for ISDII to recognise if occupant-object interactions are occurring,
a preliminary threshold value was estabilshed by a technical expert. An initial
process was carried out that consisted of recording scenes where an occupant in-
teracted with a series of objects throughout the environment and threshold dis-
tances were then set by a human expert, a sequence diagram detailing this step
is presented in Figure 5.3. This allows ISDII to calculate, in real time, the dis-
tance between the occupant and the object and determine whether an interaction
is taking place; the pseudo-code is presented in Algorithm 3.

Figure 5.3: Sequence diagram of studying scenes of user-object interactions.
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When estimating object interaction in real time scenes, uncertainty is introduced
due to missed marker detections in the video stream and measurement errors
introduced by the algorithms. In order to manage this uncertainty a two stage
�lter was developed. The �rst stage was to remove the high frequency noise using
a low-pass �lter.

Algorithm 3 Estimation of reference distance threshold to objects.
distances = ;

detections = ;

for marker � detectedMarkers do
for interval � interactionIntervals do

if marker:time � interval then
distances[marker:object]+ = marker:distance
detections[marker:object] + +

end if
end for

end for
threshold = ;

for object � objects do
threshold[object] = distances[marker:object]=detection[marker:object]

end for
return threshold

The exponential smoothing [308, 309], is de�ned in equation 5.1:

s0 = d0; st = !0dt + (1 � !0)st � 1; !0�[0; 1] (5.1)

Where d0 is the initial distance to a marker, t is the temporal index �[0; N ] being
N the �nal size of the set of distances, st is the �ltered output, dt the measured
data, the distance from the marker, and !0 is the smoothing factor (initially set
to 0.2); this method has been widely used in control applications [310, 311].

The second �lter was designed to mitigate two main causes of FP, removing
isolated detections where a marker is detected due to general gaze activity. This
is done in order to �t the window of interaction to the true occupant-object inter-
action, i.e. removing the preceding time where the occupant is approaching the
object and the proceeding time where the occupant is �nished interacting with
the object. In order to achieve this, a fuzzy membership function was developed.
Fuzzy logic [312] has previously been successfully applied in sensor based signal
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processing applications [313]. In the context of fuzzy logic the semantics of the lin-
guistic terms are given by fuzzy sets; where the membership degree of the elements
x of the base set X in the fuzzy set A; � ~A : X ! [0; 1] is de�ned. The smoothing
distance of the markers from the �rst stage was evaluated by the fuzzy membership
function which describes the linguistic term \there is interaction with".

For each object, oi , a membership function � ~Oi
is de�ned which evaluates

the distance between the occupant and the object st into a degree of occupant-
object interaction between [0; 1]. The membership function is parameterised by the
threshold value of the object doi , and two weighted factors, !1 and !2, representing
the lower and upper cut-o� threshold for interaction respectively, (as presented in
Figure 5.4).

Figure 5.4: Membership function to obtain the degree of interaction with an object.

ISDII provided a degree of interaction representing the occupant-object action
within the environment. It should be noted that an upper threshold can be applied
using � � cut between [0; 1] above which an interaction is determined to have taken
place. Pseudo-code for the second stage �lter is presented in Algorithm 4 along
with a sequence diagram presented in Figure 5.5.
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Algorithm 4 Detecting Object Interaction.
degree = ;

detection = ;

for marker�detectedMarkers do
distance[marker:object] = !0 � marker:distance + (1 � !0) �

distance[marker:object]
degree[marker:object] = � ~Oi

(distance[marker:object]; threshold[marker:object])
end for
for object � objects do

if degree[object]<� then
detection[object] = true

end if
end for
return [degree; detection]

Figure 5.5: Sequence diagram of detecting object interaction in real-time scenes.

In summary, ISDII o�ers a solution of determining if an occupant is physically
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interacting with an object (e.g. opening a cupboard vs. if the marker was simply
detected as the occupant navigated throughout the environment. ISDII achieves
this through collecting the data stream of the occupant interacting with objects
within the environment to allow a threshold distance to be determined for each
object of interest. This threshold is the distance that the occupant is located in
relation to the object of interest within the video stream. If an occupant is within
this threshold it is determined they are interacting with the detected object.

This was achieved by collecting a number of recordings of an occupant inter-
acting with objects of interest throughout the environment. This allowed a human
expert to review the recordings and determine a threshold value based on the
distance reported within the video stream. The next stage was to implement a
low-pass �lter to remove high-frequency noise, this allowed any unwanted artifacts
(grainy/fuzzy areas) within the image to be removed which results in the an im-
age that is clearer. A second �lter was then developed to help reduce unwanted
FPs within the video stream which resulted from general gaze activity within the
environment. When an object is detected within the video stream the distance
of the occupant from the marker is evaluated. An upper and lower threshold was
set to determine at what point an object interaction has begun (lower threshold)
and at which point an object interaction can be certain to have taken place (up-
per threshold). A sliding scale between the two thresholds then determines the
con�dence that an occupant-object interaction is being carried out, represented
by a 0 for a lack of con�dence (lower threshold) and 1 for total con�dence that an
interaction is being carried out (upper threshold).

5.2.2 Detection Algorithm

In this Section three scenarios are analysed of an occupant who wore Google glasses
within a smart lab environment3. A series of markers were applied to objects
within a smart lab and the researcher was instructed to enter the environment and
proceed to complete pre-de�ned activities, while wearing a pair of Google Glasses.
The three activities were: 1) making hot chocolate; 2) preparing a hot snack and;
3) washing dishes. A sequential breakdown of the objects interacted with during
the completion of each activity is presented in Table 5.1.

To facilitate the experiments, a total of 18 markers (9 unique), were placed
within the environment on the following objects: kitchen door, cupboard doors,
a microwave, a refrigerator, a tap, and a chair. Multiple lighting conditions were

3https://drive.google.com/�le/d/0B rp8F6H7iwDNFVsUGpxQ1RqeDg/view?usp=sharing
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Table 5.1: Breakdown of each activity and its corresponding object interactions.

1) Hot Chocolate 2) Hot Snack 3) Washing Dishes

Kitchen door Kitchen door Kitchen door

Cup cupboard Fridge Tap

Fridge Plate cupboard Cup cupboard

Microwave Microwave Cutlery cupboard

Tea/hot chocolate cupboard Cutlery cupboard Tea/hot chocolate cupboard

Cutlery cupboard Microwave Plate cupboard

Microwave Chair Kitchen door

Tea/hot chocolate cupboard Kitchen door N/A

Kitchen door N/A N/A

simulated via the use of window blinds and arti�cial lighting to provide a realistic
context to the scenarios. Each scene was represented by the total number of frames,
the duration of the scene and the percentage of frames during which an object was
correctly identi�ed (TP rate). An object was deemed correctly identi�ed if the
system reported the expected marker I.D. within the correct frame. I.e. if the
fridge marker was expected the system was deemed to have correctly identi�ed
the object. As the fridge I.D. was reported that the marker was present, and
the occupant within the distance thresholds as discussed the previous section.
The percentage of correctly identi�ed frames out of the total number of frames
that an object was present was calculated to determine the detection ratio. The
results are presented within Table 5.2 which displays the activity number, the
total number of frames that comprised the video stream, the duration in seconds
that a marker was within the camera FoV, and the total number of frames where
a marker was present. It also presents the percentage of frames the respective
algorithm successfully detected a marker out of the number of frames where a
marker was present. The experiment was performed by a single participant who
was a researcher and not representative of the target population.
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Table 5.2: Breakdown of the duration and total number of video frames within
each activity, along with the video duration and the number of frames the object
was present. The detection ratio each algorithm achieved over the three activities
is also presented.

Parameters Detection Ratio

Activity Total Frames Duration (s) Object Frames ArUco (%) ORB (%)

1 2574 96 658 44.8 25.9

2 1567 52 624 44.8 22.7

3 1663 96 604 36.5 28.3

The order, duration, and interaction between the occupant and the objects var-
ied across the three case scenarios. In addition, di�erent lighting conditions were
simulated during the scenarios to provide a realistic context to evaluate the algo-
rithms. The marked objects in the smart lab were located in di�erent positions
in the room. Zenith lights provided varied lighting conditions when collecting the
scenes4. The videos were recorded at 24fps and stored in MPEG-4 Part 14 (mp4)
format conforming to Google Glass speci�cations.

There are a number of potential application areas this technology could have an
impact on. Improving the accuracy of �ducial marker algorithms can be of valuable
bene�t to AR applications leading to more immersive experiences. There are also
many applications within manufacturing as improvements in �ducial marker detec-
tion can aid in automatically detecting defects within the manufacturing process.
This technology could also have an impact on assistive technologies with improved
�ducial marker recognition leading to further development in assistive technolo-
gies, along with the wider healthcare industry such as medical image registration.
The �ndings from the comparision of �ducial marker algorithms can have a num-
ber of potential contributions and as development of these algoritms continues to
grow they will increase in value as a tool across a number of industries.

5.3 Results

As shown in Tables 5.3, 5.4, and 5.5, both algorithms provide improved perfor-
mance in low blur and high brightness situations, with ArUco displaying a higher

4https://drive.google.com/�le/d/0B rp8F6H7iwDNFVsUGpxQ1RqeDg/view?usp=sharing
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detection rate in general. The strength of ORB is its roubustness to various bright-
ness conditions, as can be seen in Tables 5.3, 5.4 and 5.5 which shows that ORB
has fewer instances were zero of the frames were detected compared to the ArUco
algorithm. This is, in part, due to ORB’s implementation of the Harris Corner
Detection algorithm, which has been shown to have strong performance in low
lighting conditions [74, 300]. An example of favourable and unfavourable condi-
tions regarding movement and brightness are presented in Figure 5.6, brightness
levels were categorised as follows, low { blinds closed and lights o�, medium {
blinds open and lights o�, high { blinds open and lights on. In addition, the
results from this evaluation provides the initial threshold distance references for
ISDII to be adjusted by an expert.

Tables 5.3, 5.4 and 5.5 detail the objects sequentially interacted with during
each scene, along with the average distance that each object was detected, the
number of frames and duration of frames that the occupant-object interaction
took place within. Tables 5.3 5.4 and 5.5 also speci�es the lighting conditions
during the interaction with each object, along with the calculated distance from
the occupant’s view point to the marker. Details of the simulated conditions are
provided, specifying the amount of motion blur during the interaction and the
level of ambient lighting. The detection ratio of ORB and ArUco algorithms are
presented, displaying the proportion of frames where an object was detected within
the duration window.

Both trackers provide their best performance in low motion and high brightness
situations with ArUco being more accurate in general cases. The strength of ORB
is viewed as the ability to accommodate low brightness conditions. The auto-focus
of the wearable vision sensor proved to be critical for the marker tracker when the
user or motion blur pixelates the frames disables the marker detection. This is a
limitation of using Google Glass for these experiments, as a camera with a faster
auto-focus may improve the results. An example of favourable and unfavourable
situations of movement and brightness are shown in Figure 5.6.
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Figure 5.6: Frames from the wearable vision sensor showing �rst person view of
interactions with objects. A) Low brightness and high motion blur situation. B)
High brightness and low motion blur situation.

As discussed, an initial threshold value for objects was generated. These values
were then adjusted by an expert to determine at what distance an occupant is
determined to be interacting with an object. Table 5.6 details the average distance
of detection as determined by ISDII as well as the �nal threshold distance after
being modi�ed by a human expert for each object.

The precision and recall have been evaluated from the ISDII output against the
time window determined by an expert. An interaction had been determined when
the interaction degree exceeds � � cut = 0:95. The evaluation has included the full
range of options for estimating the !0�[0; 1]; !1�[0; 5]; !2�[0; 5]; !1 < !2 with a step
o�set of 0:5. Table 5.7 presents the best precision results from the three scenes in
function of !0; !1; !2 and Table 5.8 displaying the best results for recall. The F�
results are presented in Table 5.9.

The results are presented in Tables 5.7 and 5.8. While the precision results
obtained by ISDII to determine actual interactions are promising, it relies on the
accuracy of detections from the marker detection algorithm in order to return an
improved recall. The lack of detections resulted in a low recall which cannot be
improved through the �ltering and estimation process presented. The Averaged
Ratio Detection (ARD) from the detection algorithm in each scene must have
matched the distance threshold value to be able to analyse the recall obtained
by ISDII. This improved the ratio of marker detection due to the exponential
smoothing �lter. The averaged parameters have been set to allow a comparison
of ISDII interaction estimations to expert-de�ned interaction estimations. The
results in Figure 5.7, 5.8, and 5.9 presents the human expert de�ned degree of
interaction along with an overlay of the ISDII de�ned interaction.
Finally, the averaged parameters were set to tune ISDII comparing the human-
de�ned interactions with the estimation of ISDII in the three scenes.
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Table 5.6: Threshold distances to objects.

Object Average Distance (m) Final Threshold Distance (m)

Chair 0.350 0.350

Cupboard A 0.240 0.235

Cupboard B 0.260 0.250

Cupboard C 0.240 0.250

Cupboard D 0.230 0.235

Door 0.296 0.300

Microwave 0.355 0.355

Fridge 0.255 0.255

Tap 0.320 0.320

Table 5.7: Best precision from scenes in function of !0;!1;!2

Scene Precision !0;!1;!2

1 1.00 [0.95;0.00;0.05]

2 0.98 [0.95;0.00;0.80]

3 1.00 [0.95;0.00;0.60]

Adjusting the threshold of object interaction o�ered improved performance when
the detection algorithm provided an improved rate of detection, as the lack of
detections shown in some scenes results in a loss of occupant-object interactions
reported from ISDII. The �nal values of !0;!1;!2 provided the best averaged
parameters in all scenes, and resulted in a low computational overhead method of
determining object interaction, as well as a method of isolating FP.

5.4 Discussion

The contributions o�ered by this chapter include the comparison of two popular
o�-the-shelf algorithms for feature detection in an AAL scenario. It also presents
how lighting e�ects the performance of these two algorithms as well as that of
motion blur, these are two very important factors when assessing the e�ectiveness
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Table 5.8: Best recall from scenes in function of !0;!1;!2

Scene Recall ARD Value*/ARDl !0;!1;!2

1 0.45 0.43 1.05 [0.95;0.20;4.90]

2 0.45 0.47 0.95 [0.95;0.00;2.40]

3 0.37 0.34 1.09 [0.95;0.00;3.10]

Table 5.9: Best F� from scenes in function of !0;!1;!2

Scene F� !0;!1;!2

1 0.51 [0.95;0.20;2.20]

2 0.52 [0.95;0.00;2.45]

3 0.43 [0.95;0.00;1.65]

Average 0.49 [0.95;0.00;2.10]

of vision based aids and their feasibility in being applied to a real world situation.
ISDII is another contribution that this chapter has made. This itself has two

contributions within. Namely, the implementation of a two stage �lter which allows
uncertainty in real time video based application to be reduced through exponential
smoothing to reduce high frequency noise, and the second stage which involves the
removal of isolated detections, such as those experienced through natural gaze
activity. This used fuzzy logic to estimate the level of interaction the occupant is
having with the object through distance estimation.

A �nal contribution from this chapter is the development of a system that does
not require any user interaction in order to ensure that the best image angle is
being captured. This challenge was previously identi�ed and presented in Chapter
Two as a limitation of existing systems. Occlusions that may be created through
environmental objects, such as doors and large items of furniture, or occlusions
generated by the occupant themselves, such as hands/head/torso occluding objects
that they are interacting with [314]. This coupled with being a superior solution for
object interaction due to the added advantages a head-mounted camera provides.
Firstly, occlusions of the manipulated object tend to be lessened as the object
being interacted with is usually the centre of attention for the occupant [314].
As the object is the centre of the occupant’s attention the object is usually in
the centre of the image and in focus, providing a high quality image for processing



126

[314]. Due to the high levels of noise that are typically present in egocentric videos
many FP are unavoidable [315]. It can be di�cult to identify the correct object
as it is possible that multiple objects can be within the occupant’s �eld of view.
This is due to some areas of the environment being densely populated with relevant
objects, such as the kitchen. Firstly, the ease with which it can be deployed within
di�ering environments, the use of �ducial markers with an associated ID negates
the need for speci�c training to each environment. This is due to the markers
being associated with common static items that are commonly found within home
environments, with the ID of the object being tied to the marker rather than any
features of the object itself. Secondly, the use of a moving camera coupled with
static objects reduces the issues traditionally seen with a static camera solution
such as the limited �eld of view, which may require the installation of multiple
cameras within an environment.

5.5 Conclusion

The results show that the ArUco algorithm is generally more accurate, with the
ORB algorithm providing better performance in extreme light conditions. Based
on the information from marker trackers, this chapter proposed an ISDII, which
determines if the interaction is a TP by employing two �lters: a low-pass �lter
and a fuzzy �lter. A study was conducted to determine the performance of ISDII,
showing an improved precision by reducing the number of detected FP. However,
it is highly sensitive to FN from the detection algorithm which can result in a
deteriorated recall result.

The proposed �ndings o�ers a non-intrusive method of detecting occupant ob-
ject interaction and localisation. The use of a single head-worn camera provides a
unique �rst person view of the environment and their activities, o�ering additional
opportunities within the domain. The use of a �rst person camera also alleviates
the need for the occupant to interact with the camera. As the camera is mounted
within glasses, the �eld of view of the camera is more optimised for the direc-
tion that the object of interest for the occupant is positioned. This solution also
minimises the cost in terms of hardware, implementation, and maintenance costs
associated with alternative solutions, for example, dense sensor placement or static
camera approaches. Given the target user group will be of an advanced age which
typically have a lower level of technological ability this o�ers a key advantage. The
user does not have to interact with the system or consider the position/placement
of the wearable camera reducing user error and improving the quality of the data
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collected.
One limitation is that the system relies on a static marker within the envi-

ronment, this is due to the system utilising the static markers to determine the
location of the occupant. The scenario of a moving marker coupled with a moving
camera would not allow the occupant’s location to be determined within the en-
vironment. Additionally, due to the increased movement within the video stream
due to the marker and camera moving independently the number of FP and FN
would increase due to the additional movement blur within the stream. It should
also be noted that a limitation is a lack of comparision against other algorithms
designed speci�cally for �ducial marker detection other than ArUco. This can limit
the generalisability of the �ndings and future work should include a further com-
parision against �ducial marker algorithms, such as Vuforia [316], AprilTags [317],
and ARTag [318]. Additional limitations include the custom designed markers po-
tentially not being as well optimised as the algorithmically design ArUco markers
which could lead to the results favouring the ArUco algorithm. The placement
of the markers within this study could introduce a bias due to multiple markers
being applied to each object there is potential for markers to not be placed in the
optimal location or they may su�er from issues such as occlusion or the camera
viewing at a more extreme viewing angle. Lastly, the presented method is sensi-
tive to the accuracy of the detection algorithm which can result in additional FNs
which in turn will result in a lower recall value which can result in relevant infor-
mation being missed. Chapter 6 investigates utilising Dempster-Shafer theory as
a method of mitigating the loss of relevant information when determining which
ADL an occupant is undertaking.

5.6 Associated Publications

Shewell, C, Medina-Quero, J, Espinilla, M, Nugent, C, Donnelly, M & Wang, HHY
2016, \Comparison of Fiducial Marker Detection and Object Interaction in Activ-
ities of Daily Living Utilising a Wearable Vision Sensor", International Journal of
Communication Systems. https://doi.org/10.1002/dac.3223



Chapter 6: Activity Detection Incorpo-
rating Evidential Reasoning

6.1 Introduction

Activity recognition within Smart Environments is a key area of functionality as
the ability of an occupant to carry out ADLs is a important metric to determine
whether an occupant is able to continue living independently or if they need an
increased level of support in order to remain within their own home. The accuracy
of activity recognition within smart environments will always be subject to the
reliability and validity of the sensors themselves. This is in part due to errors within
the sensors which may report incorrect information or may miss sensor events
completely thus leaving blanks within the data stream. While there has been some
attempt among the research community to incorporate fuzzy logic within activity
recognition such as Neural Networks [222], Dynamic Bayesian Networks [319], and
Hidden Markov Models [279], Dempster-Shafer (DS) theory aims to handle the
uncertainty introduced through the sensor errors in the smart environment. DS
theory can provide improved results via increased reliability when compared to the
previously discussed methods through its reasoning mechanism [320, 321]

The previous Chapters focused on the detection and �ltering of �ducial markers
in order to determine the occupant’s location within an environment by detecting
object interactions and the determination if these interactions were a TP through
the use of the ISDII �lter. Chapter 4 detailed a method of determining the oc-
cupant’s location within an indoor environment through the use of a �rst person
wearable camera and �ducial markers that were placed on key objects of interest
within the environment. Chapter 5 built on this system in order to further �l-
ter out FPs that were detected either through mis-detecting a �ducial marker or
through the detection of additional �ducial markers due to the occupant navigating
throughout the environment or through general gaze activity. This was achieved
through further �ltering of the video stream, along with the creation of the ISDII
system to detect the distance of the object from the occupant and whether that
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distance falls within pre-de�ned thresholds to determine if the occupant-object in-
teraction is a TP. This Chapter discusses the implementation of a DS methodology
which was previously developed by Hong et al. [12] to determine the probability of
an activity having been carried out based on the detection of the occupant-object
interactions as discussed in previous chapters. The hypothesis being considered is
that does the application of DS theory improve the ability to recognise the user’s
activity within an environment.

6.2 Methodology

In order to apply a probability of the activity an initial belief value for each of
the machine-vision detections needs to be established. From the results of the
previous studies presented in Chapter 4 a belief value of 0.82 was determined
for the machine-vision events (the detection algorithm successfully identi�ed 143
instances out of a total of 175). This has been taken from the number of correctly
identi�ed objects within the total number expected within the video stream. The
datasets that were presented in Chapter 3 have been used in order to demonstrate
how DS theory can be implemented in order to recognise ADLs.

In order to determine the probability of an activity being carried out, a separate
system was developed using Java which would accept the output from the machine-
vision system as described in previous chapters. The machine-vision outputs the
detected object as a String containing the object name and the time-stamp that
the detection occurred. This is then accepted as input arguments within the
DS component of the system. Figure 6.1 presents the 
ow of data through the
system from the initial object detection, through the multiple stage �ltering and
the stages of assigning a probability belief to the activity. The seperation of the
video streaming component from the DS component allows for a modular system.
This allows the video to be streamed to multiple servers for processing should this
be required, it can also allow a live video stream to be sent to family members
should the need arise.
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Figure 6.1: Flow of data through the system, from the object detection through
to assigning probability to an activity belief.
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6.2.1 Dempster-Shafer Theory

DS theory was originated by Dempster and was later formalised by Shafer [322].
It is a numerical uncertainty reasoning mechanism. Within their framework a
problem is de�ned by a �nite set of mutually exclusive hypotheses which form the
frame of discernment (�).

A simple example may be considered is that of a door sensor. This sensor can
be de�ned as either being opened, closed or static. Using this simple example then
activated, static becomes a complete set of the possible door states; known as the
frame of discernment for the door. It is then possible to numerically measure the
belief on a single hypothesis, or a subset of hypotheses, by using a mass function,
m, over the frame �, which satis�es the following conditions in equation 6.1 (where
� is the empty set) and 6.2 (where A is a subset of �), respectively.

m(�) = 0 (6.1)

X

A� �

m(A) = 1 (6.2)

The mass function is used to represent the distribution of a unit of belief over
the frame, single elements, subsets or the whole set of the frame. When the
door is closed or opened, a numerical representation can be applied by the mass
function on the frame � = activated; static as m(activated) = 1;m(static) =
0;m(activated; static) = 0.
The occurrence of A is able to be inferred from the total mass of all the subsets
of A, this is known as the belief function (Bel), as shown in equation 6.3

Bel(A) =
X

B � A

m(B) (6.3)

Bel(A) measures the degree of belief of information in support of A. Therefore, the
likelihoods of hypotheses can be compared in order to determine the most likely
hypothesis. DS Theory incorporates a range of probability values rather than a
single probability, this is done in order to be able to represent uncertainty in the
data. The Belief is the lower bounds of the probability with Plausibility being the
upper bound, with Belief representing the degree to which the evidence supports
A taking place and Plausibility representing the extent to which the evidence fails
to refute that A that is taking place. Equation 6.4 presents how the Plausibility
(Pls) is determined.
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Pls(A) =
X

B � A

m(B) (6.4)

Dempster’s rule of combination provides a mechanism to compute the consensus
of multiple independent sources of information which may be able to provide infor-
mation about the same problem. N is the number of independent sources and mi

is the belief distribution given by the N th source. Dempster’s rule of combination
then allows a new belief distribution which represents the consensus of N belief
distributions as shown in equation 6.5.

m(C) =

P

A\ B =C
m1(A)m2(B)

1 �
P

A\ B =;
m1(A)m2(B)

=

P

A\ B =C
m1(A)m2(B)

1 �
P

A\ B 6=;
m1(A)m2(B)

(6.5)

6.2.2 Case Study

In order to demonstrate how DS Theory is applied the following scenario will be
stepped through. An occupant enters the kitchen via the kitchen door which is de-
tected via an egocentric camera, the system then detects that the plate cupboard,
fridge, and bread cupboard are interacted with. The chair is also interacted with,
however, the �ducial marker is not successfully detected resulting in a missed sen-
sor event. Events: kitchenDoor (TP), plateCupboard (TP), fridge (TP), chair
(FN), and breadCupboard (TP). (Note: for readability the \cupboard" su�x will
not be used within the worked example).
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Figure 6.2: Example of multi-valued context for \Making a Cold Meal"..

Table 6.1: Summary of graphical notation used in Figure 6.2. [12]

Notation Context

Sensor

Object which is associated with a sensor.

Object which has been derived from another object.

A composite object made up of multiple objects.

Activity

Step One: The discounted mass functions are calculated for each �ducial
marker. Previous studies detailed in Chapters 4 shown an overall success rate of
82% for the vision based system, resulting in a discount rate of 18%. The dis-
counted mass functions for each �ducial marker are presented below.
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Table 6.2: Vision sensor belief values.

Object Certainty Uncertainty

Kitchen Door 0.82 0.18
Glass/Cup Cupboard 0.82 0.18

Microwave 0.82 0.18
Tea/Hot Chocolate Cupboard 0.82 0.18

Cutlery Cupboard 0.82 0.18
Fridge 0.82 0.18
Kettle 0.82 0.18

Bread Cupboard 0.82 0.18
Plate Cupboard 0.82 0.18

Tap 0.82 0.18
Living Room Door 0.82 0.18

Chair 0.82 0.18
Sofa 0.82 0.18

Telephone 0.82 0.18
TV 0.82 0.18
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mr
skitchenDoor (f skitchenDoorg) = 0:82;

mr
skitchenDoor (f skitchenDoor; : skitchenDoorg) = 0:18;

mr
smicrowave (f: smicrowaveg) = 0:82;

mr
smicrowave (f smicrowave; : smicrowaveg) = 0:18;

mr
scutlery (f: scutleryg) = 0:82;

mr
scutlery (f scutlery; : scutleryg) = 0:18;

mr
skettle (f: skettleg) = 0:82;

mr
skettle (f skettle; : skettleg) = 0:18;

mr
stea=hot (f: stea=hotg) = 0:82;

mr
stea=hot (f stea=hot; : stea=hotg) = 0:18;

mr
sf ridge (f sfridgeg) = 0:82;

mr
sf ridge (f sfridge; : sfridgeg) = 0:18;

mr
stap(f: stapg) = 0:82;

mr
stap(f stap; : stapg) = 0:18;

mr
splates(f splatesg) = 0:82;

mr
splates(f splates; : splatesg) = 0:18;

mr
sbread(f sbreadg) = 0:82;

mr
sbread(f sbread; : sbreadg) = 0:18;

mr
slivingRoomDoor (f: slivingRoomDoorg) = 0:82;

mr
slivingRoomDoor (f slivingRoomDoor; : slivingRoomDoorg) = 0:18;

mr
schair (f: schairg) = 0:82;

mr
schair (f schair; : schairg) = 0:18;

mr
ssofa (f: ssofag) = 0:82;

mr
ssofa (f ssofa; : ssofag) = 0:18;

mr
stelephone(f: stelephoneg) = 0:82;

mr
stelephone(f stelephone; : stelephoneg) = 0:18;

mr
stelevision (f: stelevisiong) = 0:82;

mr
stelevision (f stelevision; : stelevisiong) = 0:18;

mr
sglass=cup(f: sglass=cupg) = 0:82;

mr
sglass=cup(f sglass=cup; : sglass=cupg) = 0:18;
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Step Two: The mass functions are translated from the �ducial markers to
the associated object. A detected �ducial marker indicates there has been an
interaction with the associated object context. A �ducial marker along with the
associated context maintains a compatible relationship that can be represented by
multi-valued mapping as presented in Table 6.3. The mass functions calculated in
Step One can then be translated to the associated object.

Table 6.3: Example of multi-valued mappings for \Making a Cold Meal".

Relationship Multi-valued Mapping

sKitchenDoor
->kitchenDoor

f sKitchenDoorg ->f kitchenDoorg;

f ¬sKitchenDoorg ->f ¬kitchenDoorg;
f sKitchenDoor, ¬sKitchenDoorg
->f kitchenDoor, ¬kitchenDoorg.

kitchenDoor
->(kitchenDoor, bread,

plates, chair, food)

f kitchenDoorg ->f (kitchenDoor, bread,
plates, chair, food)g;

f ¬kitchenDoorg ->f ¬(kitchenDoor, bread,
plates, chair, food)g;

f kitchenDoor, ¬kitchenDoorg
->f (kitchenDoor, bread, plates, chair,

food), ¬(kitchenDoor, bread, plates, chair,
food)g.

(kitchenDoor, bread,
plates, chair, food)

->Prepare Cold Meal

f (kitchenDoor, bread, plates, chair, food)g
->f prepare cold mealg;

f ¬(kitchenDoor, bread, plates, chair, food)g
->f ¬prepareColdMealg;

f (kitchenDoor, bread, plates, chair, foodg,
¬(kitchenDoor, bread, plates, chair, food)g
->f parpareColdMeal ¬prepareColdMealg.
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mkitchenDoor (f kitchenDoorg) = mr
skitchenDoor (f skitchenDoorg) = 0:82;

mkitchenDoor (f kitchenDoor; : kitchenDoorg) =

mr
skitchenDoor (f skitchenDoor; : skitchenDoorg) = 0:18;

mr
microwave (f: microwaveg) = mr

smicrowave (f: smicrowaveg) = 0:82;

mr
microwave (fmicrowave; : microwaveg) =

mr
smicrowave (f smicrowave; : smicrowaveg) = 0:18;

mr
cutlery (f: cutleryg) = mr

scutlery (f: scutleryg) = 0:82;

mr
cutlery (f cutlery; : cutleryg) = mr

scutlery (f scutlery; : scutleryg) = 0:18;

mr
kettle (f: kettleg) = mr

skettle (f: skettleg) = 0:82;

mr
kettle (f kettle; : kettleg) = mr

skettle (f skettle; : skettleg) = 0:18;

mr
tea=hot (f: tea=hotg) = mr

stea=hot (f: stea=hotg) = 0:82;

mr
tea=hot (f tea=hot; : tea=hotg) = mr

stea=hot (f stea=hot; : stea=hotg) = 0:18;

mf ridge (f fridgeg) = mr
sf ridge (f sfridgeg) = 0:82;

mf ridge (f fridge; : fridgeg) = mr
sf ridge (f sfridge; : sfridgeg) = 0:18;

mr
tap(f: tapg) = mr

stap(f: stapg) = 0:82;

mr
tap(f tap; : tapg) = mr

stap(f stap; : stapg) = 0:18;

mplates (f platesg) = mr
splates(f splatesg) = 0:82;

mplates (f plates; : platesg) = mr
splates(f splates; : splatesg) = 0:18;

mbread(f breadg) = mr
sbread(f sbreadg) = 0:82;

mbread(f bread; : breadg) =

mr
sbread(f sbread; : sbreadg) = 0:18;

mr
livingRoomDoor (f: livingRoomDoorg) =

mr
slivingRoomDoor (f: slivingRoomDoorg) = 0:82;

mr
livingRoomDoor (f livingRoomDoor; : livingRoomDoorg) =

mr
slivingRoomDoor (f slivingRoomDoor; : slivingRoomDoorg) = 0:18;

mr
chair (f: chairg) = mr

schair (f: schairg) = 0:82;

mr
chair (f chair; : chairg) = mr

schair (f schair; : schairg) = 0:18;

mr
sofa (f: sofag) = mr

ssofa (f: ssofag) = 0:82;

mr
sofa (f sofa; : sofag) = mr

ssofa (f ssofa; : ssofag) = 0:18;

mr
telephone(f: telephoneg) = mr

stelephone(f: stelephoneg) = 0:82;

mr
telephone(f telephone; : telephoneg) =

mr
stelephone(f stelephone; : stelephoneg) = 0:18;
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mr
television (f: televisiong) = mr

stelevision (f: stelevisiong) = 0:82;

mr
television (f television; : televisiong) =

mr
stelevision (f stelevision; : stelevisiong) = 0:18;

mr
glass=cup(f: glass=cupg) = mr

sglass=cup(f: sglass=cupg) = 0:82;

mr
glass=cup(f glass=cup; : glass=cupg) = mr

sglass=cup(f sglass=cup; : sglass=cupg) = 0:18;
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Step Three: Inferring from a sensed context node to a deduced context node.
In some cases contexts, such as \tea" and \hot chocolate", are masked by their
context, such as \tea/hot" in this case. The state of the context \tea/hot" can be
detected by its associated �ducial marker. There is a heuristic relationship between
between \tea/hot" and ‘tea" and/or \hot chocolate" and can be represented by an
evidential mapping as presented in Table 6.4. The values presented in Table 6.4
were determined by examining the frequency with which each object was interacted
with over the three routines. The mass functions of the deduced contexts can be
calculated using the mass functions in Step Two and evidential mappings.

mhotChocolate (f: hotChocolateg) =

mtea=hot (f: tea=hotg) � m(f: tea=hotg ! f: hotChocolateg)

0:82 � 1 = 0:82;

mhotChocolate (f hotChocolate; : hotChocolateg) =

mtea=hot (f tea=hot; : tea=hotg) � m(f tea=hot; : tea=hotg !

f hotChocolate; : hotChocolateg)

0:18 � 1 = 0:18;

mtea(f: teag) =

mtea=hot (f: tea=hotg) � m(f: tea=hotg ! f: teag)

0:82 � 1 = 0:82;

mtea(f tea; : teag) =

mtea=hot (f tea=hot; : tea=hotg) � m(f tea=hot; : tea=hotg ! f tea; : teag)

0:18 � 1 = 0:18:

mcup(f: cupg) =

mglass=cup(f: glass=cupg) � m(f: glass=cupg ! f: cupg)

0:82 � 1 = 0:82;

mcup(f cup; : cupg) =

mglass=cup(f glass=cup; : glass=cupg) � m(f glass=cup; : glass=cupg ! f cup; : cupg)

0:18 � 1 = 0:18:
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mglass(f: glassg) =

mglass=cup(f: glass=cupg) � m(f: glass=cupg ! f: glassg)

0:82 � 1 = 0:82;

mglass(f glass; : glassg) =

0:18 � 1 = 0:18:

mmilk (fmilkg) =

mf ridge (f fridgeg) � m(f fridgeg ! f milkg)

0:82 � 0:67 = 0:549;

mmilk (fmilk; : milkg) =

mf ridge (f fridgeg) � m(f fridgeg ! f milk; : milkg) +mf ridge (f fridge; : fridgeg)

� m(f fridge; : fridgeg) ! f milk; : milkg)

0:82 � 0:33 + 0:18 � 1 = 0:451;

mfood (f foodg) =

mf ridge (f fridgeg) � m(f fridgeg ! f foodg)

0:82 � 0:33 = 0:271;

mfood (f food; : foodg) =

mf ridge (f fridgeg) � m(f fridgeg ! f food; : foodg +mf ridge (f fridge; : fridgeg)

� m(f fridge; : fridgeg ! f food; : foodg)

0:82 � 0:67 + 0:18 � 1 = 0:729:
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Table 6.4: Evidential Mappings based on the historical frequency of occupant-
object interactions.

Object Evidential Mapping

Tea/Hot ->Hot Chocolate

f tea/hotg ->f (f hotChocolateg, 0.5),
(f hotChocolate, ¬hotChocolateg, 0.5)g;
f ¬tea/hotg ->f (f ¬hotChocolateg, 1.0g;
f tea/hot, ¬tea/hotg ->f (f hotChocolate,

¬hotChocolateg, 1.0)g.

Tea/Hot ->Tea

f tea/hotg ->f (f teag, 0.5), (f tea, ¬teag,
0.5)g;

f ¬tea/hotg ->f (f ¬teag, 1.0g;
f tea/hot, ¬tea/hotg ->f (f tea, ¬teag, 1.0)g.

Cup/Glass ->Cup

f cup/glassg ->f (f cupg, 0.389), (f cup,
¬cupg, 0.611)g;

f ¬cup/glassg ->f (f ¬cupg, 1.0g;
f cup/glass, ¬cup/glassg ->f (f cup, ¬cupg,

1.0)g.

Cup/Glass ->Glass

f cup/glassg ->f (f glassg, 0.611), (f glass,
¬glassg, 0.389)g;

f ¬cup/glassg ->f (f ¬glassg, 1.0g;
f cup/glass, ¬cup/glassg ->f (f glass,

¬glassg, 1.0)g.

Fridge ->Food

f food/milkg ->f (f foodg, 0.33), (f food,
¬foodg, 0.67)g;

f ¬food/milkg ->f (f ¬foodg, 1.0g;
f food/milk, ¬food/milkg ->f (f food,

¬foodg, 1.0)g.

Fridge ->Milk

f food/milkg ->f (f milkg, 0.67), (f milk,
¬milkg, 0.33)g;

f ¬food/milkg ->f (f ¬milkg, 1.0g;
f food/milk, ¬food/milkg ->f (f milk,

¬milkg, 1.0g.
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Table 6.5: Belief values of deduced context nodes when sensed context node is
triggered.

Object Certainty Uncertainty

Hot Chocolate 0.41 0.59
Tea 0.41 0.59
Cup 0.319 0.681
Milk 0.549 0.451
Glass 0.501 0.499
Food 0.271 0.729

Table 6.6: Belief values of deduced context nodes when sensed context node is not
triggered.

Object Certainty Uncertainty

Hot Chocolate 0.82 0.18
Tea 0.82 0.18
Cup 0.82 0.18
Milk 0.82 0.18
Glass 0.82 0.18
Food 0.82 0.18

Step Four: Translating from the core context node to the composite con-
text node. The individual contexts are then grouped into a multi-valued map-
ping as presented in Figure 6.2 (notation is detailed in Table 6.1). \kitchenDoor,
food, plates, breadCupboard, chair" is the composite of \kitchenDoor", \food",
\plates", \breadCupboard", and \chair". Table 6.3 presents the multi-valued map-
ping groups.

\Prepare Glass of Water" individual contexts: kitchen door, glass, and tap.
Table 6.7 presents the multi-valued mapping for \Prepare Glass of Water".
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Table 6.7: Multi-valued mappings for \Prepare glass of water".

(kitchenDoor, glass, tap)
->Prepare Glass of Water

f (kitchenDoor, glass, tap)g ->f prepare
glass of waterg;

f ¬(kitchenDoor, glass, tap)g
->f ¬prepareGlassOfWaterg;

f (kitchenDoor, glass, tapg, ¬(kitchenDoor,
glass, tap)g ->f prepareGlassOfWater

¬prepareGlassOfWaterg.

m0kgt(f kgtg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kgt(f kgt; : kgtg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg) = 0:18;

m1kgt(f: kgtg) = mglass(f: glassg) = 0:82;

m1kgt(f kgt; : kgtg) = mglass(f glass; : glassg) = 0:18;

m2kgt(f: kgtg) = mtap(f: tapg) = 0:82;

m2kgt(f kgt; : kgtg) = mtap(f tap; : tapg) = 0:18:

\Prepare Cup of Tea" individual contexts: kitchen door, kettle, tea, and cup.
Table 6.8 presents the multi-valued mapping for \Prepare Cup of Tea".

Table 6.8: Multi-valued mappings for \Prepare cup of tea".

(kitchenDoor, kettle, tea,
cup) ->Prepare Cup of Tea

f (kitchenDoor, kettle, tea, cup)g
->f prepare cup of teag;

f ¬(kitchenDoor, kettle, tea, cup)g
->f ¬prepareCupOfTeag;

f (kitchenDoor, kettle, tea, cupg,
¬(kitchenDoor, kettle, tea, cup)g

->f prepareCupOfTea ¬prepareCupOfTeag.
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m0kctk (f kctkg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kctk (f kctk; : kctkg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg) =

0:18;

m1kctk (f kctkg) = mkettle f (: kettleg) = 0:82;

m1kctk (f kctkg) = mkettle (f kettle; : kettleg) = 0:18:

m2kctck(f: kctkg) = mtea(f: teag) = 0:82;

m2kctk (f kctk; : kctkg) = mtea(f tea; : teag) = 0:18;

m3kctk (f: kctkg) = mcup(f: cupg) = 0:82

m3kctk (f kctk; : kctkg) = mcup(f cup; : cupg) = 0:18;

\Prepare Hot Chocolate" individual contexts: kitchen door, microwave, cutlery,
hot chocolate, cup, and milk. Table 6.9 presents the multi-valued mapping for
\Prepare Hot Chocolate".

Table 6.9: Multi-valued mappings for \Prepare hot chocolate".

(kitchenDoor, microwave,
cutlery, hot chocolate, cup,

milk) ->Prepare Hot
Chocolate

f (kitchenDoor, microwave, cutlery, hot
chocolate, cup, milk)g ->f prepare hot

chocolateg;

f ¬(kitchenDoor, microwave, cutlery, hot
chocolate, cup, milk)g

->f ¬prepareHotChocolateg;
f (kitchenDoor, microwave, cutlery, hot
chocolate, cup, milkg, ¬(kitchenDoor,
microwave, cutlery, hot chocolate, cup,

milk)g ->f prepareHotChocolate
¬prepareHotChocolateg.
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m0kmchcm (f kmchcmg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kmchcm (f kmchcm; : kmchcmg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg)

= 0:18;

m1kmchcm (f: kmchcmg) = mmicrowave (f: microwaveg) = 0:82;

m1kmchcm (f kmchcm; : kmchcmg) = mmicrowave (fmicrowave; : microwaveg) = 0:18;

m2kmchcm (f: kmchcmg) = mcutlery (f: cutleryg) = 0:82;

m2kmchcm (f kmchcm; : kmchcmg) = mcutlery (f cutlery; : cutleryg) = 0:18;

m3kmchcm (f: kmchcmg) = mhotChocolate (f: hotChocolateg) = 0:82;

m3kmchcm (f kmchcm; : kmchcmg) = mhotChocolate (f hotChocolate; : hotChocoalteg)

= 0:18;

m4kmchcm (f: kmchcmg) = mcup(f: cupg) = 0:82;

m4kmchcm (f kmchcm; : kmchcmg) = mcup(f cup; : cupg) = 0:18;

m5kmchcm (f kmchcmg) = mmilk (fmilkg) = 0:549;

m5kmchcm (f kmchcm; : kmchcmg) = mmilk (fmilk; : milkg) = 0:451:

\Prepare Glass of Milk" individual contexts: kitchen door, glass, milk. Table
6.10 presents the multi-valued mapping for \Prepare Glass of Milk".

Table 6.10: Multi-valued mappings for \Prepare glass of milk".

(kitchenDoor, glass, milk)
->Prepare Glass of Milk

f (kitchenDoor, glass, milk)g ->f prepare
glass of milkg;

f ¬(kitchenDoor, glass, milk)g
->f ¬prepareGlassOfMilkg;

f (kitchenDoor, glass, milkg, ¬(kitchenDoor,
glass, milk)g ->f prepareGlassOfMilk

¬prepareGlassOfMilkg.
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m0kgm (f kgmg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kgm (f kgm; : kgmg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg) = 0:18;

m1kgm (f: kgmg) = mglass(f: glassg) = 0:82;

m1kgm (f kgm; : kgmg) = mglass(f glass; : glassg) = 0:18;

m2kgm (f kgmg) = mmilk (fmilkg) = 0:549;

m2kgm (f kgm; : kgmg) = mmilk (fmilk; : milkg) = 0:451:

\Make/Receive Phone Call" individual contexts: living room door, telephone.
Table 6.11 presents the multi-valued mapping for \Make/Receive Phone Call".

Table 6.11: Multi-valued mappings for \Make/Receive Phone Call".

(livingRoomDoor,
telephone)

->Make/Receive Phone
Call

f (livingRoomDoor, telephone)g
->f make/recieve phone callg;

f ¬(livingRoomDoor, telephone)g
->f ¬make/receive phone callg;
f (livingRoomDoor, telephoneg,
¬(livingRoomDoor, telephone)g

->f make/ReceivePhoneCall
¬make/ReceivePhoneCallg.

m0lt (f: ltg) = mlivingRoomDoor (f: livingRoomDoorg) = 0:82;

m0lt (f lt; : letg) = mlivingRoomDoor (f livingRoomDoor; : livingRoomDoorg) = 0:18;

m1lt (f: ltg) = mtelephone(f: telephoneg) = 0:82;

m1lt (f lt; : ltg) = mtelephone(f telephone; : telephoneg) = 0:18:

\Prepare Cold Meal" individual contexts: kitchen door, food, plates, bread cup-
board, chair. Table 6.12 presents the multi-valued mapping for \Prepare Cold
Meal".
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Table 6.12: Multi-valued mappings for \Prepare Cold Meal".

(kitchenDoor, food, plates,
bread, chair) ->Prepare

Cold Meal

f (kitchenDoor, food, plates, bread, chair)g
->f prepare cold mealg;

f ¬(kitchenDoor, food, plates, bread, chair)g
->f ¬prepareColdMealg;

f (kitchenDoor, food, plates, bread, chairg,
¬(kitchenDoor, food, plates, bread, chair)g
->f prepareColdMeal ¬prepareColdMealg.

m0kfpbc (f kfpbcg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kfpbc (f kfpbc; : kfpbcg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg) = 0:18;

m1kfpbc (f kfpbcg) = mfood (f foodg) = 0:271;

m1kfpbc (f kfpbc; : kfpbcg) = mfood (f food; : foodg) = 0:729;

m2kfpbc (f kfpbcg) = mplates (f platesg) = 0:82;

m2kfpbc (f kfpbc; : kfpbcg) = mplates (f plates; : platesg) = 0:18;

m3kfpbc (f kfpbcg) = mbread(f breadg) = 0:82;

m3kfpbc (f kfpbc; : kfpbcg) = mbread(f bread; : breadg) = 0:18;

m4kfpbc (f: kfpbcg) = mchair (f: chairg) = 0:82;

m4kfpbc (f kfpbc; : kfpbcg) = mchair (f chair; : chairg) = 0:18:

\Prepare Hot Meal" individual contexts: kitchen door, microwave, cutlery, food,
plates, chair. Table 6.13 presents the multi-valued mapping for \Prepare Hot
Meal".
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Table 6.13: Multi-valued mappings for \Prepare Hot Meal".

(kitchenDoor, microwave,
cutlery, food, plates, chair)

->Prepare Hot Meal

f (kitchenDoor, microwave, cutlery, food,
plates, chair)g ->f prepare hot mealg;

f ¬(kitchenDoor, microwave, cutlery, food,
plates, chair)g ->f ¬prepareHotMealg;

f (kitchenDoor, microwave, cutlery, food,
plates, chairg, ¬(kitchenDoor, microwave,

cutlery, food, plates, chair)g
->f prepareHotMeal ¬prepareHotMealg.

m0kmcfpc (f kmcfpcg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kmcfpc (f kmcfpc; : kmcfpcg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg)

= 0:18;

m1kmcfpc (f: kmcfpcg) = mmicrowave (f: microwaveg) = 0:82;

m1kmcfpc (f kmcfpc; : kmcfpcg) = mmicrowave (fmicrowave; : microwaveg) = 0:18;

m2kmcfpc (f: kmcfpcg) = mcutlery (f: cutleryg) = 0:82;

m2kmcfpc (f kmcfpc; : kmcfpcg) = mcutlery (f cutlery; : cutleryg) = 0:18;

m3kmcfpc (f kmcfpcg) = mfood (f foodg) = 0:271;

m3kmcfpc (f kmcfpc; : kmcfpcg) = mfood (f food; : foodg) = 0:729;

m4kmcfpc (f kmcfpcg) = mplates (f platesg) = 0:82;

m4kmcfpc (f kmcfpc; : kmcfpcg) = mplates (f plates; : platesg) = 0:18;

m5kmcfpc (f: kmcfpcg) = mchair (f: chairg) = 0:82;

m5kmcfpc (f kmcfpc; : kmcfpcg) = mchair (f chair; : chairg) � 0:18:

\Watch TV" individual contexts: living room door, sofa, TV. Table 6.14 presents
the multi-valued mapping for \Watch TV".
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Table 6.14: Multi-valued mappings for \Watch TV".

(livingRoomDoor, sofa, tv)
->Watch TV

f (livingRoomDoor, sofa, tv)g ->f watch tvg;

f ¬(livingRoomDoor, sofa, tv)g
->f ¬watchTVg; f (livingRoomDoor, sofa,

tvg, ¬(livingRoomDoor, sofa, tv)g
->f watchTV ¬watchTVg.

m0lst (f: lstg) = mlivingRoomDoor (f: livingRoomDoorg) = 0:82;

m0lst (f lst; : lstg) = mlivingRoomDoor (f livingRoomDoor; : livingRoomDoorg) = 0:18;

m1lst (f: lstg) = msofa (f: sofag) = 0:82;

m1lst (f lst; : lstg) = msofa (f sofa; : sofag) = 0:18;

m2lst (f: lstg) = mtv (f: tvg) = 0:82;

m2lst (f lst; : lstg) = mtv (f tv; : tvg) = 0:18:

\Washing Dishes" individual contexts: kitchen door, cutlery, tap, plates, glass/cup
cupboard. Table 6.15 presents the multi-valued mapping for \Washing Dishes".

Table 6.15: Multi-valued mappings for \Washing Dishes".

(kitchenDoor, cutlery, tap,
plates, glass/cup)
->Washing Dishes

f (kitchenDoor, cutlery, tap, plates,
glass/cup)g ->f washing dishesg;

f ¬(kitchenDoor, cutlery, tap, plates,
glass/cup)g ->f ¬washingDishesg;
f (kitchenDoor, cutlery, tap, plates,

glass/cupg, ¬(kitchenDoor, cutlery, tap,
plates, glass/cup)g ->f washingDishes

¬washingDishesg.
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m0kctpg=c(f kctpg=cg) = mkitchenDoor (f kitchenDoorg) = 0:82;

m0kctpg=c(f kctpg=c; : kctpg=cg) = mkitchenDoor (f kitchenDoor; : kitchenDoorg)

= 0:18;

m1kctpg=c(f: kctpg=cg) = mcutlery (f: cutleryg) = 0:82;

m1kctpg=c(f kctpg=c; : kctpg=cg) = mcutlery (f cutlery; : cutleryg) = 0:18;

m2kctpg=c(f: kctpg=cg) = mtap(f: tapg) = 0:82;

m2kctpg=c(f kctpg=c; : kctpg=cg) = mtap(f tap; : tapg) = 0:18;

m3kctpg=c(f kctpg=cg) = mplates (f platesg) = 0:82;

m3kctpg=c(f kctpg=c; : kctpg=cg) = mplates (f plates; : platesg) = 0:18;

m4kctpg=c(f: kctpg=cg) = mglass=cup(f: glass=cupg) = 0:82;

m4kctpg=c(f kctpg=c; : kctpg=cg) = mglass=cup(f glass=cup; : glass=cupg) = 0:18:

Step Five: Summing up a composite context node. For each multi-valued
mapping in Step Four the mass functions are summed via an equally weighted
sum operator so that the individual mass functions for \kitchenDoor", \food",
\plates", \bread" and \chair" becomes \kitchenDoor, food, plates, bread, chair".

Composite node: kitchen door, glass, and tap.

mkgt(f kgtg)

= 1=3(m0kgt +m1kgt +m2kgt)

= 1=3(0:82 + 0 + 0) = 0:273;

mkgt(f: kgtg)

= 1=3(m0kgt +m1kgt +m2kgt)

= 1=3(0 + 0:82 + 0:82) = 0:547;

mkgt(f kgt; : kgtg)

= 1=3(m0kgt +m1kgt +m2kgt)

= 1=3(0:18 + 0:18 + 0:18) = 0:18:



151

Composite node: kitchen door, kettle, tea, and cup.

mkctk (f kctkg)

= 1=4(m0kctk +m1kctk +m2kctk +m3kctk )

= 1=4(0:82 + 0 + 0 + 0) = 0:205;

mkctk (f: kctkg)

1=4(m0kctk +m1kctk +m2kctk +m3)kctk

1=4(0 + 0:82 + 0:82 + 0:82) = 0:615;

mkctk (f kctk; : kctkg)

1=4(m0kctk +m1kctk +m2kctk +m3kctk )

1=4(0:18 + 0:18 + 0:18 + 0:18) = 0:18:

Composite node: kitchen door, microwave, cutlery, hot chocolate, cup, and milk.

mkmchcm (f kmchcmg)

= 1=6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm )

= 1=6(0:82 + 0 + 00 + 0 + 0:549) = 0:228;

mkmchcm (f: kmchcmg)

= 1=6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm )

= 1=6(0 + 0:82 + 0:82 + 0:82 + 0:82 + 0) = 0:547;

mkmchcm (f kmchcm; : kmchcmg)

1=6(m0kmchcm +m1kmchcm +m2kmchcm +m3kmchcm +m4kmchcm +m5kmchcm )

1=6(0:18 + 0:18 + 0:18 + 0:18 + 0:18 + 0:451) = 0:225:
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Composite node: kitchen door, glass, and milk.

mkgm (f lgmg)

= 1=3(m0kgm +m1kgm +m2kgm )

= 1=3(0:82 + 0 + 0:549) = 0:456;

mkgm (f: kgmg)

= 1=3(m0kgm +m1kgm +m2kgm )

= 1=3(0 + 0:82 + 0) = 0:273;

mkgm (f kgm; : kgmg)

1=3(m0kgm +m1kgm +m2kgm )

1=3(0:18 + 0:18 + 0:451) = 0:270:

Composite node: living room door and telephone.

mlt (f ltg)

1=2(m0lt +m1lt )

1=2(0 + 0) = 0;

mit (f itg)

= 1=2(m0lt +m1lt )

= 1=2(0:82 + 0:82 = 0:82;

mlt (f lt; : ltg)

= 1=2(m0lt +m1lt )

1=2(0:18 + 0:18) = 0:18:
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Composite node: kitchen door, food, plates, bread, and chair.

mkfpbc (f kfpbcg)

= 1=5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc )

= 1=5(0:82 + 0:271 + 0:82 + 0:82 + 0) = 0:546;

mkfpbc (f: kfpbcg)

= 1=5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc )

= 1=5(0 + 0 + 0 + 0 + 0:82) = 0:164;

mkfpbc (f kfpbc; : kfpbcg)

= 1=5(m0kfpbc +m1kfpbc +m2kfpbc +m3kfpbc +m4kfpbc

= 1=5(0:18 + 0:729 + 0:18 + 0:18 + 0:18) = 0:29:

Composite node: kitchen door, microwave, cutlery, food, plates, and chair.

mkmcfpc (f kmcfpcg)

= 1=6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc +m5kmcfpc )

= 1=6(0:82 + 0 + 0 + 0:271 + 0:82 + 0) = 0:319;

mkmcfpc (f: kmcfpcg)

= 1=6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc

+m5kmcfpc )

= 1=6(0 + 0:82 + 0:82 + 0 + 0 + 0:82) = 0:41;

mkmcfpc (f kmcfpc; : kmcfpcg)

= 1=6(m0kmcfpc +m1kmcfpc +m2kmcfpc +m3kmcfpc +m4kmcfpc +m5kmcfpc )

= 1=6(0:18 + 0:18 + 0:18 + 0:729 + 0:18 + 0:18) = 0:271:
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Composite node: living room door, sofa, and TV.

mlst (f lstg)

= 1=3(m0lst +m1lst +m2lst )

1=3(0 + 0 + 0) = 0;

mlst (f: lstg)

= 1=3(m0lst +m1lst +m2lst )

= 1=3(0:82 + 0:82 + 0:82) = 0:82;

mlst (f lst; : lstg)

= 1=3(0:18 + 0:18 + 0:18) = 0:18:

Composite node: kitchen door, cutlery, tap, plates, and glass/cup.

mkctpg=c(f kctpg=cg)

1=5(m0kctpg=c +m1kctpg=c +m2kctpg=c +m3kctpg=c +m4kctpg=c)

= 1=5(0:82 + 0 + 0 + 0:82 + 0) = 0:328;

mkctpg=c(f: kctpg=cg)

= 1=5(m0kctpg=c +m1kctpg=c +m2kctpg=c +m3kctpg=c +m4kctpg=c)

= 1=5(0 + 0:82 + 0:82 + 0 + 0:82) = 0:492;

mkctpg=c(f kctpg=c; : kctpg=cg)

= 1=5(m0kctpg=c +m1kctpg=c +m2kctpg=c +m3kctpg=c +m4kctpg=c

= 1=5(0:18 + 0:18 + 0:18 + 0:18 + 0:18) = 0:18:

Step Six: Translating from a composite context node to an activity. Each mass
function from the multi-valued mappings, as shown in Table 6.7 { 6.15 can be
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translated to an activity, e.g. \kitchenDoor, food, plates, bread, chair" can there-
fore be mapped to \Prepare Cold Meal".

Prepare Water: kitchen door, glass, and tap.

mprepareW ater (f prepareWaterg) = mkgt(f kgtg) = 0:273;

mprepareW ater (f: prepareWaterg) = mkgt)f: kgtg) = 0:547;

mprepareW ater (f prepareWater; : prepareWaterg) = mkgt(f kgt; : kgtg) = 0:18:

Prepare Tea: kitchen door, kettle, tea, and cup.

mprepareT ea(f prepareTeag) = mkctk (f kctkg) = 0:205;

mprepareT ea(f: prepareTeag) = mkctk (f: kctkg) = 0:615;

mprepareT ea(f prepareTea; : prepareTeag) = mkctk (f kctk; : kctkg) = 0:18:

Prepare Hot Chocolate: kitchen door, microwave, cutlery, hot chocolate, cup,
and milk.

mprepareHotChocolate (f prepareHotChocolateg) = mkmchcm (f kmchcmg) = 0:228;

mprepareHotChocolate (f: prepareHotChocolateg) = mkmchcm (f: kmchcmg) = 0:547;

mprepareHotChocolate (f prepareHotChocolate; : prepareHotChocolateg)

= mkmchcm (f kmchcm; : kmchcmg) = 0:225:

Drink Milk: kithcen door, glass, and milk.

mdrinkMilk (f drinkMilkg) = mkgm (f kgmg) = 0:456;

mdrinkMilk (f: drinkMilkg) = mkgm (f: kgmg) = 0:273;

mdrinkMilk (f drinkMilk; : drinkMilkg) = mkgm (f kgm; : kgmg) = 0:270:
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Phone call: living room door and telephone.

mphoneCall (f phoneCallg) = mlt (f ltg) = 0;

mphoneCall (f: phoneCallg) = mlt (f: ltg) = 0:82;

mphoneCall (f phoneCall; : phoneCallg) = mlt (f lt; : ltg) = 0:18:

Prepare cold meal: kitchen door, food, plates, bread, and chair.

mprepareColdMeal (f prepareColdMealg) = mkfpbc (f kfpbcg) = 0:546;

mprepareColdMeal (f: prepareColdMealg) = mkfpbc (f: kfpbcg) = 0:164;

mprepareColdMeal (f prepareColdMeal; : prepareColdMealg)

= mkfpbc (f kfpbc; : kfpbcg) = 0:29:

Prepare hot meal: kitchen door, microwave, cutlery, food, plates, and chair.

mprepareHotMeal (f prepareHotMealg) = mkmcfpc (f kmcfpcg) = 0:319;

mprepareHotMeal (f: prepareHotMealg) = mkmcfpc (f: kmcfpcg) = 0:41;

mprepareHotMeal (f prepareHotMeal; : prepareHotMealg)

= mkmcfpc (f kmcfpc; : kmcfpcg) = 0:271:

Watch TV: living room door, sofa, and TV.

mwatchT V (f watchTV g) = mlst (f lstg) = 0;

mwatchT V (f: watchTV g) = mlst (f: lstg) = 0:82;

mwatchT V (f watchTV; : watchTV g) = mlst (f lst; : lstg) = 0:18:
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Wash dishes: kitchen door, cutlery, tap, plates, and glass/cup.

mwashDishes (f washDishesg) = mkctpg=c(f kctpg=cg) = 0:328;

mwashDishes (f: washDishesg) = mkctpg=c(f: kctpg=cg) = 0:492;

mwashDishes (f washDishes; : washDishesg)

= mkctpg=c(f kctpg=c; : kctpg=cg) = 0:18:

Step Seven: Calculating belief and plausibility. The belief and plausibility
can be calculated from the mass functions on each activity e.g. \Prepare cold
meal".

Prepare Water.

Bel(f prepareWaterg) = m(f prepareWaterg) = 0:273;

P ls(f prepareWaterg)

= m(f prepareWaterg) +m(f prepareWater; : prepareWaterg)

= 0:273 + 0:18

= 0:453:

Prepare Tea.

Bel(f prepareTeag) = m(f prepareTeag) = 0:205;

P ls(f prepareTeag)

= m(f prepareTeag) +m(f prepareTea; : prepareTeag)

= 0:205 + 0:18

= 0:385:
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Prepare Hot Chocolate.

Bel(f prepareHotChocolateg) = m(f prepareHotChocolateg) = 0:228;

P ls(f prepareHotChocolateg)

= m(f prepareHotChocolateg)+

m(f prepareHotChocolate; : prepareHotChocolateg)

= 0:228 + 0:225

= 0:453:

Drink Milk.

Bel(f drinkMilkg) = m(f drinkMilkg) = 0:456;

P ls(f drinkMilkg)

= m(f drinkMilkg) +m(f drinkMilk; : drinkMilkg)

= 0:456 + 0:270

= 0:726:

Phone Call.

Bel(f phoneCallg) = m(f phoneCallg) = 0;

P ls(f phoneCallg)

= m(f phoneCallg) +m(f phoneCall; : phoneCall; g)

= 0 + 0:18

= 0:18:

Prepare Cold Meal.

Bel(f prepareColdMealg) = m(f prepareColdMealg) = 0:546;

P ls(f prepareColdMealg)

= m(f prepareColdMealg) +m)f prepareColdMeal; : prepareColdMealg)

= 0:546 + 0:29

= 0:836:
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Prepare Hot Meal.

Bel(f prepareHotMealg) = m(f prepareHotMealg) = 0:319;

P ls(f prepareHotMealg)

= m(f prepareHotMealg) +m(f prepareHotMeal; : prepareHotMealg)

= 0:319 + 0:271

= 0:59:

Watch TV.

Bel(f watchTV g) = m(f watchTV g) = 0;

P ls(f watchTV g)

= m(f watchTV g) +m(f watchTV; : watchTV g)

= 0 + 0:18

= 0:18:

Wash Dishes.

Bel(f washDishesg) = m(f washDishesg) = 0:328;

P ls(f washDishesg)

= m(f washDishesg) +m(f washDishes; : washDishesg)

= 0:328 + 0:18

= 0:508:

The belief and plausibility for each activity were then compared using the
maximisation operator.
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Bel(activity)

= max(Bel(f prepareWaterg); Bel(f prepareTeag); Bel(f prepareHotChocolateg);

Bel(f drinkMilkg); Bel(f phoneCallg); Bel(f prepareColdMealg);

Bel(f prepareHotMealg); Bel(f watchTV g); Bel(f washDishesg))

= max(0:273; 0:205; 0:228; 0:456; 0; 0:546; 0:319; 0; 0:328)

= 0:546

Pls(activity)

= max(Pls(f prepareWaterg); P ls(f prepareTeag); P ls(f prepareHotChocolateg);

P ls(f drinkMilkg); P ls(f phoneCallg); P ls(f prepareColdMealg);

P ls(f prepareHotMealg); P ls(f watchTV g); P ls(f washDishesg))

= max(0:453; 0:385; 0:453; 0:726; 0:18; 0:836; 0:59; 0:18; 0:508)

= 0:836:

We can then therefore be con�dent that \Prepare Cold Meal" has been carried
out due to the resulting belief and plausibility values being higher than that of
alternative activities. With \Prepare Cold Meal" having a Belief of 0.546 and a
Plausibility of 0.836 vs. the next most likely activity of \Drink Milk" with a Belief
of 0.456 and a Plausibility of 0.726.

6.2.3 Experimental Routine

The experiment routine used in this Chapter is based on the Ulster and Ja�en
datasets as discussed previously in Chapter Three. Each dataset consists of nine
ADLs chosen to represent a wide range of activities that an occupant would carry
out during their day to day routine. These are presented in Table 6.16. The Ulster
dataset consists of 32 activities, as shown in Table 6.17, which were recordings of
a live video stream to demonstrate how the system will perform in a real world
scenario in which artifacts may be present in the video stream along with other
potential issues, such as missing or corrupt video frames. The Ja�en dataset is
made up of three routines consisting of ten ADLs for a total of 30 activities spread
over three routines. These can be seen in Table 6.18. The system was then tested
to establish if it could correctly estimated the activity that was being carried out
through the use of DS Theory.



161

Table 6.16: The list of available activities and their corresponding activity number.

Activity Number Activity

1 Prepare glass of water (PW)
2 Prepare cup of tea (PT)
3 Prepare hot chocolate (PHC)
4 Prepare glass of milk (PM)
5 Make/receive phone call (PC)
6 Prepare cold meal (PCM)
7 Prepare hot meal (PHM)
8 Watch TV (WTV)
9 Washing dishes (WD)

Table 6.17: The list of activities (represented by their associated activity number)
that make up each routine from the Ulster dataset.

Routine One Routine Two Routine Three

3 4 3
1 6 1
7 1 5
9 5 7
8 1 1
1 2 8
8 8 2
6 7 8
9 9 6
1 8 9

N/A 1 4
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Table 6.18: The list of activities (represented by their associated activity number)
that make up each routine from the Ja�en dataset.

Routine One Routine Two Routine Three

3 4 3
1 6 1
7 1 5
9 5 7
8 1 1
1 2 8
8 8 2
6 7 8
9 9 6
1 8 9

To provide a benchmark, a traditional machine learning approach was also im-
plemented on the dataset with each sensor acting as a feature within the model.
Three well known supervised machine learning classi�cation algorithms were im-
plemented. In supervised classi�cation, methods a set of training data is used to
train the model with a separate dataset used to test the model accuracy. The
dataset consisted of a total of 64 events consisting of 20 features. Due to the small
nature of the dataset the dataset was split with 80% being supplied as the training
set, and the remaining 20% being supplied as the unseen testing set. Cross valida-
tion was not used due to conerns of over�tting as K-fold cross validation has been
shown to be strongly biased when applied to small datasets [323]. Additionally,
due to the limited data, cross fold validation can potentially increase variance due
to the similarity between the training and testing data reducing it’s ability to gen-
eralise to further datasets. Cross fold validation can also result in minority classes
being used frequently for testing which can lead to skewed results in the models
performance. The three machine leaning algorithms used in this Chapter were:

Naive Bayes [324]: Naive Bayes is a probabilistic model which is based on the
Bayes theorem [325] and is well known for multi-class prediction. Naive Bayes is
based on probability models that have strong independence assumptions built in,
i.e. the classi�er assumes that each input variable is independent.
Random Forest [326]: Random Forest classi�ers combine the output of mul-
tiple decision trees, utilising both bagging and feature randomness to create an
uncorrelated forest of decision trees with the goal of reaching a �nal, single result.
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Multilayer Perceptron (MLP) [327]: An MLP is a class of arti�cial neural
network and an integral part of deep learning. MLP’s are made up of three layers
{ an input layer which is responsible for receiving input from the dataset, one
or more hidden layer(s) which is responsible for applying weights to the inputs
and directing them though an activation function, and an output layer which is
responsible for outputting a value or vector of values.

6.3 Results

This Section describes the results from both the machine learning benchmark
results and the results from the DS component of the system. Table 6.20 displays
the overall results from the three machine learning algorithms when applied to
the collected dataset from both Ulster and Ja�en labs in Chapter 3 as well as
the overall results from the DS theory application. The confusion matrices are
presented in Figure 6.3. Table 6.21 presents a further breakdown of the results
displaying the recall, precision, and F-measure for the classi�ers and DS theory.
The recall score is a measure of how many instances that the system correctly
predicted. Precision is a measure of how many of the predicted instances are
correctly predicted. F-measure is the harmonic mean of recall and precision. The
results from the detection algorithm from Chapter 4 and 5 were represented by
binary data with a marker detection (TP and FP) represented by a one, non-
detection represented as a zero, and missing/corrupt data represented as unknown
\?". The data was then ran through three ML classi�ers to determine if they
could correctly identify the activity that was being undertaken by the occupant.
It should be noted that as the Ulster dataset was streamed live from the Google
Glass device it has a much higher rate of missed sensor events, this was mainly due
to the Glass device reducing its processing speed to help with cooling, as detailed
in Chapter Three { Section 3.3.2, which results in a higher rate of missed frames
and corruption in the video stream.

Tables 6.22 { 6.27 presents the breakdown of the belief and plausibility values
from DS theory along with the identi�ed activity from each routine for the datasets
from both Ulster and Ja�en. Each table presents the activity that the researcher was
carrying out as the \Expected Activity" with the determined activity from the DS
implemention presented as the \Identi�ed Activity". The belief and plausibility
in the identi�ed activity is also presented.
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Table 6.20: Percentage of correctly and incorrectly classi�ed results from the ma-
chine learning models and DS theory.

Method Correctly Classi�ed Incorrectly Classi�ed

Naive Bayes 66.7% 33.3%
RandomForest 75.0% 25.0%

Multilayer Perceptron 66.7% 33.3%
DS Theory 84.0% 16.0%

(a) Naive Bayes

(b) Random Forest

(c) Multiplayer Perceptron

Figure 6.3: Confusion matrices for the three ML classi�ers.
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Table 6.21: Recall, Precision, and F-measure scores for the three classi�ers and
DS theory.

Method Recall Precision F-Measure

Naive Bayes 0.667 0.875 0.757
RandomForest 0.750 0.875 0.808

Multilayer Perceptron 0.667 0.808 0.731
DS Theory 1.000 0.840 0.920

Table 6.22: DS results from the Routine One from the Ulster dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Drink Water Drink Water 0.714 1.000
Drink Water Drink Water 0.714 1.000
Drink Water Drink Water 0.714 1.000

Prepare Hot Chocolate Drink Milk 0.440 0.727
Cold Meal Cold Meal 0.546 0.836
Hot Meal Hot Meal 0.273 0.453
Watch TV Watch TV 0.820 1.000
Watch TV Watch TV 0.820 1.000

Wash Dishes Wash Dishes 0.328 0.508
Wash Dishes Drink Milk 0.440 0.727

Table 6.23: DS results from the Routine Two from the Ulster dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Drink Water Drink Water 0.440 0.727
Drink Water Drink Water 0.714 1.000
Drink Water Drink Water 0.714 1.000
Prepare Tea Prepare Tea 0.490 0.795
Drink Milk Drink Milk 0.623 1.000
Phone Call Phone Call 0.820 1.000
Cold Meal Cold Meal 0.328 0.508
Hot Meal Hot Meal 0.410 0.590
Watch TV Watch TV 0.820 1.000
Watch TV Watch TV 0.820 1.000

Wash Dishes Wash Dishes 0.820 1.000
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Table 6.24: DS results from the Routine Three from the Ulster dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Drink Water Drink Water 0.714 1.000
Drink Water Drink Water 0.714 1.000
Prepare Tea Prepare Tea 0.490 0.795

Prepare Hot Chocolate Prepare Hot Chocolate 0.478 0.727
Drink Milk Drink Milk 0.623 1.000
Phone Call Phone Call 0.820 1.000
Cold Meal Cold Meal 0.546 0.836
Hot Meal Hot Meal 0.547 0.727
Watch TV Watch TV 0.820 0.727
Watch TV Watch TV 0.820 1.000

Wash Dishes Drink Water 0.714 1.000

Table 6.25: DS results from the Routine One from the Ja�en dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Prepare Hot Chocolate Drink Milk 0.623 1.000
Drink Water Drink Water 0.714 1.000

Hot Meal Hot Meal 0.546 0.836
Wash Dishes Wash Dishes 0.714 1.000
Drink Water Drink Water 0.714 1.000
Watch TV Watch TV 0.820 1.000
Cold Meal Cold Meal 0.546 0.836

Wash Dishes Drink Water 0.714 1.000
Drink Water Drink Water 0.714 1.000
Watch TV Watch TV 0.820 1.000
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Table 6.26: DS results from the Routine Two from the Ja�en dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Drink Milk Drink Milk 0.623 1.000
Cold Meal Cold Meal 0.546 0.836

Drink Water Drink Water 0.714 1.000
Phone Call Phone Call 0.820 1.000

Drink Water Drink Water 0.714 1.000
Prepare Tea Prepare Tea 0.592 1.000
Watch TV Watch TV 0.820 1.000
Hot Meal Drink Milk 0.456 0.727

Wash Dishes Drink Water 0.714 1.000
Watch TV Watch TV 0.820 1.000

Drink Water Drink Water 0.714 1.000

Table 6.27: DS results from the Routine Three from the Ja�en dataset.

Expected Activity Identi�ed Activity Belief Plausibility

Prepare Hot Chocolate Drink Milk 0.623 1.000
Drink Water Drink Water 0.714 1.000
Phone Call Phone Call 0.820 1.000
Hot Meal Cold Meal 0.546 0.836

Drink Water Drink Water 0.714 1.000
Watch TV Watch TV 0.820 1.000

Prepare Tea Prepare Tea 0.592 1.000
Watch TV Watch TV 0.820 1.000
Cold Meal Drink Milk 0.456 0.727

Drink Water Drink Water 0.714 1.000
Drink Milk Drink Milk 0.623 1.000

6.4 Discussion

As presented in Table 6.21, the DS implementation demonstrates an improved
recall and F-Measure score over the traditional ML methods. An improved recall
score demonstrates that the system misclassi�es fewer activites than the ML ap-
proaches. This is of importance within the domain of AAL as the misclassi�cation
of an activity as an activity being misclassi�ed as an alternative activity could
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cause confusion to the occupant along with a lack of timely and relevant support.
The di�erence in performance is due to there being missing/corrupt data within
the dataset. Due to DS theory being able to deal with uncertainty has resulted
in the detection of activities that were misclassi�ed by the ML algorithms. This
is particularly evident with more complex tasks due to the higher likelihood of
missing or corrupt sensor data. An example of this would be the activity \pre-
pareHotMeal" which was misclassi�ed by all three ML algorithms in the majority
of cases.

However, the ML methods show an improved precision over the DS system.
However, it should be noted that it is not possible to state if this is signi�cantly
signi�cant or not. To determine statistical signi�cance a statistical hypothesis
test would need to be ran. Due to the comparison being comprised by multiple
groups (DS theory and multiple ML algorithms) an Analysis of Variance (ANOVA)
test would be suitable. In practical terms, the lower precision of the DS system
can be bene�cial when compared to the higher precision from the ML methods.
This is due to a high precision potentially causing false alarms. If a system is
overly precise it may trigger support or interventions for activities which may be
classed as normal but that was not accurately identi�ed by the system. This
improved precision was due to an increased number of activities being recognised
incorrectly as FPs due to the DS system being sensitive to certain activities having
a low number of di�erentiating sensor pro�les. An example of this would be the
activities \Phone Call" and \Watch TV", with \Phone Call" consisting of the
living room door and telephone sensors with \Watch TV" relying on the living
room door and TV sensors. As a result if key sensor events are not detected they
can have a large e�ect on the resulting belief and plausibility values. This can
result in a reduced performance if an occupant’s daily routine is made up with a
number of activities with a low number of object interactions, due to not having
enough evidence to accuratly di�erentiate between activities. A potential solution
to mitigiate this challenge could be to introduce an additional sensor modality for
low interaction activities to aid in di�erentiating the activities. For example, a
contact sensor could be added to the phone and the TV remote to o�er additional
evidence of the activity being carried out.

One distinct advantage the DS system o�ers over an ML approach is that of
a lack of training required when new activities are added or when the system is
applied to a new environment. Should a new object/senor be added to the system
it would only require the name of the object and the belief/disbelief values for
the associated sensor. This o�ers a powerful advantage when coupled with the
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machine-vision aspect of the system which also does not require training, only
requiring a template of the new �ducial marker along with an associated label.
An additional advantage is the ability to apply the DS system to multiple en-
vironments without requiring retraining to the environment as demonstrated by
implementing the system to both the Ulster and Ja�en lab environments with no
additional modi�cation to the system required.

The contribution o�ered by this Chapter is an implementation of DS theory to
that of an egocentric camera in order to correctly identify activities of daily living
within a real world smart environment. This aids in alleviating the problem of
unreliable sensor evidence [328, 329], particularly within a machine-vision system
where a high number of variables, such as light, viewing angle, etc., can e�ect the
accuracy of an object recognition system [254]. This is corroborated by the results
shown within this Chapter which shows a high level of accuracy maintained when
performing activity recognition even when a number of sensor events are missed,
though it should be noted that some missing values will have a greater e�ect on
the results than others. This is due to some sensor events being key in accurately
identifying the activity, such as Drink Water and Drink Milk which share sensor
events with only one sensor event being unique in each case. Drink Water relies
on the kitchen door, glass/cup cupboard, and tap sensor and Drink Milk relies on
the kitchen door, glass/cup cupboard, and fridge. This small di�erentiation can
result in the activity either not being detected or miss-classi�ed as another similar
activity.

There are a number of practical applications that this research can be applied
to in the real world through o�ering a more robust method for object recognition.
Thus o�ering a solution to the previously identi�ed challenges of unreliable sen-
sor evidence [328, 329]. Particularly in the real world where missed sensor events
can be caused by issues such as faulty sensors which can e�ect the accuracy and
reliability of activity recognition. Additionally, this study has highlighted the im-
portance of certain sensor events being crucial for identi�ying particular activities
which can aid in informing the design and implementation of future AAL systems.

6.5 Conclusion

This Chapter presented a method of applying DS theory to a machine-vision based
system in order to calculate a probabilistic belief of an ADL being carried out.
A worked example has also been presented to demonstrate the concept and the
system also showed how unreliable sensor evidence can be overcome to still provide
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an accurate estimation of the activity being carried out. The system was tested
on a real world dataset which consisted of 64 activities over six routines from two
separate smart-lab environments. The presented method displayed the ability to
reliably detect the correct activity in a majority of cases with an overall percentage
of correctly identi�ed activities of approximately 84%. The proposed approach
o�ers the advantage of detecting ADLs even with missing sensor values and o�ers
increased reliability and safety with the domain of ambient assisted living and
further moving towards a vision of ‘aging in place’.

Furthermore, new activities can be added to the system without the need for
existing data on the activities. This is due to the activities being made up of a
composite of unique objects, this allowing a new activity to be added by including
the composite objects in the activity template.



Chapter 7: Conclusion

7.1 Introduction

This Chapter will provide a re
ection on the work presented within this thesis.
This includes a discussion on the contributions to knowledge. The objectives
detailed in Chapter 1 will be revisited to assess if the research carried out within
this thesis has met these objectives. This will be presented along with discussion
on the areas of future investigation as well as concluding remarks. This research
aimed to investigate the use of machine-vision based approaches to support those
at home who traditionally may require assistance to carry out their activities of
daily living through the use of improved location accuracy and activity recognition
via evidential reasoning. In order to achieve this aim a technical solution was
developed leveraging an egocentric camera to detect �ducial markers that have
been placed on key objects throughout the environment. To aid in improving the
accuracy of marker detection a distance estimation tool was researched to estimate
if an object interaction was genuine and was not caused through navigation of the
environment. DS theory was then implemented to further increase the accuracy
of detecting the occupant’s activity when taking into account uncertainty within
the data.

The research objectives which were identi�ed in Chapter 1 are presented below,
along with a discussion on how these objectives were met throughout this thesis.

7.2 Discussion of Objectives

As discussed in Chapter One, there has been a remarkable increase in life ex-
pectancy throughout the world [13]. This increase in the older section of society
has resulted in an increase on the demand placed on the healthcare due to the large
percentage of adults who require long-term support for independent living. In or-
der to aid in alleviating this burden being placed on healthcare, researchers have
investigated the use of smart home and wearable technology to develop approaches
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that will allow individuals to live within their own home for longer.
The aim of this thesis was to investigate the use of machine-vision based ap-

proaches to support those at home who may traditionally require assistance to
carry out their ADLs through the use of improved location accuracy and activity
recognition via evidential reasoning. This aim was supported by four key re-
search questions/objectives. The reminder of this section will discuss these ques-
tions/objectives and how these were met throughout this thesis and the contribu-
tion to knowledge they represent.

Chapter Two presented a detailed discussion on the opportunities for contribu-
tion within the areas of supporting ADLs within a wearable computing and smart
environment context. Along with providing a detailed overview of ADLs along
with techniques to leverage smart environments to support ADLs and how to use
technology as an enabler.

7.2.1 Research Question One

Does the use of an egocentric wearable camera o�er the ability to determine the
user’s indoor localisation along with additional context when detecting activities

in comparison to dense sensing approaches?

Chapter Two, Section 2.7.1 presented a discussion on the limitations of dense sens-
ing apporaches for determine the user’s indoor location. The main challenges that
were found, the requirement for equipment to be installed throughout the environ-
ment [172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 186], the requirement
to wear a dedicated device [5, 176, 178, 179, 183, 181, 182, 183, 184, 185, 198,
210, 204, 206, 223, 226], issues regarding multiple occupancy [172, 173], and the
necessity for the occupant to interact with a sensor in order to determine location
[172, 173, 179].

In Chapter Four the design and development of a solution to facilitate indoor
localisation through the use of a single \always-on" egocentric camera via real time
streaming was presented. This included the development of novel �ducial marker
designs which could be applied to \key" objects within an environment. A review
of feature point recognition algorithms also takes place. The main contribution
of this Chapter was the implementation of a two-stage �ltering process to reduce
the number of FP detected within the video stream. The �rst �lter calculated
the number of feature points within the homography and compared these to pre-
determined threshold values to determine if a detection was likely to be a TP. The
second stage of the �ltering was a vote function, were frames were processed in
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batches and the object most likely to be present within these frames is determined
and then stored within the system. The objects detected within each of these
batches was then determined to be a TP if the number of votes exceeded a threshold
value. The proposed system was tested within multiple smart environments in
order to determine its feasibility to be applied to multiple environments. It was
tested in both Ulster University, UK and the University of Ja�en, Spain. The
results from this Chapter show that the presented system is a feasible method of
determining the location of an occupant within an environment with the results
from the lab at Ulster University showing a Recall, Precision, and F-Measure of
0.82, 0.96, and 0.88 respectively. The results from the lab at the University of Ja�en
were also promising showing a Recall, Precision, and F-Measure of 0.66, 0.67, and
0.79 respectively.

This research question has been answered through this work both by the results
from the tests within multiple environments but also by the secondary advantages
this system o�ers. This demonstrated the ability of the system to be easily applied
to multiple environment without the need for extensive equipment installation.
While the occupant is still required to wear a device within this research this is
somewhat mitigated by the percentage of the adult population that are required
to wear corrective lenses [187]. As Google Glass can be �tted with prescription
lenses the occupant does not have to wear an additional device, only substitue their
current glasses for Google Glass. Occlusion, traditionally a problem of machine-
vision systems [70, 188, 193, 201, 202, 204, 208, 225, 226], has been avoided through
this method due to the camera being mounted on the user which provided a �rst-
person view point, removing the issue of occlusions. An additional advantage the
proposed system o�ers is that of continuous image capture to reduce the number
of missed object interactions and missing data which was found to be a limitation
of existing systems [193, 194, 202]. Finally, the issue of multiple occupancy is
also negated. As the system only has to support the occupant that is wearing a
device it does not need to be concerned with any additional occupants within the
environment. The wearable device is streaming an egocentric view point of the
occupant ensuring that any object that enters the FoV will be an object that the
occupant is likely to be interacting with.

7.2.2 Research Question Two

Does the use of �ducial markers within the environment allow the easy adaption
to new environments without a period of re-learning the environment?
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Chapter Two, Section 2.7.2 presented a discussion on the limitations of vision
based indoor localisation. A number of limitations were found, such as the need
to be retrained for each environment that the system is to be deployed within [70,
192, 194, 199, 205, 206, 208, 209, 210, 211, 214, 215, 218, 220, 223, 225, 226, 227].

Chapter Four presented the novel �ducial markers that were applied to objects
of interest within the environment. The markers were then applied to the smart lab
environment at Ulster to perform a range of ADLs with the goal of recognising the
constitute objects/locations that the occupant was interacting with. The system
did not require any learning of the environment, each �ducial marker has a unique
label associated with the marker (typically the object name) which is supplied at
system start up. The system calculates the relevant feature points for each marker
and these are stored within the system. The feature points are then compared in
real-time to what is being captured by the egocentric camera using a brute-force
matcher, if a suspected match is found it is passed further down the system to the
�ltering process detailed in Chapter 4. Chapter 5 detailed how the system could
be adapted to a new environment without the need for a period of re-learning, due
to the �ducial markers and their associated ID being all that was required for the
system. This allowed for an easy adaption to the new environment, particularly
through the use of a wearable camera as this also removes the need for equipment
to be set up within the environment, such as in a dense sensing solution, along
with the lack of a re-learning to the new environment.

The application of the proposed system to multiple environments without a
period of re-learning demonstrates how this research question has been answered,
along with secondary advantages that this solution o�ers. One of which is the abil-
ity to customise markers to the environment to aid in reducing any further distress
or confusion for the occupants. The method of using �ducial markers to detect
objects also negates the need for the system to be trained for new environments,
due to the markers having an ID which associated it with the ‘key’ objects, should
the user replace a ‘key’ object the system no longer needs to be retrained to learn
this new object as the same marker can be applied to the new object.

7.2.3 Research Question Three

Does the use of an object-distance estimation improve the rate of detection of
object interaction when compared to a non-estimation approach?

An additional limitation that became apparent throughout the course of this re-
search was the need to reduce FP caused by navigation throughout the environ-
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ment or in object rich environments. An example of this could the kitchen which
could have a number of objects of interest within close proximity of each other,
e.g., kettle, microwave, and cupboards.

In Chapter Five the design and development of a solution to determine if an
occupant/object interaction a True or False Positive was presented. The system
was de�ned as the Intelligent System for Detecting Inhabitant-Object Interaction
(ISDII). ISDII determined if an occupant/object interaction was genuine through
measuring the distance that the occupant is interacting with the object and cross-
referencing that against known threshold interaction distances for each object to
assess if the interaction was a TP or a FP generated through general gaze activ-
ity or through navigating the environment. The presented solution o�ers a non-
intrusive method of determining when an occupant/object interaction is genuine
and not a FP. Leveraging a single wearable camera and was shown to reduce FP
instances as discussed in Chapter Five. This also o�ers an additional advantage,
such as the lack of required interaction from the occupant to record interactions
as being TP/FP and that the camera is always optimised for the direction that
the object of interest for the user is positioned.

7.2.4 Research Question Four

Does the application of evidential reasoning further improve the state of the art
through improving the accuracy of activity recognition?

Chapter Two, Section 2.7.5 presented a discussion on the challenge of dealing
with uncertainty within the data [238, 239, 240, 241, 242, 234]. In Chapter Six
an implementation of DS theory was presented with the goal of determining the
probability of an activity being carried out within a video stream. The goal of this
Chapter was to determine if DS theory could be used to improve the accuracy of
activity recognition when utilising an egocentric camera. An implementation of DS
theory was applied to the datasets previously collected within the Ulster and Ja�en
labs to estimate the activity being carried out within the video stream. A range of
ML algorithms were also tested on the datasets in order to provide a benchmark
score to contextualise the results from the DS system. The DS system showed
improved result in terms of number of activities correctly classi�ed (84%) when
compared to traditional ML approaches (75% for best ML approach tested) along
with an improvement in recall and F-measure when compared to ML approaches
{ 1.00 and 0.92 respecfully for the DS system, and 0.750 and 0.778 respectfully for
the best performing ML approach tested.
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These results indicate that the application of evidential reasoning can further
improve the accuracy of activity recognition when compared to traditional ML
approaches. This is of particular importance within the context of machine-vision
applications as there are a wide range of factors that can a�ect the detection
performance, such as lighting or occlusions. The use of DS theory allows for a
level of certainty to be attained for the likelihood of an activity being carried
out with missed sensor events, thus allowing for a further level of accuracy to be
attained than would otherwise be possible once uncertainty is introduced to the
dataset.

7.2.5 Summary of Knowledge Contributions

The research carried out within this thesis has contributed to knowledge in a num-
ber of key areas. These contributions are detailed below:

The design and implementation of a real-time vision based indoor
localisation system via an egocentric camera utilising �ducial markers.
(Objective one)

One of the contributions o�ered by this work include addressing a problem
previously identi�ed with that of wearable devices such as Google Glass. That
is, that their impact in ubiquitous computing and ambient intelligence systems
has been partly slowed by their lack of streaming [187]. This has been addressed
in Chapter 4 by the development of live streaming functionality from a wearable
device, Google Glass in this case, which allows the video stream to be accessed
by multiple sources using a media server. Due to the time sensitive nature of
supporting occupants within their own home, a real-time system will allow a more
timely and e�ective intervention when compared to a system which capture images
on an intermittent basis or has a large time delay between the image being captured
and processing being completed.

The use of an egocentric camera along with �ducial markers also aids in allevi-
ating an issue identi�ed in Chapter 2 such as occlusion from �xed cameras where
the occupant is not within the camera’s �eld of view due to large objects occluding
the occupant or \blank" areas of the environment where the camera’s �eld of view
does not cover. While there is a risk of occlusion of the �ducial markers this is
greatly reduced through the use of a �rst-person camera which removes the issue
of covering the entire room along with large items, such as doors/fridges. This
also aids in reducing occlusions generated by the occupant themselves, such as
hands/head/torso occluding objects that they are interacting with. Occlusions of
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the manipulated object tend to be lessened as the object being interacted with is
usually the centre of attention for the occupant [314]. As the object is the centre
of the occupant’s attention the object is usually in the centre of the image and
in focus, providing a high quality image for processing [314]. Secondly, the use of
a moving camera coupled with static objects reduces the issues traditionally seen
with a static camera solution such as the limited �eld of view, which may require
the installation of multiple cameras within an environment.

Due to the system operating in real-time it does not encounter the same issues
as intermittent image capture system. Where vital information could be lost if the
occupant interacts with an object or navigates throughout the environment. In
the previously discussed works in Chapter 2 the method of image capture relied
on intermittent captures, e.g. at set time intervals 30 frames were captured. This
could cause vital information to be lost as object interactions may have taken place
within the time period were the system was not capturing information. As the
presented system operates in real-time every frame is being processed, therefore
vital information will not be lost through intermittent image capture.

The proposed approach o�ers other secondary advantages that are unique to
this method, such as the �rst person view and lack of required interaction and
multiple occupancy, where each occupant that requires support need only to wear
a device to obtain their unique �rst person viewpoint and the information on the
objects they were interacting with.

The design and implementation of a method to remove the need to
train for each environment. (Objective two)

The main contribution o�ered within objective two is the ease with which the
system can be deployed within di�ering environments. The use of �ducial markers
with an associated ID negates the need for speci�c training to each environment.
This is due to the markers being associated with common static items that are
commonly found within home environments, with the ID of the object being tied
to the marker rather than any features of the object itself. This allows the sys-
tem to be quickly and easily deployed within new environments in comparison to
implementing traditional methods of indoor localisation. Due to the static items
that the markers are applied to being common throughout the majority of homes
(e.g. fridge, kettle, etc.) results in a further minimisation of the initial installa-
tion/initialisation requirements. This is due to the majority of markers sharing
their ID with common household items, with only slight customisation required to
any unique appliances or needs that the occupant may require. This also allows
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for ease of future customisation within the environment, should the occupant add
additional appliances or require reduced/increased levels of support this can easily
be accommodated through the addition or removal of �ducial markers.

Benchmarking ORB and Aruco in an AAL scenario along with the
development of IDSII. (Objective three)

The contributions o�ered within objective three include the comparison of two
popular o�-the-shelf algorithms for feature detection in an AAL scenario. It also
presents how lighting e�ects the performance of these two algorithms as well as
that of motion blur, these are two very important factors when assessing the
e�ectiveness of vision based aids and their feasibility in being applied to a real
world situation.

ISDII is another contribution that this objective has made. This itself has two
contributions within. Namely, the development of a two stage �lter which allows
uncertainty in real-time video based application to be reduced through exponential
smoothing to reduce high frequency noise, and the second stage which involves the
removal of isolated detections, such as those experienced through natural gaze
activity. This used fuzzy logic to estimate the level of interaction the occupant
is having with the object through distance estimation. Due to the high levels of
noise that are typically present in egocentric videos it can be di�cult to identify the
correct object as it is possible that multiple objects can be within the occupant’s
FoV. This is due to some areas of the environment being densely populated with
relevant objects, such as the kitchen.

A �nal contribution from this objective was the development of a system that
does not require user interaction in order to ensure that the best image angle is
being captured. This challenge was previously identi�ed and presented in Chapter
Two as a limitation of existing systems.

Implementation of DS theory to that of an egocentric camera in
order to correctly identify ADLs within a real world smart environment.
(Objective four)

Chapter 6 presented a methodology for applying DS theory to an egocentric
camera with the goal of identifying ADLs. A comparison was also o�ered to
traditional ML methods to establish that the use of DS theory can improve the
detection of ADLs within a smart environment.

The contribution o�ered by this objective is an implementation of DS theory
to that of an egocentric camera in order to correctly identify ADLs within a real
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world smart environment. This aids in alleviating the problem of unreliable sen-
sor evidence, particularly within a machine-vision system were a high number of
variables, such as light, viewing angle, etc., can a�ect the accuracy of an object
recognition system. The advantage of detecting ADLs, even with missing sensor
values, o�ers increased reliability and safety with the domain of ambient assisted
living and further moving towards a vision of \aging in place". Furthermore new
activities can be added to the system without the need for existing data on the
activities present due to the activities being composed of a composite of unique
objects, this allowing a new activity to be added by merely including the composite
objects in the activity template.

7.3 Limitations

Over the course of this thesis a number of limitations have been encountered, these
include:

7.3.1 Marker Design

The novel design of the �ducial markers within this thesis does o�er the bene�t of
being able to customise the marker not just to the environment, but also to the
unique needs of the occupant. However, it became apparent that there may be
issues in regards to scalability, this is due in part to a certain level of complexity
being required in order to identify a marker within a scene. While this was not
an issue during this research if the system was to be scaled out to multiple envi-
ronments it could result in markers requiring to have overly complex designs in
order to easily distinguish them for similarly designed markers due to the ORB
algorithm being based on the Harris corner recognition algorithm which extracts
corners to infer the features of an image. An additional limitation is that of the
requirement for the marker to be placed correctly on the corresponding object
to facilitate the accurate detection of the marker. This is somewhat mitigated
through the markers requiring to be placed in the centre of the occupant’s FoV,
however, there is still room for human error when placing the markers. Alongside
the potential interpretation of the centre of the occupant’s FoV, particularly if
being set up by a carer or family member.
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7.3.2 Dataset Size and Users

A key limitation of this research has been the dataset size used throughout. This
was due to multiple factors. A key factor was the use of novel �ducial markers
as no existing egocentric dataset were available, therefore a fresh dataset had to
be collected throughout this research. Additionally collecting egocentric data of
ADLs is a time consuming process which when coupled with hardware limitations
discussed in Section 7.3.3 further hinders the collection of a large dataset. The
small nature of the dataset had the most impact on Chapter 6 in which ML ap-
proaches were applied to the collected datasets in order to determine the activity
being carried out which resulted in a test/train split for validation to avoid any
bias in the results or over�tting to the data. Further collection of a larger dataset
would allow for additional testing to establish if the results can be further gen-
eralised. This would also allow the opportunity to test the system in additional
environments thus allowing the hypothesis of the \use of �ducial markers facili-
tates the ease of adaption to new environments", while allowing testing against a
further range of environmental conditions. A further limitation within the datasets
gathered in the lack of data generated by target users. The datasets generated
in Chapter Three were generated by a researcher which was not a member of the
target cohort of older users which should be a key focus of future work. While
data augmentation was considered it was felt that the limitations of such a solution
would outweigh the bene�ts. There was a concern that the data quality could be
a�ected due to the generation of unrealistic or irrelevant data. Additionally, as
data augmentation can only generate variations of the existing data would result
in limited diversity within the dataset despite the increased dataset size. As data
augmentation cannot create new, original data no new features/information which
was not in the original dataset would be generated. This was of particular interest
within Chapter Six where defects/inconsistencies in the data were of interest to
explore how DS theory could manage missing/inconsistent data.

7.3.3 Hardware Limitations

During the course of this research key hardware limitations became apparent.
Firstly, the act of streaming live video over a continuous time period led to issues
with heat management on the Google Glass device. In order to compensate for the
increased heat the Google Glass device reduced the clock speed of the CPU. The
�rst step Google Glass takes is to reduce the CPU speed from 1Ghz to 600Mhz.
Should this not be successful at mitigating the increased temperatures Google
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Glass can then further reduce the CPU speed from 600Mhz to 300Mhz. However,
it should be noted that the device did not become too hot to be a danger or
uncomfortable for the user to remain wearing/using, though this did have the
consequence of introducing a slight variable lag into the video stream when the
clock speed was reduced to 300Mhz of approximately three seconds or less. A
secondary limitation that was discovered was that of battery capacity due to the
energy intensive requirements of both recording a constant video stream while
simultaneously streaming to a server.

7.3.4 Time Frame

One �nal limitation to this research is the period of time it has taken to bring this
Thesis to completion, in particular the domain of Computer Science has a very
high rate of progress with regards to the tools and technologies that are available.
With regards to the machine-vision aspect of this research techniques such as
Convolutional Neural Networks (CNN) [330] and more recently the development of
Vision Transformers (ViT) [331] o�er intriguing aspects into the future of machine-
vision applications. However, the domain of AAL still has signi�cant research
challenges with smart environments still not widely available, it is hoped this
research will aid in informing this future research.

7.4 Future Work

With the opportunity for re
ection on the work conducted, and its outcomes,
throughout this thesis a number of areas of future work have been identi�ed.

7.4.1 Further Data Collection and Deployment

As discussed in Chapter 6 both ML and DS theory were applied to the collected
datasets from the Ulster and Ja�en smart environments, however, these datasets
were relatively small within the context of data science containing a total of 64
events. Further data collection would allow for further generalisation of the ML
models along with o�ering further opportunity to evaluate how e�ectively DS
theory can be applied to activity recognition within the domain of AAL. Collection
of further datasets would also permit the opportunity to further assess the ease of
adaption to new environments of varying complexity. The collection of additional
data would also allow the system to be implemented in a free-living environment
outside of a laboratory setting, this would allow data to be collected by end users
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in their home environment and would allow further evaluation on the e�ectiveness
of the ISDII component to detect genuine occupant/object interactions. A key
component of further data collection should be the inclusion of users from the
target cohort of the older segement of society. This will allow the collection of
data from a real world scenario using target users that will o�er valuable insights
into the usability and acceptability of the system by the target cohort. This would
also permit further testing on the ability of DS theory to deal with uncertainty
within the data alongside allowing for end-user feedback on the system and any
recommendations to aid in the widespread adoption of such technology.

7.4.2 Activity Support

This thesis has explored methods of detecting the occupants’ location within an
environment through the use of a wearable camera and the detection of �ducial
markers via machine-vision techniques and if this system could be adapted to any
environment without the need for training. This was followed by an investigation
into the development of the ISDII system in order to determine if an object in-
teraction was genuine or caused by navigation throughout the environment or due
to a high concentration of objects of interest within the FoV. Finally a study was
carried out to determine if DS theory could be implemented to correctly identify
ADLs being carried out from an egocentric viewpoint within a smart environment
taking into account uncertainty introduced to the data.

Further work in this area could involve feeding information back to the occu-
pants to assist the occupant in their daily routines. In particular context-aware
reminders could provide a valuable service to older users, or those who may have
early stages of cognitive decline along with aiding the occupant in completing their
current task or prompting them to begin a task, such as making a meal. As Google
Glass contains an integrated bone conduction speaker along with a 640x360 dis-
play this opens up a range of possible reminders which can be delivered to the
occupant. This is of particular interest if they are su�ering from cognitive decline,
such as early onset dementia, as it allows the reminders to be delivered in a format
that would o�er the least stress to the occupant. These reminders could take the
format of video/audio recording of family members who are known to the occupant
to make them feel more at ease with assistive technology.
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7.4.3 Digital Twins

One interesting avenue of investigation is that of leveraging a digital twin to aid
in supporting occupants within their own home. A digtial twin could allow for a
accurate representation of the environment including the position of the �ducial
markers along with the position of objects within the environment. This digi-
tal recreation of the environment can facilitate the testing of new activity models.
Alongside investigating issues such as multiple occupancy in an evironment that al-
lows the mitigation of risks when compared to testing in a real world environment.
Additionally, this can be used to generate further training data that simulates a
real world environment in a range of contextual situations.

The use of a digital twin would also allow for additional performance eval-
uations to take place through introducing speci�c challenges to a scenario. For
example, the lighting conditions could be varied, occlusions could be introduced,
along with varying the location of the marker placement to assess how the system
performance is a�ected. This would also allow the calibration of the system in real
time by comparing the simulated environment with the real world environment.
The system would then be able to adjust it’s parameters to match the current real
world conditions by adjusting camera settings. Such as increasing exposure to aid
in low light environments. This can allow performance metrics to be established to
aid improving the accuracy of indoor localisation and activity recognition within
assistive technologies.

7.4.4 Summary

In conclusion, future work for this research would involve the integration of the
areas that have been identi�ed within this section { further data collection, activity
support, and digital twins. Further data collection would allow a more diverse
dataset to be gathered, both in terms of varying environmental conditions and
activities carried out. Further data would also allow an investigation into utilising
vision transformers as a means of improving the detection accuracy of the system.
The integration of a digital twin would allow for additional testing and allow for
mulitple interations of the model to be tested under varying conditions. The
inclusion of a digital twin would also allow the real time synchronisation between
the digital twin and the real world device, this would allow modi�cations to be
made in real time to aid in improving performance through the adjustment of
system settings. Finally, the built in screen to smart glasses could be leveraged
to aid giving further support to the occupant to aid them in completing tasks via
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visual and audio prompts.

7.5 Conclusion

This Thesis explored an investigation into whether machine-vision baed approaches
could be leveraged to support indoor localisation within the domain of AAL. This
Thesis then went on to investigate could the application of evidential reasoning via
DS theory could improve the detection of an occupant’s activity within a smart
environment. Study One carried out within this research was an investigation to
determine if an egocentric camera could be utilised to determine an occupant’s
location based on the objects within their FoV as detailed within Chapter Four.
Study Two sought to determine if it was possible to develop a tool which would
allow occupant/object interactions to be determined to be genuine or accidental.
To this end the ISDII tool was developed which used distance estimation to make
a determination if the object was likely to be a genuine interaction based o� expert
de�ned distances that objects were typically interacted upon with the end goal of
reducing the number of FPs detected within the video stream. Study Three aimed
to detect the activity that the occupant was carrying out, along with implementing
DS theory in order to aid with dealing with uncertainty within the data which is
normally present in a real world scenario due to technical faults or user error.

Throughout the research conducted within this Thesis a number of contribu-
tions to knowledge have been identi�ed. These have been a direct result of the
overall research aim of this Thesis, namely to \investigate the use of machine-
vision based approaches to support those at home who may traditionally require
assistance to carry out their activities of daily living through the use of improved
location accuracy and activity recognition via evidential reasoning". Contributions
from this Thesis have been discussed in Chapters 4, 5, and 6 and have been out-
lined in Section 7.2.5. The studies detailed in Chapters 4, 5, and 6 have allowed
the research objectives of this Thesis to be achieved, Section 7.2 discusses these
research objects in more detail and how they were achieved through the course of
this research.

This Thesis has also highlighted some limitations within this research which
have been discussed in Section 7.3 of this Chapter. The limitations included the
novel marker design, which while o�ering customisability to suit an environment
or the occupant’s needs can result in scalability issues depending on the size of
environment/number of objects that are required to be supported by the system.
The dataset size was also a limitation within this research, particularly when
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implementing the ML component within Chapter Six. Further expansion of the
dataset would also allow for additional testing in di�ering environments to further
demonstrate the system’s ability to be applied to new environments with no need
for training. Additionally hardware limitations were also discovered, with Google
Glass requiring to under-clock the processor in order to reduce heat output of
the device. However, with the latest generation of devices such as Google Glass
Enterprise [168] and Vuzix Blade [31] these hardware limitations will be reduced
through the progress made within the IoT domain since the inception of Google
Glass Explorer.

It is hoped that this Thesis will aid in the development of future applications
within the domain of AAL to support aging-in-place and to further contribute to
the vision of Mark Weiser of ubiquitous computing o�ering on-demand support
seemlessly within our lives.
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