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Abstract 

Breast cancer is one of the most common cancer risks to women in the world. Amongst multiple 

breast imaging modalities, mammography has been widely used in breast cancer diagnosis and 

screening. Quantitative analyses including breast boundary segmentation and calcification localization 

are essential steps in a Computer Aided Diagnosis system based on mammography analysis. Due to 

uneven signal spatial distributions of pectoral muscle and glandular tissue, plus various artifacts in 

imaging, it is still challenging to automatically analyze mammogram images with high precision. In this 

paper, a fully automated pipeline of mammogram image processing is proposed, which estimates 

skin-air boundary using gradient weight map, detects pectoral-breast boundary by unsupervised 

pixel-wise labeling with no pre-labeled areas needed, and finally detects calcifications inside the 

breast region with a novel texture filter. Experimental results on Mammogram Image Analysis Society 

database show that the proposed method performs breast boundary segmentation and calcification 

detection with high accuracy of 97.08% and 96.15% respectively. Calculation of Jaccard and Dice 

indexes between segmented breast regions and the ground truths are also included as 

comprehensive similarity evaluations, which could provide valuable support for mammogram analysis 

in clinic. 
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I. Introduction 

Breast cancer is one of the most common cancers among women [1]. Early detection of breast cancer 

has been shown to be associated with reduced breast cancer morbidity and mortality [2]. In clinics, 

various breast imaging techniques are used in the early diagnosis and screening of breast cancer, 

including ultrasound [3], Computed Tomography (CT) [4], Magnetic Resonance Imaging (MRI) [5] and 

mammography [6]. Mammography is low-energy X-rays imaging of the breast [7], which generates 

high-resolution images with high bit-depth, and provides the possibility of discovering abnormalities 

masked by surrounding and overlapping breast tissue [8]. Breast tissues are shown as pixel clusters of 

different intensities distributed in mammogram images, which mainly include fibro-glandular, fatty, 

and pectoral muscle tissues. Meanwhile, abnormal tissues including some ill-defined masses or 

calcification may appear as indicators of breast cancer or other breast diseases, which may also be 

shown in mammography. Although having limitations, mammography has a sensitivity of 85 to 90% 

for breast cancer detection [9]. As a proven and effective imaging modality, mammography remains 

the key screening tool for the detection of breast abnormalities [10]. 

In a mammography based Computer Aided Diagnosis (CAD) system, features of breast need to be 

quantified automatically to provide clinical evidences for human experts. A key part of mammography 

CAD is image segmentation which estimates skin-air boundary and pectoral-breast boundary which 

together define the breast contours. Existing studies of image segmentation, focusing on breast 

boundary and pectoral muscle segmentation, could be generally classified into 5 categories: 

thresholding, region-growing, morphology-based, active contour (AC) and texture-based according to 

their segmentation approaches. Global [11] or adaptive [12] thresholding methods are usually used to 

get the skin-air boundary because of significant intensity differences between the background and 
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foreground tissues. However low contrast between pectoral muscle and the breast has limited the 

use of thresholding methods to get the pectoral-breast boundary. Chen et al. [13] proposes 

segmentation methods based on region growing by initializing 40 points along the mask boundary 

which is obtained by thresholding. Their results show the accuracy of pectoral-breast boundary 

detection is still lower than that of the skin-air boundary. Morphology-based methods [11, 14] use the 

natural shape features to build complicated models to fit the objects of breast. The main problem of 

these model-driven methods is that a generalized shape model is not able to cover all the complex 

shapes shown in mammography. AC is also a widely used method to segment the breast by initializing 

a boundary and letting the initialized boundary to approach the actual breast boundary based on 

minimizing energy functions. However, some of edge-based AC methods [15-17] dealing with 

mammography only detect the skin-air line with pectoral muscle left in the breast region. 

Texture-based methods extract textures from images based on texture filters such as wavelet [18] or 

Gabor filter [19], and determine boundaries between objects based on significant texture changes. 

Rampun et al. [22] developed a hybrid method by combining a model-based approach and 

region-based AC which produced very good results but still less accurate when estimating pectoral 

muscle boundaries with complex contours. 

In addition to the image processing approaches, another approach takes image pixels as individual 

samples and performed segmentation by labeling pixels into different categories. Some researches 

[20, 21] firstly assign an initial label to each pixel in a mammogram image, and then adjust pixel labels 

based on energy changes in the Markov Random Fields (MRF) of pixels. The main difficulty of the pixel 

labeling approach is that they tend to generate unsmooth or discontinuous boundaries, which need 

post adjustment to find the natural smooth boundaries. Generally speaking, detection of breast 

boundaries is still a challenging task due to artifacts, homogeneity between the pectoral and breast 

regions, and low contrast along the skin-air boundary [22]. Abnormal tissues are usually shown on 

mammogram images with higher densities. Since density is one of the mammographic features that 

are related to breast cancer risk [23], the separation between glandular and other high density 

masses is important in characterizing breast tissues.  

Furthermore, mammographic calcification is an important feature of invasive and in situ breast cancer 

[24], so the detection of calcification is another key step in mammographic analysis. Calcifications are 

always small in size and have no significant contrast to surrounding tissues in mammogram images, 

and the common idea of detection is using various filters to separate the inhomogeneous pixel 

clusters of calcification from surrounding tissues. A batch of filter-based approaches including gray 

level thresholding [25], Wavelet [26, 27] and filter banks [28], but it is still challenging for calcification 

detection because of the small size and low contrast in low quality mammogram images. Therefore 

further research considering shape and appearance features is needed in order to improve both 

accuracy and efficiency of filter-based calcification detection. 

In this paper, we propose an automated image processing pipeline, based mainly on pixel clustering 

without training, to estimate breast boundaries and characterize breast tissues concurrently, 

including skin-air boundary estimation, breast segmentation, and calcification detection. The main 

contribution of our study includes a pixel-wise clustering scheme plus post processing to segment the 

breast boundaries precisely, and a novel filter to detect calcifications, which is suitable for most of 

calcification shapes and sizes in practice. 
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The rest of the paper is organized as follows. In Section 2, we firstly describe the dataset used to 

evaluate the proposed method followed by explanations of the technical parts of this study such as 

detection of skin-air boundary, pectoral muscle to breast boundary segmentation, and calcification 

localization. In Section 3, experimental results are presented to show the performance of the 

proposed methods which covers both quantitative and qualitative evaluations. Finally, discussions on 

the proposed methods and further improvements are presented in the last Section. 

II. Materials and Methods 

To deal with mammogram image segmentation more efficiently and robustly, an automated 

hierarchical pipeline including image pre-processing, breast segmentation, boundary detection and 

calcification localization is proposed, which is shown in Fig. 1. The spatial distributions of different 

tissues and abnormalities such as calcifications in breast can be extracted from the integrated pipeline, 

which makes it possible to focus on the region of breast and establish essential indicators for clinical 

references. 

 

Fig. 1. Workflow of the proposed mammogram image processing and analysis pipeline 

A. The Dataset 

Generally two kinds of mammography are being used in clinic, including analog Screen-Film 

Mammography (SFM) and Full-Field Digital Mammography (FFDM) [8]. Although it has been claimed 

that FFDM has more benefits than SFM [29], analysis of digitally scanned SFM still has realistic 

significances because comparisons are always needed between prior SFM and current digitalized 

mammography in many cases, and the processing methods of SFM could be directly applied on FFDM 

images with few adjustments. On the other hand, most of the mammogram digital datasets nowadays 

do not contain ground truth or annotations from expert radiologist which make it difficult for 

quantitative evaluation. 

As one of the first publicly released mammography datasets, the Mammogram Image Analysis Society 

(MIAS) database contains the original 322 images of digitalized SFM at 50 micron resolution [30], and 

is associated truth data of breast boundary, character of background tissue and especially the 

locations of calcifications and various masses provided by expert radiologists, in which 8-bits gray 

scale images are obtained from the original data format, representing the optical density of tissues. 

For comparison, FFDM images with ground truths of segmentation are also taken into account. 100 

images from the 8-bits Breast Cancer Digital Repository (BCDR) database [31] and 201 images from 

the 32-bit INbreast database [32] are selected for our experiments, and the segmentation process of 

which are proved no different with that of SFM we mainly discuss.  
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B. Gradient Map for Skin-Air Boundary 

In quite a number of digitally scanned SFM images from the MIAS database, various artifacts have 

similar high intensities as the breast. To obtain the accurate skin-air boundary, we firstly calculated 

the weight for each pixel based on the gradient magnitude at that pixel using a 3¦3 cross window, 

and returns the weight array (W). The weight of a pixel is inversely related to the gradient magnitude 

combining gradients of both vertical and horizontal direction at the pixel location, which separated 

higher intensity areas from low intensity background because sharp gradient magnitude changes 

occurred on the edges between foreground and background. Then, a horizontal line fitting strategy 

was applied to remove artifacts such as labels, markers, scratches, and even tapes which adhesive to 

the top of breast boundary as shown in Fig. 2f.  

 

Fig. 2. Skin-air boundary detection with or without artifacts, in which (a) an original image without 

artifacts, (b) gradient weight map, (c) initial mask of skin-air boundary, (d) skin-air boundary with no 

inflexion point detected, and (e) final mask of skin-air boundary. (f) an original image with multiple 

types of artifacts, (g) gradient weight map, (h) initial mask of skin-air boundary, (d) inflexion point 

detected on skin-air boundary, and (j) final mask of skin-air boundary after with tape artifacts 

removed. 

As shown in Fig. 2, significant differences are along the skin-air line in the image without artifacts. 

Minor gradient weight noises could be easily removed by image erode techniques [33] as illustrated 

from the second column to the third, which erased thin lines and kept the main body of gradient 

weights. Only the largest body was kept as the breast plus pectoral region, and artifacts with smaller 

sizes were removed. Meanwhile, usually artifacts adhere to the breast break the smooth outline of 

breast boundary. A 2D curvilinear structure detection method [34] was used on the initial boundary 

line, which detected the inflection points with sharp changes of curvature, shown as red dots along 

the initial skin-air line in Fig. 2(i). Then, the tape could be cut off by a horizontal line from the lowest 

inflexion point based on the natural curves of breast. Closed line as the skin-air boundaries was then 

acquired as shown in the last column of Fig. 2. Adjusted mask of breast plus pectoral muscle could 

then be defined for further segmentation. 
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C. Breast segmentation based on pixel-wise clustering 

In order to segment different tissue structures from each other, we used k-means clustering with city 

blocks as a metric measure to find the breast boundary. A median filter [35] for enhancement with 

five pixels in window radius was applied in de-noising before pixel-wise feature extraction and 

contrast enhancement between tissues with different densities. Most of the scatter noises were 

eliminated and small pixel aggregates such as calcifications were enhanced at the same time. 

Single image pixels within the skin-air boundary are treated as individual samples in the clustering and 

aggregates are composed by pixels sharing the same label. To simplify the feature set and accelerate 

the clustering speed, a two-dimensional vector including normalized (I(x,y), W(x,y)) was projected to a 

2D feature space in the clustering, in which I(x,y) represented the intensity and W(x,y) was the gradient 

weight of pixel P(x,y).  

n

1 2 1 2 1 2 1 2

1

( , )cityblock j j

j

d p p p p I I W W
=

= - = - + -ä      (1) 

In Eq. 1, Cityblock distances were taken as metrics between sample feature vectors in calculating 

distances between pixels, where P1 and P2 are two pixels inside the skin-air boundary respectively. Pij 

means the j-th feature of P, and n=2 here because of the two-dimensional feature vector were being 

used in the clustering. 

 

Fig. 3. Pixel-wise clustering, in which (a) and (c) original mammogram images with and without 

artifacts respectively, (b) and (d) pixel labeling map after clustering, where five different colors 

represent as different categories including the background, and dark red represents highest 

intensity as shown in the color bar. 

Pixels in the feature space were labeled as four classes following an unsupervised k-means clustering 

strategy, in which to initially make four cluster centers given at random and calculate the barycenter 

of each sample cluster into new cluster center, and iterated until the displacement distance of cluster 

center was less than a given value. It was specified that one of the classes contains the areas of 

glandular, which has comparatively higher intensities and lower gradient weights comparing to other 

clusters. All four clusters were well separated as shown in Fig. 3, representing the accuracy of the 

unsupervised clustering based on the proposed features, where five different colors represent as 

different categories including the foreground tissues (dark red, amber, green and light blue) and 

background (dark blue). Outline of pectoral muscles were then extracted based on the cluster 

including part of breast with similar pixel intensities and gradient weights, which was determined by 
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sorting cluster center values and selecting the center with the highest intensity.  

In practice, usually glandular tissues inside the breast and part of pectoral muscles have similar high 

intensities, which are two separated pixels clusters with highest value shown in Fig. 3(b) and 3(d). 

Therefore, the parts with highest class labels inside the breast were considered as glandular, and the 

morphologic quantification could be performed for classification based on glandular proportions.  

D. Pectoral to breast boundary line detection 

Besides the breast segmented in pixel-wise clustering, part of pectoral muscle is always included in 

the same cluster because the muscle always has similar strong signals to the glandular in the images. 

Therefore, further segmentation was required to determine the accurate boundaries between 

pectoral muscle and breast.  

  

Fig. 4. Pectoral-breast boundary detection, in which (a) and (d) pixel labeling map after clustering, 

where the amber color regions were retained including the boundaries between pectoral muscles and 

breast, and morphological operations including image fill and erosion were applied to form regions 

with smooth edges in the next column, (b) and (e) initial straight lines detected along pectoral-breast 

boundaries, where lines are shown in different colors, (c) and (f) projected skin-air boundaries (red 

lines) and fitted pectoral-breast boundaries (red lines with green stars) on the ground truth of breast 

mask area (white area). 

In practice, usually the boundary between pectoral muscle and breast is a smooth line at the upper 

left corner of the whole image, and it should be along the natural trend of pixel cluster extracted 

above. A series of built-in Matlab functions were used in smoothing edges of the mask, finding initial 

points and line fitting. Firstly, morphological operations were needed to adjust segmented pixel 

cluster including erasing too small regions using an area threshold of 100 pixels, eroding and then 

dilating bit-wise image mask with a diamond-shape morphological structural element with 3×3 pixels 

wide, and filling holes and gaps based on connectivity of 4 neighborhood pixels. Then, to get the 

smooth pectoral-breast boundary, a line fitting approach was applied on the edges of pixel cluster 
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area according to Hough transform [36], which detected straight line sections with angles between 

10o to 80o to the x coordinate, and all initial line segments of the same trend along the edge were 

marked. Finally, taking the end points of marked straight line sections, the final boundary was 

obtained by smoothing with a polynomial curve fitting approach [37] to fit the control points, which 

calculated a polynomial of degree 2 fitting the intial points. As shown in Fig. 4(c) and (f), the green 

stars are initial end points of the marked line segments, and the red line is the fitted curve along the 

natural boundary between pectoral muscle and breast. Both sides of the breast were finally defined 

as the Region of Interest (ROI) in breast cancer diagnosis and screening.  

E. Calcification detection for abnormality quantification 

Mammographic calcification is an important feature of invasive and in situ breast cancer [24], and 

usually represent as small bright pixel clusters scattered inside breast. However, calcifications are 

difficult to be detected because of the small size, or to be separated from surrounding high density 

tissues. A combined LAW's texture filter [38] was applied for the further segmentation of 

calcifications inside the breast, which had sliding windows as shown in Fig. 5.  

 

Fig. 5. Local texture filter for calcifications detection, in which (a) and (c) are filter windows along 

vertical and horizontal directions, and (b) and (d) are heat maps of filters respectively, where warmer 

colors represent higher weights in filtering. 

During the filtering, the filter covered the neighborhood area of a certain pixel (i,j) and calculate mean 

value of product between pixel intensities and the filter weights, where v(i,j) is the filtered value at 

pixel (i,j), n is the number of element in the filter window from upper to lower, left to right, wnv is the 

weight in the filter window in vertical direction and wnh is in horizontal direction, and In is the intensity 

of the pixel at the n-th position of the filter. 

25

1

( , ) ( ) 50nv n nh n

n

v i j w I w I
=

= ³ + ³ä        (2) 

In pratice, most of pixel clusters of calcifications have similar size to the 5¦5 pixels Law's texture 

filter, which enhance the centralized pixels with high intensities inside the calcifications by higher 

weights and waken the surrounding pixels effects by lower weights. By filtering from both vertical and 

horizontal direction, the local small rounded maxima of pixels were enhanced while the surrounding 

breast tissues were not enhanced because of the combined filter's circle structure.  
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Fig. 6. Calcifications detection based on local texture filter, in which (a) and (f) are original images 

with calcifications, (b) and (g) are zoom-in areas, (c) and (h) are heat maps of filtered images where 

calcifications have warmest colors, and (d) and (i) are images with calcifications highlighted with red 

edges respectively. 

Significant contrasts between calcifications and the surrounding tissues could be seen after the 

combined filtering as shown in Fig. 6. Global maxima of the filtered images were then extracted as 

candidate calcifications, and the final highlighted calcifications were acquired by traversing the 

candidates with suitable areas (ͮ60 pixels) and eccentricities (ͮ0.8) according to the natural 

morphological features of calcifications from experiments.  

III. Results 

To validate the proposed algorithm, we used the dataset including 322 mammogram images in MIAS 

dataset v1.21, which has resolutions vary from 400¦1080 to 1000¦1300 in pixels. Our method was 

implemented in MATLAB and deployed on a PC with 3.0GHz CPU and 8G RAM. In practice, it took 2.28 

seconds in average for this algorithm to process one image in the test. The low time cost of proposed 

pipeline is fully competent to meet the real-time requirements in clinical use, which also saved 

manpower and avoided subjective errors. 

A. Breast boundary segmentation defining region of breast 

In mammogram image analysis, regardless of the pectoral muscle, the ROI was focused on breast as 

the basis of further quantifications, such as the glandular and fat proportions. Noises, artifacts and 

pectoral muscle should be removed in sequence, and the region within the detected boundaries was 

validated in multiple ways to prove the consistency of the proposed segmentation method. 

According to the nature of mammography, the breast region is defined as the area between skin-air 
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line and pectoral-breast line. Therefore, we evaluated the performance using the strategy that 

segmented Breast region (Br) comparing to Background (Bg) plus Pectoral Muscle region (Pm) (Br vs 

(Bg + Pm)), which measured the performance of the proposed method in separating the breast region 

only from the pectoral and background regions. Breast masks and labels provided in support 

information of MIAS database were taken as ground truth for comparison.  

 

Fig. 7. Examples of breast segmentation results of SFM images in MIAS, in which the left of each pair 

includes breast boundaries marked on original images, and the right one contains boundaries marked 

on ground truth of breast region, where all the images are shown in the original ratios of height to 

width. (a) samples in the first row are results of good qualities images, (b) two samples with 

over-segmentation of breast, (c) two samples with under-segmentation of breast, (d) two samples 

with both over-segmentation and under-segmentation of breast, (e) one sample with no 

pectoral-breast boundary detected, and (f) one sample with top breast boundary misestimated.  

As shown in Fig. 7, background, breast tissues and pectoral muscles have stratified intensity 

differences and the separation were performed well on good quality images. The skin-air boundaries 

in all tested images were detected quite similar to that of the ground truth. Meanwhile, almost 

straight lines fitted by the initial line segment dots shown as green stars in the image, and the trend of 

lines was along the natural boundaries as the ground truth showed. However, quite a number of 

images had various quality problems including high density artifacts and unclear boundary between 

pectoral muscle and dense breast. Irregular boundary lines were usually detected after pixel 

clustering on these areas, and line fitting algorithms are applied to get the smooth boundaries as 

illustrated respectively in Fig. 7(b), (c) and (d). Those problems generally included over-segmentation 

and under-segmentation of breast along the pectoral-breast boundaries, which reflected the minor 

errors occurred between different classes during the pixel-wise clustering. Besides, some image 

problems also caused segmentation errors in clustering. A very small area of pectoral muscle was 
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included in the category of breast in clustering and no pectoral-breast boundary was detected in Fig. 

7(e). Fig. 7(f) shows an irregular top boundary of breast, which is an oblique line comparing to the 

horizontal straight lines in most of images.  

 

Fig. 8. Examples of breast segmentation process of FFDM images from BCDR and (d-f) INbreast 

databases, from left to right in each row there are the original image, gradient weight map, pixel 
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labeling map, P/B line detection map and the final breast boundary with ground truth, in which (a-c) 

and (d-f) are well segmented, under segmented and under segmented separately. 

Besides SFM images, the proposed segmentation methods could be directly applied on FFDM images 

because both SFM and FFDM are gray-scale images with only difference of bit depth. The 

segmentation process of FFDM images shown in Fig. 8 is the same as that of SFM images, and the only 

difference could be found in detecting skin-air boundary based on gradient weight map, in which no 

artificial in FFDM images needs to be removed as shown in column 1 and 2. 

In a comprehend evaluation strategy, four metrics were defined to generate the comprehensive 

accuracy of segmentation, including TP, TN, FP and FN are true positive, true negative, false positive 

and false negative respectively, in which the metrics were defined as follows, where Bs was the area 

of segmented breast based on the proposed method, Bt was the ground truth area of breast, and I 

represented the whole image.  

TP ( )Bs Bt I=          (2) 

TN [( ) ( )]I Bs I Bt I= - -        (3) 

FP [ ( )]Bs I Bt I= -         (4) 

FN [( ) ]I Bs Bt I= -         (5) 

All four metrics were combined for the accuracy calculation, in which 

Accuracy
TP TN

TP TN FP FN

+
=

+ + +
      (6) 

Furthermore, Jaccard index [39] and Dice coefficient [40] were also considered to fully evaluate the 

performance of the proposed method, in which Jaccard index measured the similarity and diversity 

between the breast segmentation results and the ground truths, and Dice coefficient mainly 

represented the similarity between them. 

Jaccard
Bs Bt

Bs Bt
=          (7) 

Dice 2
+

Bs Bt

Bs Bt
=          (8) 

Table 1. Quantitative results over 322 images from MIAS database, in which the accuracy is 

presented as percentages with standard deviations, and other metrics are presented as average 

values only. 

 
Well 

Seg. 

Over 

Seg. 

Under 

Seg. 

Over + 

Under 

Seg. 

No P/B 

boundary 

Misestimated 

top breast 

boundary 

Overall 

Number of 

images (% 

percentage of 

images) in 

227 

(70.50) 

39 

(12.11) 

31 

(9.63) 

16 

(4.97) 

3 

(0.93) 

6 

(1.86) 

322 

(100) 
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each category 

TP 56.52% 55.39% 54.88% 53.06% 54.55% 54.97% 56.01% 

TN 41.57% 39.18% 41.13% 39.92% 37.88% 38.60% 41.07% 

FP 0.64% 3.86% 1.37% 4.26% 6.03% 4.89% 1.41% 

FN 1.26% 1.54% 2.63% 2.84% 1.57% 1.51% 1.49% 

Accuracy  
98.09¤

1.66% 

94.57¤

3.44% 

96.01¤

2.86% 

92.88¤

5.25% 

92.43¤

6.12% 

93.57¤ 

5.95% 

97.08¤

2.28% 

Jaccard  96.22% 92.28% 93.79% 86.15% 92.13% 91.30% 
94.89¤

6.77% 

Dice 97.3% 92.7% 96.3% 95.6% 91.5% 89.6% 
96.36¤

5.28% 

In terms of separating the breast region from the pectoral and air regions, TP represented the 

overlapped areas of segmented breasts of the proposed method and the ground truth, and TN 

included the overlapping backgrounds of both methods. In practice, the standard deviations of TP and 

TN showing the big shape changes between different images in the dataset were high (Ū10%). Those 

deviations have no direct relationships with the final accuracies of segmentation, which were only 

related to the precision of breast segmentation on each image. Therefore, standard deviations of TP, 

TN, FP and FN in each category of images were not listed in Table 1.  

Generally, the proposed method performed well in segmentation of most breast areas from the 

background and pectoral muscle, while error rate of segmentation was composed of True Negative 

rate (TN=1.49%) and False Positive rate (FP=1.41%). In this case, TN means the missing parts of 

segmented breast, and FP usually includes parts of pectoral muscle or artifacts that are falsely labeled 

as breast.  

In the first row of Table 1, slight higher FN than FP showed the skin-air line always a little smaller that 

the ground truth boundary, which made the elongated edge of breast wrongly classified as 

background by the gradient weight map. For over and under segmented cases, the pectoral-breast 

lines were fitted outside and inside the edges of ground truth respectively, showing the errors of 

polynomial curve fitting method caused by some imprecisely detected line segments along the 

pectoral muscles edges after pixel-wise clustering. Besides, in some cases with very small pectoral 

muscles projected in the images, the pectoral-breast lines might not be detected in the experiment, 

which made the FP rate (ů6%) extremely higher than normal. Misestimated top breast boundary was 

an exception case in MIAS dataset, in which the top edges of breast in ground truths were not given 

as horizontal lines but in some inclined angles instead. The proportion of this unusual case is very low 

(ͮ2%), and the increase brought to FP was small, so the proposed method was not designed to deal 

with this case. 

Besides, the proposed method produced overall similarity ratios of Jaccard = 94.89% and Dice = 

96.36%, which were slightly lower than the metric of segmentation accuracy showing those two 

metrics were more sensitive to shape changes between the segmentation results and ground truths 

than only calculating the overlapping area ratios. All Jaccard indexes decreased in not well 

segmentation cases in Table 1, and the accuracies of 'Over + Under segmentation' had the lowest 

Jaccard index because of the largest shape changes comparing to the ground truths. Since the union 

area of segmentation results and ground truths were relatively stable in different cases, Dice 
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coefficients didn't change much as that of Jaccard index, which suggested that the proposed method 

was robust and capable in most of image qualities. 

B. Calcification detection for abnormality quantification 

Other validations were focusing on detecting calcifications based on the proposed textural filter. 

There are 25 images were marked as 'CACL' in the ground truth of 3rd column in MIAS consensus, 

suggesting calcification dots found in the original images. Locations and sizes of those marked 

calcifications were listed afterward. However, not all the calcifications were listed in the illed-masses 

consensus of MIAS, so if the marked calcifications in ground truth could be found by our method, 

then the validation of calcification localization in one image was considered as success.  

 

Fig. 9. Examples of calcification detection in MIAS, in which the left of each pair include original 

images, and the right one contains marked boundaries of detected calcifications in the zoom-in 

images, where all the images are shown in the original ratios of height to width.  

The full list of experimental results comparing to the ground truth is listed in Table 2. Only 25 images 

in MIAS were marked as 'CALC', and in total 26 coordinates of centre and approximate radius (in 

pixels) of a circle enclosing abnormality were marked as ground truth in those 25 images [30]. In total 

25 of 26 calcifications were detected by our method as shown in Table 2, which strongly suggested 

the effectiveness of the proposed texture filter in calcification detection. The only one missing 

detection happened in image numbered as 'mdb223ls' shown as Fig. 9(b), where the calcification 

inside the green circle was in very tiny size and the contrast was much lower comparing to the 

detected one besides it. Other calcifications with normal sizes and contrasts could be detected 

successfully for further morphological quantifications based the precise boundaries marked.  

Table 2. Experimental results on calcification by the proposed method 

CALC image 

number 

Calcifications 

listed 

Calcifications 

unlisted 

Detected 

calcifications 

listed 

Accuracy 

25 26 5 25 96.15% 

In total, 25 images in MIAS were marked as 'CALC', and 26 calcification with position were listed as 

ground truth in the introduction of dataset. As shown in Table 2, 25 detected calcifications in the 

experiment had exact positions as the list, with five more detected calcifications which were not listed 

in the introduction of dataset. Besides the images with calcification listed in MIAS, a batch of 

candidate calcifications were also detected from the high intensity pixel clusters with suitable sizes, 

which were not listed in the ground truth, but might also give the full reference for breast cancer 

diagnosis or screening as suspects.  



15 
 

IV. Discussions 

Comparing to most of the existing mammogram image processing methods, the proposed method 

executes multiple tasks in a hierarchical way to acquire good performance in each step, which deals 

with specific morphologic characteristics of different objects for detection 

A. Qualitative and quantitative comparisons 

Table 3 shows a comparison with some of the existing studies in the literature, which involves the 

most common approaches on the segmentation of both skin-air and pectoral-breast boundaries. 

Table 3. Mammographic breast segmentation approaches and corresponding accuracies, in which 

S/A is skin-air boundary and P/B is pectoral-breast boundary 

Segmentation 

Approach 

Detected 

Boundary 

Method Proposed 

by 
Dataset Accuracy 

Thresholding 

S/A Wei et al. [11] DDSM 94.9% 

S/A Raba et al.[12] MIAS 98% 

S/A 

Pectoral-only 

Czaplicka et al. 

[41] 
MIAS (300 images) 

98% 

98% 

Region Growing 
P/B 

Chen and 

Zwiggelaar [13] 
MIAS 92.8% 

P/B Maitra et al. [42] MIAS 95.7% 

Morphology-based 

S/A Wei et al.[11] DDSM 94.9% 

S/A 
Yapa and Harada 

[14] 
MIAS (100 images) 99.1% 

Active Contour 

S/A Ferrari et al. [15] MIAS (84 images) 96% 

S/A Mart et al.[16] MIAS (65 images) 97% 

S/A 
Wirth and 

Stapinski [17] 
MIAS (25 images) 97% 

Texture-based 
P/B 

Mirzaalian et al. 

[18] 
MIAS (90 images) N/A 

S/A Casti et al. [19] mini-MIAS and FFDM 99.6% 

Pixel-wise 

Clustering 
P/B Ours 

MIAS 

BCDR (100 images) 

INbreast (201 images) 

97.08% 

97.61% 

97.38% 

In comparison with other methods reviewed in [8, 22], the accuracies of breast segmentation are 

mainly divided into two parts, the skin-air line segmentation and the pectoral-breast segmentation. 

By summarizing performances of representative approaches from the literatures, methods only 

detecting skin-air (S/A) boundaries with pectoral muscle included archived the highest accuracy of 

99.1% on selected images from MIAS dataset. In methods further detecting pectoral-breast 

boundaries (P/B), Maitra et al. [42] archived 95.7% of segmentation accuracy based on region growing 

strategy. Some studies only focus on breast pectoral segmentation and did not separate the breast 

boundary from the air background. For example, accuracies the pectoral-only detection of 98% was 

proposed by Czaplicka et al. [41], and the S/A boundary detection accuracy is also proposed as 98% in 

the same paper, so its combined accuracy should be 98%×98%Ū96% as the highest overall accuracy 



16 
 

from the literatures. 

As shown in both Table 1 and Table 3, the segmentation accuracy of our method is over 97% along 

with high similarity rates of Jaccard (94.89%) and Dice (96.36%) indexes in MIAS database. These 

results on proper breast segmentation provide solid foundation for further researches with focus on 

the region of breast. In the meantime, our algorithm achieved a little higher segmentation accuracy 

on FFDM databases because no more artificial such as tapes or labels in FFDM, which improved the 

accuracies on S/A line detection than SFM. 

B. Furture improvements 

Breast segmentation is the fundamental steps in the study of mammography, which defines the 

boundaries of the region for further quantifications. The performance of breast segmentation was 

highly determined by pixel-wise clustering and line fitting and smoothing methods. Segmentation 

errors could be further avoided by improving these two core algorithms. Within the image processing 

pipeline, both k-means clustering and line segment detecting and fitting methods are flexible 

functional modules and could be further improved without changing the general pipeline. The more 

precise boundaries of breast and inside glandular detected, the better view of mammographic 

diagnosis could be obtained.  

The Breast Imaging Reporting and Data System (BI-RADS) [43], which defines diagnostic categories, 

defines a six-point scale from negative to highly suggestive of malignancy based on mammography. A 

set of indicators such as glandular density, calcifications and specific masses have been proved to be 

related to the risk of breast cancer [44, 45]. The morphological features characterizing those 

indicators, as derived from results of image segmentation and calcification detection, may conduct 

preliminary screening for doctors to save manpower and avoids subjective errors. 

By processing images and generating effective indicators in mammographic analysis, this study can 

also been applied to other breast imaging modalities such as MRI. Based on the robustness of 

clustering image segmentation methods, further improvements may focus on enriching detection 

indicators of detailed structures of illed-masses. The pipeline will be integrated into a web released 

software for public use, and the clinical application of the proposed framework will be helpful for 

mammography reading in breast cancer diagnosis and screening. 

V. Conclusions 

In mammography based breast cancer diagnosis and screening, correct segmentation and labeling of 

different tissues are important image processing steps, which are needed, e.g., before the 

morphology of labeled tissues is quantified for further analysis. In this paper, we have presented an 

image processing pipeline to analyze mammogram images, including a breast and pectoral muscle 

segmentation method and a calcification detection method. Skin-air boundary is firstly detected 

based on gradient weight map, and pectoral-breast boundary is then estimated by clustering pixels in 

the foreground into different layers. Next, breast segmentation is performed in the pixel-wise 

classification to get the initial boundary between pectoral muscles and breast region based on line 

detection and polynomial curve fitting. Finally, calcification detection is performed by a well-defined 

texture filter as one of the biomarkers for breast cancer risk. Experimental results showed that the 

proposed pipeline produced comparable results as manual breast outline segmentation and 

calcification detection but has higher efficiency, which could also directly applied on FFDM images 
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generated in clinic with few adjustments. 

Generally two main advantages made the proposed methods capable to find the breast boundaries 

with high accuracy. First, gradient weight map clearly defines skin-air boundary between foreground 

and background, which is more efficient than calculating an adaptive threshold in traditional intensity 

histogram-based methods. Second, since pectoral muscles are not always clearly visible in 

mammograms, especially in dense breasts, the unsupervised learning approach of kmeans clustering 

took pixel as the study object, overcame the inherent defect of low-quality image of the traditional 

method based on geometrical morphology, and no areas needed to be selected by human intervals 

before the segmentation. Furthermore, our method is adaptable in dealing with images with unusual 

pectoral muscle shapes against the breast by clustering pixels without taking shape models into 

account. A well designed model of pectoral muscle region [22] may be helpful in P/B boundary 

detection, which can be used as a solid foundation for future research on pectoral muscle 

segmentation of our work. 

Beside the effectiveness in breast, The pipeline has high speed and accuracy to be fully competent to 

meet the real-time requirements in clinical use mainly because that the pectoral muscle is estimated 

in the same step of pixel-wise cluster through pectoral-breast segmentation, in which the proposed 

algorithm converted the segmentation task into a classification task. This simplified the calculation 

and improved the efficiency of the process. Furthermore, the texture filter considers local correlations 

of single pixels within a suitable neighborhood region. Therefore, it can detect calcifications efficiently 

even with small noises or inside large masses, which could provide valuable support for mammogram 

analysis in clinic. 
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