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Abstract 

The influence of the liquid composition on the chemical and morphological properties of copper-based 

nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and 

discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium 

nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. 

The process was studied using four distinct electrolyte solutions composed of distilled water and either 

NaCl + NaOH, NaCl only or NaOH only at two different concentrations, without the addition of any 

copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were 

produced from NaCl + NaOH containing solutions, mainly CuO and CuCl2 structures were 

synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions 

containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaCl + 

NaOH and NaCl containing solutions. Reaction pathways leading to the formation of the 

nanostructures are proposed and discussed. 

Keywords: non-equilibrium atmospheric pressure plasma, synthesis of nanostructures, plasma-liquid 

interactions, reaction pathways, X-ray photoelectron spectroscopy, transmission electron microscopy. 
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Introduction  

In recent years, the interactions between non-equilibrium (cold) atmospheric pressure plasmas (CAP) 

and liquids have attracted great interest due to their key role played in reaction mechanisms relevant 

for emerging fields such as plasma medicine  [1, 2] and nanomaterials synthesis [3–5]. As widely 

documented, CAP can be the source of a broad range of reactive species, which initiate cascade 

reactions in the bulk of the liquid phase when interacting through the gas-liquid interface [6]. These 

reactions can induce the synthesis of nanostructures directly in solution when suitably designed 

plasma-liquid configurations are used [7–10].  

In addition to CAP assisted approaches, wet-chemical (i.e. hydro/solvothermal synthesis, self-

assembly, sonication) and electrochemical techniques have been employed over the years for the 

synthesis of nanostructures [11–15]. Among these techniques, electrochemical methods show 

similarities with the CAP assisted approach; these are based on the anodic dissolution of metal foils 

and subsequent reduction of metal cations at the solid cathode to obtain pure and size controlled 

nanostructures. However, isolating the reduction products without affecting their purity is rather 

difficult; in this respect CAP presents a remarkable advantage, since the replacement of a solid 

cathode with a contactless one allows the free nucleation and dispersion of the produced 

nanostructures [16]. An additional advantage is the possibility of synthesizing nanostructures without 

the need for surfactants or capping agents [17–19], which are typically required in wet chemical and 

electrochemical methods to avoid aggregation [14, 15, 20–23] but are generally responsible for 

nanostructures contamination. Recently, Mariotti et al. demonstrated the possibility of effectively 

employing a cathodic microplasma to synthesize surfactant-free and electrostatically stabilized Au 

nanoparticles of different sizes by varying the concentration of the Au precursor dissolved in 

deionized water [4]. The cathodic microplasma configuration was also employed to produce colloidal 

metal nanoparticles from a solid metal anode dipped in an electrolyte solution. Sankaran et al. reported 

on the use of a cathodic microplasma and an immersed solid Ag or Au foil, as anode, for the rapid 

production of colloidal metal nanoparticles in an acidic electrolyte solution of de-ionized water, in the 

presence of a stabilizing agent [3, 7]; similarly, Du et al. proposed the production of Cu2O 

nanoparticles in an electrolyte solution by means of the cathodic microplasma configuration and using 

a Cu foil as anode [5].  

However, further investigations are still required to better understand the effects of the chemical 

composition and conductivity of the liquid environment on the characteristics of the plasma-produced 

nanostructures. In the present work, we have focused on these aspects by testing four distinct 

electrolyte solutions composed of distilled water and either NaCl + NaOH, NaCl or NaOH at two 

different concentrations; no surfactants, capping or stabilizing agents were added to the solutions. The 

experimental setup was completed by a nanopulsed CAP jet, as cathode, and a Cu foil partially 

immersed in the electrolyte solution as anode. Copper was chosen as the anode of the electrochemical 
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cell since Cu-based nanostructures (e.g. CuO, CuCl2, Cu) have raised interest for a wide range of 

applications, such as absorber in photovoltaic cells, catalyst and antimicrobial agents [24–27]. 

Morphological and chemical characterization of the obtained nanostructures was performed by 

transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction 

(XRD) analysis and X-ray photoelectron spectroscopy (XPS). The chemical mechanisms leading to 

the synthesis of nanostructures in both electrolyte solutions are proposed and discussed with the 

support of the chemical characterization of the plasma-produced colloids. 

 

Experimental section 

Non-equilibrium atmospheric pressure nanopulsed plasma jet 

The plasma source adopted in this work is a single electrode plasma jet (Figure 1a), which is suitable 

for different processes such as polymerization, co-deposition processes and for the treatment of 

various substrates [28–31]. The high-voltage electrode is a 19.5 mm long stainless steel sharpened 

metallic needle with a diameter of 0.3 mm. The plasma plume is ejected from the source tip through an 

orifice with a diameter of 4 mm. The plasma source was driven by a commercial pulsed DC generator 

(FID GmbH-FPG 20-1NMK) producing high-voltage pulses with a slew rate of 3–5 kV ns-1, a pulse 

duration of about 30 ns and a peak voltage (PV) of 7–20 kV. 

 

Plasma-assisted synthesis of Cu-based nanostructures 

In our experimental setup (Figure 1b), the CAP jet was used as cathode while a copper foil (2 cm x 2 

cm) was used as anode. The peak voltage and pulse repetition frequency of the generator driving the 

source were fixed at 7 kV and 320 Hz, respectively; 3 standard litres per minute (slpm) of Ar were 

used to sustain the plasma, which propagated in air across the gap (1 mm) between the nozzle of the 

CAP jet and the liquid solution. The distance between the plasma source and the copper foil was set at 

3 cm; the plasma treatment of the liquid solution lasted 30 min.  

In order to carefully investigate the chemistry induced by the plasma in the liquid environment, 

additional experiments were performed using an inert carbon rod as anode as a substitute for the 

copper foil. 

Four distinct 6 mL aqueous electrolyte solutions (chemicals purchased from Sigma Aldrich) were 

employed for the process; Table 1 summarizes the respective composition and conductivity, where the 

latter was measured by means of a Eutech Cond 6+ conductivity meter. 

Table 1. Electrolyte solutions: chemical composition, conductivity and pH values 

 NaCl 

[g/mL] 

NaOH 

[g/mL] 

Conductivity 

[mS/cm] 

pH 

SOL1  0.075 0.005 112.35±0.76 12.81±0.03 

SOL2  0.150 - 181.93±5.78 5.91±0.25 
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SOL3 - 0.005 33.17±1.31 12.8±0.1 

SOL4 - 0.047 110.60±1.80 13.1±0.1 

 

All the electrolyte solutions were produced starting from distilled water and NaCl + NaOH (alkaline 

solution) or NaCl (acid solution) were used to vary the pH. SOL3 contained only NaOH with the same 

concentration of SOL1 to understand the role of the base in the plasma-liquid processes occurring in 

SOL1. Finally, SOL4 contained only NaOH with a concentration sufficient to obtain the same 

conductivity of SOL1 so to discriminate the relevance of the chemical composition of the liquid 

environment with respect to its conductivity.  

 

Colloids characterization 

The pH of the solutions before and after 30 min of plasma exposure was measured by means of a pH 

meter (InLab Micro Pro). Analytic Quantofix test strips (Sigma Aldrich) were used to perform a semi-

quantitative analysis of Cu ions (Cu+/2+), hydrogen peroxides, nitrates and nitrites concentrations 

(detection limits 5 mg/L, 0.5 mg/L, 5 mg/L, 0.5 mg/L, respectively) in untreated solutions and colloids, 

as reported in [32].  

 

Protocol for samples characterization after nanostructures synthesis 

Colloids were washed by centrifuging (3000 rpm for 1 hour) in water for 4 times and in ethanol for 4 

times. After that, colloidal samples were transferred in glass vials, dried and further annealed at 

300 °C for 3 h. The samples were then re-dispersed in ethanol and ultra-sonicated for 10 min before 

drop-casting. 

 

Morphological and chemical characterizations of the nanostructures 

The morphology and chemical properties of the samples were analyzed by TEM and SAED (JEOL 

JEM-2100F), XRD (XRD, Bruker D8 Discover) and XPS (Kratos Anlytical, Japan). Samples were 

drop-cast on carbon coated Au grids and allowed to dry overnight before being used for TEM and 

SAED measurements. For XRD measurements, powder samples were directly drop-cast onto an XRD 

sample holder and scanned. For XPS measurements, samples were drop-cast on silicon substrates and 

dried. 

 

Results and Discussion 

Characterization of the colloids 

The colour change in the solution after plasma treatment is often a qualitative indication of the 

nanostructures being formed [4, 16]. In our experiments we observed a colour change after 10 minutes 

of plasma treatment only for SOL1 (brownish colour, Figure 2b) and SOL2 (greenish colour, Figure 
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2d).  Conversely, nanostructures were not synthesized in SOL3 and SOL4 and accordingly no colour 

change was observed. 

Cu ions were detected in both the colloids produced by plasma treating SOL1 (SOL1 colloid) and 

SOL2 (SOL2 colloid); more specifically, a concentration in the range of 10-30 mg/L was detected in 

the SOL1 colloid and a concentration in the range of 100-300 mg/L was measured in the SOL2 colloid. 

SOL1 was initially extremely basic (pH 12.81±0.03) due to the presence of NaOH and no significant 

variations in pH were registered after the plasma treatment. However, the plasma process induced a 

dramatic alkalinisation of SOL2, with the pH increased from 5.91±0.25 to 10.35±0.22. In both colloids, 

NO2
- (concentration in the range of 10-20 mg/L) and NO3

- (concentration in the range 100-250 mg/L) 

anions were detected; these ions can originate from oxygen and nitrogen species formed by the 

interaction of the plasma plume with the surrounding environment air, which then dissolve into the 

liquid phase [8]. Finally, the concentration of H2O2 was below the detection limit for all the plasma 

treated solutions. Production of Cu+/2+ was not observed in SOL3 and SOL4 after plasma treatment, 

possibly due to the role of NaCl in promoting the anodic dissolution of the Cu foil, as observed in 

electrochemical cells [33–35]. These results are further summarized in Table 2. 

 

Table 2. Concentrations of Cu +/2+, NO2
-, NO3

-, H2O2 and values of pH measured in SOL1, SOL2, SOL 
3 and SOL4 before and after 30 min of plasma exposure 

 
SOL1 SOL1 

colloid 

SOL2 SOL2 

colloid 

SOL3 Treated 

SOL3 

SOL4 Treated 

SOL4  

 

[Cu
+/2+

] 

[mg/L] 

undetected 10-30  undetected 100-300  undetected undetected undetected undetected 

         

[NO2
-
] 

[mg/L] 
undetected 10-20  undetected 10-20  undetected 10-20 undetected 1-5 

[NO3
-
] 

[mg/L] 

undetected 100-250  undetected 100-250  undetected 10-20 undetected 25-50 

[H2O2] 

[mg/L] 
undetected Undetected undetected undetected undetected undetected undetected undetected 

pH 12.81±0.03 12.73±0.15 5.91±0.25 10.35±0.22 12.8±0.1 12.7±0.1 13.1±0.1 13.2±0.1 

 

 

 

 



    

 - 6 - 

Morphology of the synthesized nanostructures 

Figure 3 reports the TEM images of the nanostructures obtained from SOL1 and SOL2. The plasma 

treatment of both solutions induced the production of nanorods and nanoparticles. However, the 

chemical composition of the electrolyte solutions did affect the produced nanostructures; while 

nanorods from both solutions were highly aggregated (Figure 3a and 3e), nanorods from SOL1 

appeared to be longer (200-500 nm long) than those from SOL2 (< 200 nm long). Also, nanorods in 

SOL2 presented a single crystal phase (Figure 3f) while a clear polycrystalline nature could be 

observed for nanorods from SOL1 (Figure 3b). In both cases the CuO phase could be confirmed by 

fast Fourier transform (FFT) analysis, as shown in the corresponding insets where planes separated by 

0.24 nm have been observed as expected for CuO. Crystalline nanoparticles with diameters below 10 

nm could also be observed in both colloids (Figure 3c, 3d and 3h). Finally, some non-crystalline 

structures were observed in SOL2 (Figure 3g). SAED analysis (Figure 4) confirmed the presence of 

the CuO phase in both cases with also other crystalline structures among SOL2 products (Figure 4b); 

their chemical composition was identified by means of different characterization techniques as 

reported in the following section.  

 
Chemical composition and crystal structure of the synthesized nanostructures 

The chemical composition and crystal structure of the nanomaterials was further assessed by XRD and 

XPS analysis. Samples were obtained by drop-casting the colloids onto silicon substrates and dried, 

according to the procedure reported in Methods.  

Figure 5 reports the XRD spectra collected for samples produced by plasma treating SOL1 and SOL2. 

XRD patterns clearly highlight that the peaks can be attributed to CuO, presenting a monoclinic pure 

phase (Pattern: 01-089-5895)[36, 37]. However, samples produced from SOL2 also present two minor 

NaCl peaks. No characteristic peaks of any other copper containing compound could be detected from 

this analysis.  

Figure 6 shows the XPS spectra collected for samples obtained from SOL1 and SOL2. The Cu 2p core 

level binding energies just below 935 eV and 955 eV are attributed to the Cu 2p3/2 and Cu 2p1/2, 

respectively [36, 38]. The presence of the satellite peaks (from 940-946 eV and 960-965 eV) on the 

higher binding energy side of the Cu 2p main peaks confirmed the formation of CuO phase rather than 

cuprous oxide (Cu2O) [38, 39]. Deconvolution of the two main Cu 2p3/2 and Cu 2p1/2 peaks was carried 

out on the basis of the following components: metallic copper (I), CuO phase (II) and a third peak to 

be ascribed to either the binding energy within CuCl2 or Cu(OH)2 (III).  

Focusing on the nanostructures produced from SOL1 (Figure 6a and 6b), the wide scan spectrum 

(Figure 6a) underlines the presence of Cu and O. The trace amount of silicon (Si), carbon (C) and 

sodium (Na) are due to the substrate, organic impurities and to the composition of the electrolyte 

solution, respectively. Selected areas of the wide scan were also recorded for Cu 2p (Figure 6b). The 

de-convoluted Cu 2p3/2 envelope exhibits a peak placed at 934.2 eV (II) corresponding to CuO phase 

and a much less intense peak at 932.2 eV (I) attributed to the presence of the Cu phase [40, 41]. The 
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XPS wide scan does not indicate the presence of Cl and therefore the third low-intensity peak (III) has 

to be ascribed to Cu(OH)2. Finally, the Cu 2p1/2 peak can be de-convoluted in the lower contribution of 

the metallic phase (I) and the stronger one of the oxidized phase (II).  

Wide scan XPS spectra of nanostructures synthesized from SOL2 (Figure 6c) showed the presence of 

Cu, O and traces of Si, C and Na, as already observed for nanostructures from SOL1. Additionally, the 

presence of Cl peaks at 268.6 eV and 198.6 eV can be attributed to the CuCl2 phase, as reported in a 

previous work [40]. This is confirmed from the analysis of the Cu 2p peaks (Figure 6d), since the Cu 

2p3/2 and Cu 2p1/2 are placed at slightly higher binding energy (934.8 eV and 954.7 eV, respectively) 

than the SOL1 case, in agreement with the contextual presence of CuO and CuCl2 phases [40]. The 

deconvolution is consistent with this analysis as the typical binding energies for CuO (II) and CuCl2 

(III) can be fitted (Figure 6d) along with a negligible peak attributed to copper metal phase (I). 

However we cannot exclude the possibility that peak (III) originates from the Cu(OH)2 phase.  

 

Formation of nanostructures and reactions induced by plasma in liquid phase 

Based on the material characterization, both dispersed and aggregated nanoparticles and nanorods 

were produced in SOL1 and SOL2 colloids. SOL1 mainly yields CuO crystalline structures with 

limited impurities or unreacted products (e.g. Na as detected by XPS). A very limited amount of 

metallic Cu and Cu(OH)2 nanostructures are also revealed by XPS analysis (undetected by XRD). 

SOL2 also produces CuO crystalline structures together with by-products and unreacted compounds as 

observed by XPS (i.e. CuCl2) and XRD (NaCl), respectively. Two coexisting reaction pathways 

leading to the synthesis of these Cu-based nanostructures are here proposed. 

Pathway A: 

Cu + nCl-  – e- → CuCln
1-n   (1) 

Cl-, due to the dissociation of NaCl in water, reacts with metal Cu at the interface between the copper 

foil anode and the solution, producing CuCln
1-n [5]. CuCln

1-n ions move into the electrolyte solution 

which contains Cl- and OH- ions due to the natural dissociation of water and NaOH (if present) and to 

the dissociation of H2O molecules induced by plasma at the cathode of the electrochemical cell [5, 7, 

8].  CuCln
1-n reacts with the electrolyte leading to the formation of copper oxychloride compounds, i.e. 

botallackite [42] or clinoatacamite [43], containing both CuCl2 and Cu(OH)2 phases. After the 

formation of these phases, the pathway proceeds according to the following reactions, depending on 

the pH of the solution:  

CuCl2 + 2OH- → Cu(OH)2 + 2Cl-  (2) 

Cu(OH)2 + 2OH- → CuO + 2OH- + H2O  (3) 

In an acidic solution, the equilibrium is shifted towards CuCl2, so the formation of Cu(OH)2 in (2) is 

limited  [43]. Conversely, in an alkaline solution at room temperature, CuCl2 can react with OH- 

leading to the formation of Cu(OH)2 in (2) [44]. before being converted to CuO according to (3) [45].  

Pathway B: 
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Cu → Cu2+
aq + 2e-

aq  (4) 

Cu2+
aq + 2e-

aq → Cu  (5) 

Cu + H2O2 → CuO + H2O  (6) 

In this second pathway (B), the first reaction (4) represents the metal dissolution occurring at the 

anode of the electrochemical cell [3]; the released Cu2+ ions then react with hydrated electrons in the 

bulk of the liquid, forming Cu according reaction (5) [3, 46]. Finally, in the bulk of the liquid, metal 

Cu can react with H2O2 molecules leading to the formation of CuO [46]. 

In alkaline solutions (SOL1, SOL3 and SOL4), H2O2 was not observed after plasma treatment, due to 

the high OH- concentration which leads to the H2O2 decomposition [47] according to the reaction:  

H2O2 + OH- →H2O + HO2
-           (7)      

With SOL2 (pH before the treatment = 5.91±0.25) no H2O2 was detected after plasma treatment. 

However when the copper foil was replaced by a carbon rod, thus eliminating the nanomaterial 

synthesis, around 3 mg/L of H2O2 were detected in plasma treated solutions.. This is strong evidence 

that, with copper foil as electrode, the absence of H2O2 in SOL2 colloid is as a result of  its complete 

consumption through the reaction with copper  in (6). 

 

Focusing on SOL1 (alkaline), at the anode of the electrochemical cell, Cl- ions can interact with metal 

Cu and form CuCln
1-n, which, in the highly alkaline solution (pH >12), is completely converted in 

Cu(OH)2 . The OH- in the bulk of the liquid can then transform Cu(OH)2 into CuO, according to 

reaction 3.The metal Cu dissolution enables the release of Cu2+ ions, which, reacting with hydrated 

electrons produced by plasma, can be reduced forming metal Cu. The proposed mechanism is 

supported by the results of the characterization of the nanostructures, which revealed: 

i. the presence of CuO; 

ii. the absence of CuCl2; 

iii. the presence of Cu(OH)2. This can be ascribed to the incomplete conversion of Cu(OH)2 into 

CuO, probably due to the rather low temperature (20 °C) of the liquid environment during the 

process. Indeed, previous studies demonstrated that temperatures around 50 °C are generally 

required for the complete conversion of Cu(OH)2 in CuO in an alkaline solution [48]; 

iv. the presence of Cu. Due to the high alkalinity of the solution, H2O2 was completely consumed 

by the reaction with OH- and was not available for reacting with Cu to produce CuO 

according to reaction 6. 

 

In contrast, SOL2 is initially acid and its pH increases only gradually during the process (pH 10.35 at 

the end of the treatment) due to the plasma induced electrolytic reactions leading to the reduction of 

hydrogen ions to hydrogen gas [8, 46]. This limits the efficiency of reaction 2 and makes reaction 6 

possible, as H2O2 becomes available for reacting with Cu, with the following effects: 



    

 - 9 - 

i. CuCl2 is not totally converted to Cu(OH)2, remaining as by-product at the end of the process, 

as revealed by XPS analysis; 

ii. CuO is produced by the conversion of Cu(OH)2 by OH-, according to reaction 3. Due to the 

initial acid pH of SOL2, the conversion is not complete and traces of Cu(OH)2 phase could be 

found at the end of the process;  

iii. CuO is also produced, according to reaction 6, between metal Cu and plasma produced H2O2. 

Due to the acid pH of the solution at the beginning of the process, H2O2 is not consumed by 

the OH- ions and the reaction between H2O2 and Cu can occur with the formation of CuO. As 

a result, a lower amount of Cu is detected in SOL2 with respect to SOL1. 

 

Finally, the presence of NaCl among the final products of SOL2, as detected by XRD, can be 

attributed to its initial concentration, which is higher in SOL2 than in SOL1; since NaCl has also been 

documented to promote the anodic dissolution of the Cu foil in an electrochemical cell [33–35], the 

higher NaCl concentration can be held responsible for the higher Cu ions concentration in SOL2 than 

in SOL1. 

 

 

Conclusions 

The results presented here highlight that the composition of the produced nanostructures as well as 

their crystalline properties depend on the chemical characteristics of the liquid environment used for 

the CAP assisted synthesis process.  

The study has revealed: (i) the prevalent role of electrolyte chemical composition versus that of the 

conductivity; (ii) the fundamental role of NaCl, which enables copper anodic dissolution; (iii) in an 

alkaline solution, the conversion of CuCl2 phase into the CuO phase; (iv) in an initially acidic solution, 

the formation of CuO as a result of the reaction between metallic Cu and plasma produced H2O2. 

Plasma-assisted electrochemistry is an innovative and complex field, in which many questions dealing 

with the role of process parameters on nanostructures’ morphology and phases are still unanswered. In 

this context, the proposed study represents an attempt to identify the fundamental mechanisms driving 

the plasma-liquid interactions so that the characteristics of the liquid environment can be appropriately 

tuned to produce nanostructures with desired properties.  
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Figure legends 

Figure 1. Plasma source and process schematic. (a) Non-equilibrium atmospheric pressure plasma jet: 
plasma jet impinging onto a liquid surface; (b) experimental setup employed for the nanostructures 
synthesis in liquid environment 
 
Figure 2. Solutions and colloids. (a) SOL1, (b) SOL 1 colloid, (c) SOL2, (d) SOL2 colloid. Brown 
and green colloids were produced by subjecting SOL1 and SOL2 to 30 min of plasma exposure, 
respectively 
 

Figure 3. TEM images of nanostructures obtained from the plasma treatment of SOL1 (a-d) and SOL2 
(e-g). Insets in (b) and (f) report the corresponding FFT. 
 
Figure 4. Selective area diffraction pattern of the samples produced from SOL1 (a) and SOL2 (b). Red 
traces indicate CuO phase. 
 
Figure 5. X-ray diffraction spectra of nanostructures obtained from SOL1 and SOL2. The spectrum of 
nanostructures obtained from SOL1 highlights the presence of CuO peaks; the spectrum of 
nanostructures produced from SOL2 reports the presence of CuO and NaCl peaks. 
 
Figure 6. XPS spectra of nanostructures obtained from SOL1 (a, b) and SOL2 (c, d): wide scan 
spectra (a, c), Cu 2p peaks and their deconvolution (b, d). The spectra collected from the analysis of 
nanostructures produced from SOL1 (a, b) showed the presence of CuO (peak II), Cu(OH)2 (peak III) 
and Cu (peak I) phases, while the spectra collected from SOL2 reported the presence of CuCl2 (peak 
III), CuO (peak II) and Cu (peak I) phases. 
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