A\

Ulster
University

Challenges and Research Directions in Autonomic Communications

Curran, K., Mulvenna, M., Nugent, CD., & Galis, A. (2007). Challenges and Research Directions in Autonomic
Communications. International Journal of Internet Protocol Technology, 2(1), 3-17.
https://doi.org/10.1504/1JIPT.2007.011593

Link to publication record in Ulster University Research Portal

Published in:
International Journal of Internet Protocol Technology

Publication Status:
Published (in print/issue): 01/01/2007

DOI:
10.1504/1JIPT.2007.011593

Document Version
Publisher's PDF, also known as Version of record

General rights
The copyright and moral rights to the output are retained by the output author(s), unless otherwise stated by the document licence.

Unless otherwise stated, users are permitted to download a copy of the output for personal study or non-commercial research and are
permitted to freely distribute the URL of the output. They are not permitted to alter, reproduce, distribute or make any commercial use of the
output without obtaining the permission of the author(s).

If the document is licenced under Creative Commons, the rights of users of the documents can be found at
https://creativecommons.org/share-your-work/cclicenses/.

Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@uister.ac.uk

Download date: 12/08/2025

https://doi.org/10.1504/IJIPT.2007.011593
https://pure.ulster.ac.uk/en/publications/3c978b22-47f9-4323-b1ef-a39da281d458
https://doi.org/10.1504/IJIPT.2007.011593

Int. J. Internet Protocol Technology, Vol. 2, No. 1, 2007 3

Challenges and research directions in autonomic
communications

Kevin Curran*, Maurice Mulvenna and Chris Nugent

Faculty of Engineering, University of Ulster, Northern Ireland, UK
E-mail: kj.curran@ulster.ac.uk E-mail: md.mulvenna@ulster.ac.uk
*Corresponding author

Alex Galis

Department of Electronic and Electrical Engineering, University College London,
Torrington Place, London WCIE 7JE, UK
E-mail: a.galis@ee.ucl.ac.uk

Abstract: The increasing amount of traditional network services may still not fulfil the
requirements of ever-demanding applications and must therefore be enriched by some form of
increased intelligence in the network. This is where the promise of autonomous systems comes
into play. Autonomous systems are capable of performing activities by taking into account the
local environment and adapting to it. No planning is required; therefore autonomous systems
must optimise the use of the resources at hand. This paper clearly identifies the need for
autonomous systems in networking research, anticipated architectures, characteristics and
properties, the path of evolution from traditional network elements and the future of such
systems.

Keywords: autonomous systems; autonomic communications; autonomous network
architectures; service-aware networks.

Reference to this paper should be made as follows: Curran, K., Mulvenna, M., Nugent C. and
Galis, A. (2007) ‘Challenges and research directions in autonomic communications’,
Int. J. Internet Protocol Technology, Vol. 2, No. 1, pp.3—17.

Biographical notes: Kevin Curran BSc (Hons), DPhil, SMIEEE, MBCS CITP, MACM,
MAIAA, MIEE, ILTM is a Lecturer in Computer Science at the University of Ulster. He has
published over 170 publications to date in the field of distributed computing, especially,
emerging trends within wireless ad-hoc networks, dynamic protocol stacks and middleware. He is
a member of the Editorial Committee of the Journal of Universal Computer Science (J.UCS).

Maurice Mulvenna is a Senior Lecturer in Computer Science at the University of Ulster’s School
of Computing and Mathematics. He has a research career spanning over 17 years in Academia
and Industry. He is principal investigator and grant holder in research grants worth around
$6M in the areas of context-aware computing and artificial intelligence. He serves on the
international programme committees of conferences including International Conference on
Smart Homes & Health Telematics 2006, IEEE Pervasive Computing 2006, IEEE-ACM Web
Intelligence (2004—2006) and ACM Workshop on Continuous Archival & Retrieval of Personal
Experiences (2005-2006). He is a member of the BCS, IEEE and ACM.

Chris Nugent is a Senior Lecturer at the University of Ulster, in Jordanstown. He is an active
researcher and a member of numerous journal and conference committees. His research interests
include artificial intelligence; medical informatics; multivariate data analysis and neural
networks. Within these areas he has published over 120 papers in journals, books and
conferences and has recently co-edited a text in Personal Health Management Systems.

Alex Galis is a Visiting Professor in the Networks and Services Research Group of the
Department of Electronic and Electrical Engineering, University College London. He was
Principal Investigator of the MISA and FAIN projects and leading the UCL activities in the
MANTRIP, WINMAN, HARP, CONTEXT, E-NEXT, M-CDN, AMBIENT NETWORKS
projects — part of the European IST research programme. He has published four books Fast and
Efficient Context-Aware Services (John Wiley and Sons, 2006), Programmable Networks for IP
Service Deployment (Artech House, 2004), Deploying and Managing IP over WDM Networks
(Artech House, 2003), Multi-Domain Communication Management (CRC Press, July 2000), and
over 100 publications in the field of networks and services and distributed systems.

Copyright © 2007 Inderscience Enterprises Ltd.

4 K. Curran, M. Mulvenna, C. Nugent and A. Galis

1 Introduction

On 22 May 1973, a young man called Bob Metcalf authored
a memo that described ‘X-Wire’, a 3 Mbps common bus
office network system developed at Xerox’s Palo Alto
Research Center (PARC). It was also called the Alto Aloha
Network protocol, but it became more commonly know as
Ethernet. There are few networking technologies from the
early 1970s that have proved to be so resilient. Metcalf
deservedly went on to everlasting fame in the networking
community (Metcalf, 1995) and also founded the global
company 3COM, and his story could have ended here.
However, in 1995, he predicted that the internet would
self-destruct from overload (Metcalf, 1995). His argument
was that network load (messages, packets) are growing
exponentially, while network bandwidth (fibre capacity,
switch performance) is growing linearly and at some point,
these two curves cross and the result being that demand will
exceed capacity. This prediction has not entirely come true.
The anecdote is used here not to contradict a great
researcher, but rather to serve as a warning to those of us
who think that we know how a complex entity such as the
internet is about to behave in the near or distant future.

Modern networks offer end-to-end connectivity.
However, the increasing amount of traditional, offered
services may still not fulfil the requirements of ever
demanding distributed applications and must therefore be
enriched by some form of increased intelligence in the
network. This is where the promise of autonomous systems
comes into play. Autonomous systems are capable of
performing activities by taking into account the local
environment and adapting to it. No planning is necessarily
required; therefore autonomous systems simply have to
make the best of the resources at hand. Locality in this
scenario is no longer geographical, but rather the
information and applications depend on the boundary of the
autonomous communicating element, which may be
distributed over a wide area.

One of the main drivers indeed behind autonomous
systems is that the industry is finding that the cost of
technology is decreasing; yet Information Technology (IT)
costs are not (i.e., IT gap). Also, as systems become more
advanced, they tend to become more complex and
increasingly difficult to maintain. To complicate matters
further, there has been, and for the foreseeable future, will
be, a scarcity of IT professionals to install, configure,
optimise and maintain these complex systems.

One other important driver behind autonomous system
is the increasing network operational costs and the cost of
introduction of new services (i.e., Service Gap). The rapid
deployment of IT infrastructure technology and hardware,
and its accelerating increase in performance (each
generation improves by a factor of 1.5-2 per annum), gives
rise to new challenging problems. On the one hand, the
availability of computation performance and network
bandwidth at a reasonable cost stimulates demand for
products with more functionality and the demand for

increasingly powerful services. On the other hand,
developers cannot keep up with the demand for software,
resulting in an ever-increasing Service Gap: the time lag and
high cost of adapting/engineering end-system software, and
the diversion of highly qualified staff to ‘administrative’
functions.

The main reason for this Service Gap, and the mismatch
between technological potential and its realisation as
software and services, is to be found in the separation
between computational and communication resources and in
the lack of focus on complexity. Complexity is currently the
main factor preventing highly qualified workers from being
productive, since many of them are occupied with system
administration, configuration and maintenance, resulting in
costs but no return of investment. At the same time,
complexity limits developers’ productivity, since it
increases project timescales, and encourages specialisation
and inflexibility. It is widely agreed that the high costs of
the initial project stages and its associated administrative
overheads, inhibit the future growth of IT and its advance
into new areas. If software and services are to progress at a
faster pace than computational performance and bandwidth,
which is the only way to narrow the Service Gap, managing
complexity becomes the key issue. In part, because of the
Service Gap, these deficiencies remain to be addressed, and
their solution using traditional technology is not getting
nearer.

Therefore, the aim of autonomic systems is to reduce the
amount of maintenance and management needed to keep
systems working as efficiently as possible, as much of the
time as possible. That is, it is about making systems
self-managing for a broad range of activities. Trends in
network design, which support the need for more ‘open
networks’, include the increasing popularity of component
architectures that reduce development time and offer
freedom with choice of components. This allows alternative
functionality to be deployed in various scenarios to combat
differing Quality of Service (QoS) needs. Another trend is
introspection, which provides run-time system information
allowing applications to examine their environment and act
accordingly. The middleware provides an infrastructure for
building adaptive applications that can deal with drastic
environment changes. The internet with its multiple
standards and interconnection of components such as
decoders, middleware, databases, etc., deserves more than a
plug, try and play mentality. The introduction of mobility
increases the complexity, owing to the proliferation in
possible actions. A key goal for the next generation internet
is to provide a principled means of allowing the underlying
infrastructure to be adapted throughout its lifetime with the
minimum of effort, thus the principles of autonomic
computing provides a means of coping with change in a
computing system, as it allows access to the implementation
in a principled manner. This paper is an attempt to more
clearly identify the need for autonomous systems, their
architecture, the path of evolution from traditional network
elements and the future of such systems.

Challenges and research directions in autonomic communications 5

2 The nature of the beast

The internet is comprised of close to a billion daily users,
each of whom can potentially communicate. Hosts can be
anything from desktop computers and WWW servers, to
non-traditional computing devices, such as mobile phones,
surveillance cameras and web TV. The distinction between
mobile phones and Personal Digital Assistants (PDAs) has
already become blurred with pervasive computing being the
term coined to describe the tendency to integrate computing
and communication into everyday life. New technologies
for connecting devices like wireless communication and
high bandwidth networks make the network connections
even more heterogeneous. Additionally, the network
topology is no longer static, owing to the increasing
mobility of wusers. Ubiquitous computing is a term
often associated with this type of networking (Schmidt
et al., 2002b; Tanter, 2002). Thus a flexible framework is
necessary in order to support such heterogeneous
end-systems and network environments.

The internet is built on the DARPA protocol suite
Transmission Control Protocol/Internet Protocol (TCP/IP),
with [P as the enabling infrastructure for higher-level
protocols such as TCP and the User Datagram Protocol
(UDP). The IP is the basic protocol of the internet that
enables the delivery of individual packets from one host to
another. It makes no guarantees about whether or not the
packet will be delivered, how long it will take, or if multiple
packets will arrive in the order they were sent. Protocols
built on top of this add the notions of connection and
reliability. One reason for IP’s tremendous success is its
simplicity. The fundamental design principle for IP was
derived from the ‘end-to-end argument’, which puts
‘smarts’ in the ends of the network — the source and
destination network hosts — leaving the network ‘core’
dumb. IP routers at intersections throughout the network
need do little more than check the destination IP address
against a forwarding table to determine the ‘next hop’ for an
IP datagram (where a datagram is the fundamental unit of
information passed across the internet). However, the
protocols underlying the internet were not designed for the
latest generations of networks, especially those with low
bandwidth, high error losses and roaming users, thus many
‘fixes’ have arisen to solve the problem of efficient data
delivery (Saber and Mirenkov, 2003).

Mobility requires adaptability, meaning that systems
must be location-aware and situation-aware taking
advantage of this information in order to dynamically
reconfigure in a distributed fashion (Solon et al., 2005).
However, situations in which a user moves an end-device
and uses information services can be challenging. In these
situations, the placement of different cooperating parts is a
research challenge. The heterogeneity is not only static, but
also dynamic as software capabilities, resource availability
and resource requirements may change over time.
The support system of a nomadic user must distribute, in an
appropriate way, the current session among the end-user
system, network elements and application servers.
In addition, when the execution environment changes in an

essential and persistent way, it may be beneficial to
reconfigure the cooperating parts. The redistribution or
relocation as such is technically quite straightforward, but
not trivial. On the contrary, the set of rules that the detection
of essential and persistent changes is based on, and indeed
the management of these rules is a challenging research
issue, which to date has not been solved by the traditional
‘smarts in the network’ approach.

3 The traditional approach

A bare bones traditional communication system can be seen
as consisting of three layers, as illustrated in Figure 1. End
systems inter-communicate through layer T, the transport
infrastructure. The service of layer T is a generic service
corresponding to layer two, three or four services in the OSI
Reference Model. In layer C, the end-to-end communication
support adds functionality to the services in layer T. This
allows the provision of services at the layer A for distributed
applications (A—C Interface). Layer C is decomposed into
protocol functions, which encapsulate typical protocol tasks
such as error and flow control, encryption and decryption,
presentation coding and decoding among others. A protocol
graph is an abstract protocol specification, where
independence between protocol functions is expressed in the
protocol graph. If multiple T services can be used, there is
one protocol graph for each T service to realise a layer C
service. Protocol functions (modules) can be accomplished
in multiple ways, by different protocol mechanisms, as
software or hardware solutions with each protocol
configuration in a protocol graph being instantiated by one
of its modules (Plagemann et al., 1995).

Layering is a form of information hiding where a lower
layer presents only a service interface to an upper
layer, hiding the details of how it provides the service.
A traditional network element such as the above could form
part of the architecture of an adaptable middleware. Here
the flexible protocol system could allow the dynamic
selection, configuration and reconfiguration of protocol
modules to dynamically shape the functionality of a
protocol in order to satisfy application requirements or adapt
to changing service properties of the underlying network.
Some uses that these dynamic stacks may be used for could
include increasing throughput where environmental
conditions are analysed and heuristics applied to decide if
change would bring about optimal performance. Many such
dynamically reconfigurable conventional middleware
systems exist (Becker et al., 2003; Blair et al., 2001;
Ledoux, 1999), which enable systems to adapt their
behaviour at runtime to different environments and
application requirements. The resource restrictions on
mobile devices prohibit the application of a fully-fledged
middleware system, therefore one traditional approach is to
restrict existing systems and provide only a functional
subset (Object Management Group, 2002), which leads to
different programming models or a subset of available
interoperability protocols. Another option is to structure the
middleware in multiple components, such that unnecessary

6 K. Curran, M. Mulvenna, C. Nugent and A. Galis

functionality can be excluded from the middleware
dynamically. One such example is the Universally
Interoperable Core UIC (Roman et al., 2001), which is
based on a micro-kernel that can be dynamically extended
to interact with various middleware solutions, but the
protocol is determined prior to communication and dynamic
reconfiguration is not possible. However, even in the
case of most existing dynamically reconfigurable
middleware, which concentrate on powerful reconfiguration
interfaces — the domain that they are applied in is simply too
narrow (e.g., Multimedia Streaming). It seems that future
proofing for future uses is not built in. It must be noted that
the authors are not claiming that this is trivial, rather an
alternative approach for handling change in complex
networks seems called for.

Figure 1 Three layer model

Application Application

C senvice
access point

AC interface
| Protocal
function
End-to-End
communication C
suport r— Dependency
CT interface T service
aceess point

Transport infrastructure T

Source: Plagemann et al. (1995)

4 The need for ‘open networks’

The internet at present is limited as it attempts to cater for
the masses. Its rich end system functionality leads to
high management overhead with much manual
configuration, diagnosis and design (Clark et al., 2003).
The next generation internet must obviously be ‘backward’
compatible, but it should seek to possess the ability to
‘know’ what it is being asked to do. It should also have a
high-level view of its design goals and the constraints on
which configurations are acceptable.

In other words, we need to separate the functional
requirements of the network (what it does) from the
non-functional requirements (how it does it). The goal is to
overcome the limitations of the black box approach to
software engineering, and to open up key aspects of the
network infrastructure. This must, however, be achieved in
such a way that there should be a principled division
between the functionality they provide and the underlying
implementation. The former can be thought of as the base
interface of a module and the latter as a meta-interface. This
allows a principled means of achieving an ‘open’ network.
In an open network, the benefits are that it can bring
modifications or extensions to itself by virtue of its own
computation. It can ‘think about itself’, thus giving the

possibility to enhance adaptability and to better control
the applications that are based on top of it. By possessing
the ability to ‘think’, we mean that significant benefits can
be achieved in terms of monitoring key events (inspection),
adapting components to changing circumstances
(adaptation), and reconfiguring systems to meet new
requirements (extension) (Blair, 1998).

For this, two different levels are needed: a base-level
related to the functional aspects, i.e., the code concerned
with computations about the underlying network, and a
meta-level handling the non-functional aspects, i.e., the
code supervising the execution of the functional code for
each node (Villazén, 2000). An open network therefore
naturally supports inspection, and adaptation for all
applications residing on top. The inspection process takes
place in the middleware; more specifically, it is realised by
means of Meta-Object Protocols (MOP). Meta-objects
within the Middleware framework are able to inspect the
behaviour of an underlying application object known as
base-objects, by viewing them as an abstract process.
A meta-object is also able to control the behaviour of its
base-objects by implementing crucial strategy issues such as
fault tolerance or security. A MOP defines the set of
meta-objects, as well as the interactions between them,
thus representing the way applications are executed
(Truyen et al., 2005). Therefore applications are the ability
to observe the occurrence of arbitrary events in the
underlying network, and ultimately allow each application
to adapt the internal behaviour of the system, either by
changing the behaviour of an existing service (e.g., tuning
the implementation of message passing to operate
more optimally over a wireless link), or dynamically
reconfiguring the system (e.g., inserting a filter object to
reduce the bandwidth requirements of a communications
stream). Such steps are often the result of changes detected
during inspection.

An open network as proposed here is similar to the
MOP defined by Maes (1987). The concept of open
implementation has been investigated by a number of
researchers, most notably (Kiczales et al., 1997; Coady and
Kiczales, 2003). In networking, where applications can
adapt the end-to-end path to particular requirements using
code within intermediate proxies, reflection is an interesting
mechanism that can be exploited to dynamically integrate
non-functional code to an active network service.
An increasing number of algorithms used in classical
network models or classical distributed systems have been
adapted to take into account benefits of reflective code such
as Active Multicast (Lehman and Tennenhouse, 1998) and
Adaptive Routing (Curran and Parr, 2004). Thus, the
flexibility of the active model is exploited, but on the other
hand, the complexity of software design is increased. As a
result, the composition of active components becomes
difficult and service designers integrate in the code aspects
that are not directly related to the core functionality of each
component (Villazéon, 2000). For example, tracing
the behaviour of active packets and examining how
they interact with various execution environments is a

Challenges and research directions in autonomic communications 7

non-functional aspect that crosscuts the original design of
the component and is often integrated in several parts of the
software. The slotting-in of such code, in most cases implies
halting the component, integrating the changes, recompiling
and redeploying the new component. This leads to a need
for a clean solution for structuring services in order to
separate those orthogonal aspects. The original problem, for
instance with tracing packets above, is that relevant trace
code is spread in several parts of the component, implying
modification of the component in many places. Tracing can
be seen as non-functional (or orthogonal, i.e., that which is
other than core functionality of the component); therefore
the non-functional code should be delegated to the
meta-objects and the core-code to the base objects. This
allows each component to be implemented without taking
non-functional aspects into account, thus creating
components with cleaner and more manageable code
(Villazén, 2000).

5 The need for service-aware networks

The aim of service-aware networking to improve the
capability of a network infrastructure (Bastide et al., 2000;
Beddus et al., 2000; Suzuki and Suda, 2004; Veytser, 2004;
Biswas et al., 2000) in order to better support
services (in terms of resource management, content
distribution, flexibility, = programmability, protocol
adaptation, reusability, scalability, reliability, security, etc.)
is an always timely objective. A first attempt to solve the
problem by using the principle of separation of concerns
was already included in the OSI model and involved placing
service support functions in the top three layers (session
layer, presentation layer, application layer). However, the
market chose for the simplicity of TCP and against
OSI. Choosing a rather primitive version of network
infrastructure has in some sense reopened the area of service
support middleware. CORBA (Bastide et al., 2000; CORBA
Components, 2005; Vinoski, 2000) was a major step in this
direction as was Java Remote Method Invocation (Java
RMI) (Franti and Stal, 1998). Java RMI enables a
programmer to create distributed Java-based to Java-based
applications and services, in which the methods of remote
Java objects can be invoked from other Java virtual
machines, possibly on different hosts. DCOM (Franti and
Stal, 1998) is Microsoft’s product for distributed component
support. Java-based network execution environments
provide the mechanisms for network deployment and
management of service components (Galis et al., 2004).

In the same direction, ‘service architecture’ is a concept,
which mainly tries to exploit modular design and
reusability, but complex service architectures, like TINA
(TINA-C, 2005) have in practice met lukewarm reception,
probably owing to their complexity and the lack of timely
production of support tools. The Parlay API enables both
third parties and network operators to build new
applications that rely on real-time control of network
resources. The ‘Java APIs for integrated networks’ (JAIN)
Community has defined a Java version of the Parlay API to

bring the benefits of the Java language to the Parlay API
(Beddus et al., 2000).

One approach towards service-aware networks is based
on Overlays (Ratnasamy et al., 2001; Ratnasamy, 2002,
Rowstron and Drushel, 2001a; Ritter et al., 2005;
Subramanian et al., 2004; Braynard et al., 2002; Abraham
et al., 2003; Andersen et al., 2001). Overlay networks strive
for a clear border (Castro et al., 2002; Bassi et al., 2002;
Clarke et al., 2003; Gao and Steenkiste, 2004; Ghosh et al.,
2000), below which, any trick is permitted to provide the
overlay abstraction, and above which, applications should
not have to care about the underlying ‘real’ network
infrastructure. In overlay networks, a set of nodes (servers,
end-user equipment, etc.) and virtual links, not directly
related to the underlying network topology, are involved in
specific applications. The overlay traffic traverses through
the overlay nodes and virtual links. Therefore, an overlay
network acts as a specialised middleware. Two elements
have to be considered:

e techniques to efficiently map the overlay abstraction to
the underlying resources

e the management of the overlay, i.e., the mapping
policy, configuration and reconfiguration, performance
monitoring, etc.

The beauty of overlays is that they can be customised for a
single service or a service family, thus creating a variety of
overlays. One way to create multiple overlays is by
inheritance, i.e., network instances are generated from a
parent virtual network by inheriting signalling protocols and
communication services. This method is used in Genesis
(Campbell et al., 1999).

The separation between services (applications) and
network infrastructure results in some loss of interaction
(and control) between the two layers; the active network
technology offers some remedy to this inefficiency. Active
and programmable networks (Wetherall et al, 1998; Galis
et al., 2004; Biswas et al., 1998, 2000; Brunner and Stadler,
2002; Calvert et al., 1998; Kirstein et al., 2002) can be used
in conjunction with overlays for the benefit of applications.
Active networks are ‘active’ in two ways: routers and
switches within the network can perform computations on
user data flowing through them; and users can ‘program’ the
network, by supplying their own programs to perform these
computations. Active and programmable networks (Calvert
etal., 1998; Galis et al., 2004; Raz and Shavitt, 2000; Smith
et al.,, 1999; Moore et al., 2001; Schmidt et al., 2002a;
Tsarouchis et al., 2003; Vicente, 2001; Vivero et al., 2002;
Wang and Touch, 2002; Wetherall et al., 1998; Yang et al.,
2003) can rely on active packets (i.e., carrying executable
code) or active nodes (the code resides in the nodes, but it is
initiated by commands in the packets), or both. The
pre-1999 situation is exposed in detail in Montz’s report
(Montz et al., 1995), in which network management
(Tullmann et al., 2001), quality of service (Yan and Mabo,
2004), reliable multicasting, web caching, congestion
control and security have already been identified as
applications, which can benefit from the active network

8 K. Curran, M. Mulvenna, C. Nugent and A. Galis

approach. Since then, quite a few active network approaches
and related products have appeared. The Darwin (Chandra
et al., 2001) and FAIN (Galis et al., 2000) projects rely on
code that is sent by applications or service providers to
network nodes to implement customised management of
their data flows. Darwin code is executed on designated
routers and can affect resource management through a
control Application Programming Interface (API) (Montz et
al., 1995; Chandra et al., 2001). X-Bone (Smith et al., 1999)
discovers, configures, and monitors network resources to
create overlays over existing IP networks (Stoica et al.,
2001a). Anetd (2001) is software that supports the
configuration and operation of the Active Networks
Backbone (Berson, 2002). ANON (Schmidt et al., 2002a) is
more suitable for overlays than Anetd, with which it has
certain similarities, but it relies on existing products, i.c., on
Lynx for web access, on PGP for encryption and on the
UNIX toolbox. Network management has always been an
important application for active networks (Eaves, 2002).
ABLE (2000) is an active engine, which can be used to
allow fast and easy deployment of distributed network
management applications in IP networks (NetBSD, 2000).
In the itmBench (Veytser, 2004), traffic control applications
could be developed on one node or across an overlay of
nodes, either using a kernel API so they run in kernel space,
or using a user-space API so they run in user space. Active
node scalability and the related API are presented in
Wang et al. (2002). The active network API of CANES
(Bhattacharjee et al., 2002) is used for composing complex
services out of components.

An application area that has recently received strong
attention in the areas of service engineering and ambient
intelligence is context awareness (Salber et al., 1999;
Dey, 2001; Dey and Abowd, 2000; Chen and Kotz, 2000;
Chen et al., 2003; Korpipéa et al., 2003; Serrat et al., 2004;
Yang and Galis, 2003; Yang et al., 2003; Xynogalas et al.,
2004). Context-aware service provision over an active
network infrastructure is a new area (Yang et al., 2003,
Pascoe et al., 1999). Programmable networks are not only
capable of providing additional control to the service layer,
but they can also provide network-related context.

A large number of peer-to-peer overlay network designs
(de Meer and Tutschku, 2002; de Meer et al., 2003;
Schollmeier, 2001; Stoica et al., 2001a, 2001b; Yang et al.,
2002; Singla and Rohrs, 2002; Braynard et al., 2002) have
been proposed recently, such as CAN (Abraham et al.,
2003), Chord (Stoica et al., 2001a), Freenet (Clarke et al.,
2000), Gnutella (Gnutella, 2001; Ly et al., 2002; Klingberg
and Manfredi, 2002; Anonymous, 2001; Harvey, 2004;
Stokes, 2003), Pastry (Rowstron and Druschel, 2001b),
Salad, Tapestry, Viceroy, SkipNet (Ghosh et al., 2000). The
main feature of peer-to-peer networks is that they enable
service components deployment (e.g., content services and
CDN - Content Distribution Networks) in a flexible,
scalable and decentralised way. A key function that these
networks enable is a distributed hash table, which allows
data to be uniformly diffused over all the participants in the

peer-to-peer system. The basic approach in systems like
Chord and Pastry is to diffuse content randomly throughout
an overlay in order to obtain uniform, load-balanced,
peer-to-peer behaviour. In Chord, Pastry and Tapestry the
expected number of hops between any two communicating
nodes scales with log N. In SkipNet, data is uniformly
distributed across a well-defined subset of the nodes in a
system, such as all nodes in a single building. Overlays have
also appeared over grids (Andersen et al., 2001; Keahey et
al., 2002; Korpela et al., 2001). Keahey et al. (2002)
presents a dynamic overlay of active network routers to
accomplish scalable time management in a grid
environment, while Anderson (Andersen et al., 2001) deals
with topology awareness.

Related work in the area of generic interfaces, protocols
and frameworks that facilitate the creation of generic
overlay networks and peer-to-peer applications, has
developed the Opus overlay utility (Braynard et al., 2002),
and the JXTA technology (SUN Microsystems, 2005). Opus
is a large-scale overlay utility service that provides a
common platform and the necessary abstractions for
simultaneously hosting multiple distributed applications.
Opus allocates available nodes to meet the requirements of
competing applications based on dynamically changing
system characteristics. Opus offers QoS characteristics by
using Service Level Agreements to dynamically allocate
utility resources among competing applications.

Introduced by Sun Microsystems, JXTA technology is a
set of open, generalised peer-to-peer protocols that allows
any connected device (cell phone to PDA, PC to server) on
the network to communicate and collaborate. The main
requirement based on which JXTA was developed is
interoperability among devices and networks. Both
technologies, although they define a generic methodology
for creating a variety of overlay applications do not provide
or utilise information regarding the status of the underlying
network.

Issues to be explored in the service-aware networks
include service discovery (Gao and Steenkiste, 2004),
self-management and other autonomic behaviour (Suzuki
and Suda, 2004), resource optimisation, quality of service
(Abraham et al.,, 2003; Subramanian et al., 2004;
Yan and Mabo, 2004) survivability (even in the presence
of malicious adversaries (Abraham et al., 2003),
service roaming and service federation (Machiraju
et al., 2003), Quality of Context (QoC) (Buchholz et al.,
2003) and service composition (Ocampo et al., 2005).

6 The autonomic communications solution

The first main aim of autonomous computing and
communication systems is that they manage complexity,
possess self-knowledge, continuously tune themselves,
adapt to unpredictable conditions, prevent and recover from
failures, and provide a safe environment (Murch, 2004;
ACF, 2005).

Challenges and research directions in autonomic communications 9

e The autonomic nervous system frees our conscious
mind from self-management and is the fundamental
point of autonomic computing, thus ‘freeing’ up system
administrators and normal users from the details of
system operation and maintenance. If a program can
deal with these aspects during normal operation, it is a
lot closer to providing users with a machine that runs
24 x 7 and has optimal performance. The autonomic
system will change anything necessary to keep running
at optimum performance, in the face of changing
workloads, demands and any other external conditions
it faces. It should be able to cope with software and or
hardware failures whether they are because of an
unforeseen incident or malicious acts.

¢ Installing and configuring systems can be extremely
time consuming, complex and can be open to human
error, no matter how qualified the administrator is.
Autonomic systems could configure themselves
automatically by incorporating new components
seamlessly.

e Modern systems may contain large amounts of different
variables/options/parameters, which a user is asked to
change to optimise performance. Few people, however,
know how to use these and even fewer know how to
modify them to attain 100% performance. An
autonomic system could continually monitor and seek
ways of improving the operation and efficiency of the
systems in terms of both performance and/or cost. It is
faster at this than a person and is able to dedicate more
time to finding ways of improving performance.

e Autonomic systems are designed to be self-protecting,
able to detect hostile or intrusive acts as they occur and
deal autonomously with them in real time. They can
take actions to make themselves less vulnerable to
unauthorised access. Self-protected systems will
anticipate problems based on constant readings taken
on the system, as well as being able to actively watch
out for detailed warnings of attacks from internet
sources. They will take steps from such reports to avoid
or mitigate them (Murch, 2004).

The characteristics stated above, all come together to help a
system run more efficiently while reducing costs owing to
less human input.

Autonomic computing

The IBM Autonomic Computing Toolkit' enables
developers to add self-configuring and other autonomic
capabilities to their software systems. The Autonomic
Computing Toolkit is a collection of technologies, tools,
scenarios, and documentation that is designed for users
wanting to learn, adapt, and develop autonomic behaviour in
their products and systems. Microsoft aims to develop
self-healing, autonomic computing under its Visual
Studio product line and presently claim to be in the process
of software releases designed to reduce data centre
complexity.

Autonomic communications

The key aim of autonomous communication systems
is that they exhibit self-awareness properties, in
particular self-contextualisation, self-programmability and
self-management (i.e., self-optimisation; -organisation;
-configuration; -adaptation; -healing; and -protection) as
depicted in Figure 2.

e Self-contextualisation. According to (Dey and Abowd,
2000; Dey et al., 1999; Dey, 2001), context is any
information that can be used to characterise the
situation of an entity (a person or object) that is
considered relevant to the interaction between a user
and an application. A context-aware system (Bucholtz
et al., 2003; Chen and Kotz, 2000; CoolTown, 2004;
Fang and McDonald, 2002; Gray and Salber, 2001;
Kanter, 2002; Chen et al., 2003) is capable of using
context information, ensuring it successfully performs
its expected role, and also maximises the perceived
benefits of its use. Nevertheless, this is a user-centric
view and reflects the fact that most research on context
and context-awareness up to now has been focused on
‘user context’. In contrast, a new generation network
gives context a much broader scope and renders it
universally accessible as a basic commodity provided
and used by the network. In this way context becomes a
decisive factor in the success of future autonomous
rule-based systems adaptive to changing conditions.
As such, contextualisation is a service/software
property (Crowcroft et al., 2003; Brown et al., 1997,
FIPA, 2002; Gray and Salber, 2001; Kanter et al., 2000;
Kindberg and Barton, 2002; Kitamura et al., 2001).
Self-contextualisation is the ability of a system to
describe, use and adapt its behaviours to its context;
meanwhile, it does not have to be aware of any other
form of context knowledge. However, a
context-aware system is a system that acts based on
knowledge of a certain context. Network context for
supporting service/software components should be
made available, so that multiple service/software
components may take advantage of the available
network context. In order to do so in the complex
environment of the large and heterogeneous internet,
the service/software component must be equipped with
certain self-management capabilities. Once a
service/software component becomes context-aware
(Serrat et al., 2004; Yang et al., 2003; Yau and Karim,
2003, 2004; Salber et al., 1999; Korpipaa et al., 2003;
Mendes et al., 2003; Perkins, 2002; Samann and
Karmouch, 2003), it can make use of context
information for other self-management tasks that
depend on context information.

e Self-programmability. Recent research on distributed
systems and network technologies has focused on
making service networks programmable. The objectives
of programmable service networks are to take
advantage of network processing resources and to
promote new service models allowing new business

10 K. Curran, M. Mulvenna, C. Nugent and A. Galis

models to be supported (Galis et al., 2003, 2004; Gelas
and Lefevre, 2002; Leslie et al., 2000; Vicente et al.,
2000). The resulting service models do not, however,
target development of services, but, rather, their
deployment. Dynamic service programming applies to
executable service code that is injected into the
autonomic system’s elements to create the new
functionality at run-time. The basic idea is to enable
third parties (users, operators, and service providers) to
inject application-specific services into the Autonomic
System’s platform. Applications and services are thus
able to utilise required network support in terms of
optimised network resources, and as such, they can be
said to be network-aware, i.€., a service-driven
network. Self-programmability means that network
programmability is following autonomous flows of
control, triggered and moderated by network

events or changes in network context. The network is
self-organised in the sense that it autonomically
monitors available context in the network, and provides
the required context and any other necessary network
service support to the requested services, and
self-adapts when context changes.

o Self-management. Management is an essential topic
when dealing with utilisation of network context
information for supporting services (Brunner et al.,
2001; Galis et al., 2004; Fonseca et al., 2001,
Goldszmidt and Yemini, 1995; Schwartz et al., 1999;
Sloman and Lupu, 1999; Sloman, 1994; Yemini et al.,
2000; de Vergara, 2003) and contextualised services
(DeVaul et al., 2001; Gray and Salber, 2001; Yang and
Galis, 2003; Yang et al., 2003). Managing context from
the perspectives of the context information provider
means dealing with a number of processes related to
manipulation of network context information. For
instance, the creation, composition and inference of
context of diverse quality; also QoC-based storage,
distribution and caching are relevant. Clearly, a context
source must be trustworthy and the information it
provides must be sufficiently precise for the task in
hand, and, in this way, the new concept of QoC
becomes important.

Figure 2 Autonomic systems: self-properties and intelligent
control loop

Autonomic
Communications

Programmable Service \
Infrastructure

| teorkavare
L

Y

Service-aware

A set of eight capabilities can be considered to
characterise an autonomous system. Among these
autonomous capabilities, self-optimisation, self-organisation,
self-configuration and self-adaptation are highly relevant.
Moreover, the management of network context information
must be addressed in the framework of the autonomous
computing paradigm. This means that a key element for
contextualisation is the addition of intelligence and
self-management capabilities to facilitate network context
self-management and thus eliminating unnecessary
multi-level configurations as in conventional hierarchical
management systems. With such embedded intelligence, it
is only necessary to write or specify the high-level design
goals and management constraints, so that the network and
service overlay should make the low-level decisions on its
own. The system should reconfigure itself according to
changes in the high-level requirements (i.e., use of cognitive
and knowledge network principles). This requires the ability
to express rules within each configuration level and also
between levels. Currently, network management faces many
challenges: complexity, data volume, data comprehension,
changing rules, reactive monitoring, resource availability,
and others. Self-management aims to automatically perform
these tasks, including the following:

e Self-optimisation. In the large and heterogeneous
internet, heterogeneous and distributed network context
information and resources and their availability are
rapidly changing. There is a need for an autonomous
tool for consistent monitoring and control of network
context information and resources, so that
service/software components may be executed or
deployed in the most optimised fashion. Autonomic
systems must seek to improve their operation every
time. They must identify opportunities to make
themselves more efficient from the point of view of
strategic policies (performance, cost, etc.).

o Self-organisation. Network elements and context
information and resources are distributed across
heterogeneous networks. In order for services to
make use of this distributed information and resources,
they must be structured or referenced in an
easy-to-access-and-retrieve structure in an automatic
fashion. All these network context information and
resources must be autonomously organised and
reserved through a service layer. The autonomous
structuring of network context information and
resources is the essential work of self-organisation.

o Self-configuration/self-adaptation. It enables
autonomous structuring of network context information
and resources, making them available to services. User
services and the underlying supporting services must be
reconfigured in order to make use of new network
context information and resources. The new network
context information and resources also trigger changes
such as reconfiguration in the network context-aware
overlay. Self-configuration is therefore desirable.
Autonomic Systems aim at developing and assessing a

Challenges and research directions in autonomic communications 11

novel open programmable infrastructure for enabling
self-configuration. Autonomic Systems must configure
themselves in accordance with high-level policies
representing service agreements or business objectives,
rules and events. When a component or a service is
introduced, the system will incorporate it seamlessly,
and the rest of the system will adapt to its presence.

In the case of components, they will register themselves
and other components will be able to use it or modify
their behaviour to fit the new situation.

e Self-healing. Autonomic Systems will detect, diagnose
and repair problems caused by network or system
failures. Using knowledge about the system
configuration, a problem-diagnosis embedded
intelligence would analyse the monitored information.
Then, the network would use its diagnosis to identify
and enforce solutions or alert a human in the case
of no solutions being available.

e Self-protection. There are two ways in which an
Autonomic System must self-protect. It must defend
itself as a whole by reacting to, or anticipating,
large-scale correlated problems arising from malicious
attacks or cascading failures that remain uncorrected
by self-healing measures.

The realisation of self-awareness properties revolves around
increasing the level of automation of the intelligent control
loop (Figure 2) described as Collect-Decide-Enforce.

e ‘Collect’ is about monitoring that allows constructing
a picture about the surrounding environment in order to
build self-awareness.

e ‘Decide’ involves inference and planning. The former
refers to a process whereby the problem is diagnosed
based on the collected information while the latter
refers to the process whereby a solution is selected.

e ‘Enforce’ comprises deployment, which adds
functionality by means of new components, and
configuration, which changes the existing functionality
by means of programmability of networks.

The realisation of this intelligent loop eventually leads to a
distributed, adaptive, global evolvable system capable of
fostering continuous changes as depicted in Figure 2.

7 Building upon nature

It is proposed here that Autonomic Network Elements
should singularly and collectively utilise the current
situation of their context (i.e., become situation aware).
Context here might be a mobile user (e.g., Doctor) requiring
a certain quality of service over a GPRS network (perhaps
urgently) or a network, which is fighting off a distributed
denial of service attack. Therefore, to become aware of the
situation, in which each node finds itself, there must be
some form of global knowledge available to ‘one and all’.
Knowledge should only reside where it is useful, however,

knowledge may be useful in multiple locations, therefore,
the rapid distribution of knowledge to ‘trouble spots’ is an
important issue in an autonomic network.

Autonomic communication elements (aka nodes) should
ideally exhibit what we term triple behaviour. They should
be Alert, Aware and Autonomic. That is to say that they
should be spontaneous/Ready for Action (Alert)
(situationally aware of the current situation (Aware) and, of
course, functionally independent (Autonomic).

We believe that the coordination activities among
nodes can occur via stigmergic mechanisms (Holland,
1996). The concept of stigmergy was introduced by Grassé
(1959) in the 1950s to describe the indirect communication
taking place among individuals in social insect societies.
Grasse showed that the regulation and coordination of the
building activity of termite nests do not depend on the
workers themselves, but is mainly achieved by the nest: a
stimulating configuration triggers a response of a termite
worker, transforming the configuration into another
configuration that may trigger in turn another, possibly
different, action performed by the same termite or any other
worker in the colony. The most important feature to
understand is how local stimuli are organised in space and
time to ensure the emergence of a coherent adaptive
structure, and to explain how workers could act
independently, yet respond to stimuli provided through the
common medium of the environment of the colony
(Theraulaz and Bonabeau, 1999).

The stigmergic approach is more lightweight than
the ‘Knowledge Plane’ approach (Clark et al., 2003).
The ‘Knowledge Plane’ is considered as an additional
network layer between the network and the application
layer, and it is the place in which nearly all network control
activities take place. The knowledge plane is populated by
heavyweight agents, managing and exchanging knowledge
about the current state of the network, and that directly
enact forms of control over both network and application
components. Using a stigmergic approach allows individual
nodes to both handle and manage knowledge without the
necessity of a global network plane. An autonomic
knowledge network in contrast to an overlay network in
peer-to-peer environments (Ratsanamy et al., 2002;
Rowstron and Druschel, 2001a) does not simply transport
data and messages, but rather exists to support nodes with a
situationally aware contextual intelligent update, in order to
adapt in the best way possible.

A similar method is Swarm Intelligence (SI)
(Bonabeau and Theraulaz, 2000). SI is the property of a
system whereby the collective behaviours of
(unsophisticated) agents interacting locally with their
environment cause coherent functional global patterns to
emerge. SI provides a basis with which it is possible to
explore collective (or distributed) problem solving without
centralised control or the provision of a global model. Thus
global robust adaptive self-organising behaviour can be
made to emerge in systems of a large number of lightweight
agents that indirectly interact, via the mediation of an
environment agent (Parunak et al., 2004), by depositing and

12 K. Curran, M. Mulvenna, C. Nugent and A. Galis

by sensing ‘pheromones’. A new type of cognitive
stigmergy thus arises and this can build on the intelligent
network of knowledge, thus leading to a more informed
method of self-organisation.

This stigmergic lightweight network memory could be a
machine-understandable XML-based syntax, comprising
different standards that maintain high semantic integrity and
coherence for the data and knowledge such as the Predictive
Modelling Mark-up Language (PMML) (Grossman et al.,
1999). PMML is an XML-based standard developed by the
Data Mining Group® with the aim of aiding model exchange
between different model producers and between model
producers and consumers. PMML provides the first
standard representation that is adhered to by all the major
data-mining vendors. The use of PMML within the network
context effectively decouples the self-adaptive engine from
the producer of the knowledge that it uses.

Any such memory would in essence be a collection of
rule sets that can maintain network policies, as well as
behavioural descriptions and policies, and meet the triple
behaviour as previously discussed. Through introspection
and mediation, each node can self-adapt to improve
performance depending on the context and needs of use. In
order to execute the behavioural knowledge, a scalable
high-performance engine is required. This is similar in
construct to a recommender engine, in that it is constantly
updating the rule bases based upon the application of
predictive algorithms on network behavioural data. A key
component is the detection by this engine of network trends
and subtle changes in data flows, for example (Black and
Hickey, 2003).

8 Conclusion

The key aim of autonomous communication systems
is that they exhibit self-awareness properties, in
particular self-contextualisation, self-programmability and
self-management. Autonomous systems are capable of
performing activities by taking into account the local
environment and adapting to it. We believe that a promising
avenue of research for coordination activities among nodes
can occur via methods that build upon techniques found in
nature, for example, stigmergic mechanisms. Further, the
concept of autonomic network knowledge can leverage the
traditional concept of stigmergy into a concept of
‘cognitive’ stigmergy where activities can be driven, not
simply by reacting to a local concentration of meaningless
pheromones, but can be driven by the actual knowledge
represented by the network of knowledge. Through
introspection and mediation, each node can self-adapt to
improve performance depending on the context and needs of
use. Thus, through a lightweight autonomic network model,
more informed semantic forms of self-organisation could be
reached by autonomic network elements collectively
utilising the current situation of their context with
knowledge residing where it is useful, often in multiple
locations allowing rapid distribution of knowledge to
‘trouble spots’.

These are possible research directions, worthy of
exploration in the emerging new area of autonomic
communications. While bio-inspired methods show much
promise, it yet remains to be seen if key issues such as
scalability, performance global-to-local coherence and other
issues can be addressed realistically.

References

Introduction

Autonomic Communication Forum
http://www.autonomic-communication.org.

Becker, C., Schiele, G., Gubbels, H. and Rothermel, K. (2003)
‘BASE — a micro-broker-based middleware for pervasive
computing’, Proceedings of the IEEE International
Conference on Pervasive Computing and Communication
(PerCom), Fort Worth, USA, July, pp.122-132.

Black, M. and Hickey, R. (2003) ‘Learning classification rules for
telecom customer call data under concept drift’, Soft
Computing, Vol. 8, No. 2, pp.102-108.

Blair, G. (1998) ‘The role of open implementation and reflection in
supporting mobile applications’, Proc. IEEE Workshop on
Mobility in Databases and Distributed Systems (MDDS 98),
Vienna, August, IEEE, pp.42—48.

Blair, G.S., Coulson, G. and Andersen, A. (2001) ‘The design
and implementation of OpenORB version 2°’, I[EEFE
Distributed Systems Online Journal, Vol. 2, No. 6,
pp.45-52.

Bonabeau, E. and Theraulaz, G. (2000) ‘Swarm smarts’, Scientific
American, March, pp.72-79.

Clark, D., Partridge, C., Ramming, C. and Wroclawski, J. (2003)
‘A knowledge plane for the internet’, Proceedings of the 2003
ACM SIGCOMM Conference, Karlsruhe (D), ACM Press,
pp-3-10.

Coady, Y. and Kiczales, G. (2003) ‘Back to the future: a
retroactive study of aspect evolution in operating system
code’, Proceedings of Aspect Oriented Systems Development
AOSD, Boston, Massachusetts, pp.138—146.

Curran, K. and Parr, G. (2004) ‘Introducing IP domain flexible
middleware stacks for multicast multimedia distribution in
heterogeneous environments’, MATA 2004 — International
Workshop on Mobility ~ Aware Technologies and

(ACF) (2005)

Applications, Florianopolis, Brazil, 20-22 October,
ISBN: 3-540-23423-3, p. 313, Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg,

ISSN: 0302-9743.

Grassé, P-P. (1959) ‘La Reconstruction du nid et les coordinations
inter-individuelles chez bellicositermes natalensis et
cubitermes sp. la theorie de la stigmergie: essai
d’interpretation du comportement des termites constructeurs’,.
Insectes Sociaux, Vol. 6, pp.41-81.

Grossman, R., Bailey, S., Ramu, A., Malhi, B., Cornelison, M.,
Hallstrom, P. and Qin, X. (1999) The Management and
Mining of Multiple Predictive Models Using the Predictive
Modeling Markup Language (PMML), AFCEA 1999
Conference, San Diego, CA, USA.

Holland, O.E. (1996) Multi-agent Systems: Lessons from Social
Insects and Collective Robotics, AAAI Spring.

Kiczales, G., Lamping, J., Videira Lopes, C., Mendhekar, A. and
Murphy, G. (1997) Open Implementation Design Guidelines,
Proceedings of International Conference on Software
Engineering, Boston Ma, May, pp.87-96.

Challenges and research directions in autonomic communications 13

Ledoux, T. (1999) ‘OpenCorba: a reflective open broker’,
Proceedings of the 2nd International Conference on
Reflection’99, Saint Malo, France, pp.197-214.

Lehman, L. and Tennenhouse, D. (1998) ‘Active reliable
multicast’, I[EEE INFOCOM ‘98, San Francisco, March,
pp-34-46.

Maes, P. (1987) ‘Concepts and experiments in computational
reflection’, OOPSLA 87, pp.147-155.

Metcalf, B. (1995) ‘Predicting the internet’s catastrophic collapse
and ghost sites galore in 1996, InfoWorld, December 4.

Murch, R. (2004) Autonomic Computing, IBM Press, Prentice Hall
PTR, ISBN: 013144025X.

Object Management Group (OMG) (2002) The Common Object
Request Broker: Architecture and Specification, Revision 3.0,
July.

Parunak, V., Brueckner, S. and Sauter, J. (2004) ‘Digital
pheromones for coordination of unmanned vehicles’,
Workshop on Environments for Multi-agent Systems
(E4MAS), LNAI 3374, Springer-Verlag, New York, USA.

Plagemann, T., Saethre, K.A. and Goebel, V. (1995) ‘Application
requirements and QoS negotiation in multimedia systems’,
Proceedings of Second Workshop on Protocols for
Multimedia Systems, Salzburg Austria, October, pp.123—-132.

Ratsanamy, S., Karp, B., Estrin, D., Shenker, S. (2002) ‘GHT: a
geographic hash table for data-centric storage’, /st ACM Int.l
Workshop on Wireless Sensor Networks and Applications,
Atlanta, Georgia, USA, September.

Roman, M., Kon, F. and Campbell, R. (2001) ‘Reflective
middleware: from your desk to your hand’, I[EEFE Distributed
Systems online Journal, Special issue on Reflective
Middleware, July, Vol. 2, No. 5, pp.32-40.

Rowstron, A. and Druschel, P. (200la) ‘Pastry: scalable,
decentralized object location and routing for large-scale
peer-to-peer systems’, I8th IFIP/ACM Conference
on Distributed Systems Platforms, Heidelberg (D),
November, pp.86-94.

Saber, M. and Mirenkov, N. (2003) ‘A multimedia programming
environment for cellular automata systems’, DMS 2003 — The
9th International Conference on Distributed Multimedia
Systems, Florida International University Miami, Florida,
USA, September 24-26, pp.104-110.

Schmidt, D., Natarajan, B., Gokhale, A., Wang, N. and
Gill, C. (2002a) ‘Tao: a pattern-oriented object request
broker for distributed real-time and embedded systems’,
IEEE Distributed Systems Online, Vol. 3, No. 2,
February, pp.1-20.

Solon, A., Mc Kevitt, P. and Curran, K. (2005) ‘TeleMorph:
bandwidth determined mobile multimodal presentation’,
Information Technology and Tourism, February, ISSN:
1098-3058, Cognizant Publishers, USA, Vol. 7, No. 1, pp.33-47.

Tanter, E., Vernaillen, M. and Piquer, J. (2002) Towards
Transparent Adaptation of Migration Policies, Position paper
submitted to EWMOS 2002, Chile, pp.34-39.

Theraulaz, G. and Bonabeau, E. (1999) ‘A brief history of
stigmergy’, Artificial Life, Vol. 5, No. 2, pp.97-116.

Villazén, A. (2000) ‘A reflective active network node’,
Proceedings of the Second International Working Conference
on Active Networks (IWAN 2000), Tokyo, Japan, October,
pp-120-132.

Service-aware networking

Bastide, R., Palanque, P., Sy, O. and Navarre, D. (2000) ‘‘Formal
specification of CORBA services: experience and
lessons learned’, ACM SIGPLAN Notices, Proceedings
of the 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
Vol. 35, No. 10, October, pp.92—-104.

Beddus, S., Bruce, C. and Davis, S. (2000) ‘Opening up networks
with JAIN parlay’, IEEE Communications Magazine, Vol. 38,
No. 4, April, pp.136-143.

CORBA Components (2005) Full Specification v3.0:
Document — formal/02-06-65, http://www.omg.org/
technology/documents/corba_spec_catalog.htm.

Franti, P and Stal, M. (1998) ‘An architectural view of
distributed objects and components in CORBA, Java
RMI and COM/DCOM’, Software-Concepts and Tools,
Springer-Verlag, Vol. 19, No. 1, June, pp.14-28.

Suzuki, J. and Suda, T. (2004) ‘Middleware support for super
distributed autonomic services in pervasive networks’, Proc.
of the International Symposium on Applications and the
Internet, SAINT 2004, Tokio, Japan, 26-30 January,
pp-375-381.

TINA-C (2005) http://www.tinac.com.

Truyen, E., Robben, B., Kenens, P., Matthijs, F., Michiels, S.,
Joosen, W. and Verbaeten, P. (2005) Open Implementation of
a Mobile Communication System, Dept. of Computer
Science — K.U.Leuven Technical Report; www.cs.
kuleuven.ac.be/~eddy/mp/smove.html.

Vinoski, S. (2000) ‘Introduction to CORBA’, Proceedings
of the 22nd International Conference on Software
Engineering, Limerick, Ireland, pp.826—827.

Overlay and peer-to-peer networks

Abraham, 1., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D. and
Pavlov, E. (2003) ‘A generic scheme for building overlay
networks in adversarial scenarios’, Proceedings of the 17th
International Symposium on Parallel and Distributed
Processing, 22-26 April, Nice, France, pp.212-218.

Andersen, D.G., Balakrishnan, H., Kaashoek, M.F. and Morris, R.
(2001) ‘Resilient overlay networks’, Proc. 18th ACM SOSP,
Banff, Canada, October, pp.131-145.

Anonymous (2001) Grut: Console Gnutella Client for Linux and
Windows, http://www.gnutelliums.com/linux_unix/gnut/.

Bassi, A., Beck, M., Moore, T. and Plank, J.S. (2002)
‘The logistical backbone: scalable infrastructure for global
data grids’, Proceedings of Asian Computing Science
Conference, Hanoi, Vietnam, Lecture Notes in Computer
Science, Vol. 2550/2002, Springer, December 4—6, pp.1-12.

Braynard, R., Kostic, D., Rodriguez, A., Chase, J. and Vahdat, A.
(2002) ‘Opus: an overlay peer utility service’, Proceedings of
the 5th International Conference on Open Architectures and
Network Programming (OPENARCH), June, New York,
USA, pp.3-21.

Campbell, A.T., de Meer, H.G., Kounavis, M.E., Miki K.,
Vicente, J. and Villela, D.A. (1999) ‘The genesis kernel:
a virtual network operating system for spawning network
architectures’, Proc. IEEE OPENARCH’99, New York,
March, pp.156-165.

14 K. Curran, M. Mulvenna, C. Nugent and A. Galis

Castro, M., Druschel, P., Kermarrec, A., Rowstron, A. (2002) One
Ring to Rule Them All: Service Discovery and Binding in
Structured Peer-to-Peer Overlay Networks’, SIGOPS, France,
September.

Clarke, O.I., Sandberg, B.W. and Hong, T.W. (2000) ‘Freenet: a
distributed anonymous information storage and retrieval
system’, Workshop on Design Issues in Anonymity and
Unobservability, July, pp.311-320.

de Meer, H. and Tutschku, K. (2002) ‘Dynamic operation in
peer-to-peer overlays’, Poster Presentation Supplement to the
Proceedings of Fourth Annual International Working
Conference on Active Networks, Zurich, Switzerland,
December 4-6, pp.183-192.

de Meer, H., Tutschku, K. and Tran-Gia, P. (2003) ‘Dynamic
operation in peer-to-peer overlay networks’, Praxis der
Informationsverarbeitung und Kommunikation, PIK Journal,
Special Issue on Peer-to-Peer Systems, June, pp.65-73.

Gao, J. and Steenkiste, P. (2004) ‘Design and evaluation of a
distributed scalable content discovery system’, IEEE Journal
on Selected Areas in Communications, Vol. 22, No. 1,
January, pp.54-56.

Ghosh, A., Fry, M. and Crowcroft, J. (2000) ‘An architecture for
application layer routing’, Active Networks, May, pp.71-86.

Gnutella (2001) http://www.gnutelliums.com/.

Harvey, N.J.A. and Munro, J.I. (2004) ‘Deterministic SkipNet’,
Information Processing Letters, Vol. 90, No. 4, May,
pp-204-208.

Keahey, K., Fredian., T., Peng, Q., Schissel, D., Thompson, M.,
Foster, 1., Greenwald, M., McCune, D. (2002) ‘Computational
grids in action: the national fusion collaboratory’, Future
Generation Computer Systems, Vol. 18, No. 8, October,
pp-1005-1015.

Klingberg, T. and Manfredi, R. (2002) The Gnutella Protocol
Version 0.6 Draft, Gnutella Developer Forum,
http://groups.yahoo.com/group/the _gdf/files/Development/.

Korpela, E., Werthimer, D., Anderson, D., Cobb, J. and
Lebofsky, M. (2001) ‘SETI@home: massively distributed
computing for SETI’, Computing in Science and Engineering,
Vol. 3, No. 1, January, pp.78-83.

Ly, Q., Ratnasamy, S. and Shenker, S. (2002) ‘Can heterogeneity
make gnutella scalable?’, Proc. of the Ist International
Workshop on Peer-to-Peer Systems (IPTPS ‘02), Cambridge,
MA, March, pp.94—-103.

Machiraju, V., Sahai, A. and van Moorsel, A. (2003) ‘Web
services management network: an overlay network for
federated service management’, [FIP/IEEE FEighth
International ~ Symposium on Integrated Network
Management, 24-28 March, pp.351-364.

Ocampo, R., Cheng, L. and Galis, A. (2005) ‘ContextWare support
for network and service composition and self-adaptation’,
IEEE MATA 2005 — Mobility Aware Technologies and
Applications, — Service Delivery Platforms for Next
Generation Networks, Springer ISBN-2 553-01401-5, 17-19
October, Montreal, Canada, = www.congresbcu.com/
mata2005/.

Ratnasamy, S. (2002) A Scalable Content-Addressable Network,
PhD Thesis, U.C. Berkeley, October.

Ratnasamy, S., Francis, P., Handley, M., Karp, R.
and Shenker, S. (2001) ‘A scalable content-addressable
network’, Proceedings of ACM SIGCOMM, San Diego, CA,
September, pp.161-172.

Ritter, J. (2005) Why Gnutella Can’t Scale. No, Really,
http://www.darkridge.com/~jpr5/doc/gnutella.html.

Rowstron, A. and Druschel, P. (2001b) ‘Pastry: scalable,
distributed object location and routing for large-scale
peer-to-peer systems’, International Conference on
Distributed Systems Platforms (Middleware), Heidelberg,
Germany, November, pp.329-350.

Schollmeier, R. (2001) ‘A definition of peer-to-peer networking
for the classification of peer-to-peer architectures and
applications’, First International Conf. on Peer-to-Peer
Computing (P2P2001), Linképing, Sweden.

Singla, A. and Rohrs, C. (2002) Ultrapeers, Another Step
Towards Gnutella Scalability, Gnutella Developer Forum
(http://groups.yahoo.com/group/the gdf/files/Proposals/Ultra
peer/Ultrapeers_1.0_clean.html).

Stoica, 1., Morris, R., Karger, D., Frans Kaashoek, M.,
Balakrishnan, H. (2001a) ‘Chord: a scalable peer-to-peer
lookup service for internet applications’, ACM SIGCOMM
’01, San Diego, CA, September.

Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F. and
Balakrishnan, H. (2001b) ‘Chord: a scalable peer-to-peer
lookup service for internet applications’, Proceedings of ACM
SIGCOMM, August, San Diego, CA, USA, pp.149-160.

Stokes, M. (2003) Gnutella2 Specification Document — First
Draft, Gnutella2 Web site (http://www.gnutella2.com/
gnutella2_draft.htm).

Subramanian, L., Stoica, 1., Balakrishnan, H. and Katz, R. (2004)
‘OverQoS: an overlay based architecture for enhancing
internet QoS’, Proc. Ist NSDI, San Francisco, CA, March,
pp.66—-74.

SUN Microsystems (2005) JXTA Technology, http://www.sun.com
/software/jxta/, March.

Yang, H., Meng, X. and Lu, S. (2002) ‘Self-organized network
layer security in mobile ad hoc networks’, ACM Workshop
on Wireless Security (WiSe), Atlanta, USA, September,
pp.11-20.

Service programmability and programmable networks
Anetd (2001) http://www.sdl.sri.com/projects/activate/anetd/.

Bhattacharjee, S., Calvert, K., Chae, Y., Merugu, S., Sanders, M.
and Zegura, E. (2002) ‘CANEs: an execution environment for
composable services’, Proceedings of DARPA Active
Networks Conference and Exposition, San Francisco,
pp.255-272.

Biswas, J. , Lazar, A., Huard, A. and Lim, K. (1998) ‘The IEEE
P1520 standards initiative for programmable network
interfaces’, [EEE Communications, Special Issue on
Programmable Networks, Vol. 36, No. 10, October,
pp.64-70, http://www.ieee-pin.org/.

Biswas, J., Vicente, J., Kounavis, M., Villela, D., Lerner, M.,
Yoshizawa, S. and Denazis, S. (2000) Proposal for IP
L-interface Architecture, 1EEE P1520.3, P1520/TS/
1PO13, http://www.ieee-pin.org/doc/draft docs/IP/
p1520tsip013.pdf.

Brunner, M. (2002) ‘Tutorial on active networks and its
management’, Journal Annals of Telecommunications,
Vol. 57, No. 6, pp.46-58.

Brunner, M. and Stadler, R. (2000) ‘Service management in

multi-party active networks’, I[EEE Communications
Magazine, March, Vol. 38, No. 3, pp.32—40.

Challenges and research directions in autonomic communications 15

Calvert, K., Bhattacharjee, S. Zegura, E. and Sterbenz, J. (1998)
‘Directions in active networks’, IEEE Communications
Magazine, Vol. 36, No. 10, October, pp.72-78.

Chandra, P., Chu, Y-h., Fisher, A., Gao, J., Kosak, C., Ng, T.S.E.,
Steenkiste, P., Takahashi, E. and Zhang, H. (2001) ‘Darwin:
customizable resource management for value-added network
services’, I[EEE Network, Vol. 15, No. 1, January—February,
pp.22-35.

Galis, A., Denazis, S., Brou, C. and Klein, C. (Ed.) (2004)
Programmable Networks for IP Service Deployment,
ISBN 1-58053-745-6, June, Artech House Books, p.450,
www.artechhouse.com.

Galis, A., Gelas, J.P., Lefévre, L. and Yang, Y. (2003)
‘Programmable network approach to grid management and
services’, International Conference on Computational
Science, LNCS 2658, ISBN 3-540-40195-4, Melbourne
Australia, 2-4 June, pp.1103-1113, www.science.uva.nl/
events/ICCS2003/.

Galis, A., Plattner, B., Smith, J.M., Denazis, S., Moeller, E.,
Guo, H., Klein, C., Serrat, J., Laarhuis, J., Karetsos, G.T. and
Todd, C. (2000) ‘A flexible IP active networks
architecture’, Proceedings of International Workshop on
Active Networks-Tokyo, October, and in ‘Active Networks’,
Springer-Verlag, ISBN 3-540-41179-8, pp.1-15.

Gelas, J-P. and Lefévre, L. (2002) ‘Toward the design of
an active grid’, Lecture Notes in Computer Science,
Computational Science — ICCS 2002, Vol. 2230, April,
p-578.

Kirstein, P., O’Hanlon, P., Carlberg, P. and Gevros, P. (2002) ‘The
radio active networking architecture’, dance, DARPA Active
Networks Conference and Exposition (DANCE'02), San
Francisco, CA, May, pp.394—402.

Leslie, 1., McAuley, D., Black, R., Roscoe, T., Barham, P.,
Evers, D., Fairbairns, R., and Hyden, E. (2000)
The Design and Implementation of an Operating
System to Support Distributed Multimedia Applications,
http://www.cl.cam.ac.uk/Research/SR G/netos/old-projects/
nemesis/documentation.html.

Montz, A., Mosberger, D., O’Malley, S. and Peterson, L. (1995)
Scout: A Communications-Oriented Operating System, IEEE
HotOS Workshop, May, Orcas Island, WA, USA, May,
pp-58-61.

Moore, J., Kornblum Moore, J. and Nettles, S. (2001) ‘Scalable
Distributed Management with Lightweight Active Packets’,'
Technical Report MS-CIS-01-26, Department of Computer
and Information Science, University of Pennsylvania,
September.

NetBSD (2000) http://www.netbsd.org.

Raz, D. and Shavitt, Y. (2000) ‘Active networks for efficient
distributed network management’, [EEE Communications
Magazine, Vol. 38, No. 3, March, pp.138-143.

Schmidt, S., Chart, T., Sifalakis, M. and Scott, A. C. (2002b)
‘Flexible, dynamic, and scalable service composition for
active routers’, Proc. Fourth Annual International Working
Conference on Active Networks (IWAN 2002), Ziirich,
Switzerland, Lecture Notes in Computer Science 2546,
Springer-Verlag, December, pp.253-266.

Smith, J., Calvert, K., Murphy, S., Orman, H. and Peterson, L.
(1999) ‘Activating networks: a progress report’,
IEEE Computer, Vol. 32, No. 4, April, pp.32-41,
http://www.cs.princeton.edu/nsg/papers/an.ps.

Tsarouchis, C., Denazis, S., Kitahara, C., Vivero, J., Salamanca,
E., Magana, E., Galis, A., Manas, J., Carlinet, L., Mathieu, B.
and Koufopavlou, O. (2003) ‘A policy-based management
architecture for active and programmable networks’, [EEE
Network, Vol. 17, No. 3, May—June, pp.22-28.

Tullmann, P., Hibler, M. and Lepreau, J. (2001) ‘Janos: a
java-oriented OS for active networks’, IEEE Journal on
Selected Areas of Communication, Vol. 19, No. 3, March.
http://www.research.att.com/~kobus/docs/tempest_small.ps.

Veytser, G., Bestavros, 1., Zhang, M. and Chen, S. (2004)
itmBench: Generalized API for Internet Traffic Managers,
http://www.cs.bu.edu/groups/itm/itmBench/itmBench.pdf.

Vicente, J. (2001) L-interface Building Block APIs, IEEE P1520.3,
P1520.3TSIPO16, 2001. http://www.ieee-pin.org/
doc/draft_docs/IP/P1520 3 TSIP-016.doc.

Vicente, J., Kounavis, M., Villela, D., Lerner, M., and
Campbell, A. (2000) ‘Programming internet quality of
service’, 3rd IFIP/GI International Conference of Trends
toward a Universal Service Market, Munich, Germany,
September 12—14.

Vivero, J., Tan, A., Serrat, J., Salamanca, E., Galis, A., Kitahara,
C., Tsarouchis, C. and Denazis, S. (2002) ‘The FAIN
management framework: a management approach for active
network environments’, 10th IEEE International Conference
on Networks, ICON 2002.

Wang, J-G., Li, Z-Z. and Kou, Y-N. (2002) ‘Research and
implementation of a scalable secure active network node’,
Proc. of IEEE Intern. Conf. on Machine Learning and
Cybernetics, Vol. 1, November, pp.111-115.

Wang, Y-s. and Touch, J. (2002) ‘Application deployment
in virtual networks using the X-bone’, DANCE: DARPA
Active Networks Conference and Exposition, May,
pp-484-493.

Wetherall, D., Guttag, J. and Tennehouse, D. (1998) ‘ANTS:
a toolkit for building and dynamically deploying network
protocols’, Proc. of IEEE OPENARCH ‘98, San Francisco,
CA, April, pp.178-189.

Yan, B. and Mabo, R. (2004) ‘QoS control for video and audio
communication in conventional and active networks:
approaches and comparison’, [EEE Communications Surveys

and Tutorials, http://www.comsoc.org/livepubs/surveys/
public/2004/jan/bai.html.

Programmable system management
ABLE (2000) The Active Bell Labs Engine, http://www.cs.
bell-labs.com/who/ABLE/.

Brunner, M., Plattner, B. and Stadler, R. (2001) ‘Service creation
and management in active telecom environments’,
Communications of the ACM, March.

de Vergara, J.E.L. (2003) Specification of Network Management
Information Models by jeans of Ontology and Knowledge

Representation Techniques, PhD Thesis, Spanish,
Universidad Politecnica de Madrid, Madrid.
Fonseca, M., Agoulmine, N. and Cherkaoui, O. (2001)

Active Networks as a Flexible Approach to Deploy QoS
Policy-Based Management, HP-OVUA’01, Berlin, Germany,
June, http://citeseer.nj.nec.com/483138.html.

Goldszmidt, G. and Yemini, Y. (1995) ‘Distributed management

by delegation’, Fifieenth International Conf. on Distributed
Computing Systems, Vancouver, June.

16 K. Curran, M. Mulvenna, C. Nugent and A. Galis

Schwartz, B., Jackson, A., Strayer, W., Zhou, W., Rockwell, D.
and Partridge, C. (1999) ‘Smart packets for active networks’,
OpenArch '99, March.

Sloman, M. (Ed.) (1994) Network and Distributed Systems
Management, Addison-Wesley, Reading, MA.

Sloman, M. and Lupu, E. (1999) ‘Policy specification for
programmable networks’, International Working Conference
on Active Networks (IWAN’99), Berlin, Germany,
June—July.

Yemini, Y., Konstantinou, A. and Florissi, D. (2000) ‘NESTOR:
an architecture for NEtwork Self-managemenT and
organization’, I[EEE Journal on Selected Areas in
Communications, Vol. 18, No. 5, pp.758-766.

ContextWare networks

Berson, S., Braden, B., and Ricciulli, L. (2002) Introduction to the
ABone, available at http://www.isi.edu/abone/DOCUMENTS
/ABarch/February 2002.

Brown, P.J., Bovey, J.D. and Chen, X. (1997) ‘Context-aware
applications: from the laboratory to the marketplace’, IEEE
Personal Communications, Vol. 4, No. 5, October,
pp-58-64.

Bucholtz, T., Kupper, A. and Schiffers, S. (2003) ‘Quality of
context information: What is it is and why we need it’,
Proceedings of the 10th HP-OVUA Workshop, Geneva,
Switzerland, July, pp.112—120.

Chen, G. and Kotz, D. (2000) A4 Survey of Context-aware

Mobile Computing Research, Technical Report,
TR2000-381, Dept. of Computer Science, Dartmouth College,
November.

Chen, H., Finin, T. and Joshi, A. (2003) ‘An ontology for
context-aware pervasive computing environments’, IJCAI
Workshop on Ontologies and Distributed Systems, IJJCAI’03,
August.

CoolTown (2004) home page. http://www.cooltown.hp.com/.

Crowcroft, J., Hand, S., Mortier, R., Roscoe, T. and Warfield, A.
(2003) ‘Plutarch: an argument for network pluralism’, 4ACM
SIGCOMM 2003 Workshops, August.

DeVaul, R.W. and Pentland, A.S. (2001) The Ektara Architecture:
The Right Framework for Context-Aware Wearable and
Ubiquitous Computing Applications, The Media Laboratory,
MIT, Report available online at http://acg.media.mit.edu/
people/rich/.

Dey, A.K. (2001) ‘Understanding and using context’, Journal of
Personal and Ubiquitous Computing, Vol. 5, No. 1, pp.4-7.

Dey, AXK. and Abowd, G.D. (2000) ‘Towards a better
understanding of context and context awareness, in
Workshop on the What, Who, Where, When and How of
Context-Awareness’, affiliated with the 2000 ACM
Conference on Human Factors in Computer Systems
(CHI 2000), The Hague, The Netherlands, April.

Dey, A.K., Salber, D., Abowd, G.D. and Futakawa, M. (1999) 4n
Architecture to Support Context-aware Applications, GVU
Technical Report Number:GIT-GVU-99-23.

Eaves, W., Cheng, L. and Galis, A. (2002) ‘SNAP based resource
control for active networks’, GLOBECOM - The World
Converges Taipei, Taiwan, ROC, November 17-21.

Fang, Y. and McDonald, A.B. (2002) ‘Cross-layer performance
effects of path coupling in wireless ad hoc networks: power
and throughput implications of IEEE 802.11 MAC’, Proc.
21st IEEE International Performance, Computing, and
Communications Conference, April, Phoenix, Arizona, USA,
pp.281-290.

Foundation for Intelligent Physical Agents (FIPA) (2002) FIPA
Quality of Service Ontology Specification, Geneva,
Switzerland, Specification number SC00094.

Gray, P.D. and Salber, D. (2001) ‘Modelling and using sensed
context information in the design of interactive applications’,
Proc. 8th IFIP Working Conference on Engineering for
Human-Computer Interaction (EHCI’01), May, Toronto,
Canada, pp.317-328.

Kanter, T., Lindtorp, P., Olrog, C. and Maguire, G.Q. (2000)
‘Smart delivery of multimedia content for wireless
applications’, Mobile and Wireless Communication Networks,
pp.70-81.

Kanter, T.G. (2002) ‘Hottown, enabling context-Aware and
extensible mobile interactive spaces’, Special Issue of
IEEE Wireless Communications and IEEE Pervasive on
‘Context -Aware Pervasive ~ Computing’, October,
pp.18-27.

Kindberg, T. and Barton, J. (2002) ‘People, places, things: web
presence for the real world’, Mobile Networks and
Applications, Springer Science, Vol. 7, No. 5, October,
pp.365-376.

Kitamura, Y., Kasai, T. and Mizoguchi, R. (2001) ‘Ontology-based
description of functional design knowledge and its
use in a functional way server’, Proceedings of the
Pacific Conference on Intelligent Systems, Seoul, Korea,
pp.400—409.

Korpipad, P., Mantyjarvi, J.,, Kela, J.,, Kerénen, H. and
Malm, E-J. (2003) ‘Managing context information in
mobile devices’, I[EEE Pervasive Computing, Vol. 2, No. 3,
pp-42-51.

Mendes, P., Prehofer, C. and Wei, Q. (2003) ‘Context
management with programmable mobile networks’, /EEE
Computer Communication Workshop, Dana Point, CA, US,
pp-132-140.

Pascoe, J., Ryan, N., and Morse, D. (1999) ‘Issues in developing
context-aware computing’, Proc. First International
Symposium on Handheld and Ubiquitous Computing
(HUC"99), Karlsruhe, Germany, pp.208-221.

Perkins, C. (Ed.) (2002) IP Mobility Support for IPv4, RFC3344,
August.

Salber, D., Dey, A.K. and Abowd, G.D. (1999) ‘The context

toolkit: aiding the development of context-enabled
applications’, Proc. CHI’'99, May, Pittsburgh, PA,
pp.434-441.

Samann, N. and Karmouch, A. (2003) ‘An evidence-based
mobility prediction agent architecture’, Proc of the
Sth Int. Workshop on Mobile Agents for Telecommunication
Applications (MATA2003), Marrakesch, October, ISBN
3-540-20298-6 — Lecture Notes in Computer Science,
Springer-Verlag.

Serrat, J., Serrano, J.M., Justo, J., Marin, R., Galis, A., Yang, K.,
Raz, D. and Sykas, E.D. (2004) An Approach to
Context Aware Services, NOMS2004 19-23 April, Seoul,
Korea.

Xynogalas, S.A., Chantzara, M.K., Sygkouna, I.C., Vrontis, S.P.,
Roussaki, [.G. and Anagnostou, M.E. (2004) ‘Context
management for the provision of adaptive services to roaming
users’, IEEE Wireless Communications, Vol. 11, No. 2, April,
pp-40-47.

Yang, K. and Galis, A. (2003) ‘Network-centric context-aware
service over integrated WLAN and GPRS networks’,
14th IEE International — Symposium On Personal,
Indoor And Mobile Radio Communications, September,
pp.854-858.

Challenges and research directions in autonomic communications 17

Yang, K., Galis, A., Serrat, J., Jean, K., Vardalachos, N. and Guo,

X. (2003) ‘Network-centric context-aware service over
integrated WLAN and GPRS networks’, [14th IEEE
Conference on Personal, Indoor and Mobile Radio
Communications, PIMRC 2003, Vol. 1, 7-10 September,
pp-854-858.

Yau, S.S. and Karim, F. (2003) ‘A lightweight middleware

protocol for ad hoc distributed object computing in ubiquitous
computing environments’, Proc. 6th IEEE Intl. Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2003), May, pp.172-179.

Yau, S.S. and Karim, F. (2004) ‘An adaptive middleware for

context-sensitive communications for real-time applications
in ubiquitous computing environments’, ¢ Real-Time Systems,
The International Journal of Time-Critical Computing
Systems, Kluwer Academic Publishers, Dordrecht, The
Netherlands, Vol. 26, No. 1, January, pp.29—61.

Notes

'http://www-128.ibm.com/developerworks/autonomic/
probdet1.html.

“http://www.dmg.org/.

