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Abstract—Arthritis remains a disabling and painful disease, and 

involvement of finger joints is a major cause of disability and loss 

of employment. Traditional arthritis measurements require 

labour intensive examination by clinical staff. These manual 

measurements are inaccurate and open to observer variation. 

This paper presents the development and testing of a next 

generation wireless smart glove to facilitate the accurate 

measurement of finger movement through the integration of 

multiple IMU sensors, with bespoke controlling algorithms. Our 

main objective was to measure finger and thumb joint movement. 

These dynamic measurements will provide   clinicians with a new 

and accurate way to measure loss of movement in patients with 

Rheumatoid Arthritis. Commercially available gaming gloves are 

not fitted with sufficient sensors for this particular application, 

and require calibration for each glove wearer. Unlike these state-

of-the-art data gloves, the Inertial Measurement Unit (IMU) glove 

uses a combination of novel stretchable substrate material and 9 

degree of freedom (DOF) inertial sensors in conjunction with 

complex data analytics to detect joint movement. Our novel iSEG-

Glove requires minimal calibration and is therefore particularly 

suited to the healthcare environment. Inaccuracies may arise for 

wearers who have varying degrees of movement in their finger 

joints, variance in hand size or deformities. The developed glove is 

fitted with sensors to overcome these issues. This glove will help 

quantify joint stiffness and monitor patient progression during the 

arthritis rehabilitation process.  

 
Index Terms— Data glove, wireless sensor networks, Inertial 

Measurement Unit, Rheumatoid Arthritis, sensor calibration 

I. INTRODUCTION 

HEUMATOID ARTHRITIS (RA) is an auto-immune disease 

which inflames the synovial tissue lubricating skeletal 

joints and is characterised by pain, swelling, stiffness and 

deformity. This systemic condition affects the musculoskeletal 

system, including bones, joints, muscles and tendons that 

contribute to loss of function and Range of Motion (ROM). 

Early identification of RA is important to initiate treatment, 

reduce disease activity, restrict its progression and ultimately 

lead to its remission. Clinical manifestations of RA can be 

confused with similar unrelated musculo-skeletal and muscular 

disorders. Identifying its tell-tale symptoms for early diagnosis 

has been the long-term goal of clinicians and researchers. 

Outcome measures such as the Disease Activity Score (DAS) 

and Health Assessment Questionnaire (HAQ) reflect an RA 

patients’ disease activity and disability. These measures are 

partly subjective and can be influenced by other factors such as 

depression or unrelated non-inflammatory conditions. 

Traditional objective measurement of RA using the universal 

goniometer (UG) and visual examination of the hands is labour 

intensive and open to inter rater and intra-rater reliability 

problems. 

Consequently there is a need for an objective system to record 

finger joint movement for analysis and detection of changes in 

joint ROM. This paper describes this system which combines 

our unique bespoke data glove with in-house developed 

controlling software.  Focused exercise routines are designed 

for each patient by the clinician. Movements recorded in the 

clinic and at home are analysed for symptoms of stiffness 

severity and pain. The system could also be applied to the 

development of new therapies to track reduction of strength, 

and loss of dexterity and mobility of the hand. 

II. CLINICAL ASSESSMENT OF RA 

Patients suspected to have RA are at first examined by an 

Occupational Therapist (OT) to quantify joint ROM and hand 

function. Each finger is inspected visually for the presence of 

Heberden and Bouchard nodes, boutonniere and swan neck 

deformity, and finger and thumb drift. The OT uses a UG to 

assess flexion, extension, adduction and abduction of the 

Metacarpophalangeal (MCP), Proximal Interphalangeal (PIP) 

and Distal Interphalangeal (DIP) joints of the fingers and thumb 

in degrees, and records the maximum extension and flexion 

range of the wrist and supination and pronation of the forearm. 

The DAS and HAQ are commonly used to measure disease 

activity and disability during clinical assessment [1]. The DAS 

only quantifies joints that are tender and swollen rather than the 

degree of pain and stiffness suffered by the patient. The HAQ 

is one of the most frequently used instruments for evaluation 

and function and widely used in clinical trials of RA [2], [3]. It 

assesses a patient’s ability to complete activities such as 

dressing, cleaning eating and walking as well as pain 

measurement and drug therapy. 

Joint Stiffness is a common condition of RA that affects their 

ability to perform basic activities and daily functions. Early 

indicators of RA derived from clinical investigations and Early 

Arthritis Clinics (EAC’s) suggest 3 indicators for early 

presence of RA; early morning stiffness lasting longer than 30 

minutes, swelling of more than three finger joints, and a 

composite compression test of small adjacent joints such as 

MCP [4]. Joint stiffness lasting at least an hour before 
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maximum improvement is one of the American College of 

Rheumatology (ACR) criteria for RA classification [5]. 

Currently joint stiffness is not measured objectively in the 

clinical setting despite the frequent use of its duration and 

intensity as an outcome measurement. Joint stiffness is 

subjectively reported by patient recollection. Several objective 

measurement systems have been devised by researchers and 

assessed in clinical trials for effectiveness as a joint stiffness 

measurement device [6]–[11]. Although these research groups 

identified joint stiffness, uncertainties caused by rheological 

forces and the technical limitations of device complexity and 

physical dimensions restricted their uptake into the clinical 

setting.  

III. DATA GLOVES 

Data gloves contain strategically placed sensors controlled 

by circuitry that communicates sensor movement to an end 

device. In recent years data gloves were evaluated as an 

effective replacement for the UG [12]–[17]. Results showed 

comparable repeatability to the UG with the added advantage 

of simultaneous angular measurement and removal of intra-

tester and inter-tester reliability problems associated with the 

UG. Data gloves however have several drawbacks; they require 

laborious calibration, are difficult to donn and doff, and are 

designed to fit specific hand sizes and so require small, medium 

and large gloves to fit all hand variations. These drawbacks 

reduce their suitability for the clinical environment. 

In this paper, our newly-designed iSEG-Glove is evaluated 

under laboratory conditions and compared to the state-of-the-

art 5DT Ultra 14 data glove, shown in Fig. 1(c) [18] for 

comparison of accuracy and repeatability. Both gloves are 

simultaneously assessed using the Vicon Motion Capture 

System [19]. Both data gloves are controlled and data output is 

recorded and analysed using our in-house software system 

throughout the study. The first software iteration [20] was 

developed using the 5DT data glove. Once accuracy and 

repeatability is established, both gloves are then tested in a 

patient trial to evaluate their performance within a clinical 

environment. Results are presented for laboratory and clinical 

conditions in the results section. 

A. iSEG-Glove Hardware description 

The iSEG-Glove quantitatively measures ROM of each 

finger joint in degrees and velocity to assist medical clinicians 

with the accurate measurement of the common condition of loss 

of movement in the human hand in patients with RA. The 

described glove is a second generation iteration of the system 

designed by the authors and described in previous work [21], 

[22]. 

The iSEG-Glove shown in Fig. 1(a) is manufactured using a 

mix of stretchable & flexible technology. Stretchable signaling 

cables provide power and signal transmission between each 

IMU, and connect each IMU sensor back to the controlling 

circuitry. Fig. 1(b) shows the iSEG-Glove system integrated 

into its underlying cloth structure. 

The glove includes 16 9-axes IMU’s (each includes a 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer) 

strategically placed to detect the degrees of freedom (DOF) of 

each finger joint of the hand. IMUs are positioned on the 

stretchable interconnect [23] and are located on the phalange of 

each finger segment to measure their orientation and 

biomechanical parameters. 

 

 
Fig.  1. (a) Configuration of the IMU data glove showing individual IMU’s 

for each finger joint. (b) Integration of the IMU data glove into a two-

layered glove structure. (c) 5DT data glove used for comparative testing. 

 

Each IMU provides 6 DOF motion (3 translational plus 3 

rotational) and 3D orientation information. By placing an IMU 

at both sides of each finger joint, (that is one per finger phalanx 

and an additional one on the palm of the hand), standard 3D 

positional calculations generated by each IMU is ignored and 

local orientation of each IMU relative to each finger joint is 

calculated. This orientation information is used to generate 

angular and velocity movement for each finger joint throughout 

flexion and extension exercises. 
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B. Processor 

The processor selected for use in the system is an AVR32 

UC3C 32 Bit Microcontroller [24]. This high performance, low 

power 32-bit AVR microcontroller is built as a single precision 

floating point unit. This particular processor is selected for its 

ability to execute complex embedded algorithms focused on 

motion analysis and development opportunity for real time low 

power consumption operation. 

C. Wireless communication 

The RS9110-N-11-22 [25] module shown in Fig. 2 is a IEEE 

802.11b/g/n WLAN device that directly provides a wireless 

interface to any equipment with a UART or SPI interface for 

data transfer. It integrates a MAC, baseband processor, RF 

transceiver with power amplifier, a frequency reference, and an 

antenna in-hardware. It also provides all WLAN protocols and 

configuration functionality. A networking stack is embedded in 

the firmware that enables a fully self-contained 802.11n WLAN 

solution for a variety of applications. The module incorporates 

a highly integrated 2.4 GHz transceiver and power amplifier 

with direct conversion architecture, and an integrated frequency 

reference antenna. The RS9110-N-11-22 comes with flexible 

frameworks to enable usage in various application scenarios 

including high throughput and more network features. 

 

 
Fig.  2. RS9110-N-11-22 system block diagram [25]. 

 

The system operates according to a low complexity standard 

4-wire SPI interface with the capability of operation up to a 

maximum clock speed of 25MHz. 

The communications module conforms to IEEE 802.11b/g/n 

standards and includes hardware accelerated implementation of 

WEP 64/128-bit and AES in infrastructure and ad-hoc modes. 

The fact that the module supports multiple security features 

such as WPA/WPA2-PSK, WEP, TKIP makes it compatible 

with all medical ERP systems. 

D. Sensors 

The MPU-9150 [26] is a full three axis Inertial Measurement 

System incorporating tri-axis angular rate sensor (gyro) with 

sensitivity up to 131 LSBs/ degrees per second (dps) and a full-

scale range of ±250, ±500, ±1000, and ±2000dps, tri-axis 

accelerometer with a programmable full scale range of ±2g, 

±4g, ±8g and ±16g and a tri-axis compass with a full scale range 

of ±1200μT. The module incorporates embedded algorithms for 

run-time bias and compass calibration, so no user intervention 

is required. 

The MPU-9150 features three 16-bit analog-to-digital 

converters (ADCs) for digitising gyroscope outputs, three 16-

bit ADCs for digitising accelerometer outputs, and three 13-bit 

ADCs for digitising magnetometer outputs. For precision 

tracking of both fast and slow motions, the module features a 

user programmable gyroscope full-scale range of ±250, ±500, 

±1000, and ±2000°/sec (dps), a user programmable 

accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g, and 

a magnetometer full-scale range of ±1200μT. 

E. Additional features 

To make the system adaptable in operation and compatible 

with a wide range of use cases outside the immediate 

application of RA monitoring, the iSEG-Glove system also 

incorporates optional storage via a micro SD card, battery 

monitoring and recharge ability, as well as a USB bootloader, 

USB communication interface, and the aforementioned 15 

analogue inputs for optional resistive sensors (e.g. bend sensors 

or force sensors). The analogue front end is a buffered voltage 

divider to enable additional sensing functionality. 

F. System Implementation 

All the system embedded code is implemented using the 

Atmel Studio 6 IDE. The current iteration continuously reads 

sensor output and transmits the data wirelessly through a TCP 

socket. 

Accuracy of IMU-based real time motion tracking 

algorithms are highly influenced by sensor sampling rate. 

Therefore high sensor throughput was a fundamental design 

requirement of the iSEG-Glove. This facilitates the 

development of algorithms using our in-house developed 

software. In addition, we intend to fully implement all 

movement algorithms onto the embedded platform once testing 

and development is completed. This eliminates the requirement 

for a high throughput controlling device and facilitates a low 

power implementation using Bluetooth Low Energy (BLE) in a 

future glove development.  

The research team decided not to share the I2C bus between 

each of the gloves 16 MPU9150’s, and to ensure each IMU 

sensor has its dedicated I2C line that are all driven in parallel. 

This safeguards maximum achievable sampling rates and 

computation times, and meets the high-speed requirements of 

the application scenario as specified with clinical partners 

regarding signal temporal granularity. Dedicated I2C lines 

provide the added advantage of ensuring synchronisation 

between all IMU sensors.  

G. Hardware Case studies 

Various scenarios were examined prior to engaging with the 

schematic capture and layout of the iSEG-Glove. The test setup 

included evaluation of the selected microcontroller, Wi-Fi 

module and sensors. Timing measurements were taken using an 

oscilloscope. Results and case studies are summarised in the 

following sections. 

1) Case Study 1 - Raw data transmission 

As previously described, using a wireless system to transmit 

raw data at the highest achievable data rate is desirable for 

analytical development. It is more practical to develop them 

using PC based software (real time or post processing) and then 
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port them to the embedded system, than develop them directly 

within the data glove hardware. Table I displays timing results 

for Case Study 1. 
TABLE I: CASE STUDY 1 TIMING ANALYSIS RESULTS 

Estimated max sampling rate  ~750 Hz 

Processing time allocated to 

sample the 16 MPUs 

 

~900 s (600 for 

Acc+gyro+temperature and 

300 s for magnetometer. 

Note that magnetometer 

max sampling rate is 125 Hz) 

Processing time (per sampling 

cycle) allocated to wireless 

communications 

~300 s 

(Tx 400 bytes: 320 data+80 

extra)  

 

Processing time (per sampling 

cycle) allocated to implement 

Quaternions  

None 

Processing time allocated 

/available to implementation of 

future potential drift 

correction algorithms 

None 

2) Case Study 2 - Transmission of raw sensor data 

The wireless system transmits raw data and 

quaternions/rotation matrix from gyros at the highest 

achievable data rate. Quaternions are subject to drift errors and 

the analytics to correct these are implemented within the 

controlling software. We have a clear idea of the maximum 

processing time that could be allocated to this task. This is 

considered when designing firmware algorithms. Results are 

shown in Table II. 
TABLE II: CASE STUDY 2 TIMING ANALYSIS RESULTS 

Estimated Max Sampling rate  ~500 Hz 

Processing time allocated to 

sample 16 MPUs 

 

~900 s (600 for 

Acc+gyro+temperature and 

300 s for magnetometer, 

but note that magnetometer 

max sampling 

rate is 125 Hz) 

Processing time (per sampling 

cycle) allocated to wireless 

communications 

~ 420/550 s (Q/R) 

(Payload 0.7/1 Kbyte: 320 

data+256 /576 Q/R + 124/104 

(Q/R) extra) 

Processing time (per sampling 

cycle) allocated to implement 

Quaternions  

~300/500 s (Q/R) 

Processing time 

allocated/available for 

implementation of future 

potential drift correction 

algorithms 

None 

 

3) Case Study 3 - Transmission of processed data 

The internal sensor sampling rate should be maximised when 

the wireless system has full analytics embedded. In this type of 

scenario, a high wireless data rate may no longer be required. 

Results for Case Study 3 are shown in Table III. 

H. IMU data glove calibration using accelerometers and 

gyroscopes 

Data glove accuracy and repeatability is affected by the non-

linear nature of glove sensor output and any misalignment 

between the wearers hand and data glove sensor positioning. 

Data glove sensor calibration improves sensor accuracy and 

matches the boundaries of each sensor to those of the wearer’s 

finger joint. A calibration routine requires the glove wearer to 

position groups of finger joints such as MCP’s and PIP’s in 

specific poses. Each pose places a finger joint group and 

relevant data glove sensors at their minimum and maximum 

boundaries. Calibration assumes the wearer can move each 

finger joint to its maximum finger joint position. RA sufferers 

with limited joint mobility may not be capable of achieving 

maximum movement and make the data glove ineffective. 
TABLE III: CASE STUDY 3 TIMING ANALYSIS RESULT 

Estimated Max Sampling 

rate  

100/200/250/300/400 Hz 

Processing time allocated 

to sample the 16 MPUs 

 

~900 s (600 for 

Acc+gyro+temperature and 300 

s for magnetometer, but note 

that magnetometer max 

sampling rate is 125 Hz) 

Processing time (per 

sampling cycle) allocated 

to wireless 

Communications 

~ 420/550 s (Q/R) 

(Payload 0.7/1 Kbyte: 320 

data+256 /576 Q/R + 124/104 

(Q/R) extra) 

Processing time (per 

sampling cycle) allocated 

to implement Quaternions  

~300/500 s (Q/R) 

Processing time 

allocated/available to the 

implementation of future 

potential drift correction 

algorithms 

~ 8/3/2/1.33/0.5 ms 

(80/60/50/40/20 % of computation 

time ) 

for sampling rates of 

100/200/250/300/400 Hz 

IMU sensors on the iSEG-Glove do not require complex 

calibration. IMU accelerometers placed on each one of the 

finger’s phalanges automatically provide information on the 

inclination and orientation to gravity of the associated IMU 

within a complete sphere [27] using methods shown in Fig. 3. 

However, each data glove IMU sensor must detect inclination 

and orientation of individual finger phalanx’s relative to local 

hand position and not to gravity. An IMU sensor placed on the 

back of the hand is used to subtract overall inclination of the 

hand relative to IMU’s on each phalanx. This removes the 

global orientation of each IMU relative to gravity. 

The slope of the wearer’s fingers must be determined and 

removed from angular calculations. Each IMU accelerometer 

sensor is sampled before movement begins when the hand is in 

a neutral position to calculate finger joint thickness and slope 

offset. 

 

 
Fig.  3. 3-axis accelerometer axis information and calculation of angles for 

independent inclination sensing. Adapted from [27]. 
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The orientation to gravity of each one of the sensors placed 

on adjacent phalanges can be used to estimate the flexion of the 

finger. For example if the measured acceleration for a specific 

finger from the medial phalanx accelerometer is (Xout, Yout, 

Zout)= (-1,0,0)g and from the proximal phalanx accelerometer 

is (Xout, Yout, Zout)= (0,0,1)g, it indicates a flexion of the PIP 

joint of 90 degrees. 

Each accelerometers inclination to gravity is determined 

according to standard formulas [27] and are shown in Fig 3b-d. 

GUI / User interface 

Data is streamed in real-time according to the case studies 

described above and post-processed by our controlling 

software. A pivotal role of this software is its ability to 

encapsulate movement limitations imposed on finger joints 

affected by joint stiffness. Finger joint information is captured 

at set times throughout each day when stiffness is most 

prevalent. Fig. 4 shows an example of the user interface.  

 

 
Fig.  4. Patient user interface presents the user with angular output displayed 

in 3D using a software model of the human hand. 

 

Algorithms segment recorded data to extract relevant flexion 

and extension movement information. Fig. 5 shows one typical 

flexion and extension angular movement profile for a finger 

joint. Individual flexion and extension movement is sigmoidal 

shaped as demonstrated by the flexion and extension lines, and 

one complete open-closed hand movement produces a Gaussian 

shaped curve. 

 

 
Fig.  5. Chart demonstrating segments that characterise areas of interest 
within flexion and extension movement. 

 

Software analysis tools identify variations in movement 

throughout each recorded session and provide indicators of 

deterioration in movement caused by joint stiffness. Fig. 6 

shows several overlaid flexion and extension movements. This 

information can visually indicate variation in patient movement 

to support the clinician during analysis of changes to patient 

mobility over time. 

 
Fig.  6. Analysis of patient movement information displays graphical data 

for each repetition. 

 

Each angular calculation is low-pass filtered to remove sensor 

noise. A complementary filter with error control is implemented 

to combine accelerometer output with gyroscope rotation angle, 

as shown in Fig. 7.  

 

 
Fig. 7. Complimentary filter with error-state that is applied to IMU 
accelerometer and gyroscope output to remove drift. 

 

Gyroscope rotational angle is initially accurate and drifts over 

time. Accelerometer angle cannot distinguish between lateral 

acceleration and rotation. The complementary filter acts as a 

high-pass and low-pass filter on both signals. It combines 

estimated gyroscope rotation and accelerometer angle to create 

an angular output. 

IV. TEST RESULTS 

Two testing strategies assessed accuracy and repeatability of 

our iSEG-Glove and the 5DT data glove. Initially we examined 

accuracy and repeatability for both gloves under laboratory 
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conditions. We then examined the function of both data gloves 

under clinical conditions during patient trial testing. Patient 

testing results are presented in the next section. 

Both data gloves were examined for accuracy using the 

Vicon MX Motion Capture System [19]. Movement was 

recorded by Vicon and simultaneously by our in-house 

developed controlling software whilst each glove was placed on 

blocks of wood cut to specific angles. Angular readings were 

assessed using Root Mean Square Error (RMS) to provide an 

indicator of the variance between each estimated angular 

repetition value and the expected true value influenced by the 

angle on each block of wood. RMS error is unaffected by 

positive and negative errors above or below the expected true 

angular value for each block of wood. 

Repeatability testing examined the ability of each data glove 

to consistently replicate angular readings when the subjects 

hand was held in a repeatable position. Testing strategies were 

originally developed to assess data glove suitability as a 

replacement for the UG. Although no formal set of repeatability 

testing strategies exist, the strategies used by [17] have been 

adopted by subsequent research groups [12], [14], [28]–[31] 

and are used in this study to allow comparison between former 

study results and our findings. 

A. Accuracy testing 

Table IV shows comparison of results for the 5DT data glove 

and our iSEG-Glove compared with the Vicon system and the 

UG. Results showed the UG had greatest overall accuracy of 

93.23% with overall RMS of 2.76°. This is in agreement with 

typical findings on goniometric accuracy with 95% of 

intratester reliability within 5° of measurement and intertester 

reliability in the range of 7° to 9° [32]–[34]. The Vicon system 

provided mean accuracy of 89.33% with RMS of 5.19°. This 

inaccuracy was most likely caused by noise, marker occlusion, 

and distance of reflective markers from cameras. The iSEG-

Glove provided best accuracy measurement of all data gloves 

and demonstrated similar accuracy to the Vicon measurement 

system. Its RMS results showed that readings obtained from 

sensors contained approximately 5.95° of error.  
TABLE IV: MEAN ACCURACY PERCENTAGE FOR EACH SENSOR ON EACH 

MEASUREMENT TECHNIQUE INCLUDING MEAN ERROR AND OVERALL 

ACCURACY PERCENTAGE 

Sensor Vicon 5DT UG IMU 

Index MCP 93.31 94.20 97.95 89.57 
Index PIP 91.23 92.01 90.75 91.47 

Middle MCP 91.46 79.66 95.83 82.40 
Middle PIP 84.08 74.97 88.96 77.29 
Ring MCP 87.20 70.46 97.37 82.02 
Ring PIP 86.99 91.99 90.70 89.51 

Little MCP 86.14 85.83 91.28 83.38 
Little PIP 94.23 74.56 93.03 86.27 

Overall accuracy % 89.33 82.96 93.23 85.24 
RMS 5.19 7.15 2.76 5.95 

Results shown in Table IV indicate that all sensors 

demonstrated accuracy between 82% to 91% except for the 

Middle PIP sensor that had accuracy of 77.29%. Results were 

better than the 5DT data glove and were more impressive since 

the iSEG-Glove was not calibrated before use. 

B. Repeatability testing 

The ‘flat hand’ test examines each data glove’s ability to 

maintain a minimum repeatable value after full stretch of each 

data glove sensor.  The ‘plaster mould’ test examines the ability 

of each data glove to reproduce angular readings when 

positioned in a repeatable position. In all tests, the iSEG-Glove 

was not calibrated for the subject. The 5DT data glove was 

calibrated. 
TABLE V: COMPARISON OF MEAN ANGULAR AND STANDARD DEVIATION (SD) 

READINGS RECORDED DURING ‘FLAT HAND’ TESTING  
5DT (Angle and SD) IMU (Angle and SD) 

Index MCP 2.34 (1.59) -0.59 (1.87) 

Index PIP 2.04 (1.05) -2.74 (0.90) 

Middle MCP 5.9 (0.55) 1.32 (2.26) 

Middle PIP 3.27 (1.13) -2.94 (1.25) 

Ring MCP 5.14 (0.59) -2.33 (1.21) 

Ring PIP 1.02 (0.52) -2.7 (1.11) 

Little MCP 3.32 (0.88) 0.07 (2.56) 

Little PIP 2.76 (1.32) -1.75 (1.31) 

Mean MCP 4.17 (0.90) -0.38 (1.98) 

Mean PIP 2.27 (1.0) -2.53 (1.14) 

Overall mean 3.22 (0.95) -1.46 (1.56) 

 

1) ‘Flat hand’ test results 

The angle and Standard Deviation (SD) results for the ‘flat 

hand’ test are demonstrated in Table V and show the iSEG-

Glove performed much better than the 5DT data glove.  

2) Plaster mould test results 

Table VI shows comparison results for plaster mould testing 

for the 5DT and our iSEG-Glove.  
TABLE VI: COMPARISON OF MEAN RANGE AND STANDARD DEVIATION (SD) 

READINGS FROM PLASTER MOULD TESTING FOR EACH DATA GLOVE 

Glove 
MCP PIP Mean 

Range SD Range SD Range SD 

5DT 8.85 2.13 6.23 2.09 7.54 2.11 

IMU 5.99 1.89 5.10 1.58 5.55 1.74 

 

Readings show the iSEG-Glove produced better repeatability 

for MCP and PIP joints and better overall repeatability as 

indicated by the lower mean range angular reading. SD readings 

indicate the iSEG-Glove also recorded angular values with 

better stability than the 5DT glove. 

C. Comparison of results with previous trials 

The results shown in Table VII compared angular and SD 

‘flat hand’ and plaster mould tests for the 5DT and our iSEG-

Glove with previous data glove research studies. The 5DT data 

glove demonstrated range readings that out-performed data 

glove findings by Dipietro et al. [12], and Wise et al. [17], and 

were similar to Gentner and Classen [28]. The data glove 

examined by Simone et al. [16] provided better results than all 

studies including the 5DT and our iSEG-Glove. However this 

glove contained only 5 sensors that recorded movement of the 

MCP joints. The iSEG-Glove performed better than all other 

data glove studies.  

Readings recorded by earlier studies are averaged for several 

subjects. This can hide higher inaccurate results for individual 

subjects. For example, Wise et al. recorded range readings from 

5 subjects that varied between 2.5° to 6.7°. Results were 

averaged to 4.4°. Similarly, results from ‘flat hand’ testing from 
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the study by Dipietro et al. were summarised from a group of 6 

male and female participants. Mean male range results went 

from 2.37° to 5.49° and mean female from 3.90° to 4.75°. 
TABLE VII: COMPARISON OF ‘FLAT HAND’ AND PLASTER MOULD RANGE AND 

STANDARD DEVIATION (SD) TESTS WITH PREVIOUS DATA GLOVE STUDIES 

Study Flat hand test  

(Range and SD) 

Plaster mould test 

(Range and SD) 

Wise et al. [17] 4.4 (2.2) 6.5 (2.6) 
Dipietro et al. [12] 3.84 (1.23) 7.47 (2.44) 
Simone et al. [16] 1.49 (0.5) 5.22 (1.61) 

Gentner and Classen [28] 2.61 (0.86) 6.09 (1.94) 
5DT (this study) 2.27 (0.995) 7.54 (2.11) 
IMU (this study) 4.86 (1.56) 5.55 (1.74) 

V. PATIENT TRIAL RESULTS 

This section describes the findings from a pilot study which 

examined the functionality of both data gloves when used with 

a group of patients diagnosed with RA. 

A. Study Design 

Nine patients were enrolled in an open pilot study which 

involved one three-hour study session per patient. Recruited 

patients experienced significant but not severe pain and early 

morning stiffness in their hands. Each patient completed a 

questionnaire followed by a video recording of hand flexion and 

extension movement. After initial glove calibration, patients 

worked through a protocol of finger flexion and extension 

exercises whilst wearing a data glove. Exercises were repeated 

for both gloves and recorded using our in-house software. The 

software provided analysis on the dynamic characteristics of 

movement, as described in section I. Each patient completed a 

questionnaire before and after using each glove on their pain 

and stiffness levels and at the end of the session on glove 

donning and doffing usability and their preference between the 

two gloves. 

B. Inclusion criteria  

Recruited patients met the following criteria: Diagnosis of RA, 

aged 18-80 years, glove hand size of medium when screened 

for glove fit.  

C. Exclusion criteria 

Patients were excluded if they had severe pain, swelling, loss of 

joint movement, hyperextension>30 degrees in any joint, 

broken or infected skin in the right hand, history of MRSA or 

Latex allergy.  

D. Results 

Fig. 7 shows the Coefficient of Variation (CV) readings 

calculated for timings for repetition movement from video 

recordings and movement recordings from both data gloves. 

CV for all subjects were very similar for video and data glove 

methods of recording movement, demonstrating that patient 

movement recorded without using a data glove is similar when 

each data glove was worn. CV for both data gloves were also 

very similar, demonstrating that both gloves measured similar 

timings for all subjects. CV video recording values for subject 

2 were affected by the time taken to complete the first few 

repetitions compared to subsequent repetitions which then 

improved throughout remaining completed exercise routines. 

 
Fig.  7. CV results for recorded video and movement using both data gloves. 

 

Table VIII shows Range and SD values for all patients 

generated during repeatability testing. Mean results 

demonstrate very similar range and SD values for both data 

gloves. Individual results vary.  

Poor data glove fit has a negative effect on the repeatability of 

data glove output. This is evident in the variance in range 

readings for some subjects. For example, results for subject 1 

showed greater repeatability for the 5DT data glove. This 

subject described the fit of the iSEG-Glove as too bulky and 

large and felt the finger sensors did not fit well with the 

subjects’ finger joints. Correspondingly, repeatability values 

for subject 2 demonstrated the iSEG-Glove provided better 

repeatability than the 5DT data glove. This subject preferred the 

iSEG-Glove for fit and wearability.  

Subject 4 found the 5DT data glove fitted better when compared 

to the iSEG-Glove. This patient commented on the outer layer 

of the iSEG-Glove and felt it was loose and felt bulky in 

comparison to the 5DT data glove. Subject 6 preferred the 

iSEG-Glove because of its loose fit around the right hand. This 

patient felt some pain. 
TABLE VIII: COMPARISON OF PLASTER MOULD RANGE AND STANDARD 

DEVIATION (SD)  REPEATABILITY TESTS FOR EACH SUBJECT 

Subject 
5DT IMU 

Range SD Range SD 

1 2.00 0.72 5.22 1.93 

2 7.77 2.61 2.31 0.79 

3 2.62 1.10 3.57 1.56 

4 2.71 1.04 5.91 1.94 

5 2.07 0.70 1.71 0.56 

6 1.99 0.82 5.74 2.19 

7 3.28 1.25 1.94 0.71 

8 6.19 2.05 2.79 1.10 

9 2.04 0.69 1.22 0.51 

Mean 2.41 1.22 2.42 1.25 

Mean results collected from the patient trial demonstrated 

improved Range and SD readings when compared to previous 

readings shown in Table VII. This is encouraging since test 

results were collected from patients and not under laboratory 

conditions. 

VI. CONCLUSION 

Data gloves have been proven as a viable replacement for the 

UG and can offer unbiased and objective finger joint ROM 

measurement. However their dependence on calibration 

reduces their usefulness in the clinical setting for use with 

patients who have limited joint movement.  

The novel iSEG-Glove detailed in this paper removes the 

requirement for sensor calibration using IMU’s teamed with 
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intelligent software techniques. Test results showed our iSEG-

Glove had comparable repeatability to the UG with the added 

advantage of simultaneous angular measurement and removal 

of intra-tester and inter-tester reliability. Accuracy testing 

results showed the iSEG-Glove provided better accuracy and 

less overall error than the 5DT data glove with which it was 

compared. Results demonstrated it had similar accuracy to the 

Vicon Motion Capture System.  

Clinical trials provided further evidence that data gloves can 

be used to measure finger movement in a clinical setting. 

Results gathered from the patient group demonstrated similar 

comparison of readings recorded from a video camera and both 

data gloves. Repeatability results confirmed that both gloves 

show mean range readings that provided similar goniometric 

intratester reliability within 5° of measurement and intertester 

reliability in the range of 7° to 9°. 

VII. FUTURE WORK 

Feedback from patients during clinical trials demonstrated 

the need to reduce bulk of the iSEG-Glove skin to improve 

comfort and fit. The glove skin is now undergoing 

modifications to improve wearability. 

The research team are currently examining the feasibility of 

whether a simplified and inexpensive data glove can be 

constructed with comparable accuracy and repeatability to the 

iSEG-Glove without associated hardware and cost 

complexities. A simplified data glove should meet the 

economical demands of healthcare providers. 
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