Abstract
The biological significance of Archaea in the human gut microbiota is largely unclear. We recently reported genomic and biochemical analyses of the Methanomassiliicoccales, a novel order of methanogenic Archaea dwelling in soil and the animal digestive tract. We now show that these Methanomassiliicoccales are present in published microbiome data sets from eight countries. They are represented by five Operational Taxonomic Units present in at least four cohorts and phylogenetically distributed into two clades. Genes for utilizing trimethylamine (TMA), a bacterial precursor to an atherosclerogenic human metabolite, were present in four of the six novel Methanomassiliicoccales genomes assembled from ELDERMET metagenomes. In addition to increased microbiota TMA production capacity in long-term residential care subjects, abundance of TMA-utilizing Methanomassiliicoccales correlated positively with bacterial gene count for TMA production and negatively with fecal TMA concentrations. The two large Methanomassiliicoccales clades have opposite correlations with host health status in the ELDERMET cohort and putative distinct genomic signatures for gut adaptation.
References
Bang C, Schmitz RA. (2015). Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 39: 631–648.
Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA. (2014). The intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS ONE 9: e99411.
Blais Lecours P, Duchaine C, Taillefer M, Tremblay C, Veillette M, Cormier Y et al. (2011). Immunogenic properties of archaeal species found in bioaerosols. PLoS ONE 6: e23326.
Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R et al. (2014). Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS ONE 9: e87734.
Bond Jr JH, Engel RR, Levitt MD. (1971). Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 133: 572–588.
Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E et al. (2012). Genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194: 6944–6945.
Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W et al. (2014). Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic Archaea that encodes pyrrolysine. BMC Genomics 15: 679.
Borrel G, Harris HM, Parisot N, Gaci N, Tottey W, Mihajlovski A et al. (2013). Genome sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1: e00453-13.
Bräuer S, Cadillo-Quiroz H, Kyrpides N, Woyke T, Goodwin L, Detter C et al. (2015). Genome of Methanoregula boonei 6A8 reveals adaptations to oligotrophic peatland environments. Microbiology 161: 1572–1581.
Brugère JF, Borrel G, Gaci N, Tottey W, O'Toole PW, Malpuech-Brugère C. (2014). Archaebiotics: proposed therapeutic use of Archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5: 5–10.
Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A, Ma L et al. (2004). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36: 1165–1173.
Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E et al. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1): 4586–4591.
Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184.
Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B et al. (2015). The microbiome of uncontacted Amerindians. Sci Adv 1: e1500183.
Craciun S, Balskus EP. (2012). Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 109: 21307–21312.
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP et al. (2009). Community-wide analysis of microbial genome sequence signatures. Genome Biol 10: R85.
Dridi B, Henry M, Richet H, Raoult D, Drancourt M. (2012a). Age-related prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome. APMIS 120: 773–777.
Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. (2012b). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62: 1902–1907.
Ebbes M, Bleymüller WM, Cernescu M, Nölker R, Brutschy B, Niemann HH. (2011). Fold and function of the InlB B-repeat. J Biol Chem 286: 15496–15506.
Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
Falony G, Vieira-Silva S, Raes J. (2015). Microbiology meets big data: the case of gut microbiota-derived trimethylamine. Annu Rev Microbiol 69: 305–321.
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K et al. (2016). Population-level analysis of gut microbiome variation. Science 352: 560–564.
Fernandes J, Wang A, Su W, Rozenbloom SR, Taibi A, Comelli EM et al. (2013). Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-positive humans. J Nutr 143: 1269–1275.
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528: 262–266.
Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R et al. (2006). The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188: 642–658.
Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F. (2014). Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20: 16062.
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al. (2014). Human genetics shape the gut microbiome. Cell 159: 789–799.
Gorlas A, Robert C, Gimenez G, Drancourt M, Raoult D. (2012). Complete genome sequence of Methanomassiliicoccus luminyensis, the largest genome of a human-associated Archaea species. J Bacteriol 194: 4745.
Grice EA, Segre JA. (2012). The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13: 151.
Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A et al. (2011). Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA 108: 4599–4606.
Hentschel U, Piel J, Degnan SM, Taylor MW. (2012). Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10: 641–654.
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD et al. (2013). Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8: e66019.
Horz H-P. (2015). Archaeal lineages within the human microbiome: absent, rare or elusive? Life 5: 1333–1345.
Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214.
Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K et al. (2013). Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28: 244–250.
Jeffery IB, Lynch DB, O'Toole PW. (2016). Composition and temporal stability of the gut microbiota in older persons. ISME J 10: 170–182.
Jin W, Cheng Y, Sheng Y, Zhu W. (2014). Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR. BMC Genomics 14: 104.
Kanehisa M, Sato Y, Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428: 726–731.
Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC et al. (2014). γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20: 799–812.
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19: 576–585.
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. (2015). New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81: 1338–1352.
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541–546.
Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. (2004). Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101: 6176–6181.
Lurie-Weinberger MN, Gophna U. (2015). Archaea in and on the human body: health implications and future directions. PLoS Pathog 11: e1004833.
Mackay RJ, McEntyre CJ, Henderson C, Lever M, George PM. (2011). Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochem Rev 32: 33–43.
Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y et al. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40: D115–D122.
Martínez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ, Turnbaugh PJ et al. (2015). Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6: e00042-00015.
Méjean V, Lobbi‐Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. (1994). TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11: 1169–1179.
Meyer M, Granderath K, Andreesen JR. (1995). Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum. Eur J Biochem 234: 184–191.
Miele V, Penel S, Duret L. (2011). Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics 12: 116.
Mihajlovski A, Alric M, Brugère JF. (2008). A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 159: 516–521.
Mihajlovski A, Dore J, Levenez F, Alric M, Brugère JF. (2010). Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep 2: 272–280.
Miller TL, Wolin MJ. (1985). Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141: 116–122.
Miller TL, Wolin MJ, Conway de Macario E, Macario AJ. (1982). Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43: 227–232.
Mitchell S, Zhang A, Barrett T, Ayesh R, Smith R. (1997). Studies on the discontinuous N-oxidation of trimethylamine among Jordanian, Ecuadorian and New Guinean populations. Pharmacogenet Genomics 7: 45–50.
Mittl PR, Schneider-Brachert W. (2007). Sel1-like repeat proteins in signal transduction. Cell Signal 19: 20–31.
Morgavi DP, Rahahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H. (2015). Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol 6: 1060.
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S et al. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32: 822–828.
O’Toole PW, Jeffery IB. (2015). Gut microbiota and aging. Science 350: 1214–1215.
Paul K, Nonoh JO, Mikulski L, Brune A. (2012). "Methanoplasmatales," Thermoplasmatales-related Archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78: 8245–8253.
Peng Y, Leung HCM, Yiu S-M, Chin FYL. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28: 1420–1428.
Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR et al. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1: e1500675.
Polag D, Leiß O, Keppler F. (2014). Age dependent breath methane in the German population. Sci Total Environ 481: 582–587.
Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J et al. (2015). Reduction of butyrate-and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep 5: 12693.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R et al. (2007). Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104: 10643–10648.
Scanlan PD, Shanahan F, Marchesi JR. (2008). Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8: 79.
Sokol H, Seksik P, Furet JP, Firmesse O, Nion‐Larmurier I, Beaugerie L et al. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15: 1183–1189.
Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C et al. (2016). Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92: fiv149.
Tang WW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B et al. (2015). Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116: 448–455.
Vanderhaeghen S, Lacroix C, Schwab C. (2015). Methanogen communities in stool of humans of different age and health status and co-occurrence with bacteria. FEMS Microbiol Lett 362: fnv092.
Wagner M, Sonntag D, Grimm R, Pich A, Eckerskorn C, Söhling B et al. (1999). Substrate‐specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Eur J Biochem 260: 38–49.
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63.
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z et al. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165: 111–124.
Zhu Y, Jameson E, Crosatti M, Schäfer H, Rajakumar K, Bugg TD et al. (2014). Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 111: 4268–4273.
Acknowledgements
We thank JK Goodrich, RE Ley, JC Clemente and MG Domingo-Bello for sharing their data to identify human-associated Methanomassiliicoccales, as well as J-F Mangot for his early advice with binning. PWO’T was supported by Science Foundation Ireland through a Principal Investigator award, by a CSET award to the APC Microbiome Institute and by an FHRI award to the ELDERMET project by the Department of Agriculture, Fisheries and Marine of the Government of Ireland.
Author contributions
Conceptualization: GB, J-FB, and PWO’T; methodology: GB and PWO’T; investigation: GB, JD, and MCN; formal analysis: GB, AMC, and DBL; writing—original draft: GB; writing—review and editing: AMC, J-FB, and PWO’T.
Author information
Affiliations
School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
- Guillaume Borrel
- , Angela McCann
- , Jennifer Deane
- , Marta C Neto
- , Denise B Lynch
- & Paul W O'Toole
EA-4678 CIDAM, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
- Jean- François Brugère
Authors
Search for Guillaume Borrel in:
Search for Angela McCann in:
Search for Jennifer Deane in:
Search for Marta C Neto in:
Search for Denise B Lynch in:
Search for Jean- François Brugère in:
Search for Paul W O'Toole in:
Competing interests
The authors declare no conflict of interest.
Corresponding author
Correspondence to Paul W O'Toole.
Supplementary information
Supplementary Information accompanies this paper on The ISME Journal website (http://www.nature.com/ismej)