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Abstract
The use of antisense ‘splice-switching’ oligonucleotides to induce exon skipping represents

a potential therapeutic approach to various human genetic diseases. It has achieved great-

est maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy

(DMD), for which several clinical trials are completed or ongoing, and a large body of data

exists describing tested oligonucleotides and their efficacy. The rational design of an exon

skipping oligonucleotide involves the choice of an antisense sequence, usually between 15

and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describ-

ing the target site can be computationally estimated and several have been identified to cor-

relate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening

approach is proposed, based on predictive statistical modelling. Previous DMD data were

compiled together and, for each oligonucleotide, some 60 descriptors were considered. Sta-

tistical modelling approaches were applied to derive algorithms that predict exon skipping

for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the

RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two

most predictive parameters, and we included these and several other parameters (while dis-

counting many) into an in silico screening process, based on their capacity to predict high or

low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted)

and/or 2’OMethyl RNA oligonucleotides (76% correctly predicted). Predictions correlated

strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions

on DMD exons 44 (R2 0.89) and 53 (R2 0.89), one of which represents a potential novel can-

didate for clinical trials. We provide these algorithms together with a computational tool that

facilitates screening to predict exon skipping efficacy at each position of a target exon.
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Introduction
Control of splicing as a therapeutic approach is currently being explored in breast cancer [1],
chronic inflammatory diseases [2], and various neuromuscular conditions, including Du-
chenne muscular dystrophy (DMD; reviewed [3]), spinal muscle atrophy, limb girdle muscular
dystrophy type 2A, hypertrophic cardiomyopathy, Fukuyama muscular dystrophy, and a se-
vere form of core myopathy [4–9]. Diseases of RNA mis-splicing comprise up to 15% of all in-
herited diseases, and 50–60% of all disease-causing mutations are now known to affect splicing
[10]. Splice-switching molecules are potentially applicable to these and to diseases in which re-
covery of a mutated gene’s open reading frame by ‘exon skipping’ could result in truncated but
still functional protein. Such is the case for DMD, for which the exon skipping approach has
emerged as a promising therapy showing limited success with systemic administration of two
different chemistries (phosphorodiamidate morpholino oligomer, PMO; and 2’O-Methyl
RNA) in clinical trials [11–13].

DMD is a severe X-linked neuromuscular disorder with incidence estimated at 1 in 3,500
male births [14]. Muscle weakness evident from around 3 to 5 years of age progresses to loss of
ambulation in early to mid-teens [15]. Advances in respiratory intervention are pushing life ex-
pectancy to beyond 40 years, with a coincident shift in the cause of death away from respiratory
failure and towards dilated cardiomyopathy [16]. DMD is caused by loss of the dystrophin pro-
tein, the muscle isoform being encoded by all 79 exons of the longest known human gene
(DMD; 2.2 mega base pairs). Mutations, approximately one-third of which are de novo, occur
in great variety, being scattered throughout the full length of this gene. Study of murine models
suggests that lack of dystrophin predisposes myofibres (long, multinucleate, contractile cells
comprising the bulk of skeletal muscle) to necrosis, prompting recurrent rounds of myofibre
degeneration and regeneration, these exhausting the self-renewal capacity of the native precur-
sor population as it struggles to compensate for the cellular pathology [17–19]. As patients age,
their lean muscle mass diminishes, and is partially replaced by fibrotic tissue. Despite a number
of approaches, including cell and gene therapies, upregulation of the dystrophin homologue
utrophin, gene editing [20,21], and stop codon read-through, therapies to slow disease progres-
sion have remained elusive (recent reviews: [22–25]).

Exon skipping therapy for DMD aims to shift the clinical prognosis towards its milder coun-
terpart Becker muscular dystrophy (BMD), by interfering with splicing events using agents such
as antisense oligonucleotides (referred to here as oligos). The diverse severity of clinical out-
comes that result from the wide variety of different DMDmutation patterns is explained in large
part by the “reading frame rule” [26,27], pertaining to the alignment or mis-alignment of exon
boundaries with codon triplets. A mutation, such as the deletion of a given exon or exons, may
change the downstream open reading frame, leading to a premature stop codon and nonsense-
mediated decay of the RNA transcript: such mutations usually result in DMD. Conversely, the
mutation may leave the open reading frame unchanged, allowing the translation of a truncated
protein that, if it retains certain functionalities, gives rise to the milder BMD. Exon skipping
seeks to disrupt the definition of an exon adjacent to the mutation such that it is not spliced into
the mRNA transcript and the correct open reading frame is restored.

Efficient exon skipping depends on the interaction of a given oligo with the complex system
represented by the splicing apparatus and regulatory factors, the nascent pre-mRNA, and the
interactions of these components with each other and with the rest of the cellular environment.
Efficacy varies markedly between different target sequences on the exon that is to be skipped.
Studies have generally involved the in vitro testing of many target sequences for a given exon,
with no guarantee that the eventual target sequence selected represents an optimal choice for
in vivo efficacy.
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Design guidelines have been put forwards [28–32] that identify several important parame-
ters based on their correlation with observed efficacy. Three large-scale studies tested the effica-
cy of many oligonucleotides and retrospectively identified correlating parameters [28,29][31].
Aartsma-Rus et al. compared the efficacy of targeting exonic sequences against that observed
for targeting splice sites at the exon/intron boundaries, finding that the former were more effi-
cient, in large part due to the greater GC content of the exon (and therefore superior thermody-
namic binding of oligos targeting the exon) [31]. Aartsma-Rus et al. furthermore [28] used
linear discriminant analysis to identify four parameters capable to classify a high proportion of
2’O-Methyl oligos into effective and non-effective categories (defined by those authors as>5%
or<5% of transcript skipped). The strongest of these was the difference in free energy (dG) be-
tween the bound and unbound states of the oligo and the entire sequence of the exon. The re-
maining three parameters related to the binding of splice regulatory proteins to the target
sequence within the exonic pre-mRNA: the number of hexameric exon splicing enhancer sites
predicted by RESCUE-ESE [33], and the strength of sequence motifs for the binding of Tra2β
and SC35 splicing factor proteins as predicted by Human Splicing Finder [34]. Popplewell
et al. [29], carrying out a similar analysis but using PMO oligos, likewise identified (1) dG of
the oligo to its target exon, but otherwise determined (2) oligo length, (3) the proximity of the
target sequence to the exon acceptor site, (4) their experimental assay of target site accessibility,
and (5) the predicted strength of ASF/SF2 splice factor binding, to be the other distinguishing
parameters. A purely in silico analysis of RNA accessibility identified parameters based on the
computation of co-transcriptional folding dynamics [35]. Their algorithm computed the free
folding of a moving window of 1500 bases of the pre-mRNA, beginning with the exon at the 3’
end of the window then shifting one base per iteration until the exon was at its 5’ end. The
number of times that bases of the target sequence were unbound throughout the iterations was
computed, and was found to correlate with previously described skipping efficacy. A prospec-
tive study was later carried out using, as its oligo design criteria, a parameter (‘L3’) that was
based on these RNA accessibility computations, together with two other parameters: the pres-
ence of exon splice enhancer motifs and the oligo length [30].

These previous studies involving retrospective identification of design parameters were lim-
ited to single-study datasets and did not set specific criteria or thresholds [28,29], whereas the
prospective study [30] considered only several design criteria from among those parameters
that had previously been identified to correlate with efficacy. Importantly, no reports have
moved beyond the identification of design criteria, to provide quantitative predictions of skip-
ping efficacy. Furthermore, the retrospective analyses may, in the absence of checking against
other datasets, have yielded potentially spurious study-specific biases in correlation, especially
considering the large numbers of parameters involved. In addition, there are two contexts in
which consideration of RNA folding and binding energetics have been based on assumptions
that do not necessarily reflect as closely as possible the dynamics of the system: (1) because
binding of the oligo occurs during the definition of the exon, it may make more sense to con-
sider binding to a target region within which the target sequence is at the center (including
where necessary some intronic sequence) rather than binding to the entire exon, which could
be particularly inaccurate for oligo binding near the ends of the exon; (2) the pre-mRNA may
have strong limitations on its freedom of movement over a window as long as 1500 bases, so
computations of RNA accessibility over shorter lengths may give greater accuracy. Even in a
free-folding system, the limitations of computational accuracy should be considered: for exam-
ple, it was recently shown that a length of 150 bases provided a balance between maximizing
the number of accurately predicted base pairs, while minimizing the effects of incorrect long-
range predictions [36]. Besides energetics, various other parameters have not yet been consid-
ered, including (1) the estimation of splice factor binding propensity to a given sequence based
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on sequence neighborhood inference [37], (2) categorization of the target exon according to
splice-related characteristics (based on the machine learning analysis by [38]) and (3) differen-
tial GC content of the flanking intronic sequence with its exon, which was recently shown to be
important for exon definition in a subset of human genes [39], including (shown here) the
DMD gene.

Here, we present a novel approach for screening across an exon to predict regions of high
exon skipping efficacy. We collate previously published data on the efficacy of exon skipping
oligos and their reported descriptive parameters. For each previously published oligo we then
use computational tools to calculate additional parameters, usually with several variations of
each (such as varying the length of flanking sequence in computations of binding energy). We
identify parameters that have robust predictive power and, based on these, derive predictive al-
gorithms and apply them to screen across all target positions within selected exons of the dys-
trophin pre-mRNA. Predictions are then tested by in vitro assays of exon skipping for oligos at
eight positions each of dystrophin exons 44 and 53, and a strong correlation is found with the
predicted profile across the exon. Somewhat surprisingly, although several parameters were ad-
ditive to predictive power in the PMO and 2’O-Methyl datasets, none were shared by both
datasets except for (1) the binding energy of the oligonucleotide to the RNA, which was found
to have the strongest influence on efficacy, and (2) the distance (in bases) of the target site from
the splice acceptor. An in silico screening tool facilitating the application of these algorithms
across any exon sequence of interest is provided as a Perl script with instructions for use.

Materials and Methods

Parameter calculations and predictive modelling
Binding energy for the oligo to the target site was computed using the RNAeval algorithm with
its default settings [40]. Energy of binding to the target with flanking regions of various extents
was computed twice, using either RNAstructure v5.3 [41] or RNAcofold [40]. Results from
RNAstructure and RNAcofold were found to correlate closely and those from RNAstructure
were used for modelling. Scores for RNA accessibility were generated using the RNAplfold al-
gorithm [40]. From its output, custom Perl programs retrieved accessibility scores for each
published target sequence, its last 15 bases (i.e. 15 bases counting inwards from the 3’ end), its
last 8 bases, and each of its bases singly, from which were derived our various accessibility de-
scriptors. For neighborhood inference scores, a Perl program was written to screen across all
target exons and, for each hexamer sequence, retrieve the NI score published by [37]. The cu-
mulative NI score was defined as the sum of the hexamers scores for each target site. We also
divided this cumulated score by target length to give a normalized cumulative NI score. GC
content of the exon, the upstream flanking region, and our various secondary parameters
based on those, were calculated using Perl and BioPerl. Data exploration and modelling were
done using JMP software (SAS Institute Inc., NC, USA). Further details relating to parameter
calculations and predictive modelling can be found in supplemental materials and methods.

Screening of predictive algorithm across target exons
Human DMD exon coordinates were taken from the Consensus CDS project reference
CCDS14233.1 and sequences were downloaded from NCBI nucleotide reference NC_000023.
A fasta file was generated for target exons and 200 base intronic flanks (S1 Sequences). We in-
clude a Perl script (S1 Script) which takes the fasta file as input and generates two output files:
(1) a list of oligo and target sequences (with flanking regions) for every position of the target
exon(s), numbered according to the distance of the target sequence from the splice acceptor
site, and (2) energy calculations for each of these oligo to target pairs. The script uses BioPerl’s
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sequence input/output object to manipulate the fasta file, and the text interface version of
RNAstructure software [41] to generate energy calculations. The script has a path to RNAs-
tructure thermodynamic parameter tables that must be set correctly and RNAstructure must
be correctly installed on the system. The length of the oligo sequence can be specified in the
script, along with several other parameters. The predictive formulae (PMO or 2’O-Methyl) pre-
sented here can then be applied to each target position, using Microsoft Excel to incorporate
the dG and distance from acceptor values output by RNAstructure and Perl into the formula.

Prospective testing
Human-derived cell lines were obtained in collaboration with the team of F Muntoni, MRC
CNMD Biobank (NHS Research Ethics Committee reference 06/Q0406/33; and HTA license
number 12198), in the context of Myobank, affiliated to Eurobiobank (European certification).
Antisense PMO oligonucleotides of length 30bases targeting DMD exon 44 or 53 were synthe-
sized (Gene Tools). Human-derived myoblasts from two DMD patients (immortalized clonal
lines 7796 and KM571 [42]) harboring, respectively, deletion of exons 42–43 and of exon 52 of
the DMD gene, and therefore having an open reading frame correctable by skipping (respec-
tively) of exon 44 or 53, or from a healthy subject (immortalized clonal line 8220) were cultured
in proliferation conditions with growth medium (GM) (DMEM/F12 with skeletal muscle sup-
plement mix (Promocell), 20% FBS and 0.5% antibiotics (penicillin/streptomycin). Cells were
seeded at 0.6 x 105 per well in a 12-well plate coated with collagen type 1. Two days after seed-
ing, at approximately 90% confluence, GM was changed to differentiation medium (DM)
(DMEM/F12 with 2% horse serum, 1x ITS solution (Sigma), and 0.5% antibiotics (PC/ST).
After three days in DM, PMOs at 10 μMwere added in individual wells, with 6 μM of end-
porter transfection reagent. Two days following PMO transfection, the DM containing PMO
was replaced with regular DM. Cells were harvested at day 8 of differentiation (5 days after

PMO transfection). Skipping percentage was calculated as ( skipped transcript
skipped transcriptþnative transcript

) using Ima-

geJ software (NIH). In exon 44 skipping, an unknown top band above the native band, and an
intermediate band, were excluded from the RNA quantification calculation. For western blots,
anti-alpha-tubulin antibody was used as a loading control (ab7291, 1:8000, Abcam). Expres-
sion levels of dystrophin protein in the DMD cells transfected with PMOs were calculated with
a calibration curve from 1 to 10 percent protein (0.12–1.2 μg) of immortalized healthy skeletal
muscle cells at 9 days after differentiation was used as a positive control. Three independent ex-
periments were performed for each oligonucleotide tested. Uncropped images of all gels and
blots are provided (S6 Fig.). Further details of RT-PCR and western blots are given in supple-
mental materials and methods.

Results

Database creation: curation of existing data on previously tested
sequences
Survey of the literature identified five large-scale studies in each of which tens of oligonucleo-
tide sequences had been tested for exon skipping [28–30,43–45]. These studies differed in the
oligonucleotide chemistries and cell types used, and in their reporting of skipping efficacy in-
formation and of associated experimental details. Some reported various computed parameters
including physical descriptions of the oligo (e.g. length, percentage GC content), binding ener-
gies (oligo to its target sequence, or oligo dimerization), the situation of the target sequence
(distance from splice acceptor and/or donor site), and local target site characteristics (predicted
openness or accessibility of target site conformation; predicted binding of splicing factors).

Predictive Algorithms for Exon Skipping
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Skipping efficacy was always based on the ratio of skipped to native transcript observed follow-
ing nested reverse transcription polymerase chain reaction (nested PCR) analyses, and was re-

ported either as a percentage ( skipped transcript
skipped transcriptþnative transcript

) or as a percentage classed into one of 2 to

4 grades (e.g. grade 1:<10%; grade 2: 10–30%; and grade 3:>30%). In general, the authors of
these studies defined a ‘good’ level of exon skipping to be greater than 25–30%. A summary of
the studies used is shown (table 1). These were combined to create two datasets (one for PMO
oligos, and one for 2’O-Methyl oligos) detailing a total of 358 oligonucleotides, with care taken
to correctly interpret the different numbering systems used by each study (S1 and S2 Tables).
Where absent in the original publication, basic descriptors such as the length of the oligo, or
the distance of the target site from the exon acceptor site, were calculated. As a descriptor of
target site situation that is independent of oligo length, we used the ‘Average Cumulative posi-
tion’ (ACP; essentially the distance in bases from the splice acceptor site to the centre of the tar-
get site) defined by [30], but retained descriptors for the distance of the oligo’s extreme bases to
their respective exon acceptor and donor sites.

Additional descriptors
We wished to take a systematic approach, including into our analysis many factors that were
calculable or predictable by way of calculation and that might contribute to skipping efficacy.
We supplemented previously reported descriptors with additional parameters (summarized in
table 2). All 358 oligos and their descriptor values (published and additional) are given in S1
and S2 Tables. The additional parameters fell into four categories: (1) binding energetics of the

Table 1. *Skipping efficacy was always based on the ratio of skipped to native transcript observed following nested PCR analyses, and was
reported either as an exact percentage ((skipped transcript)/(skipped transcript + native transcript)) or as this percentage classed into one of 2
to 4 grades (e.g. grade 1: <10%; grade 2: 10–30%; and grade 3: >30%).

Study Chemistry Method of reporting efficacy* # oligos

Aartsma-Rus 2005 & 2009 2’ O-Methyl RNA >25%, 1–25%, and undetected or >5% and <5%† 156

Dwi Pramono 2012 2’ O-Methyl RNA Exact percentage 23

Harding 2007 2’ O-Methyl RNA >30%, 10–30%, 1–10%, and 0% 34

Popplewell 2009 PMO Exact percentage 66

Wilton 2007 2’ O-Methyl RNA >30%, 10–30%, and <10% 79

Total 359

†Levels of efficacy were reported as >5% or <5% for 44 oligos of the Aartsma-Rus data.

doi:10.1371/journal.pone.0120058.t001

Table 2. Summary of additional descriptive parameters.

Predicted energetics Predicted accessibility Predicted splicing
motifs

Target exon and the upstream
intron

Binding energy (dG) of oligo to target
with: (1) 50 base flanks; (2) 100 base
flanks; (3) 200 base flanks; (4) flank
from exon start to 10 bases
downstream of target end

Accessibility scores for: (1) Target region;
(2) Target region (normalized to oligo
length); (3) 15 bases of target 3’ end; (4) 8
bases of target 3’ end; (5) Most accessible
8 bases

Neighborhood
inference scores: (1)
Cumulative; (2) Per base

Exon ‘Malueka’ splice category

Co-transcriptional folding: (1) L1 score;
(2) L3 score

Exon/intron GC content: (1) Exon
GC%; (2) Intron GC%; (3) ΔGC; (4)
ΔGC (ignoring target); (5) Change
in ΔGC after oligo binding

doi:10.1371/journal.pone.0120058.t002
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oligo to its target region; (2) predicted accessibility of the target site; (3) predicted splicing mo-
tifs at target site; and (4) characteristics of the target exon and the upstream intron. Although
some of these parameters (e.g. the exon GC content) do not change between different target
sites within the same exon, they could still influence the interplay of other factors (e.g. the im-
portance of binding energy could be relatively weak in exons of high GC content).

(1) Binding energetics of the oligo to its target region: Because binding energy is dependent
not only on direct contacts between the oligo and its target sequence, but also on binding of the
target region (the target and its surrounding sequence) with portions of itself, we calculated the
dG of binding for the oligo to the target plus flanking regions of various lengths (50, 100, and
200 bases). Also, imagining that the upstream portion of the exon may have time to adopt
some local folding prior to its exposure to the oligo, we calculated the dG of binding for the
oligo to the target plus flanking regions extending upstream until the exon start and down-
stream by 10 bases from the target site end. These calculations are represented in Fig. 1A.

(2) Predicted accessibility of the target site: The accessibility of each base in a RNA sequence
can be predicted by thermodynamics calculations and may influence the binding efficacy at the
target site. It has been shown in siRNA studies that target site accessibility correlates with effi-
cacy [46], and particularly the accessibility of bases towards the 3’ end of the target site [47].
Specifically, for a test dataset of oligos targeted across various regions of mRNAs, the accessibil-
ity of the 8 base pairs at the 3’ end of the target site gave the strongest association with efficacy.
Since target site accessibility will also influence exon skipping efficacy, we calculated accessibili-
ty for each base of each target exon. From this we derived several different accessibility scores
by summing across bases at the following sites: (1) the target; (2) the target (score normalized
to oligo length); (3) the 3’ end of the target (last 15 bases); (4) the 3’ end of the target (last 8
bases); (5) the site of maximum accessibility within the target (the eight contiguous bases of the
target having the greatest summed accessibility scores). These are represented in Fig. 1B.

In addition, an attempt has been made to use thermodynamics calculations to model co-
transcriptional pre-mRNA folding [35]. The authors represented folding by defining a window
of 1500 nucleotides and moving this window in single base increments over a region anchored
by the exon skipping target site. For each increment of the window they computed the RNA
secondary structure, allowing them to measure the proportion of structures for which a given
base is bound or unbound, and thereby to derive an ‘engagement’ score for that base. We in-
cluded into our database, scores for (L1) the average proportion of predicted structures for
which each target base is unbound, and (L3) the average engagement of the target bases during
virtual transcription, that had been calculated by [35] for two of the exon skipping studies [43]
and [45].

(3) Predicted splicing motifs at target site: Work by [37] enables a generalized approach to
the estimation of splice factor binding propensity to a given sequence. These authors correctly
predicted novel ESE and ESS sites based on Neighborhood Inference (NI) scoring, which ex-
amines the relationship of all known splice factor binding motifs to other regions in sequence
space (the mathematical space that describes all possible sequences and their similarity to one
another). Their publication includes a list of all possible hexamer sequences with a NI score cal-
culated for each, which we used to derive (1) a cumulative NI score (sum of all hexamer scores),
and (2) the cumulative NI score normalized to target sequence length, for each exon skipping
target site.

(4) Characteristics of the target exon and the upstream intron: exon splice factor properties
and exon/intron GC contents: Exons differ in various properties that may influence splicing
and thus the efficacy of exon skipping. Machine learning algorithms were recently applied [38]
to categorize the exons of the DMD gene on the basis of splicing-related parameters, including
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splice site strengths, splice site GC contents, and enrichment for different types of splicing
motif. We included this exon categorization as a descriptor for each oligo.

It was recently observed that the exon/intron architecture of human and other homeother-
mic organisms can be placed into two categories: (1) the exon and its flanking introns have
high GC content and the differential GC content between the exon and its flanks (ΔGC) is low,
introns are short, and (2) overall low GC content but a high ΔGC where the exon has relatively
high GC content compared with its flanking introns, introns are long [39]. The authors pre-
sented various bioinformatics and experimental validations supporting the hypothesis that the

Fig 1. Binding energetics and RNA folding accessibility. (A) The energy (dG) of binding was calculated
for the oligo to the target region and flanking regions of various extents: flanks of 50 (dG50), 100 (dG100), or
200 (dG200) bases around the target site, or flanks extending from the 5’ end of the exon to 10 bases
downstream of the target 3’ end (dGet+10). (B) Accessibility (the likelihood of bases being unpaired) of the
target site within the predicted structure of the folded RNA: (1) target site; (2) target site normalized to oligo
length; (3) the 15 bases of the target’s 3’ end; (4) the 8 bases of the target’s 3’ end; (5) the most accessible 8
bases of the target site.

doi:10.1371/journal.pone.0120058.g001
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high ΔGC in type 2 architecture was important for the definition of the exon during splicing.
We noted that the exon/intron architectures of the DMD gene belong to this second category,
having long introns, an average intronic GC content of 32%, and average exonic GC content of
44% (S2 table). Since the GC content differential might affect exon definition and thus influ-
ence skipping efficacy, and because the nuances of this differential might be affected by oligo
binding, we calculated several parameters including: (1) exon GC content; (2) GC content of
the upstream intron (150 bp); (3) ΔGC; (4) ΔGC when the target site is ignored (supposing
some blocking effect of the bound oligo); (5) change in ΔGC due to oligo blocking. We calculat-
ed ΔGC based on the upstream intron because this was more pronounced in the study by [39].

Predictive statistical modelling
We carried out preliminary data exploration to select only a subset of each parameter category
to apply forward into predictive modelling, and we also tested the cross-terms describing rela-
tionships between whole exon descriptors (e.g. the GC contents of the exon and upstream
intronic sequence) and target site descriptors. We found that an energetics parameter, dG50
(the energy of oligo binding to the target plus 50 base flanks), showed strong correlation with
efficacy in the two larger datasets we investigated (Aartsma-Rus and Popplewell), and for
modelling we used this parameter in favour of other energetics parameters such as the binding
of the oligo to its target site only or to the entire exon sequence. The dG50 was considerably
more predictive than these other parameters for the Aartsma-Rus dataset (p = 3 x 10-4 for
dG50, 0.01 for oligo::target, and 0.03 for oligo::exon) and, for the Popplewell dataset, only
slightly less predictive than binding to the whole exon (p = 9 x 10-5 for dG50, 0.001 for oligo::
target, and 1 x 10-5 for oligo::exon). Data for the two chemistries (2’ O-Methyl RNA and PMO)
were modelled separately, with the aim to identify parameters that were robustly predictive
across both chemistries. We focused our analysis on the PMO data [29] since it included many
data-points (66 oligos), had good coverage of four exons (8–23 oligos tested for each of exons
44, 45, 46, and 53) and partial coverage of a fifth (2 oligos tested for exon 51), and the authors
reported percentage values for efficacy that could be more powerfully leveraged in modelling
than could the stratified levels of efficacy reported for 2’O-Methyl oligos.

We used a modelling approach known as stepwise regression with K-fold cross-validation
to identify parameters that were predictive of skipping efficacy. Parameters and their factorials
were then used to construct a predictive formula that could be applied across target sites. This
approach divides the original data into K equal-sized subsets, randomly partitioning each entry
into a subset. In turn, each of the K sets is used to validate the model fit on the rest of the data,
fitting a total of K models. The K-fold R2 is calculated as the average for all of the models. The
R2 value for the correlation of the model with the data improves as parameters are added to the
model, whereas the K-fold R2 improves only to the point where additional parameters are un-
likely to have predictive value. As shown (Fig. 2A), K-fold R2 identified three parameters that
had strong predictive power for the Popplewell dataset: (1) the dG of binding for the oligo to
the target plus 50 base flanking regions; (2) the distance of the target site from the splice accep-
tor; and (3) the Malueka category for splice-factor related characteristics of the exon. It can be
seen in Fig. 2A that the K-fold R2 score could be marginally increased with the addition of
more parameters but we elected to be conservative in our modelling, using only these three
strongest parameters, in order to diminish the likelihood of over-fitting the model to the data,
which is a danger when modelling sparse datasets and can lead to a model which fails to be pre-
dictive of new data. A second round of stepwise regression on these three parameters and their
factorials indicated that the inclusion of the cross-term of distance from acceptor with binding
energy added to the predictive power. A standard least squares model was then constructed
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from which was derived a predictive formula for skipping efficacy (Fig. 2B). The model gave R2

of 0.57 and RMSE of 21.1 and was comprised of the following terms:

Predicted skip ¼ �44:177þ ð�0:253 � DfAÞ þ ð�2:435 � dG50Þ

þ Malueka A ) �11:4

Malueka C ) þ11:4

 !
þ ððDfA � �80:197Þ � ðdG50 þ 37:467Þ � 0:02Þ

Where: DfA = Distance of target’s 5’ end from upstream acceptor site in bases; dG50 = Ener-
gy of binding of the oligo to the target site with 50 base flanks; and Malueka A/C = Category of
exon based on categorization by [38].

There were two groups of outliers, one with good predicted efficacy (30–50%) but poor ob-
served efficacy (0–10%), the other with good predicted efficacy (40–50%) but excellent ob-
served efficacy (70–90%); outlier characteristics were examined but no commonalities
were identified.

To test the capacity of these parameters to correctly place oligos according to ‘good’ (>30%)
or ‘bad’ (<30%) efficacy, an ordinal logistic model was generated, predictive of this categoriza-
tion. The model correctly placed 89% of oligos, as shown by the confusion matrix (Fig. 2C).

To visualize trends in predicted efficacy and to compare the predicted with the observed ef-
ficacy we created an in silico screening tool (see materials and methods) and applied it across
the exons tested in the Popplewell study (Fig. 3), calculating predicted efficacy for 25-mers and
30-mers at every possible target position. Conformity to the model was most notable in the di-
minishing of efficacy with distance from the acceptor site, except when strong dG of binding
counteracted this effect, as for bases 80 to 110 of exon 46. Skipping (both observed and pre-
dicted) was generally more effective in exons belonging to Malueka splice type C (exons 44 and
46), than those of type A (45, 51 and 53), especially towards the donor site end of the exon.

Fig 2. Predictive modelling for PMO oligonucleotides. (A) Descriptive parameters are added consecutively to the model based on their predictive power
(except parameter 1, which is the intercept). K-fold R2 (green triangles), an indicator of the likelihood of the model to be predictive of new datasets, increases
markedly with the addition of dG50 (binding energy of the oligo to a region encompassing the target site and 50 base flanks), DfA, the distance of the target
from the upstream splice acceptor site, and Malueka type, the category of the exon based on splice-related descriptors defined by [38]. R2 (blue squares) is
improved by the addition of further parameters but K-fold R2 is only slightly increased. (B) Percentage skipping as reported (Observed skip) against the
percentage skipping, as predicted by a standard least squares model for the skipping efficacy of PMO oligos, based on the parameters: dG50, DfA, Malueka
type, and the factorial of dG50 x DfA. A line of best fit is marked (red line) with 0.05 significance curves (dashed red lines), and average of observed (dashed
blue line). (C) Confusion matrix showing the numbers of correct and incorrect predictions of skipping efficacy greater or less than 30% by an ordinal logistic
model constructed using the same parameters (green background = correctly predicted; red = incorrectly predicted).

doi:10.1371/journal.pone.0120058.g002
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We tested whether the predictive formula derived from the PMO data could distinguish effi-
cacious from non-efficacious oligos in the 2’OMethyl datasets (Fig. 4). Average values of pre-
dicted skip varied markedly between studies, partly following the authors’ varying choices of
oligo length. Average values were lower for the 2’OMethyl studies than for PMOs because
PMO oligos have lower binding affinity, requiring longer sequences. In general, efficacious oli-
gos had higher predictions than non-efficacious oligos, except for the Wilton dataset. However,
this dataset had notable peculiarities that may limit its use for predictive analyses: (1) a single
most successful oligo is reported per exon; (2) efficacy for exons in the range 55–70 was dra-
matically diminished relative to other exons (S1 Fig.). Among our test parameters we could

Fig 3. Screening across exons for predicted exon skipping and comparison with published data (from [29]). Distance from acceptor is given for the
first (5’-most) base of the target site. Observed and predicted percentage skipping are shown for 30-mer and 25-mer oligonucleotides, with moving averages
shown over 15 and 13 bases, respectively (in this way, the moving average indicates the value for the mid-point of each target site).

doi:10.1371/journal.pone.0120058.g003
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find none that would explain this latter observation, and we opted in subsequent analyses to
omit this dataset.

To identify the factors influencing skipping efficacy in the 2’OMethyl datasets we carried
out stepwise regression. As for the PMO dataset, dG of binding of the oligo to the target site,
and distance from the acceptor site (or ACP, which gave very similar results) were strongly pre-
dictive parameters, and it was useful to also include their cross-term. Unlike the PMO dataset,
an oligo length parameter (categorizing into> 22 or< 22 bases) was selected, whereas the
exon Malueka splice type was not. These same parameters were used to generate an ordinal lo-
gistic model that correctly placed 75.6% of 2’OMethyl oligos into ‘good’ or ‘bad’ efficacy (de-
fined as greater or less than 25%, 27.5%, or 30% skipping, depending on the stratification of
skip levels reported in the study; it was necessary here to omit 28 oligos from the Aartsma-Rus
data, for which reported efficacies of>5% were not further stratified) (table 3). Correct placing
was better for the Harding (79.4%) and Dwi Pramono (82.6%) datasets than for the Aartsma-
Rus dataset (73.4%). We applied the predictive formula for 2’OMethyl in an in silico screen
across the five exons that have been most frequently targeted using 2’O-Methyl oligos (exons
44, 45, 46, 51, and 53; S3 Fig.). Agreement with observation was strong for exons 51 and 53, but
poor for exon 45, which may be explained by the coverage of this exon (and also of exon 46)
primarily by very short oligos (15–18 nucleotides) which generally had a high rate of failure
(S4 Fig.). The predictive formula for screening 2’OMethyl RNA target sites is given (S2 Fig.).

Fig 4. Predictive formulas derived for PMO (Popplewell) data applied across 2’OMethyl data
(Aartsma-Rus, Dwi Pramono, Harding, andWilton). Predicted skip is shown for oligos categorised as
‘good’ or not, based on the level stratifications reported for each study (Aartsma-Rus,>25%; Dwi Pramono,
>27.5%; Harding,>30%; Popplewell,>30%;Wilton,>30%).

doi:10.1371/journal.pone.0120058.g004
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A complete list is given of the sixty parameters considered, indicating which were included
into the two predictive algorithms (S3 Table).

Validation of the predictive algorithm by in vitro testing
We tested new sequences targeting sixteen positions spread across exons 44 and 53 of the
human dystrophin transcript, these positions representing a wide range of predicted skipping
efficacy according to our algorithm for PMOs (S4 Table). In three experimental repeats,
skipped transcript and rescued (truncated) protein levels were measured in treated, untreated,
and mock (random 25 or 31-mer)-treated, immortalized cell lines derived from muscle of two
DMD patients harbouring appropriate mutations (representative gels are shown in Fig. 5A and
5B; all gels are shown in S5 and S6 Figs.). We observed very strong correlation of observed lev-
els of skipped transcript with predicted skipping efficacy (Fig. 5C and 5F; average R2 0.89 for
both exons). Observed protein levels also correlated strongly with prediction (average R2 of
0.73 for exon 44 and of 0.78 for exon 53). Due to inter-study variation, our test sequences, de-
spite being PMOs of length 30-mer, cannot be compared directly with the PMO dataset on
which the predictive formula is based (for example, we amplified transcripts using a standard
single step of PCR rather than nested PCR, we used unmodified bare-morpholinos as opposed
to leashed oligos, and the end-porter transfection reagent as opposed to lipotransfection). Due
to these differences, when plotting these data against distance from acceptor for each exon we
normalized the predicted skip to the average of the observed skips or of the observed protein
levels for the test oligos (Fig. 5D-E and 5G-H). For exon 44, a low level of native skipped tran-
script was observed in untreated controls—this level was subtracted to quantify skipping in the
treated samples. For both exons, a clear pattern is apparent matching observations with predic-
tions across the length of the exon. Greatest efficacy was observed for the oligos targeting posi-
tions 0 and 2 (exon 44) or 26 and 30 (exon 53) bases away from the splice acceptor site, within
regions of high predicted efficacy.

Since our predictive model was constructed using data that included exons 44 and 53, we
wished to guard against the possibility that our model was biased towards these exons, and that
this would explain the strength of correlation between our experimental data and the predictive
algorithm. For this we repeated statistical modelling of the PMO dataset, based on the same

Table 3. †Predicted skip is shown for 2’O-Methyl oligos categorised as ‘good’ or not, based on the level stratifications reported for each study
(Aartsma-Rus, >25%; Dwi Pramono, >27.5%; Harding, >30%).

Study Observed ‘good’ skip?† Predicted ‘good’ skip?† Proportion predicted correctly

All 2’ O Methyl no yes

no 111 14

yes 31 29 75.6%

Aartsma-Rus† no yes

no 77 10

yes 24 17 73.4%

Dwi Pramono no yes

no 9 1

yes 3 10 82.6%

Harding no yes

no 25 3

yes 4 2 79.4%

doi:10.1371/journal.pone.0120058.t003
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four predictive parameters, but excluding either exon 44 or 53 (S7 and S8 Figs.). With exon 44
or 53 omitted, prediction of percentage skip (using a standard least squares model) gave similar
R2 (0.51 and 0.60, respectively) compared to modelling on the full PMO dataset (0.57; S7 and
S8 Figs., A, upper panel), and categorization into> 30% skip or< 30% skip (using an ordinal
logistic model) was also similar (correct placement for 96% and 86% of oligos, respectively; S7
and S8 Figs., A, lower panel) to the model for the full PMO dataset (89%). Likewise, very strong
correlation of our experimentally observed levels of skipped transcript with predicted skipping
efficacy was preserved (S7 and S8 Figs.; average R2 of 0.89 and 0.92, respectively).

Fig 5. Prospective testing of new PMO oligo sequences targeting exons 44 and 53 of the human dystrophin transcript. (A) Representative gels
showing RT-PCR of the native and exon-44-skipped (252 bp) or exon-53-skipped (190 bp) transcripts following exon skipping treatments in cell lines derived
from a DMD patient harbouring targetable mutations in exons 44 or 53. M: 100 bp ladder, NT: non-treated, Mock: random 31-mer; test oligos are numbered
according to their distance from the acceptor site. As a loading control, GAPDH is shown. (B) Western blots using an anti-dystrophin C-terminal antibody,
showing rescued truncated dystrophin protein. A calibration curve of full-length dystrophin from normal control cells was loaded for comparison; Mock:
random 31-mer PMO; test oligos are numbered according to their distance from the acceptor site; MyHC: Myosin Heavy Chain loading control. (C-E, F-H)
Quantification of RNA and protein levels for exons 44 and 53, respectively. (C, F) Observed skipping efficacy (skipped transcript as a percentage of total non-
skipped plus skipped transcript) is plotted against predicted values. R2 values are shown for each repeat. (D-E, G-H) Plots of predicted skipping efficacy
against distance from exon acceptor site, showing observed skipped transcript levels (D, G) or observed protein levels (E, H). Values for predicted skip are
normalized to the average value of the observed skips or of the observed protein levels, to allow for inter-study variation in general skipping efficacy. Distance
from acceptor is given for the first (5’-most) base of the target site. A moving average is shown over 15 bases (in this way, the moving average indicates the
value for the mid-point of each target site).

doi:10.1371/journal.pone.0120058.g005

Predictive Algorithms for Exon Skipping

PLOS ONE | DOI:10.1371/journal.pone.0120058 March 27, 2015 14 / 24



In silico screening tool: The process described above to screen across a DMD exon, predict-
ing efficacy for each target site, can be reproduced for any target exon sequence. We provide in-
structions for how to implement such a screen (see materials and methods), using our Perl
code, the RNAstructure software [41], and a spreadsheet program such as Microsoft Excel.

Discussion
Robust predictive algorithms for the design of splice-switching oligonucleotides would help to
optimize this approach in pathologies for which it is already being tested, and help facilitate its
application to a large range of diseases that feature RNA mis-splicing. The scope of our study is
limited to the DMD pathology and to the PMO and 2’O-Methyl chemistries that are currently
being explored in clinical trials, but it may nevertheless inform efforts towards general predic-
tion, Our in silico screening tool may help experimenters to choose which target sites to test in
vitro, and this could reduce the number of oligos that must be tested to achieve
satisfactory efficacy.

We focused our experimental validation of the models on the PMO chemistry and on two
exons (exons 44 and 53 of DMD), measuring both mRNA and protein levels for three experi-
mental repeats of each tested oligo, because we wished to show clearly whether predicted trends
within the exon were respected by the experimental data. Our validation establishes this ap-
proach for DMD, but future studies will be required to determine whether predictions are as
accurate for the exons of other genes. This will require large datasets from multiple pathologies
and thus is a long-term challenge dependent on the continued output of the wider exon skip-
ping community. Of the models for PMO and 2’O-Methyl data the former provides the better
fit, so it will be important in future efforts to refine the 2’O-Methyl model using new data and/
or new predictive parameters. For the purposes of data modelling, we would encourage our col-
leagues in the field to report skipping efficacy as a continuous variable (e.g. the precise percent-
age of the skipped transcript, as reported in the Popplewell et al. PMO dataset and the Dwi
Pramono et al. 2’O-Methyl dataset) rather than an ordinal variable (such as the skipping levels
reported for the majority of 2’O-Methyl studies).

Our most striking observation was that, despite analysing a large number of descriptors of
the exon skipping system, it was not useful to include more than 4 parameters into predictive
models. For both PMO and 2’OMethyl chemistries, the dG of binding of the oligo to the target
region and the distance of the target from the exon acceptor site were strongly predictive. After
inclusion of those into the statistical models, addition only of the Malueka splice type of the
exon for PMO efficacy prediction [38], and of a simple descriptor of oligo length for 2’OMeth-
yl efficacy prediction, were beneficial to predictive strength. These parameters together were of
sufficient predictive power that they could correctly distinguish 89% of PMO and 76% of 2’O
Methyl oligos into high and low efficacy groups. The inability of other parameters to much im-
prove K-fold R2 suggests that the remaining variance of the exon skipping system is highly sto-
chastic and inherently unpredictable or that we do not understand it sufficiently to define and
compute additional predictive parameters.

The Malueka exon type C is characterized by strongly defined but low GC content acceptor
sites, and a low density of ESS motifs, and was associated in the PMO dataset with greater effi-
cacy than type A which is characterized by a high presence of SF2/ASF ESE motifs. In contrast,
the Malueka exon type parameter was not predictive of efficacy in the 2’OMethyl datasets, and
none of our splice motif parameters (including scores for both SF2/ASF ESEs and ESSs), nor
our calculation of upstream GC content improved our predictive models for either chemistry.
Hence, although we have included it in our model for PMO efficacy, we are hesitant to put it
forward as a general predictive parameter, and would wait for future studies on both PMOs
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and other chemistries before drawing that conclusion. In any case, our model suggests that the
Malueka category affects comparisons between exons rather than the relative efficacy of differ-
ent target sites in the same exon. Cross-terms of the Malueka category with other parameters
(such as binding energy or distance from acceptor) did not help for prediction. As such, al-
though we retain the Malueka category function in the algorithm, it could be safely ignored
when the aim (as in this work) is to identify the better target sites within a given exon.

The inclusion of an oligo length category into the model for 2’OMethyl oligos even after the
modelling of binding energy may suggest the importance of some mechanism that is influenced
by length and that is independent of energetics or, more likely, the linear regression algorithm
finding yet more leverage on binding energy via the latter’s relationship to length (i.e. the
length parameter serving as a subsidiary index of binding energy). In other words, length may
be a useful predictive parameter whilst also acting as little more than a crude approximation of
binding energy. It should be understood that, in this type of analysis, other parameters may be
strongly predictive but are not selected because they do not add to the predictiveness after the
inclusion of related but more strongly predictive parameters. For example, in modelling of the
PMO dataset: length of the oligo was not useful after the dG of binding had already been mod-
elled, and distance from acceptor to the centre of the target (the ACP value; [30]) was not useful
after distance from acceptor to the nearest base of the target had already been modelled.

Both binding energetics and distance from acceptor site have previously been identified to
discriminate effective from non-effective oligos [28,29]. All of the descriptors of binding ener-
getics that we considered were predictive, but we favoured the use of dG50 (the energy of oligo
binding to the target plus 50 base flanks), a parameter not studied previously, in our final pre-
dictive models because this was superior to other parameters for the 2’O-Methyl data and only
marginally inferior to the oligo::exon binding energy for the PMO data. It should be noted that
the thermodynamics computations are based on RNA to RNA binding, and may be improved
if algorithms tailored to these other chemistries were to become available. The usefulness of the
distance from acceptor parameter was noted in previous studies and was suggested to be related
to the timing of splicing events: the oligo would have more chance to bind the exon prior to
exon definition if it targets the portion of the exon that is first transcribed [28,35]. Structural ef-
fects arising from the tertiary complex formation of the upstream spliceosome, adjacent to the
acceptor site, might also be considered if suitable algorithms were available.

Despite the importance of target site accessibility to siRNA efficacy [46,47], we could not
identify a predictive descriptor of this in exon skipping, although some aspects of RNA accessi-
bility are likely represented in the calculation for binding energy to the target with 50 base
flanks, which was strongly predictive. It should be borne in mind that the thermodynamic
computations of folding assume a single free-floating molecule of RNA, and no attempt is
made to account for the cellular environment: potential effects of nearby transcriptional ma-
chinery, spliceosomal complex(es) and splicing regulatory factors are not currently possible to
compute. Even with the window of computation constrained as it was to a region of 150 bases,
local folding could still be influenced by these unknown factors, rendering the computed acces-
sibility less accurate. This could be a particular problem in the context of exon skipping as op-
posed to RNA interference since mature mRNA may be less constrained by bound proteins. A
much deeper understanding of splicing and in particular the quaternary structure dynamics
would be required before such factors could be taken into account in computation.

Despite the apparent importance that differential GC content between the intron and exon
has to exon definition [39], it does not appear to interact with skipping efficacy, perhaps due to
a lack of sequence-specific effects. The neighbourhood inference score for the similarity of a se-
quence to known splice motifs [37], despite its promise as a general tool to identify splice factor
binding sites, was likewise not predictive.
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In our modelling to identify the strongest predictors of efficacy, when applied to the
Aartsma-Rus dataset alone and to categorize as those authors did in their study into>5% or
<5% skipping, we identified the same parameters (binding energy, the number of RESCUE-
ESE hexamers, Tra2β and SC35 scores) as those authors did (except that in our models, the in-
clusion of SC35 scores had no effect on the percentage correct classification; data not shown).
However, when we modelled the categorization of these oligos into their reported skipping lev-
els (>25%, 1–25%, undetected) neither the number of RESCUE-ESE hexamers, nor Tra2β
scores, nor SC35 scores improved the Bayesian information criterion (BIC) of the model. Thus
we did not consider these parameters useful to include into our predictive algorithm. Similarly,
none of these parameters were predictive for the Popplewell PMO dataset. Certain other pa-
rameters were also not additive to the predictive power of our models despite being capable to
distinguish efficacy levels in previous studies: these included hybridisation peaks and SF2/ASF
splicing motif scores [29], and co-transcriptional RNA accessibility prediction [35]. As with
the Aartsma-Rus dataset, we could confirm that these parameters were predictive in the con-
text of their original studies, but in our modelling analyses they were overshadowed by more
powerfully predictive parameters such as binding energetics and the proximity of the target site
to the splice acceptor. In fact, we identified no splice motif related parameter that was useful in
this sense.

As noted previously, the algorithms used to predict splicing motifs do not take into account
the local RNA secondary structure, nor the effect that local oligo binding might have on this
structure [29]—perhaps if some aspect of folding could be incorporated into future forms of
these algorithms then they may become more strongly predictive. Likewise, improved under-
standing of structural recognition on the part of specific splicing motifs may also aid predic-
tion. The scores derived from computations of co-transcriptional folding dynamics were
previously shown to discriminate certain levels of efficacy in the Aartsma-Rus andWilton
datasets [35], but when applied collectively to those two datasets in our modelling analyses
those parameters were entirely overshadowed by dG of binding, and their inclusion did not im-
prove the Bayesian information criterion (BIC) of the model. Notably, it was recently found
that local predictions of RNA folding are more accurate than global predictions, the authors
giving an optimal window of 150 bases as a reasonable balance between maximizing accurate
prediction of base pairing, while minimizing effects of incorrect long-range predictions [36].
This may explain why co-transcriptional RNA accessibility scores, which consider a folding
window of 1500 bases, were not additive over local computations of binding energetics.

We note that the datasets on which our models are based are dominated by oligos targeting
exonic sequences, and a dataset describing many oligos that target the splice site boundary,
Wilton et al. [45], is omitted for reasons described. For this reason, we limited predictive analy-
ses to exonic regions, which is in keeping with the observation of Aartsma-Rus et al. that exonic
regions give greater efficacy [31]. Our predictive algorithms should not be applied to intronic
sequences because certain parameters may behave quite differently in the intronic context
(such as the distance from acceptor, which changes its sign, becoming negative in the upstream
intron, thereby inverting its contribution to the predictive formula).

One can imagine other factors that could influence exon skipping efficacy but that we have
not assessed (often because estimates would presently be difficult or impossible to calculate),
such as the rates of oligo breakdown, expulsion, and recycling (propensity of an oligonucleotide
molecule to be retained during successive rounds of transcription) in target cells, or the capaci-
ty of a given sequence to penetrate through the cell and reach the splicing machinery of the nu-
cleus. This last parameter would itself depend on complex factors relating to the chemistry
used (diffusion rates within different cell compartments; propensity to bind the chemical
groups of other molecules) and perhaps to the specific sequence (‘off-target binding’: the
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propensity to partially or fully bind native nucleotidic sequences, and the frequency of those se-
quences). It is also conceivable that the specific mutation of the patient, by changing the folded
structure or some other characteristic of the sequence neighbouring the target exon, could af-
fect the efficacy of skipping in a target-dependent manner. Epigenetic factors such as histone
modifications are also known to influence splicing (reviewed [48]). For in vivo administration,
yet more factors may come into play, such as tissue-specific absorption, or rate of elimination
by the kidneys and other organ ‘sinks’, though it is perhaps not expected to find strong se-
quence-specific influences on these parameters, them being decided chiefly by the chemistry
used, or by the vector in the case of viral delivery vectors such as AAV [49]. Tissue specific ef-
fects are of great importance to therapeutic potential because certain chemistries are more ca-
pable than others to target the heart and other affected muscles [50]. It could be hoped that
future studies will provide more empirical data on which to base estimates of these factors, for
example such as the ongoing work on the cellular uptake mechanisms of peptide-conjugated
PMOs [51,52], and the recent finding that PMOs in vivo are preferentially taken up by regener-
ating myofibres [53].

It is widely accepted within the exon skipping field that comparisons of efficacy cannot be
made between experiments and can only be made within an experiment. Certainly, for our pre-
dictions derived from previous PMO data, it is clear from their comparison with observed skip-
ping values in our prospective PMO study, and their comparison with previous observed
skipping values in 2’O-Methyl studies, that study to study variation renders the absolute value
of predicted skip to be largely incomparable between studies. However, the relative skipping
percentages observed within each study, and within each exon for a given study, appear to be
well conserved. It is this relative value that is of importance in the design of new oligos to target
a given exon. Exon definition during splicing has been described as a system ‘on the edge of
chaos’ [54]: within pre-mRNA, potential splice sites are some 10-fold more numerous than
those actually used, and potential regulatory elements abound. This is how single base muta-
tions can switch splicing. The destruction of this definition by the use of antisense oligonucleo-
tides may therefore rely on subtle nuances of the system, in addition to the more powerful
influences already identified here and in previous studies: chiefly binding energetics and the
distance of the target from the acceptor site. Splicing motifs and RNA accessibility may rank
among the more subtle influences, explaining why certain of these parameters are observed to
have predictive power in specific studies. Improved algorithms for the computation of these
parameters and of binding energetics, especially tailored towards specific chemistries, could
help prediction.

Our modelling and validation were restricted to the exons of DMD. Even within that scope,
due to the inherent variability of the system, and the inability to model all its aspects, it is un-
likely that our predictive algorithms would suffice alone to be certain of identifying the optimal
target site for a given exon. In addition, the model derivation should be revisited as more data
become available, especially for exons of genes other than DMD. However, it is hoped that the
formulae presented here, when applied as an in silico pre-screen across each potential target
site, may allow researchers to prioritize favourable regions of the exon for in vitro testing, and
thereby reduce the number of de novo sequences that must be tested in order to identify one or
more of high efficacy. Indeed, in applying the pre-screening process to DMD exon 53, we iden-
tified a potential candidate oligonucleotide (Fig. 5; targeting 26 bases from the acceptor site)
for clinical trials. Such screening will be useful not only for previously untargeted exons of
DMD and other genes, but also for exons that are already targeted in clinical trials, since the
predictive algorithm may suggest previously overlooked regions of the target exon. It is our in-
tention in future work to provide a public web interface for access to the in silico
screening tool.
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Supporting Information
S1 Fig. Reported skipping levels for all 79 DMD exons targeted by Wilton study. Level 0 =
<10%; level 1 = 10–30%; level 2 =>30%. Skipping levels were generally low for exons 55–70
relative to other regions of the gene.
(TIF)

S2 Fig. Formula from ordinal logistic model to categorize exon efficacy, based on 2’O
Methyl data.
(TIF)

S3 Fig. Exon screening for the 2’O-Methyl chemistry, showing predicted exon skipping and
comparison with published data. Distance from acceptor is given for the first (5’-most) base
of the target site. Because these datasets generally reported skipping levels rather than an exact
value, the model predicts the probability of a ‘good’ skip (greater than 25%, 27.5%, or 30% skip-
ping, depending on the stratification of skip levels reported in the study) as opposed to predict-
ing the skipping value (such as was possible for the PMO dataset in Fig. 3). The probability of a
‘good’ skip is shown for 20-mer and 25-mer oligonucleotides, with moving averages shown
over 10 and 12.5 bases, respectively (in this way, the moving average indicates the value for the
mid-point of each target site). These two lengths were chosen to represent the range of lengths
used in the 2’O-Methyl datasets (see S4 Fig.). Vertical lines indicate observations from previous
studies: green and grey lines represent ‘good’ or ‘bad’ skipping, respectively.
(TIF)

S4 Fig. Scatterplot showing the lengths of oligos used in previous 2’O-Methyl studies, sepa-
rated by author and target exon. Levels of skipping reported as ‘good’ (greater than 25%,
27.5%, or 30% skipping, depending on the stratification of skip levels reported in the study) are
indicated by red points, the others in blue.
(TIF)

S5 Fig. Uncropped images of the gels and blots relating to prospective testing of new PMO
oligo sequences of length 30 bases against DMD exon 44 (data presented in Fig. 5). (A) gels
showing RT-PCR of the native and exon-44-skipped (252 bp) transcripts following three sepa-
rate exon skipping treatments in cell lines derived from a DMD patient harbouring an exon 44
targetable mutation. M: 100 bp ladder, NT: non-treated, Mock: random 31-mer PMO; test oli-
gos are numbered according to their distance from the acceptor site. (B) Western blots using
an anti-dystrophin C-terminal antibody, showing rescued truncated dystrophin protein. A cali-
bration curve of full-length dystrophin from normal control cells was loaded for comparison;
Mock: random 31-mer PMO; test oligos are numbered according to their distance from the
acceptor site.
(TIF)

S6 Fig. Uncropped images of the gels and blots relating to prospective testing of new oligo
sequences againstDMD exon 53 (data presented in Fig. 5). (A) gels showing RT-PCR of the
native and exon-53-skipped (190 bp) transcripts following three separate exon skipping treat-
ments in cell lines derived from a DMD patient harbouring an exon 53 targetable mutation. M:
100 bp ladder, NT: non-treated, Mock: random 31-mer PMO; test oligos are numbered accord-
ing to their distance from the acceptor site. (B) Western blots using an anti-dystrophin C-ter-
minal antibody, showing rescued truncated dystrophin protein. A calibration curve of full-
length dystrophin from normal control cells was loaded for comparison; Mock: random 31-
mer PMO; test oligos are numbered according to their distance from the acceptor site.
(TIF)
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S7 Fig. Re-modelling of PMO dataset omitting exon 44.Models used here were based on the
same four parameters as were used for the predictive model against which our experimentally
observed values from prospective testing are plotted in Fig. 5. (A) Upper panel: reported skip
versus skip predicted in standard least squares model, showing R2 of 0.51; Lower panel: confu-
sion matrix for ordinal logistic model, showing correct categorization for 96% of oligos. (B)
Predicted skip from least squares model and observed skip for each experimental repeat, each
plotted against distance from acceptor; (C) Observed skipped transcript levels against predicted
skip for each experimental repeat.
(TIF)

S8 Fig. Re-modelling of PMO dataset omitting exon 53.Models used here were based on the
same four parameters as were used for the predictive model against which our experimentally
observed values from prospective testing are plotted in Fig. 5. (A) Upper panel: reported skip
versus skip predicted in standard least squares model, showing R2 of 0.6; Lower panel: confu-
sion matrix for ordinal logistic model, showing correct categorization for 86% of oligos. (B)
Predicted skip from least squares model and observed skip for each experimental repeat, each
plotted against distance from acceptor; (C) Observed skipped transcript levels against predicted
skip for each experimental repeat.
(TIF)

S1 Materials and Methods. Supplemental materials and methods.
(DOCX)

S1 Script. Perl script for in silico screening to predict exon skipping efficacies at all posi-
tions of a target exon.
(PL)

S1 Sequences. Sequences of human DMD exons 44 to 55, with 200 base flanking regions, in
fasta format.
(FASTA)

S1 Table. Compiled data of tested PMO sequences with published and newly calculated pa-
rameters.
(XLSX)

S2 Table. Compiled data of tested 2’O-Methyl sequences with published and newly calculat-
ed parameters.
(XLSX)

S3 Table. Parameters tested in statistical modelling. †Predicted skip is shown for oligos cate-
gorised as ‘good’ or not, based on the level stratifications reported for each study (Aartsma-
Rus,>25%; Dwi Pramono,>27.5%; Harding,>30%), green background = correctly predicted;
red = incorrectly predicted.
(TIF)

S4 Table. Description of oligos used in prospective testing.
(DOCX)
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