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ABSTRACT

Aim To investigate the effect of climatic, historical and spatial variables on

species richness patterns in freshwater fish.

Location North America and Europe.

Methods Regional species lists were used to document the spatial richness

patterns. Three realms, Europe and Pacific and Atlantic North America, were

identified. The numbers of species, by habitat, migration and distributional

range categories, were calculated and the contributions of regional mean and

seasonal temperature and rainfall, historical (realm, glaciation), and spatial

(area, elevational range) variables to predicting richness were assessed using

boosted regression trees, model-averaging and spatially explicit models.

Results The latitudinal temperature gradient is stronger than that for rainfall

in the Atlantic realm whereas the rainfall gradient in Europe is independent of

the temperature gradient. Species richness is more strongly correlated with

temperature than rainfall, and the effects are stronger in the Atlantic realm

than in Europe. The influence of environmental variables differs between habi-

tat specialist and generalist species. Climate, particularly maximum monthly

temperature, is the best predictor of richness in rivers whereas climate variables

are less important than historical/spatial variables for diadromous species.

Main conclusions Freshwater fish richness differences between realms follow

differences in spatial climatic trends. The contributions of climatic, historical

and spatial predictor variables vary with ecology: temperature is a better pre-

dictor than rainfall in river-dwellers. The richness gradient is driven more by

physiological than by energetic constraints on species. The importance of his-

tory is probably underestimated because of correlations with climate variables.
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Boosted regression trees, climatic variability hypothesis, freshwater fish, his-
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INTRODUCTION

Many hypotheses have invoked climatic effects to explain lat-

itudinal richness gradients (Willig et al., 2003). The species–

energy hypothesis argues that food supply determines the

number of species an area can support (Storch, 2012); for

example, mean annual temperature and/or rainfall predict

both terrestrial productivity and species richness (Hawkins

et al., 2003a). The physiological tolerance hypothesis pro-

poses that species distributional limits are determined by cli-

matic extremes, such as temperature and rainfall maxima

and/or minima, and that environments become less tolerable

towards the poles (Currie et al., 2004): species cope with

extreme environments by, for example, being generalists or

migrating (Southwood, 1977). Seasonal and interannual cli-

matic variability increases with latitude (Stevens, 1989; Fer-

guson & Messier, 1996), favouring generalist, high vagility,

large-range species (Griffiths, 2010; Jocque et al., 2010), and

in the long term fewer species, because climatic variation

reduces speciation and increases extinction rates (Dynesius &

452 http://wileyonlinelibrary.com/journal/jbi ª 2013 John Wiley & Sons Ltd
doi:10.1111/jbi.12216

Journal of Biogeography (J. Biogeogr.) (2014) 41, 452–463



Jansson, 2000; Jocque et al., 2010). Space affects richness

because larger areas support more habitats (habitat heteroge-

neity hypothesis) and because larger areas show increased

speciation and reduced extinction over long time periods.

Indeed, the greater area of tropical biomes has been sug-

gested as a reason for the richness gradient (Rosenzweig,

1995). Historical explanations note that richness might not

be determined just by current climate but that past events

such as glaciations reduce richness by increasing extinctions,

while surviving species, which differ in dispersal ability

(vagility), take time to respond to those events.

Analyses of many taxa, including freshwater fish, have

shown that climate–energy, spatial and historical factors

predict richness (Field et al., 2009; Oberdorff et al., 2011;

Tisseuil et al., 2012), with climate having the greatest effect.

Smith et al. (2010) found significant effects of annual rain-

fall and of temperature extremes on fish richness in both

the species-rich Atlantic and species-poor Pacific realms of

North America, i.e. east and west of the Continental Divide.

Knouft & Page (2011) demonstrated significant effects of

temperature and rainfall variables on total and family rich-

ness of North American freshwater fish but with other, hab-

itat, variables contributing. However, in studies over a more

limited latitudinal range, historical factors were more

important than climate in accounting for regional variation

in fish species composition in Iberia (Filipe et al., 2009),

tropical Africa, and South and Central America (Tedesco

et al., 2005).

Strong correlations between climate and the latitudinal

species richness gradient have been interpreted as evidence

that contemporary processes are the main determinants of

richness gradients (Hawkins et al., 2003a; Currie et al., 2004;

Field et al., 2009), but historical climatic measures can be at

least as important as contemporary ones (Svenning & Skov,

2005; Tedesco et al., 2005; Willis et al., 2007; Ara�ujo et al.,

2008; Leprieur et al., 2011). Identifying environmental vari-

ables as ecological or spatial/historical is not straightforward.

Elevational heterogeneity, glaciation and realm have all been

treated as historical variables and climatic variation as an

ecological variable. However, current climates are correlated

with past climates (Ara�ujo et al., 2008), while elevational het-

erogeneity, a result of geomorphic processes, is also associ-

ated with small-scale climatic differences (Schuldt &

Assmann, 2009).

Mean annual temperature and rainfall predict terrestrial

net primary productivity (NPP) (Lieth, 1975), which has

been suggested to correlate with aquatic productivity (Living-

stone et al., 1982; Oberdorff et al., 1995). However, tempera-

ture and rainfall also have other effects on freshwater fish.

Temperature extremes affect fish survival and richness by

thermal and oxygen stress (Matthews, 1998) while rainfall

affects fish richness via stream hydrology. Mean annual dis-

charge, which varies with rainfall (Gregory & Walling, 1973;

Jones, 1997) and is regarded as a measure of river habitat

volume, correlates with species richness (Oberdorff et al.,

1995; Xenopoulos et al., 2005). Poff & Ward (1989) charac-

terized flow regime variability by the degree of intermittency,

by flood frequency and predictability, and by flow predict-

ability and suggested that all were likely to influence species

richness. Low flows can also reduce oxygen concentration

while high flows increase turbidity and the risk of wash-out.

Consequently, correlations between mean annual, extreme

and variability climatic measures and fish richness do not, by

themselves, identify the driving factors.

In this paper we document gradients in mean, extremes and

variability in temperature and rainfall in Europe and North

America, explore how well these climatic variables correlate

with richness gradients in their freshwater fish faunas, and

investigate the contribution of spatial and historical factors to

these patterns. We examine the following hypotheses:

1. Species richness is determined mainly by temperature.

Temperature has energy supply and/or physiological effects

which affect all species but responses to rainfall factors will

vary, for example with habitat.

2. Species with similar habitats, migration behaviours and/

or distributional ranges should be similarly affected by cli-

matic variables. Specifically, climate variable importance for

total, for resident and for river species richness categories

should be similar because the latitudinal richness gradient

is largely determined by river-dwellers and most river spe-

cies are resident (Griffiths, 2006, 2010), and for migratory

and non-endemic species because both experience a wide

range of environments. As migratory species are adapted

to varying environments the variation in richness explained

by climate should be less in migratory than in resident

species.

3. Climate annual means, extremes and variability are all

important in determining species richness. Annual means

are correlated with energy/productivity (Clarke & Gaston,

2006) while climatic extremes constrain richness by exceed-

ing species fundamental niches (Gaston, 2003). Variability

affects richness by increasing extinction risk, favouring

migration and consequently greater gene flow and reduced

speciation (Mittelbach et al., 2007). Additionally, assem-

blages in more variable environments have proportionally

fewer specialists (V�asquez & Stevens, 2004). Consequently,

regions exhibiting greater temporal variation should support

fewer species.

4. Contemporary climate determines richness patterns and

historical factors are not important. Realm differences in the

importance of climatic effects on species richness should

depend on the degree of spatial climatic variation. In addi-

tion, taxa differ in environmental requirements as a conse-

quence of their evolutionary history and so faunas of

differing origin and composition could respond differently to

climatic variables (Knouft & Page, 2011). Alternatively, his-

torical factors influence richness patterns, and regional-scale

factors such as glaciation and/or aridity also contribute to

richness gradients. Glaciation effects have been detected after

accounting for climate/productivity variables (Oberdorff

et al., 1999; Tedesco et al., 2005). Similarly, elevational gradi-

ents in aquatic richness (for example Kratz et al., 1997;
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Fu et al., 2004) persist after accounting for climatic variables

(Zhao et al., 2006; Smith et al., 2010; Knouft & Page, 2011).

MATERIALS AND METHODS

Data

There are large-scale faunal differences within North America

(Moyle & Herbold, 1987) and we use the term realm for

those areas east and west of the Continental Divide in North

America (Atlantic, Pacific) and for Europe. These were sub-

divided into regions based on faunal similarities (Griffiths,

2006, 2010); the Pacific realm included coastal regions up to

and including the Yukon.

We used the regional species presence/absence lists analy-

sed by Griffiths (2006, 2010), from data compiled by Illies

(1978), Hocutt & Wiley (1986) and Miller et al. (2005). In

most instances these regions are based on drainage basins,

but the Mississippi and Danube basins were subdivided while

some regions contain several basins. Regional/drainage basin

rather than grid square richness was preferred because 92%

of the species are restricted to freshwater and hence the

catchment constitutes a biologically meaningful unit (Tede-

sco et al., 2005). The regional boundaries defined by the

European Environment Agency (http://www.eea.europa.

eu/data-and-maps/figures/ecoregions-for-rivers-and-lakes) were

used rather than those in Illies (1978). While some regional

boundaries have changed from those constructed by Illies

this has not affected the species lists. Following Griffiths

(2006, 2010), species were classified by habitat (river or lake),

migration (diadromous, potamodromous or resident) and

distributional range categories (endemic or non-endemic).

Rivers and lakes contain habitat specialists (riverine, lacus-

trine species) and generalists, which occur in both habitats;

endemics occur in only one region. Flowing water habitats

were divided into five channel size classes, as headwater,

creek, small, medium and large rivers (Page & Burr, 1991)

and these categories assigned scores of 1–5.

The North American and European climate dataset (CRU

TS 1.2) was obtained from the University of East Anglia Cli-

matic Research Unit (http://www.cru.uea.ac.uk/). Climatic

variables for 1910–1950, a time span chosen to precede the

more recent, rapid, climatic changes, were extracted by

E-Clic (Tarroso & Rebelo, 2010) and compiled into regional

values in ArcGIS 9.3 (ESRI, Redlands, CA, USA). Topo-

graphic data for each region were extracted from the Global

30 Arc-Second Elevation Data Set (GTOPO30).

A number of regional temperature (T) and rainfall (R)

measures were calculated: annual means were used as indi-

cators of energy/productivity, and extremes and temporal

variation as physiological tolerance and climatic variability

indicators, respectively (Clarke & Gaston, 2006). All vari-

ables were averages over the 1910–1950 period. Regional

annual climate means (Tmean, Rmean) are the averages over

all 0.5° 9 0.5° grid squares comprising a region, while

spatial values (Tsp, Rsp) are the standard deviations over

these squares. Seasonal temporal variation in temperature

and rainfall (Tte, Rte) was estimated as the standard devia-

tion of mean monthly values over nine adjacent grid

squares, centred on the mean latitude and longitude for

each region; any bias introduced by using this smaller

number of grid squares is likely to be small because

annual means estimated in this way are strongly correlated

with annual means calculated over the whole region

(r = 0.99, 0.96 for temperature and rainfall). Climate

extremes are the largest and smallest mean monthly regio-

nal values in temperature and rainfall (Tmax, Tmin and

Rmax and Rmin), while range is the difference between

these extremes (Trange and Rrange).

Elevational range, the difference between the highest and

lowest points in a region, was used as a measure of spatial

heterogeneity (Jetz & Rahbek, 2002) as were Tsp and Rsp

because they measure intraregional variation.

Analyses

We grouped the variables as climatic (annual mean, maxi-

mum, minimum, temporal variation of temperature and

rainfall), historical (realm, glaciation) and spatial (area, ele-

vational range, intraregional variation in temperature (Tsp)

and rainfall (Rsp). Their relative influence as richness predic-

tors was assessed by boosted regression trees (BRT), using

the dismo package (Hijmans et al., 2013) of R 2.15.2 (R

Development Core Team, 2012). We assumed a Gaussian

distribution of the response variable. Optimal model parame-

ters were determined by altering the number of trees and the

learning rate until predictive deviance was minimized with-

out overfitting (Elith et al., 2008). The relative contributions

of predictor variables for each model were clustered across

richness categories by Ward’s method on Euclidean distance,

using Systat 13.1 (Systat Software, Chicago, IL, USA). Post-

hoc tests of the hypothesis that Atlantic richness differs from

that of the other realms were conducted using the BRT par-

tial dependence values (i.e. after adjusting for the average

effects of the other variables) for each richness category.

To test for taxonomic differences we examined the predic-

tive contributions of annual mean and seasonality in temper-

ature and rainfall to richness of species-rich families (n ≥ 8).

Because of the limited number of observations, variable

importance was assessed by model-averaging regression coef-

ficients, using the multi-model inference module in sam 4.0

(Rangel et al., 2010). Predictors were standardized to zero

mean and unit standard deviation so the magnitudes of the

regression coefficients are directly comparable. The conclu-

sions do not change when all climate variables were used.

The degree of spatial autocorrelation within realms was

assessed by comparing correlograms for the raw data and the

residuals from climate models, using the simultaneous auto-

regressive (SAR) procedure in sam. This comparison allows

assessment of how effectively the climate variables (all except

spatial values) predict regional spatial structure in species

richness (Diniz-Filho et al., 2003).
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Collinearity amongst predictor variables can be a problem

when using ecological variables, with a risk of incorrect iden-

tification of the best model (Dormann et al., 2013). The cre-

ation of independent variables using principal components

analysis did not resolve the problem because the majority of

the climate variables were correlated with the first compo-

nent, making interpretation difficult. Mean annual tempera-

ture and rainfall were strongly collinear with some of the

other predictors (|r|>0.7, see Appendix S1 in Supporting

Information). Omitting these variables removed the collin-

earity but had very little effect on relative influence values

estimated by BRT (R2 across influence estimates varied

between 0.96 and 1.00 for the various richness categories).

Consequently, we report analyses using all predictors because

removing climate means would not permit consideration of

the species–energy hypothesis.

All nonlinear trend lines in the figures are fitted by locally

weighted scatterplot smoothing (LOWESS). All richnesses are

log10(x + 1) transformed.

RESULTS

Climate patterns

The latitudinal gradients in temperature are more marked

than those in rainfall (Fig. 1). These temperature gradients

are steeper and longer in the Atlantic than in the other

realms (Fig. 1a, slopes F1,43 = 25.64, P < 0.001; F1,59 = 62.32,

P < 0.001, respectively). While the numbers of significant

correlations between temperature and between rainfall vari-

ables within each realm are similar (5–7/10; Appendix S1)

there are 21/25 (13 positive) significant correlations between

temperature and rainfall variables in the Atlantic but only 4/

25 in Europe and 1/25 in the Pacific (z = 4.81, 5.70,

P < 0.001), i.e. rainfall and temperature variables covary

more frequently in the Atlantic realm.

In the Atlantic, Tmean declines strongly with increasing lat-

itude but longitude has no effect (standardized coefficients

for latitude and longitude are �0.98 and �0.04) whereas

Rmean latitudinal and longitudinal effects are of similar mag-

nitude (standardized coefficients are �0.62 and 0.56, respec-

tively). Annual mean and extreme temperatures and rainfall

decline with increasing latitude (Table 1a). Seasonal variation

in temperature increases with latitude while rainfall seasonal-

ity decreases. The Pacific temperature trends are similar but

there are no rainfall trends. In Europe, Tmean also declines

with increasing latitude, unlike Rmean which declines to the

east (standardized temperature coefficients for latitude and

longitude are �0.87 and 0.27; standardized rainfall coeffi-

cients are �0.08 and �0.63). Temperature seasonality also

increases eastwards but not with latitude, i.e. it is orthogonal

to Tmean, while rainfall seasonality shows no spatial trends.

Europe shows significantly less seasonality than the Atlantic

(F1,61 = 8.04, 6.39, P < 0.01 for Tte and Rte, respectively).

Over most latitudes, Europe has higher maximum and mini-

mum temperatures and shows less temperature seasonality

but there are no consistent realm differences in rainfall

(Appendix S1).

The climate variables are correlated with regional area and

elevational range (Table 1a); these regional factors are pre-

dictors of the spatial climate variables (Table 1b).

Richness patterns

Habitat preference, distributional range and migratory behav-

iour richness categories are linked (see Appendix S2), with

river species tending to be resident and endemic, and lake spe-

cies to be migratory and widespread. The percentage of gener-

alists increases with channel size in rivers and is greater in

lake-dwelling, and in non-endemic, species (Fig. 2).

The BRT models account for at least 90% of the deviance

for all but diadromous species, where 75% is explained.

Clustering of relative influence values divides richness cate-

gories into those dominated by habitat specialist (cluster 1:

total, river, resident and endemic species) and generalist spe-

cies, which further divide into non-endemic, lake, potamodr-

omous (cluster 2) and diadromous species (cluster 3)

(Appendix S2). Tmax is the most influential temperature var-

iable (median relative influence 44%, range 16–71% across

richness categories) and the other temperature variables

make similar contributions (medians 18%), whereas rainfall

variability was most important (medians 17, 21, 24, 34% for

mean, maximum, minimum and variability in rainfall

respectively). Across clusters, climate is less influential in
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Figure 1 Mean annual regional (a)
temperatures (°C) and (b) rainfall

(cm yr�1) as a function of latitude for
regions comprising the Atlantic (n = 39,

circles), Pacific (n = 8, crosses) and
European (n = 24, triangles) realms.

LOWESS smoothed lines are shown.
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diadromous species (mean values of 69, 60 and 45% for

clusters 1, 2 and 3, respectively) and space/history more

important (Table 2a). Tmax is the dominant influence for

cluster 1, Tmax, Rmin, Rte and Rsp are important for cluster 2

categories (Fig. 3), whereas regional area had the greatest

influence on diadromous richness. Temperature is more

important than rainfall for the cluster 1 categories but of

similar importance in the others.

The Atlantic has significantly fewer endemic and diadro-

mous species than the Pacific and European realms but more

species in the other richness categories (Table 2): climate-

adjusted total richness in the Atlantic is 1.79 that of the other

realms. Across all richness categories, temperature variables are

consistently stronger predictors (by univariate quadratic mod-

els) of richness than rainfall, and climatic effects are stronger

in the Atlantic realm than in Europe (Fig. 4). In the Atlantic,

Table 1 Temperature (T) and rainfall (R)–spatial variable correlations across the Atlantic and European realms. (a) Pearson correlation

coefficients (boldface values P < 0.05) between regional area (km2), elevational range (m), latitude (°N) and longitude (°W) and the
climate variables, and (b) standardized regression coefficients of regional spatial variables predicting the spatial climatic variables for the

Atlantic and European realms. The results for the Pacific are not shown: area and latitude versus climate variable coefficients are
positively correlated across all three realms but elevation and longitude coefficients are uncorrelated.

(a)

Atlantic (n = 39) Europe (n = 24)

Log area

Log elevational

range Latitude Longitude Log area

Log elevational

range Latitude Longitude

Tmean �0.59 �0.25 �0.98 0.49∩ �0.26 0.28 �0.90 �0.35

Tmax �0.41 �0.15 �0.97 0.49∩ �0.14 0.51 �0.92 �0.23

Tmin �0.75 �0.42 �0.92 0.47∩ �0.31 �0.08 �0.66 �0.42

Tsp 0.83 0.56 0.21 �0.11 0.19 0.64 �0.27 0.35

Tte 0.51 0.11 0.93 0.37∪ 0.59 �0.20 0.18 0.95

Trange 0.84 0.61 0.27 �0.10 0.23 0.65 �0.19 0.28

Rmean �0.55 �0.55 �0.59 0.67∩ �0.58 0.41 �0.14 �0.64

Rmax �0.23 �0.12 �0.63 0.35 �0.31 0.46 �0.06 �0.52

Rmin �0.61 �0.64 �0.50 0.41∩ �0.67 0.04 �0.16 �0.54

Rsp 0.14 0.37 �0.36 0.00 �0.27 0.48 �0.03 �0.50

Rte �0.16 �0.06 �0.52 �0.20 �0.14 0.31 �0.08 �0.10

Rrange 0.33 0.48 �0.25 �0.04 �0.16 0.47 �0.02 �0.41

(b)

LogTsp LogRsp

Atlantic Pacific Europe Atlantic Pacific Europe

Log area 0.78*** 0.06 0.38* �0.13 �0.14 �0.16

Log elevational range 0.09 �0.25 0.74*** 0.45* �0.16 0.44*

R2 0.70 0.06 0.55 0.15 0.06 0.25

∩ ∪ indicates the shape of quadratic relationships.

Coefficient = 0; *P < 0.05, **P < 0.01, ***P < 0.001.
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confidence intervals of habitat generalist fish

(species found in both rivers and lakes)
varies with (a) channel size in Atlantic

(circles) and Pacific (crosses) realms and (b)
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species found in lakes were generalists.
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all but migratory species richnesses decline with Tte, consistent

with a climatic variability effect (see Appendix S3), whereas in

Europe there are small but significant positive correlations for

total, river, lake and non-endemic richness categories.

Species-rich taxa in North America show their greatest

richness in the south (atherinids, clupeids, goodeids, poecili-

ids), north (cottids, salmonids) or at mid-latitudes (remain-

ing families). Cold-water taxa like salmonids show consistent

differences in model-averaged standardized regression coeffi-

cients from warm-water taxa (Appendix S3), suggesting a

phylogenetic effect. However, there is also a spatial effect,

with 20/24 of the coefficients for the six taxa common to the

Atlantic and Pacific realms being significantly different; for

Atlantic–Europe comparisons the figure is 16/24.

The residuals from spatial autocorrelation analyses of rich-

ness and climate are concordant across richness categories

for Atlantic (Kendall’s W = 0.57, n = 10, P < 0.001) and

European realms (W = 0.59, n = 9, P < 0.001) but show

strong spatial structuring (Fig. 5), supporting the conclusion

that effects additional to climate also affect richness patterns.

DISCUSSION

Climate patterns differ across realms

Our regional climatic measures for North America are con-

sistent with the grid square measures reported by Badgley &

Fox (2000), the biggest discrepancy (Tmax showing a flatter

latitudinal trend in their results) occurring because their data

extend 15° further south than ours.

The Pacific coastal margin is generally wet but the north–

south trending mountain ranges create drier conditions in the

Atlantic realm, where the Mississippi Basin can be divided into

arid western and mesic eastern zones (McAllister et al., 1986).

Europe is also influenced by oceanic weather patterns (Huntley

& Prentice, 2003) but it lacks a sufficiently high north–south

mountain range to generate a strong rain-shadow effect, i.e. the

climate in North America is more diverse than in Europe.

While previous analyses have treated correlations between

climatic variables as spatially consistent, we found that latitudi-

nal climatic gradients are steeper and temperature and rainfall

variables collinear in the Atlantic but orthogonal in Europe.

Correlations can also vary temporally; Arismendi et al. (2013)

show recent increased seasonal synchrony between high tem-

peratures and low flows in western North America, with poten-

tial effects on aquatic, particularly cold-water, species.

Richness is determined mainly by temperature

Temperature accounted for more variation in richness than

rainfall for single variable (and BRT) models, both across

and within realms. Temperature is expected to be a more

important predictor of large-scale freshwater fish richness for

at least three reasons. First, temperature affects all aspects of

existence whereas there is considerable variability in the sen-

sitivity of fish species to variation in water supply, e.g. small-

channel river dwellers are more likely to be affected by rain-

fall variability than species found in large lakes. Second, the

stronger latitudinal variation in temperature than in rainfall

should favour a greater importance for temperature. How-

ever, at the regional scale, where temperature variation is less

marked, hydrological variability has strong effects on fish

assemblage structure and richness (Poff & Ward, 1989).

Finally, assuming that past environmental conditions influ-

ence richness patterns, temperature change since the Last

Glacial Maximum (LGM) has varied strongly with latitude

Table 2 Contributions of climatic, historical and spatial variables to predicting freshwater fish species richness. (a) Relative influence

values (%), grouped as climatic, historical and spatial, on (log) richness for the different richness categories. Climatic = Temperature +
Rainfall: component values are shown in Fig. 3. The final column shows post hoc tests for realm differences using the boosted

regression tree partial dependence values of the hypothesis that Atlantic richness (A) differs from that in Pacific (P) and European (E)
realms. (b) Least squares adjusted means of log total regional richness by realm, using partial dependence values.

(a)

Richness category Temperature Rainfall Climatic Historical Spatial A< >P,E

Total 46.0 24.0 70.1 4.3 25.6 ***

River 46.7 24.5 71.2 4.1 24.7 ***

Lake 28.9 31.3 60.2 4.8 35.0 ***

Non-endemic 33.6 31.7 65.3 7.3 27.4 ***

Endemic 45.4 20.8 66.3 3.3 30.4 *

Diadromous 22.8 22.0 44.8 12.2 43.0 ***

Potamodromous 28.9 23.5 52.4 3.4 44.2

Resident species 48.7 21.4 70.1 8.4 21.5 ***

(b)

Realm Mean richness region�1 � SE Number of regions

Atlantic 1.915 � 0.042 39

Pacific 1.745 � 0.092 8

Europe 1.650 � 0.053 24

*P < 0.05, **P < 0.01, ***P < 0.001.
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(Leprieur et al., 2011) whereas precipitation has not (Ara�ujo

et al., 2008). However, the importance of temperature as a

predictor varies with species characteristics.

Ecology affects response to climate

Our results show clear effects of habitat, migration category

and distributional range on the importance of climate vari-

ables as richness predictors. The groupings of total, river and

resident, and of lake, migratory and non-endemic species,

corresponding to predominantly habitat specialists and gen-

eralists, are expected. Endemics cluster with river and resi-

dent species because of their largely non-glacial distributions

(Griffiths, 2006, 2010). The strength of the climate–richness

correlations is more a consequence of the steepness of the

richness gradients than the importance of the variables, e.g.

larger climatic effects are found for residents than migrants

simply because they show greater latitudinal variation in

richness.

There is an extensive literature on the effects of thermal

and hydrological factors on freshwater fish (for example, Poff

& Ward, 1989; Fang et al., 2004; Olden & Kennard, 2010)

and climate change is predicted to affect assemblage compo-

sition and richness (Buisson et al., 2010). Taylor & Warren

(2001) showed that species immigration and extinction rates,

and therefore potentially richness, vary with channel size and

flow variability. Discharge variability increases assemblage

variability and reduces fish richness in French streams (Obe-

rdorff et al., 2001). The increasing percentage of habitat spe-

cialists as channel size declines is expected: discharge

variation, which varies with rainfall seasonality, is greater in

small drainage basins (Sabo et al., 2010) with their small

channels. Interannual changes in richness correlate with

hydrology in West African, and with temperature in French,

rivers (Hugueny et al., 2010), a latitudinal difference similar

to that found in terrestrial systems (Hawkins et al., 2003a).

Means, extremes and variability

Our results provide greater support for the physiological tol-

erance/climatic variability hypotheses than the species–energy

hypothesis: Tmean accounted for only 7–22% of the relative

influence of temperature variables. Annual means are unli-

kely to have direct effects on organisms, but are better

regarded as surrogates for productivity. Globally, annual

rainfall explains more variation in terrestrial NPP than annual

temperature (Schloss et al., 1999); freshwater NPP is assumed

to correlate with terrestrial NPP (Oberdorff et al., 1995). Fresh-

water fish species richness is correlated with annual actual

evapotranspiration (AET) in North America (Kerr & Currie,

1999; Smith et al., 2010) while Zhao et al. (2006) found a

potential evapotranspiration (PET) effect in China: both forms

of evapotranspiration have been found to be related to NPP

(Rosenzweig, 1968; Churkina et al., 1999). However, AET was

not a significant predictor of global riverine fish richness

whereas temperature and rainfall were (Oberdorff et al., 2011)

and, in general, temperature tends to be a better predictor of

richness than energy measures (Storch, 2012).

Total richness increases with mean, maximum and mini-

mum temperature in all realms (results not shown) and,

except in Europe, declines with variability in temperature, as

expected. Atlantic total richness also increases with mean,

maximum and minimum rainfall but there was no effect of

temporal variability. Climate extreme effects on richness
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Figure 3 Relative influence values of environmental variables

from boosted regression trees (BRT) for (a) total, river, endemic
and resident (cluster 1), (b) non-endemic, potamodromous and

lake (cluster 2), and (c) diadromous (cluster 3) fish richness
categories. Clusters were identified from Euclidean distances of

the relative influence measures, grouped by Ward’s method
(Appendix S2). Predictor variables are grouped into

temperature, rainfall, historical (realm and glaciation) and
spatial (area, elevational range, Tsp, Rsp) categories.
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(Addo-Bediako et al., 2000; Andrews & O’Brien, 2000; Tog-

nelli & Kelt, 2004; Algar et al., 2009; Schuldt & Assmann,

2009) have been reported more frequently than variability

effects (Andrews & O’Brien, 2000; Schuldt & Assmann,

2009); whether this reflects reality or bias in what has been

tested is not clear. However, the positive richness–Tte corre-

lation in Europe is inconsistent with the climate variability

hypothesis. Smith et al. (2010) showed that temperature

extremes were important predictors of freshwater fish grid-

square richness in North America, although mean annual

rainfall had the strongest effect. High temperatures can affect

fish distributions by thermal and oxygen stress (Matthews,

1987; Rahel et al., 1996) while minimum temperatures

potentially determine the northern limit of warm water spe-

cies (Shuter & Post, 1990). Tmin declines more rapidly with

latitude than Tmax (Appendix S1): latitudinal thermal toler-

ance in ectotherms increases with latitude and varies more

with minimum than maximum temperature (Sunday et al.,

2011). The pervasive influence of heat above some thermal

minimum on growth (the growing degree-day concept)

attests to the important physiological effects of temperature

(Neuheimer & Taggart, 2007). Watershed fish richness in

Michigan is correlated with degree-days (Latta et al., 2008)

but other temperature measures were not investigated to

compare predictive power.

Historical and spatial variables affect species

richness

Climate variables explain more richness variation in the

Atlantic than in Europe, consistent with significant climatic

influences on richness. However, differences in richness

between realms suggest historical/spatial effects occur.

Oberdorff et al. (1997) also report a 1.79 difference in rich-

ness between North American and European rivers. Our corre-

lations suggest that history plays a relatively minor role in

accounting for richness variation, in agreement with previous

findings (Oberdorff et al., 2011; Tisseuil et al., 2012). How-

ever, some of these correlations are probably generated by

historical factors. Despite showing large richness–Tmax corre-

lations the distributions of dispersal-limited river, endemic

and resident species are determined mainly by post-glacial

recolonization. Similarly, the richness–Tte correlations, while

inconsistent with a climate variability effect in Europe, are

coincident with recolonization from the south-east in Europe

and the south in North America. Leprieur et al. (2011)

found that the extent of climate change since the LGM influ-

enced the degree of nestedness in fish faunas (in North

America and Europe), consistent with extinction and coloni-

zation effects. Others have also found evidence that climate

since the LGM has affected species richness and endemism
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(for example, Jansson, 2003; Graham et al., 2006; Ara�ujo

et al., 2008; Jansson & Davies, 2008; Oberdorff et al., 2011;

Tedesco et al., 2012). The area hypothesis, that the larger

area of warmer, southern, habitats contributes to the latitudi-

nal richness gradient, is supported in Europe but not in

North America where area has declined to the south for at

least 20 million years (Briggs, 1986).

The conclusion that historical/spatial variables are of lim-

ited importance in determining freshwater fish richness pat-

terns assumes that there are no climate components in these

variables. In our analyses, elevational range had important

effects on some richness categories in the Atlantic realm.

However, the climate heterogeneity is generated by elevation-

al heterogeneity, which is a result of geological/historical

processes. Our analyses used regional rather than grid square

data but this larger spatial scale is likely to increase rather

than reduce the contribution of climatic effects (Hortal et al.,

2008; Field et al., 2009). In addition, the residuals in SAR

analyses still show strong spatial structure, indicating that

climate is insufficient to account for the spatial patterns. This

is contrary to findings for birds and mammals (Badgley &

Fox, 2000; Hawkins et al., 2003b).

Like Knouft & Page (2011), we found positive effects of

temperature and rainfall on richness for most species-rich

North American taxa and a negative temperature effect for

cold-water salmonids. Knouft & Page (2011) found that

models incorporating elevation were the best, or very close

to the best model [difference in small-sample corrected

Akaike information criterion (MAICc) < 2] for all but salmo-

nids. However, in our analyses models including elevation

were the best in only 6/14 Atlantic and 1/8 European families

(results not shown).

CONCLUSIONS

Climate, and in particular temperature, has a stronger effect

on freshwater fish richness in North America than in Europe.

This, in part, reflects the different patterns of correlation

between the climate variables, with longer and stronger col-

linear gradients in North America. Richness categories with

similar ecologies were similarly affected by climatic variables

but spatial/historical variables were more important predic-

tors of richness than climate for diadromous species. Total

richness correlates more strongly with temperature maxima

than annual means, suggesting that the richness gradient is

driven more by physiological rather than energetic con-

straints on species. This is consistent with an extensive litera-

ture on thermal and hydrological factors affecting fish

distributions and the considerable plasticity shown in growth

rates in relation to food supply (Matthews, 1998).
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