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Detection of Dyslexic Children Using Machine
Learning and Multimodal Hindi Language

Eye-Gaze Assisted Learning System
Yogesh Kumar Meena*, Member, IEEE, Hubert Cecotti, Senior Member, IEEE, Braj Bhushan,

Ashish Dutta Member, IEEE, Girijesh Prasad, Senior Member, IEEE

Abstract—Children with dyslexia need specific instructions for
spelling and word analysis from an early age. It is important
to provide appropriate tools using technology for writing aids to
such children that can help them to input text, while providing
multiple feedback. However, it is unclear how children with
dyslexia can efficiently use a gaze-based virtual keyboard. In
this study, we propose to use the typing performance of a
multimodal Hindi language eye-gaze assisted learning system
based on a virtual keyboard to help in the reduction of tracking
errors for people with writing and reading deficiencies and to
detect children with dyslexia. Performance was assessed at three
levels: eye-tracker, eye-tracker with soft-switch, and touchscreen
as a baseline modality using a predefined copy-typing task. The
system was validated through a series of experiments with 32
children (16 dyslexic and 16 control). The results show that the
workload and the usability of the system are substantially differ-
ent for children with dyslexia. Children with dyslexia have a lower
typing performance when using the touchscreen modality or the
eye-tracker only. The detection of children with dyslexia from
others was assessed with seven different types of classifiers using
the typing speed on different words (AUC>0.9). These results
highlight the need to have fully inclusive virtual keyboards. This
work demonstrates the superior use of a multimodal system with
participants having unique neuropsychological conditions and
that the proposed system can be used to detect children with
dyslexia.

Index Terms—Eye tracking, Multimodal Interaction and In-
terfaces, Eye-Gaze Assisted Learning System, Virtual Keyboard,
Dyslexia, Machine Learning

I. INTRODUCTION

Dyslexia occurs worldwide with a prevalence of at least
10% of any given populace. The prevalence depends on the
orthographic system, type and degree of dyslexia, reading age
assessed, and sampling methods used [1]. Dyslexia impacts
the gaining knowledge of procedures concerned with studying
(reading), spelling or writing (or an aggregate). Reading and
writing require coordination of lower-stage oculomotor (e.g.,
model, accommodation, and vergence) and higher-level cogni-
tive tactics (e.g., attention, memory, and language processing).
The imbalance in these components could create a variety of
learning problems such as dyslexia. The outcomes of such a
disorder include deficiency in the speed of processing, issues
with sense modalities, sequencing, and motor skills. Therefore,
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dyslexia should be taken into consideration when designing
input modalities for user interfaces (e.g., virtual keyboards
(VKs)) that may be used in educational settings.

Despite the fact that the exact etiology of dyslexia is
unknown, a deficiency in phonological awareness and poor
phonological encoding represents one of the most accepted
theories about the cause of dyslexia. There is also evidence
of visual and oculomotor abnormalities in dyslexia [2]. It
affects at least 5% of school-age children and is more prevalent
in boys than in girls [3]. It is worth noting that dyslexia
is a problem with language, not with vision. Yet, studies
have suggested that vision therapy may help with certain
vision problems that can affect a child’s ability to see (e.g.,
convergence insufficiency) [4]. A study reported that dyslexia
is a neuro-developmental condition and not a serious mental
health condition or chronic physical condition [5]. Also, the
user’s performance with VK is not a proxy of mental or
physical health. Yet, the relationship between mental and
physical health is evident in the area of lifelong conditions
such as dyslexia. There exist multiple associations between
physical and mental health. For instance, poor mental health
is a risk factor for chronic physical conditions. Moreover,
people with serious mental health conditions are at high risk
of experiencing chronic physical conditions. Children with
dyslexia have difficulty with correct and fluent recognition of
words and are poor at spelling. They might not be affected
by reading development due to the absence of sensory im-
pairment. However, the disruption in age-specific reading and
writing skills is a substantial impediment to their education
and future employment [6].

The different cognitive abilities and the strength of these
abilities affect the quality and rate of learning [7], [8]. Pro-
cessing speed is certainly one of them, it encompasses the
speed of thinking ability on simple visual or auditory tasks.
Testing and training around auditory and visual processing
have been reported to improve phonological deficits in children
with dyslexia. Furthermore, a textual content presentation
has a bearing on the reading performance of children with
dyslexia [9]. The significance of eye movement during reading
as an indicator of deficiencies is observed in dyslexia [10].
In addition, it is unclear how the writing system influences
reading performance because the Hindi language written in the
Devanagari script uses glyphs with various levels of perceptual
complexity (e.g., mirrored glyphs with different meanings **
� j, b v, B m **). Specifically, restrained studies are adopt-
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ing those techniques in the use of Hindi (2-3 mirror characters)
language as findings concerning oculomotor deficits in chil-
dren with dyslexia are based on English, Spanish, German, and
other languages, but not the Hindi language. Dyslexic readers
of the Hindi language have a complication in developing high-
quality, segmentally organized phonological representations of
words and display poor blending skills [11]. While a pilot
study suggested the possibility to enhance the awareness of a
child with dyslexia through an adaptive multimodal interface
using eye-tracking [12], this trend needs to be demonstrated
rigorously with a collection of children with dyslexia and a
control group, as proposed in this paper.

Previous research studies demonstrated the importance of
multimodal interfaces that engage in natural behaviours [13].
A multimodal interface typically includes several distinct
tools for input and output data interactions. For instance,
a multimodal VK interface applied to assistive technology
used a two-stage selection process, where pointing to the
letter is performed through electrooculogram (EOG)-based
eye-gaze control, and then click to select the letter is achieved
through electromyogram (EMG) activation through eyebrow
muscle activity [14], [15]. Different multimodal systems with
improved performances by developing effective user interfaces
and techniques have been proposed [16], [17], [18], [19], [20].
However, most of the systems are implemented for partially
locked-in patients and it is shown that eye-tracking provides
a higher performance compared to systems using electroen-
cephalography (EEG) signals as inputs. Likewise, an eye-
tracker combined with haptic feedback in virtual reality-based
games is proposed for learning-based games [21]. Multimodal
systems are advanced for communique functions, combining
eye-tracking, gesture, and contact-and-voice input [22], [23],
[24], [25], however, they did not consider potential end users
in their studies. Also, it is unclear how the choice of the
modality can impact the performance, especially if children
with dyslexia have a different performance. Answering these
questions is important for making user interfaces more acces-
sible to children with disabilities.

Multiple studies have investigated the detection of dyslexia
using machine learning. These approaches include game-based
techniques, reading and writing tests, facial image capture and
analysis, eye tracking [26], magnetic reasoning imaging (MRI)
and EEG scans [27]. In this paper, we propose the use of
the typing speed of different words of various complexity.
This paper addresses the above-mentioned challenges with the
following contributions: 1) assessing and quantifying the dif-
ference in performance across three modalities: touchscreen,
eye-tracker using a dwell time, and eye-tracker using a soft-
switch, between children with and without dyslexia, with a
VK in copy spelling mode with auditory and visual feedback;
2) detecting children with dyslexia from other children using
machine learning with features based on the VK performance;
and 3) estimating the difference of performance existing with
children with dyslexia at different levels: typing speed, system
usability, workload, and psychological assessment.

The rest of the paper is organized as follows. Section II
describes the multimodal Hindi language assisting learning
system. The experimental protocol is detailed in Section III

and methods are explained in Section IV, with the results
presented in Section V. Their implications are discussed in
Section VI and finally summarized in Section VII.

II. SYSTEM OVERVIEW

A. Description

The proposed personalised assistive learning system consists
of three main components: (1) a graphical user interface (GUI)
representing a Hindi language VK (adapted from Meena et.
al., [28]); (2) a multimodal textual content entry input that
consists of 3 extraordinary input modalities: a touchscreen,
an eye-tracker, and a soft-switch (adapted from Meena et.
al., [22]); (3) a new multimodal feedback where two different
multimodal feedback (auditory and visual) [8]. Two types
of visual positive (for intended item selection) and negative
feedback (for accidental item selection) with GUI. This is
represented by a change in the colour of the button border,
from silver to green (positive feedback) or red (negative
feedback) depending upon maintenance of gaze; and 4) a
novel typing task and intrinsic motivation for children. The
VK comprises the ten possible direct commands that can be
selected by the user; output text display (character, letters,
words, tasks, messages); and multimodal feedback (auditory
and visual) are presented in Fig. 2. The hierarchical structure
and typed characters and letters of an experimental task are
presented in Fig. 1.

The letters are organized in alphabetical order, the use of a
script-specific association layout, due to the fact the alphabet-
ical arrangement is simpler to examine and recall, specifically
for complicated established languages inclusive of Hindi [28].
The 10 command buttons are located at the edges of the screen
while the second component, the output textbox, is placed in
the centre of the screen (see Fig. 2). The VK-GUI is organized
on a multi-level menu choice along with ten commands at
each level. This technique may be useful whilst the display
length is small [29], [28] such as with 14-inch screen laptops,
and tablets, taking into account potential confusions that may
arise with gaze detection whilst commands are close to each
other. The GUI tree-based structure permits the users to type
forty-five Hindi language letters, seventeen Matras (diacritics)
and Halants (killer strokes), fourteen punctuation marks and
special characters, and ten digits (0 to nine). Normal editing
capabilities, e.g., “delete”, “delete all”, “new line”, “space”,
and “go back” commands for corrections are present in the
list of available actions.

The first level of the GUI includes 10 commands. Every
command is composed of a set of 10 characters. Character
selection requires the user to enter two commands by following
two steps. During the first step, the user has to choose a
command box (at the primary level of the GUI) in which
the desired character is located. The successful selection of
a command box changes the content of the buttons of the
GUI to the second level, where the ten commands at the
display are assigned to the 10 characters which belong to
the chosen command box on the preceding level. During the
second step, the user can see the desired character in a unique
command box, and eventually select it to write it in the output
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Fig. 1. Hierarchical structure showing the sequence of commands (c1 to c10) for letter selection. The selected characters/letters are highlighted with an oval
shape and the commands that are used for correction are highlighted with a rectangle shape. The box in the center depicts the typed characters/letters, words,
and tasks. Based on children typing performance, the system displayed feedback messages as well-done/well-tried at the end of each task to better engage
the participants.

Fig. 2. Positions of 10 commands (c1-c10) in the Hindi language virtual
keyboard. Two types of visual positive (for intended item selection) and
negative feedback (for accidental item selection) are shown in commands
C1 and C2, respectively.

text display. After the selection of a character at the second
level, the GUI goes back to the preliminary level (i.e., first
level) to facilitate the next character selection. The system
is designed to write all the Hindi language letters including
half-letter scripts and required punctuation marks. Besides, the
Nukta and Halant-based techniques are adapted from previous
research works for designing a VK application for the Hindi
language [22].

B. Modalities

The VK application includes three non-invasive human-
computer interaction (HCI) modalities: touchscreen (TS), eye-
tracker with dwell time ∆t=1.5 s) (ET), and eye-tracker with
a soft-switch (ETSS). In the ETSS modality, the eye-tracker
was used for pointing to the item that can be then selected by
pressing the soft-switch. HCI modalities include two visual
(positive and negative feedback) and one auditory feedback

(beep after successful execution of each command) [12]. In
the gaze-based VK application, efficient feedback is necessary
for the user so that the intended command box/character
was selected to avoid errors in copy spelling and increase
efficiency [22].

III. EXPERIMENTAL PROTOCOL

A. Participants

64 children were screened during a systematic field study
in multiple schools, 16 of which were diagnosed as dyslexic
children. A total of 32 volunteers participated in the exper-
iment, 16 children with dyslexia (age range of 10–13 years
(11.05 ± 1.09)) were part of the dyslexic group; 16 children
(age range of 10–14 years (12.43 ± 1.03)) were part of the
control group (see Table I). A healthy school-going child
with the diagnosis of dyslexia but no other medical condition
was the inclusion criteria for the experimental group. Age-
matched normal healthy school-going with no specific learning
disability was the inclusion criteria for the control group. The
presence of any other condition was the exclusion criteria.
In both groups, two participants completed the experiments
with vision correction. All participants were new to using the
input modalities with the VK application. Prior to the study
participants were informed about the purpose of the study, its
procedure, and the nature of the work. No financial aid was
given to the individuals for their participation in the study. This
study followed the Helsinki Declaration of 2000 to conduct the
experiments.

B. Multimodal input devices

This study includes two input devices: a portable eye-tracker
for determining the eye-gaze, and a soft-switch device as a
single-input tool (see Fig. 3) [22].
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Fig. 3. Experimental setup for eye-gaze recording during the typing task.
The participant sits in a relaxed chair in front of the PC display screen.
The eye-tracking and soft-switch devices were connected to the PC through a
USB port. Blocks a-c present three experimental conditions where participants
complete the typing task. a) with the touchscreen (TS) modality condition, b)
with the eye-tracking (ET) modality condition, and c) with the eye-tracking
and soft-switch (ETSS) modality condition.

C. Data acquisition

The eye-gaze signals using the eye-tracker device have been
recorded at 30 Hz. It involves binocular infrared illumination
with a spatial resolution (0.1 roots mean square (RMS)) that
records the (x, y) coordinates of gaze, and pupil diameter for
both eyes (in mm). The soft-switch device was used to select
a command as a single input. Throughout the experiments,
participants were requested to sit down in a relaxed chair in
front of the PC display screen ((DELL, 15.6 inches, 60 Hz
refresh rate, optimum resolution 1920 × 1080, touchscreen).
The distance between the PC display screen and the participant
was approximately 80 cm. The horizontal and vertical visual
angles were measured at approximately 36 and 21 degrees,
respectively.

D. Experimental paradigm

The typing task involves 10 predefined Hindi words in
increasing order of difficulty, based on the number of letters
(two to six: Gr, nmk, bcpn, jlmhl, iDruDr) and the
number of letters with one extra matra (diacritic: rAm, imlF,
trb� j, Ekstrh, s\gmrmr). The details of the different
words including the number of letters, diacritics (i.e., matra in
Hindi), and commands are given in Table II. The transliteration
of the task words in English is Ghar, Namak, Bachapan, Jal
Mahal, Idhar Udhar, Ram, Imalee, Tarabooz, Kistarah, Sanga-
maramar and the direct translation in English is House, Salt,
Childhood, Water Palace, Here and There, Ram, Tamarind,
Watermelon, How, Marble. Participants were asked to write
(i.e., type) these predefined words (i.e., copy spelling). The
typed words are displayed within the output textbox if they
match with one of the predefined words. If there are errors,
they are saved in a log file and are not displayed on the
screen. Participants were asked to look at the word while
typing. The maximum duration given to the participants for
the first five words are 40 s, 60 s, 80 s, 100 s and 120 s,
respectively; it was 60 s, 80 s, 100 s, 120 s and 140 s,
respectively, for the last five words. The maximum duration
was chosen as 20 s per character (letter or matra). Each word
was displayed at the bottom of the screen one by one during
these particular periods. If the participant completed the task
within the predicted time length, then a message “bh� t bExyA

TABLE I
DEMOGRAPHIC INFORMATION FOR PARTICIPANTS IN STUDY

Group Age Gender Handed Vision
Correction

Dyslexic (n=16) 11.05 (1.09) 9 M, 7 F 13 R, 3 L 15 N, 1 Y
Control (n=16) 12.43 (1.03) 12 M, 4 F 14 R, 2 L 13 N, 3 Y
n= sample size; Age= mean (standard deviation); M=Male, F=Female;
R=right-handed, L=left-handed; N= no vision correction,
Y=vision correction (wear eyeglasses)

TABLE II
OVERVIEW OF THE DIFFERENT WORDS.

Index Hindi word # letters # diacritics # commands

1 Gr 2 0 4
2 nmk 3 0 6
3 bcpn 4 0 8
4 jlmhl 5 0 10
5 iDruDr 6 0 12
6 rAm 3 1 6
7 imlF 4 1 8
8 trb� j 5 1 10
9 Ekstrh 6 1 12
10 s\gmrmr 7 1 14
Total - 38 5 76

(i.e., “well-done”) displayed, otherwise “aQCA pryAs” (i.e.,
“well-tried”) appeared in the message box.

Both groups of participants (i.e., children with dyslexia
and control groups) performed the task by using the three
HCI modalities: 1) a touchscreen; 2) an eye-tracker; and 3)
an eye-tracker along with a soft-switch. Each input modality
corresponds to an experimental condition (see Fig. 3). In this
study, the touchscreen modality is used as a baseline to mea-
sure the change in performance from a touchscreen switching
to another modality that can include visual feedback. The
touchscreen represents a common input method for electronic
gadgets that is recognizable to the participants (e.g., phone,
tablet). For each experimental condition, only the correctly
spelled characters are displayed inside the output text display
window. But incorrectly spelled characters aren’t displayed
however stored in a log file for post hoc analysis purposes.
At the end of the experiment, the usability and workload
were measured for each HCI modality for both groups of
participants.

IV. METHODS

A. Typing performance metrics

Performance was assessed through the computation of the
text entry rate (the number of letters spelled out per minute,
without any error in the input text), the information trans-
fer rate (ITR) adopting the methods from previous research
works [22], [28]. The ITR at command and letter level were
measured as ITRcom = log2(Mcom) ·Ncom

T and ITRletter =
log2(Mletter) ·Nletter

T , respectively. Where Ncom is the total
number of commands produced by the user to type Nletter

characters. T is total time to produce Ncom or type all the
Nletter. The number of commands is 10 (Mcom = 10); the
number of commands at the letter level is 88 (Mletter = 88).
The “delete”, “clear-all”, and “go-back” buttons were used as
special commands to correct the errors. The ITR assumes that
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all the different commands and letters are equiprobable and
without misspelling.

B. Feature selection and classification

The classification between children with and without
dyslexia is assessed with 7 state-of-the-art classifiers. It is
performed using linear discriminant analysis (LDA) [30] and
its variations: Bayesian LDA (BLDA) and stepwise LDA
(SLDA) [31]. SLDA begins with an initial model and then
takes successive steps to modify the model by adding or
removing features. At each step, the p-value of an F-statistic is
computed to test models with and without a potential feature.
We also considered the weighted k-nearest neighbor (k-NN)
approach where the confidence value for the binary classifica-
tion is determined by the probability to belong to one of the
two classes based on the k neighbors. The confidence value of
k-NN is set to negative for class 1 and positive for class 2. We
considered a multi-layer perceptron (MLP) classifier with 50
hidden units, rectified linear unit (ReLU) activation function,
and Broydon - Fletcher - Goldfarb - Shanno (BFGS) as an
optimization function; Extreme Learning Machine (ELM) [32]
with 200 hidden units using a sigmoid activation function; Tree
Bagger (TB) with 50 trees, which generates in-bag samples
by oversampling classes with large misclassification costs
and undersampling classes with small misclassification costs.
Therefore, out-of-bag samples have fewer observations from
classes with large misclassification costs and more observa-
tions from classes with small misclassification costs.

The performance is assessed with the area under the ROC
curve (AUC) using a leave one out cross validation [33]; so, we
have 31 children for training and one child for the test, using
both groups, and we assess the 32 possibilities by reporting
the results across the 32 evaluations. We consider the speed
(commands per minute) for the 10 words that are spelled out
as input features. For each child in the dataset, the 10 features
are normalized by removing the mean across the 10 words.

C. Dyslexia screening test and behavioral tool

Dyslexia screening test [34] was administered to screen the
children for dyslexia and the records were made available to
the researchers. The Wechsler Intelligence Scale (WISC-IV)
for Children [35] was administered to assess verbal compre-
hension index (VCI: similarities, vocabulary, comprehension,
information and word reasoning) and perceptual reasoning
index (PRI: block design, picture concept, matrix reasoning
and picture completion).

D. Subjective evaluation

The system usability scale (SUS) outcomes are used to
understand the participant’s performance about the system
usability level [36]. The NASA Task Load Index (NASA-
TLX) is considered to assess the participant’s workload during
the experimental tasks. The workload experienced by the user
during the interaction with the VK application is based on
the intellectual demand, physical call for, temporal demand,
overall performance, attempt, and frustration [37].

V. RESULTS

The general overall performance assessment of machine
learning approaches, multimodal virtual keyboard interface,
and feedback was undertaken based on the effects gathered
from the typing experiment. The corrected error rate was
assessed for each condition without considering the special
commands as an error. The corrected errors are typing errors
made by the user however they were corrected at some stage
in the text entry [38]. The Wilcoxon signed rank test was
conducted using the false discovery rate (FDR) correction
method for multiple comparisons on several performance
measurements across diverse conditions. Two-sample t-test
and Wilcoxon rank sum test were executed to compare the
children with dyslexia and the control groups’ performances.

A. Typing performance

We evaluated the multimodal VK interface with multimodal
feedback for all three conditions across the ten words with the
control and dyslexic group of participants. Each experimental
condition was associated with one or more than one feed-
back. First, the touchscreen (TS) modality condition included
auditory feedback. Second, the eye-tracking (ET) modality
condition involved both auditory and visual feedback. Third,
the eye-tracking and soft-switch (ETSS) modality condition
also provided both auditory and visual feedback. The typing
performance is presented in Tables III, IV, and V for the three
conditions and for both control and dyslexic groups.

TS: The average text entry rate, ITRcom, ITRletter with
the control group were 10.97± 1.75 letters/min, 61.58± 6.09
bits/ min, and 18.05±12.14 bits/min, respectively, whereas the
average text entry rate, ITRcom, ITRletter with the dyslexic
group were 9.06 ± 1.75 letters/min, 52.49 ± 3.44 bits/ min,
and 17.62± 15.60 bits/min, respectively.

ET: The average text entry rate, ITRcom, ITRletter with
the control group were 9.52 ± 1.34 letters/min, 58.58 ± 3.48
bits/ min, and 17.81±13.37 bits/min, respectively, whereas the
average text entry rate, ITRcom, ITRletter with the dyslexic
group were 7.49 ± 1.50 letters/min, 53.68 ± 3.04 bits/ min,
and 15.21± 13.02 bits/min, respectively.

ETSS: The average text entry rate, ITRcom, ITRletter with
the control group were calculated as 12.43± 1.16 letters/min,
73.70±8.49 bits/ min, and 21.37±14.07 bits/min, respectively,
whereas the average text entry rate, ITRcom, ITRletter with
the dyslexic group were 11.22±1.17 letters/min, 68.92±9.19
bits/ min, and 20.58± 12.77 bits/min, respectively.

We compared the performance measurement between the
conditions and found that the ETSS leads to a greater text
entry rate, ITRcom, ITRletter than the touchscreen and eye-
tracking for both groups (p<0.05, FDR corrected).

Average typing error: We measured the number of errors
based on records in the log file across the words for each
condition. The participant received a message “well-done”
across the words for each condition when they completed the
task within the predefined time. The “go-back” function of the
VK application is considered as the error (i.e., the go-back
command was used while completing the task). We estimated
errors made by participants during the task with both groups
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TABLE III
TYPING PERFORMANCE FOR THE TOUCHSCREEN (TS).

Word Control Group Dyslexic Group
Speed

(letter/min)
ITR

(com)
ITR

(letter)
Speed

(letter/min)
ITR

(com)
ITR

(letter)

1 11.63 46.54 43.60 11.84 57.69 56.04
2 11.98 60.81 33.07 7.50 51.80 31.68
3 8.97 59.19 23.46 7.48 50.63 20.88
4 8.60 58.96 18.67 5.87 45.67 14.79
5 11.53 61.48 16.99 9.15 49.87 13.53
6 12.95 63.48 7.41 10.35 51.67 6.98
7 13.87 66.96 8.99 10.01 53.15 7.14
8 9.17 65.95 9.34 8.44 53.23 7.91
9 10.33 65.89 9.46 9.99 54.79 7.95
10 10.71 66.49 9.52 9.96 56.40 9.26

Mean 10.97 61.58 18.05 9.06 52.49 17.62
Std 1.75 6.09 12.14 1.75 3.44 15.60

TABLE IV
TYPING PERFORMANCE FOR THE EYE-TRACKING (ET).

Word Control Group Dyslexic Group
Speed

(letter/min)
ITR

(com)
ITR

(letter)
Speed

(letter/min)
ITR

(com)
ITR

(letter)

1 12.27 49.28 47.63 10.22 45.95 44.63
2 11.51 58.20 32.50 9.03 54.95 29.36
3 9.13 57.30 23.09 5.79 51.55 18.39
4 8.43 59.08 18.53 6.32 53.32 18.39
5 8.99 59.00 15.67 6.64 54.97 11.24
6 8.80 60.17 6.83 9.12 55.75 4.94
7 9.95 61.00 8.11 7.22 56.24 5.76
8 8.68 60.40 8.48 7.26 55.20 6.22
9 9.04 60.67 8.65 7.46 55.18 6.84
10 8.36 60.70 8.59 5.85 53.71 6.33

Mean 9.52 58.58 17.81 7.49 53.68 15.21
Std 1.34 3.48 13.37 1.50 3.04 13.02

across each word. The average errors are presented in Fig. 4
for both control and dyslexic groups.

TS: The average errors for the 10 words: Gr (1), nmk (2),
bcpn (3), jlmhl (4), iDruDr (5), rAm (6), imlF (7),
trb� j (8), Ekstrh (9), and s\gmrmr (10) with touchscreen
in the control group were calculated as 0.06, 0.25, 0.13, 0.31,
0.44, 0.00, 0.13, 0.69, 0.38, and 0.69, respectively whereas the

TABLE V
TYPING PERFORMANCE FOR THE EYE-TRACKING WITH SOFT SWITCH

(ETSS)

Word Control Group Dyslexic Group
Speed

(letter/min)
ITR

(com)
ITR

(letter)
Speed

(letter/min)
ITR

(com)
ITR

(letter)

1 12.54 54.91 51.58 9.66 49.34 47.93
2 11.92 65.62 36.46 10.78 57.74 33.65
3 11.54 70.28 29.62 11.25 64.17 27.70
4 10.58 70.56 22.46 10.29 68.78 22.66
5 12.59 75.32 20.08 13.51 71.99 20.26
6 14.77 78.60 9.74 12.90 73.45 9.03
7 13.78 80.20 10.50 11.42 74.70 10.32
8 12.19 80.62 11.01 11.05 75.98 12.23
9 11.93 80.38 11.17 10.54 76.28 11.54
10 12.43 80.56 11.07 10.78 76.80 10.47

Mean 12.43 73.70 21.37 11.22 68.92 20.58
Std 1.16 8.49 14.07 1.17 9.19 12.77

Fig. 4. Average typing error across difficulty levels for each condition (TS:
touchscreen, ET: eye-tracker, ETSS: eye-tracker with soft-switch).

average errors in the dyslexic group were found as 0.00, 0.19,
0.13, 0.56, 0.06, 0.13, 0.13, 0.25, 0.25, and 0.44, respectively.

ET: The average errors for the 10 words: Gr (1), nmk (2),
bcpn (3), jlmhl (4), iDruDr (5), rAm (6), imlF (7),
trb� j (8), Ekstrh (9), and s\gmrmr (10) with eye-tracking
in the control group were calculated as 0.00, 0.13, 0.31, 0.56,
0.50, 0.25, 0.19, 0.38, 0.44, and 0.50, respectively whereas the
average errors in the dyslexic group were found as 0.06, 1.06,
1.81, 3.31, 2.25, 0.50, 1.38, 1.56, 1.56, and 3.31, respectively.

ETSS: The average errors for the 10 words: Gr (1), nmk
(2), bcpn (3), jlmhl (4), iDruDr (5), rAm (6), imlF
(7), trb� j (8), Ekstrh (9), and s\gmrmr (10) with eye-
tracking and soft-switch in the control group were calculated
as 0.00, 0.06, 0.19, 0.38, 0.38, 0.00, 0.13, 0.31, 0.38, and 0.63,
respectively whereas the average errors in the dyslexic group
were found as 0.06, 0.00, 0.13, 0.13, 0.38, 0.06, 0.19, 0.31,
0.31, and 0.44, respectively.

In Fig. 4, we can observe that the error rate decreases due
to the change in word type and the difficulty level. Starting
with the word index 6, the number of letters increases with
simple A matra, which is usually very easy to read and write
compared to other Matras in index 7 ( F ), 8 ( � ), 9 ( E ), 10
( � ). For this reason, a user completes word index 6 quickly
without any errors in the TS and ETSS conditions. However,
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there were a few errors with the ET condition for both groups.

Fig. 5. SUS and NASA-TLX score for TS, ET, and ETSS conditions with the
control and dyslexic groups of participants. The error bars represent standard
error across participants.

Among the different words, we observe that the maximum
error rate is achieved with a word index of 4 “Jal Mahal”
for both groups. The results suggest that the average error
rate varies depending on the characters contained in the word.
Looking at the performance of a single word can be deceiving
as there is a substantial variation across the different words.
The trend between ET and the other modalities is consistent
across the different words. However, the error rate is low
for the control group, with a different pattern of performance
across modalities for the different words.

B. Typing performance over VCI and PRI indices

The verbal comprehension index (VCI) and perceptual
reasoning index (PRI) scores are given as percentile rank
with their descriptive classification. We further estimated the
performance of participants for each descriptive classification
across all conditions. The typing performance with VCI and
PRI are presented in Tables VI and VII. These typing perfor-
mances are obtained with psychological assessment metrics.
We administered WISC-IV to measure VCI and PRI for
descriptive classification, and calculated the average typing
performances for children with dyslexia in each classification.

The performance of eye-tracking and soft-switch with a low
average (12.98 ± 1.43 letters/min), borderline (10.87 ± 1.39
letters/min), intellectual disability (9.49± 1.57 letters/min) in
VCI found greater than both eye-tracking and touchscreen
(p<0.05, FDR corrected). In addition, we found eye-tracking
and soft-switch with a low average were superior to borderline
and intellectual disability (p<0.05).

The performance of eye-tracking and soft-switch with av-
erage (12.21 ± 2.58 letters/min), low average (11.92 ± 2.13
letters/min), borderline (9.72 ± 1.16 letters/min), intellectual
disability (10.78± 1.14 letters/min) in PRI was found greater
than both eye-tracking and touchscreen (p<0.05, FDR cor-
rected). However, we found eye-tracking and soft-switch with
an average descriptive classification of PRI was superior to
low average, borderline, and intellectual disability but not
statistically significant (p>0.05).

C. Detection of children with dyslexia

The Area under the ROC curve (AUC) for the classification
between children with and without dyslexia is presented in
Table VIII. We report the mean and standard deviation values
across 20 runs to account for the stochastic aspect of some
of the algorithms. The standard deviation is not null for
MLP, ELM, and TB due to the random initialization in these
approaches. Fig. 6 depicts the ROC curves for a single run.
For all the conditions, the AUC is superior to 0.5 (random
decision). The best performance is obtained with LDA for the
ET condition with an AUC=0.910. Across the 3 conditions,
the MLP provided the best results (AUC=0.825). For the
TS condition, the best performance is obtained with BLDA
with AUC=0.838. With the condition ETSS, the best AUC is
reached with K-NN (k=5), AUC=0.799. Across classifiers, the
AUC is the highest with the ET condition and the lowest with
the ETSS condition. The worst performance is provided by
the ETSS condition with AUC<0.7.

D. System usability scale

The results from the system usability scale (SUS) test are
presented in Fig. 5 (Left) with each input condition for both
groups of participants. The average SUS score with eye-
tracker and soft-switch in the control group was 93.91± 3.98
and was found superior to eye-tracker (87.03 ± 4.85) and
touchscreen (89.84± 6.22). The average SUS score with eye-
tracker and soft-switch indicates the best imaginable grade
on the adjective rating scale [39]. Likewise, the average
SUS score achieved with eye-tracker and soft-switch in the
dyslexic group was (89.53 ± 4.49) around 90%, indicating
the best possible performance grade on the adjective rating
scale [39] and found greater than eye-tracker (85.16±3.82) and
touchscreen (86.25 ± 4.18). The SUS score was significantly
higher for the control group compared to the group of children
with dyslexia (p<0.05).

E. NASA Task Load Index

The NASA Task Load Index (NASA-TLX) scores for
each condition are depicted in Fig. 5 (Right). The system
achieved an average NASA-TLX score with the ETSS condi-
tion (16.07± 2.02), which was lower than ET (19.80± 2.15)
and TS (17.91 ± 2.10) conditions in the control group. The
same pattern of performance was observed where a low
workload was found with ETSS condition (18.51±2.33) than
ET (23.82 ± 2.29) and TS (20.18 ± 2.14) in the dyslexic
group. The NASA-TLX score was significantly higher for the
group of children with dyslexia compared to the control group
(p<0.05).

F. Correlations

We assess the correlation between the different measure-
ments of the 3 conditions. We consider the BLDA classifier for
the detection of dyslexic children due to its high performance
and stable results across conditions. The correlation between
VCI and the BLDA score is -0.675, -0.262, and -0.511 for con-
ditions TS, ET, and ETSS, respectively. It shows a moderate
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TABLE VI
PERCENTILE RANK AND DESCRIPTIVE CLASSIFICATION OF VCI INDEX WITH TYPING PERFORMANCE FOR CHILDREN WITH DYSLEXIA.

VCI
Percentile Rank

Descriptive
Classification

Group
Sample

Speed (letter/min)
TS ET ETSS

Mean Std. Mean Std. Mean Std.
9-23 Low Average n=8 10.61 1.25 7.42 0.48 12.98 1.43
2-8 Borderline n=5 9.21 1.03 7.33 0.33 10.87 1.39

0.01-2 Intellectual Disability n=3 7.28 1.32 6.89 0.61 9.49 1.57

TABLE VII
PERCENTILE RANK AND DESCRIPTIVE CLASSIFICATION OF PRI INDEX WITH TYPING PERFORMANCE FOR CHILDREN WITH DYSLEXIA.

PRI
Percentile Rank

Descriptive
Classification

Group
Sample

Speed (letter/min)
TS ET ETSS

Mean Std. Mean Std. Mean Std.
25-73 Average n=6 10.96 2.70 8.23 1.47 12.21 2.58
9-23 Low Average n=3 10.06 1.46 7.17 0.75 11.92 2.13
2-8 Borderline n=3 7.43 1.15 6.48 0.09 9.72 1.16

0.01-2 Intellectual Disability n=4 7.66 0.75 5.57 0.89 10.78 1.14

TABLE VIII
AUC FOR EACH CONDITION (TS: TOUCHSCREEN, ET: EYE-TRACKER, ETSS: EYE-TRACKER WITH SOFT-SWITCH).

Condition LDA BLDA SWLDA 1-NN 5-NN 10-NN MLP ELM TB

TS 0.721 0.838 0.666 0.586 0.775 0.701 0.870± 0.031 0.780± 0.043 0.766± 0.029
ET 0.910 0.834 0.838 0.711 0.852 0.869 0.845± 0.035 0.835± 0.044 0.800± 0.026

ETSS 0.613 0.678 0.605 0.609 0.799 0.758 0.762± 0.033 0.765± 0.032 0.758± 0.019

Touchscreen Eye-tracker Eye-tracker with soft-switch

Fig. 6. ROC curve for each condition for the detection of dyslexic children based on the typing speed.

correlation between conditions TS and ETSS. The correlation
between PRI and the BLDA score is -0.407, -0.378, and -
0.393, for conditions TS, ET, and ETSS, respectively. They
indicate weak relationships between PRI and the classifier
output. The correlation between NASA-TLX and the BLDA
score is 0.081, 0.399, and 0.110 for conditions TS, ET,
and ETSS, respectively. It indicates a weak relationship with
condition ET. Finally, all the correlations between SUS and
BLDA scores are below 0.2 in absolute value.

VI. DISCUSSION

Creating fully inclusive virtual keyboards should be a pri-
ority to include a large range of users, including children
with disabilities such as dyslexia. Virtual keyboards using eye-
tracking as an input modality can have multiple purposes: they
can be used for communication as a primary purpose, they can

be used to record and analyze the gaze of the users, they can
provide a typing aid through the feedback that is assigned to
the commands, and they can be used to detect children with
dyslexia.

This work proposes a multimodal virtual keyboard as an
assisted learning system that can be used as a writing aid
for children with dyslexia. Dyslexia can impact mental health
in multiple ways: education, career, financial, physical well-
being, social and community connections, and psychological
and emotional well-being. Altogether, it indicates a close re-
lationship between mental and physical long-term conditions,
which should be taken into account for designing multimodal
VKs. The system was compared using two groups of children
with a similar age range (about 11 years old). While most
studies focus on the Latin script, the Hindi script has particular
features: Hindi has a consistent symbol-sound mapping with
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an extensive list of complex graphemes. In this study, a
virtual keyboard using an eye-tracker is used as a direct
means of communication, i.e., for command selection and the
detection of children with dyslexia through the analysis of the
typing performance. However, virtual keyboards using eye-
tracking can be used for providing an alternative means of
communication for people with severe disabilities, including
stroke patients in rehabilitation [28]. Virtual keyboards using
eye-tracking can also be used to assess visual and oculomotor
abnormalities through the gaze path.

Multiple evaluation metrics such as typing performance,
usability, and workload are proposed to assess the differences
across modalities and between the control group and the group
of children with dyslexia. The results show that the SUS score
is lower for the dyslexia group and the NASA-TLX score is
higher. The usability has a better score for the control group,
suggesting additional efforts should be made to improve the
usability of the proposed system. Likewise, the workload is
higher for children with dyslexia. These results highlight how
a different population of participants can impact performance
estimation. In all these cases, we observed differences between
the control group and children with dyslexia. The differences
can be used in two ways. First, the best modality can be
directly suggested by default to a child with dyslexia. Second,
the difference in performance could be used to better diag-
nose dyslexia through the direct comparison of performance
between multiple modalities, and the type of encountered
errors. The difference in performance that occurs between
children without and with dyslexia can be found at the subject
level using machine learning when considering the typing
speed across 10 words. Different classifiers are assessed and
it was possible to reach an AUC superior to 0.9. These results
indicate that the proposed approach can be used for different
purposes, and it could be used to track the progress of children
with dyslexia. The moderate correlation between the verbal
comprehension index (VCI) and the classifier score with the
touchscreen (TS) condition suggests the possibility to use the
classifier, which is based on features related to typing speed,
to assess verbal comprehension.

The proposed system could also benefit from multiple tech-
nological aids that are available commercially to help dyslexic
individuals to overcome their reading, spelling, or writing
challenges. Some promising examples are novel text-to-speech
software and custom user interface for dyslexic individuals
to help in reading [40], [41]. Word processing tools can
check spelling, grammar, and highlight errors automatically.
Predictive text approaches are considered to provide the most
likely upcoming words to be typed. These approaches help
to reduce the number of keystrokes and time and improve
spelling. Voice recognition software tools and programs enable
users to dictate text to computers. These approaches are proven
effective for writing, correcting, formatting, and editing on
computers. The proposed system could directly benefit from
word completion procedures [42] and time-based adaptive
approaches [22] for increasing the typing speed.

The current findings are based on the virtual keyboard
interface for complex structure language (i.e., Hindi language)
that is also read from left to right, it has peculiar characteristics

such as the usage of diacritics (Matras) and killer strokes
(Halants). The Hindi language can be used by 490 million
speakers. It would be interesting to compare the proposed
design approach with other language interfaces. Further work
will include an evaluation of other natural languages and
other types of learning disabilities. Dyslexia Assessment for
Languages of India (DALI) contains two screening tools for
dyslexia: the Junior Screening Tool (JST) and the Middle
Screening Tool (MST) in four languages, Hindi, Marathi,
Kannada and English. The evaluation of these languages would
provide more evidence about how the proposed system can be
deployed in clinical settings.

While we have shown how the pattern of performance
changes between children with dyslexia and non-dyslexia with
typing tasks of different difficulty levels, it is unclear how the
performance would evolve during treatment, if some training
with the user interface would decrease the performance gap
with the control group. Further studies with analyses across
sessions, with free typing, with children from different loca-
tions, would provide key insight into how typing performance
can evolve with children with different types of dyslexia.
Dyslexia has three sources: a grapho-phonemic deficit, a
graphemic deficit, and an audio-phonemic deficit [43]. Future
work should be carried out to discriminate the core deficits in
dyslexia.

This study highlights the need for multimodal interfaces,
interactions, feedback, and machine-learning techniques for
developing efficient rehabilitation tools. Typical rehabilitation
and communication devices do not take into account the men-
tal capacity of the users. The performance gap and different
typing speeds for each modality show the need to focus on
the target population for assessing a user interface such as a
gaze-based VK. This study stresses the need to test a system
on the target users (e.g., children with dyslexia) for obtaining
reliable results that can represent what would happen outside
of the lab. However, the performances obtained with the eye-
tracking modalities show that it is possible to detect children
with dyslexia without any physical contact between them and
the system. Therefore, this work could transfer to the use of
systems that require users to touch a device, e.g., an ATM
keypad, which can be limited for hygiene reasons in a time
when there is a global pandemic.

VII. CONCLUSION

Dyslexic children can be detected using machine learning
when typing 10 words using an adapted virtual keyboard, and
the modality with eye-tracking provides the best performance.
The results suggest that for writing aids, 1) an eye tracker
with a soft switch provides an effective input modality for
children with dyslexia; 2) traditional input modalities such as
touchscreen and mouse are not the most suitable for children
with dyslexia. The implementation of positive and negative
feedback could be further enhanced to overcome the error rate
and oculomotor deficits of children with dyslexia.

ACKNOWLEDGMENT

The authors would like to thank Kendriya Vidyalaya IIT
Kanpur, and Kartikey Academy School Kota, for their assis-



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL.XX, NO. XX, MONTH XX, YEAR 20XX 10

tance in the recruitment of participants, Ms. Pratibha Mishra
for her assistance in the dyslexia screening test, and Dr.
KongFatt Wong-Lin for his insightful comments on the early
draft of the manuscript.

REFERENCES

[1] L. Sprenger-Charolles, L. S. Siegel, J. E. Jimenez, and J. C. Ziegler,
“Prevalence and reliability of phonological, surface, and mixed profiles
in dyslexia: A review of studies conducted in languages varying in
orthographic depth,” Scientific Studies of Reading, vol. 15, no. 6, pp.
498–521, 2011.

[2] M. P. Bucci, N. Nassibi, C. L. Gerard, E. Bui-Quoc, and M. Seassau,
“Immaturity of the oculomotor saccade and vergence interaction in
dyslexic children: evidence from a reading and visual search study,”
PLoS One, vol. 7, no. 3, p. e33458, 2012.

[3] A. B. Arnett, B. F. Pennington, R. L. Peterson, E. G. Willcutt, J. C.
DeFries, and R. K. Olson, “Explaining the sex difference in dyslexia,”
J. of child psychology and psychiatry, and allied disciplines, vol. 58,
no. 6, pp. 719–727, 2017.

[4] M. P. Bucci, “Visual training could be useful for improving reading
capabilities in dyslexia,” Applied Neuropsychology: Child, vol. 10, no. 3,
pp. 199–208, 2021.

[5] A. Kirby and H. Gibbon, “Dyslexia and employment,” Perspectives on
Language and Literacy, vol. 44, no. 1, pp. 27–31, 2018.

[6] C. Angeli and M. Giannakos, “Computational thinking education: Issues
and challenges,” p. 106185, 2020.

[7] B. Joly-Pottuz, M. Mercier, A. Leynaud, and M. Habib, “Combined
auditory and articulatory training improves phonological deficit in chil-
dren with dyslexia,” Neuropsychological rehabilitation, vol. 18, no. 4,
pp. 402–429, 2008.

[8] C. M. Wright and E. G. Conlon, “Auditory and visual processing in
children with dyslexia,” Developmental Neuropsychology, vol. 34, no. 3,
pp. 330–355, 2009.

[9] L. Rello, G. Kanvinde, and R. Baeza-Yates, “Layout guidelines for
web text and a web service to improve accessibility for dyslexics,” in
Proceedings of the international cross-disciplinary conference on web
accessibility, 2012, pp. 1–9.

[10] K. Rayner, “Eye movements in reading and information processing: 20
years of research.” Psychological bulletin, vol. 124, no. 3, p. 372, 1998.

[11] A. Gupta, “Reading difficulties of hindi-speaking children with devel-
opmental dyslexia,” Reading and Writing, vol. 17, pp. 79–99, 2004.

[12] Y. K. Meena, A. Chowdhury, U. Sharma, H. Cecotti, B. Bhushan,
A. Dutta, and G. Prasad, “A hindi virtual keyboard interface with
multimodal feedback: a case study with a dyslexic child,” in Proceedings
of the 32nd International BCS Human Computer Interaction Conference
32, 2018, pp. 1–5.

[13] S. Oviatt and P. Cohen, “Perceptual user interfaces: multimodal inter-
faces that process what comes naturally,” Communications of the ACM,
vol. 43, no. 3, pp. 45–53, 2000.

[14] H. S. Dhillon, R. Singla, N. S. Rekhi, and R. Jha, “Eog and emg
based virtual keyboard: A brain-computer interface,” in 2009 2nd
IEEE International Conference on Computer Science and Information
Technology. IEEE, 2009, pp. 259–262.

[15] S. M. Hosni, H. A. Shedeed, M. S. Mabrouk, and M. F. Tolba, “Eeg-
eog based virtual keyboard: Toward hybrid brain computer interface,”
Neuroinformatics, vol. 17, no. 3, pp. 323–341, 2019.

[16] B. Han and K. Kim, “Typing performance evaluation with multimodal
soft keyboard completely integrated in commercial mobile devices,”
Journal on Multimodal User Interfaces, vol. 9, no. 3, pp. 173–181, 2015.

[17] J. Abich and D. J. Barber, “The impact of human–robot multimodal
communication on mental workload, usability preference, and expecta-
tions of robot behavior,” Journal on Multimodal User Interfaces, vol. 11,
no. 2, pp. 211–225, 2017.

[18] A. Bhowmick and S. M. Hazarika, “An insight into assistive technology
for the visually impaired and blind people: state-of-the-art and future
trends,” Journal on Multimodal User Interfaces, vol. 11, no. 2, pp. 149–
172, 2017.

[19] H. Cecotti, Y. K. Meena, and G. Prasad, “A multimodal virtual keyboard
using eye-tracking and hand gesture detection,” in 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2018, pp. 3330–3333.

[20] Y. K. Meena, H. Cecotti, K. Wong-Lin, and G. Prasad, “A novel
multimodal gaze-controlled hindi virtual keyboard for disabled users,” in
2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 003 688–003 693.

[21] S. Deng, J. A. Kirkby, J. Chang, and J. J. Zhang, “Multimodality
with eye tracking and haptics: a new horizon for serious games?”
International Journal of Serious Games, vol. 1, no. 4, pp. 17–34, 2014.

[22] Y. K. Meena, H. Cecotti, K. Wong-Lin, and G. Prasad, “Design and
evaluation of a time adaptive multimodal virtual keyboard,” Journal on
Multimodal User Interfaces, vol. 13, no. 4, pp. 343–361, 2019.

[23] J. Lee, C. Lee, and G. J. Kim, “Vouch: multimodal touch-and-voice
input for smart watches under difficult operating conditions,” Journal
on Multimodal User Interfaces, vol. 11, no. 3, pp. 289–299, 2017.

[24] H. Kim, K. H. Suh, and E. C. Lee, “Multi-modal user interface combin-
ing eye tracking and hand gesture recognition,” Journal on Multimodal
User Interfaces, vol. 11, no. 3, pp. 241–250, 2017.

[25] H. Cecotti, Y. K. Meena, B. Bhushan, A. Dutta, and G. Prasad, “A
multiscript gaze-based assistive virtual keyboard,” in 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2019, pp. 1306–1309.

[26] P. Raatikainen, J. Hautala, O. Loberg, T. Kärkkäinen, P. Leppänen,
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