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Introduction 

Atrial Fibrillation (AF) is the most common chronic arrhythmia associated with an adverse 

prognosis. It is associated with heart failure, stroke and excess mortality [1]. AF affects 

around 33.5 million individuals worldwide, including around 3 million in the USA [2]. The ratio 

of asymptomatic (“silent” AF) to symptomatic AF has been estimated to be approximately 

12:1 [3]. It is therefore critical to capture asymptomatic episodes in high risk patient groups 

who might otherwise be undiagnosed. Mobile Cardiac Outpatient Telemetry (MCOT) is often 

used in these scenarios, as it is suited to capture both symptomatic and asymptomatic AF 

episodes. MCOT is used both in pre-ablation monitoring, to document AF burden and 

initiating triggers, and in post-ablation to document freedom from AF episodes. [3]  

 

MCOT devices rely primarily on the algorithmic detection of AF events, which are then 

stored and transmitted to a clinician for review. Prior studies of these algorithms have 

demonstrated frequent under diagnosis [4] as well as over diagnosis of AF [5]. Under 

diagnosis is much more common in MCOT devices, as devices typically opt for low 

sensitivity to maintain acceptable levels of false positives, and therefore PPV. Low PPV 

creates additional workload for over-reading clinicians, who would have to over-read many 

normal recordings to find true arrhythmia events. This poor algorithmic classification 

performance comes from two sources. Firstly, it is very difficult to select an optimal threshold 

for traditional algorithms, as they are often developed using small data sets. Secondly, 

human engineered features often fail to capture the underlying complexity of the human 

physiology for classification [6].  

 

The use of Artificial Intelligence (AI), more specifically Deep Convolutional Neural Networks 

(DCNNs) for ECG classification, is well documented in the literature. DCNNs have previously 

been applied to increase the PPV of Implantable Loop Recorders (ILRs) by acting as a filter 

to remove false positive results prior to clinical review [5]. ILRs collect, analyse and transmit 



 

data in much the same way as MCOT devices. The DCNN was, however, significantly too 

large and computationally demanding to be embedded within the ILR itself.  

 

The purpose of this study is to build and analyse the performance of a miniaturized DCNN 

that could be embedded onto a MCOT device to reduce the number of transmitted false 

positives whilst maintaining a high sensitivity for AF detection. 

 

  



 

Materials and Methods 

Datasets 

We created two non-overlapping training datasets from the proprietary PulseAI worldwide 

ECG database. This database contains labelled ECGs from over 1 million patients from 7 

countries. The ECGs were labelled as part of standard clinical care, with a cardiologist or 

emergency medicine physician over-reading the automated ECG machine interpretation. 

The first dataset consisted of all records of 10 seconds in length and where Lead II was 

present in the recording. We selected four classes (1) atrial fibrillation and atrial flutter, (2) 

sinus arrhythmia, (3) sinus rhythm with ectopy and (4) all other rhythms. Sinus arrhythmia 

and sinus rhythm with ectopy are commonly misclassified as AF, and therefore we extracted 

examples of these classes to increase the classification performance of the DCNN on these 

classes. 491,727 ECGs were extracted from the database for this dataset. The second 

dataset was created using 20-second recordings where Lead II was present, and simply 

comprised of two class labels; (1) atrial fibrillation and flutter (2) all other labels. This dataset 

contained 58,450 recordings. The distribution of class labels for both of these datasets is 

shown in Table 1. 

 Dataset One Dataset Two 

Class Label Count Prevalence (%) Count Prevalence (%) 

Atrial Fibrillation 
/ Flutter 

33,591 6.83 3,585 6.13 

Sinus 
Arrhythmia 

23,109 4.70 - - 

Sinus Rhythm 
with Ectopy 

26,907 5.47 - - 

All Other 
Rhythms 

408,120 83.00 54,865 93.87 

Table 1 - Distribution of class labels in dataset one and two. 

 



 

Three Physionet datasets [7] were used to test the performance of our classifier: MIT-BIH 

Arrhythmia Database (MITDB) [8], MIT-BIH Atrial Fibrillation Database (AFDB) [9] and, 

Long-Term Atrial Fibrillation Database (LTAFDB) [10].  

 

Methods 

Even in high risk populations, the pre-test probability of an AF episode is relatively low. We 

therefore theorize that the majority of classification windows for any classifier will be ‘normal’. 

These periods of sinus rhythm can be easily classified by existing low complexity embedded 

algorithms. However, other irregular rhythms, such as frequent, complex atrial or ventricular 

ectopy are more difficult to classify [11]. We therefore propose a two-stage classifier for AF 

detection. Firstly, a low complexity, rule-based, continuous classifier based on QRS 

detection and RR interval analysis to identify periods of irregularity that could be AF. If a 

period is flagged as irregular, then further analysis is undertaken by the on-device DCNN.  

 

Statistical analysis 

All 95% confidence intervals (CIs) were computed using Wilson score intervals. Differences 

of positive predictive values and F1 scores between the one-stage and two-stage classifier 

(unpaired data) were tested with 2-sided proportion Z tests. A value of p < 0.05 was 

considered to be statistically significant. 

 

Rule-based classifier 

We implemented the classifier detailed by Luo et al. [12] which utilizes a simple but effective 

analysis of first-order Poincaré Plots. It computes a polar coordinate transfer of the Poincaré 

Plot to create a histogram-like phase distribution. Two features, the distribution width Dw and 

the average distribution height Dh are extracted and used to classify each episode as AF or 

not AF. We did not make any modifications to this algorithm and applied the published 

threshold values for classification of each 20-second window of ECG data. The choice of RR 

interval classifier is not important as long as the classifier is capable of high detection 



 

sensitivity. Although not reported here, we achieved very similar results when using 

coefficient of sample entropy [11].  

 

Deep convolutional neural network 

We trained a small residual network (resnet) with 3 residual blocks with up to 64 

convolutional filters in each layer. The structure of the residual blocks is shown in Figure 1. 

The output of the residual blocks was fed through a global average pooling layer, then 

classified using a dense layer with softmax activation. A resnet was selected to decrease the 

depth of the model and also to decrease training time. The model classifies each ECG at a 

sampling frequency of 256 Hz and contains 128,612 parameters quantized to int8 requiring 

just 158 KB of flash storage. This network was trained on dataset one and no 

hyperparameter tuning was performed. To train and assess the model performance, we 

held-out 10% of the dataset for unseen test data and then split the remaining data into 80% 

training and 20% validation with blind oversampling of the smaller classes for training. 

 



 

 

Figure 1 - Residual block structure in the DCNN.  

 

Setting a detection threshold for this DCNN requires an additional step. The held-out test 

data for training the DCNN has a 6% prevalence of AF. As PPV is the primary performance 

metric for this study, the impact of prevalence is important to consider. In this case, the 

DCNN only processes ECGs after they have been labelled as AF by the rule-based 

classifier. As a result, the DCNN processes a dataset that has a much larger prevalence of 

AF, as the majority of the normal ECGs have already been discarded. To set our detection 

threshold for the DCNN, we computed the rule-based labels for all ECGs in dataset two, and 

then provided only the AF labelled examples to the trained DCNN. We then used the output 

scores to determine the threshold using the Precision-Recall (PR) curve, with a target 

sensitivity of 95%.    



 

Results 

Once training had completed, the DCNN had an area under the precision recall curve 

(AUPRC) of 0.853 (95% CI: 0.850 to 0.856) on the held-out dataset one ECGs. On dataset 

two, the prevalence of AF is increased and so too does the classifier performance, with an 

AUPRC of 0.918 (95% CI: 0.916 to 0.920). We used the PR curve for dataset two in Figure 2 

to select a threshold of 0.15 for the output of the DCNN, giving a 95% sensitivity and 78% 

PPV. The precision recall curves are only used to help set the detection thresholds for the 

DCNN, and ultimately do not reflect the true performance of our dual classifier model.  

 

 

Figure 2 - The precision-recall curves for the trained DCNN on the held out test set of 

dataset one and the RR-interval labelled AF data in dataset two.  

 

For a fair comparison with other classifiers, the performance of our dual classifier on the 

standardized datasets is reported in line with AAMI/ANSI EC57:2012 [13]. We present 



 

episode and duration sensitivities and positive predictive values. The classification was 

completed on entire records without training periods, the minimum AF episode length was 30 

seconds and atrial flutter in the reference annotations was excluded. The results are shown 

in Table 2 and Figure 3. 

 Gross Average 

Dataset Episode 
SE (%) 

Episode 
PPV (%) 

Duration 
SE (%) 

Duration 
PPV (%) 

Episode 
SE (%) 

Episode 
PPV (%) 

Duration 
SE (%) 

Duration 
PPV (%) 

RR Classifier 

MITDB* 100 20 98 60 100 28 98 27 

AFDB 97 69 97 95 98 71 96 79 

LTAFDB 94 76 95 95 97 75 93 84 

RR Classifier + Neural Network (change) 

MITDB* 98  

(↓2) 

59  

(↑39) 

92  

(↓6) 

83  

(↑23) 

98  

(↓2) 

60  

(↑32) 

93  

(↓5) 

57  

(↑30) 

AFDB 92  

(↓5) 

92  

(↑23) 

87  

(↓10) 

98  

(↑3) 

95  

(↓3) 

85  

(↑14) 

86  

(↓10) 

90  

(↑11) 

LTAFDB 89  

(↓5) 

87  

(↑11) 

93  

(↓2) 

97  

(↑2) 

93  

(↓4) 

87  

(↑12) 

88  

(↓5) 

91  

(↑7) 

Table 2 - Performance of the RR classifier and RR classifier with subsequent neural network 

analysis. Episode SE - Episode Sensitivity, Episode PPV - Episode Positive Predictive 

Value, Duration SE - Duration Sensitivity, Duration PPV - Duration Positive Predictive Value. 

(* paced records excluded).  

 



 

 

Figure 3 - The gross performance of the RR classifier and the RR classifier with subsequent 

DCNN analysis. (* paced records excluded) 

 

The PPV of the one-stage classifier detected AF episodes was 20.5% (95% CI: 13.2% to 

30.4%) for MITDB, 69.3% (95% CI: 65.7% to 72.6%) for AFDB and 76.4% (95% CI: 75.3% 

to 77.4%) for LTAFDB. After incorporation of the neural network in the two-stage classifier, 

the PPV of detected AF episodes increased significantly to 58.7% (95% CI: 44.3% to 71.7%, 

p < 0.0001) for MITDB, 91.6% (95% CI: 89.6% to 93.3%, p < 0.0001) for AFDB and 86.7% 

(95% CI: 85.9% to 87.5%, p < 0.0001) for LTAFDB.  

 

With the 2-stage classifier there is a reduction of 2.4% (95% CI: 0.4% to 12.3%), 5.0% (95% 

CI: 2.8% to 8.7%) and 5.5% (95% CI: 4.6% to 6.4%) in true positive detection for MITDB, 

AFDB and LTAFDB respectively. However, the harmonic mean of sensitivity and positive 

predictive value (F1 score) is significantly increased across all datasets. For MITDB the F1 

score increased from 0.33 (95% CI: 0.25 to 0.43) to 0.74 (95% CI: 0.62 to 0.83, p < 0.0001), 

for AFDB the F1 score increased from 0.81 (95% CI: 0.77 to 0.84) to 0.93 (95% CI: 0.90 to 

0.96, p < 0.0001) and for LTAFDB the F1 score increased from 0.84 (95% CI: 0.83 to 0.85) 

to 0.88 (95% CI: 0.87 to 0.89, p < 0.0001). This shows that the two-stage classifier is 



 

improving the classification performance and not simply trading reduced sensitivity for 

increased positive predictive value.  

 

The number of analysis windows where the RR interval classifier was triggered and 

therefore a neural network analysis was performed was also recorded. This was used to 

calculate a percentage of time the neural network was active and is shown in Table 2. 

 

 MITDB* AFDB LTAFDB 

Total Analysis 
Windows 

4,320 42,167 352,908 

Neural Network 
Analysis Windows 

787 17,249 183,479 

Neural Network 
Active Time  

18% 41% 52% 

Table 2 - Analysis of windows that resulted in DCNN analysis. (* paced records excluded).   



 

Discussion 

The principal findings of this study are that: 1) Low complexity RR-interval classifiers can 

offer very high sensitivity for AF detection but the PPV of detected AF is low; 2) A small 

DCNN embedded on the device can successfully increase PPV by removing false positive 

events that are mislabelled by the low complexity classifier, with only a small loss of true-

positive AF episodes; 3) Even in patients with large amounts of RR interval irregularity 

(caused by AF or other irregular rhythms), there is a significant computational saving by not 

analysing all ECG data with the DCNN.  

 

In this study, we applied a simple Poincaré Plot based RR interval classifier using published 

threshold values. It is clear from our results that such classifiers highly generalizable and can 

offer high detection sensitivities (>93% across all datasets) for AF classification. As 

predicted, the classifier performs poorly when the PPV is measured. On AFDB and LTAFDB, 

approximately 1 in every 4 reported episodes is a false positive. The PPV on MITDB is 

particularly low due to the number of other irregular rhythms in the dataset, as well as a very 

small number of true AF episodes. This performance is to be expected, as not all the 

diagnostic criteria for AF are visible in the RR series, such as missing p-waves.  

 

When our DCNN was applied to automatically review the positive cases from the RR interval 

classifier, PPV increased substantially across all datasets. The two-stage classifier 

increased the episode PPV by 39%, 23% and 11% on MITDB, AFDB and LTAFDB 

respectively. At the same time, the high episode sensitivity of the RR classifier was reduced 

by 5% or less. This increase in PPV is due to a decrease in the number of false positives, 

and therefore would reduce the workload for over-reading physicians. Figure 4 shows an 

example of a false positive detection by the RR classifier that is subsequently removed by 

the DCNN. It is important to note that the DCNN can never increase the detection sensitivity 

of the system. Therefore, a high sensitivity RR interval classifier is essential for optimal 

operation.  



 

 

Figure 4 - A 20-second rhythm strip extracted from MITDB record 209 showing a short run of 

atrial tachycardia, followed by sinus tachycardia with premature atrial complexes. The RR 

classifier labels this as a false positive for AF. However, the DCNN correctly identifies it is 

not AF. 

 

The two-step nature of this classifier allows for large computational savings compared with 

running the DCNN on every 20-second window. Analysis of the classification model shows 

that the DCNN was triggered on 18%, 41% and 52% of windows on MITDB, AFDB and 

LTAFDB respectively. It is clear that the number of windows analysed by the DCNN is 

dependent on the prevalence of irregular rhythms in the dataset, with LTAFDB having large 

periods of AF alongside other rhythms with large RR interval variability, such as atrial and 

ventricular bigeminy. Meanwhile, AFDB consists of atrial fibrillation, atrial flutter and normal 

sinus rhythm only. Despite large amounts of RR variability in these data sets, the low 

complexity classifier is able to confidently classify at least 48% of windows are not AF. This 

means that the large computations of the DCNN are not required, potentially reducing power 

usage and therefore increasing device battery life.  

 

Atrial fibrillation is not the only arrhythmia commonly detected by MCOT devices. In future 

work, we plan to investigate applying this new concept of two-stage classifiers to a wider 

selection of arrhythmias.  

  



 

Conclusion 

This study has shown that DCNNs for ECG arrhythmia detection can be miniaturized to the 

extent that they could be deployed on MCOT devices, whilst maintaining a high level of 

performance. In fact, such networks can be paired with low power and low complexity RR 

interval classifiers for AF detection. This removes the need for the DCNN to analyse every 

ECG case, potentially increasing battery longevity. The two-stage classifier shows a large 

increase in PPV when compared to only the low complexity RR classifier, due to a decrease 

in the number of false positive events. This reduces the review burden for physicians and 

has been achieved with only a modest decrease in sensitivity.      
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