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Abstract  
 

A new energy market, the Integrated Single Electricity Market (ISEM), went live in Ireland during 

October 2018 providing more flexibility and competition to energy traders. This recent 

development requires energy traders to purchase energy in advance. Therefore, if traders could 

accurately predict usage and the correct time at which to purchase energy, they could optimise 

their costs. Price prediction through statistical and computational approaches would be a 

valuable commercial tool when forecasting electricity prices to capture market trends with the 

aim of reducing market costs to increase profits.  

This thesis explores day-ahead electricity price forecasting within the ISEM and British Electricity 

Trading and Transmission Arrangements (BETTA) energy markets. Traditional statistical 

approaches were first considered by utilising time-series prediction models with historical data 

to observe energy market trends. Appropriate stationarity, integration, and seasonal checks 

were included in the traditional statistical models for estimation and diagnostic testing. Next, 

non-linear regression models were applied to model input-output relationships and find key 

energy-related factors that influence current electricity price. The inclusion of energy-related 

model inputs were shown to influence price prediction. Refining the statistical models to only 

include the identified significant factors from the non-linear regression models improved overall 

accuracy. Technical indicators have shown great promise within the stock market, thus building 

on this knowledge eight novel energy price technical indicators consisting of trend, oscillator, 

and momentum types were developed.  These technical indicators were used as inputs into 

machine learning algorithms and demonstrated highly accurate prediction performance. 

Therefore computational approaches would be advantageous for energy trading prediction 

modelling.  

Overall this thesis demonstrates that many approaches may be used to predict energy prices.  

However, the combination of novel technical indicators and machine learning provided compact 

models that accurately represent the variability and dynamics within the energy market. 
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Chapter 1  

Introduction 
 

1.1 Research Area and Motivation  

Computational modelling has been used extensively in a number of areas for price prediction 

such as financial trading [1] and the stock market [2], [3] often applying hybrid models [4] and 

machine learning [5]. A new unique cross-border energy market, the Integrated Single Electricity 

Market (ISEM), went live in October 2018 in Northern Ireland and Republic of Ireland, increasing 

transparency and competition in the market [6]. Before this new ISEM market came into place 

energy companies, like Click Energy, had no control over purchase price in the previous Single 

Electricity Market (SEM) and it was the Market Operator who set the final market price four days 

after consumption. The ISEM consists of multiple markets allowing traders to purchase 

electricity units beforehand in the Day-Ahead or Intra-Day markets. If market traders do not 

purchase electricity units in either of these two markets, they have to pay the balancing market 

price as well as any financial costs through the imbalance settlement price if the electricity price 

has increased. The ISEM brings complexity in purchasing and selling electricity units with a need 

to forecast as it adapts to the European Target Model process. Therefore this thesis aims to 

address the ISEM requirements and challenges by developing reliable price forecasting models 

that energy traders, in particular Click Energy, could utilise for future electricity pricing. A 

prediction model that can function robustly at all times, is adaptable, can spot patterns, and 

predicts accurate electricity prices is desirable for competitive energy trading. 

Forecasting algorithms are valuable mechanisms that have been considered for modelling 

electricity price prediction, particularly time-series models, and are trained with real electricity 

price data to analyse patterns and aid as a commercial tool reducing market costs for energy 

traders [7]. However, the energy market is difficult to forecast due to the complex behaviour 

and unpredictable nature of energy data [1]. Another obstacle in any commodity market is the 

constant battle between supply and demand with fluctuating prices due to economic and 

technical factors. Short term forecasting models with a window size of one day or one week 

display a strong relationship between past and predicted electricity prices [7], hence a short 

time period is often considered more reliable for better model accuracy. Forecasting models can 

receive a range of historical electricity market variables as possible input factors; it is important 

to consider other significant energy-related factors for inputs in price prediction energy models 

as they can influence current electricity price and would be worthwhile to consider for exploring 
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input-output relationships. Historical input data will show if a relationship exists between the 

exogenous variables and the dependent price variable [8].   

Computational techniques such as machine learning algorithms make predictions by learning 

trends from data to capture market behaviour but do not rely on rules [9]. Stock price financial 

trading has similar data characteristics and market behaviours as energy data. Therefore 

computational modelling and machine learning algorithms will be investigated for modelling 

electricity price data. Additionally stock market technical analysts examine price change 

patterns to summarise and predict price behaviour by building technical indicators; technical 

analysts do not consider fundamental factors such as expenses or assets as this information is 

already accumulated into historical prices [10]. Therefore, developing novel energy-related 

technical indicators would also aid in decision making, market competition, and balance 

supply/demand within ISEM [11]. The majority of current techniques that focus on electricity 

price forecasting use opaque black-box models [12], [13], [14] which provide no insight into how 

predictions are made or the variables that have contributed to the prediction; this thesis will 

utilise transparent non-linear models for better data understanding and analysis.   

This thesis explores algorithmic approaches to develop optimal price forecasting models with 

the end goal being an accurate robust system that will aim to increase Click Energy’s profits 

within the ISEM market through purchasing electricity units at the most advantageous time. 

Examining different statistical regression and computational modelling techniques and applying 

these with historical electricity price data will help discover market trends and overcome 

forecasting issues by understanding the strengths and weaknesses of an ideal energy trading 

process. The outcome will be an optimal forecasting model that can detect past market trends 

and adapt to current market conditions. Time will be spent at Click Energy to test the ISEM 

market in a live environment and to receive company feedback on model findings to validate 

the results.   

 

1.2 Research Aims and Questions  

This research aims to achieve a successful electricity price forecasting model which is applicable 

to the ISEM market and that can accurately predict future prices. The following research 

questions are addressed in this thesis: 

1. Are traditional statistical methods or more recent computational models appropriate 

techniques for day-ahead electricity price forecasting? 

2. Do energy-related exogenous variables improve model performance? 

3. Can transparent models identify key factors that influence electricity price? 
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4. Can prediction accuracy be improved by developing representative energy-related 

technical indicators compared with the use of electricity prices? 

5. Can model performance be improved by building on the strengths of statistical models 

and machine learning models? 

 

1.3 Thesis Outline and Key Contributions  

The remainder of the thesis is structured as follows: 

● Chapter 2 – Review of energy trading markets: A critical analysis of the British Electricity 

Trading and Transmission Arrangements (BETTA), SEM and ISEM energy markets has 

been completed, outlining trading processes focusing on new developments and 

highlighting key energy-related factors that influence day-ahead electricity price for 

energy traders to consider in prediction models. A review of trading use for the 

statistical regression and machine learning approaches utilised in the study chapters is 

also discussed.   

● Chapter 3 – Methods: Each of the main traditional statistical models, non-linear 

regression approaches, and computational algorithms are presented to consider the 

advantages and disadvantages of each technique for suitability in short-term electricity 

price forecasting.    

● Chapter 4 – Single input single output models: Time-series prediction models can follow 

market trends to predict future values. Various time-series models (AutoRegressive 

Moving Average (ARMA), AutoRegressive Integrated Moving Average (ARIMA), and 

Seasonal AutoRegressive Integrated Moving Average (SARIMA)) with historical raw 

electricity price as model input are analysed for data understanding and price prediction 

for both the BETTA and ISEM energy markets.  

● Chapter 5 – Multiple inputs single output models: Time-series prediction models 

(AutoRegressive Moving Average with eXogenous inputs (ARMAX), AutoRegressive 

Integrated Moving Average with eXogenous inputs (ARIMAX), Seasonal AutoRegressive 

Integrated Moving Average with eXogenous input (SARIMAX), and Nonlinear 

AutoRegressive Moving Average with eXogenous inputs (NARMAX)) with multiple 

inputs energy-related factors are examined for both the BETTA and ISEM markets to 

investigate the most significant factors influencing day-ahead electricity price.    

● Chapter 6 – Refined models: Applying significant ISEM energy-related factors from the 

non-linear models as inputs in the traditional statistical models will determine if model 

accuracy improves. Correlated peak lags are also considered for refinement to enhance 

ISEM model performance. 
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● Chapter 7 – Computational models: Machine learning regression algorithms (Random 

Forest, Gradient Boosting, and Extreme Gradient (XG)Boost) combined with technical 

indicator model inputs derived specifically for the ISEM energy market are examined as 

an alternative to traditional approaches. The aim is to develop a robust optimal 

computational prediction system consistent with ISEM procedures that can be 

considered for future electricity price predictions. 

● Chapter 8 – Conclusion and future work: A summary of each thesis contribution and an 

outline of the overall research findings from each chapter are provided. A concluding 

section on electricity price prediction applications is provided alongside possible future 

work. 

 

The main research contributions focussing on predicting day-ahead electricity price are included 

in Chapters 4-7 as outlined below.  

Chapter 4 addresses the first research question by exploring traditional statistical methods and 

numerous experiments are performed to examine trend/seasonality and evaluate model 

accuracy. Each experiment considers the four key modelling stages: identification, estimation, 

diagnostics, and prediction. This research work is published in the conference proceeding: 

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Forecasting Day-Ahead Electricity 

Prices with a SARIMAX Model”, in Proceedings of the 2019 IEEE Symposium Series on 

Computational Intelligence, SSCI 2019, pp. 1523–1529. 

Chapter 5 continues to explore traditional forecasting methods and undertakes the second 

research question by including external energy-related model inputs. Both statistical models and 

transparent non-linear models are examined to determine key contributing exogenous variables 

through prediction modelling that greatly enhance model performance. This research work is 

published in the following conference proceedings: 

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Daily Energy Price Forecasting Using 

a Polynomial NARMAX Model,” in Advances in Computational Intelligence Systems, UKCI 

2018, pp. 71–82. 

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “A Linear Polynomial NARMAX Model 

with Multiple Factors to Forecast Day-Ahead Electricity Prices,” in Proceedings of the 

2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, pp. 2125–2130. 
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● C. McHugh, S. Coleman, and D. Kerr, “Hourly Electricity Price Forecasting with 

NARMAX”, submitted to Elsevier Statistical Methods for Machine Learning with 

Applications (under review). 

Chapter 6 addresses the third research question through applying the key exogenous variables 

identified from the non-linear models as inputs in the traditional statistical models. The aim of 

the refined original and correlated lags models was to improve day-ahead prediction accuracy. 

This research work is published in the conference proceeding:  

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Seasonal Models for Forecasting Day-

Ahead Electricity Prices”, in Proceedings of International Conference on Time Series and 

Forecasting, ITISE 2019, pp. 310–320. 

Chapter 7 targets both the fourth and fifth research questions by examining regression based 

machine learning algorithms for electricity price prediction and through developing novel price 

technical indicators to be used as model inputs. Machine learning prediction models are trained 

and tested to determine if they are more robust than the standard statistical models. Price 

technical indicators focussing on trends, oscillations, and momentum are derived specifically for 

the energy market. This research work is published  or under review as follows: 

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators for Hourly Energy Market 

Trading”, in Proceedings of The Ninth International Conference on Data Analytics, Data 

Analytics 2020, pp. 72-77. 

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators and Prediction for Energy 

Market Forecasting”, in Proceedings of 19th IEEE International Conference on Machine 

Learning and Applications, ICMLA 2020, pp. 1241-1246. 

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators for Energy Market Trading”, 

in Elsevier Machine Learning with Applications, vol. 6, 2021. 
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Chapter 2  

Review of Energy Trading Markets 
 

2.1 Introduction  

Electricity price forecasting is becoming popular due to deregulation within the energy industry. 

Energy markets differ throughout the world and there is no standard optimal price forecasting 

technique that can be used, instead the approach depends on the market type [15]. A price 

forecasting model is a valued mechanism for profitable trading that energy traders can utilise 

for hedging market volatility and risk [16]. Due to the elevated frequency of trading and spikes 

in demand, computational forecasting algorithms tend to be more desirable than statistical 

techniques to predict future prices. Electricity prices may be considered over different temporal 

scales depending on the trading period. Energy traders will, over time, reduce their costs if they 

can develop commercial price prediction algorithms which accurately represent the market 

dynamics [7].    

Fundamental economic factors and historical raw data can influence electricity price forecasting; 

therefore in price modelling the key indicators should be included as inputs in prediction models 

for profitable forecasting [15]. Electricity price can be impacted by temporal changes in demand 

(hour/day/week), weather, generation costs, or seasonality. Electricity price data are prone to 

spikes corresponding to changes in demand making the market clearing price, which is set as 

the price where demand and supply curves join [17], unpredictable. Demand is a key price 

contributor as when demand increases so does the price; nonetheless all significant energy 

factors must be identified and considered to estimate the cheapest bid in the energy market in 

order to stay competitive [18]. For an accurate prediction tool to spot trends, it is important to 

have both historical and real-time data in the forecasting model [19] as well as significant key 

factors [20] and/or representation of them such as technical indicators. A technical indicator is 

derived from raw data to observe market trends, helping traders decide whether to buy, sell or 

hold price units.  

This chapter describes three energy markets: Single Electricity Market (SEM) and Integrated 

Single Electricity Market (ISEM) in Ireland and British Electricity Trading and Transmission 

Arrangements (BETTA) in Great Britain. The trading processes and format for each market are 

explained in Sections 2.2 to 2.4, focussing in particular on the developments of the new ISEM 

and the changes from the old Irish market, SEM. Section 2.5 explores literature on statistical and 

computational price techniques focussing on day-ahead forecasting and observes which key 

energy-related factors influence electricity price. Section 2.6 reviews the financial stock markets 
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as this type of market has similar characteristics to energy trading markets and thus considering 

prediction algorithms which have been used to successfully forecast stock prices would underpin 

the creation of accurate electricity price forecasting models.    

 

2.2 Single Electricity Market  

 

 
Figure 2.1: Single Electricity Market network [21] 

 
The collaborative Single Electricity Market (SEM) for both Republic of Ireland and Northern 

Ireland, formed by the Irish and UK governments, began operating in November 2007 consisting 

of a network of five stakeholders: (i) Generators, who produce and supply the required energy 

bidding into a single pool setting the price; (ii) Distributors, who transmit and network the 

produced energy; (iii) Regulators, who safeguard the pricing and efficiently operate the 

wholesale market to meet demand; (iv) Suppliers, who buy electricity from the wholesale market 

and sell in the retail market; and (v) Consumers, who buy the electricity from the suppliers 

through the retail market [22], [23]. The network, illustrated in Figure 2.1, allows free trade 

through one efficient cross-border market, with all generators delivering and all suppliers buying 

at the System Marginal Price (SMP), which is the final cheapest price in the wholesale market to 

meet customer demand in the retail market. This cross-border network is unique as it is the first 

example of such a market in Europe [24]. With one mandatory pool for bidding and selling, there 

is no price control and hence more competition within the market. 

The Single Electricity Market Operator (SEMO) is a joint operator providing security of supply 

through one single pool involving two transmission operators: the System Operator for Northern 

Ireland Limited (SONI) and EirGrid, based in the Republic of Ireland [25]. The bidding occurs over 

five pricing and scheduling cycles: Ex Ante1 (-1 trade day published by 11am), Ex Ante2 (-1 trade 

day published by 1pm), Within Day (trading day), Ex Post Indicative (+1 trade day), and Ex Post 

Initial (+4 trade day) [26]. The SMP is a combination of the shadow price, which is the cost 

(Distributors) 

(Regulators) 
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needed to match demand, and the uplift, which is the required operating cost for a generator 

to recover [26] at 30-minute trading periods.  

There are various types of generation units currently in use: thermal generation such as gas, 

coal, and biomass; hydroelectric generation including pumped storage; interconnectors 

consisting of imported and exported energy transferred across borders; and wind generation 

[25]. The SMP can be influenced by demand, fuel costs, wind distribution, and interconnection 

flows [25]. Total production costs from generators consist of operating, no-load, and start-up 

costs. Interconnector generation is fixed for the five pricing and scheduling cycles. Pumped 

storage generation submits costs with no value and therefore has no actual bids but instead 

adopts the SMP which has been set for each 30-minute trading period [26]. There is a code of 

practice to be followed for generator bids in such that marginal costs have to be declared 

truthfully to ensure the correct price is set by the generators [27]. Capacity payments, paid for 

by suppliers, are given to generators to help contribute to a share of their fixed generation costs 

and to deliver stability in meeting demand requirements [18]. A continuous balance between 

energy generation and consumption is necessary for a stable energy market as the wholesale 

price is decided by this connection [28].  

The SEMO controls the trading process trying to sustain minimum production costs and keep 

electricity prices low by setting the final cheapest price for each 30-minute period in the trading 

day after the last cycle has occurred, four days after trading [26]. This final price is determined 

through post-processing for the market schedule during Ex Ante1 cycle to get the forecast SMP 

values, however real-time fluctuations have to be accounted for so two further runs are 

completed on the Ex Post Indicative and Ex Post Initial cycles, with this last run being considered 

the final SMP [18]. The SEMO is also accountable for administration duties in terms of making 

payments to generators and sending invoices to suppliers [29]. The market trading design and 

process is governed by the SEM committee and regulated jointly by the Utility Regulator in 

Northern Ireland and the Commission for Energy Regulation (CER) in the Republic of Ireland to 

avoid exploitation of control by any key market player [25].  

The procedure of how electricity price is determined daily was outlined in [22] as follows: 

bidding prices are placed by generators the day before trading day; for each 30-minute interval 

SEMO first accepts renewable power generation and then begins accepting bids of lowest prices 

through the market scheduling software cycles and continues until demand matches electricity 

supply; the last generator bid accepted that meets demand requirement sets the final price for 

all units at that 30-minute interval for everyone; suppliers then buy from the wholesale market 

at this price and compete with one another by selling to consumers in the retail market at tariff 

expected prices. It is hoped the tariff expected price is similar to the final wholesale price in 
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order for the supplier to make a profit but there is the possible risk of loss. The retail market can 

be competitive as generators and suppliers still have a relationship until the bids are paid and 

thus retail prices for consumers are influenced by competition level [30]. Increased competition 

also has benefits allowing more choice to consumers and enhanced guarantee of supply [24].   

 

2.3 Integrated Single Electricity Market 

In October 2018, the SEM changed to a new development, the Integrated Single Electricity 

Market (ISEM), moving from single to multiple markets to follow and integrate the European 

Target Model standards allowing suppliers greater control and flexibility. The main features of 

the European Target Model are: a standard price algorithm for market scheduling, open cross-

border trading, hedging services, an increase in renewable energy, and balancing between 

regions [31]. The new ISEM has significant differences from SEM; mainly focusing on balancing, 

the option to trade in multiple markets, and economical interconnector usage [31].  

 
Figure 2.2: Integrated Single Electricity Market outline [31] 

 
In the ISEM markets, illustrated in Figure 2.2, each market operates independently: Forwards 

which occur months or years in advance to provide hedging for trading participants against 

prices rising and falling; Capacity which involves generators or interconnectors effectively 

delivering the required energy and thus is a compulsory market for both to participate in; Day-

Ahead which sets initial electricity price linking to other European market regions through cross-

border trade via interconnectors and closes one day before, and the Market Coupling Operator 

(MCO) operates this ex ante market via interaction from both SONI and EirGrid who are the 

Nominated Electricity Market Operators (NEMOs); Intraday which opens following Day-Ahead 

and closes one hour before release allowing room for adjustments as this ex ante market 

fluctuates near real-time; and Balancing, which keeps stability into real-time by equalising 
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demand and supply through the SEMO providing imbalance settlement prices (market 

participants are required to pay the difference if prices increase and they are paid the surplus if 

prices decrease). Nonetheless, it is a compulsory market for the majority of generators to 

participate in. Generators and suppliers prefer less contact in this market due to the risk of 

additional financial costs [31].  

The Day-Ahead market occurs over 24 hourly periods, the Intraday market occurs over 48 30-

minute periods, and the Balancing market is split in half-hourly imbalance settlements with six 

5-minute periods for each settlement interval [6]. A price coupling algorithm, known formally as 

EUPHEMIA, calculates price and market position to assign cross-border volume and join various 

energy markets into one coupling [6]. The imbalance price is decided through a flagging and 

tagging method that aims to keep prices low by considering only marginal costs from energy 

functions accumulated during the balancing market [32]. The complexity of the multiple trading 

markets brought about challenges and the requirement for market traders to forecast electricity 

prices in advance of buying and selling to secure market positions and stay balanced. To limit 

interaction in the Balancing market and reduce financial costs, it is beneficial for market 

participants to forecast accurately with realistic optimal bids in the Day-Ahead market [6]. In 

order to achieve accurate day-ahead bids and reduce balancing risk, price forecasting is a vital 

requirement for companies to maintain stability in the market [33].  

The ISEM brought about various changes from operation and competitive trading in multiple 

markets over large timeframes with both generators and suppliers bidding simultaneously, risk 

management and forecasting techniques being required, and generators having more 

responsibility when contributing in the day-ahead bidding stage. Therefore market traders had 

to adapt quickly [34]. Competitive prices from SEM remained in the new ISEM trading process 

which was considered positive [30]. Unlike the SEM, generation costs are no longer announced 

separately arising to greater obligations for generators to have capable production dispatch 

schedules that allow for all running costs to be met [27]. Bids are submitted during the day-

ahead market following the structure of the EUPHEMIA algorithm [30]. The available generation 

units are: wind, pumped storage, battery storage, demand, assetless, and dual rated [6]. The 

ISEM is more transparent for commercial investment when trading as market signals provide 

decisions on whether to raise or reduce assets [35], but market traders first had to learn how to 

work the new trading systems and train their staff on business processes and strategies to 

become market-ready [34]. The ISEM has limited access to European markets due to 

geographical restrictions, only connected via Great Britain, and therefore it is harder to promote 

competition through the forwards market; however regulation would guarantee that consumers 

still receive a competitive market price [27]. The first month of ISEM showed promising results 
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with a stable market highly correlated with both EUPHEMIA traders and efficient 

interconnectors [36]. ElectroRoute, an independent energy trading and service company, 

compared the first year of ISEM prices with the old SEM market and noted minimal differences 

in baseload prices and a slight decrease in ISEM day-ahead prices compared with the SEM SMP 

prices, highlighting a positive outlook that the ISEM market continues to keep prices low [37]. 

The main goal of the ISEM market is to create a more equal trading process for market 

participants increasing trading competition with multiple markets and promoting renewable 

energy generation [33]. It focusses on many different energy generation units and is less reliant 

on large power plants with the possible chance of plant closures as ISEM progresses [35]. 

Another key feature of the ISEM is cross border trading through interconnectors. The ISEM has 

two interconnectors with Great Britain (GB): the Moyle linking Northern Ireland to Scotland 

which has operated since 2001 and the East-West linking the Republic of Ireland to Wales which 

has operated since 2012. Both these links offer competitive trading opportunities through access 

to the rest of Europe via the GB market [31]. However, ISEM is interconnected only to Great 

Britain and the GB market is not fully integrated with other markets in Europe due to exchange 

rates, hence it is doubtful if there will be much competition between ISEM and other EU traders 

[27]. Free flowing energy allows for one integrated price among coupled markets; however 

network congestion leads to conflicting prices [6] that has been noted in cross-border studies 

[38], [39]. 

Since the ISEM market did not go live until October 2018, historical data were unavailable at the 

beginning of this research work. The British Electricity Trading and Transmission Arrangements 

(BETTA) market in Great Britain is designed to allow trading in multiple markets and the 

requirement to propose electricity prices before the start of the balancing market period. Until 

ISEM market data became publicly available for data analysis, BETTA market data were collected 

and examined for time-series modelling to observe energy trends. As ISEM is a recent 

development there has been limited current research work in this area; one research work 

focussed on energy storage developing a smart grid for the ISEM retail market [40], another 

examined volatility connectedness between ISEM and BETTA markets [41], and another 

analysed real-time ISEM imbalance pricing [32]. Literature prior to 2018 discussed ISEM 

development, regulations and challenges [27], [30] with forecasting scenarios performed using 

SEM data [18], [29], [33], but to date I am not aware of any current research on ISEM electricity 

price forecasting since the market went live. Technical indicators considered for energy market 

prediction have also been limited with only one research work currently available that created 

a set of hourly technical indicators for the Day-Ahead Belgian market [42]. 
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2.4 British Electricity Trading and Transmission Arrangements Market 

The BETTA market has been in operation since 2005 and has created a fully-competitive British-

wide market for trading electricity generation [43]. This market is similar to ISEM in terms of 

bilateral trading in multiple markets (Day-Ahead, Intraday, and Balancing), the requirement of 

hedging tactics in the Forwards market to limit risk, and the need for generators and suppliers 

to propose predicted electricity prices in the ex ante periods to reduce exposure in the Balancing 

market [44]. Since 2005 coal and gas electricity generation has decreased with the reduction of 

generation power plants, however renewable based electricity generation (biomass, wind, solar) 

has increased [41]. The increase in renewable source electricity generation brings additional 

overheads to the market due to renewable support costs per electricity consumption [45]. There 

were initially four interconnectors when the BETTA market was first formed: England-Scotland 

which links between Scotland and England/Wales; Moyle which links Scotland and Northern 

Ireland, Manx which links England/Wales and the Isle of Man, and Anglo-French which links 

England/Wales and France [46]. Since 2012 an additional interconnector, the East-West has 

been established, which links Wales and the Republic of Ireland.    

 

 
Figure 2.3: British Electricity Trading and Transmission Arrangements Market [47] 

 
The BETTA market, illustrated in Figure 2.3, focusses around predictable generation trading 

through bilateral contracts [47]. The trading measures comprise of a Forwards market with the 

option of contracts starting in several years; two power exchange Short-term markets in which 

participant contracts can be amended; a Balancing market in which the system operator ensures 

stability between demand and supply; and a Settlement period in which participants are charged 

or paid if their contracts do not equal the final electricity price [46]. National Grid is the 

transmission system operator who is required to be informed of the trade volume during the 

bidding stage [43] and the Office of Gas and Electricity Markets (Ofgem) is the government 

regulatory body. ELEXON is a private company overseeing the Balancing market guaranteeing 
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the Balancing and Settlement Code (BSC) is implemented by comparing actual observed energy 

against what was specified by generators for production and by suppliers for consumption, with 

ELEXON ensuring price stability and system security through imbalance settlements provided by 

the system operator [48]. The BETTA Day-Ahead wholesale market contains 24 hourly 

settlement periods in which energy suppliers enter into a contracted bid with generators before 

the start of each settlement period. This market has two trading platforms: the European Power 

Exchange (EpexSpot) and Nordic Power Exchange (Nordpool), both settling all sales and 

purchases for electricity price trading. 

 

2.5 Approaches to Forecasting 

There have been numerous statistical and computational price forecasting methods applied in 

the trading area. A common approach to price forecasting involves numerous steps outlined in 

[15] as: (i) gather and analyse historical data, (ii) data preparation, (iii) data fitting for model 

selection, and (iv) model refinement. Pandey and Upadhyay [15] outline the three different 

categories of price forecasting: short-term which covers a period of days or weeks, making this 

type suitable for market traders; medium-term which covers a period of weeks to months 

thereby improving discussions between provider and consumers; and long-term which emerges 

over months or years swaying long term decisions and planning. In energy forecasting, short-

term is considered advantageous to smooth fluctuations as balancing demand and supply with 

shorter timeframes helps identify peaks and trends [49]. If demand and supply are imbalanced, 

price fluctuations (which are normal due to commercial and technical factors [15]) tend to arise 

making accurate forecasting difficult [50]. Hence a steady balance between consumption and 

production will help to prevent this.  

Techniques for price forecasting are becoming more progressive within the energy industry as 

electricity is expensive to source over longer periods. Time-series analysis is a traditional 

statistical forecasting approach that involves historical data [15]. A Simple Moving Average 

(SMA) model is a statistical time-series forecasting model that calculates the average price over 

a set period to smooth fluctuations and identify trends [51]. For example, a SMA model 

calculates average daily price over 24 hours to identify trends [51]. Another simple technique is 

linear regression which models linear relationships between one dependent variable and one or 

multiple independent variables building into multivariate regression [8], however multiple 

variables can lead to multicollinearity and errors. To overcome this Nogales et al. [12] utilised 

dynamic regression when predicting day-ahead electricity prices by linking current price at time 

𝑡 with historical prices at time 𝑡 − 1, etc. to develop a model with uncorrelated errors. 
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Regression analysis using lagged independent variables indicates if variable relationships exist 

[8].   

Basic statistical models like AutoRegressive Integrated Moving Average (ARIMA) have been 

applied to predict electricity prices demonstrating promising forecasts [15]. An ARIMA model 

was applied by García-Martos et al. [52] to forecast the Spanish energy market and concluded 

that separating an entire time-series into smaller time periods (24-hours) lowered the prediction 

errors improving the parameter estimates. ARIMA models work best with a stable market to 

predict trends but have difficulty with complex modelling [53], requiring more historical data for 

accurate forecasts [50]. To account for seasonality, a Seasonal AutoRegressive Integrated 

Moving Average (SARIMA) is a common forecasting technique. Due to the stochastic trend, 

before creating a SARIMA model, the time-series must be made stationary (no trend) with a 

constant mean and variance over time [4]. This can be applied through seasonal differencing [8] 

which is required in electricity price forecasting to remove the non-stationary trend [7]. A 

Seasonal AutoRegressive Integrated Moving Average with eXogenous variables (SARIMAX) has 

been shown to outperform SARIMA with improved performance accuracy forecasting energy 

load [54], especially for short-term forecasting [55]. A SARIMAX model can be used to determine 

significant external factors by examining the statistical summary output that describes the price 

dynamics of each variable [56]. An example of such an external factor is temperature which 

could be included as a model input in energy forecasting models, and it was a key input when 

included in a SARIMAX model to predict energy load [57]. Khashei et al. [4] enhanced the 

limitations of a SARIMA model by combining it with computational techniques to improve 

prediction accuracy.  

Computational techniques, like machine learning, may be useful in price forecasting as they 

learn from training data without depending on programming rules and the algorithms try to 

replicate market trends from patterns [9] to generate optimal prediction models [7]. There are 

various types of machine learning algorithms for example: Support Vector Machines (SVM) 

which involve a supervised learning algorithm and labelled data for either classification or 

regression methods [8]; K-means clustering which is an unsupervised learning algorithm using 

unlabelled data and involves pattern recognition among similar groups [1]; Naïve bayes which is 

supervised classification technique with independent class inputs [58]; and k-Nearest 

Neighbours (kNN) which is a simple supervised method assigning new labels depending on the 

common class of their nearest neighbours [59]. A Weighted kNN approach was applied for 

Spanish electricity price forecasting and it was noted that extreme weather variables caused 

inflated forecasting errors [60].  
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Statistical time-series techniques work best when a small forecasting window is used [16] as the 

relationship between historical and predicted values is stronger [7] making them a starting point 

for price forecasting. However, problems can develop from weakly correlated relationships 

between the inputs and output and therefore forecasting techniques that can accommodate 

non-linearities would be beneficial. To effectively model non-linear relationships between input 

and output variables, a Nonlinear AutoRegressive Moving Average with eXogenous inputs 

(NARMAX) model can be considered [61]. Polynomial NARMAX models in particular are very 

popular due to the simple model representation [62]. There are numerous studies involving  

NARMAX models, for example, modelling the relationship between air pressure and turbines of 

diesel engines  [62]; identifying the key features influencing house prices in China [63]; modelling 

West Africa monthly rainfall [64]; forecasting demand of Automatic Teller Machines (ATMs) 

using seasonal input factors [65]; and modelling solar wind to determine the parameters that 

provide the optimal magnetosphere function [66]. Multiple energy-related factors utilised with 

a transparent polynomial NARMAX model would be advantageous to remove redundant 

exogenous variables and identify statistically significant variables that influence electricity price. 

Non-linear data can lead to prediction issues but a forecasting model that can handle volatility, 

provide accurate predictions, and thus reduce market costs is desirable.  

Time-series models are popular for price forecasting but it has been shown that short-term 

forecasting results in improved precision and model accuracy. Mosbah and El-Hawary [67] 

trained a multilayer neural network with gas, load, and temperature hourly non-linear data and 

Vijayalakshmi and Girish [68] examined short-term forecasting and observed that time-series 

models performed better than an Artificial Neural Network (ANN). Gao et al. [7] also noted a 

similar finding when they compared ANN and ARIMA forecasting models with respect to Root 

Mean Squared Error (RMSE). The ARIMA model had the lowest RMSE but it was found that as 

the forecasting period increased both models were less accurate. Severiano et al. [69] utilised 

short-term fuzzy logic time-series models for solar energy forecasting highlighting that 

prediction accuracy improves with a short-term period. Therefore short-term forecasting would 

be a valuable tool for Day-Ahead energy market trading.       

 

2.6 Day-Ahead Forecasting 

The Day-Ahead market is a key component of the ISEM and thus both energy consumers and 

suppliers would gain from accurate day-ahead price predictions before the trading day for 

stability [49]. Kavanagh [70] performed a time-series day-ahead forecasting scenario before the 

ISEM went live using actual historical SEM load data from 2013 to 2014 to observe market 
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volatility and noted the appearance of daily and weekly patterns, with daily load on week days 

moving in peaks and troughs between 8am to 5pm. For the ISEM Day-Ahead market, in the first 

year of going live the average prices followed average demand with peaks occurring between 

8am to 10am and between 4pm to 6pm [71]. Analysing price spread between both day-ahead 

and intraday with econometric models is beneficial when historical prices, exogenous variables, 

lag structure, and forecasting window length are considered [72].  

Feature selection and general data preparation improves model accuracy and model precision 

achieving successful day-ahead trading [1]. It can be worthwhile to also include energy-related 

factors as model inputs and examine how each factor influences day-ahead electricity price and 

which factors are most significant. Due to changing market behaviour it may be necessary to 

consider price spikes in forecasting models [73]. Huurman et al. [74] focussed on the impact of 

weather variables for predicting day-ahead Nordpool prices and found weather forecasts 

provide information that help to anticipate possible price spikes. Nogales et al. [12] applied time-

series methods to forecast day-ahead electricity producing accurate results, however during 

peak hours the prediction accuracy was reduced when spikes occurred.  

A study comparing various models over different time periods with the inclusion/exclusion of 

external factors highlighted that Mean Absolute Percentage Error (MAPE) in forecasting models, 

with the inclusion of wind, improved significantly in day-ahead forecasting (MAPE=7.53%) 

compared to week-ahead forecasting (MAPE=14.93%) [75]. Another study examined electricity 

price behaviour with multiple external factors that describe market behaviour through a Loss of 

Load Probability (LOLP) methodology. In this study Random Forest, Gradient Boosting, and 

XGBoost regression algorithms were applied to test performance with the highest performance 

algorithm, XGBoost, selected for real-time forecasting implementation [48]. Ziel [76] applied 

regression models using hourly European data with Lasso estimation techniques to allow for 

variation over the day and stop overfitting when predicting day-ahead electricity prices. 

Both statistical and computational models have been identified for modelling the energy 

market. It is clear from the vast amount of literature on day-ahead electricity price forecasting 

that it is essential for energy traders to develop prediction machine learning algorithms which 

are robust to enable to be competitive in the balancing market and not incur excessive pricing 

costs. With accurate forecasting knowledge available before placing bids in the day-ahead 

market, ISEM participants would be market-aware and able to plan in advance for purchasing 

and trading using an innovative price prediction system with their end goal of reducing costs.        
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2.7 Relevance with Trading in the Financial Stock Market  

Financial trading is split into two types: fundamental analysis which explores economic features 

and technical analysis which examines historical behaviour. In price forecasting, technical 

analysis is more suitable for short-term forecasting and fundamental is generally more 

appropriate for long-term forecasting [77]. However an integrated system merging both has also 

been considered with promising results [77], [78]. Early financial trading relied on qualitative 

data such as financial reports, but in more recent years computational intelligence has been 

applied which relies mostly on quantitative data such as technical indicators [1].   

The use of computational intelligence is receiving increased attention among financial traders, 

especially in stock market trading due to its ability to analyse vast amounts of trading data [1], 

[2]. Computational techniques have been extensively used to model historical financial data 

offline but it is uncertain how well the methods would function online [51]. Machine learning 

models have been used with technical indicators [3] and trading data to determine relationships 

and achieve profitable returns [5]. A trading forecasting approach using technical indicators as 

inputs to the k-nearest neighbour algorithm [51] was shown to predict well for short-term 

forecasting. More recently, deep learning techniques have been applied to analyse stock market 

patterns and predict intraday stock prices [78].       

Forecasting techniques applied to financial data, in particular stock price, could be considered 

for energy trading price algorithms as both markets have similar characteristics: historical 

energy trends aid in future price prediction (technical) and energy-related variables influence 

electricity price (fundamental). Fundamental input variables, which can be internal or external 

[1], have been applied to energy forecasting models and findings showed robust correlation for 

same hour data [18]. Often machine learning algorithms and technical indicators are combined 

in financial stock market trading to extract key features; the indicators are built from raw stock 

prices capturing trends over time by following price movements to predict future prices [79]. To 

date, only one previous research work [42] has created and examined technical indicators using 

Belgian market data, therefore research in this area is limited. Developing novel energy technical 

indicators with ISEM market data would be beneficial and can be included as inputs for optimal 

day-ahead price prediction algorithms.   

 

2.8 Conclusion  

This chapter has reviewed a range of topics relating to price prediction and energy markets. 

Three energy markets were reviewed: SEM, ISEM and BETTA. The review considers the market 

in terms of overview, trading standards, market schedules, and operating changes. The 



18 
 
presented literature highlights numerous statistical and computational intelligence techniques 

in terms of price forecasting and has explained the key areas (day-ahead, time-series, non-linear 

regression, machine learning, technical indicators) to consider for developing the optimal price 

prediction model to use in energy trading. 

Algorithmic approaches for trading in financial markets were also reviewed to consider the 

similarities with energy market trading and hence determine appropriate algorithms to use in 

this research. In particular, computational intelligence techniques have become increasingly 

popular in the financial market for price forecasting. These techniques could be considered in 

energy market trading as historical trends aid future prices (technical) and energy-related 

factors influence prices (fundamental). Machine learning and technical indicators are often 

combined to forecast stock market prices. Therefore creating novel technical indicators with 

ISEM data would be worthwhile exploring in a price forecasting model. 

Similar to any real-world data, electricity demand data display dynamic behaviours and short-

term forecasting can help to smooth these price fluctuations. Therefore a day-ahead price 

prediction model should be considered to deal with market trends. The literature has also 

identified that including energy-related factors as model inputs would be beneficial to improve 

forecasting prediction. 

The next chapter will explore the theory and methodology behind the key statistical and 

machine learning techniques that will be used in this thesis. Statistical time-series models, such 

as ARIMA and SARIMAX, will be explained in terms of trend, seasonality, and multiple model 

inputs. Non-linear regression models, such as NARMAX, help to identify key energy-related 

factors and therefore these types of models will be explained. Machine learning techniques, 

such as Gradient Boosting that find patterns in data will also be introduced.  
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Chapter 3  

Methods 
 

3.1 Introduction  

Energy data display non-linear and non-stationary characteristics [67] thus an understanding of 

statistical and computational approaches in terms of forecasting is crucial for analysts to create 

viable price prediction models. Time-series analysis often uses popular traditional statistical 

methods to create predictive models for forecasting. As these mainly rely on statistical 

properties, they perform best when the prediction window is small since there is often a 

stronger relationship between historical and predicted values over a short time period [7]. Time-

series analysis is applied (and often preferred) in commercial industries such as business, finance 

and health to build simple prediction models that capture behaviour and help in forecasting. 

Even if forecasting models only reduce prediction error by a small percentage, the long-term 

reduction in the financial costs is still worthwhile [14]. More recently, time-series techniques 

have made use of machine learning approaches for time-series forecasting [60]. This research 

will consider a hybrid method for day-ahead prediction that applies a statistical model 

framework with a Nonlinear AutoRegressive Moving Average model with eXogenous inputs 

(NARMAX) to improve forecasting accuracy. 

This chapter explores statistical regression and machine learning techniques in terms of price 

forecasting for time-series, highlighting the strengths and weaknesses to be considered when 

developing an energy price forecasting model. Section 3.2 examines Single Input Single Output 

(SISO) time-series price forecasting models in detail. Section 3.3 looks at Multiple Input Single 

Output (MISO) models that can be used to observe exogenous factors and investigate how 

transparent non-linear models can help determine key model input factors. Section 3.4 outlines 

the more recent machine learning approaches that can be used for price forecasting. This 

overview provides an understanding of statistical and computational techniques necessary for 

the research undertaken and presented in the remaining chapters of this thesis. 

 

3.2 SISO Models  

Time-series methods are well-established models that apply a simple framework for model 

identification and evaluation. Time-series models predict future values by collecting historical 

market data as input and by observing past market trends to analyse patterns and make accurate 

predictions. The notation of a time-series, 𝑋, is: 
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𝑋 =  {𝑋𝑡 ∶  𝑡 𝜀 𝑇} (3.1) 

where values are recorded at an exact time 𝑡 in the complete series 𝑇 [56]. The stages in 

modelling a time-series involve (i) model identification, (ii) model estimation, and (iii) evaluation 

of the identified model [75]. As time-series models break down patterns over time to determine 

relationships, they are often considered top-down models [8]. Moving averages are common 

representation of time-series data that can identify trends by smoothing variations in the 

underlying data. Traditional time-series approaches such as statistical models combine 

autoregressive and moving average methods. SISO models consider single input (e.g., historical 

price values) to predict a single output (e.g., future price). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Procedure stages for Box-Jenkins model selection [80] 

 

The Box-Jenkins methodology, developed in the early 1970s, is a simple framework applied to 

statistical time-series models (such as ARMA or ARIMA) to understand the data, identify, fit, and 

forecast future values through an iterative stochastic process outlined by Hall [80] in Figure 3.1. 

The four stages are: (1) model identification to determine parameter order terms p, q and d, 

where p is the autoregressive term, q is the moving average term and d is the difference order;  

(2) parameter estimation using maximum likelihood to fit the selected model; (3) diagnostic 

checking to validate the model accuracy; and (4) forecasting.  If the model accuracy is poor or 

autocorrelation is detected in the residuals, stages (1) to (3) are repeated until model 

optimization is achieved [80]. The Box-Jenkins methodology is an iterative forecasting technique 

in which the model is only fitted once, with the new predicted values being fed step-wise into 

the model to forecast over a desired period. At stage (1) the error term is assumed to have a 

(1) Identification of model 

(2) Estimation of parameters 

(3) Diagnostic Checking of model 

performance 

(4) Is model accurate? 

Yes No 

Stop 
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random normal distribution with zero mean and constant variance [81]. The model identification 

stage is of key importance as this determines how the final model is classified and is wholly 

dependent on the initial data identified and the parameters selected. Identifying the correct 

model terms involves trial and error of the Box-Jenkins stages; two key diagnostic tools to help 

with identification are the correlogram and partial autocorrelation function [80].     

Traditional linear statistical time-series models assume strict stationarity such that the process 

(𝑥𝑡1
, … , 𝑥𝑡𝑘

) is time invariant and its statistical properties do not change over time. Stationarity 

is required for a model to function correctly and this may not always be the case with real-world 

data applications [82]. If a time-series is strictly stationary, has no trend or seasonal patterns 

and stays around its average, then it can be modelled using an AutoRegressive Moving Average 

(ARMA) model. These assumptions are not reasonable in real-world applications, instead the 

data tend to be weakly stationary (a less limiting condition to strictly stationary) where values 

fluctuate around a fixed mean level with constant variance, and therefore weakly stationary is 

assumed in practice [56].  

Determining if a time-series is stationary can be achieved through various techniques: visually 

observing a plot of the data, checking the mean and variance randomly throughout the data to 

see if each set of summary statistics remains similar, or from stationary unit root tests in which 

the null hypothesis is that the time-series is stationary. Well known stationary tests include 

Kwiatkowski Phillips Schmidt and Shin (KPSS) or Augmented Dickey-Fuller (ADF) [56]. Data which 

have a stochastic trend have to become stationary first (constant mean and variance) by 

removing the seasonal cycle or trend before creating a forecasting model [4].  

 

Figure 3.2: Weekly electricity price data from 02 Jan to 08 Jan 2017 
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Electricity prices over time start to resemble a stationary process (Figure 3.2) staying around the 

average with a fixed mean and constant variance, however there are still signs of seasonal cycles 

with peaks appearing throughout the weekly data.  In Figure 3.2, the data are sampled from 

2017 for illustrative purposes. In day-ahead forecasting it is important to examine daily time-

series and from observing Figure 3.3 it is clear that hourly electricity prices have a noticeable 

trend showing signs of non-stationarity.    

 

Figure 3.3: Hourly electricity price data from 02 Jan 2017 

 

Model terms are selected to fit the model appropriately and determine the most suitable model. 

An important step is to prepare the data to be stationary and a popular method to do this 

transformation is differencing. The number of differencing steps required to transform the 

series into a stationary series is denoted as (𝑑) [14]. Determining if differencing is required is the 

first aspect of the identification stage of Box-Jenkins modelling. If a time-series needs to be made 

stationary then an order of integration (𝐼) is also necessary, which changes the ARMA model to 

an AutoRegressive Integrated Moving Average (ARIMA) model by applying a differencing rate of 

change transformation between current and previous values to remove non-stationarity. First 

order differencing is calculated as the difference between the current value at time 𝑡 and the 

previous value at time 𝑡 − 1 such that:  

𝛻𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 (3.2) 

and if this is sufficient to make the data stationary then the order of differencing is set to 1, if 

not the order of differencing transformations is increased to 2, 3, etc., until stationarity is met 

[7]. To determine if differencing has achieved stationarity it is possible to plot the data and check 

if the differenced series displays a symmetrical pattern showing consistency over time and 
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therefore stationarity. Figure 3.4 displays first order differencing which appears to achieve 

stationarity as the majority of values fall around 0 with a consistent pattern. 

 

Figure 3.4: First order difference of hourly 2017 electricity price data 

 
Once 𝑑 has been determined correctly, both the 𝑝 and 𝑞 order terms need to be manually set 

for the AR and MA terms, respectively. These terms can be chosen visually from observing the 

Partial AutoCorrelation Function (PACF) and AutoCorrelation Function (ACF) plots which display 

data trends, illustrated in Figures 3.5 and 3.6 respectively. The terms are identified as the last 

lag to be significant (maximum lag) in the PACF plot for 𝑝 , which from Figure 3.5 is 7, and the 

ACF plot for 𝑞 , which from Figure 3.6 is 2.  

 

Figure 3.5: Partial autocorrelation (PACF) plot of hourly 2017 electricity price data 
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Figure 3.6: Autocorrelation (ACF) plot of hourly 2017 electricity price data 

 

Another technique for selecting the order terms is the Akaike Information Criterion (AIC) 

method, an error criterion, which chooses the optimal model as the one with the lowest AIC 

value and is calculated in [56] as:   

𝐴𝐼𝐶 = −2 𝑙𝑛 (𝐿)  + 2𝑘 (3.3) 

where 𝐿 is the maximum likelihood and 𝑘 is the number of model parameters. AIC measures the 

quality of a statistical model fit and is utilized for model selection. The AIC method can also be 

applied to non-linear data which makes this technique advantageous for electricity price 

forecasting [83]. The AIC values are compared for different order term combinations for models 

with the same input data. The order terms required for the model with the lowest AIC value are 

selected as they generate a less complex model. Only AIC values produced from similar types of 

models can be directly compared, i.e. all models should be differenced or all models should      

not be differenced before selecting the optimal terms. Identification determines the order terms 

(𝑝, 𝑑, 𝑞) and defining the correct model order is a fundamental step to fitting an ARMA or ARIMA 

model [82].  

 

3.2.1 ARMA 

The AutoRegressive (AR) model is the time-series regression of the variable onto itself and is 

described as “regression of self” such that its current values depend strongly on the pattern of 

previous values and lags from preceding periods. An AR model is considered one of the simplest 

and is represented as:  
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𝑌𝑡 =  𝜃0 + 𝜑1𝑌𝑡−1  + 𝜑2𝑌𝑡−2  + ⋯ +  𝜑𝑝𝑌𝑡−𝑝 + 𝜀𝑡    (3.4) 

where 𝑌𝑡 is the prediction output, 𝜃0 is the intercept, 𝑝 is the quantity of autoregressive terms 

(order term), 𝜑𝑝 is the set of autoregressive parameters, 𝑌𝑡−𝑝 is the value at time 𝑡 − 𝑝, and 𝜀𝑡 

is the error term [84]. PACF plots help to decide what lag period to set for 𝑝, through correctly 

identifying the AR order term by assigning it as the last significant lag identified from the PACF 

plot. For instance in Figure 3.5, 𝑝=2 represents using two previous periods from the time-series. 

If the data follow a stationary process, the PACF plot will quickly decline to zero.   

The Moving Average (MA) model is the time-series historical error and again current values 

depend on previous lags and noise. The MA model is another basic model and is represented as:  

𝑌𝑡 =  𝜇 −  𝜃1𝜀𝑡−1 −  𝜃2𝜀𝑡−2 − ⋯ −  𝜃𝑞𝜀𝑡−𝑞  + 𝜀𝑡   (3.5) 

where 𝑌𝑡 is the prediction output, 𝜇 is the mean of the series, 𝑞 is the quantity of moving average 

terms (order term),  𝜃𝑞 is the set of moving average parameters, and 𝜀𝑡 is the error term [84]. 

To correctly identify the MA order term, ACF plots are used to determine the appropriate error 

lag for 𝑞 by assigning it as the last significant lag from the plot.   

A combination of these two separate time-series models becomes an ARMA model [84]: 

𝑌𝑡 = 𝜃0 + 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 +  𝜇 −  𝜃1𝜀𝑡−1 −  𝜃2𝜀𝑡−2 − ⋯ −  𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡   (3.6) 

This model can be further simplified [54] by merging the AR terms and the MA terms separately: 

𝜑𝑝(𝐵)𝑌𝑡 =  𝜃𝑞(𝐵)𝜀𝑡   (3.7) 

where  

𝜑𝑝(𝐵) = 1 −  ∑ 𝜑𝑖𝐵𝑖𝑝
𝑖=1   (3.8) 

 𝜃𝑞(𝐵) = 1 −  ∑  𝜃𝑖𝐵𝑖𝑞
𝑖=1  (3.9) 

in which the backward shift operator (𝐵) shifts 𝑌𝑡 and 𝜀𝑡 over time: (𝐵𝑝)𝑌𝑡 =  𝑌𝑡−𝑝 and 

(𝐵𝑞)𝜀𝑡 =  𝜀𝑡−𝑞 [54]. As the model combines autoregressive and moving average techniques 

there are less parameters to identify. The ARMA (𝑝, 𝑞) model can be re-written in the order 

terms of 𝑝 and 𝑞:    

𝑝𝑌𝑡 = 𝑞𝜀𝑡 (3.10) 

 

3.2.2 ARIMA 

An ARIMA model, developed by Box-Jenkins in early 1970s, is another combination of AR and 

MA models that includes differencing and is presented mathematically in [7] as: 

𝜑𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃𝑞(𝐵)𝜀𝑡 (3.11) 
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where (1 − 𝐵)𝑑 is the differencing term and all other models are the same as those defined for 

the ARMA model. Hence, the ARIMA (𝑝, 𝑑, 𝑞)  model can be re-written in the order terms of 𝑝, 

𝑑, and 𝑞:    

𝑝𝑑𝑌𝑡 = 𝑞𝜀𝑡 (3.12) 

ARIMA models are widely-used in time-series analysis and integrate the data through 

differencing until the series becomes stationary [80].  

ARIMA models display relationships between current and historical prices interpreting 

correlation among data [17]. ARIMA models are stochastic processes that can spot trends 

particularly when observing 24-hour periods, but generally for an ARIMA model to reach 

maximum forecasting potential a large dataset of historical records is required [50]. A large 

volume of historical data allows for better parameter estimations which improves the prediction 

errors and resulting forecasting accuracy [52].   Energy traders have considered the use of ARIMA 

models for electricity price forecasting and have seen promising results, especially when 

predicting daily or weekly electricity prices in energy commodities markets [15]. Gao et al. [7] 

compared an ARIMA model and an Artificial Neural Network (ANN) model in terms of short-

term electricity price forecasting and found the ARIMA model to have better forecasting 

accuracy. In a steady market, ARIMA models can accurately predict electricity prices; 

nonetheless these types of models struggle with compound price forecasting [53].  

 

 

Figure 3.7: A diagnostic plot with simulated electricity price data 

 

Errors arise from autocorrelation and it is helpful that ARIMA models can manage these errors 

by examining the residuals in the model and, if autocorrelation exists, choose appropriate test 
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statistics to handle the errors [17]. Diagnostic checking on fitted residuals requires a robust 

statistical approach and is an important step to examine goodness-of-fit and to confirm that a 

model is appropriate as outliers can affect order term identification and the estimation of 

parameters [85]. Diagnostic plots observe if the fitted residuals are uncorrelated and help 

determine if the residuals follow a stationary pattern. Stationary residuals resemble a normal 

distribution and do not display white noise. A diagnostic plot, illustrated in Figure 3.7, is split 

into four sections: Figure 3.7(A) displays a residual error plot which should fluctuate around 0 

with standardised variance if the residuals are uncorrelated, Figure 3.7(B) is a Kernel Density 

Estimate (KDE) plot which should be normally distributed with mean zero, Figure 3.7(C) shows a 

quantile plot which should align close to the red line, and Figure 3.7(D) is an ACF plot which 

should display the residual errors close to zero if they are uncorrelated. 

 

3.2.3 SARIMA 

Seasonality is defined as a recurrent periodic pattern influenced by external factors frequently 

accompanied by a stochastic trend [4]. Trend and seasonality cause spikes, often making the 

market unpredictable. With energy data having the same hour/day patterns (time patterns) or 

spring/summer patterns (seasonal patterns), seasonality and trend need to be accounted for. 

An extension of ARIMA is a Seasonal AutoRegressive Integrated Moving Average (SARIMA) 

model which considers non-seasonal as well as seasonal behaviours/trends and is outlined in 

[54] as: 

𝜑𝑝(𝐵)𝛷𝑃(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑌𝑡 =  𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆)𝜀𝑡 (3.13) 

where 𝜑𝑝(𝐵) is the standard autoregressive term, (1 − 𝐵)𝑑 is the standard differencing term, 

and 𝜃𝑞(𝐵) is the standard moving average term. 𝛷𝑃(𝐵𝑆) is the seasonal autoregressive term, 

(1 − 𝐵𝑆)𝐷 is the seasonal differencing term, 𝛩𝑄(𝐵𝑆) is the seasonal moving average term, 𝑌𝑡 is 

the prediction output at time 𝑡, 𝜀𝑡 is the error term and (𝐵) is the backward lag shift. Therefore, 

the SARIMA (𝑝, 𝑑, 𝑞)  (𝑃, 𝐷, 𝑄) model can be re-written in the non-seasonal order terms of 𝑝, 𝑑, 

𝑞, and the seasonal order terms of 𝑃, 𝐷, 𝑄: 

𝑝𝑃𝑑𝐷𝑌𝑡 = 𝑞𝑄𝜀𝑡 (3.14) 

A SARIMA model is used if the data display periodic behaviour, for instance monthly patterns. A 

SARIMA model follows the Box-Jenkins method illustrated in Figure 3.1 as this process can 

function with seasonal factors [86].  

SARIMA models assume a linear relationship exists in the time-series between past and current 

values, therefore input data must first be made stationary to remove the stochastic trend that 
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arises from seasonality before fitting the model [4]. Removing seasonal variations from the 

model adjusts seasonality and then the model is scaled back before applying techniques for 

forecasting [4]. The seasonal difference order terms (𝑃, 𝐷, 𝑄) show relationships between 

current and historical values within consecutive seasons [4]. Typically, the number of significant 

lags for 𝑃 and 𝑄 depend on multiples of the length of the season period 𝑆. Integration orders 

(non-seasonal 𝑑 and seasonal 𝐷) are the number of times differencing is needed for both 

standard and seasonal ARIMA to have fixed mean and constant variance. 𝐷 is applying 

differencing with lags or seasons and is set to 0 if the seasonal time-series pattern is unstable. 

The number of periods between seasons (𝑆) is also required which involves repetition of the 

seasonal pattern: for instance a periodic 24-hour lag is a seasonal daily recurrence [56]. Updating 

the parameters periodically allows the model to keep in line with price data trends [56].  

 

3.3 MISO Models  

Electricity prices are controlled by multiple energy input factors and vary depending on seasonal 

patterns. Commercial and technical features such as fuel markets, power systems, and weather 

lead to price fluctuations and therefore need to be considered as exogenous variables in 

prediction modelling. MISO models consider multiple inputs (historical exogenous variables) to 

predict a single output (actual price). Adding exogenous variables can help to explain energy 

price movements as external factors can contribute strongly to generation costs. Determination 

of the most significant factors is vital to include as model inputs in order to improve day-ahead 

prediction accuracy. As well as the current exogenous variables, lag values can also be included 

as model inputs [56].  

  

3.3.1 ARMAX  

ARMA models can be further extended to include eXogenous variables and become multivariate 

models, known as ARMAX models, which contain multiple explanatory variables as inputs as well 

as the historical time-series data. An ARMAX model is defined as: 

𝜑𝑝(𝐵)𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡′ +  𝜃𝑞(𝐵)𝜀𝑡   (3.15) 

where 𝜑𝑝(𝐵) is the autoregressive term, 𝑌𝑡 is the prediction output, 𝛽𝑘𝑥𝑘,𝑡′ is the exogenous 

variables of the kth input at time 𝑡, 𝜃𝑞(𝐵) is the moving average term, and 𝜀𝑡 is the error term 

[56]. The ARMAX (𝑝, 𝑞) model can be written with respect to the order terms 𝑝 and 𝑞:    

𝑝𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡
′ +  𝑞𝜀𝑡 (3.16) 
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Including the key contributing exogenous variables as model inputs and selecting the most 

significant order terms is essential for an accurate forecasting performance [87]. This research 

will consider energy-related variables from British Electricity Trading and Transmission 

Arrangements (BETTA) and Integrated Single Electricity Market (ISEM) energy data. 

 

3.3.2 ARIMAX  

If integration is required, the ARMAX model changes to ARIMAX denoted in [56] as: 

𝜑𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡′ +  𝜃𝑞(𝐵)𝜀𝑡 (3.17) 

where (1 − 𝐵)𝑑 is the differencing term to make the data stationary, which is not required for 

an ARMAX model [56]. Thus, the ARIMAX (𝑝, 𝑑, 𝑞) model can be written with respect to the 

order terms p, d, and q:  

𝑝𝑑𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡
′ +  𝑞𝜀𝑡 (3.18) 

   

3.3.3 SARIMAX    

A further extension to SARIMA to improve model performance with the inclusion of explanatory 

variables is a Seasonal AutoRegressive Integrated Moving Average model with eXogenous 

inputs (SARIMAX) computed in [54] as:  

                          𝜑𝑝(𝐵)𝛷𝑃(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡′ +  𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆)𝜀𝑡  (3.19) 

where 𝜑𝑝(𝐵) is the non-seasonal AR term, (1 − 𝐵)𝑑 is the non-seasonal differencing term, and 

𝜃𝑞(𝐵) is the non-seasonal MA term. 𝛷𝑃(𝐵𝑆) is the seasonal AR term, (1 − 𝐵𝑆)𝐷 is the seasonal 

differencing term, 𝛩𝑄(𝐵𝑆) is the seasonal MA term, 𝑌𝑡 is the prediction output, 𝛽𝑘𝑥𝑘,𝑡′ is the 

exogenous variable of the kth input at time 𝑡 and 𝜀𝑡 is the error term. Therefore, similar to the 

other models, the SARIMAX (𝑝, 𝑑, 𝑞)  (𝑃, 𝐷, 𝑄) model can be re-written in the order terms of p, 

d, q, P, D, and Q: 

𝑝𝑃𝑑𝐷𝑌𝑡 = 𝛽𝑘𝑥𝑘,𝑡
′ +  𝑞𝑄𝜀𝑡 (3.20) 

With the inclusion of exogenous variables, the performance accuracy of SARIMAX tends to 

produce better results than a SARIMA model. The transparency of a SARIMAX model easily 

identifies which exogenous variables are significant through outputting model terms and 

summary statistics for each variable [56].  
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3.3.4 NARMAX  

Non-linear regression models may be more suitable for electricity price forecasting as the data 

are often non-linear. Non-linear regression models can calculate the dependent price variable 

by using a non-linear combination of one or more additional independent variables [8]. A 

NARMAX model detects the structure of a non-linear difference equation displaying a 

relationship between current output and previous inputs/outputs [88]. Parameters are 

estimated in a transparent NARMAX model through simple regression algorithms which model 

the relationship between input and output variables [61] and their values can be determined 

with simple linear identification methods [89]. A NARMAX model identifies the most significant 

input variables and therefore it creates a compact price forecasting model. NARMAX models 

also consider seasonality and can detect strong periodic series [65]. To establish an optimal 

forecasting tool for predicting electricity price it is important to include all significant energy-

related factors. Transparent learning models are fast to compute and can be graphically 

analysed from the input/output relationships or interpreted from the model term information 

[90]. In particular polynomial models have a simple transparent model structure, making them 

the most attractive type of NARMAX [88].  

A polynomial NARMAX model (Leontaritis and Billings, 1985 [91]) is represented as:  

𝑦(𝑡) = 𝐹𝑙[𝑦(𝑡 –  1), … , 𝑦(𝑡 – 𝑁𝑦), 𝑢(𝑡), … , 𝑢(𝑡 − 𝑁𝑢), ℇ(𝑡 − 1), …  ℇ(𝑡 − 𝑁ℇ)]  +  ℇ(𝑡) (3.21) 

where 𝑦(𝑡) is the output time-series, 𝐹𝑙 is an unknown non-linear function generally taken as a 

polynomial, 𝑁𝑦   is the output regression lag order, 𝑢(𝑡) is the input time-series, 𝑁𝑢  is the input 

regression lag order, 𝑁ℇ   is the prediction error regression lag order, and ℇ(𝑡) is the prediction 

error [91]. NARMAX is a popular technique for estimating the unknown parameters by 

controlling inputs and outputs [62]. There are various polynomial model structures (linear-, 

quadratic-, and cubic-polynomial) to consider. The model first attempts to estimate  𝐹𝑙 which 

removes unnecessary terms to create a single polynomial [89]. With a polynomial model the 

difficult part of the set-up is deciding on the interaction terms and which polynomial degree to 

use, but this can be determined through different trial and error combinations of inputs, 

degrees, and interaction terms [89].  Once 𝐹𝑙 is identified, the unknown parameters can be 

estimated. 𝐹𝑙 is limited to multivariable polynomials which prevents step-wise regression 

occurring during model identification [92]. To ensure model reliability, the polynomial model is 

validated using unseen data and verified against a predetermined error threshold [93]. 

The NARMAX methodology estimates and identifies the appropriate model terms needed for an 

accurate model through five stages: (1) structure selection, (2) parameter estimation, (3) model 

validation, (4) prediction, and (5) analysis. NARMAX aims to determine the best model by using 
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the first 50% of the data for estimation and the remaining 50% of the data are used as testing 

to validate goodness-of-fit [90]. Structure selection and estimating parameters using 

experimental data are important as the learning process prunes insignificant coefficients [94]. 

For structure selection, the polynomial and regression orders are required to determine the 

initial model structure [90]. All possible combinations of historical inputs and outputs are 

analysed to provide unbiased estimates and to determine the most significant model terms [66]. 

This is determined through applying simple orthogonal estimation algorithms from Korenberg 

et al. [91] for structure detection to find model terms and prune parameter coefficients. The 

orthogonal algorithm initially estimates linear independent parameters without ℇ(𝑡) allowing 

the addition of extra terms to be included without re-estimating, then it estimates prediction 

errors, and finally estimates the ℇ(𝑡) in each iteration until all model coefficients have been 

estimated [91]. Since terms are orthogonal for any input, each coefficient is independent of the 

other terms and can be independently estimated [91]. This method keeps the model simple and 

avoids over-fitting or under-fitting by adding each new term separately and checking the 

significance of the new coefficient against the output’s variance after each step [88].    

Since the NARMAX model can include numerous inputs, this increases the difficulty in the model 

reaching substantial accuracy. The orthogonal estimation algorithm outputs the ERR which is 

the reduction percentage from the total Mean Squared Error (MSE) and signifies the 

contribution of each model term with respect to the output [83]. The ERR is outlined by Zito & 

Landau [62] as: 

𝐸𝑅𝑅𝑖 =  
𝑔𝑖

2 ∑ 𝑤𝑖
2(𝑡)𝑁

𝑘=1

∑ 𝑦𝑖
2(𝑡)𝑁

𝑘=1
 (3.22) 

where 𝑔𝑖 is the parameter (energy-related factors) and 𝑤𝑖 is the regressor (day-ahead electricity 

price) and 𝑦𝑖  is the output regressor. ERR helps develop a parsimonious model to select 

significant model terms by ranking regressors in a forward regression from high to low in terms 

of the MSE reduction [64].  

While the model structure is identified from the orthogonal algorithm, validation tests are 

required to confirm an adequate fit before acceptance [91]. The need to identify the structure 

of the model accurately is a limitation of the NARMAX model [89]. The last part of the 

identification process is model validation and verification using unseen data [95] to make 

predictions and check the accuracy. The final NARMAX model provides the model terms of the 

statistically significant input variables which have been determined and ranked in order of 

significance [63]. Throughout the methodology the outcome is dependent on the selected input 

data therefore it is important to choose the input correctly to achieve accurate model fitness 
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[94]. Due to the volatile nature of the energy market with many significant factors exhibiting 

non-linear relationships, NARMAX could be useful to determine the model structure.  

 

3.4 Machine Learning  

Machine learning algorithms are built around input knowledge, learning from training data to 

find meaningful patterns and predict outputs [9].  Machine learning models can handle noise 

and respond to changing trends; thus a machine learning forecasting model that can avoid 

overfitting, provide user transparency, and adapt to new inputs is desirable [96]. Popular 

machine learning techniques are described in detail below.  

 

3.4.1 Random Forest    

Random Forest is an ensemble model built with multiple decision trees. Bagging is one technique 

to grow the forest and this method consists of the following steps for a training set 𝑅 = {𝑦, 𝑥} 

to predict 𝑦 for an observation 𝑥 [97]:  

(1) Select 𝑛 random observations from 𝑅 to create smaller sample 𝑆 datasets. 

(2) For each 𝑆 dataset, grow a decision tree. 

(3) Each tree outputs a prediction for every observation; the one with the most votes is 

selected as the final prediction.  

The Random Forest algorithm combines the Classification and Regression Tree (CART) technique 

with the Bagging (bootstrap aggregation) method to stop overfitting and reduce variance by 

outputting a confidence interval that can be linked to prediction to improve accuracy [98]. The 

algorithm contains a tuning parameter which recursively decides the nature of split at each node 

for classifying the input data [99]. The best split at each node is chosen by the highest 

information gain [100] which is calculated as: 

𝐼𝐺 = 𝐼(𝑁) −  𝑃𝐿 ∗ 𝐼(𝑁𝐿)  −  𝑃𝑅 ∗ 𝐼(𝑁𝑅) (3.23) 

where 𝐼(𝑁) is the impurity measure (either Gini or Shannon Entropy) of node 𝑁, 𝑁𝐿  is the left 

child of the node, 𝑁𝑅 is the right child of the node, 𝑃𝐿 is the proportion that goes to 𝑁𝐿  after the 

split and 𝑃𝑅 is the proportion that goes to 𝑁𝑅 after the split. Splitting at nodes means no 

individual tree sees the full set of training data [100]. Once the Random Forest is completely 

built, with a prediction from each tree, the final value is calculated as the average of all the trees’ 

predictions [101].   
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A Random Forest model is very adaptable as it can adjust to the latest seasonal and market 

trends. As well as adaptability a Random Forest has many advantageous prediction features: 

simple to tune, robust, accurate estimates, and expandable for data growth [98]. Random Forest 

can be considered for feature selection as during the training an overall ranking of the 

importance of each feature is calculated [102]. Since correlation between trees is reduced, a 

Random Forest algorithm would be suitable for prediction whenever there is little knowledge 

on the relationship of the input variables [97]. Random Forest can be applied with any modelling 

approach to improve model accuracy but is most frequently used with decision trees or 

regression trees to increase efficiency [103].      

 

3.4.2 Gradient Boosting  

Boosting algorithms have become quite popular over the last few decades. Using sequential 

learning to train the model [102], a gradient boosting algorithm combines weak learner models 

and through loss function optimisation builds one strong learner prediction model [104]. A loss 

function is optimised from the combination of weak learners minimising the residual errors in 

the strong learner model [97]. The algorithm outlined in [105] for input data 𝑥, loss function 𝐺 

and iteration number 𝑀 is as follows:  

(1) Firstly initialise a model 𝑓0̂. 

For 𝒕 = 𝟏 to 𝑴 do: 

(2) Calculate the negative gradient, 𝑔𝑡(𝑥). 

(3) Fit a new basic learner, ℎ(𝑥, 𝜃𝑡).  

(4) Find the optimal gradient step-size, 𝑝𝑡. 

(5) Update function estimate: 𝑓𝑡̂ ←  𝑓𝑡−1̂ + 𝑝𝑡ℎ(𝑥, 𝜃𝑡) 

end 

Gradient boosting algorithms are highly flexible with the learning process continually fitting new 

models to generate an accurate final estimate, unlike the Random Forest which takes the 

average of all trees. However, gradient boosting techniques do have some computational 

complexities in terms of memory consumption, which are dependent on the number of 

iterations required for boosting [105].    

 

3.4.3 Extreme Gradient Boosting    

A popular advancement to gradient boosting is the Extreme Gradient Boosting (XGBoost) 

regression algorithm. XGBoost has additional features with weighted predictors which make it 
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easier to differentiate the model’s performance compared with the performance of a simple 

decision tree [104]. The algorithm outlined in [104] for training data 𝑥 is as follows:  

(1) Firstly initialise a model 𝐹0(𝑥). 

For 𝒕 = 𝟏 to 𝑴 do: 

(2) Calculate the pseudo-residuals. 

(3) Fit basic learner, ℎ𝑡(𝑥) to pseudo-residuals.  

(4) Calculate multiplier, 𝛾𝑡. 

(5) Update model: 𝐹𝑡(𝑥) ←  𝐹𝑡−1(𝑥) +  𝛾𝑡ℎ𝑡(𝑥) 

end 

The recursive steps of the algorithm include learning the regression predictor, computing the 

residual errors, and then ensemble learning to predict the residual through estimating the loss 

function’s gradient [104].   

XGBoost has been successful over the last few years due to its scalability; the speed of the 

system is much improved because of algorithmic optimizations and justified weights allowing 

the model to learn quicker and  function well with large datasets  [106].  

 

3.5 Conclusion  

This chapter has discussed in detail statistical regression and machine learning techniques and 

their potential suitability for accurately predicting day-ahead electricity prices. First the theory 

of statistical models was explained, discussing why stationarity and integration are important 

and how to define them. If the necessary stationarity and seasonal checks are complete, then 

ARIMA or SARIMA may be suitable transparent statistical models for electricity price forecasting. 

As electricity prices are often impacted by exogenous factors then the use of ARIMAX or 

SARIMAX can also be considered. Statistical forecasting models, in particular short-term models, 

are very popular. However, these models assume linearity and often energy related data are 

non-linear. Thus a non-linear regression model, like NARMAX, that uses a non-linear 

combination of inputs and outputs may be suitable for forecasting electricity prices. The 

transparency of NARMAX can help identify key factors to refine statistical models and hence 

improve accuracy of day-ahead price forecasting models. Similarly, machine learning techniques 

can be used to model complex data, learning from training data to find patterns and predict 

accurate output values. Table 3.1 provides a critical evaluation of each method stating the 

assumptions, the pros/cons and the situation when the method is best suited for use. The 

contribution chapters following this chapter, will utilise this range of statistical regression and 

machine learning techniques.  
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Table 3.1: Review table of all methods  

Method Assumptions Pros/Cons Best Suited When 

ARMA 

Weakly stationary Pro: Simple to tune 
Con: Need to determine p 

and q 

Single input with no 
trend or seasonality 

ARIMA 

Weakly stationary Pro: Performs well short-term 
Con: Requires differencing 

Single input with 
trend and no 
seasonality 

SARIMA 

Weakly stationary Pro: Performs well short-term 
Con: Requires differencing 

and seasonality 

Single input with 
both trend and 

seasonality 

ARMAX 

Weakly stationary Pro: Simple to tune 
Con: Need to determine p 

and q 

Multiple inputs with 
no trend or 
seasonality 

ARIMAX 

Weakly stationary Pro: Performs well short-term 
Con: Requires differencing 

Multiple inputs with 
trend and no 
seasonality 

SARIMAX 

Weakly stationary Pro: Performs well short-term 
Con: Requires differencing 

and seasonality 

Multiple inputs with 
both trend and 

seasonality 

NARMAX 

Non-linear Pro: Transparency 
Con: Trial and error 

combinations of inputs 

Removing 
redundant 
exogenous 
variables 

Random Forest 

Tuning parameter Pro: Avoids overfitting, easy 
tuning, robust to outliers 

Con: Slow to train 

Trying to find 
patterns and learn 

trends 

Gradient Boosting 

Loss function Pro: Highly flexible during 
sequential learning 

Con: Can overfit 

Trying to find 
patterns and learn 

trends 

Extreme Gradient Boosting 

Weighted 
predictors 

Pro: Fast to train, performs 
well with large datasets 

Con: Difficult to tune 

Trying to find 
patterns and learn 

trends 

 

The next chapter will investigate various SISO models for electricity price forecasting using only 

historical raw price values as input. Day-ahead price prediction models with actual electricity 

prices from both the BETTA and ISEM markets will be analysed to follow trends and forecast 

electricity price values. Three SISO time-series models (ARMA, ARIMA and SARIMA) will be 

examined through experiments focussing on the four key modelling steps: model identification, 

parameter estimation, diagnostic checking, and forecasting performance. 
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Chapter 4  

Single Input Single Output Models 
 

4.1 Introduction  

Single Input Single Output (SISO) models focus on one input/one output relationships to predict 

values. In this chapter, the first research question listed in Chapter 1 is addressed (“Are 

traditional statistical methods or more recent computational models appropriate techniques for 

day-ahead electricity price forecasting?”). This research contribution aims to understand and 

interpret time-series based statistical methods and apply them to real electricity price data to 

establish if such techniques are suitable for day-ahead electricity price forecasting. The research 

work is published in the following:  

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Forecasting Day-Ahead Electricity 

Prices With A SARIMAX Model”, in Proceedings of the 2019 IEEE Symposium Series on 

Computational Intelligence, SSCI 2019, pp. 1523–1529. 

This chapter explores different statistical SISO time-series models and analyses each separately 

in terms of data understanding and predicting day-ahead electricity prices. To evaluate the 

performance of each forecasting technique, historical electricity price data were used to obtain 

prediction models. Data retrieved from the British Electricity Trading and Transmission 

Arrangements (BETTA) market examines the period from May 2017 until April 2018. Data 

collected from the Irish Integrated Single Electricity Market (ISEM) explores the period from May 

2019 until April 2020.  

The research work first analyses an AutoRegressive Moving Average (ARMA) model by following 

the steps of the Box-Jenkins model [80], as outlined in Section 3.2. Historical values are 

influential in time-series models as past observations influence future values resulting in 

autocorrelation as the time-series is used twice in terms of original and lagged values [107]. The 

data will be checked through Augmented Dickey-Fuller (ADF) unit root testing to confirm if 

stationarity (constant mean and variance) is present. Partial AutoCorrelation Function (PACF) 

and AutoCorrelation Function (ACF) plots will be displayed and observed to measure the range 

for order terms p and q, however these terms will be verified and selected from the Akaike 

Information Criterion (AIC) statistical method. Next, differencing will be applied and plotted to 

observe how an AutoRegressive Integrated Moving Average (ARIMA) model handles electricity 

price forecasting. Various models built from statistical techniques are extended to enable the 

inclusion of seasonal variation and have been shown to improve prediction accuracy [13]. Since 

electricity prices display a seasonal trend, mostly due to daily and weekly patterns [81], a 
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Seasonal AutoRegressive Integrated Moving Average (SARIMA) model will be examined as well 

as diagnostic plots to check residuals and model fit. In this thesis, robustness is defined as the 

accuracy between actual and predicted electricity price and is measured by the Root Mean 

Squared Error (RMSE) which calculates the distance between actual and predicted values. For 

each of the statistical models, the RMSE was chosen as the performance metric as it checks how 

accurately the predicted electricity price compares with the actual market price; a low RMSE 

value indicates a robust model fit. Throughout the sections of this chapter, the four key 

modelling stages are outlined for each technique: identification, estimation, diagnostic testing, 

and forecasting. The software utilised for each of the modelling stages was Python through the 

NumPy, Pandas and Statsmodels libraries.    

 

4.2 ARMA Experiment  

ARMA models were described in Section 3.2.1. Hourly BETTA market electricity prices are 

available from the exchange traded day-ahead market (N2EX) on the Nordpool website [108]. 

To build the ARMA experiment and evaluate model performance, data were obtained resulting 

in a total of 8736 hourly electricity prices. The task is to predict the price in the same one hour 

period during the next day (day ahead price). Price data ranges from 02nd May 2017 to 30th April 

2018 and is used as the target day-ahead price with all previous hour prices, ranging from 01st 

May 2017 to 29th April 2018 used as the input data. The data records were split 50/50 for model 

estimation (02nd May Hour 0 to 30th October Hour 23) and model validation (31st October Hour 

0 to 30th April Hour 23). The traditional 50/50 split was applied for the statistical models to follow 

the standard approach whereas the computational models in Chapter 7 applied a split of 85/15 

as they require more data for training. 

The behaviour of electricity prices is generally quite volatile therefore the prices need to be 

plotted over time to observe the pattern. Figure 4.1 displays the BETTA market electricity prices 

for the overall time period. In Figure 4.1 there are some peaks and troughs with a slight trend, 

but generally overall it can be observed that the data are stationary. This is further confirmed 

using the ADF stationarity test which determines that the data follow a stationary pattern with 

constant mean and variance. The ADF test checks for stationarity by assuming non-stationarity 

for the null hypothesis and stationarity following an ARMA structure for the alternative 

hypothesis [56]. For the data presented, the ADF statistic is -5.77 and the probability is extremely 

low (0.000001), rejecting the null hypothesis and confirming stationarity. In this case, d = 0 since 

the data are already stationary and therefore suitable for an ARMA model.    
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Figure 4.1: BETTA market electricity prices from May 2017 until April 2018 

 

Model identification, discussed in Section 3.2, is required to find the parameter order terms to 

determine which type of time-series model fits the data. Examining a PACF plot identifies p as 

the number of past values up until the last significant lag and an ACF plot identifies q as the 

number of past deviations from the mean up until the last significant lag [109]. The order terms 

can either be set manually from observation or the plots can be used to determine the ranges 

required for the AIC method. To determine p and q, PACF and ACF values were plotted with the 

target electricity prices up to Lag 24. The confidence interval for the correlations is represented 

by the blue shaded area. Examining the autoregressive lags in Figure 4.2, it is difficult to identify 

exactly which is the last significant lag for p, but it appears to range from 0 to 10. Examining the 

moving average lags in Figure 4.3, the last significant lag for q is 7.   

 

 

 

 

 

 

 

 

Figure 4.2: Partial autocorrelation (PACF) plot to determine p for BETTA market 
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Figure 4.3: Autocorrelation (ACF) plot to determine q for BETTA market 

 

The order terms p and q are identified using the AIC technique which is applied to verify the 

chosen order terms from the selected ranges by measuring the quality of the model fit [56]. To 

verify the order terms chosen, the AIC technique follows the process described in [56] using a 

brute force search of all the combinations within the set range. The ranges for the order terms 

are set as p = (0,10) and q = (0,10) for the number of permutations to rank the AIC values which 

converge from lowest to highest. The lowest AIC value is selected (28673.03) and the best ARMA 

order terms estimating parameter values using maximum likelihood are p = 9, q = 7. The final 

ARMA(9, 7) model function for predicted 𝑌𝑡 is taken from the model coefficients and given as: 

𝑌𝑡 = 0.090𝑌𝑡−1 − 0.059𝑌𝑡−2 +  0.70𝑌𝑡−3 −  0.067𝑌𝑡−4 −  0.68𝑌𝑡−5 −  0.35𝑌𝑡−6 − 0.35𝑌𝑡−7 +

 0.65𝑌𝑡−8 −  0.097𝑌𝑡−9 +   0.71𝜀𝑡−1 +  0.50𝜀𝑡−2 −  0.37𝜀𝑡−3 −  0.32𝜀𝑡−4 +  0.52𝜀𝑡−5 +

 0.76𝜀𝑡−6 +  0.92𝜀𝑡−7 + 21.89                                                                                                           (4.1) 

consisting of weighted terms in a linear combination of 9 autoregressive lags for 𝑌 and 7 moving 

average lags for prediction error 𝜀 with a RMSE value of 10.91.  

To confirm if ARMA(9, 7) is an appropriate model fit and matches the ideal criteria presented in 

Figure 3.7, diagnostic checking is performed on the standardised residuals. Figure 4.4(A) plots 

the standardised residuals which fluctuate around 0, however there is a pattern of peaks and 

troughs from outliers; Figure 4.4(B) is a histogram with a density plot that is normally distributed 

with a narrow bell-shaped pattern symmetrical around 0; Figure 4.4(C) is a normal quantile-

quantile plot with the quantiles mainly on, or close to, the red line suggesting a normal 

distribution but the sharp curves at the ends highlight extreme data values that the model is 

unable to fit; Figure 4.4(D) is a correlogram plot with slight autocorrelation present as a few lag 
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errors fall outside the blue boundary. Therefore the ARMA(9, 7) model is confirmed as an 

appropriate fit as the standardised residuals display a weakly stationary pattern. 

 

Figure 4.4: Residual diagnostic checks for BETTA market ARMA(9,7) 

 

The ARMA(9, 7) model validation results for hourly BETTA electricity prices are presented in 

Figure 4.5 to illustrate the model fit and it can be seen that the predicted price values closely 

match the actual price values around the centre but fail to reach the peaks.  

 

Figure 4.5: BETTA market ARMA(9,7) model 

 

The same ARMA approach was used with the ISEM market data with hourly day-ahead electricity 

price available from the Single Electricity Market Operator (SEMOpx) website [110]. For this 

experiment, data were obtained resulting in a total of 8760 hourly electricity prices. The task is 
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to predict the price in the same one hour period for the next day. The price being predicted, 

ranges from 02nd May 2019 to 30th April 2020 and is used as the target day-ahead price with all 

previous hour prices, ranging from 01st May 2019 to 29th April 2020 used as the input data. The 

data records were split 50/50 for model estimation (02nd May Hour 0 to 31st October Hour 11) 

and model validation (31st October Hour 12 to 30th April Hour 23). Figure 4.6 displays the 

electricity ISEM market prices from the time period May 2019 until April 2020. Over time the 

data appears to be consistent, nonetheless there is some trend with periods of high and low 

peaks. Applying the ADF stationarity test, the ADF statistic is -10.16 and the null hypothesis is 

rejected with probability 0.000000. Since the data displays stationarity, d is set to 0.    

 

Figure 4.6: ISEM market electricity prices from May 2019 until April 2020 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Partial autocorrelation (PACF) plot to determine p for ISEM market 
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Figure 4.8: Autocorrelation (ACF) plot to determine q for ISEM market 

 

The parameter order terms are found through model identification. First, the ranges for the 

order terms are identified by manually observing the PACF and ACF plots. Manually observing 

the PACF plot (Figure 4.7), which displays the past value lags up to 24, the range of the significant 

lag value for 𝑝 goes from 0 to 10. Manually observing the ACF plot (Figure 4.8), which displays 

the past deviation from the mean lags up to 24, the significant lag value for 𝑞 is likely to be either 

8 or 9 before the lags drop therefore the range goes from 0 to 10. 

The order terms p and q are calculated using the AIC technique following the process described 

in [56]. The ranges for the order terms are set as p = (0,10) and q = (0, 10) and the best ARMA 

parameter order terms are p = 9, q = 8 with an AIC value of 27681.54. The model function for 

ARMA(9, 8) for predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.19𝑌𝑡−1 + 0.075𝑌𝑡−2 +  0.46𝑌𝑡−3 +  0.10𝑌𝑡−4 −  0.041𝑌𝑡−5 +  0.43𝑌𝑡−6 + 0.081𝑌𝑡−7 +

 0.21𝑌𝑡−8 −  0.57𝑌𝑡−9 +   0.83𝜀𝑡−1 +  0.68𝜀𝑡−2 +  0.089𝜀𝑡−3 −  0.076𝜀𝑡−4 −  0.13𝜀𝑡−5 −

 0.59𝜀𝑡−6 −  0.64𝜀𝑡−7 −  0.79𝜀𝑡−8 + 18.66                                                                            (4.2) 

with 9 autoregressive lags for 𝑌𝑡 , 8 moving average lags for prediction error 𝜀 and a RMSE value 

of 14.99.  

Figure 4.9 displays the residual diagnostic plots to check how well ARMA(9, 8) has performed. In 

Figure 4.9(A) the standardised residuals fluctuate around 0 with many peaks and troughs 

displaying a trend, in Figure 4.9(B) the density is normally distributed with a narrow bell-shaped 

pattern (orange line), in Figure 4.9(C) the majority of the quantiles are close to the red line but 

are curved at both ends due to outliers, and in Figure 4.9(D) the residual errors are close to zero 

with no autocorrelation present. Therefore the ARMA(9, 8) model is confirmed as a reasonable 

approximation fit to forecast electricity prices as the fitted residuals are generally uncorrelated 

and mostly follow a normal pattern. 
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Figure 4.9: Residual diagnostic checks for ISEM market ARMA(9,8) 

 

Figure 4.10 displays the ARMA(9, 8) model validation results for hourly ISEM electricity prices 

and illustrates that the predicted prices generally match the actual prices around the centre but 

fail to reach the high or low actual price values. Table 4.1 presents the RMSE values of the best 

ARMA model for both the BETTA and ISEM markets. Comparing the two markets, BETTA 

electricity prices provide a lower RMSE and better model accuracy than when using the ISEM 

electricity prices.    

 

 

Figure 4.10: ISEM market ARMA(9,8) model 
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Table 4.1: RMSE values (ARMA models) 

Market Model RMSE 

BETTA ARMA(9, 7) 10.91 

ISEM ARMA(9, 8) 14.99 

 

 4.3 ARIMA Experiment  

As seen in the ARMA experiments, electricity prices have a long term trend as prices tend to 

fluctuate up and down. Over time electricity prices follow a similar pattern, however they also 

display a daily trend. This section investigates the use of ARIMA models, discussed in Section 

3.2.2, to determine if applying differencing to remove trends between the current and previous 

prices will improve model performance and the accuracy of the model fit. Generally first-order 

differencing (differencing once) is sufficient to remove trends [14]. Figure 4.11 shows that after 

first-difference the data displays consistency over time with a smoother, straight horizontal 

pattern compared with Figure 4.1 which had more peaks and troughs. To include first-order 

differencing in the model fit, d is set to 1.   

 

Figure 4.11: BETTA market first-difference price from May 2017 until April 2018 

 

In this experiment, model identification is applied to the first-difference lags up to Lag 24 when 

examining the PACF and ACF plots. Observing Figure 4.12, the last significant autoregressive lag 

for p ranges between 0 and 10 and observing Figure 4.13 the last significant moving average lag 

for q is approximately 6. 
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Figure 4.12: First difference partial autocorrelation (PACF) plot to determine p for BETTA market 

 

The order terms p and q are determined using the AIC technique following the process outlined 

in [56]. The parameter ranges are set as p = (0,10) and q = (0,10). The best ARIMA parameter 

order terms are p = 9, d = 1, q = 7 and AIC value is 29677.70. The ARIMA(9, 1, 7) model function 

for predicted 𝑌𝑡 with a RMSE value of 9.94 is given as:  

𝑌𝑡 = −0.95𝛻𝑌𝑡−1 − 0.89𝛻𝑌𝑡−2 −  0.58𝛻𝑌𝑡−3 −  0.20𝛻𝑌𝑡−4 +  0.13𝛻𝑌𝑡−5 +  0.42𝛻𝑌𝑡−6 −

0.18𝛻𝑌𝑡−7 −  0.033𝛻𝑌𝑡−8 +  0.011𝛻𝑌𝑡−9 +   0.76𝛻𝜀𝑡−1 +  0.45𝛻𝜀𝑡−2 −  0.026𝛻𝜀𝑡−3 −

 0.53𝛻𝜀𝑡−4 −  0.75𝛻𝜀𝑡−5 −  0.88𝛻𝜀𝑡−6 −  0.0096𝛻𝜀𝑡−7 + 43.45                                 (4.3)                              

Diagnostic checking on the fitted residuals is performed to determine if ARIMA(9, 1, 7) is a 

suitable model fit. Figure 4.14(A) shows the standardised residuals fluctuate around 0 with a 

trend pattern. Figure 4.14(B) presents a histogram with a density plot that resembles a narrow 

bell-shaped pattern which indicates that the data are normally distributed and symmetrical 

 

 

 

 

 

 

 

 

 

Figure 4.13: First difference autocorrelation (ACF) plot to determine q for BETTA market 
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around 0. Figure 4.14(C) displays a quantile-quantile plot where the majority of the quantiles 

are on or near to the red line, however the shape curves on both ends highlighting extreme 

outliers among the data. Figure 4.14(D) presents a correlogram plot showing that slight 

autocorrelation is present in Lag 10 but the majority of the lag errors are within the blue 

boundary. 

 

Figure 4.14: Residual diagnostic checks for BETTA market ARIMA(9,1,7) 

 
The ARIMA(9, 1, 7) model validation results for hourly BETTA electricity prices are displayed in 

Figure 4.15. The majority of the predicted prices follow the same trend as the actual prices 

displaying an accurate representation suggesting that day-ahead electricity prices can be 

predicted using an ARIMA model. 

 

Figure 4.15: BETTA market ARIMA(9,1,7) model 
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Figure 4.16: ISEM market first-difference price from May 2019 until April 2020 

 

The same ARIMA approach was applied to the ISEM market data and d is set to 1. Figure 4.16 

shows that the first-order differencing prices follow a straight horizontal pattern with 

fluctuations compared with the sporadic curve-like pattern of Figure 4.6. The parameter order 

terms for the first-difference lags up to Lag 24 are found through model identification. Manually 

observing the PACF plot in Figure 4.17, the last significant autoregressive lag for p ranges 

between 0 and 10. Manually observing the ACF plot in Figure 4.18, the last significant moving 

average lag for q is approximately 7. 

 

 

 

 

 

 

 

 

 

Figure 4.17: First difference partial autocorrelation (PACF) plot to determine p for ISEM market 
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Figure 4.18: First difference autocorrelation (ACF) plot to determine q for ISEM market 

 
The AIC technique [56] identifies the parameter order terms and the parameter ranges are p = 

(0,10) and q = (0,10). The best order terms with the lowest AIC value (28090.44) are p = 8, d = 1, 

q = 8. The ARIMA(8, 1, 8) model function for the predicted 𝑌𝑡 is taken from the weighted terms 

and, with a RMSE value of 14.86, is given as:  

𝑌𝑡 = −0.61𝛻𝑌𝑡−1 − 0.51𝛻𝑌𝑡−2 −  0.29𝛻𝑌𝑡−3 +  0.056𝛻𝑌𝑡−4 −  0.18𝛻𝑌𝑡−5 +  0.33𝛻𝑌𝑡−6 +

0.51𝛻𝑌𝑡−7 +  0.19𝛻𝑌𝑡−8 +   0.66𝛻𝜀𝑡−1 +  0.46𝛻𝜀𝑡−2 +  0.13𝛻𝜀𝑡−3 −  0.24𝛻𝜀𝑡−4 −

 0.13𝛻𝜀𝑡−5 −  0.63𝛻𝜀𝑡−6 −  0.80𝛻𝜀𝑡−7 −  0.43𝛻𝜀𝑡−8 + 32.32                                              (4.4)             

 

 

Figure 4.19: Residual diagnostic checks for ISEM market ARIMA(8,1,8) 
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Figure 4.19 displays the residual diagnostic plots to confirm if ARIMA(8, 1, 8) is a suitable model 

fit. In Figure 4.19(A) the residuals fluctuate around 0 displaying a trend, in Figure 4.19(B) the 

density is normally distributed with a narrow bell-shaped pattern, in Figure 4.19(C) the majority 

of the quantiles fall on or around the red line but are curved at both ends due to outliers, and in 

Figure 4.19(D) the residual errors are close to zero with no autocorrelation present. Therefore 

the ARIMA(8, 1, 8) model is a reasonable approximation fit as the residuals are generally 

uncorrelated and mostly follow a normal distribution. 

 

Table 4.2 presents the RMSE values corresponding to the best ARMA and ARIMA models for 

both the BETTA and ISEM markets. The ARIMA models for both markets had slightly lower RMSE 

values and better model accuracies compared with the ARMA models. Since the peaks for 

electricity prices occur at regular intervals this could be indicative of seasonality and therefore 

it would be worthwhile to account for this in the statistical model.    

Table 4.2: RMSE values (ARMA & ARIMA models) 

Market Model RMSE 

BETTA 

ARMA(9, 7) 10.91 

ARIMA(9, 1, 7) 9.94 

ISEM 

ARMA(9, 8) 14.99 

ARIMA(8, 1, 8) 14.86 

 

 
Figure 4.20: ISEM market ARIMA(8,1,8) model 
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4.4 SARIMA Experiment  

Seasonal variations in model performance are considered with standard time-series models to 

determine if model accuracy can be improved. Following on from Section 3.2.3, a SARIMA model 

was utilised to investigate the impact of trend and seasonality. Figure 4.21 shows a large amount 

of seasonality during May 2017 and this short-term cycle is repeated over and over throughout 

the entire time period. In this experiment, the first stage of the modelling process (identification) 

includes the order terms: p, d, q, P, D, Q, and S, to determine an appropriate SARIMA model. To 

manage the non-stationarity of the electricity prices, differencing was applied to the data 

between current and previous prices to make the series trend stationary; d is set to 1. Due to 

heterogeneity in the data it was decided not to include seasonal differencing in the SARIMA 

model; D is set to 0. For data to be considered to have seasonality, the seasonal pattern must 

repeat itself over a time span S [56]. As electricity prices are recorded hourly, the seasonality 

length for each day is a daily 24-hour recurring cycle; S is set to 24.  

 

Model identification determines the optimal p, q, P, and Q order terms required for estimation. 

Examining the PACF plot (Figure 4.22), the last significant autoregressive lag for p ranges 

between 2 and 5. By observing the trend in Figure 4.22, the significant lag for seasonal order P 

can also be determined. The PACF plot indicates a slight seasonal pattern, therefore P ranges 

between 1 and 2. Examining the ACF plot (Figure 4.23), the last significant moving average lag 

for q ranges between 2 and 7. Figure 4.23 also displays a seasonal pattern, therefore Q ranges 

between 1 and 2.   

 

 

Figure 4.21: BETTA market seasonality for May 2017 
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Figure 4.22: Seasonal partial autocorrelation (PACF) plot to determine p for BETTA market 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Seasonal autocorrelation (ACF) plot to determine q for BETTA market 

 
 

The AIC method [56] selects the best SARIMA model by determining the optimal p, q, P, and Q 

order terms required for estimation. For the SARIMA models the parameter ranges are p = (2, 

5), q = (2, 7), P = (1, 3), and Q = (1, 3) and the AIC measure is used to determine the best overall 

SARIMA model. The final model is SARIMA p = 3, d = 1, q = 2, P = 2, D = 0, Q = 2, S = 24 with the 

lowest AIC value of 27885.83 and RMSE of 9.67 given as:   

𝑌𝑡 = −0.17𝛻𝑌𝑡−1 + 0.66𝛻𝑌𝑡−2 −  0.098𝛻𝑌𝑡−3 −   0.029𝛻𝜀𝑡−1 −  0.97𝛻𝜀𝑡−2 +

 0.88𝑆24𝑌𝑡−24 − 0.18𝑆48𝑌𝑡−48 −  1.62𝑆24𝜀𝑡−24 +  0.69𝑆48𝜀𝑡−48  + 34.27                     (4.5)                  
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Figure 4.24: Residual diagnostic checks for BETTA market SARIMA(3, 1, 2)(2, 0, 2, 24) 

 
 

To confirm if this is an appropriate SARIMA model, diagnostic checking on the fitted residuals is 

performed. Figure 4.24 displays the respective diagnostic plot, and it was noted that the 

residuals are generally uncorrelated and follow a normality plot pattern. In Figure 4.24(A) the 

residuals fluctuate around 0 however there is a trend pattern, in Figure 4.24(B) the density is 

normally distributed with a narrow bell-shaped pattern symmetrical around 0, in Figure 4.24(C) 

the quantiles mainly fall on or around the red line suggesting a normal distribution but are 

slightly curved at the ends highlighting extreme data values, and in Figure 4.24(D) the residual 

errors are mostly close to zero but there is some autocorrelation present as Lag 4 and Lag 8 fall 

outside the blue boundary. Therefore the SARIMA(3, 1, 2) (2, 0, 2, 24) model is an accurate 

prediction approximation to forecast electricity prices as the fitted residuals resemble a 

normality plot.  Figure 4.25 illustrates the model fit during the validation stage and the majority 

of the predicted prices very closely match the actual prices. Therefore, the SARIMA(3, 1, 2)(2, 0, 

2, 24) model could be considered an option for forecasting day-ahead electricity price in the 

BETTA market.  
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Figure 4.25: BETTA market SARIMA(3, 1, 2)(2, 0, 2, 24) model 

 
The same SARIMA approach was applied to the ISEM market data and Figure 4.26 displays 

seasonality repeating the seasonal cycle during May 2019 and this continues throughout the 

entire time period. In this experiment, d is set to 1, D is set to 0, and to factor seasonality length 

for each day, S is set to 24.  

 

Figure 4.26: ISEM market seasonality for May 2019 

 
Model identification confirms the parameter order terms by observing both Figure 4.27 and 

Figure 4.28 to find the ranges of the significant lags. Observing Figure 4.27 (PACF plot), the last 

significant autoregressive lag for p ranges between 1 and 4 and the significant lag for seasonal 

order P ranges between 1 and 2. Observing Figure 4.28 (ACF plot), the last significant moving 

average lag for q ranges between 1 and 4 and the significant lag for seasonal order Q ranges 

between 1 and 2.     
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Figure 4.27: Seasonal partial autocorrelation (PACF) plot to determine p for ISEM market 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: Seasonal autocorrelation (ACF) plot to determine q for ISEM market 

 
The AIC technique [56] selects the best SARIMA model by determining the optimal p, q, P, and 

Q order terms. The parameter ranges are p = (1, 4), q = (1, 4), P = (1, 3), and Q = (1, 3) and the 

final SARIMA model is determined to be SARIMA p = 3, d = 1, q = 3, P = 2, D = 0, Q = 2, S = 24. 

The SARIMA model function for predicted 𝑌𝑡 with the lowest AIC value of 27002.82 and RMSE of 

14.12 is:  

𝑌𝑡 = −0.20𝛻𝑌𝑡−1 + 0.32𝛻𝑌𝑡−2 +  0.58𝛻𝑌𝑡−3 +   0.19𝛻𝜀𝑡−1 −  0.45𝛻𝜀𝑡−2 −  0.74𝛻𝜀𝑡−3 +

 0.11𝑆24𝑌𝑡−24 + 0.89𝑆48𝑌𝑡−48 −  0.085𝑆24𝜀𝑡−24 −  0.85𝑆48𝜀𝑡−48  + 27.38                     (4.6)   
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Figure 4.29: Residual diagnostic checks for ISEM market SARIMA(3, 1, 3)(2, 0, 2, 24) 

 
Figure 4.29 displays the residual diagnostic plots. In Figure 4.29(A) the residuals fluctuate around 

0 with many peaks displaying a trend, in Figure 4.29(B) the density is normally distributed with 

a narrow bell-shaped pattern (orange line), in Figure 4.29(C) the quantiles mostly fall on or 

around the red line but are slightly curved at both ends due to outliers highlighting weak 

stationarity, and in Figure 4.29(D) the residual errors are close to zero but some autocorrelation 

is present as Lag 8 and Lag 10 appear outside the blue boundary. Therefore the SARIMA(3, 1, 3) 

(2, 0, 2, 24) model is a reasonable prediction approximation to forecast electricity prices as the 

fitted residuals are generally uncorrelated and mostly follow a normality plot pattern.                               

Figure 4.30 displays the model validation period from the selected model and the majority of 

the predicted prices generally match the mid actual prices, but still struggle to reach the high or 

low actual price values.  

 

Figure 4.30: ISEM market SARIMA(3, 1, 3)(2, 0, 2, 24) model 
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Table 4.3 presents the RMSE values of the best ARMA, ARIMA, and SARIMA models for both the 

BETTA and ISEM markets. The SARIMA models for both markets had the lowest RMSE values 

improving model performance and accurately predicting day-ahead electricity price. Comparing 

the two markets, the BETTA market is slightly easier to predict. The experiments were conducted 

using an Intel Pentium Quad Core Processor N4200, and the run-times for the ISEM models to 

output the AIC values for each of the listed ranges are included in Table 4.4. The simple ARMA 

model is the quickest to compute all the permutations with the more advanced models taking a 

longer run time. 

Table 4.3: RMSE values (ARMA, ARIMA, & SARIMA models) 

Market Model RMSE 

BETTA 

ARMA(9, 7) 10.91 

ARIMA(9, 1, 7) 9.94 

SARIMA(3, 1, 2)(2, 0, 2, 24) 9.67 

ISEM 

ARMA(9, 8) 14.99 

ARIMA(8, 1, 8) 14.86 

SARIMA(3, 1, 3)(2, 0, 2, 24) 14.12 

 

Table 4.4: Run times to fit the optimal ISEM SISO models 

Model Range Run Time 

ARMA(9, 8) p = (0, 10), q = (0, 10) 3,119 seconds 

ARIMA(8, 1, 8) 
p = (0, 10), q = (0, 10) 11,388 seconds 

SARIMA(3, 1, 3)(2, 0, 2, 24) 
p = (1, 4), q = (1, 4), 
P = (1, 3), Q = (1, 3) 

24,714 seconds 

 

4.5 SISO Modelling with Click Energy Data  

Electricity price data were provided by Click Energy for the ISEM market 2020/2021. The target 

day-ahead price being predicted ranges from 02nd December 2020 to 30th June 2021, with all 

previous hour prices used as the input ranging from 01st December 2020 to 29th June 2021. The 

data records were split for model estimation (02nd December to 31st May) and model validation 

(01st June to 30th June). For each of the statistical models, the parameter order terms are found 

through model identification. 

Table 4.5 presents the RMSE values for the ARMA, ARIMA and SARIMA models for the ISEM 

market 2020/2021. Comparing these findings to Table 4.3, the results are robust as they remain 

consistent for the two different time periods with SARIMA performing the best. It is also noted 

that 2020/2021 data performs better with a higher model accuracy (lower RMSE values). Figures 

4.31, 4.32 and 4.33 display the ARMA(8, 5) model, ARIMA(9, 1, 9) model and SARIMA(2, 1, 5)(1, 
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0, 1, 24) model validation results respectively. These figures illustrate that the predicted prices, 

especially for SARIMA, generally match the actual prices for the month of June. 

Table 4.5: RMSE values (ISEM market 2020/2021 SISO models) 

Model RMSE 

ARMA(8, 5) 14.89 

ARIMA(9, 1, 9) 14.74 

SARIMA(2, 1, 5)(1, 0, 1, 24) 13.76 

 

 

 

Figure 4.31: ISEM market 2020/2021 ARMA(8, 5) model 

 

 

 

Figure 4.32: ISEM market 2020/2021 ARIMA(9, 1, 9) model 
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Figure 4.33: ISEM market 2020/2021 SARIMA(2, 1, 5)(1, 0, 1, 24) model 

 

4.6 Conclusion  

SISO statistical prediction models follow historical values and price market trends to predict 

future values. In this chapter, various time-series prediction models using only historical prices 

as inputs were interpreted and analysed using both BETTA and ISEM market data to determine 

if they could accurately forecast day-ahead electricity prices. During the investigation of the SISO 

models, stationarity, trend, and seasonality were all considered when identifying order terms, 

estimating parameters, and model validation. This type of analysis and comparison for each 

model helps to determine which trend, order term, or seasonal input improves prediction 

accuracy the most. 

Firstly the ARMA model was chosen and the experimental results show that when using BETTA 

market data, the best model is ARMA(9, 7) and when using ISEM market data, the best model is 

ARMA(9, 8). The corresponding RMSE values were promising for the ARMA models, however 

since electricity prices have long term trends which fluctuate up and down it was decided to try 

ARIMA to determine if model accuracy could be improved. The experimental results show that 

with BETTA market data, the best model is ARIMA(9, 1, 7) and with ISEM market data, the best 

model is ARIMA(8, 1, 8). ARIMA performed generally well with the corresponding RMSE values 

slightly lower than the ARMA models. To account for seasonality, a SARIMA model was utilised 

in future experiments to try to further improve model performance. The model generated a 

RMSE value of 9.67 for SARIMA(3, 1, 2)(2, 0, 2, 24) when using the BETTA market data and a 

RMSE value of 14.12 for SARIMA(3, 1, 3)(2, 0, 2, 24) when using the ISEM market data. These 

experimental results found SARIMA models to be the best for predicting day-ahead electricity 

price and that the BETTA market was the easiest to forecast for each individual SISO model. 
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Model performance remained consistent for both 2019/2020 and 2020/2021 data highlighting 

the robustness of the statistical models.   

This chapter addressed the four key statistical modelling stages: identification, estimation, 

diagnostic testing, and forecasting. Although performance was sufficient, there is still room for 

improvements and hence the next chapter will focus on Multiple Input Single Output (MISO) 

models to investigate if external energy-related factors improve model performance further and 

to determine, in particular, which exogenous factors have the most impact on day-ahead 

electricity price. 
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Chapter 5  

Multiple Input Single Output Models 

 

5.1 Introduction  

Multiple Input Single Output (MISO) forecasting models explore the relationship between 

multiple inputs and one output in order to predict values. This research follows on from Chapter 

4 by continuing to understand and analyse real electricity price data with traditional time-series 

statistical models, however this chapter includes external energy-related input data. As well as 

statistical multivariate models, non-linear learning models are also examined to discover key 

energy input factors that influence day-ahead electricity price prediction. These factors are 

identified through prediction modelling using short-term regression techniques and by 

examining and developing Nonlinear AutoRegressive Moving Average models with eXogenous 

inputs (NARMAX). This chapter addresses the second research question listed in Chapter 1: “Do 

energy-related exogenous variables improve model performance?”. The aim of this chapter is 

to investigate MISO models and establish whether model performance is enhanced with the 

inclusion of factors which are known to influence energy price. This research work resulted in 

the following publications:  

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Daily Energy Price Forecasting Using 

a Polynomial NARMAX Model,” in Advances in Computational Intelligence Systems, UKCI 

2018, pp. 71–82. 

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “A Linear Polynomial NARMAX Model 

with Multiple Factors to Forecast Day-Ahead Electricity Prices,” in Proceedings of the 

2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, pp. 2125–2130. 

● C. McHugh, S. Coleman, and D. Kerr, “Hourly Electricity Price Forecasting with 

NARMAX”, submitted to Elsevier Statistical Methods for Machine Learning with 

Applications (under review). 

Throughout this chapter, various MISO time-series models are separately analysed for two 

energy markets to evaluate model performance and forecast day-ahead prices. The two energy 

markets remain the same as previously explored in the Single Input Single Output (SISO) models: 

British Electricity Trading and Transmission Arrangements (BETTA) and the Irish Integrated 

Single Electricity Market (ISEM). To compare performance results between the SISO and MISO 

models, the forecasting periods examined remain as May 2017 until April 2018 for the BETTA 

market and May 2019 until April 2020 for the ISEM market.  
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This research begins by analysing an AutoRegressive Moving Average with eXogenous inputs 

(ARMAX) model, which includes multiple energy-related variables as inputs as well as the 

historical price data. Adding exogenous variables can help to explain energy price movements 

as external factors can contribute strongly to price changes. The same range for the order terms 

p and q from the ARMA model in Section 4.2 are applied here. Next, an AutoRegressive 

Integrated Moving Average with eXogenous inputs (ARIMAX) model is examined to include 

differencing. The previous chapter demonstrated that seasonal techniques provided the best 

performance for SISO models improving overall prediction accuracy, therefore a Seasonal 

AutoRegressive Integrated Moving Average with eXogenous input (SARIMAX) model is also 

considered here. A NARMAX model is analysed to determine which external factors significantly 

influence electricity price and which are necessary to include in a forecasting model for energy 

market traders to predict day-ahead prices. Determination of the most significant contributory 

factors is vital in order to improve day-ahead prediction accuracy. The performance of each of 

the MISO models in this chapter is evaluated by observing their Root Mean Squared Error 

(RMSE) values. The software utilised for the statistical models was Python through the NumPy, 

Pandas and Statsmodels libraries and for the NARMAX models was ScicosLab. 

  

5.2 Energy-Related Data  

It is important in price prediction models to consider external input factors as these can have a 

significant impact on the accuracy of a forecasting model. As discussed in Chapter 2, electricity 

generation prices fluctuate when supply and demand vary, making it important to consider 

these influential factors for electricity price forecasting to establish an accurate prediction tool 

[50]. The system marginal price (which is the cheapest bid set in the market) is controlled by 

external factors and therefore it is important to consider such external factors in a predictive 

model [18]. Energy-related factors which have previously been shown to be significant on 

influencing electricity prices are: system demand [8]; system load, interconnection contributions 

(from other markets), and supply generation from power plants [18]; wind generation [111]; 

solar generation [69]; fuel market prices such as gas and coal [15]; and environmental 

temperature, which can influence additional consumer demand through heating or hot water 

usage [75]. Appropriate selection of which of these contributing factors can be used as inputs is 

necessary for energy traders to know when to buy or sell in the market and over time develop a 

successful trading system. If energy traders train forecasting models using external factors as 

input variables, the resulting models, whilst more complex, should become more adaptable to 

factors that can cause price fluctuations in the energy market.  
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5.2.1 British Electricity Trading and Transmission Arrangements (BETTA) 

For this research, BETTA 2017-2018 market data were downloaded from multiple sources. 

Historical hourly electricity price records were collected from the Nordpool day-ahead exchange 

traded auction market [108]. Hourly transmission system average gas prices were retrieved via 

the data item explorer available through National Grid [112]. The hourly fuel-type generation 

data taken from Gridwatch [113] which displays data in five-minute period intervals were as 

follows: demand (overall total not including exports), wind (total contribution from wind farms), 

solar (estimated power), coal (coal plants), Moyle interconnector (connected from Scotland to 

Northern Ireland), nuclear (power stations), pumped storage (small hydroelectric storage 

stations), hydroelectric power (combination of small stations mainly located in Scotland), 

biomass (renewable power stations), Combined Cycle Gas Turbine [CCGT] (boiler and steam 

turbines), and Open Cycle Gas Turbine [OCGT] (gas without steam). Hourly temperature records 

were gathered from Speedwell [114] for five UK weather stations (Birmingham, Glasgow, 

London, St. Athan, and Yeovilton) and averaged for each hour to achieve an accurate 

representation of the hourly temperature over the whole UK energy market. These energy-

related factors are displayed alongside their unit of measure in Table 5.1.  

Table 5.1: Energy-related factors from BETTA market 

Energy-Related Factors Model Input Terms Unit 

Historical Electricity Price u1 Euro per Megawatt Hour 

Demand u2 Megawatt 

Gas u3 Pence per Kilowatt Hour 

Wind u4 Megawatt 

Solar u5 Megawatt 

Coal u6 Megawatt 

Moyle Interconnector u7 Megawatt 

Nuclear u8 Megawatt 

Pumped Storage u9 Megawatt 

Hydroelectric Power u10 Megawatt 

Biomass u11 Megawatt 

Combined Cycle Gas Turbine [CCGT] u12 Megawatt 

Open Cycle Gas Turbine [OCGT] u13 Megawatt 

Temperature u14 Celsius 

 

5.2.2 Integrated Single Electricity Market (ISEM) 

For this research, ISEM 2019-2020 market data were downloaded from multiple sources. 

Historical hourly electricity price records were collected from the Single Electricity Market 

Operator (SEMOpx) [110] day-ahead trading auction market. Half-hourly load forecast 

generation was retrieved from SEMO [115]. The 15-minute intervals of energy-related data 

taken from EirGrid smart grid dashboard [116] were as follows: actual demand (predicted 

electricity production), system generation (total electricity production), forecast wind (total all 

island wind farms), East-West interconnector (connected from Ireland to Wales), Moyle 
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interconnector (connected from Scotland to Northern Ireland), CO2 intensity (average of CO2 

emissions), and CO2 emissions (estimated total of all power stations). Hourly temperature 

records were gathered (both Northern Ireland [117] and Republic of Ireland [118]) from five all 

island weather Met Office stations (Belfast, Cork, Donegal, Dublin, and Galway) and averaged 

for each hour to achieve an accurate representation of the hourly temperature over the whole 

ISEM energy market. Each of these energy-related factors are displayed alongside their unit of 

measure in Table 5.2.    

Table 5.2: Energy-related factors from ISEM market 

Energy-Related Factors Model Input Terms Unit 

Historical Electricity Price u1 GBP per Megawatt Hour 

System Generation u2 Megawatt 

Demand u3 Megawatt 

Wind u4 Megawatt 

East-West Interconnector u5 Megawatt 

Moyle Interconnector u6 Megawatt 

CO2 intensity u7 Kilowatt Hour 

CO2 emissions u8 CO2 intensity per Hour 

Load u9 Megawatt 

Temperature u10 Celsius 

 

5.3 ARMAX Experiment  

The definition and background of ARMAX models were outlined in Section 3.3.1. The ARMAX 

experiment using BETTA market data was set up identically to the ARMA BETTA experiment in 

Section 4.2 with the same forecasting period and same aim of predicting the day-ahead price. A 

total of 8736 samples for the electricity price and for each of the energy-related exogenous 

variables was used. All input factors ranged from 01st May 2017 to 29th April 2018 and the target 

day-ahead prices (+24hours) ranged from 02nd May 2017 to 30th April 2018. For the experiment, 

the data records were split for model estimation and model validation where 02nd May Hour 0 

to 30th October Hour 23 was used for model estimation and 31st October Hour 0 to 30th April 

Hour 23 was used for model validation.  

Using the information from the AutoCorrelation Function (ACF) and Partial AutoCorrelation 

Function (PACF) plots in Section 4.2, the ranges for order terms p and q are set from 0 to 10. The 

Akaike Information Criterion (AIC) verifies the optimal order terms by using a brute force search 

of all given combinations ranking the AIC values from lowest to highest, following the process 

outlined in [56]. The lowest AIC value was 28765.10 when order terms were p=8 and q=0 and 

therefore these were selected as the best ARMAX order terms. The ARMAX(8, 0) model function 

for predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.78𝑌𝑡−1 − 0.12𝑌𝑡−2 +  0.0073𝑌𝑡−3 −  0.056𝑌𝑡−4 +  0.041𝑌𝑡−5 −  0.025𝑌𝑡−6 +

0.042𝑌𝑡−7 +  0.028𝑌𝑡−8 +  0.55𝑈1 +   2.23𝑒−05𝑈2 +  3.33𝑈3 +  4.71𝑒−05𝑈4 −  1.23𝑒−06𝑈5 −
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1.79𝑒−05𝑈6 −  4.19𝑒−05𝑈7 −  0.0001𝑈8 +  0.0002𝑈9 +  0.0003𝑈10 +  3.09𝑒−05𝑈11 +

4.86𝑒−06𝑈12 −  0.0032𝑈13 +  0.11𝑈14 + 12.78                                                                               (5.1)                                 

consisting of weighted terms in a linear combination of autoregressive lags for 𝑌 and coefficient 

values for each of the exogenous input variables (𝑈). Gas was the most weighted external 

variable (3.33), followed by historical electricity price (0.55), and then temperature (0.11).  

Table 5.3 contains the exogenous variables corresponding p-value for the z-statistic significance 

(P>|z|) for the ARMAX(8, 0) model. The level of significance (α=0.05) was chosen based on the 

95% confidence interval and is rejected if it falls in the 5% critical region. The p-value significance 

for each variable was compared against α: if the p-value was ≤ α, the exogenous variable was 

significant. Observing the p-values for each of the variables in Table 5.3, it can be seen that 

historical electricity price, gas, pumped storage, hydroelectric power, and OCGT were deemed 

significant out of the 14 possible inputs.  

Table 5.3:  BETTA market ARMAX(8,0) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

Demand (U2) 0.423 

Gas (U3) <0.001 

Wind (U4) 0.110 

Solar (U5) 0.489 

Coal (U6) 0.650 

Moyle Interconnector (U7) 0.972 

Nuclear (U8) 0.070 

Pumped Storage (U9) 0.006 

Hydroelectric Power (U10) 0.013 

Biomass (U11) 0.612 

CCGT (U12) 0.865 

OCGT (U13) 0.012 

Temperature (U14) 0.212 

 

Diagnostic checking is performed on the standardised model residuals to confirm if ARMAX(8, 

0) is an appropriate model fit. Figure 5.1(A) plots the standardised residuals which fluctuate 

around 0, however there is a pattern of peaks and troughs highlighting the varying trend of 

electricity prices. Figure 5.1(B) is a histogram with a density plot which generally resembles a 

bell-shaped pattern and  comparison of the orange line against the green line suggests the data 

are normally distributed. Figure 5.1(C) is a normal quantile-quantile plot with the majority of the 

quantiles falling on or near to the red line suggesting a normal distribution, but the shape is 

curved on both ends suggesting extreme values among the data. Figure 5.1(D) is a correlogram 

plot showing that no autocorrelation is present as the residual errors are close to zero. All these 

plots confirm that the residuals are uncorrelated mostly following a normal pattern and that the 

model fits reasonably well.   
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Figure 5.1: Residual diagnostic checks for BETTA market ARMAX(8,0) 

 

 
Figure 5.2: BETTA market ARMAX(8,0) model 

 
The selected model fit is used to predict electricity price and compare the model prediction 

against the historical actual electricity price. The RMSE value measures the accuracy of the 

model validation (testing stage) with the accuracy improving as RMSE tends towards zero. The 

RMSE value for ARMAX(8, 0) including all exogenous variables was 9.59 indicating that the model 

is reasonably accurate. Comparing this value to the RMSE value from the ARMA(9, 7) model 

presented in Section 4.2, which was 10.91, this demonstrates that the inclusion of exogenous 

input variables for day-ahead BETTA electricity price forecasting improves the overall model 

accuracy. The ARMAX(8, 0) model validation results for hourly BETTA electricity prices are 

presented in Figure 5.2 and illustrate that the predicted price values closely match the actual 
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historical price values but fail to reach the peaks. Given the overall accuracy the ARMAX(8, 0) 

model could be considered an option for forecasting day-ahead electricity price. 

For day-ahead forecasting, since ARMAX could model the BETTA market accurately, the same 

approach was applied to the ISEM market to determine if ARMAX is robust to the dynamics of 

different markets. The ARMAX experiment included 8760 records of electricity price and each 

of the energy-related exogenous variables. All input factors ranged from 01st May 2019 to 29th 

April 2020 and the target day-ahead price (+24h) ranged from 02nd May 2019 to 30th April 2020. 

For the experiment, the data records were split 50/50 for model estimation and model 

validation: 02nd May Hour 0 to 31st October Hour 11 for model estimation and 31st October Hour 

12 to 30th April Hour 23 for model validation. The ranges for order terms p and q were set from 

0 to 10 to match the ISEM experiment in Section 4.2. In this experiment, the lowest AIC value 

(27406.75) for the forecasting period occurred when the order terms were p=3 and q=9. The 

model function for ARMAX(3, 9) for predicted 𝑌𝑡 consists of autoregressive lags for 𝑌, moving 

average lags for prediction error 𝜀, exogenous input values for 𝑈 and is given as:  

𝑌𝑡 = 0.71𝑌𝑡−1 − 0.27𝑌𝑡−2 +  0.41𝑌𝑡−3 +  0.30𝜀𝑡−1 +  0.47𝜀𝑡−2 −  0.018𝜀𝑡−3 +  0.0029𝜀𝑡−4 −

0.11𝜀𝑡−5 −  0.057𝜀𝑡−6 −  0.049𝜀𝑡−7 −  0.0016𝜀𝑡−8 +  0.087𝜀𝑡−9 +  0.34𝑈1 −   0.0006𝑈2 +

0.0022𝑈3 +  0.0002𝑈4 +  0.0004𝑈5 − 3.62𝑒−05𝑈6 −  0.0032𝑈7 +  0.0006𝑈8 +  0.0008𝑈9 −

0.46𝑈10 + 3.17                                                                                                                                               (5.2)   

Table 5.4:  ISEM market ARMAX(3,9) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

System Generation (U2) 0.004 

Demand (U3) <0.001 

Wind (U4) 0.452 

East-West Interconnector (U5) 0.117 

Moyle Interconnector (U6) 0.916 

CO2 Intensity (U7) 0.044 

CO2 Emissions (U8) 0.179 

Load (U9) 0.027 

Temperature (U10) 0.006 

 
Temperature was the most weighted external variable (-0.46) followed by historical electricity 

price (0.34). The exogenous variables p-values for the ARMAX(3, 9) model are presented in Table 

5.4. Observing these it can be seen that historical electricity price, system generation, demand, 

CO2 intensity, load, and temperature were all highly significant. Similar to the BETTA market 

results, historical electricity price is extremely dominant. The significant factors for the BETTA 

market were mainly from generating power and hydroelectric stations as well as gas prices and 

gas turbines. The ISEM market takes advantage of the full range of generation types rather than 

only focussing on power plants [35]. Therefore the ISEM ARMAX summary statistics are more 
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varied with multiple significant factors identified. These factors are inherently linked together 

through supply and demand in electricity production (system generation, demand, and load). 

These findings are consistent with previous literature as Li et al. [18] discussed that energy 

production and demand are among the key energy forecasting factors.     

Figure 5.3 displays the fitted residual diagnostic plots to check how well ARMAX(3, 9) has 

performed. In Figure 5.3(A) the standardised residuals fluctuate around 0, however there are 

many peaks and troughs throughout the period. In Figure 5.3(B) the density plot (orange line) 

has a narrow bell-shaped pattern indicating that the data are normally distributed. In Figure 

5.3(C) the majority of the quantiles are close to the red line suggesting a normal distribution, 

but due to extreme outliers the blue line has sharp curves at both ends. Figure 5.3(D) shows that 

the residual errors are close to zero and thus no autocorrelation is present. All these plots 

confirm that the residuals are uncorrelated and that the ISEM ARMAX(3, 9) model is a 

reasonable approximation fit.           

Figure 5.3: Residual diagnostic checks for ISEM market ARMAX(3,9) 

 

To check the performance of the ARMAX(3, 9) model during the model validation stage, the 

predicted price values were plotted against the historical actual values, shown in Figure 5.4. It is 

clear from Figure 5.4 that for the majority of records the predicted values closely matched the 

actual values. The RMSE value for ARMAX(3, 9) was 18.73 and this highlighted that the overall 

model performance of ISEM day-ahead forecasting was less accurate than for the BETTA market. 

Comparing this value to the RMSE value from the ARMA(9, 8) model displayed in Section 4.2, 

which was 14.99, this indicates that the ISEM day-ahead market is slightly more difficult to 

forecast with the inclusion of exogenous input variables.      
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Figure 5.4: ISEM market ARMAX(3,9) model 

 
Table 5.5 presents the RMSE values of the best ARMAX model for both the BETTA and ISEM 

markets. Overall, comparing the two markets with the inclusion of exogenous input variables, 

the BETTA market results in a lower RMSE value and better model accuracy than the ISEM 

market, hence the need to further investigate possible models for the ISEM market in particular.  

Table 5.5: RMSE values (ARMAX models) 

Market Model RMSE 

BETTA ARMAX(8, 0) 9.59 

ISEM ARMAX(3, 9) 18.73 

 

5.4 ARIMAX Experiment  

ARIMAX models were previously discussed in Section 3.3.2 and this experiment is conducted to 

determine if removing trends through first-order differencing improves model performance for 

both the BETTA and ISEM markets. The parameter ranges for both order terms p and q were 0 

to 10 and d was set to 1. The order terms p=8, d=1, and q=2 provided the lowest AIC value 

(30705.84) and the ARIMAX(8, 1, 2) model function for predicted 𝑌𝑡 is given as:  

𝑌𝑡 = −0.030𝛻𝑌𝑡−1 − 0.072𝛻𝑌𝑡−2 −  0.18𝛻𝑌𝑡−3 −  0.20𝛻𝑌𝑡−4 −  0.13𝛻𝑌𝑡−5 −  0.14𝛻𝑌𝑡−6 −

0.10𝛻𝑌𝑡−7 −  0.071𝛻𝑌𝑡−8 −  0.12𝛻𝜀𝑡−1 −  0.17𝛻𝜀𝑡−2 +  0.51𝑈1 +  4.17𝑒−05𝑈2 + 0.81𝑈3 +

 7.68𝑒−05𝑈4 −  1.32𝑒−06𝑈5 −  4.87𝑒−06𝑈6 +  4.94𝑒−06𝑈7 −  0.0003𝑈8 + 7.81𝑒−06𝑈9 +

 0.0006𝑈10 +  0.0001𝑈11 −  2.00𝑒−06𝑈12 −  0.0019𝑈13 −  0.078𝑈14 + 44.20                  (5.3)                                                                                                                                    
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Table 5.6:  BETTA market ARIMAX(8,1,2) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

Demand (U2) 0.144 

Gas (U3) 0.277 

Wind (U4) 0.029 

Solar (U5) 0.610 

Coal (U6) 0.911 

Moyle Interconnector (U7) 0.966 

Nuclear (U8) 0.023 

Pumped Storage (U9) 0.182 

Hydroelectric Power (U10) <0.001 

Biomass (U11) 0.172 

CCGT (U12) 0.947 

OCGT (U13) 0.241 

Temperature (U14) 0.515 

 

The most weighted variable was gas (0.81) and the second most weighted was historical 

electricity price (0.51), similar to the findings for ARMAX(8, 0) model (Section 5.3). The individual 

p-values are displayed in Table 5.6 for the ARIMAX(8, 1, 2) model. Observing the p-values, 4 of 

the 14 inputs were significant: historical electricity price, wind, nuclear, and hydroelectric 

power. Comparing these findings to the ARMAX(8, 0) model, two input factors were consistently 

significant in both model findings: historical electricity price and hydroelectric power.  

 
Figure 5.5: Residual diagnostic checks for BETTA market ARIMAX(8,1,2) 

 
Figure 5.5(A) shows the standardised residuals fluctuate around 0, however the width of the 

pattern highlights a trend in the data. Figure 5.5(B) is a histogram with a density plot that 

resembles a narrow bell-shaped pattern, observing the orange line, which indicates that the 

data are normally distributed and symmetrical around mean 0. Figure 5.5(C) is a normal 

quantile-quantile plot and illustrated that the majority of the quantiles are on or close to the red 

line, but the shape is curved on both ends highlighting extreme values among the data. Figure 
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5.5(D), the correlogram plot, shows slight autocorrelation is present in Lags 9 and 10 but the 

majority of the residual errors are close to zero and within the blue boundary. Figure 5.5 

confirms that the residuals generally follow a normal pattern displaying a reasonable model fit. 

 
Figure 5.6: BETTA market ARIMAX(8,1,2) model 

 
The RMSE value for ARIMAX(8, 1, 2) was 11.09. The RMSE is slightly higher than the ARIMA(9, 1, 

7) model in Section 4.3, which produced a RMSE value of 9.94, suggesting that the ARIMAX 

model is not as accurate at predicting BETTA day-ahead electricity prices compared to the 

ARIMA model. The BETTA ARIMAX model prediction against actual fit is illustrated in Figure 5.6 

which shows that the predicted prices are similar to the actual prices.  

The same ARIMAX technique was used with the ISEM market data, where the p and q order 

terms ranged from 0 to 10 and d was set to 1. The best ARIMAX order terms are p=1, d=1, and 

q=9 outputting the lowest AIC value of 28412.94. The ARIMAX(1, 1, 9) model function for 

predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.14𝛻𝑌𝑡−1 −  0.12𝛻𝜀𝑡−1 −  0.071𝛻𝜀𝑡−2 −  0.12𝛻𝜀𝑡−3 −  0.020𝛻𝜀𝑡−4  −  0.17𝛻𝜀𝑡−5  −

0.084𝛻𝜀𝑡−6  −  0.032𝛻𝜀𝑡−7 −  0.024𝛻𝜀𝑡−8 +  0.023𝛻𝜀𝑡−9 +  0.32𝑈1 −   0.0005𝑈2 +

0.0022𝑈3 + 0.0009𝑈4 +  0.0004𝑈5 − 9.75𝑒−06𝑈6 −  0.0025𝑈7 +  0.0005𝑈8 + 0.008𝑈9 −

 0.84𝑈10 + 31.38                                                                                                                        (5.4)                                 

The most weighted variable was temperature (-0.84) followed by historical electricity price as 

the second most weighted variable (0.32), which is the same as the ARMAX(3, 9) model findings. 

The ARIMAX(1, 1, 9) model summary p-values are presented in Table 5.7. Observing the p-

values, 5 of the 10 energy-related inputs were significant: historical electricity price, demand, 

wind, load, and temperature. Similar to the ARMAX(3, 9) model, the factors linked to supply and 

demand electricity production are highly significant within the ARIMAX(1, 1, 9) model.      
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Table 5.7:  ISEM market ARIMAX(1,1,9) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

System Generation (U2) 0.051 

Demand (U3) <0.001 

Wind (U4) <0.001 

East-West Interconnector (U5) 0.096 

Moyle Interconnector (U6) 0.978 

CO2 Intensity (U7) 0.183 

CO2 Emissions (U8) 0.329 

Load (U9) 0.004 

Temperature (U10) <0.001 

 
 
Figure 5.7(A) shows the standardised residuals fluctuate around 0, however there are peaks 

and troughs throughout the period suggesting a trend. Figure 5.7(B) is a histogram with 

density plot resembling a narrow bell-shaped normal distribution pattern from the orange line, 

symmetrical around mean 0. Figure 5.7(C) is a normal quantile-quantile plot illustrating the 

majority of the quantiles are on or close to the red line, but there are extreme values 

highlighted from the curves on both ends of the line. Figure 5.7(D), the correlogram plot, 

shows slight autocorrelation is present with some lag errors outside the blue boundary, 

nonetheless the majority are close to zero. These plots confirm that the model residuals are 

generally uncorrelated and follow a normal distribution. 

 

 
Figure 5.7: Residual diagnostic checks for ISEM market ARIMAX(1,1,9) 

 

The RMSE value for the model validation period was 14.87. Comparing model performance with 

the ARIMA(8, 1, 8) model from Section 4.3, which outputted a RMSE value of 14.86, it is clear 

that the ARIMAX model can accurately predict day-ahead ISEM electricity prices just like the 

ARIMA model. This is further highlighted in Figure 5.8 which illustrates that the predicted 
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electricity prices generally match the pattern of the actual prices, however, have difficulty 

reaching the peaks and troughs.   

 
Figure 5.8: ISEM market ARIMAX(1,1,9) model 

 

Table 5.8: RMSE values (ARMAX & ARIMAX models) 

Market Model RMSE 

BETTA 

ARMAX(8, 0) 9.59 

ARIMAX(8, 1, 2) 11.09 

ISEM 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

 
Table 5.8 displays the best ARMAX and ARIMAX models alongside the corresponding RMSE value 

for both the BETTA and ISEM markets. The ARMAX model performed the best for the BETTA 

market, while the ARIMAX model performed the best for the ISEM market. There are regular 

daily trends for both markets which could indicate seasonality; therefore the energy-related 

inputs will be utilised in a seasonal statistical model to check if model accuracy can be improved. 

When modelling trends, there are advantages to starting with a simple model: it is less complex 

with faster computational time. If a simple model outputs a similar accuracy to a model adjusted 

for seasonality, then it would be chosen to save time during modelling.    

 

5.5 SARIMAX Experiment  

A SARIMAX model is considered to handle trend and seasonal variations with the aim of 

improving model accuracy. The BETTA SARIMAX model used the same data period and hourly 

records as the SARIMA model in Section 4.4. The following order terms are included: p ranged 

between 2 and 5, q ranged between 2 and 7, both P and Q ranged between 1 and 3, d was set 
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to 1 to make the trend stationary, D was empirically set to 0 as when D was varied it made the 

seasonal pattern unstable, and S was set to 24 to capture the daily seasonality recurring cycle. 

The best SARIMAX model for the BETTA market is when p=2, d=1, q=3, P=2, D=0, Q=1, and S=24 

corresponding to an AIC value of 28726.62. The SARIMAX(2, 1, 3)(2, 0, 1, 24) model function for 

predicted 𝑌𝑡 is given as:   

𝑌𝑡 = 0.26𝛻𝑌𝑡−1 + 0.32𝛻𝑌𝑡−2 −  0.41𝛻𝜀𝑡−1 −  0.52𝛻𝜀𝑡−2  −  0.071𝛻𝜀𝑡−3 − 0.050𝑆24𝑌𝑡−24 +

 0.096𝑆48𝑌𝑡−48 −  0.094𝑆24𝜀𝑡−24  +  0.51𝑈1 +   3.15𝑒−05𝑈2 +  0.81𝑈3 + 1.06𝑒−05𝑈4 −

 4.75𝑒−07𝑈5 +  1.64𝑒−05𝑈6 −  1.80𝑒−06𝑈7 −  0.0002𝑈8 +  0.0001𝑈9 +  0.0006𝑈10 +

 9.38𝑒−05𝑈11 − 2.41𝑒−06𝑈12 −  0.0019𝑈13 −  0.078𝑈14 + 44.39                                  (5.5)        

Gas was the most weighted exogenous variable (0.81) with historical electricity price the second 

most weighted (0.51), similar to the previous models using BETTA market data. The summary 

statistics are displayed in Table 5.9 and out of the 14 input factors, 4 were significant: historical 

electricity price, nuclear, pumped storage, and hydroelectric power. This is similar to the 

ARMAX(8, 0) model with three factors (historical electricity price, pumped storage, and 

hydroelectric power) being significant for both models.                                                                                                  

Table 5.9:  BETTA market SARIMAX(2,1,3)(2,0,1,24) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

Demand (U2) 0.314 

Gas (U3) 0.295 

Wind (U4) 0.754 

Solar (U5) 0.866 

Coal (U6) 0.721 

Moyle Interconnector (U7) 0.989 

Nuclear (U8) 0.005 

Pumped Storage (U9) 0.041 

Hydroelectric Power (U10) <0.001 

Biomass (U11) 0.153 

CCGT (U12) 0.940 

OCGT (U13) 0.339 

Temperature (U14) 0.489 

 
Figure 5.9(A) illustrates that the residuals fluctuate around 0, however there is a pattern of peaks 

and troughs highlighting a trend in electricity prices. Figure 5.9(B) generally resembles a bell-

shaped pattern from comparing the orange line against the green line and therefore the data 

are normally distributed. Figure 5.9(C) is a normal quantile-quantile plot with the majority of the 

quantiles falling on or near to the red line indicating  a normal distribution, but the shape is 

curved on both ends suggesting extreme values among the data. Figure 5.9(D) shows that there 

is autocorrelation present at Lag 4, but otherwise the residual errors are close to zero. All these 

plots confirm that the residuals are uncorrelated and that the data mostly follows a normal 
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pattern. Therefore the BETTA SARIMAX model (2, 1, 3) (2, 0, 1, 24) is an accurate prediction 

approximation to forecast electricity prices. 

Figure 5.9: Residual diagnostic checks for BETTA market SARIMAX(2,1,3)(2,0,1,24) 
 

 
Figure 5.10: BETTA market SARIMAX(2,1,3)(2,0,1,24) model 

 
The model validation performance was quite accurate with a RMSE value of 9.31. This was a 

slight improvement over the RMSE value of 9.67 for the SARIMA(3, 1, 2)(2, 0, 2, 24) model in      

Section 4.4 highlighting that the inclusion of exogenous variables in the seasonal model helps 

predict BETTA market data. Figure 5.10 illustrates the model validation results and the predicted 

values generally match the historical electricity price values throughout the modelling period. 

The promising results means a SARIMAX(2, 1, 3)(2, 0, 1, 24) model would be an option for day-

ahead prediction in the BETTA market.  
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The ISEM market data were used with the SARIMAX model to predict day-ahead electricity prices 

in the Irish energy market. The ISEM SARIMAX model has the same study setup as the ISEM 

SARIMA experiment outlined in Section 4.4. The order terms are as follows: both p and q ranged 

between 1 and 4, both P and Q ranged between 1 and 3, d was set to 1 for stationary trend, D 

was set to 0, and S was set to 24 to factor daily seasonality.  The lowest AIC value of 27497.02 

was outputted from an ISEM SARIMAX(2, 1, 2) (2, 0, 2, 24) model whose function is given as: 

𝑌𝑡 = 0.59𝛻𝑌𝑡−1 + 0.27𝛻𝑌𝑡−2 −  0.57𝛻𝜀𝑡−1 −  0.38𝛻𝜀𝑡−2  +  0.32𝑆24𝑌𝑡−24 + 0.35𝑆48𝑌𝑡−48 −

0.29𝑆24𝜀𝑡−24  − 0.19𝑆48𝜀𝑡−48 +  0.15𝑈1 −   0.0004𝑈2 +  0.0028𝑈3 +  0.0002𝑈4 +

0.0005𝑈5 −  1.59𝑒−05𝑈6 −  0.0012𝑈7 +  0.0004𝑈8 +  0.0004𝑈9 −  0.83𝑈10 + 31.72      (5.6) 

Temperature was the most weighted variable (-0.83) and historical electricity price was the 

second most weighted variable (0.15). This is similar to the model findings for ARMAX(3, 9). 

Historical electricity price, demand, East-West interconnector, and temperature had very low p-

values as seen from Table 5.10. Three of these four factors were also highly significant for the 

previous two models using ISEM data, but this is the first time that the East-West interconnector 

is a dominant factor.                                                                                                                                         

Table 5.10:  ISEM market SARIMAX(2,1,2)(2,0,2,24) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) 0.011 

System Generation (U2) 0.142 

Demand (U3) <0.001 

Wind (U4) 0.353 

East-West Interconnector (U5) 0.015 

Moyle Interconnector (U6) 0.965 

CO2 Intensity (U7) 0.535 

CO2 Emissions (U8) 0.439 

Load (U9) 0.272 

Temperature (U10) <0.001 

 

Figure 5.11(A) illustrates that the standardised residuals fluctuate around 0, however there are 

many peaks and troughs throughout the period. In Figure 5.11(B) the histogram is symmetrical 

and the density plot (orange line) has a narrow bell-shaped pattern indicating the data are 

normally distributed. In Figure 5.11(C) the majority of the quantiles are close to the red line 

suggesting a normal distribution, but due to extreme outliers the blue line has sharp curves at 

both ends. Figure 5.11(D) shows that the residual errors are close to zero but some 

autocorrelation is present. All these plots confirm that the ISEM SARIMAX(2, 1, 2) (2, 0, 2, 24) 

model is a reasonable prediction approximation.   
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Figure 5.11: Residual diagnostic checks for ISEM market SARIMAX(2,1,2)(2,0,2,24) 

 
The RMSE value of 14.32 for the model validation period improved greatly from the ISEM 

ARMAX(3, 9) model where the RMSE was 18.73, highlighting that including seasonality in a 

model improves forecasting. However the ISEM SARIMA(3, 1, 3) (2, 0, 2, 24) from Section 4.4 

had a slightly better model fit, with a RMSE of 14.12, suggesting that the inclusion of exogenous 

factors makes it harder to predict day-ahead electricity price in the ISEM market.  

 
Figure 5.12: ISEM market SARIMAX(2,1,2)(2,0,2,24) model 

 

In Figure 5.12, the predicted values follow the same trend around the middle of the plot as the 

actual historical values, however the model struggles with some fluctuations of the actual price 

values. Table 5.11 displays the RMSE values of the optimal ARMAX, ARIMAX, and SARIMAX 

models for both the BETTA and ISEM markets. Observing both markets, the SARIMAX models 

provided the lowest RMSE values improving overall model performance and therefore could be 

considered for predicting day-ahead electricity price. Observing the two markets individually, 
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the BETTA market is much easier to accurately predict compared with the ISEM market when 

including exogenous variables.    

Table 5.11: RMSE values (ARMAX, ARIMAX, & SARIMAX models) 

Market Model RMSE 

BETTA 

ARMAX(8, 0) 9.59 

ARIMAX(8, 1, 2) 11.09 

SARIMAX(2, 1, 3)(2, 0, 1, 24) 9.31 

ISEM 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

 

5.6 NARMAX Experiment  

A NARMAX model, for which the theory was discussed in Section 3.3.4, is a forecasting technique 

that only keeps significant model terms for prediction. This research work analyses linear 

polynomial NARMAX models as simpler polynomial models perform better with unseen data 

(see polynomial model findings in Appendix). 

The first NARMAX experiment used BETTA market data from May 2017 until April 2018; 8736 

records in total. The energy-related input data ranged from 01st May 2017 until 29th April 2018 

and electricity price was the target output to predict day-ahead and ranged from 02nd May 2017 

until 30th April 2018. Initially, all energy-related inputs were included and the model structuring 

and estimation process removed unnecessary energy factors, keeping only significant model 

terms. For this experiment, a linear polynomial was chosen and the Error Reduction Ratio (ERR) 

threshold was set to 0.05. The ERR develops an accurate, parsimonious final model by ranking 

the Mean Squared Error (MSE) from largest to smallest reduction to select the key model terms 

above the ERR cut-off threshold [64]. As the model is constructed it changes iteratively, 

eliminating variables, one at a time, that have no influence on the prediction and retaining the 

influential variables throughout the iterative process until all remaining variables are significant. 

The final NARMAX model showed a strong relationship between the input exogenous variables 

and electricity price and is given as: 

𝑌𝑡 = 0.56𝑈1 +   0.000016𝑈2 +  0.000035𝑈4 −  0.000067𝑈8 +  0.00034𝑈9 +  0.24𝑈10 −

0.0036𝑈13 + 17.77                                                                                                            (5.7)                                                                                                             

Both the modelling estimation and validation stages resulted in reasonable predictions with 

RMSE values of 9.23 and 9.46, respectively. The seven significant factors retained during the 

iteration process were historical electricity price, demand, wind, nuclear, pumped storage, 
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hydroelectric power and OCGT. This suggests that including significant energy-related factors 

does influence the forecasting prediction, in particular historical electricity price as it was the 

most dominant factor.   

Table 5.12 ranks the ERR terms from largest to smallest for the BETTA market energy-related 

factors. Each ERR value represents the measure of contribution of each variable against the 

model output (day-ahead price). If any variable was to be removed from the final model, the 

ERR value represents the ratio accuracy of how much the model loses in relation to day-ahead 

electricity price. The three largest ERR values approximate to a 49.40 proportion of the variance 

of the day-ahead price and these three values were made up of the model terms from historical 

electricity price (47.10), then demand (1.69), and finally wind (0.61). Historical electricity price 

was both the most weighted factor (0.56) and had the largest ERR ranking (47.10).   

Table 5.12: Error Reduction Ratio for BETTA market NARMAX model 

ERR Energy-Related Factors (Model Term) 

47.098855 Historical electricity price (U1) 

1.686628 Demand (U2) 

0.609266 Wind (U4) 

0.470711 Pumped storage (U9) 

0.244902 Hydroelectric power (U10) 

0.115161 OCGT (U13) 

0.077452 Nuclear (U8) 

 

 
Figure 5.13: Best model validation for BETTA market NARMAX model 

 
Model validation uses the unseen data (historical energy-related data from 31st October 2017 

Hour 0 until 30th April 2018 Hour 23) and therefore is used to verify how well the model fits the 

data. Figure 5.13 illustrates the BETTA NARMAX model outputs with only the significant energy-

related factors included as inputs. It can be seen from Figure 5.13 that the predicted price output 

matched the actual price output constantly around the middle data points and troughs, but the 

predicted values sometimes struggled to span all actual data points and reach the peaks.       
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The second NARMAX experiment used ISEM market data from May 2019 until April 2020 

resulting in 8760 records in total.  The energy-related input data ranged from 01st May 2019 until 

29th April 2020 and electricity price, which was the target output data to predict day-ahead, 

ranged from 02nd May 2019 until 30th April 2020. In this experiment a linear polynomial was 

selected and the ERR was set to 0.05. At the beginning, all energy-related inputs were included 

in the model but after the required iterations to reach the optimal final model, the unnecessary 

factors were removed. The final NARMAX model contained the significant model terms required 

for an optimal forecasting model to predict the day-ahead ISEM market.   

The model function of the linear NARMAX model for the ISEM market is given as: 

𝑌𝑡 = 0.38𝑈1 −  0.00053𝑈2 +  0.00086𝑈3 +  0.00082𝑈7 −  0.00080𝑈8 +  0.0021𝑈9 +

0.26𝑈10 + 31.72                                                                                                                                         (5.8) 

The model estimation had a RMSE value of 12.58 and the model validation had a RMSE value of 

15.15. The seven significant factors retained during the iterative process were historical 

electricity price, system generation, demand, CO2 intensity, CO2 emissions, load, and 

temperature.  

Table 5.13: Error Reduction Ratio for ISEM market NARMAX model 

ERR Energy-Related Factors (Model Term) 

30.653281 Historical electricity price (U1) 

2.847335 Demand (U3) 

1.511024 System generation (U2) 

0.355038 Load (U9) 

0.284880 CO2 intensity (U7) 

0.179546 Temperature (U10) 

0.059359 CO2 emissions (U8) 

 

Table 5.13 displays the percentage variance of each significant variable for the ISEM market, 

ranking the ERR terms from largest to smallest. The three largest ERR values approximated to a 

35.01 proportion of the variance of the day-ahead price and these three values were made up 

of the model terms from historical electricity price (30.65), demand (2.85), and system 

generation (1.51). Similar to the BETTA market results, historical electricity price and demand 

were the two most dominant factors. Historical electricity price was both the most weighted 

factor (0.38) and had the largest ERR ranking (30.65); however it does not have as much 

influence in the ISEM market as both the weighted and ERR values are lower. Comparing both 

the BETTA and ISEM results, it is clear that historical electricity price and demand have a large 

influence on forecasting electricity prices.  

Historical energy-related data from 31st October 2019 Hour 12 until 30th April 2020 Hour 23 were 

considered for the model validation period to verify how well the model fits the data. Figure 



80 
 
5.14 illustrates the ISEM NARMAX model with only the significant energy-related factors 

included as inputs. It can be seen from Figure 5.15 that the predicted price output matched the 

actual price output consistently around the middle data points, but the predicted values failed 

to reach the peaks and troughs.   

 
Figure 5.14: Best model validation for ISEM market NARMAX model 

 
Table 5.14 displays the RMSE values of the optimal ARMAX, ARIMAX, SARIMAX, and NARMAX 

models for both the BETTA and ISEM markets. The BETTA market prediction remained quite 

stable with the inclusion of exogenous inputs. The ISEM market prediction was not as accurate 

as the BETTA, however model performance did improve for ARIMAX, SARIMAX, and NARMAX 

forecasting models. It is clear form Table 5.14 that the SARIMAX model provided the lowest 

RMSE value for both the BETTA and ISEM markets.   

 

Table 5.14: RMSE values (ARMAX, ARIMAX, SARIMAX & NARMAX models) 

Market Model RMSE 

BETTA 

ARMAX(8, 0) 9.59 

ARIMAX(8, 1, 2) 11.09 

SARIMAX(2, 1, 3)(2, 0, 1, 24) 9.31 

NARMAX 9.46 

ISEM 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

NARMAX 15.15 

 

The experiments were conducted using an Intel Pentium Quad Core Processor N4200, and the 

run times taken for the ISEM MISO models to output all the combinations to find the lowest AIC 
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values are included in Table 5.15. Compared to Table 4.4, the computation time for each model 

to compute all the combinations of order terms is twice as long for the MISO models.  

Table 5.15: Run times to fit the optimal ISEM MISO models 

Model Range Run Time 

ARMAX(3, 9) p = (0, 10), q = (0, 10) 6,881 seconds 

ARIMAX(1, 1, 9) p = (0, 10), q = (0, 10) 25,124 seconds 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 
p = (1, 4), q = (1, 4), 
P = (1, 3), Q = (1, 3) 

54,523 seconds 

 

5.7 Conclusion  

This chapter examined and compared MISO time-series prediction models with energy-related 

input data and explored their suitability for accurately forecasting day-ahead electricity price in 

the BETTA and ISEM markets. For each of the statistical MISO models stationarity, trend, and 

seasonality were considered during model identification and estimation to help find optimal 

order terms and improve overall model performance. RMSE values were compared for each of 

the standard and seasonal model experiments to determine if model validation accuracy can 

improve depending on modelling inputs, trend, and seasonality.  

The ARMAX experimental results determined ARMAX(8, 0) to be the best model with BETTA 

market data and ARMAX(3, 9) to be the best model with ISEM market data. Due to fluctuating 

trends in energy data, ARIMAX was considered to determine if model performance could be 

further enhanced. The ARIMAX experimental results noted ARIMAX(8, 1, 2) to be the best model 

with BETTA market data and ARIMAX(1,1,9) to be the best model with ISEM market data. To 

capture daily trends but to try to improve model accuracy further, seasonality was considered 

in future prediction models. The SARIMAX experimental results displayed reasonable model 

accuracy with SARIMAX(2, 1, 3) (2, 0, 1, 24) being the best model when using the BETTA market 

data and SARIMAX(2, 1, 2) (2, 0, 2, 24) being the best model when using the ISEM market data. 

The NARMAX experimental results emphasized that exogenous variables do help to improve 

model accuracy, in particular with ISEM market data, and determined that the most dominant 

energy-related factors were historical electricity price, demand, and wind in the BETTA market 

and were historical electricity price, demand, and system generation in the ISEM market. The 

experiments observed that SARIMAX models were the best at forecasting day-ahead electricity 

price. Comparing the two markets, the BETTA market resulted in a better overall model accuracy 

for each of the individual MISO models.  

Throughout Chapter 4 and Chapter 5, SISO and MISO models were examined with real energy 

market data and the corresponding RMSE values for each of these models are presented in Table 

5.16. The findings are reasonable as the results are similar between the two chapters: SARIMAX 
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is the most accurate model and BETTA is the easier market to predict. Seasonal models 

performed the best overall, outputting the lowest RMSE values: when all exogenous variables 

are included as model inputs for the BETTA market and when only historical price is included for 

the ISEM market. This indicates that including all energy-related factors as model inputs might 

reduce prediction accuracy due to multicollinearity in the data when forecasting in the ISEM 

market and thus it may help improve model performance if only significant energy-related 

factors identified from NARMAX were included as model inputs.  

Table 5.16: RMSE values of all SISO and MISO models 

Market Model RMSE 

BETTA 

 

ARMA(9, 7) 10.91 

ARIMA(9, 1, 7) 9.94 

SARIMA(3, 1, 2)(2, 0, 2, 24) 9.67 

ARMAX(8, 0) 9.59 

ARIMAX(8, 1, 2) 11.09 

SARIMAX(2, 1, 3)(2, 0, 1, 24) 9.31 

NARMAX 9.46 

ISEM 

 

 

 

 

 

 

ARMA(9, 8) 14.99 

ARIMA(8, 1, 8) 14.86 

SARIMA(3, 1, 3)(2, 0, 2, 24) 14.12 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

NARMAX 15.15 

 

This chapter investigated model performance of MISO models to determine if energy-related 

factors as inputs improve model accuracy and to determine which exogenous variables had the 

most influence on day-ahead electricity price. With the inclusion of exogenous inputs, model 

performance does improve therefore it is important to consider energy-related factors in 

electricity price forecasting. Since traditional statistical time-series models assume stationarity 

but it is normal for energy data to display non-stationary traits, it would be beneficial to predict 

day-ahead electricity price by first utilizing the statistical modelling frameworks and combining 

them with a transparent linear polynomial NARMAX model to enhance the accuracy of the 

statistical models. In the next chapter, the identified key energy-related factors from the 

NARMAX summary results will be applied as inputs to refined statistical models (parsimonious) 

with the aim of further improving model performance and electricity price prediction accuracy.   
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Chapter 6  

Refined Models 

 

6.1 Introduction  

This chapter will first examine correlated peak lags for each individual energy-related factor. Li 

et al. [18] showed, through autocorrelation testing, that every 24-hour lag peaked suggesting 

that same hour energy data provides strong correlations and therefore would be best to use as 

input in a forecasting model. Lagged input variables in a regression analysis can be used to 

determine if a relationship exists with the dependent price variable [8]. Autocorrelation reveals 

the similarity between data observations in terms of the time lag function and autocorrelation 

testing identifies correlations when applied to time-series lag input. Dividing a time-series into 

fixed daily time periods of 24 hours enables the observation of trends to create a homogeneous 

process and improve parameter estimates compared with a model which considers the whole 

time-series [52].  

This research follows on from Chapter 5 by developing parsimonious models through utilising 

the identified key energy-related factors from the transparent Nonlinear AutoRegressive 

Moving Average models with eXogenous variables (NARMAX) model as inputs to the refined 

statistical AutoRegressive Moving Average with eXogenous variables (ARMAX), AutoRegressive 

Integrated Moving Average with eXogenous variables (ARIMAX), and Seasonal AutoRegressive 

Integrated Moving Average with eXogenous variables (SARIMAX) original and correlated lags 

models. This chapter focusses on the third research question listed in Chapter 1: “Can 

transparent models identify key factors that influence electricity price?” with the aim of 

improving model performance and accuracy of day-ahead electricity price forecasting models. 

Research work in this chapter is published in the following:   

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Seasonal Models for Forecasting Day-

Ahead Electricity Prices”, in Proceedings of International Conference on Time Series and 

Forecasting, ITISE 2019, pp. 310–320. 

All the models presented in this chapter were tested separately with the Irish Integrated Single 

Electricity Market (ISEM) market data, analysed from May 2019 until April 2020.   

First, each of the correlated lags models are displayed and examined to determine the key 

energy-related lag factors for the ISEM market. Next, the refined original statistical models are 

tested including only the following significant energy-related factors from the NARMAX model 
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findings in Section 5.6 as inputs: historical electricity price, system generation, demand, CO2 

intensity, CO2 emissions, load, and temperature. Finally, the refined correlated lags models are 

tested with only the significant input factors from the NARMAX model examined in Section 6.6: 

historical electricity price, historical electricity price Lag 2, historical electricity price Lag 23, 

historical electricity price Lag 24, system generation, system generation Lag 1, system 

generation Lag 2, system generation Lag 3, system generation Lag 22, system generation Lag 23, 

demand, demand Lag 1, demand Lag 2, demand Lag 3, demand Lag 22, East-West 

interconnector, CO2 intensity, CO2 emissions, CO2 emissions Lag 1, CO2 emissions Lag 2, load, 

load Lag 1, temperature , temperature  Lag 1, and temperature Lag 22. Throughout the chapter, 

the Root Mean Squared Error (RMSE) values for each refined model are compared against the 

RMSE values from the NARMAX modelling results. The experimental set-up and presented run-

times in Chapter 5 are the same in this chapter. 

 

6.2 Correlated Lags  

The previous statistical models displayed in Chapter 5 provided favourable results but there was 

still room for improvement to lower the RMSE values and improve model accuracy. Lagging 

energy-related inputs will determine the peak lags when an exogenous variable exhibits strong 

correlation [18]. Considering lagged exogenous variables that influence electricity prices as 

model inputs should improve prediction accuracy, which was noted as a limitation in a study 

focussed on Sweden’s energy market which only considered a one-day influence and no time 

lags [56]. Autocorrelation testing was performed on each of the energy-related factors 

individually with the initial lags selected from ACF plots as any positive lag which falls outside 

the 95% confidence interval. The ACF plots are displayed in Figure 6.1 – Figure 6.10 for each 

energy-related factor.  

 

 
Figure 6.1: ISEM market autocorrelation testing of lagged historical electricity price 
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Figure 6.2: ISEM market autocorrelation testing of lagged system generation 

 

 
Figure 6.3: ISEM market autocorrelation testing of lagged demand 

 

 
Figure 6.4: ISEM market autocorrelation testing of lagged wind 

 

 
Figure 6.5: ISEM market autocorrelation testing of lagged East-West interconnector 
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Figure 6.6: ISEM market autocorrelation testing of lagged Moyle  interconnector 

 

 
Figure 6.7: ISEM market autocorrelation testing of lagged CO2 intensity 

 

 
Figure 6.8: ISEM market autocorrelation testing of lagged CO2 emissions 

 

 
Figure 6.9: ISEM market autocorrelation testing of lagged load 
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Figure 6.10: ISEM market autocorrelation testing of lagged temperature 

 

As expected the majority of exogenous variables displayed strong correlation every 24 hours. 

For any ACF plot displaying a downward slope (e.g. Figure 6.4), only the first six lags were 

selected as initial lags. The significant peak lags were identified as a subset from the initial lags 

and subsequently included as model inputs in the statistical and non-linear models to examine 

whether correlated lags influence model accuracy. The peak lags from each factor’s 

autocorrelation plots are presented in Table 6.1 for the ISEM market. These peak lags will be 

used in Sections 6.3 to 6.6 as model inputs in the forecasting models to observe if significant lags 

can improve prediction accuracy.  

Table 6.1: ISEM energy-related factors peak lags 

Energy-Related Factors Unit Peak Lags from Autocorrelation Plots 

Historical Electricity Price  GBP per Megawatt Hour Lags 1, 2, 23, 24 

System Generation Megawatt Lags 1, 2, 3, 22, 23, 24 

Demand Megawatt Lags 1, 2, 3, 22, 23, 24 

Wind Megawatt Lag 1 

East-West Interconnector Megawatt Lags 1, 2, 3, 24 

Moyle Interconnector Megawatt Lags 1, 2, 3, 24 

CO2 intensity Kilowatt Hour Lag 1 

CO2 emissions CO2 intensity per Hour Lags 1, 2, 3, 22, 23, 24 

Load Megawatt Lags 1, 2, 3, 22, 23, 24 

Temperature Celsius Lags 1, 2, 3, 22, 23, 24 

  

6.3 Correlated Lags ARMAX Experiment  

Including the additional ISEM market lag data, the ranges for order terms p and q were set from 

0 to 10. From the brute force search the lowest AIC value was 27374.90 with optimal order terms 

being p=1 and q=9. The RMSE for ARMAX(1, 9) model with all initial lags included was 16.00 

whereas the RMSE for the ARMAX(1, 9) model with peak lags was 14.66, therefore peak lags 

were selected for the experiment. The model function for correlated lags ARMAX(1, 9) for 

predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.80𝑌𝑡−1 +  0.16𝜀𝑡−1 +  0.060𝜀𝑡−2 +  0.032𝜀𝑡−3 +  0.10𝜀𝑡−4 −  0.012𝜀𝑡−5 +

0.047𝜀𝑡−6 +  0.071𝜀𝑡−7 +  0.042𝜀𝑡−8 +  0.065𝜀𝑡−9 +  0.28𝑈1 −  0.014𝑈1(𝑡−1) +
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0.0023𝑈1(𝑡−2) +  0.023𝑈1(𝑡−23) +  0.093𝑈1(𝑡−24) −   0.0008𝑈2 −   0.0003𝑈2(𝑡−1) +

2.87𝑒−05𝑈2(𝑡−2) +   0.0004𝑈2(𝑡−3) −   0.0002𝑈2(𝑡−22) +   0.0005𝑈2(𝑡−23) −

0.0002𝑈2(𝑡−24) + 0.0018𝑈3 +  0.0001𝑈3(𝑡−1) −   3.83𝑒−05𝑈3(𝑡−2) −  0.0012𝑈3(𝑡−3) +

0.0009𝑈3(𝑡−22) +  0.0007𝑈3(𝑡−23) − 0.0008𝑈3(𝑡−24) −  0.0002𝑈4 −  0.0002𝑈4(𝑡−1) +

0.0004𝑈5 +  8.53𝑒−05𝑈5(𝑡−1) +  0.0001𝑈5(𝑡−2) +  0.0003𝑈5(𝑡−3) −  0.0001𝑈5(𝑡−24) −

0.0004𝑈6 +  4.58𝑒−05𝑈6(𝑡−1) −  0.0008𝑈6(𝑡−2) −  0.0005𝑈6(𝑡−3) +  0.0001𝑈6(𝑡−24) −

0.0047𝑈7 −  0.0027𝑈7(𝑡−1) +  0.0011𝑈8 +   0.0007𝑈8(𝑡−1) −   1.15𝑒−05𝑈8(𝑡−2) −

0.0004𝑈8(𝑡−3) −   0.0004𝑈8(𝑡−22) −  1.13𝑒−07𝑈8(𝑡−23) +   5.71𝑒−05𝑈8(𝑡−24) +  0.0001𝑈9 +

0.0014𝑈9(𝑡−1) +  0.0009𝑈9(𝑡−2) +  0.0001𝑈9(𝑡−3) −  0.0010𝑈9(𝑡−22) −  0.0014𝑈9(𝑡−23) −

0.0002𝑈9(𝑡−24) −  1.96𝑈10 +  1.45𝑈10(𝑡−1) +  1.35𝑈10(𝑡−2) − 0.95𝑈10(𝑡−3) +

0.087𝑈10(𝑡−22) +  0.049𝑈10(𝑡−23) +  0.38𝑈10(𝑡−24) + 16.44                                                          (6.1)                                                                       

 

Table 6.2:  ISEM market correlated lags ARMAX(1,9) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) <0.001 0.379 0.881   0.149 <0.001 

System Generation (U2) <0.001 0.200 0.894 0.078 0.237 0.014 0.307 

Demand (U3) <0.001 0.751 0.926 <0.001 0.032 0.131 0.014 

Wind (U4) 0.389 0.483      

East-West Interconnector (U5) 0.136 0.747 0.660 0.180   0.615 

Moyle Interconnector (U6) 0.245 0.897 0.027 0.189   0.682 

CO2 Intensity (U7) 0.006  0.121      

CO2 Emissions (U8) 0.014 0.118 0.975 0.204 0.199 1.000 0.867 

Load (U9) 0.780 0.045 0.193 0.869 0.004 0.041 0.754 

Temperature (U10) <0.001 <0.001 <0.001 <0.001 0.692 0.836 0.118 

 
The most weighted exogenous variable was temperature (-1.96) followed by temperature Lag 1 

(1.45). Table 6.2 presents the summary statistics for the ISEM ARMAX(1, 9) correlated model. 

Observing the p-values, the following is noted: historical electricity price, system generation, 

demand, CO2 intensity, CO2 emissions, and temperature were significant for current inputs; 

load and temperature were significant for Lag 1; Moyle interconnector and temperature were 

significant for Lag 2; demand and temperature were significant for Lag 3; demand and load were 

significant for Lag 22; system generation and load were significant for Lag 23, and historical 

electricity price and demand were significant for Lag 24. Wind and East-West interconnector 

were the only two variables not significant in the correlated model. The original ISEM ARMAX 

model had similar results without the Moyle interconnector and CO2 emissions.  

Figure 6.11 illustrates the actual and predicted prices for the ARMAX(1, 9) model validation 

period. The figure shows an accurate model fit with a RMSE value of 14.66, which is a great 

improvement from the original ISEM ARMAX model performance (RMSE=18.73) in Section 5.3. 

Again the predicted values struggle to reach all the peaks and troughs but overall the model 
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performs consistently with promising results. The ISEM ARMAX(1, 9) model could be considered 

to forecast day-ahead electricity prices. 

 
Figure 6.11: ISEM market correlated lags ARMAX(1,9) model 

 

6.4 Correlated Lags ARIMAX Experiment  

For the ISEM ARIMAX correlated lags model, the ranges for order terms p and q were set from 

0 to 10. From the brute force search the lowest AIC value was 27379.15 with optimal order terms 

being p=7, d=1, and q=6. The model function for correlated lags ARIMAX(7, 1, 6) for predicted 𝑌𝑡 

is given as:  

𝑌𝑡 = 0.18𝑌𝑡−1 +  0.10𝑌𝑡−2 −  0.022𝑌𝑡−3 +  0.21𝑌𝑡−4 +  0.17𝑌𝑡−5 +  0.021𝑌𝑡−6 +

 0.087𝑌𝑡−7 −  0.049𝜀𝑡−1 −  0.096𝜀𝑡−2 +  0.086𝜀𝑡−3 −  0.046𝜀𝑡−4 −  0.13𝜀𝑡−5 + 0.022𝜀𝑡−6 +

 0.27𝑈1 −  0.023𝑈1(𝑡−1) + 0.0051𝑈1(𝑡−2) +  0.013𝑈1(𝑡−23) +  0.10𝑈1(𝑡−24) −   0.0012𝑈2 −

 0.0002𝑈2(𝑡−1) + 8.67𝑒−06𝑈2(𝑡−2) +   0.0003𝑈2(𝑡−3) +  9.70𝑒−05𝑈2(𝑡−22) +

 0.0004𝑈2(𝑡−23) − 0.0001𝑈2(𝑡−24) + 0.0024𝑈3 +  0.0003𝑈3(𝑡−1) −   0.0002𝑈3(𝑡−2) −

0.0008𝑈3(𝑡−3) + 0.0004𝑈3(𝑡−22) +  0.0011𝑈3(𝑡−23) − 0.0006𝑈3(𝑡−24) +  3.04𝑒−05𝑈4 −

 5.87𝑒−05𝑈4(𝑡−1) + 0.0002𝑈5 +  0.0001𝑈5(𝑡−1) +  0.0001𝑈5(𝑡−2) +  0.0004𝑈5(𝑡−3) −

 0.0001𝑈5(𝑡−24) − 0.0002𝑈6 +  0.0002𝑈6(𝑡−1) −  0.0007𝑈6(𝑡−2) −  0.0004𝑈6(𝑡−3) +

 0.0002𝑈6(𝑡−24) − 0.012𝑈7 +  6.07𝑒−06𝑈7(𝑡−1) +  0.0023𝑈8 +   0.0010𝑈8(𝑡−1) +

  3.16𝑒−05𝑈8(𝑡−2) − 0.0004𝑈8(𝑡−3) −   0.0003𝑈8(𝑡−22) +  9.69𝑒−05𝑈8(𝑡−23) −

 0.0002𝑈8(𝑡−24) −  0.0002𝑈9 + 0.0004𝑈9(𝑡−1) +  0.0009𝑈9(𝑡−2) +  0.0002𝑈9(𝑡−3) −

0.0004𝑈9(𝑡−22) −  0.0011𝑈9(𝑡−23) − 0.0009𝑈9(𝑡−24) −  0.38𝑈10 +  0.48𝑈10(𝑡−1) +

0.45𝑈10(𝑡−2) − 0.58𝑈10(𝑡−3) − 0.16𝑈10(𝑡−22) −  0.44𝑈10(𝑡−23) −  0.38𝑈10(𝑡−24) + 30.34  (6.2)                                                                                                                               
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Table 6.3:  ISEM market correlated lags ARIMAX(7,1,6) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) <0.001 0.048 0.708   0.332 <0.001 

System Generation (U2) <0.001 0.365 0.967 0.167 0.616 0.023 0.587 

Demand (U3) <0.001 0.326 0.630 <0.001 0.296 <0.001 0.029 

Wind (U4) 0.926 0.853      

East-West Interconnector (U5) 0.376 0.567 0.575 0.120   0.643 

Moyle Interconnector (U6) 0.486 0.616 0.043 0.231   0.492 

CO2 Intensity (U7) <0.001  0.997      

CO2 Emissions (U8) <0.001 0.041 0.937 0.335 0.418 0.783 0.605 

Load (U9) 0.691 0.567 0.192 0.807 0.402 0.135 0.180 

Temperature (U10) 0.107 0.056 0.027 0.007 0.478 0.083 0.130 

 
The most weighted exogenous variable was temperature Lag 3 (-0.58) followed by temperature 

Lag 1 (-0.48). Table 6.3 presents the summary statistics for the ISEM ARIMAX(7, 1, 6) correlated 

model. Observing the p-values, the following is noted: historical electricity price, system 

generation, demand, CO2 intensity, and CO2 emissions were significant for current inputs; 

historical electricity price, CO2 emissions, and temperature were significant for Lag 1; Moyle 

interconnector and temperature were significant for Lag 2; demand and temperature were 

significant for Lag 3; load was significant for Lag 22; system generation and demand were 

significant for Lag 23, and historical electricity price and demand were significant for Lag 24. 

Wind and East-West interconnector were the only two variables not significant in the correlated 

model. The original ISEM ARIMAX model had wind as a significant variable and five variables not 

considered significant: system generation, East-West interconnector, Moyle interconnector, 

CO2 intensity, and CO2 emissions.  

 
Figure 6.12: ISEM market correlated lags ARIMAX(7,1,6) model 

 

Figure 6.12 illustrates the actual and predicted price values for the ARIMAX(7, 1, 6) model 

validation period. The figure shows an accurate model fit with a RMSE value of 14.47, which is a 
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slight improvement from the original ISEM ARIMAX model performance (RMSE=14.87) in 

Section 5.4. Overall, the predicted electricity prices generally match the pattern of the actual 

prices but have some difficulty reaching all the peaks and troughs. 

 

6.5 Correlated Lags SARIMAX Experiment  

The ISEM SARIMAX model ranges are identical to the ranges set in Section 4.4 for the ISEM 

SARIMA experiment: p and q ranged between 1 and 4, P and Q ranged between 1 and 3, d was 

set to 1, D was set to 0, and S was set to 24. The lowest AIC value was 27478.86 with optimal 

order terms p=3, q=3, P=2, and Q=1. The SARIMAX(3, 1, 3) (2, 0, 1, 24) correlated lags model 

function is given as: 

𝑌𝑡 = 0.023𝛻𝑌𝑡−1 + 0.28𝛻𝑌𝑡−2 + 0.26𝛻𝑌𝑡−3 −  0.0019𝛻𝜀𝑡−1 −  0.36𝛻𝜀𝑡−2  −  0.37𝛻𝜀𝑡−3 +

0.19𝑆24𝑌𝑡−24 −  0.053𝑆48𝑌𝑡−48 − 0.22𝑆24𝜀𝑡−24  +  0.28𝑈1 −  0.023𝑈1(𝑡−1) +

0.0008𝑈1(𝑡−2) +  0.012𝑈1(𝑡−23) +  0.10𝑈1(𝑡−24) −   0.0004𝑈2 −   6.71𝑒−06𝑈2(𝑡−1) +

0.0001𝑈2(𝑡−2) +   0.0003𝑈2(𝑡−3) −   6.61𝑒−05𝑈2(𝑡−22) +   0.0006𝑈2(𝑡−23) −

0.0002𝑈2(𝑡−24) + 0.0014𝑈3 + 5.54𝑒−05𝑈3(𝑡−1) −   2.03𝑒−05𝑈3(𝑡−2) −  0.0009𝑈3(𝑡−3) +

9.79𝑒−05𝑈3(𝑡−22) +  0.0004𝑈3(𝑡−23) − 0.0004𝑈3(𝑡−24) +  0.0002𝑈4 +  2.17𝑒−05𝑈4(𝑡−1) +

0.0004𝑈5 +  0.0002𝑈5(𝑡−1) +  0.0003𝑈5(𝑡−2) +  0.0004𝑈5(𝑡−3) +  2.38𝑒−05𝑈5(𝑡−24) −

0.0002𝑈6 +  5.92𝑒−05𝑈6(𝑡−1) −  0.0007𝑈6(𝑡−2) −  0.0004𝑈6(𝑡−3) +  0.0001𝑈6(𝑡−24) −

0.0013𝑈7 +  0.0006𝑈7(𝑡−1) +  0.0006𝑈8 +   0.0001𝑈8(𝑡−1) −   0.0003𝑈8(𝑡−2) −

0.0004𝑈8(𝑡−3) −   0.0002𝑈8(𝑡−22) +   0.0001𝑈8(𝑡−23) −   5.54𝑒−05𝑈8(𝑡−24) +  0.0002𝑈9 +

0.0016𝑈9(𝑡−1) +  0.0011𝑈9(𝑡−2) +  0.0001𝑈9(𝑡−3) −  0.0005𝑈9(𝑡−22) −  0.0003𝑈9(𝑡−23) +

0.0002𝑈9(𝑡−24) −  0.38𝑈10 +  0.48𝑈10(𝑡−1) +  0.45𝑈10(𝑡−2) − 0.58𝑈10(𝑡−3) −

0.16𝑈10(𝑡−22) −  0.44𝑈10(𝑡−23) −  0.38𝑈10(𝑡−24) + 30.77                                                            (6.3) 

Temperature Lag 3 is the most weighted exogenous variable (-0.58) and temperature Lag 1 is 

the second most weighted variable (0.48). The summary statistics for SARIMAX(3, 1, 3)(2, 0, 1, 

24) model are displayed in Table 6.4. From the p-values the following can be determined: 

historical electricity price and demand were significant for current inputs; load was significant 

for Lag 1; demand and temperature were significant for Lag 3; and system generation was 

significant for Lag 23. Overall, 5 variables were significant in the correlated model results 

(historical electricity price, system generation, demand, load, and temperature). These are 

similar findings to the original SARIMAX model in Section 5.5 with the addition of system 

generation and load.    
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Table 6.4:  ISEM market correlated lags SARIMAX(3,1,3)(2,0,1,24) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) 0.012 0.083 0.959   0.424 0.070 

System Generation (U2) 0.194 0.981 0.680 0.202 0.759 0.006 0.426 

Demand (U3) <0.001 0.889 0.961 0.002 0.830 0.287 0.252 

Wind (U4) 0.527 0.953      

East-West Interconnector (U5) 0.121 0.529 0.368 0.126   0.926 

Moyle Interconnector (U6) 0.575 0.875 0.080 0.270   0.717 

CO2 Intensity (U7) 0.523  0.785      

CO2 Emissions (U8) 0.322 0.816 0.538 0.366 0.669 0.770 0.887 

Load (U9) 0.729 0.031 0.172 0.873 0.317 0.693 0.778 

Temperature (U10) 0.152 0.094 0.058 0.016 0.530 0.121 0.193 

 
The model is an accurate fit with a RMSE value of 14.36, which is slightly higher from the original 

ISEM SARIMAX model performance (RMSE=14.32). Figure 6.13 shows the actual and predicted 

electricity prices plotted for the SARIMAX(3, 1, 3)(2, 0, 1, 24) model. The model fit is reasonably 

accurate with no extreme declines in the consistency between actual and predicted values. 

 

 
Figure 6.13: ISEM market correlated lags SARIMAX(3,1,3)(2,0,1,24) model 

 

6.6 Correlated Lags NARMAX Experiment  

A linear polynomial NARMAX model including correlated lags with Error Reduction Ratio (ERR) 

set to 0.05 was considered in this experiment. All energy-related inputs and correlated peak lags 

were included and, once the required iterations were reached, the final optimal model 

contained only the significant key exogenous variables. The model function of the linear 

NARMAX correlated model is given as: 

𝑌𝑡 = 0.32𝑈1 −  0.074𝑈1(𝑡−2) +  0.032𝑈1(𝑡−23) +  0.029𝑈1(𝑡−24) −   0.0020𝑈2 +

0.0010𝑈2(𝑡−1) +   0.0002𝑈2(𝑡−2) +   0.0006𝑈2(𝑡−3) −   0.0008𝑈2(𝑡−22) +   0.0007𝑈2(𝑡−23) +
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0.0016𝑈3 −  0.0015𝑈3(𝑡−1) +   0.0033𝑈3(𝑡−2) −  0.0036𝑈3(𝑡−3) −  0.0012𝑈3(𝑡−22) +

0.0005𝑈5 +  0.0038𝑈7 +  0.0015𝑈8 −   0.0005𝑈8(𝑡−1) −   0.0021𝑈8(𝑡−2) +  0.0028𝑈9 +

0.0021𝑈9(𝑡−1) −  2.52𝑈10 +  2.54𝑈10(𝑡−1) + 0.37𝑈10(𝑡−22) + 12.34                                               (6.4)                                                                                               

The model estimation RMSE value was 12.10 which is an improvement from the ISEM original 

NARMAX model (RMSE=12.58) in Section 5.6. The model validation RMSE value was 15.02 which 

is a slight improvement over the original RMSE value (15.15) in Section 5.6. Temperature Lag 1 

was the most weighted factor (2.54) and historical electricity price had the largest ERR ranking 

(30.65). The final model had 8 significant factors and 17 lagged versions consisting of historical 

electricity price, system generation, demand, East-West interconnector, CO2 intensity, CO2 

emissions, load, and temperature. Like the original NARMAX results, wind and Moyle 

interconnector were found to be insignificant and were completely removed from the final 

NARMAX model. However the East-West interconnector was now significant for current value 

only.  

Table 6.5: Error Reduction Ratio for ISEM market correlated lags NARMAX model 

ERR Energy-Related Factors (Model Term) 

30.653281 Historical electricity price (U1) 

2.673473 Demand (U3) 

0.879478 System generation (U2) 

0.670583 Historical electricity price lag 23 (U1) 

0.668477 Demand lag 3 (U3) 

0.591910 Historical electricity price lag 24 (U1) 

0.484539 System generation lag 23 (U2) 

0.476113 Demand lag 22 (U3) 

0.453832 Demand lag 2 (U3) 

0.451905 System generation lag 3 (U2) 

0.443696 Temperature lag 1 (U10) 

0.353654 Demand lag 1 (U3) 

0.298665 Load (U9) 

0.262550 Historical electricity price lag 2 (U1) 

0.236631 CO2 emissions lag 1 (U8) 

0.214814 Temperature (U10) 

0.199812 CO2 emissions lag 2 (U8) 

0.166720 System generation lag 2 (U2) 

0.110188 Temperature lag 22 (U10) 

0.098272 CO2 intensity (U7) 

0.091632 System generation lag 1 (U2) 

0.081114 East-West interconnector (U5) 

0.068008 System generation lag 22 (U2) 

0.065651 Load lag1 (U9) 

0.050782 CO2 emissions (U8) 

 

Table 6.5 displays the percentage variance of each significant variable, ranking the ERR terms 

from largest to smallest. The three largest ERR values approximated to a 34.20 proportion of the 

day-ahead price variance and these three values were made up of the model terms from 

historical electricity price (30.65), demand (2.67), and system generation (0.88). Considering 

historical electricity price appeared in the three largest ERR for both the original and correlated 
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NARMAX model suggests that historical electricity price has a significant influence on predicting 

electricity prices in the ISEM market. Figure 6.14 displays the model validation period (31st 

October 2019 Hour 12 until 30th April 2020 Hour 23) for the optimal ISEM NARMAX model with 

correlated lags. The predicted price values consistently followed the pattern of the actual price 

values but failed to reach the peaks and troughs.   

 
Figure 6.14: ISEM market correlated lags NARMAX model 

 
Table 6.6 displays the RMSE values of the optimal ARMAX, SARIMAX, and NARMAX original and 

correlated lags models for the ISEM market. The ARMAX prediction model accuracy greatly 

improved and the NARMAX slightly improved with the inclusion of correlated lags. The SARIMAX 

correlated lags model was not as accurate as the original SARIMAX model, however the RMSE 

values are similar. 

Table 6.6: ISEM original and correlated lags models RMSE values 

Type Model RMSE 

Original 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

NARMAX 15.15 

Correlated 

ARMAX(1, 9) 14.66 

ARIMAX(1, 1, 9) 14.47 

SARIMAX(3, 1, 3)(2, 0, 1, 24) 14.36 

NARMAX 15.02 
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6.7 Refined ARMAX Experiment  

An approach was applied to determine if the significant NARMAX factors could refined the 

statistical ARMAX model and improve model accuracy. The model function for a refined 

ARMAX(3, 9) consists of autoregressive lags for 𝑌, moving average lags for prediction error 𝜀, 

exogenous input values for 𝑈 and is given as:  

𝑌𝑡 = 0.70𝑌𝑡−1 − 0.32𝑌𝑡−2 +  0.44𝑌𝑡−3 +  0.30𝜀𝑡−1 +  0.52𝜀𝑡−2 +  0.0070𝜀𝑡−3 +  0.023𝜀𝑡−4 −

0.092𝜀𝑡−5 −  0.039𝜀𝑡−6 −  0.035𝜀𝑡−7 +  0.0038𝜀𝑡−8 +  0.090𝜀𝑡−9 +  0.33𝑈1 −   0.0006𝑈2 +

0.0022𝑈3 −  0.0031𝑈7 +  0.0005𝑈8 +  0.0008𝑈9 −  0.44𝑈10 + 2.71                                           (6.5)                                                                                                       

Table 6.7 displays the summary results for the refined ISEM ARMAX(3, 9) model. Temperature 

was the most weighted variable (0.44) and historical electricity price was the second most 

weighted variable (0.33). This is the same outcome as the original ISEM ARMAX(3, 9) model from 

Section 5.3. All variables have significant p-values apart from CO2 intensity and CO2 emissions. 

Previously CO2 intensity was significant in the original model, however in the refined model it is 

narrowly insignificant with a p-value of 0.054.  

Table 6.7:  ISEM market refined ARMAX(3,9) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

System Generation (U2) 0.006 

Demand (U3) <0.001 

CO2 Intensity (U7) 0.054 

CO2 Emissions (U8) 0.243 

Load (U9) 0.029 

Temperature (U10) 0.008 

 

 

Figure 6.15: ISEM market refined ARMAX(3,9) model 
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The RMSE value for the refined model was 18.20 which is a slight improvement in model 

accuracy compared with the RMSE value of 18.73 in the original model. Figure 6.15 illustrates 

the refined ARMAX(3, 9) model validation period for the ISEM market. The predicted price values 

match the pattern of the actual price values but struggle to reach the peaks and troughs. This 

suggests that even though the refined ARMAX model slightly improves model performance, the 

ISEM market is still difficult to forecast. 

To compare model performance of the NARMAX, original ARMAX, and refined ARMAX models, 

the RMSE values are presented in Table 6.8. Observing the results, when only the significant 

NARMAX factors were considered in the refined ARMAX model, the RMSE value slightly reduced 

and therefore model accuracy improved. The refined ISEM ARMAX model does not perform 

better than the ISEM NARMAX model. Nonetheless these results emphasise that utilising a 

NARMAX model to find key external factors and then applying these factors as inputs in popular 

statistical models enhances overall model accuracy.     

Table 6.8: RMSE values for original and refined ARMAX models 

Model RMSE 

NARMAX 15.15 

ARMAX(3, 9) 18.73 

Refined ARMAX(3, 9) 18.20 

 

6.8 Refined ARIMAX Experiment  

The model function for refined ARIMAX(1, 1, 9) is given as:  

𝑌𝑡 = 0.16𝑌𝑡−1 −  0.10𝜀𝑡−1 −  0.070𝜀𝑡−2 −  0.11𝜀𝑡−3 −  0.018𝜀𝑡−4 − 0.14𝜀𝑡−5 −  0.069𝜀𝑡−6 −

 0.025𝜀𝑡−7 −  0.015𝜀𝑡−8 +  0.030𝜀𝑡−9 +  0.32𝑈1 −   0.0002𝑈2 + 0.0021𝑈3 −  0.0032𝑈7 +

 0.0002𝑈8 +  0.0008𝑈9 −  0.77𝑈10 + 31.56                                                                                     (6.6)                                                                                                       

Table 6.9:  ISEM market refined ARIMAX(1,1,9) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

System Generation (U2) 0.294 

Demand (U3) <0.001 

CO2 Intensity (U7) 0.072 

CO2 Emissions (U8) 0.682 

Load (U9) 0.006 

Temperature (U10) <0.001 

 

Table 6.9 displays the summary results for the refined ISEM ARIMAX(1, 1, 9) model. Temperature 

was the most weighted variable (0.77) and historical electricity price was the second most 
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weighted variable (0.16). This is the same outcome as the original ISEM ARIMAX(1, 1, 9) model 

from Section 5.4. All variables have significant p-values apart from system generation, CO2 

intensity, and CO2 emissions. The RMSE value for the refined model was 14.86 which is a similar 

finding to the RMSE value of 14.87 in the original model. Figure 6.16 illustrates the refined 

ARIMAX(1, 1, 9) model validation period. The predicted price values generally match the pattern 

of the actual price values but struggle to reach the peaks and troughs. Overall the refined 

ARIMAX model can accurately predict day-ahead ISEM electricity prices. 

 

 

Figure 6.16: ISEM market refined ARMAX(1,1,9) model 

 
The RMSE values of the NARMAX, original ARIMAX, and refined ARIMAX models are presented 

in Table 6.10. Observing the results all models have a similar accuracy, nonetheless NARMAX 

performed the worst and the refined ARIMAX performed the best. This highlights that only 

keeping significant NARMAX factors as model inputs does improve model performance.   

Table 6.10: RMSE values for original and refined ARIMAX models 

Model RMSE 

NARMAX 15.15 

ARIMAX(1, 1, 9) 14.87 

Refined ARIMAX(1, 1, 9) 14.86 

 

6.9 Refined SARIMAX Experiment  

The refined SARIMAX(2, 1, 2)(2, 0, 2, 24) model function for the ISEM market is given as: 
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𝑌𝑡 = 0.54𝛻𝑌𝑡−1 + 0.27𝛻𝑌𝑡−2 −  0.49𝛻𝜀𝑡−1 −  0.42𝛻𝜀𝑡−2  +  0.29𝑆24𝑌𝑡−24 + 0.30𝑆48𝑌𝑡−48 −

0.31𝑆24𝜀𝑡−24  − 0.20𝑆48𝜀𝑡−48 +  0.24𝑈1 −   9.22𝑒−05𝑈2 +  0.0026𝑈3 −  5.39𝑒−05𝑈7 +

0.0001𝑈8 +  0.0003𝑈9 −  0.77𝑈10 + 32.14                                                                                     (6.7) 

Table 6.11 presents the summary statistics with temperature being the most weighted variable 

(0.77) followed by historical electricity price (0.24). This was similar to the most weighted 

variables from the original ISEM SARIMAX(2, 1, 2)(2, 0, 2, 24) model results in Section 5.5. 

Observing the p-values: historical electricity price, demand, and temperature were highly 

significant (0.000) which is similar to the original model results apart from the East-West 

interconnector, which was not included in the refined model.  

Table 6.11:  ISEM market refined SARIMAX(2,1,2)(2,0,2,24) model summary statistics 

Variable (Model Term) p-value 

Historical Electricity Price (U1) <0.001 

System Generation (U2) 0.691 

Demand (U3) <0.001 

CO2 Intensity (U7) 0.978 

CO2 Emissions (U8) 0.789 

Load (U9) 0.341 

Temperature (U10) <0.001 

 

 

Figure 6.17: ISEM market refined SARIMAX(2,1,2)(2,0,2,24) model 

 

The refined model resulted in a RMSE value of 14.10 which is slightly lower than the original 

model RMSE value of 14.32. Figure 6.17 displays the model validation period for the refined 

SARIMAX(2, 1, 2)(2, 0, 2, 24) model and, compared with the original model results (Figure 5.12 

in Section 5.5), the predicted price values accurately match more of the actual price values. 

Therefore the refined ISEM SARIMAX does improve model performance and achieves a 

reasonable forecast. Table 6.12 presents the RMSE values of the NARMAX, original SARIMAX, 



99 
 
and refined SARIMAX models for the ISEM energy market. For this table of results, NARMAX 

performed the worst with the refined SARIMAX being the optimal model, highlighting that 

significant NARMAX factors do improve model performance of statistical models.       

Table 6.12: RMSE values for original and refined SARIMAX models 

Model RMSE 

NARMAX 15.15 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

Refined SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.10 

 

6.10 Refined Correlated Lags ARMAX Experiment  

Even though the NARMAX correlated lags model performed poorer than ARMAX(1, 9) with 

correlated lags, the ARMAX correlated model was refined to only include the significant 

NARMAX factors. The model function for predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.81𝑌𝑡−1 +  0.15𝜀𝑡−1 +  0.070𝜀𝑡−2 +  0.010𝜀𝑡−3 +  0.84𝜀𝑡−4 −  0.033𝜀𝑡−5 +

0.0025𝜀𝑡−6 +  0.045𝜀𝑡−7 +  0.046𝜀𝑡−8 +  0.090𝜀𝑡−9 +  0.30𝑈1 +  0.018𝑈1(𝑡−2) +

0.023𝑈1(𝑡−23) +  0.074𝑈1(𝑡−24) −   0.0009𝑈2 −   0.0001𝑈2(𝑡−1) +   6.17𝑒−05𝑈2(𝑡−2) +

0.0002𝑈2(𝑡−3) −   0.0003𝑈2(𝑡−22) +   0.0004𝑈2(𝑡−23) + 0.0013𝑈3 +  0.0002𝑈3(𝑡−1) +

0.0002𝑈3(𝑡−2) −  0.0012𝑈3(𝑡−3) −  9.37𝑒−05𝑈3(𝑡−22) +  0.0004𝑈5 −  0.0057𝑈7 +

 0.0010𝑈8 +   0.0002𝑈8(𝑡−1) −   0.0002𝑈8(𝑡−2) +  0.0006𝑈9 +  0.0013𝑈9(𝑡−1) −   2.47𝑈10 +

 2.33𝑈10(𝑡−1) + 0.30𝑈10(𝑡−22) + 12.35                                                                                              (6.8)                                                                          

Table 6.13:  ISEM market refined correlated lags ARMAX(1,9) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) <0.001  0.246   0.115 <0.001 

System Generation (U2) <0.001 0.537 0.756 0.278 0.048 0.005  

Demand (U3) 0.001 0.400 0.509 <0.001 0.599   

East-West Interconnector (U5) 0.117       

CO2 Intensity (U7) 0.001       

CO2 Emissions (U8) 0.020 0.530 0.605     

Load (U9) 0.154 0.045      

Temperature (U10) <0.001 <0.001   0.114   

 
Table 6.13 displays the summary statistics for the refined ARMAX(1, 9) correlated lags model. 

Temperature remains the most weighted variable (-2.47) from the summary output. Historical 

electricity price, system generation, demand, CO2 intensity, CO2 emissions, and temperature 

were significant for current inputs; load and temperature were significant for Lag 1; demand 

was significant for Lag 3; system generation was significant for Lag 22; system generation was 

significant for Lag 23, and historical electricity price was significant for Lag 24. Current and Lag 
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1 inputs had the same significant variables as the correlated lags model and the East-West 

interconnector still remained not significant. The RMSE value of 15.18 was higher than the RMSE 

value of 14.66 for the ARMAX(1, 9) correlated lags model. Figure 6.18 illustrates the refined 

ARMAX(1, 9) correlated lags model fit which is reasonably accurate but compared with Figure 

6.11 the model performance has decreased. 

 

Figure 6.18: ISEM market refined correlated lags ARMAX(1,9) model 

 

6.11 Refined Correlated Lags ARIMAX Experiment  

The ARIMAX(7, 1, 6) correlated model was refined to only include the significant NARMAX 

factors. The model function for predicted 𝑌𝑡 is given as:  

𝑌𝑡 = 0.28𝑌𝑡−1 +  0.18𝑌𝑡−2 −  0.21𝑌𝑡−3 +  0.24𝑌𝑡−4 +  0.25𝑌𝑡−5 −  0.078𝑌𝑡−6 +  0.072𝑌𝑡−7 −

 0.27𝜀𝑡−1 −  0.28𝜀𝑡−2 +  0.10𝜀𝑡−3 −  0.21𝜀𝑡−4 −  0.37𝜀𝑡−5 + 0.038𝜀𝑡−6 +  0.29𝑈1 +

 0.0040𝑈1(𝑡−2) + 0.014𝑈1(𝑡−23) +  0.094𝑈1(𝑡−24) −   0.0004𝑈2 −   2.53𝑒−05𝑈2(𝑡−1) +

 0.0003𝑈2(𝑡−2) + 0.0003𝑈2(𝑡−3) −   0.0001𝑈2(𝑡−22) +   0.0005𝑈2(𝑡−23) + 0.0011𝑈3 +

 0.0004𝑈3(𝑡−1) − 7.24𝑒−08𝑈3(𝑡−2) −  0.0009𝑈3(𝑡−3) − 2.21𝑒−05𝑈3(𝑡−22) +  0.0004𝑈5 −

 0.0013𝑈7 +  0.0004𝑈8 +   0.0002𝑈8(𝑡−1) −   0.0002𝑈8(𝑡−2) +  0.0005𝑈9 +

 0.0014𝑈9(𝑡−1) −   0.48𝑈10 +  0.30𝑈10(𝑡−1) − 0.37𝑈10(𝑡−22) + 30.45                                         (6.9)                                                                

Table 6.14 displays the summary statistics for the refined ARIMAX(7, 1, 6) correlated lags model. 

Temperature was the most weighted variable (-0.48) from the summary output. Historical 

electricity price, system generation, demand, and temperature were significant for current 

inputs; load was significant for Lag 1; demand was significant for Lag 3; system generation and 

temperature were significant for Lag 22; system generation was significant for Lag 23, and 

historical electricity price was significant for Lag 24. Like the correlated lags model findings, the 
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East-West interconnector remained not significant. However in the refined model CO2 intensity 

and CO2 emissions are no longer significant. 

Table 6.14:  ISEM market refined correlated lags ARIMAX(7,1,6) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) <0.001  0.798   0.309 <0.001 

System Generation (U2) 0.097 0.896 0.237 0.130 0.449 0.001  

Demand (U3) 0.002 0.063 1.000 <0.001 0.923   

East-West Interconnector (U5) 0.070       

CO2 Intensity (U7) 0.546       

CO2 Emissions (U8) 0.464 0.653 0.574     

Load (U9) 0.217 0.038      

Temperature (U10) 0.049 0.219   0.090   

 
 

 

Figure 6.19: ISEM market refined correlated lags ARIMAX(7,1,6) model 

 

The RMSE value of 13.99 was lower than the RMSE value of 14.47 for the ARIMAX(7, 1, 6) 

correlated lags model. Figure 6.19 illustrates the refined ARIMAX(7, 1, 6) correlated lags model 

fit which is reasonably accurate and compared with Figure 6.12 the model performance has 

improved. 

 

6.12 Refined Correlated Lags SARIMAX Experiment  

The SARIMAX(3, 1, 3)(2 ,0, 1, 24) correlated lags model was refined and the model function is 

given as: 

𝑌𝑡 = 0.065𝛻𝑌𝑡−1 + 0.27𝛻𝑌𝑡−2 + 0.20𝛻𝑌𝑡−3 −  0.031𝛻𝜀𝑡−1 −  0.36𝛻𝜀𝑡−2  −  0.33𝛻𝜀𝑡−3 +

0.17𝑆24𝑌𝑡−24 −  0.053𝑆48𝑌𝑡−48 − 0.19𝑆24𝜀𝑡−24  +  0.30𝑈1 +  0.035𝑈1(𝑡−2) +
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0.013𝑈1(𝑡−23) +  0.11𝑈1(𝑡−24) −   0.0004𝑈2 −  5.36𝑒−05𝑈2(𝑡−1) +   0.0003𝑈2(𝑡−2) +

0.0004𝑈2(𝑡−3) −   0.0002𝑈2(𝑡−22) +   0.0006𝑈2(𝑡−23) + 0.0013𝑈3 +  0.0003𝑈3(𝑡−1) −

3.04𝑒−05𝑈3(𝑡−2) −  0.0010𝑈3(𝑡−3) −  0.0001𝑈3(𝑡−22) +  0.0004𝑈5 −  0.0042𝑈7 +

0.0005𝑈8 +   0.0003𝑈8(𝑡−1) −   0.0003𝑈8(𝑡−2) +  0.0005𝑈9 +  0.0008𝑈9(𝑡−1) −   0.48𝑈10 +

0.30𝑈10(𝑡−1) − 0.37𝑈10(𝑡−22) + 31.09                                                                                                    (6.10)                                                                       

The summary statistics for the refined SARIMAX(3, 1, 3)(2, 0, 1, 24) correlated lags model are 

presented in Table 6.15. Temperature is the most weighted variable (-0.48) closely followed by 

historical electricity price (0.30). Historical electricity price, demand, CO2 intensity, and 

temperature were significant for current inputs; system generation and demand were significant 

for Lag 3; and system generation was significant for Lag 23. Lag 23 had the same significant 

variable as the correlated lags model and overall five variables still remained significant, 

however load was replaced by CO2 intensity.  

Table 6.15:  ISEM market refined correlated lags SARIMAX(3,1,3)(2,0,1,24) model summary statistics 

Variable (Model Term) Current  
p-value 

Lag 1  
p-value 

Lag 2  
p-value 

Lag 3  
p-value 

Lag 22  
p-value 

Lag 23 
p-value 

Lag 24  
p-value 

Historical Electricity Price (U1) 0.001  0.819   0.364 0.061 

System Generation (U2) 0.116 0.784 0.175 0.037 0.348 <0.001  

Demand (U3)  <0.001 0.099 0.885 <0.001 0.533   

East-West Interconnector (U5) 0.065       

CO2 Intensity (U7) 0.035       

CO2 Emissions (U8) 0.404 0.403 0.565     

Load (U9) 0.271 0.240      

Temperature (U10) 0.045 0.216   0.078   

   

 

Figure 6.20: ISEM market refined correlated lags SARIMAX(3,1,3)(2,0,1,24) model 
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The RMSE value of 13.99 was lower than the RMSE value of 14.36 for the SARIMAX(3, 1, 3)(2, 0, 

1, 24) correlated lags model. Figure 6.20 displays the refined SARIMAX(3, 1, 3)(2, 0, 1, 24) 

correlated lags model fit between the actual and predicted price values. Compared with Figure 

6.13, the model performance was similar with an accurate model fit displayed between the 

actual and predicted values. 

 

6.13 Conclusion  

This chapter first applied autocorrelation testing to energy-related factors from the ISEM market 

to determine peak correlated lags. The remainder of this chapter explored model performance 

of refined statistical time-series prediction models to determine if identified NARMAX significant 

energy-related factors and their corresponding peak lags, used as model inputs in statistical 

models, improved performance accuracy. Model parsimony was addressed through utilising the 

NARMAX model; insignificant variables are pruned as the NARMAX methodology removes non-

weighted terms one at a time producing a compact parsimonious model. For all experiments, 

RMSE values were compared to determine if any of the correlated lags or refined models could 

further improve model performance and day-ahead electricity price forecasting.    

For the correlated lag models, ARMAX greatly improved model performance and ARIMAX 

slightly improved compared to the original models; however the correlated SARIMAX model was 

slightly worse than the original. The refined ARMAX(3, 9) model did improve slightly in overall 

model performance, however the NARMAX model still generated the lowest RMSE value of 

15.15. The refined ARIMAX(1, 1, 9) model displayed similar performance to the original model, 

with a RMSE value of 14.86. The refined SARIMAX(2, 1, 2)(2, 0, 2, 24) model improved overall 

model performance, with a RMSE value of 14.10. Observing the results from the refined 

correlated lags models, the refined ARMAX was less accurate than the original correlated model; 

however the refined ARIMAX and SARIMAX models had lower RMSE values and improved model 

performance. The four key exogenous variables for the ISEM market, which were significant in 

most of the statistical models, were historical electricity price, system generation, demand, and 

temperature. The best models in this chapter are the refined correlated ARIMAX and SARIMAX; 

both generated a RMSE value of 13.99. 

Throughout Chapter 4, Chapter 5, and Chapter 6 various time-series prediction models were 

examined and applied to real ISEM energy market data. Table 6.16 displays the RMSE values for 

each of these statistical and regression models. Seasonal models performed the best in each of 

the model experiment groups. The optimal ISEM prediction model was both the refined 
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correlated ARIMAX and SARIMAX, therefore significant factors and correlated lags together 

improve model performance for ISEM.  

Table 6.16: RMSE values of all ISEM models 

Model RMSE 

ARMA(9, 8) 14.99 

ARIMA(8, 1, 8) 14.86 

SARIMA(3, 1, 3)(2, 0, 2, 24) 14.12 

ARMAX(3, 9) 18.73 

ARIMAX(1, 1, 9) 14.87 

SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.32 

NARMAX 15.15 

Refined ARMAX(3, 9) 18.20 

Refined ARIMAX(1, 1, 9) 14.86 

Refined SARIMAX(2, 1, 2)(2, 0, 2, 24) 14.10 

Correlated ARMAX(1, 9) 14.66 

Correlated ARIMAX(7, 1, 6) 14.47 

Correlated SARIMAX(3, 1, 3)(2, 0, 1, 24) 14.36 

Correlated NARMAX 15.02 

Refined correlated ARMAX(1, 9) 15.18 

Refined correlated ARIMAX(7, 1, 6) 13.99 

Refined correlated SARIMAX(3, 1, 3)(2, 0, 1, 24) 13.99 

 
The next chapter will focus on computational modelling and examine machine learning as an 

alternative to the traditional statistical approaches. ISEM historical electricity price market data 

will be used as input for three machine learning regression algorithms. This research will also 

implement technical indicators, specifically derived for ISEM, as model inputs instead of the raw 

price data to develop day-ahead machine learning forecasting models consistent with the ISEM 

energy market. Finally, exploring a 24-hour model versus hourly models should distinguish key 

features for an efficient and accurate prediction model. 
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Chapter 7  

Computational Models  

 

7.1 Introduction  

Computational modelling has emerged as a viable alternative to traditional statistical methods 

in many fields. For details on some of the computational modelling techniques available please 

see Chapter 3. Ensemble non-linear regression models such as Random Forest or boosting 

algorithms can be utilised to follow trends and forecast. In this thesis Random Forest, Gradient 

Boosting, and Extreme Gradient Boosting were considered. These models are commonly used 

in financial price forecasting: previous financial literature exploring machine learning techniques 

found that the majority used technical indicators [1]. Within the stock market, machine learning 

algorithms and technical indicators are often combined to establish relationships and reach 

profitable stock returns [5]. Technical indicators are popular in short-term financial trading to 

forecast stock market prices and are more desirable than fundamental techniques [77] due to 

their suitability for discovering information regarding future prices [79]. The three main types of 

technical indicators are momentum, oscillator, and trend [3]. Energy market data have 

comparable characteristics and behaviours to financial data and therefore developing energy 

market technical indicators and including them as inputs in forecasting models would aid traders 

in observing market trends to understand when to buy or sell electricity units and over time 

reduce purchasing costs.    

This chapter explores the fourth and fifth research questions listed in Chapter 1: “Can prediction 

accuracy be improved by developing representative energy-related technical indicators 

compared with the use of electricity prices?” and “Can model performance be improved by 

building on the strengths of statistical models and machine learning models?”. This chapter is 

based on the following publications:   

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators for Hourly Energy Market 

Trading”, in Proceedings of The Ninth International Conference on Data Analytics, Data 

Analytics 2020, pp. 72-77. 

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators and Prediction for Energy 

Market Forecasting”, in Proceedings of 19th IEEE International Conference on Machine 

Learning and Applications, ICMLA 2020, pp. 1241-1246. 

● C. McHugh, S. Coleman, and D. Kerr, “Technical Indicators for Energy Market Trading”, 

in Elsevier Machine Learning with Applications, vol. 6, 2021.  
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Recapping on the machine learning methods outlined in Section 3.4, a successful machine 

learning process is implemented in this chapter through Jansen’s key steps of understanding 

model inputs, selecting suitable algorithms, and training/testing prediction models [102]. Three 

regression machine learning algorithms are considered: Random Forest, Gradient Boosting, and 

Extreme Gradient (XG)Boost. These algorithms are trained and tested with Integrated Single 

Electricity Market (ISEM) market raw hourly electricity price data ranging from a core window 

between September 2019 until March 2020 downloaded from the SEMOpx website [110]. The 

findings are compared in Section 7.2 against results obtained in previous chapters to determine 

if machine learning algorithms are more robust than statistical techniques. Additionally, a set of 

novel technical indicators is derived in Section 7.3 for the ISEM using electricity price data from 

01st February 2019 until 31st March 2020. The technical indicators are used as model inputs in 

Section 7.4 to first build one single 24-hour day-ahead price prediction system. Building on this, 

24 individual 1-hour models for day-ahead prediction were developed. The technical indicator 

driven models will be compared against the persistence raw electricity price models to see if 

model performance improves. The overall objective is to determine the optimal approach for 

predicting electricity prices using machine learning. The software utilised for the experiments 

was Python through the SkLearn library.  

 

7.2 Machine Learning Persistence Models        

Machine learning algorithms can reflect market trends by developing optimal price forecasting 

models. Persistence models are those that are trained with raw data to forecast and have the 

assumption that between actual time and the future, the conditions remain the same [119]. The 

Random Forest algorithm, described in Section 3.4.1, is an ensemble regression technique that 

is adaptable, avoids overfitting, provides easy tuning, and is robust to outliers [98]. Boosting 

algorithms build one strong model through sequential learning by merging weak models [120]; 

Gradient Boosting methods are described in Section 3.4.2 and XGBoost methods are described 

in Section 3.4.3.  

For this experiment the Random Forest algorithm was implemented on SkLearn with 1000 trees 

and no pruning, and the algorithm default parameters for minimum sample split of 2 and 

minimum sample leaf of 1 applied. The Gradient Boosting algorithm was implemented on 

SkLearn with 1000 trees and the algorithm default parameters were applied with minimum 

sample split of 2, minimum sample leaf of 1, and a learning rate of 0.1. The XGBoost algorithm 

was implemented on SkLearn with 1000 trees and parameters for model optimisation were set 

through a heuristic approach: minimum sample split was set to 500, minimum sample leaf set 
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to 50, maximum depth of tree set to 4, learning rate set to 0.05, alpha set to 10, column fraction 

set to 0.6, and observation fraction set to 0.8.       

Historical hourly electricity price data from the ISEM market were used as model inputs to train 

the three regression algorithms. Model input was electricity price at Hour T (08th September 

2019 to 30th March 2020) and model output was electricity price at Hour T+24 hours (09th 

September 2019 to 31st March 2020). 85% of the data were used for training (09th September 

2019 to 01st March 2020) and 15% of the data were used for testing (01st March 2020 to 31st 

March 2020). Actual electricity price values for the testing period are displayed in Figure 7.1 (738 

hours).    

 

Figure 7.1: Testing period from 1st March 2020 to 31st March 2020 

 
To evaluate model performance four performance metrics were computed with respect to      

actual and predicted electricity price data: 

• Explained Variance Score (EVS); 

• Median Absolute Error (MedAE); 

• Root Mean Squared Error (RMSE); 

• Root Mean Squared Log Error (RMSLE). 

The EVS metric signifies an excellent fit if values are close or equal to 1 and represents overfitting 

if it results in small or negative values [121]. The formula is given as: 

                                                          𝐸𝑉𝑆 = 1 − [
𝑉𝑎𝑟(𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑉𝑎𝑟(𝐴𝑐𝑡𝑢𝑎𝑙) 
]                                                           (7.1)                                                                                     

The MedAE [121] is insensitive to outliers and a low value indicates good model fit. The metric 

is given as:    
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             𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐴𝑐𝑡𝑢𝑎𝑙1 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑1|, … , |𝐴𝑐𝑡𝑢𝑎𝑙𝑛 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑛|)                (7.2)                                                                                                                        

The RMSE [122] measures the distance between predicted and actual values. When predicted 

values closely resemble the actual values, the RMSE is small. The formula is given as: 

                                                       𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑛

𝑖=1                                (7.3)                                                                                                                

The RMSLE [122] represents the difference of two logarithmic functions and a value tending 

towards zero indicates good model fit and robustness. The formula is given as: 

                                𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
∑ (𝑙𝑜𝑔  (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 + 1) −𝑙𝑜𝑔  (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 + 1) )2𝑛

𝑖=1             (7.4)                                                                                                                                  

Table 7.1 presents the summary results for Random Forest, Gradient Boosting, and XGBoost 

during both the training and testing periods. EVS ranged from 0.59 to 0.83 for the training stage 

and ranged from -0.29 to 0.10 for the testing stage. Random Forest had the lowest MedAE (3.45), 

RMSE (8.07), and RMSLE (0.27) values during training and therefore performed the best for this 

period.  For the testing period, XGBoost performed the best overall with MedAE (7.53), RMSE 

(12.89), and RMSLE (0.37). Comparing the testing RMSE values to Table 6.16 in Section 6.13, the 

model accuracy is similar for Random Forest and the time-series model accuracy has improved 

for both Gradient Boosting and XGBoost as the lowest RMSE value for ISEM market in Table 6.9 

was 13.99.   

Table 7.1: Machine learning 24-hour models summary results 
Period Algorithm EVS  

(↑) 
MedAE 

(↓) 
RMSE 

(↓) 
RMSLE 

(↓) 
Training Random Forest 0.83 3.45 8.07 0.27 

Gradient Boosting 0.66 5.43 11.28 0.32 

XGBoost 0.59 5.94 12.44 0.34 

Testing Random Forest -0.29 9.85 15.43 0.41 

Gradient Boosting 0.03 7.90 13.39 0.39 

XGBoost 0.10 7.53 12.89 0.37 

 

Hourly persistence models were trained and tested with the same data period (09th September 

2019 to 31st March 2020) and model split (85%/15%) as the 24-hour single models. For each 

hour only electricity price data were utilised with model input at Hour T and model output at 

Hour T+24. Table 7.2 displays the results during the testing period for Random Forest, Gradient 

Boosting, and XGBoost. Observing Random Forest results, the persistence models’ EVS ranged 

from -2.16 to -0.22. Hour 21 outputted the lowest RMSLE (0.090) while Hour 22 outputted both 

the lowest MedAE (4.04) and lowest RMSE (6.90) for the persistence models. Examining 

Gradient Boosting, the persistence models’ EVS ranged from -4.20 to -0.30. The lowest MedAE 

(4.71) was outputted at Hour 21, the lowest RMSE (8.45) at Hour 22, and the lowest RMSLE 
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(0.042) at Hour 10. Looking through XGBoost the persistence models’ EVS ranged from -2.61 to 

-0.30. Hour 22 outputted the lowest MedAE (4.45) and RMSE (7.08) and the lowest RMSLE 

(0.095) was computed at Hour 21. It is shown from the overall averages that Random Forest was 

the best performing out of the three regression algorithms: lowest EVS average (-0.74), lowest 

RMSE average (14.35), and lowest RMSLE average (0.31).  

Table 7.2: Hourly persistence models summary results 
Hour Random Forest Gradient Boosting XGBoost 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

0 -0.72 7.33 14.68 0.38 -1.37 9.71 17.35 0.50 -0.82 8.53 15.14 0.35 

1 -0.92 9.44 15.97 0.46 -1.20 12.46 17.20 0.49 -0.95 9.30 16.09 0.46 

2 -0.32 5.51 13.76 0.47 -1.03 8.12 17.02 0.71 -0.40 5.88 14.13 0.54 

3 -0.30 7.79 13.84 0.71 -0.78 7.69 16.26 0.81 -0.58 8.17 15.28 0.70 

4 -0.37 9.55 14.85 0.64 -0.89 9.79 17.31 0.71 -0.33 9.81 14.54 0.60 

5 -0.23 7.51 14.32 0.69 -0.49 7.78 15.75 0.64 -0.30 5.83 14.70 0.81 

6 -0.66 9.73 17.27 0.91 -1.38 12.90 20.46 1.02 -0.86 9.83 18.16 0.93 

7 -0.61 13.99 17.97 0.49 -1.12 15.83 20.65 0.64 -0.66 15.42 18.23 0.52 

8 -0.93 10.42 18.79 0.26 -1.77 15.67 22.60 0.44 -1.28 11.26 20.55 0.29 

9 -0.32 10.22 14.57 0.17 -0.30 9.60 14.43 0.22 -0.35 9.23 14.73 0.18 

10 -0.32 8.32 12.14 0.15 -0.68 8.90 13.54 0.042 -0.30 6.63 11.96 0.14 

11 -0.39 8.60 11.81 0.15 -1.08 8.78 13.91 0.17 -0.42 8.96 12.03 0.15 

12 -0.93 9.73 12.76 0.16 -1.71 10.97 14.69 0.18 -1.01 7.54 13.07 0.16 

13 -0.86 6.29 12.22 0.15 -1.81 7.14 13.86 0.17 -0.94 7.69 12.12 0.15 

14 -2.16 8.42 14.91 0.21 -3.49 10.55 17.04 0.29 -2.18 9.80 14.97 0.21 

15 -1.76 9.60 14.40 0.18 -4.20 8.88 18.79 0.21 -2.61 9.78 16.44 0.19 

16 -0.70 6.31 11.18 0.15 -1.22 7.28 12.42 0.16 -0.59 6.51 10.99 0.14 

17 -0.60 16.04 19.16 0.19 -1.49 16.14 20.63 0.20 -0.84 17.03 18.98 0.19 

18 -0.22 14.26 23.86 0.17 -0.88 13.61 29.02 0.19 -0.56 12.24 26.70 0.18 

19 -0.81 10.19 18.04 0.15 -1.81 11.03 22.36 0.18 -1.22 9.04 19.95 0.16 

20 -0.77 7.15 11.40 0.12 -1.52 8.31 13.39 0.14 -0.72 6.99 11.15 0.11 

21 -1.18 5.99 7.73 0.090 -3.38 4.71 10.53 0.11 -1.88 5.50 8.67 0.095 

22 -0.78 4.04 6.90 0.11 -1.65 5.48 8.45 0.15 -0.88 4.45 7.08 0.12 

23 -0.81 9.11 11.98 0.18 -1.55 12.13 14.19 0.25 -0.82 9.05 12.03 0.19 

Average -0.74 8.98 14.35 0.31 -1.53 10.14 16.74 0.36 -0.90 8.94 14.90 0.32 

 

 

Figure 7.2: Random Forest hourly persistence model on 16th March 2020 

 

Figure 7.2 displays the actual and predicted prices on a randomly chosen date (16th March) for 

Random Forest hourly models to show how the model performs over one day. Even though the 
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Random Forest was the best performing algorithm, the hourly persistence models show poor 

accuracy performance as the predicted prices do not match the actual prices. 

 

7.3 Technical Indicators   

It is often appropriate to extract knowledge from raw data with feature engineering techniques 

rather than directly using raw data. In financial markets it is common to use a set of technical 

indicators to do this. Therefore, in this section a novel set of technical indicators is proposed for 

use with electricity market data to capture historical price behaviour. Trend price indicators 

specify whether the price increases or decreases by observing moving averages, oscillator price 

indicators represent periodic patterns, and momentum price indicators represent market power 

[3]. It is difficult to determine parameter optimisation in technical analysis [79] thus a dynamic 

window is used, and the window size, which corresponds to the amount of historical values used 

in the calculation of each indicator, should be carefully considered [123]. For example, for daily 

forecasting the window size may be 24 hours, for weekly forecasting the window size may be 

168 hours, and for monthly forecasting the window size may be 744 hours. The typical 

requirement for ISEM is to trade in the Day-Ahead market, therefore the development of daily 

price technical indicators is of interest to increase prediction accuracy. In this section, a dynamic 

time window is applied which is not fixed and varies across a 24-hour period.     

The eight innovative electricity price technical indicators developed in this section are 

underpinned by the standard financial indicators. In the financial market, technical indicators 

use historical price input combined with machine learning algorithms for stock price prediction 

[5]. The three core types of financial technical indicators are (i) trend, (ii) oscillator and (iii) 

momentum [3]. For this research, market behaviour was captured using only raw electricity 

price data to develop energy technical indicators based on the financial indicators. Designing 

novel indicators related to electricity price will support ISEM energy traders in forecasting, 

decision making and future planning. The technical indicator calculations are described below. 

For any indicator that involves a moving average, the calculation involves all the previous hours 

within the window size except for the current hour.   

1. Percentage Price Change Moving Average (PPCMA): A trend price indicator calculated 

over a rolling s-hour window size by averaging past prices where percentage price 

change is calculated to capture daily trend as the difference in current price (𝑃𝑟𝑖𝑐𝑒𝑖) and 

lagged price at the same time period from the previous day (𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24), all divided by 

𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24:   
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                                                  𝑃𝑃𝐶𝑖 =  
𝑃𝑟𝑖𝑐𝑒𝑖− 𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24

𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24
∗ 100                                                    (7.5) 

                                                            𝑃𝑃𝐶𝑀𝐴𝑠 =  
1

𝑠
∑ 𝑃𝑃𝐶𝑖

𝑠
𝑖=1                                                            (7.6)    

                                           

2. Moving Average Deviation (MAD): A trend price indicator calculated over a rolling s-

hour window size for deviation rate of the current price within the window from Price 

Change Moving Average (PCMA):   

                                               𝑃𝐶𝑀𝐴𝑠 =  
1

𝑠
∑

𝑃𝑟𝑖𝑐𝑒𝑖− 𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24

𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔 24

𝑠
𝑖=1                                                      (7.7) 

 

                                                        𝑀𝐴𝐷𝑠 =  
𝑃𝑟𝑖𝑐𝑒𝑠− 𝑃𝐶𝑀𝐴𝑠

𝑃𝐶𝑀𝐴𝑠
                                                         (7.8) 

 

3. Average True Range (ATR): A trend price indicator that measures price volatility over 

three calculations of s-hour window size: (𝐴) highest price within the window minus 

lowest price within the window, (𝐵) highest price within the window minus a lagged (𝑛) 

electricity price (𝑃𝑟𝑖𝑐𝑒𝑛), and (𝐶) lowest price within the window minus a lagged (𝑛) 

electricity price (𝑃𝑟𝑖𝑐𝑒𝑛). The maximum value from 𝐴, 𝐵, or 𝐶 is selected for each 

trading hour (𝑖) and averaged over a rolling s-hour window:    

                                            𝐴𝑠 =  𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 −  𝐿𝑜𝑤𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠                                    (7.9)  

                                            𝐵𝑠 =  | 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 −  𝑃𝑟𝑖𝑐𝑒𝑛 |                                  (7.10)  

                                              𝐶𝑠 =  | 𝐿𝑜𝑤𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑛 |                                          (7.11)  

                                                               𝑇𝑅𝑖 = 𝑀𝐴𝑋{ 𝐴𝑠, 𝐵𝑠, 𝐶𝑠}                                            (7.12)  

                                                                𝐴𝑇𝑅𝑠 =
1

𝑠
∑ 𝑇𝑅𝑖

𝑠
𝑖=1                                                       (7.13)  

 

4. Average Directional Movement Index (ADX): A trend price indicator measuring 

strength of trend, with the two directional movement indexes grouped depending on if 

price change, calculated as current price (𝑃𝑟𝑖𝑐𝑒𝑖) minus a lagged (𝑛) electricity price 

(𝑃𝑟𝑖𝑐𝑒𝑛), is a positive change (𝑃𝑟𝑖𝑐𝑒 𝑈𝑝) or a negative change (𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛). A 

piecewise function determined 𝑃𝑟𝑖𝑐𝑒 𝑈𝑝 and 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛: if the difference from price 

change was greater than 0 then it was considered as 𝑃𝑟𝑖𝑐𝑒 𝑈𝑝, else 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛. The 

two indexes are joined and smoothed over a rolling s-hour window:   

                                                𝐷𝑋 𝑈𝑝𝑠 =
1

𝑠
∑ 𝑃𝑟𝑖𝑐𝑒 𝑈𝑝[𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛 ]

𝑠
𝑖=1

𝐴𝑇𝑅𝑠
                                      (7.14)                                          

                                            𝐷𝑋 𝐷𝑜𝑤𝑛𝑠 =
1

𝑠
∑ 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛[𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛 ]

𝑠
𝑖=1

𝐴𝑇𝑅𝑠
                               (7.15)                     

                                                             𝐴𝐷𝑋𝑠 =
|𝐷𝑋 𝑈𝑝𝑠 − 𝐷𝑋 𝐷𝑜𝑤𝑛𝑠|

|𝐷𝑋 𝑈𝑝𝑠 + 𝐷𝑋 𝐷𝑜𝑤𝑛𝑠|
                                        (7.16)  



112 
 

                                                  

5. Relative Strength Index (RSI): An oscillator price indicator comparing recent price gains 

with recent price losses to measure price direction oscillating between 0 and 100; a 

value near to 100 signifies the majority of the electricity price units are 𝑃𝑟𝑖𝑐𝑒 𝑈𝑝 and a 

value near to 0 signifies the majority of the electricity price units are 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛. 

𝑃𝑟𝑖𝑐𝑒 𝑈𝑝 is calculated as the average of the previous s-hours with increased price 

difference and 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛 is calculated as the average of the previous s-hours with 

decreased price difference:    

                                                    𝐷𝑠 = (1 −  
1

𝑠
∑ 𝑃𝑟𝑖𝑐𝑒 𝑈𝑝[𝑃𝑟𝑖𝑐𝑒𝑖− 𝑃𝑟𝑖𝑐𝑒𝑛 ]

𝑠
𝑖=1

1

𝑠
∑ 𝑃𝑟𝑖𝑐𝑒 𝐷𝑜𝑤𝑛[𝑃𝑟𝑖𝑐𝑒𝑖− 𝑃𝑟𝑖𝑐𝑒𝑛 ]

𝑠
𝑖=1

)                     (7.17)                                          

                                                                    𝑅𝑆𝐼𝑠 = 100 − [
100

𝐷𝑠
]                                                 (7.18)  

 

6. Percentage Range (PR): An oscillator price indicator calculated over a rolling s-hour 

window to find a relationship between current price (𝑃𝑟𝑖𝑐𝑒𝑖)  and the highest and lowest 

prices. PR oscillates between 0 and 100; a value close to 100 signifies the current price 

unit is nearer to the lowest price and a value close to 0 signifies the current price unit is 

nearer to the highest price:   

                                        𝑃𝑅𝑠 = [
𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑖

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠− 𝐿𝑜𝑤𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠 
] ∗ 100                                      (7.19)  

 

7. Moving Average Convergence/Divergence (MACD): An oscillator price indicator which 

considers trend direction, trend duration, trend strength, and price momentum through 

short-term and long-term moving averages of previous prices; if a 24-hour model is 

used, the window sizes are a=12 and b=24 and if an hourly model is used, the window 

sizes are a=168 and b=336 :   

                                               𝑀𝐴𝐶𝐷 =
1

𝑎
∑ 𝑃𝑟𝑖𝑐𝑒𝑎 

𝑎
𝑖=1  −  

1

𝑏
∑ 𝑃𝑟𝑖𝑐𝑒𝑏 

𝑏
𝑖=1                            (7.20)       

 

8. Price Momentum (PMOM): A momentum price indicator which evaluates market 

power through examining the current price with either the previous trading value (𝑛 =

1), if a 24-hour model is used, or if an hourly model is used with the previous trading 

value (𝑛 =  𝑠 𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒):    

                                                                 𝑃𝑀𝑂𝑀𝑠 = 𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑛                                  (7.21)        
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7.4 Technical Indicator Models  

The proposed technical indicators were calculated with a window size of 24 hours to capture 

daily trends and were used as inputs into the three regression algorithms. This experiment used 

the same train/test set-up used in Section 7.2. The model inputs were the technical indicators 

at Hour T and the model target was the electricity price aligned at Hour T+1. The SISO persistence 

models in Section 7.2 were used for comparison with the technical indicator 24-hour models.  

Table 7.3 presents the results for the technical indicator models for both the training and testing 

periods. EVS was 0.99 for all models during the training stage and ranged from 0.82 to 0.87 

during the testing stage. Both these findings are a great improvement on the EVS values from 

the SISO persistence models. Gradient Boosting had the lowest RMSE for both training and 

testing with values of 1.76 and 5.02, respectively. The results using the SISO persistence models’ 

indicated that Random Forest had the lowest RMSE for training and XGBoost had the lowest 

RMSE for testing. Here, Random Forest has the lowest MedAE (0.77) and RMSLE (0.088) during 

technical indicator model training, which is a similar finding to the persistence model. Gradient 

Boosting had the lowest MedAE (2.97) and RMSLE (0.17) during technical indicator model 

testing, which differs from the persistence model findings of XGBoost. Consistently Gradient 

Boosting has performed best when using the technical indicators as inputs, this differs from the 

results of the persistence models that found XGBoost to generally perform best. Comparing 

Table 7.1 and Table 7.3, when technical indicators are included as model inputs the overall 

model accuracy improves.   

Table 7.3: Technical indicator 24-hour models summary results 
Period Algorithm EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

Training Random Forest 0.99 0.77 2.18 0.088 

Gradient Boosting 0.99 1.12 1.76 0.091 

XGBoost 0.99 1.30 2.21 0.093 

Testing Random Forest 0.82 3.30 6.17 0.20 

Gradient Boosting 0.87 2.97 5.02 0.17 

XGBoost 0.84 3.24 5.59 0.19 

 

This is also illustrated in Figures 7.3, 7.4, and 7.5 which use the first week of testing (168 hours) 

and display the actual electricity price, and the predicted electricity prices using both the SISO 

persistence models and the ML models with technical indicators as inputs for Random Forest, 

Gradient Boosting, and XGBoost, respectively. It can be seen in Figures 7.3, 7.4 and 7.5 that for 

each of the models the predicted prices using the technical indicators are more similar to the 

actual prices than the predicted prices from the persistence models. 
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Figure 7.3: Random Forest 24-Hour model from 1st March 2020 to 7th March 2020 

 

 

 

Figure 7.4: Gradient Boosting 24-Hour model from 1st March 2020 to 7th March 2020 
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Figure 7.5: XGBoost 24-Hour model from 1st March 2020 to 7th March 2020 

 

As the Gradient Boosting model displayed the most promising results using technical indicator 

inputs it was selected for further evaluation using additional unseen input data from the 24-

hours on 1st April 2020 to predict the electricity price on that day. Figure 7.6 illustrates the 

performance where the actual price is plotted alongside the model predicted price. The RMSE 

value over this period was calculated as 2.82, demonstrating the robustness of the model for 

longer term predictions considering this period is over one month beyond the period on which 

the model has been trained. 

 

Figure 7.6: Results of Gradient Boosting model on 1st April 2020 prediction 

 
Feature importance can be used to analyse variable significance where the output ranges from 

0 to 1 with a value closer to 1 indicating variable significance is in predicting electricity price.      

Any score greater than 0.1, chosen empirically for this research, is considered to be significant 
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in electricity price forecasting. Table 7.4 shows each technical indicator’s feature importance for 

the three ML models. The three significant technical indicators for all ML models were MAD, PR, 

and PMOM suggesting that these indicators are key in electricity price forecasting. There is one 

of each type of price indicator (trend, oscillator, and momentum) considered important. PPCMA 

was also determined to be significant for Gradient Boosting.     

Table 7.4: Technical indicators feature importance 
Technical 

Indicator 

Random Forest Gradient Boosting XGBoost 

PPCMA 0.099 0.113 0.081 

MAD 0.144 0.181 0.111 

ATR 0.067 0.067 0.057 

ADX 0.014 0.010 0.029 

PR 0.448 0.418 0.424 

RSI 0.048 0.063 0.088 

MACD 0.034 0.021 0.039 

PMOM 0.144 0.128 0.170 

 
Individual hourly energy models have shown greater accuracy compared with a single 24-hour 

model [52]. Limited work to date has been conducted on developing technical indicators for the 

Day-Ahead energy market but recently Demir et al. [42] created individual hourly technical 

indicator forecasting models. Following on from [42], optimal versions of the technical indicator 

models from Section 7.3 were determined for each hour (Hours 0-23): first hyperparameters for 

lag and span were optimised for each individual hourly model. Once the optimal 

hyperparameters were selected, the 24 individually hourly models were created. The 

computation time was significantly longer, using Intel Pentium Quad Core Processor N4200, to 

create the technical indicators for each individual hour (725 seconds) compared to the single 24-

hour (0.31 seconds). The reason for this is each hourly technical indicator is calculated 150 times 

to be used in the selection for the optimal hyperparameters. 

Hourly data from 01st February 2019 until 31st March 2020 were used to select the optimal 

hyperparameters n (lag) and s (span) based on the approach in [42]. The lag is defined as the 

previous price values within the window and the span is defined as the length of the rolling 

window size. Technical indicator ML models outperformed the persistence models regardless of 

which ML algorithm was selected thus optimal n and s were determined for each individual hour 

through optimisation using the Random Forest algorithm, implemented using SKLearn. To find 

the optimal hourly technical indicators, a 2-step process was performed. Firstly, a grid-search 

was applied with all the possible combinations ranging from 1 to 150 during the training period 

to tune the hyperparameters n and s for the respective technical indicators. Secondly, for each 

hour, all possible combinations of the hyperparameters were generated and ranked by RMSE 

from lowest to highest, with the smallest RMSE during the testing period chosen as the optimal 

values for n and s. Applying this approach n was selected for ATR, ADX, PR, RSI, PMOM technical 
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indicators and s was selected for PPCMA and MAD technical indicators. MACD already has 

parameters a=168 and b=336 in its calculation and therefore was not further optimised with n 

or s. Table 7.5 presents the optimal hyperparameters for each hour; for instance Hour 0 has 

n=24 and s=91 so the derived technical indicators for this hour are PPCMA91, MAD91, ATR24, 

ADX24, PR24, RSI24, MACD, and PMOM24.  

Table 7.5: Optimal hyperparameters 
Hour n s 

0 24 91 

1 12 71 

2 14 35 

3 55 1 

4 47 32 

5 19 78 

6 47 97 

7 15 15 

8 41 63 

9 12 77 

10 73 69 

11 81 64 

12 69 63 

13 80 14 

14 110 3 

15 96 67 

16 99 92 

17 89 95 

18 91 62 

19 84 37 

20 37 82 

21 9 5 

22 62 138 

23 12 42 

 

The hourly models were trained and tested with the same data period (09th September 2019 to 

31st March 2020) and model split (85%/15%) as the 24-hour single models. The technical 

indicators at Hour T were the model inputs and the model output was the electricity price 

aligned with Hour T+24. Table 7.6 displays the hourly technical indicator summary results during 

the testing period for Random Forest, Gradient Boosting, and XGBoost. Observing the results in 

the table, the Random Forest models EVS ranged from 0.83 to 0.99. Hour 20 generated both the 

lowest MedAE (0.56) and RMSLE (0.010) while Hour 22 generated the lowest RMSE (0.90) for 

the Random Forest models. The Gradient Boosting models’ EVS ranged from 0.49 to 0.99, the 

lowest MedAE (0.70) was generated at Hour 14, the lowest RMSE (1.04) at Hour 22, and the 

lowest RMSLE (0.013) at Hour 19. The XGBoost models’ EVS ranged from 0.64 to 0.96, the lowest 

MedAE (0.88) was generated at Hour 15, the lowest RMSE (2.15) at Hour 20, and the lowest 

RMSLE (0.023) at Hour 19. From the overall averages, the Random Forest was the best 

performing out of the three: lowest EVS average (0.94), lowest MedAE average (1.63), lowest 

RMSE average (2.44), and lowest RMSLE average (0.089). It is shown in the results in Table 7.6 

for all three regression algorithms that the novel technical indicators greatly improved model 
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performance compared to Table 7.2 results using the raw electricity price data. This can be 

clearly seen by observing the EVS values between the two tables which go from negative for the 

best persistence models to close to 1 for the best technical indicator models. The four 

performance metrics all improved in the technical indicator models showing promising findings 

and concluding that hourly technical indicator models do enhance electricity price forecasting 

performance.    

Table 7.6: Hourly technical indicator models summary results 
Hour Random Forest Gradient Boosting XGBoost 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

0 0.96 1.88 2.30 0.053 0.98 1.68 2.70 0.049 0.89 2.23 4.01 0.23 

1 0.97 1.38 1.91 0.14 0.98 2.67 2.74 0.083 0.94 1.42 2.98 0.055 

2 0.98 0.91 1.72 0.049 0.99 1.30 1.75 0.08 0.93 1.86 3.12 0.11 

3 0.99 0.99 1.45 0.21 0.99 0.96 1.49 0.24 0.94 1.19 3.21 0.35 

4 0.91 0.91 1.38 0.17 0.99 0.75 1.40 0.12 0.94 1.01 3.01 0.23 

5 0.99 0.84 1.43 0.19 0.97 1.25 2.24 0.27 0.96 1.21 2.59 0.046 

6 0.98 1.28 2.47 0.53 0.97 0.99 2.43 0.60 0.95 3.49 3.91 0.57 

7 0.90 3.02 4.60 0.24 0.87 4.31 5.38 0.44 0.79 4.25 6.53 0.31 

8 0.95 1.90 3.32 0.052 0.96 1.80 2.72 0.067 0.91 2.51 4.23 0.051 

9 0.92 1.95 3.62 0.050 0.89 2.30 4.38 0.052 0.85 2.73 5.17 0.070 

10 0.92 3.28 4.47 0.051 0.95 2.22 3.50 0.042 0.93 2.36 3.79 0.040 

11 0.84 2.72 3.79 0.050 0.88 2.89 3.41 0.055 0.88 1.55 3.28 0.048 

12 0.93 1.66 2.68 0.040 0.91 1.12 2.72 0.037 0.93 1.15 2.19 0.029 

13 0.92 1.39 2.07 0.033 0.89 2.01 2.86 0.041 0.91 1.30 2.31 0.037 

14 0.97 1.15 1.85 0.032 0.93 0.70 2.01 0.076 0.83 1.46 3.35 0.037 

15 0.96 0.84 1.44 0.023 0.95 1.01 1.63 0.027 0.89 0.88 2.41 0.037 

16 0.91 2.67 3.15 0.049 0.94 2.70 3.15 0.047 0.83 3.05 3.89 0.054 

17 0.92 3.42 3.80 0.045 0.94 2.78 3.40 0.041 0.91 3.51 4.75 0.057 

18 0.99 1.24 2.32 0.023 0.99 1.44 2.06 0.019 0.96 2.74 4.63 0.030 

19 0.99 1.17 1.71 0.014 0.98 0.76 2.04 0.013 0.94 1.55 3.26 0.023 

20 0.99 0.56 0.98 0.010 0.98 1.16 1.30 0.014 0.95 0.95 2.15 0.024 

21 0.83 1.46 2.26 0.029 0.49 1.70 3.26 0.042 0.64 1.86 2.71 0.036 

22 0.97 0.57 0.90 0.017 0.97 0.72 1.04 0.017 0.94 1.78 2.28 0.041 

23 0.89 2.03 2.96 0.044 0.89 1.71 3.12 0.048 0.84 2.84 3.52 0.062 

Average 0.94 1.63 2.44 0.089 0.93 1.71 2.61 0.11 0.90 2.04 3.47 0.11 

 

 

Figure 7.7: Hourly technical indicator models on 16th March 2020 
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Figure 7.7 displays the actual and predicted prices on a randomly chosen date (16th March 2020) 

for the three hourly technical indicator models: Random Forest, Gradient Boosting, and 

XGBoost. Each of the three regression algorithms show excellent model fits between actual and 

predicted electricity price demonstrating that when technical indicator models are split by hour 

and modelled separately, electricity price can be forecasted accurately. The Random Forest 

model with technical indicators is significantly better than the equivalent persistence model 

displayed in Figure 7.2. Therefore hourly machine learning models with technical indicator 

inputs would be worthwhile to consider for energy trading.   

Sensitivity analysis determines which model inputs have the most influence by examining 

robustness and performance [124]. Sensitivity analysis was included for the Random Forest Hour 

20 model to determine the significance of each of the technical indicators. One technical 

indicator was removed at a time and the model performance evaluated using the four summary 

metrics. This procedure is called parametric bootstrap as the model is re-evaluated after each 

replacement [125]. The summary results for the analysis are shown in Table 7.7.  

Table 7.7: Sensitivity analysis results for Random Forest hour 20 
Technical Indicator 

Removed 

EVS  

(↑) 
MedAE 

(↓) 
RMSE 

(↓) 
RMSLE 

(↓) 

None 0.99 0.56 0.98 0.010 

PPCMA 0.98 0.85 1.23 0.012 

MAD 0.97 0.77 1.80 0.016 

PR 0.72 2.76 4.40 0.047 

ATR 0.98 0.69 1.02 0.010 

RSI 0.99 0.61 0.99 0.010 

ADX 0.99 0.68 1.03 0.010 

MACD 0.99 0.72 1.03 0.010 

PMOM 0.99 0.60 0.81 0.012 

 
From the summary results, PR was the most significant as once the indicator was removed the 

model accuracy decreased significantly (EVS=0.72, MedAE=2.76, RMSE=4.40, RMSLE=0.047). RSI 

was the least significant as when the indicator was removed the model accuracy still resembled 

the original accuracy (EVS=0.99, MedAE=0.61, RMSE=0.99, RMSLE=0.010). These results indicate 

that Percentage Range is a strong technical indicator to use for electricity price forecasting. 

 

7.5 Machine Learning Modelling with Click Energy Data  

The electricity price data provided by Click Energy for 2020/2021 were used with the technical 

indicators and these indicators were applied as model inputs to the machine learning models. 

In the first experiment the model inputs were the technical indicators at Hour T and the model 

output was electricity price at Hour T+1 hours. 85% of the data were used for training (02nd 

December 2020 to 31st May 2021) and 15% of the data were used for testing (01st June 2021 to 

30th June 2021).  
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Table 7.8 presents the results for the Gradient Boosting model (selected as it performed the best 

when using the technical indicators as inputs with 2019/2020 data) for both the training and 

testing periods. Compared to Table 7.3, the model performance is still highly accurate indicating 

strong robustness when predicting electricity price. This is also illustrated in Figure 7.8 which 

displays the actual electricity prices and the predicted electricity prices for June 2021. It can be 

seen in Figure 7.8 that the predicted prices are very similar to the actual prices. 

Table 7.8: Gradient Boosting 24-Hour model summary results (2020/2021) 
Period EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

Training 0.99 1.89 3.20 0.076 

Testing 0.85 6.15 8.88 0.49 

 

 

Figure 7.8: Gradient Boosting 24-Hour model from 1st June 2021 to 30th June 2021 

 

For the second experiment, hourly data from 01st February 2020 until 30th June 2021 were used 

to determine the optimal hyperparameters n and s for Hour 20 using the Random Forest 

algorithm (the best performing hour from Table 7.6). The optimal hyperparameters from the 

grid-search for Hour 20 were n=1 and s=83 so the derived technical indicators were PPCMA83, 

MAD83, ATR1, ADX1, PR1, RSI1, MACD, and PMOM1. The Hour 20 model was trained and tested 

using the same data period as the first experiment (02nd December 2020 to 30th June 2021) and 

model split (85%/15%). The technical indicators at Hour T were the model inputs and the model 

output was the electricity price aligned with Hour T+24.  

Table 7.9 presents Hour 20 technical indicator summary results during the testing period for 

Random Forest. Observing the results, the Random Forest Hour 20 model performed well, 

generating much lower results than the metric values in Table 7.8 highlighting that a 

parsimonious model improves model performance. The findings are not as good as Table 7.6 
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with 2019/2020 data. This is due to electricity prices being low in Spring and Summer of 2020 

and then a volatile market at the end of 2020 leading into 2021 with the beginning of Brexit. 

Nonetheless both models for the two data periods are consistent and this is shown in Figure 7.9 

which displays a strong model fit between the actual and predicted prices.    

Table 7.9: Random Forest hour 20 summary results (2020/2021) 
EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

0.89 2.00 4.63 0.022 

 

 

Figure 7.9: Random Forest hour 20 model from 1st June 2021 to 30th June 2021 

 

7.6 Conclusion  

This chapter explored the use of machine learning models algorithms (Random Forest, Gradient 

Boosting, and XGBoost) to determine if machine learning methods are more robust than 

traditional statistical techniques. In the first experiment, historical hourly ISEM price data were 

split 85% for training (09th September 2019 Hour 0 to 01st March 2020 Hour 5) and 15% for 

testing (01st March 2020 Hour 6 to 31st March 2020 Hour 23). The 24-hour model summary 

results found Random Forest to perform the best during the training period and XGBoost to 

perform the best during the testing period. Machine learning persistence models enhanced 

accuracy, when compared with the statistical model findings in previous chapters. In the second 

experiment, hourly persistence models were considered and, from the summary results, on 

average the Random Forest model was the best performing. Nonetheless, persistence model 

performance accuracy was poor when the predicted prices were compared against the actual 

electricity prices measured over one day, displayed in Figure 7.2, and the two lines did not match 

highlighting that the prices were not similar.     
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To capture market behaviour eight novel technical indicators (PPCMA, MAD, ATR, ADX, PR, RSI, 

MACD, and PMOM) were designed based on raw electricity price, originating from financial 

trading indicators, to aid in supporting ISEM energy traders with forecasting decisions. In this 

experiment the window size was 24 hours to detect daily forecasting and both the model input 

and output were aligned at Hour T. The EVS values greatly improved compared with the 

persistence model findings. Gradient Boosting performed the best for both the training and 

testing periods, nevertheless the model accuracy increased for Gradient Boosting, Random 

Forest and XG Boost as the predicted price for the technical indicators was more accurate than 

the predicted price for the persistence models. Feature importance analysis found MAD, PR, and 

PMOM to be the three significant indicators for all three regression algorithms considered for 

price forecasting.  

The final experiment concentrated on hourly technical indicator models to develop an optimal 

forecasting model by selecting the hyperparameters n and s for each individual hour which 

generated the lowest RMSE value for testing when using the Random Forest algorithm. The 

technical indicators were calculated based on a window size for each hour and included as model 

input aligned at Hour T with the model output. Hourly persistence models with model input at 

Hour T and model output at Hour T+24 were generated for comparison. The summary findings 

showed that hourly technical indicators greatly enhanced model performance with Random 

Forest on average performing the best. Comparing these results with the persistence models 

results, it is clear that the models with technical indicators outputted better model accuracy as 

the performance metric values greatly improved and the predicted prices closely matched the 

actual electricity prices. These promising findings highlight that splitting by each individual hour 

is a more appropriate format and does improve price forecasting accuracy, therefore developing 

individual hourly technical indicator models would be helpful for energy trading instead of the 

24-hour models considered as a benchmark in earlier chapters. Data from 2020/2021 were 

modelled for both the statistical and machine learning techniques with 6 months training and 1 

month testing (June 2021). Comparing the two technique groups, the machine learning results 

are less volatile with significant model accuracy indicating that machine learning techniques are 

more robust for predicting electricity price.   

To conclude, technical indicator price forecasting models, in particular optimal hourly models, 

would aid in following market trend patterns and over time reduce purchasing costs through 

accurate predictions. 
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Chapter 8  

Conclusion and Future Work 
 

8.1 Summary of Key Findings   

Energy markets have a degree of unpredictability due to fluctuations between demand and 

supply making it difficult to forecast electricity prices. A robust system that can follow past 

trends, spot outliers, and make accurate predictions which over time will increase company 

profits and market share is ideal. This thesis explored the techniques of statistical regression, 

and machine learning models and considered how electricity price data can be used with these 

approaches for successful prediction. Stationarity checks, trends, and seasonality were 

important to consider for the statistical models, as well as exogenous input variables, to improve 

model accuracy. A non-linear regression model refined the statistical models by including only 

the key significant energy-related factors that influenced day-ahead electricity price. Machine 

learning models combined with price technical indicators capture market trends and 

significantly improved prediction performance of day-ahead electricity price.    

Chapter 2 explained in detail the background, design, operating schedules, and challenges of 

the three energy markets that were examined in this thesis: British Electricity Trading and 

Transmission Arrangements (BETTA) in Great Britain and both the Single Electricity Market 

(SEM) and Integrated Single Electricity Market (ISEM) in Ireland. The foundation of the BETTA 

and ISEM markets is the Day-Ahead trading period and thus literature regarding day-ahead 

electricity price forecasting models was examined for statistical regression and machine learning 

approaches. With similarities between stock markets and electricity price markets, forecasting 

techniques applied to financial stock markets were also reviewed. 

Chapter 3 discussed the theory behind statistical regression and machine learning techniques in 

terms of data understanding and application in price forecasting. The strengths and weaknesses 

of each type of prediction model were discussed. It is clear from the literature that it is necessary 

to apply appropriate stationarity, integration, and seasonal checks on statistical models. It was 

highlighted that the transparency of non-linear models can identify key significant factors and 

improve overall model accuracy. Computational models, in particular machine learning 

algorithms, work well with complex data to spot patterns and should be considered to develop 

an optimal prediction model. 

Single Input Single Output (SISO) models with historical BETTA and ISEM electricity price data 

were explored in Chapter 4 for three statistical time-series models: AutoRegressive Moving 

Average (ARMA), AutoRegressive Integrated Moving Average (ARIMA), and Seasonal 
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AutoRegressive Integrated Moving Average (SARIMA). The key modelling stages were discussed 

for each statistical technique: identification, estimation, diagnostic testing, and forecasting. The 

best performance results generated from the SARIMA models where SARIMA(3, 1, 2)(2, 0, 2, 24) 

for the BETTA market and SARIMA(3, 1, 3)(2, 0, 2, 24) for the ISEM market, with the models 

having Root Mean Squared Error (RMSE) values of 9.67 and 14.12 respectively; nonetheless the 

model accuracy could still be improved further.   

Multiple Inputs Single Output (MISO) models were analysed in Chapter 5 with multiple historical 

BETTA and ISEM energy related input data. The three statistical time-series models applied were 

AutoRegressive Moving Average with eXogenous inputs (ARMAX), AutoRegressive Integrated 

Moving Average with eXogenous inputs (ARIMAX), and Seasonal AutoRegressive Integrated 

Moving Average with eXogenous inputs (SARIMAX). A Nonlinear AutoRegressive Moving 

Average model with eXogenous inputs (NARMAX) was also considered to identify external 

factors influencing electricity price. Like the SISO model results, the seasonal MISO models 

generated the best performance results: the optimal BETTA market MISO model being 

SARIMAX(2, 1, 3) (2, 0, 1, 24) with a RMSE of 9.31 and the optimal ISEM MISO model being 

SARIMAX(2, 1, 2) (2, 0, 2, 24) with a RMSE of 14.32. These findings showed that for the BETTA 

market exogenous variables do improve model accuracy and should be considered as inputs in 

prediction models. However for the ISEM market the SARIMA SISO model had a slightly better 

model fit than the SARIMAX MISO model. This finding suggests that, due to multicollinearity in 

the data, including all exogenous variables in a MISO model might make it difficult to predict the 

ISEM market; for this reason it would be worthwhile to consider only the key factors identified 

from NARMAX and remove wind, East-West Interconnector and Moyle Interconnector as inputs 

in the ISEM prediction model. The NARMAX models identified the most significant energy 

related factors with the largest Error Reduction Ratio (ERR) values as historical electricity price, 

demand, and wind for BETTA market and as historical electricity price, demand, and system 

generation for ISEM market.        

Correlated lags were examined for each individual exogenous variable with ISEM market data in 

Chapter 6 and the model performance slightly improved; ARMAX(1, 9) generated a RMSE of 

14.66, ARIMAX(7, 1, 6) generated a RMSE of 14.47, and SARIMAX(3, 1, 3)(2, 0, 1, 24) generated 

a RMSE of 14.36. The identified energy related factors from the NARMAX model were applied 

to refine the statistical original and correlated models. The refined models improved accuracy 

performance and the key significant energy-related factors were historical electricity price, 

system generation, demand, and temperature. Overall the optimal statistical models with ISEM 

data were a refined correlated ARIMAX(7, 1, 6) and a refined correlated SARIMAX(3, 1, 3)(2, 0, 

1, 24) both with a RMSE of 13.99. Therefore the inclusion of both significant factors only and 
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their respective correlated lags does improve model accuracy when forecasting day-ahead in 

the ISEM market.  

Computational modelling was the focus in Chapter 7 examining three regression machine 

learning algorithms: Random Forest, Gradient Boosting and Extreme Gradient Boosting 

(XGBoost) with ISEM market data. First, persistence models were explored using raw electricity 

price data for a single 24-hour model and separate hourly models. For the 24-hour model, 

XGBoost performed the best during the testing period with an Explained Variance Score (EVS) 

of 0.10, Median Absolute Error (MedAE) of 7.53, RMSE of 12.89, and Root Mean Squared Log 

Error (RMSLE) of 0.37. For the hourly models, on average the Random Forest performed the best 

with an EVS of -0.74, MedAE of 8.98, RMSE of 14.35, and RMSLE of 0.31. Between the two 

approaches the 24-hour model performed slightly better than the average of the hourly models. 

Next, eight novel technical indicators were derived (Percentage Price Change Moving Average, 

Moving Average Deviation, Percentage Range, Average True Range, Relative Strength Index, 

Average Directional Movement Index, Moving Average Convergence/Divergence, and Price 

Momentum) and used as inputs to the price prediction models. For the 24-hour model, Gradient 

Boosting performed the best during the testing period with an EVS of 0.87, MedAE of 2.97, RMSE 

of 5.02, and RMSLE of 0.17. For the hourly models, on average Random Forest performed the 

best with EVS of 0.94, MedAE of 1.63, RMSE of 2.44, and RMSLE of 0.089. These promising results 

confirm that technical indicator inputs significantly enhance model accuracy and that hourly 

technical indicator models optimise prediction performance. Therefore these novel technical 

indicators, combined with machine learning are valuable to consider for energy trading 

forecasting.  

Overall, this thesis demonstrates that many statistical regression and machine learning 

approaches are useful to consider when forecasting day-ahead electricity prices. The best 

statistical models were the refined correlated ARIMAX and SARIMAX and the best machine 

learning model was Random Forest with hourly technical indicators as model inputs. Over the 

last year the ISEM market has been quite volatile making it difficult to comment but results were 

validated with company feedback on electricity price data from 2020/2021. Referring back to 

the five research questions outlined in Chapter 1, the following conclusions can be stated: 

1. Computational models are more appropriate than statistical methods for day-ahead 

electricity price forecasting. This finding was observed in Chapter 7 in the first 

experiment with the machine learning persistence models outputting a lower RMSE 

value compared to the statistical models. 
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2. Energy-related exogenous variables do improve model performance. This finding was 

noted in the results from Chapter 5 emphasizing that exogenous variables do help to 

improve model accuracy. 

3. Transparent models do identify key factors that influence electricity price. This finding 

was noted in Chapter 6 as performance accuracy improved refining the statistical 

models to only include the significant factors identified by NARMAX. 

4. Prediction accuracy is improved by developing representative energy-related technical 

indicators. This finding was highlighted in Chapter 7 with the inclusion of the eight novel 

technical indicators developed from raw electricity price data showing the improvement 

in model accuracy compared to the persistence models. 

5. Model performance does improve by building on the strengths of statistical models and 

machine learning models. This finding was observed through the refined correlated 

models in Chapter 6 and through the hourly technical indicator models in Chapter 7. 

 

The key findings from this research conclude that statistical models can spot market trends with 

energy-related inputs influencing model accuracy; non-linear regression techniques model 

input-output relationships and discover key significant exogenous factors; refining statistical 

models with the relevant energy-related factors can further improve model accuracy; and that 

computational models combined with novel price technical indicators offer the best prediction 

performance for the energy market. 

 

8.2 Future Work  

This thesis analysed various algorithmic approaches with energy market data to predict day-

ahead electricity price. From addressing the research questions, computational techniques were 

noted to be more robust than statistical methods especially with the inclusion of price technical 

indicators. Nonetheless, there are still opportunities for future work to consider extending this 

research.  

The first option to consider is including the other significant energy related data noted in Section 

6.13 from the statistical model findings (system generation, demand, and temperature) as 

technical indicator hourly model inputs to determine if forecasting performance and accuracy 

can be improved further. Preliminary experiments have been carried out with the exogenous 

variables raw data included along with the eight technical indicators data as inputs for the 24-

hour models. Table 8.1 displays these summary results, in which the EVS and RMSE values 

improved from Table 7.3, highlighting that energy related factors do influence machine learning 



127 
 
forecasting models. Gradient Boosting still performed the best for the testing period. EVS ranged 

from 0.85 to 0.91 and the increase shows less overfitting of predicted against actual prices.  

Table 8.1: Technical indicator 24-hour models with exogenous inputs summary results 

Period Algorithm EVS  

(↑) 

MedAE 

(↓) 

RMSE 

(↓) 

RMSLE 

(↓) 

Testing Random Forest 0.85 3.84 6.18 0.21 

Gradient Boosting 0.91 3.09 4.55 0.19 

XGBoost 0.90 3.20 4.76 0.23 

 

 

Figure 8.1: Gradient Boosting with exogenous inputs 24-hour model testing period 

 
Figure 8.1 illustrates Gradient Boosting predictions within the testing period and the actual 

prices. It should be noted that model fit is excellent and predicted and actual values closely 

follow the same trend. It would also be interesting to explore these additional exogenous 

variables with the hourly models. As technical indicators have shown to enhance model 

performance, developing novel technical indicators for each of the exogenous variables might 

also be advantageous for electricity price forecasting. Creating technical indicators from a 

mixture of the energy-related factors could also be considered to optimise market behaviour.     

The second option to consider is unique hyperparameters for each individual technical indicator. 

The work in this thesis split the technical indicators into two groups (lag, n and span, s) for 

optimisation. The current optimal hyperparameters provided excellent results and were 

determined for each hour by ranking the RMSE values of all combinations of the 

hyperparameters and selecting the combination which generated the smallest RMSE value. 
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However, having eight unique hyperparameters, one for each technical indicator, should make 

the prediction models more specific and further refine the tuning of each technical indicator.    

The third option to consider is the correlated lags of each of the technical indicators. The findings 

in Chapter 6 demonstrated that the inclusion of correlated lags in statistical models greatly 

improved model accuracy. It would be interesting to only consider correlated lag prices for the 

technical indicators rather than all raw data in the rolling window to determine if this could 

further optimise the machine learning models.  

The fourth option to consider is to extend the current approaches to on-line prediction models. 

The work in this thesis predicted electricity prices through applying historical data to observe 

market trends and adapt to current market conditions. The next step of the research would be 

to move the optimal machine learning prediction models to an online trading platform which is 

adaptable to current price changes in real-time. 

In the future, a wider application for this research could be any field that uses time series data, 

e.g. sensor recorded data, robotics, environmental data. One area that could apply technical 

indicators for prediction is vehicle insurance through utilising speed, breaking, steering, weather 

conditions, etc. as model inputs and driver safety as the target output. The main contribution 

from this thesis for the energy market is the knowledge for energy traders to apply accurate 

forecasting models to optimise their costs. Machine learning combined with technical indicators 

offer the best accuracy for energy trading forecasting providing compact models that accurately 

represent the variability and dynamics within the energy market. 
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Appendix 

NARMAX Polynomial Models  

 

Various NARMAX models were analysed with different low-order polynomials (linear, quadratic, 

and cubic) to predict day-ahead BETTA market electricity price. This research work was 

presented in the conference proceedings:  

● C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, “Daily Energy Price Forecasting Using 

a Polynomial NARMAX Model,” in Advances in Computational Intelligence Systems, UKCI 

2018, pp. 71–82. 

 

The research included daily data for a five week period in 2017 and observed from 1 hour to 12 

hour input regression lags with historical electricity price and demand as model input factors. 

The BETTA market historical input data ranged from 01st May 2017 until 04th June 2017 and the 

target day-ahead BETTA price data ranged from 02nd May 2017 until 05th June 2017. As noted in 

Section 3.3.4, the NARMAX model has a model estimation and model validation stage. In this 

research, the 840 data records were split 50% with the initial 420 records used for model 

estimation and the remaining 420 records used for model validation. 

Table A1 displays the percentage error values, which the closer the error value is to zero the 

better the accuracy, for both model estimation stage and model validation stage. For model 

estimation, the percentage error value decreased as the polynomial degree increased. For 

model validation it was the opposite, with the percentage error value lowest for linear 

polynomials. In particular, a linear Lag 2 model gives the lowest percentage error of 52.20 during 

model validation and the predicted values against the actual values are illustrated in Figure A1. 

The predicted values closely followed the actual values and reached the majority of the peaks.  

This preliminary work found linear polynomial NARMAX models provided the best prediction 

when forecasting day-ahead electricity prices. The validation stage needs to display a suitable 

model fit and at times it was unable to fit the quadratic and cubic polynomial models due to the 

model overfitting. The findings highlight that a simpler polynomial model works better with 

unseen data and a complex polynomial model works better with training data. Therefore in this 

thesis, experiments involving NARMAX models used linear polynomials only.  
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Table A1: Percentage error for BETTA NARMAX model (historical electricity price and demand) 

Lag Polynomial Model Estimation Model Validation 

1 

Linear 22.68 54.43 

Quadratic 18.07 62.06 

Cubic 17.44 101.81 

2 

Linear 21.76 52.20 

Quadratic 17.91 67.57 

Cubic 16.69 74.54 

3 
Linear 21.38 53.21 

Quadratic 16.69 67.88 

4 
Linear 21.21 54.69 

Quadratic 16.35 74.53 

5 
Linear 21.29 54.29 

Cubic 14.60 93.66 

6 

Linear 21.30 53.62 

Quadratic 15.31 84.72 

Cubic 16.97 81.65 

7 

Linear 20.93 53.71 

Quadratic 15.70 75.52 

Cubic 15.81 113.86 

8 Linear 20.79 53.05 

9 

Linear 20.68 53.20 

Quadratic 15.93 62.71 

Cubic 14.87 90.99 

10 
Linear 20.75 53.09 

Quadratic 15.15 72.01 

11 
Linear 20.43 53.68 

Quadratic 14.88 61.88 

12 
Linear 20.27 54.66 

Quadratic 15.14 75.31 

 

 
Figure A1: Best model validation for BETTA NARMAX model (historical electricity price and demand) 

 
 

 

 


