α-Paramodulation method for a lattice-valued logic $L_n F(X)$ with equality

α-Paramodulation Method for a Lattice-Valued Logic $L_n F(X)$ with Equality

Xingxing He · Yang Xu · Jun Liu · Yingfang Li

Received: date / Accepted: date

Abstract In this paper, α-paramodulation and α-GH paramodulation methods are proposed for handling logical formulas with equality in a lattice-valued logic $L_n F(X)$, which has unique ability for representing and reasoning uncertain information from a logical point of view. As an extension of the work of [10,11], a new form of α-equality axioms set is proposed. The equivalence between α-equality axioms set and $E_{α}$-interpretation in $L_n F(X)$ with an appropriate level is also established, which may provide a key foundation for equality reasoning in lattice-valued logic. Based on its equivalence, $E_{α}$-unsatisfiability equivalent transformation is given. Furthermore, α-paramodulation and its restricted method, i.e., α-GH paramodulation are given. The soundness and completeness of the proposed methods are also obtained.

Keywords Lattice-valued logic · Equality · α-Equality axioms · α-Paramodulation · α-GH paramodulation

1 Introduction

The general aim of decision making in big data is to reduce large-scale problems to a scale that humans can comprehend and act upon [21]. The credibility of the data is also an important issue to be guaranteed. Some methods or branches are proposed
to solve this problem such as deductive methods by mathematics or formal logics, empirical methods by statistical analysis, and computational methods by large scale simulations or data driven methods. Among them, automated reasoning can provide a strict and theoretical foundation for validating its correctness from a formal way.

Resolution in classical logic [24], due to its simplicity and completeness for unsatisfiability validation, is a main inference rule used in many famous automated theorem provers (ATPs) such as Prover9 [17], E [25], Vampire [22], etc. In these ATPs, saturation algorithm and its extended forms are their main frameworks for implementation resolution methods. Due to no restriction in literals and clauses selection, many redundant clauses generates. To solve this problem, many restricted resolution methods [7] are proposed, for instance, lock resolution, hyper-resolution, semantic resolution, extension rule[19], etc. Different from restrictions on literals and clauses, contradiction separation based automated deduction [28] is an extension of binary resolution, where dynamic and multiple (two or more) clauses and literals involving in every deductive step, and its implementation CSE-E[6] also has a good performance among others[5,26].

Equality is very common and well known to be useful in many subjects such as mathematics, logic, computer science, etc. Strictly, equality is a congruence relation between two quantities, or more generally two mathematical expressions, asserting that these quantities have the same value, or that the expressions represent the same mathematical object. Unfortunately, the E-unsatisfiability [4,7], which is the unsatisfiability of logical formula \(S \) with equality, cannot be judged if we only use the resolution like methods including contradiction separation based methods. There exist two solutions for this problem. The first way is to add the equality axioms set to \(S \), and a new logical formula \(S_1 \) is obtained. Then the E-unsatisfiability of \(S \) is equivalent to the unsatisfiability of \(S_1 \), and hence it can be judged by the resolution and its extended methods. However, the increasing size of \(S_1 \) will cause searching space explosion if \(S \) includes many function or predicate symbols. The alternative way is called paramodulation [1–3,8,18,23], which is a new inference rule in which the equality symbol satisfies the congruence relation by means of reasoning. Compared with the former method, the paramodulation method can decrease the complexity of logical formula.

As we know, the mental activities of humans are often involved in uncertain information processing, and it is difficult to represent and reason this kind of phenomena of real world in classical logic [16]. To deal with uncertainty especially for incomparability in the intelligent information processing from a symbolism point of view, lattice implication algebra (LIA) [27] and lattice-valued logic [31] based on LIA are proposed by extending the classical logic in many ways such as the truth-valued field, the implication connective and language. Uncertainty reasoning and automated reasoning [29,30] in lattice-valued logic based on LIA is given, and applied in many areas [20,31] such as rule bases, decision making, natural language processing, etc. Concretely, for the automated reasoning aspect, the \(\alpha \)-resolution principle is developed in lattice-valued propositional logic \(LP(X) \) [15,30] and lattice-valued first-order logic \(LF(X) \) [29] as well as their soundness and weak completeness. Its approximate reasoning scheme was also investigated and reported in [9,12–14,31–34].
The equality in lattice-valued logic based on LIA is also an important and special predicate symbol. If we treat the equation as an ordinary one, and only use the \(\alpha \)-resolution methods to judge the \(\alpha \)-unsatisfiability of \(S \), then the completeness of \(\alpha \)-resolution does not hold. Similar to classical logic, for judging the \(\alpha \)-unsatisfiability of logical formula \(S \) with equality in lattice-valued logic, two main alternatives exist. One is adding the \(\alpha \)-equality axioms to the original clauses set \(S \), and get a new clauses set \(S_1 \). Then the \(E_\alpha \)-unsatisfiability of \(S \) is equivalent to the \(\alpha \)-unsatisfiability of \(S_1 \), which can be judged by the \(\alpha \)-resolution principle. However, this method may increase the complexity of \(S \) by adding the equality axioms set. The clauses set may become too large if \(S \) includes many different predicate symbols or functional symbols. The other is dealing with the logical formula \(S \) directly. Of course, it is incomplete if only \(\alpha \)-resolution principle is used. We should extend the \(\alpha \)-resolution method and develop some complete automated reasoning methods for handling the logical formula with equality in lattice-valued logic.

By combining \(\alpha \)-resolution and paramodulation, \(\alpha \)-paramodulation was proposed to handle equality logical formulae directly in [10,11]. Two types of \(\alpha \)-equality axioms sets were respectively given to guarantee the equivalence of \(\alpha \)-equality axioms set \(K_\alpha \) and \(E_\alpha \)-interpretation for \(LF(X) \). However, many conditions should be added to keep its equivalence, and these conditions are too rigor for logical formulae and resolution level \(\alpha \). In this sense, we propose a new form of \(K_\alpha \) for \(L_\alpha F(X) \) in this paper as an extension of the work [10,11], which can keep the equivalence of \(\alpha \)-equality axioms set and \(\alpha \)-congruence relation naturally with an appropriate level. Based on this equivalence, we proposed \(\alpha \)-paramodulation and \(\alpha \)-GH paramodulation methods. The soundness and completeness of the proposed methods are also given.

The remained part of this paper is organized as follows. After a brief overview about lattice-valued logic based on LIA and \(\alpha \)-Gv semantic resolution in lattice-valued logic in Section 2, the \(\alpha \)-Gv-unsatisfiability for a lattice-valued logic \(L_\alpha F(X) \) is given including equivalence of \(\alpha \)-equality axioms set and \(\alpha \)-congruence relation, and \(\alpha \)-unsatisfiability transformation in Section 3. The concepts of \(\alpha \)-paramodulation and \(\alpha \)-GH paramodulation are given. Their soundness and completeness are obtained in Section 4. Section 5 concludes this paper.

2 Preliminaries

In this section, we only recall some elementary definitions and properties needed in the following discussions, more detailed notations and results about lattice-valued logic based on LIA and \(\alpha \)-resolution principle can be seen in [27,29–31].

2.1 \(\alpha \)-Resolution principle in lattice-valued logic based on LIA

Definition 1 [27,31] Let \((L, \lor, \land, O, I) \) be a bounded lattice with an order-reversing involution \(\cdot' \), \(I \) and \(O \) the greatest and the smallest element of \(L \), respectively, and \(\cdot : L \times L \rightarrow L \) a mapping. \(L' = (L, \lor, \land', \cdot, O, I) \) is called a lattice implication algebra (LIA) if the following conditions hold for any \(x, y, z \in L \):

\[
\begin{align*}
\overline{\overline{x \land y}} & = x \lor \overline{y}, \\
\overline{\overline{x \lor y}} & = x \land \overline{y}, \\
\overline{x \cdot y} & = \overline{\overline{x} \lor \overline{y}}, \\
\overline{x' \lor y} & = \overline{x} \land \overline{y}, \\
\overline{x \land y'} & = \overline{x} \lor \overline{y}, \\
\overline{x \cdot y'} & = \overline{x} \lor \overline{y}, \\
\overline{x \cdot y} & = \overline{x} \lor \overline{y}, \\
\overline{x' \cdot y} & = \overline{x} \lor \overline{y}.
\end{align*}
\]
(I₁) \(x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \),
(I₂) \(x \rightarrow x = I \),
(I₃) \(x \rightarrow y = y' \rightarrow x' \),
(I₄) \(x \rightarrow y = y \rightarrow x = I \) implies \(x = y \),
(I₅) \((x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x \),
(I₆) \((x \vee y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z) \),
(I₇) \((x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z) \).

In order to deal with quantifiers, in what follows, we suppose that \(L \) is a complete lattice.

Definition 2 [27,31] (Łukasiewicz implication algebra on a finite chain \(L_n \)) Let \(L_n \) be a finite chain, \(L_n = \{a_i | 1 \leq i \leq n \} \) and \(a_1 < a_2 < \ldots < a_n \), define for any \(a_j, a_k \in L_n \),

\[
a_j \vee a_k = a_{\max\{j,k\}}, a_j \land a_k = a_{\min\{j,k\}}, \{a_j\}' = a_{n-j+1}, a_j \rightarrow a_k = a_{\min\{n-j+k,n\}}.
\]

Then \(L_n = (L_n, \vee, \land, \lor, \land, \rightarrow, a_1, a_n) \) is an LIA.

Definition 3 [30,31] Let \(X \) be a set of propositional variables, \(T = L \cup \{', \rightarrow\} \) be a type with \(\text{art}' = 1, \text{art}(\rightarrow) = 2 \) and \(\text{art}(a) = 0 \) for every \(a \in L \). The propositional algebra of the lattice-valued propositional calculus on the set \(X \) of propositional variables is the free \(T \) algebra on \(X \) and is denoted by \(LP(X) \).

Remark 1 Specially, when \(L = L_n, LP(X) \) is denoted as \(L_nP(X) \).

Definition 4 [30,31] Let \(F \in LP(X), \alpha \in L \). If there exists a valuation \(\gamma_0 \) of \(LP(X) \) such that \(\gamma_0(F) \geq \alpha \), \(F \) is satisfiable by a truth-value level \(\alpha \), in short, \(\alpha \)-satisfiable. If \(\gamma(F) \geq \alpha \) for every valuation \(\gamma \) of \(LP(X) \), \(F \) is valid by the truth-value level \(\alpha \), in short, \(\alpha \)-valid. If \(\gamma(F) \leq \alpha \) for every valuation \(\gamma \) of \(LP(X) \), \(F \) is always false by the truth-value level \(\alpha \), in short, \(\alpha \)-false.

Definition 5 [30,31] \(F \in LP(X) \) is called an extremely simple form, in short ESF, if \(F \in LP(X) \) obtained by deleting any constant or literal or implication term appearing in \(F \) is not equivalent to \(F \).

Definition 6 [30,31] \(F \in LP(X) \) is called an indecomposable extremely simple form, in short IESF, if

1. \(F \) is an ESF containing connectives \(\rightarrow \) and \(' \) at most.
2. For any \(G \in LP(X) \), if \(G \in T \) in \(LP(X) \), then \(G \) is an ESF containing connectives \(\rightarrow \) and \(' \) at most, where \(LP(X) = (LP(X)/\rightarrow, \lor, \land, \rightarrow) \) is an LIA, \(LP(X)/\rightarrow = \{p \mid p \in LP(X)\}, p = \{q \mid q \in LP(X), q = p\} \), for any \(p, q \in LP(X)/\rightarrow, p \lor q = p \lor q, p \land q = p \land q, (p)' = p', p \rightarrow q = p \rightarrow q \).

Definition 7 [30,31] All the constants, literals and IESFs in \(LP(X) \) are called generalized literals.

In \(LP(X) \), a disjunction of finite generalized literals is called a generalized clause, and a conjunction of finite generalized clauses is called a generalized conjunctive normal form.
Definition 8 [30,31] Let $\alpha \in L$, G_1 and G_2 be two generalized clauses in $LP(X)$ of the forms $G_1 = g_1 \lor \ldots \lor g_i \lor \ldots \lor g_n$ and $G_2 = h_1 \lor \ldots \lor h_j \lor \ldots \lor h_m$, respectively. If for any valuation I such that $I(g_i \land h_j) \leq \alpha$, then

$$G = g_1 \lor \ldots \lor g_{i-1} \lor g_{i+1} \lor \ldots \lor g_n \lor h_1 \lor \ldots \lor h_{j-1} \lor h_{j+1} \lor \ldots \lor h_m$$

is called an α-resolvent of G_1 and G_2, denoted by $G = R_{\alpha}(G_1, G_2)$. g_i and h_j form an α-resolution pair, denoted by (g_i, h_j). The generation of an α-resolvent from two clauses, called α-resolution, is the sole rule of the α-resolution principle inference.

Definition 9 [30,31] Suppose a generalized conjunctive normal form $S = G_1 \land G_2 \land \ldots \land G_n$ in $LP(X)$, $\alpha \in L$, $w = \{D_1, D_2, \ldots, D_m\}$ is called an α-resolution deduction from S to the generalized clause D_m, if

1. $D_i \in \{G_1, G_2, \ldots, G_n\}$ or
2. There exist $j, k < i$, such that $D_i = R_{\alpha}(D_j, D_k)$.

If there exists an α-resolution deduction from S to the empty clause (denoted by $\alpha \vdash \Box$), then w is called an α-refutation of S.

The truth-value domain of lattice-valued first-order logic $LF(X)$ is an LIA. This logic system can be used to deal with propositions with quantifiers [31]. Specially, if the valuation field of $LF(X)$ L_α is \mathbb{L}_α, then $LF(X)$ is denoted as $L_\alpha F(X)$.

Definition 10 [29] Suppose V and F are the set of variable symbols and that of functional symbols in $LF(X)$, respectively, the set of terms of $LF(X)$ is defined as the minimal set \mathcal{F} satisfying the following conditions:

1. $V \subseteq \mathcal{F}$.
2. For any $n \in \mathbb{N} \cup \{0\}$, if $f^{(n)} \in F$, then $f^{(n)}(t_0, t_1, \ldots, t_n) \in \mathcal{F}$ for any $t_0, t_1, \ldots, t_n \in \mathcal{F}$.

Definition 11 [29] Suppose P is the predicate symbol set in $LF(X)$. The set of atoms of $LF(X)$ is defined as the smallest set \mathcal{A}_L satisfying the following conditions; For any $n \in \mathbb{N} \cup \{0\}$, if $p^{(n)} \in P$, then $p^{(n)}(t_0, t_1, \ldots, t_n) \in \mathcal{A}_L$ for any $t_0, t_1, \ldots, t_n \in \mathcal{F}$.

Definition 12 [29] The set of logical formulae of $LF(X)$ is defined as the smallest set \mathcal{F} satisfying the following conditions:

1. $\mathcal{A}_L \subseteq \mathcal{F}$.
2. If $p, q \in \mathcal{F}$, then $p \rightarrow q \in \mathcal{F}$.
3. If $p \in \mathcal{F}$, x is a free variable in p, then $(\forall x)p, (\exists x)p \in \mathcal{F}$.

Definition 13 [29] A logical formula G in $LF(X)$ is a g-literal, if

1. G is a literal, or
2. G is constructed only by some literals and some implication connectives with the condition that G can not be represented by connectives \lor or \land and G can not be decomposed into a simpler form (G is called an indecomposable form).

In $LF(X)$, a disjunction of finite g-literals is called a g-clause, and a conjunction of finite g-clauses is called a g-conjunctive normal form.
2.2 α-Gv semantic resolution for lattice-valued logic based on LIA

Definition 14 [32] Let S be a set of g-clauses in $LF(X)$, $\alpha \in L$, G an order of g-literals of S, I an interpretation in $LF(X)$, then $(E_1, E_2, \ldots, E_q, N)$ is called an α-Gv semantic clash if it satisfies the following conditions.

1. $I(E_i) \leq \alpha$ $(1 \leq i \leq q)$.
2. Let $R_1 = N$, for any $i = 1, 2, \ldots, q$, there exist g-clauses R_i and E_i, such that $R_{i+1} = R_{\alpha}(R_i, E_i)$.
3. The resolved g-literal in E_i has the maximal order in E_i with respect to G.
4. $I(R_{q+1}) \leq \alpha$.

Then R_{q+1} is called the α-Gv semantic resolvent of $(E_1, E_2, \ldots, E_q, N)$, i.e., $R_{q+1} = R_{\alpha-Gv}(E_1, E_2, \ldots, E_q, N)$.

Definition 15 [32] Suppose S is a set of g-clauses $S = G_1 \land G_2 \land \cdots \land G_n$ in $LF(X)$, $\alpha \in L$, $w = \{D_1, D_2, \ldots, D_m\}$ is called an α-Gv semantic resolution deduction of S from D_1 to D_m, if

1. $D_i \in \{G_1, G_2, \ldots, G_n\}$, or
2. there exist $k_1, k_1, \ldots, k_n < i$, such that $D_i = R_{\alpha-Gv}(D_{k_1}, D_{k_2}, \ldots, D_{k_n})$.

Theorem 1 [32] Let S be a set of g-clauses in $LF(X)$, $\alpha \in L$, $\{D_1, D_2, \ldots, D_m\}$ an α-Gv resolution deduction from S to a g-clause D_m. If $D_m \leq \alpha$, then $S \leq \alpha$.

Theorem 2 [32] Let S be a set of g-clauses in $LF(X)$, $\alpha \in L$, I an interpretation in $LF(X)$. Then there exists an α-Gv semantic resolution deduction from S to α-\Box if S is α-unsatisfiable and satisfies the following conditions.

1. For any g-literals g_1, g_2, \ldots, g_n in S, if $g_1 \land g_2 \land \cdots \land g_n \leq \alpha$, then there exist g_i and g_j $(1 \leq i, j \leq n)$, such that $g_i \land g_j \leq \alpha$.
2. If for any interpretation I, $I(g_i \land g_j) \leq \alpha$, then $I(g_i) \leq \alpha$ and $I(g_j) \leq \alpha$ do not hold simultaneously.
3. If the g-literal g has the minimal order in S, then $I(g) \leq \alpha$.

3 α_w-Unsatisfiability for a lattice-valued logic $L_\alpha F(X)$

3.1 Equality relation in $L_\alpha F(X)$

Definition 16 Let S be a set of g-clauses in $L_\alpha F(X)$, $\alpha \in L$, W the set of all the interpretations of S, $Q \subseteq W$ ($Q \neq \emptyset$). Then S is α_Q-unsatisfiable if and only if $S \leq \alpha$ with the interpretation Q.

Example 1 Let $g_1 = (\forall x)(P_1(x) \rightarrow a_2)$ be a g-literal in $L_\alpha F(X)$, $\alpha = a_5$, where x is a variable symbol, a_2 is a constant symbol, P_1 is a predicate symbol. For the predicate P_1, we take a special assignment for partial interpretation W of g_1, that is, for any interpretation field D, $W = \{w_0: assign P_1 to a_7, that is, for any x \in D, I_w(P_1(x)) = a_7\}$, assign constant symbol a_2 to constant $a_2 \in L_\alpha$. Therefore, with the interpretation I_w, we have $I_w(g_1)=a_7 \rightarrow a_2 = a_4$. Therefore, g_1 is α_{a_2}-unsatisfiable in $L_\alpha F(X)$. However, g_1 is α-satisfiable in $L_\alpha F(X)$.
Remark 2 The interpretation mentioned in this paper is the Herbrand interpretation of S in $L_nF(X)$ [31].

Equality is an important relation in mathematic logic. Especially, in classical logic, the equality predicate symbol satisfies the properties of congruence relation of equality, that is, reflexity, symmetry, transitivity and monotonicity. In [7], a special partial interpretation, E-interpretation, is given, which satisfies its congruence relation. Now we extend the concept of E-interpretation in [23] to E_{α}-interpretation for $L_nF(X)$.

For convenience, we denote the equation $s = t$ as $E(s, t)$, where E is the equality predicate symbol in $L_nF(X)$.

Definition 17 Let S be a set of g-clauses in $L_nF(X)$. Then the interpretation I is an E_{α}-interpretation if it satisfies the following conditions.

1. $I(E(x_1, x_1)) \geq \alpha$.
2. If $I(E(x_1, x_2)) \geq \alpha$, then $I(E(x_2, x_1)) \geq \alpha$.
3. If $I(E(x_1, x_2)) \geq \alpha$ and $I(E(x_2, x_3)) \geq \alpha$, then $I(E(x_1, x_3)) \geq \alpha$.
4. If $I(E(x_j, x_0)) \geq \alpha$ and $I(P(x_1, x_2, \ldots, x_j, \ldots, x_n)) \geq \alpha$, then $I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq \alpha$.
5. If $I(E(x_j, x_0)) \geq \alpha$, then $I(E(f(x_1, x_2, \ldots, x_j, \ldots, x_n), f(x_1, x_2, \ldots, x_0, \ldots, x_n))) \geq \alpha$.

Where $x_1, x_2, \ldots, x_0, \ldots, x_n$ are variable symbols in $L_nF(X)$, P is an n-ary predicate symbol in S, f is an n-ary function symbol in S.

Remark 3 It is shown from (1), (2), (3), (4), (5) in Definition 17 that the equality predicate E in $L_nF(X)$ should satisfy properties of α-reflexity, α-symmetry, α-transitivity and α-monotonicity for function and predicate symbols, respectively.

Generally, if a clauses set S in $L_nF(X)$ includes equality symbol E, then E should satisfy appropriate logical formulas. Hence an α-equality axioms set K_{α} is given, that is, if I is an E_{α}-interpretation, then for every formula $g \in K_{\alpha}, I(g) \geq \alpha$. On the other hand, if every formula in K_{α} is α-valid with the interpretation I, then I is an E_{α}-interpretation. In [10, 11], two types of α-equality axioms set are given to guarantee the equivalence of α-equality axioms set K_{α} and E_{α}-interpretation for $LF(X)$. However, many conditions should be added to keep its equivalence. For example, in [10], if there exists a valuation I_0 such that $I_0(E(x, y)) = a_7$, $I_0(E(y, x)) = a_2$, then $I_0(E(x, y)) \rightarrow I_0(E(y, x)) = a_7 \rightarrow a_2 = a_4 < a_5$. Therefore, we should take $\alpha = I \in L_n$. This condition is too rigor, because if $\alpha = I$ is a resolution level, then all g-clauses can be resolved. To solve this problem, in this section we propose a new form of α-equality axioms set for $L_nF(X)$, which can keep its equivalence naturally with an appropriate resolution level.

Definition 18 Let S be a set of g-clauses in $L_nF(X)$, $\alpha \in L_n$. Then K_{α} is an α-equality axioms set of S if the following logical formulas are α-valid clauses.

1. $E(x_1, x_1)$,
2. $(\alpha \rightarrow E(x_1, x_2)) \lor E(x_2, x_1)$,
Remark 5. (c) choose a small truth value \(\alpha \).

Proof. Theorem 3. Therefore, \(\alpha \rightarrow \alpha \).

Remark 4. Specially, if \(\alpha = I \), then all formulas in \(K_\alpha \) are valid.

To keep the equivalence of \(\alpha \)-equality axioms set and \(E_\alpha \)-interpretation, we should consider a special set of resolution level \(\alpha \) as shown in Definition 19.

Definition 19. Let \((L; \lor, \land, \neg, O, I)\) be an LIA. \(\alpha \) is called an appropriate level if satisfies: for any \(a \in L \), if \(a \leq \alpha \), then \((\alpha \rightarrow a) \geq \alpha \).

Proposition 1. Let \((L_n; \lor, \land, \neg, O, I)\) be an LIA. Then \(\alpha \in L_n \) is an appropriate level if and only if \(\alpha \in \{a \in L_n|a \leq a_{\lfloor n/2 \rfloor}\} \).

Proof. The sufficiency can be easily validated, we only prove the necessity.

Since \(\alpha, a \in L_n \), let \(a = a_m \) a = \(a_i \), then \((\alpha \rightarrow a) \geq a_i = a_{\min(m, n - m + i)} \), hence \((\alpha \rightarrow a) = a_{\min(m, n - m + i)} \). If \(\alpha \in L_n \) is an appropriate level, then \(n - \min(m, n - m + i) \geq m \), that is, \(n - m \geq \min(m, n - m + i) \) for any \(i \leq m \). In this sense, two cases exist as follows.

1. If \(m \leq \lfloor n/2 \rfloor \), then \(n - m \geq \lfloor n/2 \rfloor \), hence \(\min(m, n - m + i) = m \), that is, \(n - m \geq \min(m, n - m + i) \) for any \(i \leq m \).
2. If \(m \geq \lfloor n/2 \rfloor \), then \(n - m \leq \lfloor n/2 \rfloor \), hence \(\min(m, n - m + i) = m \) for some \(i \). In this case, \(n - m < \min(m, n - m + i) \).

Therefore, \(\alpha \in L_n \) is an appropriate level if and only if \(\alpha \in \{a \in L_n|a \leq a_{\lfloor n/2 \rfloor}\} \).

Remark 5. The appropriate levels set \(\{a \in L_n|a \leq a_{\lfloor n/2 \rfloor}\} \) is reasonable because we can choose a small truth value \(\alpha \) in \(L_n \) and it satisfies the sense of the definition of \(\alpha \)-resolution.

In the following, we take \(\alpha \) as an appropriate level to keep the equivalence of \(\alpha \)-equality axioms and \(E_\alpha \)-interpretation.

Theorem 3. Let \(S \) be a set of \(g \)-clauses in \(L_\alpha F(X) \), \(\alpha \) an appropriate level, \(K_\alpha \) an \(\alpha \)-equality axioms set of \(S \). Then \(I_E \) is an \(E_\alpha \)-interpretation if and only if \(I_E(K_\alpha) \geq \alpha \).

Proof. (Sufficiency) \(e_1 \) It holds obviously.

\(e_2 \) For any \(E_\alpha \)-interpretation \(I_E \), two cases exist.

1. If \(I_E(E(x, y)) \geq \alpha \), then \(I_E(E(y, x)) \geq \alpha \) since \(I_E \) is an \(E_\alpha \)-interpretation. Hence \(I_E((\alpha \rightarrow E(x, y))) \lor E(y, x) = I_E((\alpha \rightarrow E(x, y))) \lor I_E(E(y, x)) \geq I_E(E(y, x)) \geq \alpha \).
2. If \(I_E(E(x, y)) \leq \alpha \), then \(I_E((\alpha \rightarrow E(x, y))) \lor E(y, x) = I_E((\alpha \rightarrow E(x, y))) \lor I_E(E(y, x)) \geq I_E(E(y, x)) \geq \alpha \). Since \(\alpha \) is an appropriate level, we have \(I_E((\alpha \rightarrow E(x, y))) \lor E(y, x) \geq \alpha \).

Therefore, for any \(E_\alpha \)-interpretation \(I_E \), \(I_E((\alpha \rightarrow E(x, y))) \lor E(y, x) \geq \alpha \).

(\(\alpha \)-resolution) \(e_3 \) For any \(E_\alpha \)-interpretation \(I_E \), two cases exist.
(i) If $I_E(E(x,y)) \geq \alpha$ and $I_E(E(y,z)) \geq \alpha$, then $I_E((\alpha \rightarrow E(x,z)) \lor (\alpha \rightarrow E(y,z))) \geq \alpha$, and thus $I_E(\{((\alpha \rightarrow E(x,z)) \lor (\alpha \rightarrow E(y,z))) \geq \alpha\}$.

(ii) If $I_E(E(x,y)) \leq \alpha$ or $I_E(E(y,z)) \leq \alpha$, without loss of generality, let $I_E(E(x,y)) \leq \alpha$. Since α is an appropriate level, we have $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,z))) = I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,z))) \geq \alpha\}$.

Therefore, for any $E\alpha$-interpretation I_E, $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,z))) \geq \alpha\}$.

e_4) For any $E\alpha$-interpretation I_E, two cases exist.

(i) If $I_E(E(x_1,x_2)) \geq \alpha$ and $I_E(\{P(x_1,x_2) \geq \alpha\}$, then $I_E(\{P(x_1,x_2) \geq \alpha\}$.

(ii) If $I_E(E(x_1,x_2)) \leq \alpha$ or $I_E(\{P(x_1,x_2) \leq \alpha\}$, without loss of generality, let $I_E(E(x_1,x_2)) \leq \alpha$. Since α is an appropriate level, we have $I_E(\{((\alpha \rightarrow E(x_1,x_2)) \lor (\alpha \rightarrow P(x_1,x_2))) \geq \alpha\}$.

Therefore, for any $E\alpha$-interpretation I_E, $I_E(\{((\alpha \rightarrow E(x_1,x_2)) \lor (\alpha \rightarrow P(x_1,x_2))) \geq \alpha\}$.

e_5) For any $E\alpha$-interpretation I_E, two cases exist.

(i) If $I_E(E(x_1,x_2)) \geq \alpha$, then $I_E(\{f(x_1,x_2) \geq \alpha\}$.

(ii) If $I_E(E(x_1,x_2)) \leq \alpha$, then $I_E(\{f(x_1,x_2) \leq \alpha\}$.

According to the proof of e_1, e_2, e_3, e_4 and e_5, for any $E\alpha$-interpretation I_E, we have $I_E(\{K\}) \geq \alpha$.

(Necessity) (1) If $I_E(\{K\}) \geq \alpha$, then $I(E(x,y)) \geq \alpha$.

(2) If $I_E(\{K\}) \geq \alpha$, then $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,x))) \geq \alpha\}$, that is, $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,x))) \geq \alpha\}$.

(3) If $I_E(\{K\}) \geq \alpha$, then $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow E(y,x))) \geq \alpha\}$.

(4) If $I_E(\{K\}) \geq \alpha$, then $I_E(\{((\alpha \rightarrow E(x,y)) \lor (\alpha \rightarrow P(x_1,x_2)) \geq \alpha\}$.
Therefore, for any interpretation \(I\). By Herbrand Theorem \([29]\) in \(α\)-interpretation, and we denote it by \(E\)-interpretation \(I\), then \(I\) is \(E\)-unsatisfiable.

\[P(x_1, x_2, \ldots, x_0, \ldots, x_n) \geq α. \]

If \(I(E(x_j, x_0)) \geq α\) and \(I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α\), then \(I((α \rightarrow E(x_j, x_0))^I) = O\) and \(I((α \rightarrow P(x_1, x_2, \ldots, x_0, \ldots, x_n))^I) = O\).

Hence \(I((α \rightarrow E(x_j, x_0))^I) \lor I((α \rightarrow P(x_1, x_2, \ldots, x_0, \ldots, x_n))^I) \lor I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) = I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α\), that is, \(I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α\).

\[\text{(5) If } I(K_α) \geq α, \text{ then } I((α \rightarrow E(x_j, x_0))^I) \lor E(f(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α, \text{ that is, } I(E(f(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α\),

\[= I(E(f(x_1, x_2, \ldots, x_0, \ldots, x_n)) \lor I((α \rightarrow E(x_j, x_0))^I)) \lor I(P(x_1, x_2, \ldots, x_0, \ldots, x_n)) = I(E(f(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α, \text{ that is, } I(E(f(x_1, x_2, \ldots, x_0, \ldots, x_n)) \geq α).\]

According to the proof of (1) – (5), if \(I(K_α) \geq α\), then \(I\) is an \(E_α\)-interpretation.

3.2 \(α_ε\)-Unsatisfiability for \(L_α F(X)\)

Definition 20 Let \(S\) be a set of \(g\)-clauses in \(L_α F(X)\). \(S\) is \(α_ε\)-unsatisfiable if for any \(E_α\)-interpretation \(I_E\) such that \(I_E(S) \leq α\), \(S\) is \(α_ε\)-satisfiable if there exists an \(E_α\)-interpretation \(I_E\) such that \(I_E(S) \geq α\). \(I_E(S)\) is \(α_ε\)-true if for any \(E_δ\)-interpretation \(I_E\) such that \(I_E(S) \geq α\).

Theorem 4 Let \(S\) be a set of \(g\)-clauses in \(L_α F(X)\), \(K_α\) an \(α\)-equality axiom set of \(S\), \(α \in L_α\). Then \(S\) is \(α_ε\)-unsatisfiable if and only if for any interpretation \(I\), we have \(I(S \land K_α) \leq α\).

Proof (Necessity) Since \(S\) is \(α_ε\)-unsatisfiable in \(L_α F(X)\), then for any interpretation \(I_E\), we have \(I_E(S) \leq α\). If there exists an interpretation \(I_0\), such that \(I_0(S \land K_α) \geq α\), then \(I_0(S) \geq α\) and \(I_0(K_α) \geq α\). Since \(I_0(K_α) \geq α\), we have \(I_0\) is an \(E_α\)-interpretation.

However, \(I_0(S) \geq α\), which is contradictory to the fact that \(S\) is \(α_ε\)-unsatisfiable.

Therefore, for any interpretation \(I\), we have \(I(S \land K_α) \leq α\).

(Sufficiency) If for any interpretation \(I\), we have \(I(S \land K_α) \leq α\). If for the interpretation \(I\), such that \(I(K_α) \geq α\), then \(I\) is an \(E_α\)-interpretation by the definition of \(E_α\)-interpretation, and we denote it by \(I_E\). Since \(α \in L_α\) is a dual numerator, hence if \(I_E(K_α) \geq α\), then \(I_E(S) \leq α\), that is, for any interpretation \(I_E\), \(I_E(S) \leq α\). Therefore, \(S\) is \(α_ε\)-unsatisfiable.

Theorem 5 Let \(S\) be a set of \(g\)-clauses in \(L_α F(X)\). Then \(S\) is \(α_ε\)-unsatisfiable if and only if there exists a set of finite ground instance \(S_1\) of \(S\) in \(L_α P(X)\), such that \(S_1\) is \(α_ε\)-unsatisfiable.

Proof (Necessity) Since \(S\) is \(α_ε\)-unsatisfiable in \(L_α F(X)\), we have \(S \land K_α \leq α\) by Theorem 4. By Herbrand Theorem \([29]\) in \(L_α F(X)\), there exists a set of finite ground instances \(S_1 \land K_α\) in \(L_α P(X)\), such that \(S_1 \land K_α \leq α\). By Theorem 4, \(S_1\) is \(α_ε\)-unsatisfiable.

(Sufficiency) If there exists a set of finite ground instance \(S_1\) in \(L_α P(X)\), such that \(S_1\) is \(α_ε\)-unsatisfiable, that is, \(S_1\) is \(α_ε\)-unsatisfiable with the interpretation \(I_E\), i.e., \(I_E(S_1) \leq α\). On the other hand, for any interpretation \(I\), we have \(I(S) \leq I(S_1)\), hence \(I_E(S) \leq I_E(S_1) \leq α\). Therefore, \(S\) is \(α_ε\)-unsatisfiable.
Remark 6 By Theorem 4 and 5, validating the α_E-unsatisfiability of S can be equivalently converted to discussing the α-unsatisfiability of $S \land K_\alpha$, but this transformation process may increase the complexity of validating the α-unsatisfiability because more clauses are added to S. If S includes too many predicate or functional symbols, then $S \land K_\alpha$ is relatively complex.

4 α-Paramodulation and α-GH paramodulation for $L_\infty F(X)$

In this section, we consider an inference rule to avoid adding all logical formulas in α-equality axioms set to S, that is, the α-paramodulation in $L_\infty F(X)$, and therefore α_E-unsatisfiability of S can be validated by combining α-resolution and α-paramodulation. Furthermore, α-GH paramodulation is also proposed to improve the efficiency of α-paramodulation, its soundness and completeness are also shown.

4.1 α-Paramodulation for $L_\infty F(X)$

Definition 21 Let G_1 and G_2 be g-clauses without the same variables in $L_\infty F(X)$, $G_1 = g_1[t] \lor G_1^t$, $G_2 = E(s_1, s_2) \lor G_2^s$, where $g_1[t]$ is the g-literal including term t, G_1^t and G_2^s are g-clauses. If t and s_1 have an mgu σ, then

$$PR_\alpha(G_1, G_2) = g_1^\sigma[s_2^\sigma] \lor G_1^\sigma \lor G_2^\sigma$$

is called an α-paramodulator of G_1 and G_2, where $g_1^\sigma[s_2^\sigma]$ represents that t^σ in g_1^σ is substituted by s_2^σ.

Example 2 Let $L_0 = \{a_i | 1 \leq i \leq 9\}$ be a Łukasiewicz implication algebra, $G_1 = (P(y) \Rightarrow P(x))^\vee E(f(a_1), x)$ and $G_2 = E(a_6, a_1)$ g-clauses in $L_0 F(X)$, $\alpha = a_5$, where x, y are variable symbols, a_4, a_6 are constant symbols, f is a function symbol, and P is a predicate symbol. Then there exist an α-paramodulator $PR_\alpha(G_1, G_2) = (P(y) \Rightarrow P(a_6))^\vee E(f(a_1), a_6)$.

Definition 22 Let G_1 and G_2 be g-clauses in $L_\infty F(X)$, $\alpha \in L_\infty$. $G_1 E_\alpha$-implies G_2 if and only if $G_1 \Rightarrow G_2$ is α_E-true, and denoted by $G_1 \Rightarrow E_\alpha G_2$.

Theorem 6 Let G_1 and G_2 be g-clauses in $L_\infty F(X)$, $\alpha \in L_\infty$, then $G_1 \land G_2 \Rightarrow E_\alpha PR_\alpha(G_1, G_2)$.

Proof For any E_α-interpretation I_\E in $L_\alpha F(X)$, if $I_\E(G_1 \land G_2) \geq \alpha$, then $I_\E(G_1) \land I_\E(G_2) \geq \alpha$, hence $I_\E(G_1) \geq \alpha$ and $I_\E(G_2) \geq \alpha$. Hence two cases exist.

(1) If $I_\E(G_1^\sigma) \geq \alpha$ or $I_\E(G_2^\sigma) \geq \alpha$, then $I_\E(PR_\alpha(G_1, G_2)) = I_\E(g_1^\sigma[s_2^\sigma] \lor G_1^\sigma \lor G_2^\sigma) \geq I_\E(G_1^\sigma) \geq \alpha$, where $i = 1, 2$.

(2) If $I_\E(G_1^\sigma) \leq \alpha$, and $I_\E(G_2^\sigma) \leq \alpha$. Since $I_\E(g_1^\sigma[t] \lor G_1^\sigma) = I_\E(g_1^\sigma[t]) \lor I_\E(G_1^\sigma) \geq \alpha$, we have $I_\E(g_1^\sigma[t]) \geq \alpha$. Similarly, $I_\E(E(s_1, s_2)) \geq \alpha$. Since I_\E is an E_α-interpretation and t^σ is equal to s_1^σ, we have $I_\E(g_1^\sigma[s_2^\sigma]) \geq \alpha$. Hence $I_\E(PR_\alpha(G_1, G_2)) \geq \alpha$.

Therefore, for any \(E_{\alpha} \)-interpretation \(I_{\alpha} \), if \(I_{\alpha}(G_1 \land G_2) \geq \alpha \), then \(I_{\alpha}(PR_{\alpha}(G_1, G_2)) \geq \alpha \), that is, \(G_1 \land G_2 \Rightarrow_{\alpha} PR_{\alpha}(G_1, G_2) \).

Definition 23 Suppose \(S \) is a set of g-clauses \(S = G_1 \land G_2 \land \cdots \land G_n \) in \(L_n F(X) \), \(\alpha \in L_n \), \(w = \{D_1, D_2, \ldots, D_m\} \) is called an \(\alpha \)-paramodulation deduction of \(S \) from \(D_1 \) to \(D_m \), if

1. \(D_i \in \{G_1, G_2, \ldots, G_n\} \), or
2. there exist \(j, k < i \), such that \(D_i = R_{\alpha}(D_j, D_k) \), or
3. there exist \(j, k < i \), such that \(D_i = PR_{\alpha}(D_j, D_k) \).

Theorem 7 Suppose \(S \) is a set of g-clauses \(S = G_1 \land G_2 \land \cdots \land G_n \) in \(L_n F(X) \), \(\alpha \in L_n \), \(w = \{D_1, D_2, \ldots, D_m\} \) is an \(\alpha \)-paramodulation deduction of \(S \) from \(D_1 \) to \(D_m \). If \(D_m \) is \(\alpha_{E} \)-unsatisfiable, then \(S \) is \(\alpha_{E} \)-unsatisfiable.

Proof According to the soundness of \(\alpha \)-resolution and Theorem 6 in \(L_n F(X) \), Theorem 7 follows immediately.

4.2 \(\alpha \)-GH paramodulation for \(L_n F(X) \)

Definition 24 Let \(S \) be a set of g-clauses in \(L_n F(X) \), \(\alpha \in L_n \). \(S \) is called an \(\alpha \)-Gv complete clauses set if it satisfies conditions of completeness of \(\alpha \)-Gv semantic resolution.

In what follows, the g-clauses sets mentioned are all \(\alpha \)-Gv complete clauses sets if without any special statement.

Definition 25 (\(\alpha \)-GH resolution) In an \(\alpha \)-Gv semantic resolution, if the interpretation \(I \) satisfies \(I(g) \geq \alpha \) in case \(g \) has the form of \(g = F' \), where \(F \) is a g-clause, then the \(\alpha \)-Gv semantic resolution is an \(\alpha \)-GH resolution.

Remark 7 Since the conditions of \(\alpha \)-Gv complete clauses set only restrict the interpretations for \(I(g) \leq \alpha \), not for \(I(g) \geq \alpha \), then the conditions in \(\alpha \)-GH resolution are not conflict with those in \(\alpha \)-Gv semantic resolution. Furthermore, from Definition 25, \(\alpha \)-GH resolution is a special case of \(\alpha \)-Gv semantic resolution where the involved g-clauses should be their negative forms.

Definition 26 (\(\alpha \)-GH resolution deduction) Suppose \(S \) is a set of g-clauses \(S = G_1 \land G_2 \land \cdots \land G_n \) in \(L_n F(X) \), \(\alpha \in L_n \), \(w = \{D_1, D_2, \ldots, D_m\} \) is called an \(\alpha \)-GH resolution deduction of \(S \) from \(D_1 \) to \(D_m \), if

1. \(D_i \in \{G_1, G_2, \ldots, G_n\} \), or
2. there exist \(j_1, j_2, \ldots, j_k < i \), such that \(D_i = R_{\alpha-GH}(D_{j_1}, D_{j_2}, \ldots, D_{j_k}) \).

Theorem 8 (Completeness of \(\alpha \)-GH resolution) Let \(S \) be a set of g-clauses in \(L_n F(X) \), \(\alpha \in L_n \). If \(S \) is \(\alpha \)-unsatisfiable, then there exists an \(\alpha \)-GH resolution deduction from \(S \) to \(\alpha \)-\(\bot \).

Proof It immediately follows by Theorem 2.
Definition 27 (α-GH paramodulation) Suppose G is an order of g-literals in G_1 and G_2 in $L_0 F(X)$, $\alpha \in L_n$. PR$_{\alpha-GH}(G_1, G_2)$ is called an α-GH paramodulator of G_1 and G_2 if it satisfies the following conditions.

1. G_1 and G_2 do not include the g-literals with the form F', where F is a g-clause.
2. The α-GH paramodulated literals in G_1 and G_2 are maximal ones with respect to G.

Definition 28 (α-GH paramodulation deduction) Suppose S is a set of g-clauses $S = G_1 \land G_2 \land \cdots \land G_n$ in $L_0 F(X)$, $\alpha \in L_n$, $w = \{D_1, D_2, \ldots, D_m\}$ is called an α-GH paramodulation deduction of S from D_1 to D_m, if

1. $D_i \in \{G_1, G_2, \ldots, G_n\}$, or
2. there exist $j_1, j_2, \ldots, j_k < i$, such that $D_i = R_{\alpha-GH}(D_{j_1}, D_{j_2}, \ldots, D_{j_k})$, or
3. there exist $j_1, j_2, \ldots, j_k < i$, such that $D_i = PR_{\alpha-GH}(D_{j_1}, D_{j_2}, \ldots, D_{j_k})$.

Specially, if w is an α-GH paramodulation deduction from S to $\alpha \Box$, then w is called an α-GH paramodulation refutation of S.

Theorem 9 (Soundness) Suppose S is a set of g-clauses $S = G_1 \land G_2 \land \cdots \land G_n$ in $L_0 F(X)$, $\alpha \in L_n$, $w = \{D_1, D_2, \ldots, D_m\}$ is an α-GH paramodulation deduction of S from D_1 to D_m. If D_m is αE-unsatisfiable, then S is αE-unsatisfiable.

Proof. According to the soundness of α-paramodulation in $L_0 F(X)$ discussed in Theorem 7, Theorem 9 follows immediately.

Definition 29 Let S be a set of g-clauses in $L_0 F(X)$, $\alpha \in L_n$. F_α is called an α-reflexivity function axioms set if $F_\alpha = \{E(f(x_1, x_2, \ldots, x_i), \sigma(f(x_1, x_2, \ldots, x_i))) | f_i \text{ is an i-ary function symbol of } S\}$.

Theorem 10 (Completeness of α-GH paramodulation deduction) Let S be a set of g-clauses in $L_0 F(X)$, $\alpha \in L_n$. If S is αE-unsatisfiable, and S_1 is the set by adding to $S \cup \{E(x, x)\} \cup F_\alpha$, then there exists an α-GH paramodulation deduction from S_1 to $\alpha \Box$.

Proof. Since S is αE-unsatisfiable in $L_0 F(X)$, we have $S \cup K_\alpha$ is α-unsatisfiable by Theorem 4, K_α is the α-equality axiom set of S. By the completeness of α-GH resolution discussed in Theorem 8, there exists an α-GH resolution refutation $w = \{D_1, D_2, \ldots, D_n\}$ of $S \cup K_\alpha$. Therefore, we only need to prove that every resolvent $D_i(i = 1, 2, \ldots, n)$ can be also derived by α-GH paramodulation deduction of $S \cup \{E(x, x)\} \cup F_\alpha$. For convenience we denote $S_1 = S \cup \{E(x, x)\} \cup F_\alpha$.

For every D_i, there exists an α-GH clash of $(E_i, E_2, \ldots, E_q, N)$. By the definition of α-GH resolution, we have $V(E_i) \leq \alpha(i = 1, 2, \ldots, q)$. Hence E_i has not include the literals with the form F', otherwise, if $N \in S$, then D_i is an α-GH resolvent of S_1. Otherwise, $N \in K_\alpha$, then four cases exist as follows.

1. N is the clause of $(\alpha \rightarrow E(x_1, x_2))' \lor E(x_2, x_1)$, then there exists $E_1 = E(x_1, x_2) \lor E_0^1$, where E^0_1 is a g-clause, x_1, x_2 are terms in H_S of S, and we have $R_{\alpha-GH}(N, E_1) = E(x_1, x_2) \lor E_0^1$, where σ is the most general unifier of x_1 and x_1, x_2 and x_2.

On the other hand, $PR_{\alpha-GH}(E_1, E(x,x)) = E(s^\sigma, s^\sigma) \lor E_1^0$. Hence, if $N = (\alpha \rightarrow E(x_1, x_2))' \lor E(x_2, x_1)$, then $R_{\alpha-GH}(N, E_1) = PR_{\alpha-GH}(E_1, E(x,x))$.

(2) Since N is the clause of $(\alpha \rightarrow E(x_1, x_2)) \lor (\alpha \rightarrow E(x_2, x_3)) \lor E(x_1, x_3)$, we know that there exist $E_1 = E(t_1, t_2) \lor E_1^0$, and $E_2 = E(t_3, t_4) \lor E_2^0$, where E_1^0 and E_2^0 are g-clauses, t_1, t_2, t_3 and t_4 are terms in H_5 of S, and we have $R_{\alpha \rightarrow \text{GH}}(N, E_1, E_2) = E(t_1^\alpha, t_2^\alpha) \lor E_1^\alpha \lor E_2^\alpha$, where σ is the most general unifier of t_1 and t_2. On the other hand, since σ is the most general unifier of t_2 and t_3, we have $PR_{\alpha \rightarrow \text{GH}}(E_1, E_2) = E(t_1^\sigma, t_3^\sigma) \lor E_1^\sigma \lor E_2^\sigma$. Hence, if $N = (\alpha \rightarrow E(x_1, x_2)) \lor (\alpha \rightarrow E(x_2, x_3)) \lor E(x_1, x_3)$, then $R_{\alpha \rightarrow \text{GH}}(N, E_1, E_2) = PR_{\alpha \rightarrow \text{GH}}(E_1, E_2)$.

(3) Since N is the clause of $(\alpha \rightarrow E(x_1, x_0)) \lor (\alpha \rightarrow P(x_1, x_2, \ldots, x_j, \ldots, x_0, \ldots, x_n))$, we know that there exist $E_1 = E(t_1, t_0) \lor E_1^0$ and $E_2 = P(s_1, s_2, \ldots, s_j, \ldots, s_0, \ldots, s_n) \lor E_2^0$, where E_1^0 and E_2^0 are g-clauses, $t_1, t_0, s_1, \ldots, s_j, \ldots, s_0$ are terms in H_5 of S, and we have $R_{\alpha \rightarrow \text{GH}}(N, E_1, E_2) = P(s_1^\sigma, s_2^\sigma, \ldots, s_j^\sigma, \ldots, s_0^\sigma) \lor E_1^\alpha \lor E_2^\alpha$, where σ is the most general unifier of t_1 and t_0. On the other hand, since σ is the most general unifier of t_j and s_j, we have $PR_{\alpha \rightarrow \text{GH}}(E_1, E_2) = P(s_1^\sigma, s_2^\sigma, \ldots, s_j^\sigma, \ldots, s_0^\sigma) \lor E_1^\sigma \lor E_2^\sigma$. Hence, if $N = (\alpha \rightarrow E(x_1, x_0)) \lor (\alpha \rightarrow P(x_1, x_2, \ldots, x_j, \ldots, x_0)) \lor P(x_1, x_2, \ldots, x_j, \ldots, x_0)$, then $R_{\alpha \rightarrow \text{GH}}(N, E_1, E_2) = PR_{\alpha \rightarrow \text{GH}}(E_1, E_2)$.

(4) Since N is the clause of $(\alpha \rightarrow E(x_1, x_0)) \lor E(f(x_1, x_2, \ldots, x_j, \ldots, x_0), f(x_1, x_2, \ldots, x_0, \ldots, x_n))$, we know that there exists $E_1 = E(t_1, t_0) \lor E_1^0$, where E_1^0 is a g-clause, t_1, t_0 are terms in H_5 of S, and we have $R_{\alpha \rightarrow \text{GH}}(N, E_1) = E(f(x_1^\sigma, x_2^\sigma, \ldots, t_j^\sigma, \ldots, t_0^\sigma, \ldots, x_n^\sigma, x_0^\sigma)) \lor E_1^\sigma$, where σ is the most general unifier of x_1 and t_1. On the other hand, $PR_{\alpha \rightarrow \text{GH}}(E_1, E(f(x_1, x_2, \ldots, x_j, \ldots, x_0), f(x_1, x_2, \ldots, x_0, \ldots, x_n))) = E(f(x_1^\sigma, x_2^\sigma, \ldots, t_j^\sigma, \ldots, t_0^\sigma, \ldots, x_n^\sigma, x_0^\sigma)) \lor E_1^\sigma$. Hence, if $N = (\alpha \rightarrow E(x_1, x_0)) \lor E(f(x_1, x_2, \ldots, x_j, \ldots, x_0), f(x_1, x_2, \ldots, x_0, \ldots, x_n))$, then $R_{\alpha \rightarrow \text{GH}}(N, E_1) = PR_{\alpha \rightarrow \text{GH}}(E_1, E(f(x_1, x_2, \ldots, x_j, \ldots, x_0)))$.

Therefore, for every α-GH semantic resolution $D_i(i = 1, 2, \ldots, n)$, it can be derived by α-GH paramodulation of S_1. Furthermore, $w = \{D_1, D_2, \ldots, D_n\}$ is an α-GH resolution refutation of S, hence we get a corresponding α-GH paramodulation derivation from S_1 to α-\Box.

Example 3 Let $L_9 = \{a_i | 1 \leq i \leq 9\}$ be a Łukasiewicz implication algebra, S be a set of g-clauses in $L_9 F(X)$, $\alpha = a_5$. $S = \{(y \rightarrow x) \lor (a_3 \rightarrow x) \lor E(a_6, a_4), x \lor E(a_6, a_4), x \rightarrow y, E(f(a_6), f(a_4))\}$, where x and y are propositional variables, a_3, a_4 and a_6 are constants, and f is a functional symbol in $L_9 F(X)$. Then we get an α-GH paramodulation refutation of S_1 by adding ground term $E(f(a_6), f(a_4))$ to S.

(1) $(y \rightarrow x) \lor (a_3 \rightarrow x) \lor E(a_6, a_4)$
(2) $x \lor E(a_6, a_4)$
(3) $x \rightarrow y$
(4) $E(f(a_6), f(a_4))$
(5) $E(f(a_6), f(a_4))$

(6) $E(a_6, a_4)$ by α-GH resolution of (1), (2) and (3)
(7) $E(f(a_6), f(a_4))$ by α-GH paramodulation of (5) and (6)
(8) α-\Box by α-GH resolution of (4) and (7)

Example 4 Let $L_9 = \{a_i | 1 \leq i \leq 9\}$ be a Łukasiewicz implication algebra, S a set of g-clauses in $L_9 F(X)$, $\alpha = a_5$. $S = \{E(f(a), f(b)) \lor P(x), E(f(c), f(d)) \lor (P(x) \rightarrow a_2)$,
α-Paramodulation Method for $L_aF(X)$

$\{P(y) \rightarrow a_2\} \lor E(c, d), E(a, b) \lor P(z)\}$, where a, a_2, b, c and d are constant symbols, x, y, z and w are variable symbols, f is a functional symbol and P is a predicate symbol in $L_aF(X)$. Then we get an α-GH paramodulation refutation of S_1 by adding $\{E(x, x)\} \cup \{E(f(x), f(x))\}$ to S.

(1) $E(f(a), f(b)) \lor P(x)$
(2) $E(f(c), f(d)) \lor (P(y) \rightarrow a_2)$
(3) $P(z) \rightarrow a_2 \lor E(c, d)$
(4) $E(a, b) \lor P(w)$
(5) $E(f(x), f(x))$
(6) $E(f(a), f(b)) \lor P(x)$ by α-GH paramodulation of (4) and (5)
(7) $P(x)$ by α-GH resolution of (1) and (6)
(8) $P(x) \rightarrow a_2 \lor E(f(c), f(d))$ by α-GH paramodulation of (3) and (5)
(9) $P(x) \rightarrow a_2$ by α-GH resolution of (2) and (8)
(10) α-□ by α-GH resolution of (7) and (9)

5 Conclusion

This paper proposed α-paramodulation and α-GH paramodulation in a lattice-valued logic $L_aF(X)$ based on LIA for dealing with lattice-valued logical formula with equality. Concretely, a new form of α-equality axioms set was presented to keep the equivalence between α-equality axioms set and E_α-interpretation in $L_mF(X)$, and hence the E_α-unsatisfiability can be transformed. Furthermore, α-paramodulation and α-GH paramodulation were given including their concepts, properties, soundness and completeness. This work may provide a theoretical foundation for more efficient resolution and paramodulation algorithms based automated reasoning in lattice-valued logic with equality since the α-equality axioms set was given. Thus many reasoning methods can be contrived based on it such as new inference rules, restricted methods, etc. The further research will be concentrated on other restricted α-paramodulation methods for handling lattice-valued logical formula with equality and their hybrid ones to further improve the efficiency of automated reasoning in lattice-valued logic.

Acknowledgements This research is supported by the National Natural Science Foundation of China (Grant Nos. 61603307, 61673320 and 61473239) and the Grant from MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Grant No. 19YJZCH048).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.
References