Thematic analysis of the competencies of the therapy radiographer practising in the linear accelerator

Link to publication record in Ulster University Research Portal

Published in:
ECR 2019 the bigger picture BOOK OF ABSTRACTS

Publication Status:
Published (in print/issue): 26/02/2019

DOI:
10.1186/s13244-019-0713-y

Document Version
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via Ulster University’s Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.
CONTENTS

Postgraduate Educational Programme (A) S3 - 184
Scientific Sessions (SS), My Thesis in 3 Minutes (MY),
Clinical Trials in Radiology (CT) (B) S185 - 585
Scientific and Educational Exhibits (C) S586
Satellite Symposia (D) S587 - 596
Author’s Index (E) S597 - 683
List of Authors Co-Authors (F) S684 - 717
List of Moderators (G) S718 - 720
Disclaimer

The ECR 2019 Book of Abstracts is published by the European Society of Radiology (ESR) and summarises the presentations accepted to be held at the European Congress of Radiology 2019 (Vienna, Austria, February 27 - March 3, 2019). Abstracts were submitted by the authors warranting that good scientific practice, copyrights and data privacy regulations have been observed and relevant conflicts of interest declared.

Abstracts reflect the authors' opinions and knowledge. The ESR does not give any warranty about the accuracy or completeness of medical procedures, diagnostic procedures or treatments contained in the material included in this publication. The views and opinions presented in ECR abstracts and presentations, including scientific, educational and professional matters, do not necessarily reflect the views and opinions of the ESR.

In no event will the ESR be liable for any direct or indirect, special, incidental, consequential, punitive or exemplary damages arising from the use of these abstracts.

The Book of Abstracts and all of its component elements are for general educational purposes for health care professionals only and must not take the place of professional medical advice. Those seeking medical advice should always consult their physician or other medical professional.

In preparing this publication, every effort has been made to provide the most current, accurate, and clearly expressed information possible. Nevertheless, inadvertent errors in information can occur. The ESR is not responsible for typographical errors, accuracy, completeness or timeliness of the information contained in this publication.

The ECR 2019 Book of Abstracts is a supplement to Insights into Imaging (1869-4101) and published under the Creative Commons Attribution License 4.0 (CC BY 4.0).

Published: 26 February 2019
Postgraduate Educational Programme

EFOMP Workshop (EF)
ESR/EFRS/ISRRT meets Sessions (EM)
European Excellence in Education (E³)
Headline Sessions (HL)
Joint Sessions
Multidisciplinary Sessions (MS)
New Horizons Sessions (NH)
Professional Challenges Sessions (PC)
Pros & Cons Session (PS)
Refresher Courses (RC)
Special Focus Sessions (SF)
State of the Art Symposia (SA)
Transatlantic Courses (TC)

Wednesday, February 27........ 4
Thursday, February 28......... 37
Friday, March 1.................. 80
Saturday, March 2............. 121
Sunday, March 3............... 166
Wednesday, February 27
Abdominal Viscera

RC 101

Imaging of benign liver lesions: still difficult?

Learning Objectives:
1. To learn about typical imaging findings of liver haemangioma.
2. To understand the atypical imaging findings of liver haemangiomas.
3. To appreciate the role of multiparametric and liver-specific contrast MRI in differentiation between haemangiomas and malignant lesions mimicking haemangiomas.

A-0001 08:30
Chairperson's introduction
P. Nicci; Rome/IT (paolo.nicci@uniroma1.it)

The differential diagnosis of cystic liver lesions is as broad as their clinical significance, which ranges from benign to malignant or potentially lethal conditions. These lesions include foregut and ductal plate malformations, infectious conditions, primary and secondary neoplasms and traumatic/iatrogenic fluid collections. The number of lesions, morphology, fluid content characteristics, presence/absence of septae and/or solid components are the key imaging features for the diagnostic approach, and different imaging modalities pose different advantages and disadvantages for their characterisation. Given imaging characteristics may overlap between distinct conditions, patient history and laboratory data should be integrated to allow a more definitive diagnosis.

Learning Objectives:
1. To learn about different imaging techniques in the characterisation of liver lesions.
2. To be aware of malignant lesions which may mimic benign liver conditions.
3. To appreciate the optimal use of liver-specific contrast media for differentiating between haemangiomas and malignant lesions mimicking liver haemangioma.

A-0002 08:35
A. Hepatic cysts: always simple?
1. Santiago; Lisbon/PT (ines_agp_santiago@hotmail.com)

The differential diagnosis of cystic liver lesions is as broad as their clinical significance, which ranges from benign to malignant or potentially lethal conditions. These lesions include foregut and ductal plate malformations, infectious conditions, primary and secondary neoplasms and traumatic/iatrogenic fluid collections. The number of lesions, morphology, fluid content characteristics, presence/absence of septae and/or solid components are the key imaging features for the diagnostic approach, and different imaging modalities pose different advantages and disadvantages for their characterisation. Given imaging characteristics may overlap between distinct conditions, patient history and laboratory data should be integrated to allow a more definitive diagnosis.

Learning Objectives:
1. To learn about different types of cystic lesions in the liver, including giant biliary hamartomas or foregut cysts.
2. To understand the diagnostic approach to differentiate simple and complex cystic lesions.
3. To appreciate the advantages and limitations of imaging for differentiating simple cysts from other cystic lesions.

A-0003 08:58
B. Liver haemangiomas and mimickers
P. Caseiro Alves; Coimbra/PT (caseiroalves@gmail.com)

Haemangiomas are common focal liver lesions, generally detected in the workup of asymptomatic patients and do not require further workup, follow-up, or treatment. From the morphologic point of view, they can be classified as small (capillary) or large, with cavernous vascular spaces that may prone to show thrombosis, calcifications and hyalinisation. The polymorphic imaging appearance of haemangiomas depends on their histological features and flow pattern. The widespread use of cross-sectional imaging has allowed a better characterisation of this benign vascular tumour, and for this lecture, illustrative cases will be displayed especially using CT and multiparametric MRI including hepatobiliary contrast agents. Haemangiomas imaging findings may range from the commonly known aspects especially after extra-cellular Gd-chelates administration to atypical patterns where its recognition and positive diagnosis may not be so straightforward. The scope of the present lecture to present and discuss the patterns of those vascular liver lesions, describing normal findings, pitfalls, potential differentials, confounders and complications.

Learning Objectives:
1. To learn about typical imaging findings of liver haemangioma.
2. To understand the atypical imaging findings of liver haemangiomas.
3. To appreciate the role of multiparametric and liver-specific contrast MRI in differentiation between haemangiomas and malignant lesions mimicking haemangiomas.

A-0004 09:21
C. FNH or adenoma?
A. Ba-Ssalamah; Vienna/AT (ahmed.ba-ssalamah@medunwien.ac.at)

FNH and hepatocellular adenoma (HCA) is liver lesions of hepatocellular origin. Whereas FNH commonly occurs, HCA is very rare. Distinguishing FNH from HCA is of great importance clinically, as FNH is considered a benign lesion and requires no further management. In contrast, HCA, according to its subtype, can be considered a borderline tumour due to the risk of haemorrhage, growth, and even malignant transformation, and therefore requires individualised management. The genotype/phenotype classification of HCA is an evolving issue, and there is now a recent HCA molecular classification by which to stratify patients according to the risk of complications. On imaging, HCA is no longer a distinct entity, and imaging features reflect the tumour subtypes. Contrast-enhanced MRI is much more accurate because of its ability to visualise the textural composition of the HCA. However, even after the administration of MRI hepatobiliary contrast agents, a small proportion of HCA subtypes still show either inhomogeneous uptake or inhomogeneous washout in the hepatobiliary phase (HBP); making them difficult to differentiate from FNH on the basis of imaging presentation alone. This may pose a diagnostic dilemma as both FNH and HCA tend to occur in women of childbearing age. Clinical presentation and risk factors, male gender, patient age, the presence of storage disease, obesity, metabolic or inflammatory syndrome, hepatitis, alcohol abuse and turnover over five cms, as well as significant growth have been identified as factors associated with an HCA-subtype of higher malignant potential. In difficult cases, histology remains the gold standard.

Learning Objectives:
1. To understand the role of different imaging techniques in the characterisation of these lesions.
2. To understand the atypical imaging findings of liver haemangiomas.
3. To appreciate the role of multiparametric and liver-specific contrast MRI in differentiation between haemangiomas and malignant lesions mimicking liver haemangioma.

A-0005 08:30
Chairperson’s introduction (Part 1)
E. Metsala; Helsinki/FI (eija.metsala@metropolia.fi)

This session covers many very up to date issues related to breast imaging. The final aim of breast imaging is to find breast cancer. For that, we need optimal screening policies and protocols for finding breast cancer from various types of breast. What is good for most women, might not be optimal for all of us. However, we want to produce optimal diagnostic services for all types of breast. In addition to breast ultrasound, tomosynthesis and breast MRI seem to be the most used imaging modalities for finding breast cancer at the moment. It is important to discuss the options we may have for screening purposes. However, there is no use for excellent technical and diagnostic devices and processes in case the client/patient does now show up for examinations. To ensure that we must carefully pay attention to the information we deliver about breast cancer and breast examinations, patient guidance and make the imaging and diagnostic process as patient-centred as possible. To achieve this, we need interprofessional co-operation between various health care professionals: radiologists, radiographers, physicists, biomedical laboratory scientists and pathologists to mention a few.

Learning Objectives:
1. To learn about typical imaging findings of liver haemangioma.
2. To understand the atypical imaging findings of liver haemangiomas.
3. To appreciate the role of multiparametric and liver-specific contrast MRI in differentiation between haemangiomas and malignant lesions mimicking haemangiomas.

Author Disclosure:
F. Caseiro Alves: Speaker; Bayer.

A-0004 09:21
C. FNH or adenoma?
A. Ba-Ssalamah; Vienna/AT (ahmed.ba-ssalamah@medunwien.ac.at)

FNH and hepatocellular adenoma (HCA) is liver lesions of hepatocellular origin. Whereas FNH commonly occurs, HCA is very rare. Distinguishing FNH from HCA is of great importance clinically, as FNH is considered a benign lesion and requires no further management. In contrast, HCA, according to its subtype, can be considered a borderline tumour due to the risk of haemorrhage, growth, and even malignant transformation, and therefore requires individualised management. The genotype/phenotype classification of HCA is an evolving issue, and there is now a recent HCA molecular classification by which to stratify patients according to the risk of complications. On imaging, HCA is no longer a distinct entity, and imaging features reflect the tumour subtypes. Contrast-enhanced MRI is much more accurate because of its ability to visualise the textural composition of the HCA. However, even after the administration of MRI hepatobiliary contrast agents, a small proportion of HCA subtypes still show either inhomogeneous uptake or inhomogeneous washout in the hepatobiliary phase (HBP); making them difficult to differentiate from FNH on the basis of imaging presentation alone. This may pose a diagnostic dilemma as both FNH and HCA tend to occur in women of childbearing age. Clinical presentation and risk factors, male gender, patient age, the presence of storage disease, obesity, metabolic or inflammatory syndrome, hepatitis, alcohol abuse and turnover over five cms, as well as significant growth have been identified as factors associated with an HCA-subtype of higher malignant potential. In difficult cases, histology remains the gold standard.

Learning Objectives:
1. To learn about typical imaging findings of liver haemangioma.
2. To understand the atypical imaging findings of liver haemangiomas.
3. To appreciate the role of multiparametric and liver-specific contrast MRI in differentiation between haemangiomas and malignant lesions mimicking liver haemangioma.

Author Disclosure:
F. Caseiro Alves: Speaker; Bayer.
Session Objectives:
1. To discuss the relevance and application of tomosynthesis in breast imaging.
2. To understand the indications and use of breast MRI in pre-menopausal women.
3. To appreciate the current debate regarding the appropriateness of breast screening programmes.

A-0006 08:33
Chairperson's introduction (Part 2)
G. Ivanac; Zagreb/HR (gordana.agustan@gmail.com)

Tomosynthesis is a relatively new modality in digital mammography that increases conspicuity if lesions that are hidden by superposition of breast parenchyma. Also, MRI is established diagnostic modality for numerous indications: for high-risk screening, detection of residual lesions or recurrence after surgery, for the detection of breast cancer when axillary lymph nodes are positive and mammography and ultrasound negative, and for monitoring of neoadjuvant treatment, and in some cases for preoperative evaluation of the extent of cancer. Breast cancer screening is a matter of many controversies, in the light of overdiagnosis and overtreatment, but it is generally accepted that biannual mammographic screening should be offered to healthy women of the age group of 50-69. Supplemental screening with ultrasound and tomosynthesis is indicated in many cases of dense breasts, and a special regimen should be applied to women with a high risk of acquiring breast cancer.

Session Objectives:
1. To discuss the relevance and application of tomosynthesis in breast imaging.
2. To understand the indications and use of breast MRI in pre-menopausal women.
3. To appreciate the current debate regarding the appropriateness of breast screening programmes.

A-0007 08:35
A. Tomosynthesis
H. Yule; Cardiff/UK

The aim of the presentation is to provide a basic introduction to digital breast tomosynthesis (DBT) and the principles that underpin this technique. An overview in general of the current evidence to support the use of DBT in clinical practice. A discussion of the impact of DBT in terms of mammographic practice to include technique and positioning.

Learning Objectives:
1. To review the technology underpinning tomosynthesis.
2. To understand the current evidence base for use of tomosynthesis.
3. To appreciate results from the UK TOMMY trial and others.

A-0008 08:58
B. Breast imaging in young females: the role of MRI
M.M. Ribeiro; Lisbon/PT (margarida.ribeiro@estest.ipl.pt)

Nowadays, Magnetic Resonance Imaging (MRI) is used routinely to provide anatomic details and contrast while, allows the evaluation of the functionality of the organ, the quantification of the lesions and histological information. Although breast cancer in young women is relatively uncommon, affecting about 4-6% of women under the age of 40 and less than 4% are diagnosed under the age of 35, there has been an increase in the number of breast cancers diagnosed in the premenopausal women. The first indication to Breast MRI from EU/SCoBi is the screening of women at high risk of breast cancer; however, diagnosing breast cancer in women under 40 years old is more difficult as their breast tissue is, generally, denser. There have been significant advances in technical developments and clinical applications with the goal to improve image acquisition, early cancer diagnosis, treatment monitoring, the technology improvements like technical developments on advanced quantitative MRI, the breast MRI in clinical trials, the fast techniques, updates on DWI, perfusion, novel contrasts, spectroscopy and the impact of artificial intelligence on breast MRI research and clinic, will be addressed. We cannot forget the strategies to increase the early prevention, regarding the appliance of best practices around the world and incorporating the psychosocial concerns of the disease.

Learning Objectives:
1. To understand current sensitivity of MRI when imaging the breast.
2. To discuss the varying sensitivities of mammography and ultrasound according to age.
3. To appreciate the potential use of abbreviated MRI sequences.

A-0009 09:21
C. Breast screening programmes: current evidence
S. Helvönd; Oslo/NO

“no abstract submitted”

Learning Objectives:
1. To identify advantages and disadvantages of breast screening regarding false positives.
2. To appreciate current debate both for and against organised screening programmes.
3. To consider alternatives to breast screening.

09:44
Panel discussion: Breast imaging: a true multidisciplinary team effort?

08:30 - 10:00 Room X

Imaging Informatics

RC 105
Mobile devices in radiology

A-0010 08:30
Chairperson's introduction
C. Ratib; Geneva/CH

Mobile devices such as tablets and high-resolution smartphones are becoming widely available providing convenient mobile solutions for physicians and healthcare providers to access imaging data. This is particularly attractive in medicine where “nomad” physicians who need to be able to access relevant patient data and images anywhere-anytime in their daily practice where they are rarely a single location. While they may not always be adequate for routine diagnostic tasks, they provide a convenient mobile solution for on-call and remote consultations. There are different types of software architecture that can be implemented for such tasks. Two major different design are: (1) online web-based applications where the device serves as a “thin-client” to display images rendered and manipulated on a remote computer and (2) local applications that reside on the mobile device and can run independently after images have been downloaded on the device. The first solution requires the user to be constantly connected to the network, while the second solution can continue to function after disconnecting from the network. Most vendors are starting to provide web access to their imaging solutions that can be accessed from mobile devices. Web access can, however, be slow and dependent on reliable access to wireless network.

Session Objectives:
1. To give an overview of tools available on mobile devices for education and exam reporting.
2. To underline the impact of mobile devices in routine clinical activity.
3. To learn about the legislative backbone and potential drawbacks of mobile technology.

A-0011 08:35
A. Security and confidentiality aspects of mobile computing
E.R. Ranschaert; Tilburg/NL (ranschaert@telnet.be)

Medical specialists and radiologists are using mobile devices to share and exchange medical images and information with other healthcare professionals. Usually, they need advice regarding a diagnosis or treatment, sometimes in an acute setting. Mobile devices with viewing apps and messaging services such as WhatsApp are frequently used for such purpose. Transmission of patient data by viewing apps or messaging services, however, does have several risks and limitations, mostly related to the security and privacy of patients, but also from an ethical and legal point of view. Some questions need to be answered: is this type of communication accurate for diagnosis, is it secure and legally allowed? What regulations or guidelines are available and what legislation is applicable? What secure options are available? In this scientific focus session these issues will be discussed in more depth.

Learning Objectives:
1. To provide an overview of technical solutions for patients' image and data mobility.
2. To provide a risk assessment analysis (data loss, privacy, etc.) of mobile technology.
3. To give an overview of European legislation in relation to patient image and data mobility.

Author Disclosure:
E.R. Ranschaert: Advisory Board; MedicalPHIT. Board Member; EuSoMII. Shareholder; Diagnose.me.
A. Crijns: Groningen/NL (ap.g.crijns@umcg.nl)

Radiation-induced major cardiac events (MCEs) are becoming increasingly relevant for breast cancer (BC) patients, affecting the quality of life and increasing morbidity and mortality. Information regarding the relationship between radiation dose to cardiac substructures and MCEs and their early subclinical precursor cardiovascular effects is needed to develop preventive strategies for radiation-induced MCEs. In this session, current knowledge of dose-effect relationships will be discussed as well as which important information is still lacking. The European MEDIRAD Project comprises a multicenter retrospective cohort study aiming at the development and external validation of prediction models for MCEs. In addition, a prospective multicenter study for identification of early subclinical cardiovascular effects with three different cardiac imaging modalities: echocardiography, cardiac MRI and cardiac CT is ongoing. We will present how the European MEDIRAD Project provides the data needed for the development of individualised preventive strategies for radiation-induced MCEs. Finally, the technical issues of cardiac CT and MRI in detecting early subclinical morphological and/or functional cardiovascular effects will be discussed.

Session Objectives:
1. To learn about major cardiovascular events after radiotherapy for breast cancer.
2. To understand the importance of assessing their relationship with radiation dose to cardiac substructures.
3. To appreciate the potential of imaging biomarkers for their early detection and their role in prevention strategies.

Author Disclosure:
A. Crijns: Research/Grant Support; supported by the European Community’s Horizon 2020 Programme.
coronary events (ACE). Recent studies suggest that the dose delivered to cardiac substructures, like the left ventricle, might be better predictors of MCEs. Furthermore, preliminary results of ongoing work suggest that radiation dose to coronary arteries, particularly the left anterior descending artery, may have superior predictive value. More accurate risk estimations for MCEs requires improved NTCP-models, which requires large retrospective cohort studies with sufficient length of follow-up to capture sufficient numbers of cardiac events. MEDIRAD-BRACE is an international multicenter retrospective cohort study. The study will include 7000 female breast cancer patients treated with primary surgery and postoperative RT treated from 2005 to 2014 and who were aged 40-75 years at a time of RT start. A test cohort of 5000 patients will be used to develop NTCP-models for MCEs, which will be validated using a validation cohort consisting of 2000 patients. The primary endpoint of the study is an ACE after completion of treatment, and secondary endpoint comprises other MCEs. The resulting models can be used to identify patients at increased risk for MCE, which allows for the development of primary and secondary preventive measures. Moreover, NTCP-models may be further improved by incorporating imaging-derived subclinical cardiac effects that precede MCE. This is studied in MEDIRAD-EARLY HEART.

Learning Objectives:
1. To appreciate how the MEDIRAD-BRACE study will provide optimised multivariable prediction models for major cardiac events.
2. To learn that optimal prevention of radiation-induced major cardiac events requires early detection/imaging biomarkers.

09:13 Discussion

A-0018 09:18
The MEDIRAD Early-Heart study
S. Jacob; Fontenay aux Roses/FR (sophie.jacob@irsn.fr)

Radiotherapy (RT) plays a major role in breast cancer (BC) treatment. However, BC RT can lead to incidental irradiation of the heart, resulting in cardiac complications with an increased risk of various heart diseases arising many years after RT. Long before the onset of clinically significant late cardiac complications, subclinical cardiac changes may occur over months or years after RT that can be detected using anatomical and functional cardiac imaging. Therefore, detecting early signs of cardiotoxicity and determining the relationship between radiation dose to specific cardiac structures and subclinical cardiac changes is crucial for primary/secondary prevention. In the frame of the MEDIRAD European project, the EARLY-HEART study was launched in 2017. This five European centres prospective cohort study will include approximately 250 unilateral BC women aged 40-75 years treated with RT without chemotherapy and followed for two years. Baseline (before RT) and follow-up data (6 and 24 months after RT) include cardiac imaging measurements: myocardial deformation is evaluated with myocardial strain imaging (2D-speckle-tracking echocardiography); cardiac magnetic resonance imaging is performed to detect subtle changes in cardiac function and structure; cardiac computed tomography is performed to evaluate coronary artery lesions. Radiation exposure to cardiac structures based on 3D-dosimetry is precisely evaluated for all patients. Dose-response relationship will allow modelling radiation-induced occurrence and evolution of subclinical cardiac lesions to develop early cardiac risk prediction models. Based on emerging research in advanced imaging modalities, this study will allow enhanced detection and prediction of early radiotherapy-induced cardiotoxicity and patients’ care.

Learning Objectives:
1. To appreciate that there is already some information from cardiac imaging studies regarding early cardiovascular effects after breast cancer radiotherapy.
2. To learn how the MEDIRAD Early-Heart study will provide information regarding imaging biomarkers of early cardiovascular effects after radiotherapy for breast cancer.
3. To understand that cardiac imaging can provide clues for underlying mechanisms of radiation-induced major cardiac events.

09:34 Discussion

A-0019 09:39
Imaging biomarkers of cardiovascular effects of incidental cardiac radiation
E. Mousseaux; Paris/FR (ele.mousseaux@egs.ap-hop-paris.fr)

Since Radiotherapy (RT) has been linked to cardiac diseases, detection of early signs of radiotherapy-induced cardiotoxicity (RTIC) is crucial and challenging for prevention. To identify and validate cardiac imaging biomarkers of RTIC arising within two years after breast cancer RT, CT and MRI will be done at baseline, and at RT+6 months (MRI), and RT+24 months (CT+MRI) during follow-up. By using MRI, in association to conventional ventricular function analysis of both ventricles, myocardial strain (deformation) will be quantified by studying cavity contours length changes during the cardiac cycle in each of four cardiac chambers. In addition, after myocardial T1 estimation of the left ventricle before and after gadolinium injection, derived indices of intra- and extra-cellular lesions will be calculated since RT is likely to modify components of these two compartments (cell destruction, inflammation and/or appearance of interstitial fibrosis). Cardiac CT will also be performed to evaluate coronary artery, valves and pericardium lesions by estimating local and global calcium score with a non-enhanced acquisition, and by subjectively analysed all these structures with enhanced acquisitions before and after RT. All analysis will be done in a core lab without knowledge of any possible clinical events that may occur and of information regarding the site of a tumour and RT process. Based on emerging results in CT and MRI to analyse sensitive biomarkers of cardiac lesions, hypotheses of the study are that early signs of RTIC could be detected to predict irreversible cardiotoxicity better and to improve patients’ care.

Learning Objectives:
1. To appreciate how radiation-induced coronary artery lesions can be studied by cardiac CT.
2. To understand how MRI can be used to evaluate myocardial tissues abnormalities induced by incidental cardiac radiation, including morphology, function and tissue abnormalities.

09:55 Discussion

08:30 - 10:00 Room O

Vascular

A-0020 08:30
Chairperson’s introduction
J.A. Reekers; Amsterdam/NL

The visceral vessels are the superior and inferior mesenteric artery, coeliac trunk, hepatic artery and splenic artery and the renal arteries. There is a wide variety of pathology including both stenotic disease and dilating vessel disease. There is also a wide variety of interventional treatment options to treat these problems.

Session Objectives:
1. To learn about incidence and aetiology of visceral arteries diseases.
2. To become familiar with clinical symptoms and evaluation in visceral arteries diseases.
3. To indicate the role of radiology in diagnosis and treatment of the visceral arteries.

A-0021 08:35
A. Diagnosis of vascular compression syndromes
B.E. Cil; Istanbul/TR (bcil@khu.edu.tr)

Vascular compression syndromes are clinical entities caused by the entrapment of veins or arteries between rigid or semirigid anatomical structures or compression of hollow viscera by vascular structures. Although they occur infrequently (less than 1% of the general population are affected), they may cause significant disease, including median arcuate ligament syndrome, May-Thurner syndrome, nutcracker syndrome, superior mesenteric artery syndrome, and ureteropelvic junction obstruction. These syndromes are usually seen in otherwise healthy young patients, among whom undiagnosis is common. Most occurrences of vascular compression are associated with an underlying anatomic abnormality. The diagnosis must be based on both clinical and radiologic findings. Digital subtraction angiography, venography or Doppler ultrasonography can provide hemodynamic information in cases of vascular compression. However, computed tomographic angiography and magnetic resonance angiography are particularly useful in that it allows comprehensive, fast evaluation of the anatomy and resultant morphologic changes. Symptomatic patients may require treatment, which is generally surgical due to the need for the relief of external compression. However, enterovascular techniques are also increasingly being used to treat venous compressions.

Learning Objectives:
1. To become familiar with abdominal arterial and venous compression syndromes.
2. To learn about functional imaging techniques in assessment of vascular compression syndromes.
3. To become familiar with the typical imaging findings in abdominal compression syndromes and their clinical relevance.
A-0022 08:58
B. Acute and chronic mesenteric ischaemia
M. Zins; Paris/FR (mzins@hosp.fr)

Acute mesenteric ischaemia (AMI) corresponds to the inadequate blood supply to the gastrointestinal tract resulting in an ischemic and inflammatory injury that may progress to necrosis of the bowel wall. Prognosis is poor with a mortality rate superior to 95% without treatment, dropping to around 70% when surgical treatment is performed. Contrast-enhanced computed tomography (CT) has become the cornerstone of the diagnosis by showing features of vascular disorder (occlusion and/or low blood flow) and features of intestinal ischemic injury. Imaging-based patient management is required, and multimodal and multidisciplinary management should be introduced. The treatment involves gastroenterologists, vascular and digestive surgeons, cardiologists, intensivists, and diagnostic and interventional radiologists. This lecture will give an overview of pathophysiology, diagnosis proves, and treatment of Acute and Chronic Mesenteric Ischemia. The goal is to improve the understanding and management of this life-threatening condition.

Learning Objectives:
1. To become familiar with occlusive and non-occlusive, mesenteric ischaemia.
2. To understand the differences between acute and chronic ischaemia.
3. To learn about the importance of fast and correct diagnosis in acute mesenteric ischaemia.

09:21
A-0023 09:21
C. Endovascular treatment of mesenteric ischaemia
R. Morgan; London/UK (robert.morgan@stgeorges.nhs.uk)

Mesenteric ischaemia is divided into acute and chronic mesenteric ischaemia. The main imaging modalities of mesenteric ischaemia are CT angiography and duplex ultrasound. Acute mesenteric ischaemia (AMI) is an abdominal emergency and is usually due to acute thrombotic or embolic occlusion of one or more of the arteries supplying the gastrointestinal tract. In practice, this is often the superior mesenteric artery (SMA). In some patients, acute mesenteric ischaemia is caused by acute mesenteric venous thrombosis, although such cases are unusual. Standard therapy is by surgical thrombectomy, embolectomy or bypass. In cases where there are no signs of irreversible intestinal ischaemia, patients may be suitable for endovascular treatment, either transcatheter thrombolyis or thrombectomy. Chronic mesenteric ischaemia (CMI) causes postprandial abdominal pain, “food-fear” and weight loss. CMI is usually due to severe stenosis or occlusion of two or three of the coeliac trunk, SMA or inferior mesenteric artery. Endovascular treatment is the primary first method used to treat CMI. Stenting is usually performed in preference to angioplasty. There are insufficient data to decide which endovascular method is best and there are no data on the use of drug-eluting technology.

Learning Objectives:
1. To review indications for endovascular treatment of mesenteric ischaemia.
2. To become familiar with the technical possibilities of endovascular repair of visceral arteries.
3. To learn about risks and complications of endovascular treatment of mesenteric ischaemia.

09:44
Panel discussion: Radiologists as the best case managers in acute and chronic mesenteric ischaemia

E³ - ECR Master Class (Neuro)

E³ 126a
How to implement MRI neuro advanced techniques at home
Moderator: P.C. Malty Sundgren; Lund/SE

A-0024 08:30
A. Practical approach to cerebral perfusion techniques
H.R. \textit{Alver}; London/UK

"no abstract submitted"

Learning Objectives:
1. To learn about the essentials in MRI perfusion techniques.
2. To understand how to interpret the data in brain perfusion MRI.
3. To know the limitations in perfusion MRI studies.

E³ 167a
How to read diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI)
Moderator: \textit{Alver}; \textit{Alver}; London/UK

Learning Objectives:
1. To learn the principles of DTI imaging in neuroradiology.
2. To become familiar with pitfalls of DWI and DTI imaging - common language with clinical neuroradiologists.
3. To understand the importance of applying the SWI technique in individual patients.

08:30 - 10:00
Room E1

E³ - ECR Master Class (Neuro)

E³ 126a
How to implement MRI neuro advanced techniques at home
Moderator: P.C. Malty Sundgren; Lund/SE

A-0024 08:30
A. Practical approach to cerebral perfusion techniques
H.R. \textit{Alver}; London/UK

"no abstract submitted"

Learning Objectives:
1. To learn about the essentials in MRI perfusion techniques.
2. To understand how to interpret the data in brain perfusion MRI.
3. To know the limitations in perfusion MRI studies.

A-0025 09:00
B. How to read susceptibility-weighted imaging (SWI)
S. \textit{Haller}; Carouge/CH (sven.haller@me.com)

Susceptibility weighted imaging (SWI) is increasingly used in clinical routine and is useful notably for the detection of hemosiderin (in a variety of hemorrhagic conditions) as well as iron deposition (in a variety of neurodegenerative diseases). The first part will discuss the essential technical aspects of SWI, and how imaging parameters will influence imaging contrast and consequently image analysis and results. The second part will assess imaging, interpretation and implications and notably the differential diagnosis of cerebral microbleeds, which occur in a variety of conditions including arterial hypertension, cerebral amyloid angiopathy (CAA), CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leuкоencephalopathy), trauma (hemorrhagic diffuse axonal injury DAI) and brain irradiation. The third part will discuss imaging of the nigrosum 1 of the substantia nigra, also known as swallowtail sign, as an imaging marker of Parkinson Disease and Dementia with Lewy bodies. The final fourth part will discuss applications of SWI in a variety of vascular and neurodegenerative disorders including NBAL (neurodegeneration with brain iron accumulation), ASL (amyotrophic lateral sclerosis), clot imaging in acute stroke, and iron deposition during ageing.

Learning Objectives:
1. To be familiar with the practical basics of MRI SWI sequences.
2. To learn what information we can get from the SWI sequence.
3. To understand the importance of applying the SWI technique in individual patients.

A-0026 09:30
C. How to read diffusion tensor imaging (DTI)
R. \textit{Gasparotti}; Brescia/IT (gasparotti@med.unibs.it)

Diffusion Tensor Imaging provides in vivo visualisation of white matter tracts by voxel x voxel mapping of the anisotropy and local direction of fibres. Conventional MR imaging is limited to detecting macroscopic brain changes, while DTI quantifies diffusion characteristics within microscopic nerve fibre bundles and is thought to represent axon density, diameter, and continuity, myelin and interstitial water content. Due to recent advances in the technical design of sequences a DTI study of the brain with 64 directions and 1.8 mm voxel size can be obtained in 5 minutes with a 3T MR unit. Therefore DTI can be easily included in routine clinical MR protocols. There are no standardised approaches in DTI pre and postprocessing despite the availability of proprietary software and several freely distributed software packages providing good quality tractography of the bran white matter bundles. The easiest implementation of DTI in clinical practice is based on deterministic tractography, which provides an acceptable reproducibility in the identification and quantitative analysis of the brain white matter bundles through a rather standardised approach. Common clinical applications of DTI in single subjects are represented by brain neoplasms, neurodegenerative disorders and traumatic brain injuries. DTI-based tractography is widely used for presurgical planning and is a powerful tool in the evaluation of major WM fibre bundles; it has also a positive impact on neurological diagnosis, disease prognosis, and preservation of brain function.

Learning Objectives:
1. To learn the principal of DTI imaging in neuroradiology.
2. To appreciate the practical value of DTI in different neurological disorders.
3. To be familiar with pitfalls of DWI and DTI imaging - common language with neurosurgeons.
Session Objectives:
1. To understand how screening is currently implemented in Europe.
2. To understand the challenges familiar to all screening programmes when aiming to continually enhance quality and minimise harms.
3. To understand the emerging technologies in screening of lung, breast and colorectal cancer.

A-0028 08:35 Screening of lung cancer with low dose CT
M. Prokop; Nijmegen/NL

“no abstract submitted”

Learning Objectives:
1. To understand the current situation with lung cancer screening in Europe.
2. To understand the challenges of implementing a new screening programme for lung cancer.
3. To discuss areas for quality assurance and standardisation in lung cancer screening.

A-0029 08:58 Screening of colorectal cancer with CT colonography
A. Laghi; Latina/IT (andrea.laghi@uniroma1.it)

Colo-rectal cancer (CRC) is currently the second leading cause of cancer-related deaths in males and females. However, it could be easily prevented because of the favourable natural history. Radiologists can now fully support CRC screening, thanks to the availability of Computed Tomography Colonography (CTC). Three randomised clinical trials, investigating the performances of CTC in asymptomatic average-risk individuals, demonstrated good CTC patient acceptance, lower than FOBT, but higher than FS and CC, and good CTC adenoma detection rate, slightly lower than CC, but much higher than FS and FOBT-CTC in the setting of CRC screening has different roles, depending if an organised CRC screening program is available or not. If it is not available, CTC might be used as an opportunistic screening test together with FOBT/ FIT, FS and CC. In this case, individuals should be informed about the benefits and possible drawbacks of CTC in comparison with other tests. In many European countries, where established screening programs based on FOBT/FIT are available, CTC can be used as a back-up for an incomplete CC, performed after a positive FOBT/FIT. Alternatively, CTC might be offered as an alternative test in those patients (they are not few) tested positive at FOBT/FIT, but who refuse CC. The next goal would be to introduce CTC as a population screening test, replacing FOBT/FIT. However, the demonstration of higher cost-effectiveness compared with the available screening test is still missing and the major barrier preventing the endorsement by policymakers.

Learning Objectives:
1. To understand the rationale for a colorectal cancer screening programme.
2. To be updated about current experiences on screening CT colonography.
3. To learn about advantages and limitations of CT colonography in comparison with other colorectal cancer screening tests.

Author Disclosure:
A. Laghi: Speaker; Bracco, General Electric Healthcare, Bayer, Merck, Bristol-Myers Squibb.

A-0030 09:21 Screening of breast cancer with abbreviated MRI
C.K. Kuhl; Aachen/DE (ckuhl@ukaachen.de)

Early diagnosis improves the survival of women with breast cancer. Mammographic screening improves early diagnosis of breast cancer. And yet, there appears to be room for improvement. Major shortcomings of mammographic screening are over-diagnosis of prognostically unimportant cancer, as well as under-diagnosis of cancers that are indeed relevant. Failure to detect biologically relevant breast cancer with mammographic screening is driven by host-related factors, i.e. breast tissue density, but also tumour-related factors. Biologically relevant cancers may exhibit imaging features that render them indistinguishable from normal or benign breast tissue on mammography. These cancers will then progress to become the advanced-stage interval cancers observed in women undergoing mammographic screening. Since breast cancer continues to represent a major cause of cancer death in women, the search for improved breast cancer screening method continues. Abbreviated breast MRI has been proposed for this purpose because it will greatly reduce the cost associated with this method, due to a greatly reduced magnet time (down to 3 minutes), but especially also due to a greatly abridged image interpretation time, i.e. radiologist reading time. This lecture will review the current evidence and presents the EA1141 trial designed to investigate the utility of abbreviated breast MRI for screening average-risk women with dense breast tissue.

Learning Objectives:
1. To list the cancer detection rates of radiographic, ultrasound and MR imaging for screening of breast cancer.
2. To describe the respective diagnostic accuracies published for breast MRI with abbreviated vs full diagnostic protocols.
3. To list rates and causes of over- and under-diagnosis of breast cancer in current breast cancer screening programmes.

A-0032 09:00 Soft tissue tumours
V.N. Cassar-Pullicino; Oswestry/UK (Victor.Pullicino@nhs.net)

All imaging modalities can play a role in the diagnosis and management of soft tissue tumours and pseudotumours with a variable contributory performance to both sensitivity and specificity. MRI steals the show with an unparalleled role in soft tissue assessment ranging from detection, localisation, characterisation, identifying multiple lesions, other tumour staging, the probability of benignity/malignancy, local staging and recurrence identification. Sonography does have a supporting role especially in the initial assessment of the likelihood of cystic/benign/abnormal malignant Colour Doppler flow patterns. This presentation aims to provide a distillation of the knowledge regarding soft tissue tumour imaging which can be applied in practice using a stepwise analytical approach. Despite an overwhelming spectrum of potential histological diagnosis, the radiologist needs to remember that eight benign and six malignant lesions account for 80% of all soft tissue tumours.

Learning Objectives:
1. To determine the origin of a soft tissue tumour (e.g. fat, neural, vascular, etc.).
2. To present current imaging techniques for evaluation of soft tissue tumours.
3. To discuss the imaging findings which are important for the diagnosis of soft tissue tumours.
Bone sarcomas are rare (0.2% of all neoplasms, annual incidence in Europe is 0.8 per 100,000 population), in contrast to benign bone tumours and the so-called tumour-like lesions. The incidence of these benign entities is relatively high, but not known exactly as these are often asymptomatic. The WHO (version 2013) classified benign and malignant bone tumours in 13 main categories; chondrogenic, osteogenic, fibrogenic, fibrohistiocytic, hematopoetic, osteoclastogenic giant cell rich, notochordal, vascular, myogenic, lipogenic, undefined neoplastic nature and miscellaneous tumours. Each category is further subdivided into 1-14 tumour types. Imaging plays an important role in diagnosis, monitoring therapy, staging, and detecting recurrent disease. Diagnosis is mainly based on conventional radiography using morphologic appearance in combination with location, and age. Advanced imaging techniques are used for local staging (MR), detection of metastases (chest CT), monitoring therapy (MR, ultra-sound, PET-CT), detecting recurrence (MR, ultra-sound, PET-CT). Typical imaging features based on the WHO classification system will be presented with a focus on conventional radiography, common tumours, and relevance.

Learning Objectives:
1. To review the classification of bone tumours.
2. To present current imaging techniques for evaluation of bone tumours.
3. To describe the typical features of common bone tumours.

A-0033 09:30
Bone tumours
J.L. Bloem; Leiden/NL (j.l.bloem@lumc.nl)

Tumours shed DNA fragments in the bloodstream when undergoing apoptosis. Technology is now available that allows genotyping of circulating tumour DNA (ctDNA) to detect somatic alterations found in tumours by sampling blood, a test commonly described as a liquid biopsy. This technique has shown promise in the detection of cancer in its early stages, in the identification of cancer recurrence following surgery and to monitor antineoplastic treatment longitudinally. Detecting the evolving polyclonal mechanisms of drug resistance hints at what personalised treatment could look like in the future. If liquid biopsy proves up to expectations, the role of imaging in the assessment of cancer will have to be revised. This session will explore the potential impact of liquid biopsy on diagnostic imaging from the perspective of the molecular biologist and of the imaging doctor with the aim of drawing-up a shared view.

Session Objectives:
1. To learn about the role of liquid biopsy in cancer detection and tumour surveillance.
2. To become familiar with advances of imaging in cancer detection and characterisation.
3. To understand the revised role of imaging in monitoring of cancer therapy.
4. To explore how combining molecular and imaging metrics could improve clinical decision in cancer patients.

Author Disclosure:
D. Regge: Author; Springer. Consultant; im3D, Research/Grant Support; Sanitas. Speaker; GE Healthcare, GE Medical Systems.

A-0036 08:53
New imaging tools for cancer detection and characterisation
H.-P. Schlemmer; Heidelberg/DE (h.schlemmer@dkfz.de)

Prognostic and predictive imaging biomarkers are essential for personalised oncology, regarding both, research as well as clinical practice. With the backing of computer assistance, an increased amount and complexity of multimodal imaging and multidimensional imaging metrics enable to precisely reflect cancer including its origin, local infiltration pattern and distant spreading, to gain important functional/biological information about its individual aggressiveness and to monitor or even predict morphologic and functional tumour changes during therapy. Sophisticated image postprocessing tools serve to extract information in a quantitative, objective and reproducible way. Recent research on radiomics, deep learning and artificial intelligence even envisage gaining information, which is otherwise inaccessible to conventional visual image analyses by radiologists. But the potential of imaging is inevitably limited for intrinsic reasons, why in many clinical situations microscopic/molecular tissue analyses are still imperative. The collection and molecular analysis of circulating tumour cells, extracellular vesicles and/or cell-free nucleic acids from fluids, especially blood, is currently object of intensive research. It is even hoped that in certain cases non-invasive/ minimal-invasive, the so-called liquid biopsy may replace tissue biopsy. The integration of imaging with liquid biopsy accordingly opens the door to new diagnostic opportunities. Personalised oncology may significantly benefit from the integration of spatial/functional information from imaging and molecular information from a liquid biopsy. But various scientific and methodological issues have still to be addressed before this concept will become a valuable tool for clinical practice.

Learning Objectives:
1. To review the modern approach to early diagnosis with imaging.
2. To become familiar with the new imaging biomarkers for tumour characterisation.
3. To envisage how liquid biopsy and imaging could complement each other in cancer diagnostics.

A-0037 09:11
Is there still a role for imaging surveillance? And when?
V.J. Goh; London/UK (vicky.goh@kcl.ac.uk)

Cancer surveillance aims to detect disease recurrence at an early enough stage for further definitive treatment to be a success. Accurate quantification of disease burden & comprehensive localisation of disease sites is required to improve patient stratification for further therapy - definitive or otherwise. This ensures that progression-free survival is improved particularly for patients undergoing definitive therapy. Imaging may be utilised either as the primary surveillance tool or to localise disease sites once other techniques have detected recurrence. A liquid biopsy is a highly sensitive test, and one of the challenges for imaging is to be able to localise small burden disease if further treatment is an option. Ultimately, the choice of imaging modality and strategy for active surveillance has to balance sensitivity with cost-effectiveness. This lecture will explore current surveillance protocols for common cancers and the future role of imaging in the era of liquid biopsy.

Learning Objectives:
1. To explain the rationale of cancer surveillance.
2. To review current cancer surveillance imaging strategies.
3. To become familiar with new imaging tools for surveillance of patients with cancer.
4. To explore how liquid biopsy and imaging could improve detection of minimal residual disease.

Author Disclosure:
V.J. Goh: Research/Grant Support; Siemens Healthcare.
Postgraduate Educational Programme

A-0038 09:29
Combining molecular and imaging metrics in cancer (radiogenomics)
K. Pinker-Domenig; Vienna/AT (pinkerdt@imskcc.org)

With the genomic revolution in the early 1990s, medical research has been driven to study the basis of human disease on a genomic level and to devise precise cancer therapies tailored to the specific genetic makeup of a tumour. To match novel therapeutic concepts conceived in the era of precision medicine, diagnostic tests must be equally sufficient, multilayered and complex to identify the relevant genetic alterations that render cancers susceptible to treatment. With significant advances in training and medical imaging techniques, image analysis and the development of high-throughput methods to extract and correlate multiple imaging parameters with genomic data, a new direction in medical research has emerged. This novel approach has been termed radiogenomics. Radiogenomics aims to correlate imaging characteristics (i.e., the imaging phenotype) from different imaging modalities with gene expression patterns, gene mutations, and other genome-related characteristics and is designed to facilitate a deeper understanding of tumour biology and capture the intrinsic tumour heterogeneity. Ultimately, the goal of radiogenomics is to develop imaging biomarkers for an outcome that incorporate both phenotypic and genotypic metrics. Due to the non-invasive nature of medical imaging and its ubiquitous use in clinical practice, the field of radiogenomics is rapidly evolving, and initial results are encouraging. In this article, we will briefly discuss the background and then summarise the current role and the potential of radiogenomics in oncology.

Learning Objectives:
1. To explain the basic principles of radiogenomics.
2. To summarise the current clinical applications of radiogenomics.
3. To explore how radiogenomics could guide clinical decisions in the future.

Author Disclosure:

09:47
Panel discussion: Will liquid biopsy be a game changer for radiologists?

08:30 - 10:00 Room Y
Joint Session of the ESR Ultrasound Subcommittee with EFSUMB

ESR US SC/EFSUMB
Ultrasound simulation models in training and education: where are we going?
A-0039/A-0040 08:30
Chairpersons’ Introduction
D.A. Clevert: Munich/DE (Dirc.Clevert@med.uni-muenchen.de),
P.S. Sidhu: London/UK (paulsidhu@btinternet.com)

This session deals with the ever advancing practice of using simulators for education and training of ultrasound practitioners. Many new developments of technology related to the machines and simulators make this an attractive proposal. Experts in the field will detail experience and discuss the future directions. New simulators will be presented, and data will be discussed.

Session Objectives:
1. To learn about which technical procedures are proposed in a simulation-based curriculum in radiology.
2. To learn about advantages and disadvantages of the different types of ultrasound simulators available.
3. To learn about the possibility of using virtual reality and gamification for training.
4. To learn about the experience from different parts of Europe in using ultrasound simulation training.

Author Disclosure:
D.A. Clevert: Speaker; Bracco, Siemens, Philips, Samsung, P.S. Sidhu: Advisory Board; Samsung Medison, Consultant; Itreats Inc. Speaker; Bracco SpA, Philips Healthcare, GE Healthcare, Siemens Healthineers, Hitachi Inc.

A-0041 08:40
Needs assessment of simulations-based training in radiology
L. Nayahangan; Copenhagen/DK (leizl.joy.nayahangan@regionh.dk)

Radiology is rapidly evolving with the advent of sophisticated, state-of-the-art imaging modalities. The implementation of these advanced technologies requires the need for alternative training methods such as simulation to supplement the traditional apprenticeship approach. Simulation-based education has been adapted in radiology to provide trainees with the opportunities to practice different technical and diagnostic skills, including interpretative and non-interpretative skills. Many simulation-based training programs exist; however, they are most often developed based on the availability of simulation equipment, local interests or other practical considerations. The development of training programs should follow a systematic approach by starting with a general needs assessment to ensure that these are aligned with current trainee needs. The needs assessment follows a structured three-round Delphi method to identify technical procedures that are suitable for simulation-based training. This iterative approach involves a panel of key opinion leaders to gather information and achieve consensus regarding procedures for simulation training. Round 1 is a brainstorming phase to gather procedures that a newly qualified radiologist should be able to perform. Round 2 is rating the procedures using a needs assessment formula to explore frequency, the number of doctors, impact on patients and feasibility for simulation-based training. Round 3 involves the elimination and final prioritisation of the procedures. The needs assessment process using the Delphi method identifies and prioritises a list of technical procedures for simulation-based training. This list provides an important foundation for the planning and development of simulation-based training programs in Radiology.

Learning Objectives:
1. To learn about how to perform a needs assessment using the Delphi method.
2. To learn about how a needs assessment identified and prioritised technical procedures to be included in a simulation-based curriculum.
3. To learn about how the list of procedures may be used as a guide for development of training programmes.

A-0042 09:00
Review of the available market of ultrasound simulators
M. Bachmann Nielsen; Copenhagen/DK (mbn@dadlnet.dk)

A number of simulators are available for training abdominal ultrasound examinations. A screen with limited number of knobs aims to resemble a clinical ultrasound machine. Most simulators will use a dummy torso and a look-a-like transducer and others will use a joystick or a mouse. To train the coordination of the probe positioning and the screen a simple cartoonish sonogram may suffice. The presentation will aim to present a number of simulators available as per February 2019 including simple simulators, high-end simulators comprised of 3D patient examinations, virtual reality simulators and simulators aimed for biopsy training. Each simulator will have its strengths and weaknesses. It is not clear which simulator to use for specific needs.

Learning Objectives:
1. To learn about different types of simulators on the market.
2. To learn about which are suitable for beginners or advanced levels, and which can be used for training in interventional ultrasound.
3. To learn about advantages and disadvantages of different types of ultrasound simulators.

A-0043 09:20
Gamification and virtual reality in medical simulation
L. Konge; Copenhagen/DK (lars.konge@regionh.dk)

The old “see-one, do-one, teach-one” approach to medical education is outdated. Simulation-based training provides evidence for better efficacy, less stress, better patient outcomes, and improved return-on-investment. The question is no longer if we should use simulators to train our future doctors but how. There is a huge implementation gap regarding simulation in medical education. Despite the solid evidence, simulation is still severely under-utilised as a teaching modality, and initial training on patients are still very common. Virtual reality simulators and gamification allow new trainees to measure their own progress and compete against peers - this is highly motivating and could be a driver for implementation.

Learning Objectives:
1. To learn about gamification as a tool in medical education.
2. To learn about virtual reality in medical education.
3. To learn which possible ways virtual reality and gamification could be implemented in ultrasound.

09:40
Panel discussion: Will there be an option to include these technics in our daily work and how could we improve the outcome?
The use of ionising radiation in medical imaging offers substantial benefits for the diagnosis and treatment of numerous medical conditions in children and adults. However, exposure to ionising radiation may be associated with harmful risks. Justification and optimisation as principles of radiation protection make radiation safety a cornerstone of medical practice. Physicians need to know the levels of exposure, and hence the risks from imaging examinations that they have to justify and operators of X-ray cases such as examinations of children and pregnant patients or screening examinations require specific organ dose estimations. Moreover, to prevent tissue reactions patient skin dose needs to be estimated during radiological interventional procedures. Patient characteristics, such as age, sex and size, should be taken into consideration for specific patient dose assessments. Each modality (radiography, fluoroscopy, mammography, computed tomography, etc.) has its specificities and demands different methods to calculate the dose. Modern imaging modalities usually display conventional dosimetry metrics, such as dose-area product, incident air-kernma or computed tomography dose index that do not represent individual patient dose. Thus, numerous sophisticated concepts and methodologies have been proposed to estimate patient radiation dose that includes either physical measurements with dosimeters and anthropomorphic phantoms or computational measurements using Monte Carlo simulations. All these methods progressively allow to more accurate estimations of individual patient doses.

Session Objectives:
1. To understand the needs for personalised dosimetry.
2. To learn about existing and new methodologies used for patient dosimetry.
3. To understand the challenges for the implementation of patient-specific dosimetry.

A-0047 08:35
A. Breast imaging dosimetry
I. Sechopoulos: Nijmegen/NL (Ioannis.sechopoulos@radboudumc.nl)

Mammographic dosimetry is a subject of intense interest due to the use of this imaging modality for population-based screening. However, established breast dosimetry methods do not result in patient-specific dose estimates. Rather, our current methods provide estimates of dose to a model breast, even if the actual technique used for a specific acquisition is taken into account. New insights into breast anatomy have provided us, for the first time, with estimates of how current dose predictions can differ from actual patient-specific doses. During this talk, the current method and model for breast dosimetry in mammography and breast tomosynthesis will be reviewed, and its capabilities and limitations discussed. How patient-specific breast dosimetry could be achieved and the current progress towards this goal will be presented, and what its potential applications could be will be discussed.

Learning Objectives:
1. To understand the current method to estimate organ dose in mammography and its limitations.
2. To understand breast dosimetry in emerging modalities.
3. To learn about upcoming approaches in breast dosimetry.

Author Disclosure:
I. Sechopoulos: Advisory Board; Fischer Imaging. Research/Grant Support; Siemens Healthcare, Canon Medical Systems. Speaker; Siemens Healthcare.

A-0048 08:58
B. Patient dosimetry in CT and CBCT
S. Edyvean; London/UK (sue.edyvean@phe.gov.uk)

Conventional CT is a complex imaging device which can utilise narrow or wide beams, helical scanning, varying tube current, varying kV, and operating with various and dynamic collimations - all of which can affect patient dose. Cone beam CT (or flat panel CT) uses different technology, referring to cross-sectional imaging with digital x-ray systems used in dental, digital radiography or radiotherapy. Many of the challenges are similar for both conventional CT and cone-beam CT; however, there has been substantially more research, and literature available, for the former. The dose distribution can be more complex, due to the geometry of irradiation. When considering patient-specific dosimetry, the technology, exposure settings, and the patient, all need to be considered. As with other modalities, the scope to directly measure doses using physical dosimeters is limited. Therefore, doses need to be estimated using regular-shaped, or anthropomorphic, phantoms, or calculated using mathematical modelling techniques. The appropriate application, and the limitations, of standard dose indices (such as the computed tomography dose index, the size-specific dose index, the cone beam dose index), together with their associated methodologies and phantoms, will be addressed. Monte Carlo calculations from a modelled scanner and patient characteristics give more precise organ dose information, and there are a number of applied software packages developed to utilise these data. The advantages and limitations of these will be discussed.

Learning Objectives:
1. To understand what is estimated.
2. To learn how to measure it.

A-0049 09:21
C. Patient dose in fluoroscopy and interventional
A. Trianni; Udine/IT (annalisa.trianni@asulud.sanita.fvg.it)

Biological effects induced by exposure to radiation made evident the need for accurate dosimetry from the early days of X-ray use in medicine. Later the scientific interest turned also to the estimation of risks of radiation-induced cancer and genetic effects. Various dosimetric quantities have been used in diagnostic radiology and sometimes confusion is caused because the same name is used for different quantities. The question arises: what is patient dose and what is not? It’s common practice to indicate the dose received by a
Lung cancer (LC) staging is mandatory to formulate effective treatment. To accurately estimate patient dose there is the need to collect a lot of information concerning patient characteristics and irradiation events in order to obtain organ or tissue dose. Nowadays, thanks to the digital technology used in medical imaging, various ways of collecting these data are available. The information is communicated using specific standards (i.e. DICOM), such as the non-image information object definitions. These objects are carrying information about equipment output and other dose-related information which allow the user to provide the most accurate estimate of the patient dose. This talk will review the basic concepts of patient dosimetry as well as the existing DICOM objects and IHE profiles used to monitor patient exposure, highlighting the pros and cons and introducing to future developments.

Learning Objectives:
1. To review the fundamental patient dosimetry quantities.
2. To learn about calculation of patient dose for interventional procedures.
3. To learn about real time patient dose monitoring strategies.

09:44
Panel discussion: The future of patient-specific dosimetry
08:30 - 10:00
Room K
Multidisciplinary Session
MS 1
Lung cancer team
A-0050 08:30
Chairperson’s introduction
A.R. Laricci; Rome/IT (annarita.laricci@unicatt.it)
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC), the most common subtype, has an overall 5-year survival rate of 16%, which has not improved significantly for several decades. The poor prognosis could be attributed to the diagnosis of lung cancer at an advanced stage and the lack of a cure. Radiological imaging plays a crucial role in the diagnostic workup of lung cancer, from the early identification to the accurate staging. The new staging TNM system introduced relevant changes in order to better reflects different patient prognosis, even though with some limitations. It is mandatory when lung cancer is suspected, to obtain a tissue diagnosis to ascertain the tumour type. Imaging modalities represent effective tools to guide further investigative procedures for tissue sampling and, therefore, to adequately guide patient management and treatment planning. In the past decade, the therapeutic arsenal for NSCLCs has diversified significantly, with the emergence of targeted therapies and, more recently, immunotherapies. Personalised treatment has grown with the integration of predictive biomarkers, giving the potential to identify patients who may experience the lowest toxicity and/or derive the greatest benefit from these new treatments based on individual tumour profile. Lung cancer treatment planning is a complex process that involves multiple specialities. In the past two decades, multidisciplinary care has emerged as the standard of care in lung cancer management. This session will be focused on discussing the main aspects of lung cancer diagnosis and management.

Session Objectives:
1. To understand how to carry out an accurate diagnosis of lung cancer.
2. To learn about the actual therapeutic approach to lung cancer in the era of "personalised treatment".
3. To appreciate how a multidisciplinary team can make the difference in effectively managing lung cancer.

A-0051 08:35
Imaging and staging
M. Silva; Parmi/IT (marisiosilvamed@gmail.com)
Lung cancer (LC) staging is mandatory to formulate effective treatment strategies and optimise patient outcomes. The staging has traditionally relied on the TNM system, for which the International Association for the Study of Lung Cancer (IASLC), which is now in its eighth edition (TNM-8). The TNM-8 is based on detailed analysis of a new large international database of lung cancer cases assembled by the IASLC. Fundamental cornerstones of TNM-8 include the modifications to the T classification on the basis of 1-cm increments in tumour size, the grouping of lung cancers that result in partial or complete lung atelectasis or pneumonitis, and grouping of tumours with involvement of a main bronchus irrespective of the distance from the carina. Furthermore, reassignment of diaphragmatic invasion was included in terms of T classification, whilst the mediastinal pleural invasion was removed from the T classification, and the M classification was divided into different descriptors on the basis of the number and site of extrathoracic metastases. In response to these revisions, established stage groups have been modified, and others have been created. In addition, recommendations for classifying patterns of disease that result from multiple sites of pulmonary metastases, including multiple primary lung cancers, lung cancers with separate tumour nodules, multiple ground-glass/lepidic lesions, and consolidation, as well as recommendations for lesion measurement, are addressed. Understanding the key revisions introduced in TNM-8 allows radiologists to accurately stage patients with lung cancer and optimise therapy.

Learning Objectives:
1. To learn how to optimise the diagnostic algorithm of lung cancer.
2. To understand the evolving meaning of TNM classification.
3. To become familiar with key imaging criteria to manage lung cancer.

Role of the pathologist: making the most of the sample
G. Rossi; Ravenna/IT (giuseppi88@gmail.com)
The advent of effective targeted therapies in lung cancer has significantly changed the standard of care and contemporarily stressed the need for even more tumour tissue finalised at predictive biomarker determinations. Lung cancer presentation, patients characteristics, tumour location and stage profoundly impact on the better approach to maximize the amount of neoplastic material using conventional invasive methods, while liquid biopsy does represent a new source of tumour cells, particularly helpful in monitoring disease progression and in the comprehension of the mechanisms of drug resistance when using standard invasive procedures.

Actually, radiologists and bronchoscopists are both involved in the correct choice to sample lung cancer, but no universally perfect procedures do exist. The significant increase of adenocarcinoma histology, representing about 60% of all lung malignancies, led to a huge number of peripheral tumours with more frequent mediastinal lymph node involvement. Then, complementary PET-CT (CT)-guided and transbronchial (with/without endobronchial ultrasound guidance, EBUS) fine-needle aspiration (FNA) are the most common adopted techniques, equally allowing a fair-to-optimal tumour specimen. First line treatment initially requires a precise histological definition of lung cancer. Indeed, about 30% of non-small-cell carcinoma (NSCLC) are poorly-differentiated requiring immunostains with TTF-1 (quite specific for adenocarcinoma) and p40 (indicating squamous cell differentiation). About 20% of these cases represent a possible small cell carcinoma arising in non-smokers and NSCLC not otherwise specified require a prompt determination of EGFR mutations, ALK and ROS1 rearrangements and PD-L1 expression, whereas conventional squamous cell carcinoma needs only PD-L1 investigation.

Learning Objectives:
1. To learn about the best way to obtain tumour tissue using different approaches.
2. To optimise tumour tissue management increasing the diagnostic yield in histologic subtyping and predictive molecular determinations.
3. To understand the correct information to relate to the oncologist as the first line of treatment.

Role of the oncologist: personalising the treatment
S. Novello, M.L. Reale; Orbassano/IT (silvia.novello@unito.it)
Lung cancer treatment has become a paradigmatic example of personalised medicine. Therapeutic management takes into consideration histology, molecular pathology, staging, patients’ characteristics. The identification of oncogenic driver alterations (EGFR activating mutations, ALK/ROS1 translocations) allowed the development of targeted therapies based on molecular profiling, enriching the previous ‘histology-directed treatment’ paradigm. These drugs, counteracting the deregulated pathways, improved outcomes substantially, quality of life and toxicity in molecular selected populations and represent today the standard of care in the oncogene-addicted advanced disease. Nevertheless, acquired resistance arises. Newer agents, overcoming cancer escape, showed remarkable outcomes. Unfortunately, the best sequence of the available treatments, in most cases, is not defined. The landscape is evolving, and other oncogenes are emerging as potential targets implementing personalised medicine algorithms. In the case of non-oncogene addiction and persisive comorbidities, immunotherapy demonstrated successful results in different settings. PDL-1 is the current biomarker to identify patients who may benefit from frontline immune checkpoint inhibitors. However, because of its high variability and dynamic expression, considering many predictive factors are exploring to maximise patients’ selection. In this scenario, tissue availability, after histologic definition, is necessary; non-invasive methods are emerging to overcome the potential limits of biopsies or aspirates. Lung cancer is an increasingly complex and heterogeneous disease. Lung cancer offers the best sequence and combine therapeutics could represent another important step in treatment personalisation. Cooperation and multidisciplinary approaches are the keys for the shared vision of a precision medicine aimed to offer the best treatment to every single lung cancer patient.
Learning Objectives:
1. To learn about the meaning of personalised treatment and the evolution of lung cancer therapies in the last 10 years.
2. To understand the role of the newer targeted therapies.
3. To become familiar with the needs of the surgeon to define the appropriate treatment such as SBRT).

A-0054 09:29
What the surgeon needs to know
U. Pastorino; Milan/IT (ugo.pastorino@istitutotumori.mi.it)

The optimal management of non-small cell lung cancer (NSCLC) requires multidisciplinary collaboration. The incidence of stage I and II NSCLC is likely to increase with the ageing population and the introduction of lung cancer screening for high-risk individuals. The surgical approach is to be tailored upon each individual case, and options are lobectomy, sublobar resections (SLR), sleeve resections, and minimally invasive techniques such as video-assisted thoracic surgery (VATS) and robot-assisted thoracic surgery (RATS).

Furthermore, radiation therapy (especially stereotactic body radiation therapy - SBRT), is a valid alternative in compromised patients who are high-risk candidates for surgery. Minimally invasive techniques are suitable for a subset of patients who can be selected on the basis of a pre-surgical investigation by imaging and bronchoscopic sampling by ultrasonography. Stage III NSCLC is also treated surgically with curative purpose when specific conditions are fulfilled. A variable combination with neoadjuvant chemotherapy in specific cases is discussed by the lung cancer team before surgical resection, to improve long-term outcome. The synergistic collaboration of the lung cancer team is based on diagnostic cornerstones, which are demanded by the surgeon for the optimal planning of lung cancer resection (either minimally invasive or enlarged) with or without pre-surgical neo-adjuvant therapy, or for the definition of those subjects at high risk for surgical procedures (alternative treatment such as SBRT).

Learning Objectives:
1. To learn about the advances in the surgical approach for lung cancer treatment.
2. To understand how the clinical staging may affect surgical results in lung cancer.
3. To become familiar with the needs of the surgeon to define the appropriate surgical approach.

A-0055 09:47
Multidisciplinary case presentation and discussion
A.R. Larici; Rome/IT (annanita.larici@unicatt.it)

Lung cancer management and treatment planning are complex processes involving multiple specialities. In the past two decades, multidisciplinary care has emerged as the standard of care for lung cancer patients. Multidisciplinary care facilitates discussions between the different specialists involved in the diagnostic process to ensure that the site with the highest chance of obtaining tissue from is targeted first, thereby minimising the risk to the patient of recurrent procedures. There is evidence that access to the most accurate staging investigations is improved by multidisciplinary care, helping to limit unnecessary surgery which does not appear to occur at the expense of patient undertreatment. The impact of multidisciplinary care on measures of quality lung cancer treatment includes staging accuracy, access to diagnostic investigations, improvements in clinical decision making, better utilisation of radiotherapy and palliative care services, and improved quality of life for patients. Multidisciplinary care reduces variation in care, overcomes barriers to treatment, promotes standardised treatment through adherence to guidelines, and allows the audit of clinical services and for these reasons is more likely to provide quality care for lung cancer patients. This presentation is a case-based review demonstrating the added role of the multidisciplinary discussion on lung cancer patient management.

08:30 - 10:00 Room M 1
Joint Session of the ESR and EIBALL

ESR/EIBALL
Imaging biomarkers and their combinations in the era of artificial intelligence

A-0056 08:30
Chairpersons’ introduction (part 1)
O. Clement; Paris/FR (olivier.clement@aphp.fr)

This session will focus on the use of artificial intelligence for selecting and managing imaging biomarkers. Clarification around the use of terms such as 'artificial intelligence' and 'biomarkers' will be discussed. The strengths and limitations of the technologies used will be considered. The development of researcher-driven science and technology networks through the EU COST (Co-operation in Science and Technology) action initiative will be showcased using renal biomarkers as an exemplar. Finally, the selection of combinations of biomarkers from hybrid imaging technologies using AI will be addressed.

Session Objectives:
1. To introduce the potential of AI to accelerate the introduction of imaging biomarkers.
2. To introduce the challenges of managing biomarkers with AI systems.
3. To introduce the speakers.

Author Disclosure:
O. Clement: Advisory Board; Bayer. Speaker; Bracco, Guerbet.

A-0057 08:33
Chairpersons’ introduction (part 2)
N.M. deSouza; Sutton/UK

Building and discovering biomarkers with AI

B. Ranco; Paris/FR (bastien.ranco@aphp.fr)

In recent years, Deep Neural Networks (DNN) have achieved unprecedented performances in many domains, especially with the analysis of images. Major results have been announced for several applications, including skin lesions, pneumonia, pathology and so forth. Several algorithms have even been approved by regulatory agencies, e.g. for the diagnosis of diabetic retinopathy in specific circumstances. It now makes no doubt that artificial intelligence algorithms will be part of the medical experts’ toolboxes. In this presentation, we will explore the basic principles behind artificial intelligence and neural networks: supervised and unsupervised algorithms, neurons, activation functions, and the overall architectures of networks. We will discuss more specific classes of DNN used today for the exploration of images, namely the convolutional network and the autoencoder-denoiser, and how they can be used to identify new biomarkers. We will emphasise the crucial role played by expert annotations on images, and explore how experts annotations are used to build models. Finally, we will discuss the implications of the use of deep neural networks in medicine and radiology, and briefly explore new risks (for example adversarial attacks) linked with the use of such technologies.

Learning Objectives:
1. To learn about available supervised vs unsupervised machine learning techniques.
2. To learn about deep-learning methods to discover biomarkers.
3. To understand the strength, but also limits and pitfalls, of machine learning methods.
Role of AI in the introduction of imaging biomarkers: accelerator or obstacle?

J.C. Waterton; Manchester/UK (John.Waterton@manchester.ac.uk)

According to the FDA/NIH BEST resource, a biomarker is a “defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to exposure or intervention, including therapeutic interventions; ... radiographic characteristics are types of biomarkers”. Imaging biomarkers include scores from scoring systems, such as objective tumour response; extensive variables, such as LVEF; and intensive variables, such as the CT Hounsfield Unit. Biomarkers are essential for evidence-based based medicine, for regulatory approvals, and for prescribing information. However biomarkers must be reproducible over time and space: the measured imaging biomarker value must not drift when measured in a different clinic, or when better scanners are introduced. Radiologic examinations often provide imaging biomarkers which guide patient care. However much of the information in single images, or from multi-modal imaging examinations, is not captured in currently available imaging biomarkers. In the hands of an expert radiologist, this additional information further improves patient care: AI offers the hope of creating new biomarkers by quantifying this additional information. AI-derived imaging biomarkers are, however, not exempt from the need to follow established scientific and regulatory validation pathways and roadmaps. They should show which aspect of the underlying pathology is captured by the new biomarker and must demonstrate reproducibility over time and space (including strategies to maintain validity with future scanners yet to be designed). Otherwise, AI-derived imaging biomarkers will not translate and will remain academic curiosities.

Learning Objectives:
1. To learn how AI can improve imaging biomarkers from multiple imaging modalities.
2. To appreciate the challenges “big data” pose to regulators, whether from imaging biomarkers or from the more conventional biospecimen (genomic, proteomic) biomarkers.
3. To understand how best to utilise AI for imaging biomarkers and to avoid the pitfalls.

Author Disclosure:
J.C. Waterton: Consultant; Bioxydyn.

Panel discussion: What infrastructure do we need to exploit AI for selecting, validating and managing imaging biomarkers?

Interventional radiology (IR) in children: what a non-interventional radiologist needs to know

E. Alexopoulou; Athens/GR

Interventional radiology (IR) procedures are a vital part of paediatric care for most complex diseases, providing reliable intravenous access and feeding tube support during intensive therapy such as chemotherapy and delivering innovative minimally-invasive therapies for other conditions to avoid surgery and often save lives. Central venous access in children can be technically challenging but is quicker and less invasive than open surgical techniques, and there is evidence to suggest that the central veins are preserved for longer, which is key in children with chronic disease. Angiography in children is usually straightforward, with just a few important technical points to remember in small children. Looking beyond central venous access, paediatric IR delivers therapies such as sclerotherapy for vascular malformations, percutaneous nephrolithotomy (PCNL) for renal stone extraction, oesophageal dilatations to manage oesophageal strictures and biopsy to safely and accurately stage childhood tumours. As with all of IR, the key to safe and successful practice is an understanding of the different pathology processes in children and the underlying decision making processes involved in delivering best practice.

Learning Objectives:
1. To learn about the most common causes for image-guided intervention in children.
2. To understand how the practical and technical approach to intervention in a child differs from that in adults.
3. To appreciate tips, tricks and pitfalls in paediatric intervention procedures.

Diagnosis and treatment of vascular malformations in children is a combination of different diagnostic tools adapted to the given clinical setting. It always has to be an interdisciplinary team approach mostly based in dedicated centres to first find the correct diagnosis and then decide whether or not treatment is necessary. From the clinical background, most vascular malformations don’t need invasive treatment because they do not cause any symptoms. However, the clinical decision has to be based on a reliable diagnosis, and different imaging pathways have to be considered. Imaging is predominantly performed by Ultrasound and MRI. Valuable information is added by clinical examination and history as well as sometimes histopathologic specimens. Different MRI examination approaches exist that help to find the correct diagnosis in the end. In imaging, it is important to distinguish between high-flow lesions e.g. arteriovenous malformations (AVM) or low-flow lesions e.g. venous malformations. Ultrasound and MRI can help to look beyond the focal vascular malformation because other body-regions might be affected as well. The correct diagnostic workup will help to define the right clinical pathway in a multidisciplinary team discussion. The treatment decision should then include non-interventional procedures such as physiotherapy or compression hosierly as well as interventional procedures such as sclerotherapy, embolization and surgery. It is essential to talk to and support the children and their parents, so they understand the different pathways and options. When all this comes together, they can decide well-informed leading to a hopefully satisfied patient in the end.

Learning Objectives:
1. To learn about the classification of paediatric vascular malformations.
2. To understand the diagnostic work-up and the indications for percutaneous treatment of paediatric vascular malformations.
3. To appreciate the treatment options for different vascular malformations.

Author Disclosure:
M. Beeres: Research/Grant Support; Travel Grant: Bayer Vital.
A-0063 09:30
C. Osteoid osteoma: diagnosis and treatment
D. Filippiadis; Athens/GR (dfilippiadis@yahoo.gr)

Osteoid osteoma is a benign inflammatory bone tumour encompassing 2-3% of all bone tumours and 10% of benign bone tumours; it is most common in males < 25 years of age with patients typically complaining of pain that worsens at night and is promptly relieved by salicylates. A tumour was first reported by Jaffe in 1953; osteoid osteoma is composed of the nidus which is bone at various maturity stages surrounded by highly vascular connective tissue stroma. Depending on the location and axial imaging findings, osteoid osteoma can be classified into subperiosteal, intracortical, endosteal or intramedullary and intra-articular with the latter being the least common type and refers to lesions located within or near a joint. The application of radiofrequency ablation (RFA) was introduced in clinical practice by Rosenthal in 1992 performing a percutaneous approach for the treatment of osteoid osteoma. Nowadays thermal ablation of osteoid osteoma constitutes a first-line therapy. Numerous studies upon all ablation techniques, others with lesser and others with higher numbers of patients report high pain reduction rates (up to 96%) and low recurrence rates (~7% at two years). Comparing percutaneous ablation to the traditional surgical techniques for osteoid osteoma (wide excision removing a bone block, marginal resection of the entire nidus, curettage or high-speed burr techniques) favours a percutaneous approach in terms of minimum trauma, minimum functional restriction and significantly lower cost.

Learning Objectives:
1. To learn how to diagnose, and how to treat, osteoid osteomas.
2. To understand the techniques for percutaneous treatment of osteoid osteoma: preparations, procedure and follow-up.
3. To appreciate advantages and potential complications in percutaneous treatment of osteoid osteoma in children.

Author Disclosure:
D. Filippiadis: Advisory Board; BTG/Galil Medical, Medtronic.

08:30 - 10:00 Room M 3

OncoLogic Imaging

RC 116
Imaging tumour response to immunotherapy

A-0064 08:30
Chairperson’s Introduction
O.J. Sédlacek; Heidelberg/DE (sedlacek@web.de)

Cancer Immunotherapies include a broad variety of interactions between applied substances and the immune system to treat cancer. Passive mechanisms include the delivery of compounds that may use the immune system. The more recently extensively used drugs lead to an active priming of the immune system via disinhibition of immune checkpoints either at the level of the lymphnode (CTLA 4 – interaction) or at/near the malignancy itself (PD-L1) -1 – interaction). Checkpoint-inhibitors are a breakthrough in the treatment of a variety of human malignancies including lung, renal, bladder cancer, and of course melanoma. They led to significant improvements in response and survival rates. However, the disinhibition of mechanisms normally protecting from autoimmunity and prolonged immunoreactions can lead to both unusual tumour response patterns and atypical toxicities. Concerning the response patterns the continued application of an immune treatment after the first observation of a classical RECIST - progression (pseudoprogression) is the common difference in all the response criteria specifically suggested to be used in immunotherapies (irRC, iRECIST, iRECIST). Although there are data for several substances and entities showing a beneficial effect of an ongoing treatment with checkpoint inhibitors even beyond a confirmed progression, there is a relevant role for imaging in the early prediction of treatment success particularly due the enormous cost of the treatments and the relevant toxicities associated.

Session Objectives:
1. To discuss the mechanism of action of immunotherapies.
2. To understand immunotherapy response and immune-related adverse events.
3. To become familiar with immune related response criteria (irRC), immune-related RECIST (irRECIST) and immune RECIST (iRECIST).
4. To discuss future directions for advanced imaging of immunotherapy.

A-0065 08:35
A. Imaging the immune system in cancer
C. Dromain; Lausanne/CH (Clarisse.Dromain@chuv.ch)

A wide range of cancer immunotherapy approaches has been developed including non-specific immune-stimulant such as cytokines (Interferon, IL2), cancer vaccines (peptide or dendritic-cell-based vaccines), adoptive T-cell therapy (TILs, CAR, TRC) and immune checkpoint inhibitors (anti-CTLA-4, anti PD1 and anti PD-L1). The most commonly used are the immune checkpoint inhibitors (ICIs). Their mechanism of action signifies a true shift in oncology with instead of targeting the tumour cells, ICIs target the immune system to break the cancer tolerance and stimulate the anti-tumour immune response. These new drugs have, since 2011, received marketing authorisation for melanoma, lung, bladder, renal, and head and neck cancer with remarkable anti-tumour treatment response. The novel mechanism of action of these drugs, with immune and T-cell activation, lead to unusual patterns of response with presence pseudo-progression more pronounced and more frequent than previously described responses. Pseudo-progression that has been described in about 3-10% of patients treated using ICIs corresponds to increase of tumour burden and/or appearance of new lesions due to infiltration of a tumour by activated T-cells before the disease responds to treatment. To overcome the limitation of RECIST criteria to assess this specific changes in tumour burden, new criteria so-called irRC and then irRECIST were proposed. The major modification involved the inclusion of the measurements of new target lesions into disease assessments and the need for a 4-week CT re-assessment to confirm progression. More recently (2017) a consensus guideline iRECIST was developed by the RECIST working group.

Learning Objectives:
1. To discuss the concept of immunotherapy treatment in cancer.
2. To review what the radiologist needs to know when assessing immunotherapy treatment.
3. To understand the challenges of assessing immunotherapy response using imaging.

A-0066 08:53
B. Monitoring immune response with CT
F. Gentili; Siena/IT (francescogentili@gmail.com)

Computed tomography (CT) is the most widely available imaging technique for evaluating tumour response to chemotherapy. In the last years’ cancer immunotherapy is changing response evaluation criteria to treatment since new patterns of treatment response have been observed employing immunomodulating agents; such therapies indeed can be associated with a significantly delayed decrease in tumour size, and new or enlarging lesions observed soon after completion of treatment may not indicate disease progression. For this reason, in this scenario, the traditional response criteria, such as WHO and RECIST 1.1, cannot be applied and therefore, during these years, several response criteria (irRC, iRECIST, iRECIST and imRECIST) were proposed and applied in clinical trials on immunotherapy. Moreover, changes of intratumoral vascularisation, objectively assessed by Perfusion-CT and Dual-energy CT, may reflect the effects of treatment and therefore be incorporated in response criteria. Finally, CT radiomics is a promising method, applied to conventional images, that seems to be able to detect subtle differences in CT values which cannot be recognised by human eyes, providing quantitative data on tumour microenvironment by analysing the distribution and relationship of pixel intensities.

Learning Objectives:
1. To discuss different types of immunotherapies and to review their mode of action as imaged with CT.
2. To understand the limitations of RECIST and become aware of immune response criteria.
3. To discuss the limitations of CT for assessment of immunotherapies.

A-0067 09:11
C. Monitoring immune response with PET
C.C. Cyran; Munich/DE (clemens.cyran@med.uni-muenchen.de)

In recent years a range of novel immunomodulatory cancer therapeutics were introduced into clinical use aiming to boost anti-tumour immune response in cancer patients. Among these immunotherapies, neutralising antibodies targeting the immune checkpoints T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) have shown effectiveness in the treatment of different tumour entities. Unlike cytotoxic radio- and chemotherapy, which directly interferes with tumour cell growth and survival, immunotherapies target the tumour indirectly stimulating the physiological anti-tumour immune response. Established methods of assessing cytotoxic tumour therapies (e.g. RECIST) have demonstrated limitations for monitoring the early therapeutic effects of immunotherapy. This has led to the development of immune-specific related response criteria (e.g. irRC, iRECIST, iRECIST) that allow continued treatment beyond progression defined by RECIST, however with also limited applicability. The complementary acquisition of functional and molecular information using PET in line with hybrid imaging techniques may
allow for a higher diagnostic accuracy in monitoring immunotherapy and the
timely differentiation of responders from non-responders. The applicability of
18F-FDG PET for monitoring treatment with immune checkpoint inhibitors has
been questioned because the infiltration of the tumour by immune cells may
cause a transient increase in metabolic activity. Dedicated tracers for immune
PET mostly aim to visualise the presence and abundance of various subsets of
immune cells with different targets including PD-L1, PD-1, CTLA-4, CD3 and
IFNy. Dedicated immune PET with specific tracers may provide valuable in vivo
insights into the pathophysiology of tumours under immunotherapy and new
opportunities to evaluate antitumor immune response.

Learning Objectives:
1. To discuss the framework for the use of FDG PET/CT for immunotherapy
 assessment.
2. To become familiar with the best response criteria for assessment of
 immunotherapy using PET/CT.
3. To discuss the limitations of PET/CT for assessing of immunotherapies.

A-0068 09:29
D. Monitoring immune response with MRI
D.-M. Koh, Sutton/UK (dowmhok@icr.ac.uk)

Drugs that modulate the body immune responses are increasingly used to treat
cancers, either alone in combination, such as in malignant melanoma, non-
small cell lung cancer, hepatocellular carcinomas. In patients receiving
immunotherapies, CT is still the most widely used imaging technique to assess
the treatment response of tumours and to identify drug-related side-effects.
However, anatomical MR imaging is also effective in evaluating tumour
regression by size measurement criteria (e.g. IRECIST). Like CT, an increase
in tumour size may be observed on MRI in pseudo-progression, which can
confound response assessment. Nonetheless, the superior soft tissue contrast
of MRI allows to depict subtle disease (e.g. intracranial) and specific
complications (e.g. hypophysitis) that are difficult to visualise on CT. There is
interest in applying quantitative MRI imaging, including whole-body MRI
techniques, to study functional changes in tumour cellularity (using diffusion-
weighted MRI), vascularity (using contrast-enhanced MRI) and macromolecules
(magnetisation transfer). These are areas of on-going research, including
the use of texture analysis and radiomics analysis. Whole body MRI can provide information about inter-tumoural heterogeneity, thus
allowing insights into tumour evolution and differential response to treatment.
Active research in molecular probes is being undertaken to develop PET
imaging tracers that can identify and predict treatment response, which can be
explored alongside multi-parametric MRI measurements on an MR/PET hybrid
system as imaging biomarkers.

Learning Objectives:
1. To learn the advantages and limitations of MRI for assessment of
 immunotherapies.
2. To describe the potential role of whole-body MRI and quantitative MRI
techniques for patient follow-up.
3. To consider the potential of integrated PET/MRI for the assessment of
 immunotherapies.

09:47
Panel discussion: What is the best way to monitor immunotherapy
response?

08:30 - 10:00 Room M 4

E³ - ECR Academies: Hot Topics in GU Cancer

E³ 119
Early detection of ovarian cancer
A-0069 08:30
Chairperson's introduction
R. Forstner; Salzburg/AT (r.forstner@saalk.at)

Ovarian cancer is still among the deadliest of cancers in females. Its prognosis
depends on different factors including histologic subtype, stage at diagnosis,
tumour burden after cytoreductive surgery and sensitivity to chemotherapy.
However, it is early stage and detection of precursor lesions of ovarian cancer
that are of utmost prognostic impact. New insights in biology and genetics in
ovarian cancer hold promise in earlier detection and are pivotal in personalised
treatment. Blood biomarkers and/or imaging have been widely used in
screening programs of ovarian cancer. Currently, a screening test is widely
recommended in patients at risk, e. g. in familial history. The BRCA1 and 2 mutation
carriers or HPCN families, which are estimated to account for approximately 5-
15% of ovarian cancers. Imaging using US and MRI plays a central role in
identifying early ovarian cancer and precursors of invasive cancer, e.g.
cystadenomas or Borderline tumours. The “O RADS” working group has
developed a lexicon for both US and MRI. Such standardised terminology will
allow an unequivocal and generally applicable description of ovarian masses. It
will also provide an essential tool for risk stratification of ovarian lesions.

A-0070/A-0071 08:36
A. Current guidance on screening and familial ovarian cancer
A.G. Rockall; London/UK (a.rockall@imperial.ac.uk)

Germline BRCA1/2 (gBRCA) mutations underlie 15-20% of epithelial ovarian
cancer diagnoses and are associated with biologically distinct tumours. Those
with gBRCA mutation typically have a younger age of diagnosis, higher rates
of visceral and nodal metastases and an improved prognosis compared to
those with gBRCA wildtype mutations. Mutation carriers also have increased
rates of synchronous/metachronous tumours, particularly breast and
pancreatic cancers. As ovarian cancer is typically diagnosed at a late stage,
with poor long-term survival, there has been interest in screening, to try and
improve outcomes. A number of screening studies have investigated the role
of transvaginal ultrasound +/- CA-125 testing in both those with a family history
of ovarian cancer; and those at population risk. To date, no improvement in
overall survival has been observed with screening, although studies assessing
relative CA-125 levels are ongoing. The methods and results of the largest
screening trials will be presented with a discussion of findings.

Learning Objectives:
1. To be aware of the implications of results of recent screening trials.
2. To be aware of BRCA gene testing and treatment implications.
3. To know the guidance on screening high risk groups.

Author Disclosure:
A.G. Rockall: Speaker; Guerbet.

A-0072 09:04
B. ORADS: ultrasound and International Ovarian Tumor Analysis (IOTA)
group models
R.F. Andreotti; Nashville, TN/US (rochelle.f.andreotti@vanderbilt.edu)

“O-RADS” is an acronym for an Ovarian-Adnexal Imaging-Reporting-Data
System which is being developed by an international committee that is
sponsored by the American College of Radiology (ACR) and will function as
a quality assurance tool for the standardised ultrasound (US) and magnetic
resonance imaging (MRI) description of ovarian/adnexal pathology. The O-
RADS Committee has published a lexicon for describing US imaging
characteristics of ovarian/adnexal masses. The terminology has been applied
to a risk stratification classification for consistent follow up and management
in clinical practice. The use of these internationally agreed upon standardised
descriptors should result in consistent interpretations and decrease or
eliminate ambiguity in reports resulting in a higher probability of accuracy in
assigning the risk of malignancy and, subsequently, optimal patient
management. The US lexicon is based upon supporting evidence for the
performance of terms with regards to classification of the mass as benign or
malignant and common usage of terms. A large part of the lexicon is based
upon terms in use by the International Ovarian Tumor Analysis Group (IOTA).
These terms demonstrate consistency regarding performance in the evaluation
of malignancy risk and have been supplemented with other modifying, non-
IOTA descriptors. Risk categories were developed using the most predictive
descriptors in the lexicon that, in combination, include all possible lesions. The
risk table is based on statistics collected by IOTA/ADNEX models. Cases that
illustrate the O-RADS-US Lexicon and Risk Stratification System will be
discussed.

Learning Objectives:
1. To understand a new lexicon for ovarian/adnexal mass evaluation on
 ultrasound.
2. To understand the use of the lexicon in the development of a risk
 stratification and management system.
3. To apply O-RADS-US to case management.

A-0073 09:32
C. ORADS: MRI
I. Thomassin-Naggar; Paris/FR (isabelle.thomassin@tnm.aphp.fr)

The O-RADS classification has been developed by the American College of
Radiology in collaboration with ESR members. This classification helps the
radiologist to evaluate the malignancy of an adnexal mass and was built
as a five categories system. O-RADS needs the analysis of morphological and
functional criteria including DCE MRI images and DWI. This lecture will present
the new lexicon.

Learning Objectives:
1. To understand a new lexicon for ovarian/adnexal mass evaluation on MRI.
2. To understand the use of the lexicon in the development of a risk
 stratification and management system.
3. To apply O-RADS-MRI to case management.
Squamous cell carcinoma of the head and neck is one of the most common cancers worldwide. Advanced tumours are associated with high morbidity and mortality rate. Risk factors are tobacco, alcohol, wood dust (professional disease), and viral infections (EBV, HPV). A multidisciplinary team approach is required to undertake effective personalised care planning. Decision process requires understanding patient’s wish, conducting a physical examination, making imaging examination, panendoscopy, tumour biopsy with a pathological result, checking the patient’s suitability for surgery. Imaging is the extension of physical examination and definitely of tremendous importance for decision making. Speakers of this master session are leading experts in the field of imaging for locoregional tumour assessment with M.G. Mack, from Munich, incidence and prognosis of synchronous cancer or distant metastases from head and neck tumours with A.D. King, from Hong Kong, and question of the need for functional imaging to detect distant metastases with R. Maroldi, from Brescia.

Session Objectives:
1. To discuss the role of functional imaging in tumour staging.
2. To learn about the presentation and prognosis of head and neck cancer patients.
3. To understand the clinical impact of imaging findings.

Learning Objectives:
1. To learn about functional imaging (perfusion, DWI, PET) in head and neck oncology.
2. To become familiar with the incidence of the distant metastases in the head and neck population.
3. To discuss when to image for distant metastases.
4. To understand the advantages and disadvantages of functional imaging modalities for M staging.
5. To discuss nodal assessment in head and neck cancer.

Panel discussion: How to stage head and neck tumours correctly

Accurate aortic syndrome

Acute aortic syndrome (AAS) describes symptoms relevant to severe chest or back pain caused by several aortic pathologies which can be potentially life-threatening. The most common aetiology compromises the majority of AAS is aortic dissection. Other causes of AAS with similar presentation include intramural haematoma, penetrating aortic ulcer (atherosclerotic), aneurysm formation (rupture, enlargement) and traumatic transaction (pseudoeurysm). Imaging plays a vital role in diagnosing AAS. The role of the plain chest radiograph is nowadays historic. Echocardiography (plain or transoesophageal) is an effective portable tool but does not visualise the whole thoracic aorta. It may only suggest a certain AAS aetiology. Contrast-enhanced
CT is now considered as the diagnostic method of choice. It provides an accurate aortic assessment as well as a detailed evaluation of other thoracic structures. CT permits 3D reconstructions, essential for intervention planning and it is widely available. Its sensitivity for aortic disorders reaches 100%. MRI is another imaging modality to diagnose AAS. Although it provides greater anatomical detail than CT, it is seriously limited. The limitation involves procedure time, lesser availability, and the expense.

Learning Objectives:
1. To become familiar with the most common aetiologies of acute aortic diseases.
2. To present current imaging techniques for evaluation of acute aortic diseases.
3. To demonstrate the most important imaging findings.

A-0087 11:00

Pulmonary embolism

C. Loewe: Vienna/AT (christian.loewe@meduniwien.ac.at)

Pulmonary embolism (PE) represent a daily clinical challenge at the pulmonary embolism and by using this test without clinical assessment, a high number of patients will be diagnosed as “false positives”. On the other hand, PE is potentially life-threatening; and early and safe diagnosis of this relevant disease is important to improve patient’s outcome. CT angiography of the pulmonary arteries has been established as the first method of choice to accurately detect PE with a high PPV and PPV. This presentation will provide an overview of the diagnostic challenges in the chest pain unit and will explain the need for accurate clinical assessment to select the right patient for the appropriate diagnostic test. Furthermore, the risks due to overdiagnosis or false-positive diagnosis will be exemplified. In the second part, this presentation will Focus on the Radiological view on this picture by explaining an optimised Imaging technique and possible pitfalls and problems. Challenging situations in the daily clinical practice will be discussed by addressing the role of imaging in suspected PE in pregnancy and the oncologic patients. Finally, typical findings in acute and chronic pulmonary embolism will be reviewed.

Learning Objectives:
1. To review the most common pathologies leading to pulmonary embolism.
2. To present current imaging techniques for evaluation of pulmonary embolism.
3. To become familiar with the typical findings in acute and chronic pulmonary embolism.

Author Disclosure:

C. Loewe: Speaker; Siemens, Bracco, GE Healthcare.

A-0088 11:30

Acute coronary syndrome

R.M.M. Hinzpeter: Zurich/CH (Ricarda.Hinzpeter@usz.ch)

Normal anatomic conditions of the coronary artery tree consist of two main coronary arteries, a left coronary artery and a right coronary artery arising from the coronary sinuses in the proximal ascending aorta immediately distal of the aortic valve. The right coronary artery descends in the right atrioventricular groove to the inferior surface of the heart, continuing as the posterior descending artery representing a right dominant circulation. After a short common stem, the left coronary artery bifurcates into the left anterior descending, coursing in the anterior interventricular groove and the left circumflex artery coursing in the left atrioventricular groove. After the initial workup of an acute coronary syndrome in the emergency department, including laboratory values and ECG changes, coronary CT angiography (CCTA) as a non-invasive examination plays an important role besides invasive techniques. Especially in patients with low to intermediate risk CCTA is a quick and reliable method for ruling out coronary artery disease with a very high negative predictive value in the absence of coronary artery calcifications. Besides the detection of significant coronary artery stenosis, the presence, amount and composition of non-calcified plaques and the degree of coronary remodelling is substantial. In addition, information about structural changes of the myocardium and myocardial perfusion can be obtained by CCTA.

Learning Objectives:
1. To become familiar with the typical findings of acute coronary syndrome.
2. To present different techniques for assessment of acute coronary syndrome.

E³ 221

Musculoskeletal radiology: inflammation

S. Martin: Palma de Mallorca/ES (silvia.m.martin@gmail.com)

The diagnosis of infections is based on the presence of clinical symptoms like erythema, swelling and pain. Also, the diagnosis is based on the presence of clinical signs such as fever, tachycardia and shock and laboratory test such as leucocytosis and C protein reactive. However, the clinical symptoms and signs of infection may not be specific, especially in the early stages of the disease. In these cases, Imaging tests play a fundamental role in the early diagnosis of infections and the differential diagnosis. The most important radiological findings for inflammatory and infections soft tissue are: 1/ Intramuscular fluid collections. 2/ Soft tissue air. 3/ Fascial fluid collections and 4/Muscle oedema. Potential causes of these radiological findings are diverse, including, infectious, autoimmune, inflammatory, neoplastic, neurologic, traumatic and iatrogenic conditions. Some of these conditions require prompt medical or surgical management, whereas others do not benefit from medical intervention. Necrotising fasciitis is a rare, life-threatening soft-tissue infection and a medical and surgical emergency that radiologist must know. The presence of gas within the necrotised fascia is characteristic, but may be lacking. The main finding is thickening of the deep fascia due to fluid accumulation and reactive hyperemia. All these findings may be seen in other different conditions. The ability to accurately diagnose these conditions is therefore necessary. Clues to the correct diagnosis and whether a biopsy is necessary or appropriate are often present on the images techniques, especially when they are correlated with clinical features.

Learning Objectives:
1. To learn the key signs for differential diagnosis.
2. To learn about imaging findings and management options.

A-0090 11:15

B. Arthropathies

U. Aydingoz: Ankara/TR (uyaydingoz@hacettepe.edu.tr)

Arthropathies are one of the most common health problems and the leading cause of disability in adults. Imaging plays an essential role in their diagnosis and follow-up. Plain films remain the first line imaging tool in the diagnosis and management of arthropathies, whereas MR imaging is essential to ascertain the presence of active inflammation and disruption of intra- and periarticular structures. This interactive presentation focuses on radiological features of common (and several less common) arthropathies and how they help in narrowing the differential diagnostic considerations.

Learning Objectives:
1. To explain the key points in the differential diagnosis of common arthropathies.
2. To describe the imaging findings of common arthropathies as they relate to pathophysiology.

E³ 219

Early detection of prostate cancer

G.M. Vleers: Ghent/BE

Prostate cancer is traditionally diagnosed on the basis of the combination of elevated PSA, abnormal digital rectal examination and transrectal biopsy. New biomarkers, including imaging, are currently challenging this gold standard diagnostic test. They are equally useful in the choice between immediate versus deferred treatment. Both aspects will be covered in detail during this session.
A-0092 10:36
A. Screening for prostate cancer: where are we now? (part 1)
A. George; London/UK (angela.george@rmh.nhs.uk)
Screening for prostate cancer with prostate-specific antigen (PSA) has been widely investigated. Several large screening studies, e.g prostate, lung, colorectal and ovarian (PLCO). European randomised study of screening for prostate cancer (ERSPC) and cluster randomised trial of PSA testing (CAP), have shown PSA screening may lead to increased prostate cancer diagnoses, and at best may result in a small benefit in disease-specific mortality over 10 years but does not improve overall mortality. These benefits need to be considered against possible harms of PSA screening, including complications from a biopsy and subsequent treatments and the risk of overdiagnosis and treatment. Recent studies suggest incorporating MRI in the investigation of those with positive PSA test reduces the false positive rate and unnecessary biopsies and also increases the accuracy of biopsies in those with clinically significant cancer. Trials screening for prostate cancer with MRI is being proposed. Incorporating the patient’s genetic mutation status into risk algorithms may allow development of targeted screening programs for early cancer detection and treatment, and may improve survival. Those with germline mutations such as BRCA2 have an increased risk from the age of 40yrs, and often more aggressive disease. There is also ongoing work stratifying prostate cancer risk at a population level with the use of single nucleotide polymorphism (SNP) panels. This use of targeted PSA and MRI screening in men with DNA repair mutations, adverse SNP profile and Afro-Caribbean ethnicity may result in improved outcomes and management algorithms based on biological disease behaviour.
Learning Objectives:
1. To be aware of important prostate cancer genetics and familial cancer.
2. To learn about the difference in low risk vs high risk genetic groups.
3. To be aware of the use of imaging and other biomarkers.

A-0093 10:50
A. Screening for prostate cancer: where are we now? (part 2)
A. Sohaib; London/UK
Screening for prostate cancer with prostate-specific antigen (PSA) has been widely investigated. Several large screening studies, e.g prostate, lung, colorectal and ovarian (PLCO). European randomised study of screening for prostate cancer (ERSPC) and cluster randomised trial of PSA testing (CAP), have shown PSA screening may lead to increased diagnoses of prostate cancer and at best may result in a small benefit in disease-specific mortality over 10 years but does not improve overall mortality. These benefits need to be considered against the possible harms of PSA screening, including complications from a biopsy and subsequent treatments and the risk of overdiagnosis and treatment. Recent studies suggest incorporating MRI in the investigation of those with positive PSA test reduces false positive rate and patients undergoing unnecessary biopsies and also increases the accuracy of biopsies in those with clinically significant cancer. Trials screening for prostate cancer with MRI is being proposed. Incorporating the patient’s genetic mutation status into risk algorithms may allow development of targeted screening programs for early cancer detection and treatment, and may improve survival. Those with germline mutations such as BRCA2 have an increased risk from the age of 40yrs, and often more aggressive disease. There is also ongoing work stratifying prostate cancer risk at a population level with the use of single nucleotide polymorphism (SNP) panels. This use of targeted PSA and MRI screening in men with DNA repair mutations, adverse SNP profile and Afro-Caribbean ethnicity may result in improved outcomes and management algorithms based on biological disease behaviour.
Learning Objectives:
1. To be aware of important prostate cancer genetics and familial cancer.
2. To learn about the difference in low risk vs high risk genetic groups.
3. To be aware of the use of imaging and other biomarkers.

A-0094 11:04
B. Pre-biopsy detection and new techniques for detection in prostate cancer
S. Purwani; London/UK
"no abstract submitted"
Learning Objectives:
1. To understand the role of mpMRI in tumour detection.
2. To be aware of texture features of prostate cancer.
3. To learn how texture analysis differentiate benign from malignancy prostate lesions.

A-0095 11:32
C. Active surveillance: best practice
J.J. Fütterer; Nijmegen/NL (jurgen.futterer@radboudumc.nl)
In order to avoid unnecessary radical treatment, active surveillance (AS) is becoming a viable treatment alternative in low-risk prostate cancer. Because most low-risk prostate tumours have an indolent course and the slow growth rate allows ample time during follow-up to detect tumours that begin more aggressive while remaining in a window of definitive curability, Patients are carefully observed every three or four months for changes in PSA, digital rectal examination or changes upon performed transrectal ultrasound (TRUS) guided biopsy. MR imaging is an appealing imaging technique to select and to surveil patients who choose for active surveillance. The addition of prostate MR imaging to the biopsy strategy or, in select patients, using MR imaging as a substitute for a repeat biopsy improves prostate cancer detection.
Learning Objectives:
1. To be familiar with case selection for active surveillance.
2. To know the frequency of imaging.
3. To understand when treatment will be commenced.

12:30 - 13:30 Room C
E³ - The Beauty of Basic Knowledge: Pancreas
E³ 24A
Acute pancreatitis
Moderator: R. Manfredi; Rome/IT
The 2012 Revised Atlanta Classification (RAC) distinguishes between clinical severity of acute pancreatitis (AP) based on clinical parameters and morphologic severity based on CT parameters. The RAC defines three grades of clinical severity with increasing morbidity and mortality rates: Mild AP: defined as the absence of systemic or local complications. Moderately severe AP: defined as persistent organ failure (>48 h). Morphologically, interstitial and necrotising pancreatitis are discriminated, depending on the absence or presence of tissue necrosis, respectively. In general, patients with interstitial pancreatitis have clinically mild disease, and conversely, most patients with necrotising pancreatitis will sustain clinically severe AP. CT findings, however, are not absolutely predictive of outcome for an individual patient. Approximately 5% of patients with minimal changes on CT will have significant complications with mortality of around 1-3%. An even larger number of patients, up to 30%, will have a relatively benign clinical course despite the presence of necrotic pancreatitis. Therefore, ultimate severity of disease is based on clinical parameters, primarily organ failure. CT is regarded as the frontline imaging technique for full evaluation of AP severity, especially in those who are predicted severe by clinical assessment. Follow-up studies are dictated by clinical findings that include sudden-onset or increase of abdominal pain and organ failure, signs of sepsis or other clinical signs of local complications or when invasive treatment is contemplated.
Learning Objectives:
1. To understand grading of acute pancreatitis: Atlanta Classification.
2. To learn about the clinical impact of Atlanta Classification.
3. To understand the follow up of acute pancreatitis.

A-0096 12:30
Atlanta Classification of acute pancreatitis
T. Bollen; Nijmegen/NL (tboollen@hotmail.com)
The 2012 Revised Atlanta Classification (RAC) distinguishes between clinical severity of acute pancreatitis (AP) based on clinical parameters and morphologic severity based on CT parameters. The RAC defines three grades of clinical severity with increasing morbidity and mortality rates: Mild AP: defined as the absence of systemic or local complications. Moderately severe AP: defined as persistent organ failure (>48 h). Morphologically, interstitial and necrotising pancreatitis are discriminated, depending on the absence or presence of tissue necrosis, respectively. In general, patients with interstitial pancreatitis have clinically mild disease, and conversely, most patients with necrotising pancreatitis will sustain clinically severe AP. CT findings, however, are not absolutely predictive of outcome for an individual patient. Approximately 5% of patients with minimal changes on CT will have significant complications with mortality of around 1-3%. An even larger number of patients, up to 30%, will have a relatively benign clinical course despite the presence of necrotic pancreatitis. Therefore, ultimate severity of disease is based on clinical parameters, primarily organ failure. CT is regarded as the frontline imaging technique for full evaluation of AP severity, especially in those who are predicted severe by clinical assessment. Follow-up studies are dictated by clinical findings that include sudden-onset or increase of abdominal pain and organ failure, signs of sepsis or other clinical signs of local complications or when invasive treatment is contemplated.
Learning Objectives:
1. To understand grading of acute pancreatitis: Atlanta Classification.
2. To learn about the clinical impact of Atlanta Classification.
3. To understand the follow up of acute pancreatitis.

A-0097 13:00
Role of imaging
C. Triantopoulou; Athens/GR (ctriantopoulou@gmail.com)
Imaging is frequently recommended in patients with acute pancreatitis (AP) to confirm the clinical diagnosis, ascertain the cause, grade the extent and severity of the disease, evaluate severe complications and indicate interventional procedures. The revised 2012 Atlanta criteria for classification of the severity of AP are widely accepted. The challenge for imaging remains to recognise patients suffering from severe or moderately severe AP. But, a direct correlation between clinical severity and morphology may not exist. Imaging of utmost importance in the 2nd phase of the disease evolution (usually >2 weeks after onset) where AP resolves or evolves secondary to the presence of necrosis and infection, thus morphologic criteria are needed as defined by imaging techniques. It is important to evaluate the extent of necrosis (intrapancreatic, extrapancreatic or both) and also to define if this is sterile or infected. Contrast-enhanced CT is the best technique; however the staging of
severity and detection of complications depend on the timing of CT scanning. In the first 24-48 hours, the CT findings of necrosis may be equivocal. In severe AP, unless the patient is critically ill and in need of emergency intervention, the initial CT scan should ideally be obtained at least 72 hours following symptoms onset. As 50% of AP cases are gallstone-related, transabdominal ultrasound is the most common initial radiologic investigation of choice. MRI can better differentiate complex fluid collections from mature pseudocysts and hemorrhagic collections, while MRCP is the best technique to identify pancreatic duct disconnection.

Learning Objectives:
1. To learn about diagnosis of acute pancreatitis.
2. To understand how to apply Atlanta Classification to imaging.
3. To learn about new trends in diagnosis of acute pancreatitis.

12:30 - 13:30 Room D

E³ - The Beauty of Basic Knowledge: A Survival Guide to Musculoskeletal Imaging

E³ 25A

Infection: bone and soft tissue

Moderator:

V.N. Cassar-Pullicino; Oswestry/UK

A-0106 12:30

Infection: bone and soft tissue

J.L. Bloem; Leiden/NL (j.l.bloem@lumc.nl)

In this lecture, we'll focus on imaging osteomyelitis of the appendicular and axial skeleton, and their differential diagnosis using radiographs, US, and especially MRI and PET-CT. Understanding the interaction between invading organisms and intact or compromised host response is essential in the interpretation of imaging features. Major routes of infection include hematogeneous or contiguous routes occurring in respectively pediatric, degenerative, or immunocompromised and diabetic, or post-procedure infections. Location in the metaphysis and vertebral body are hallmarks of hematogeneous spread. Location in bones close to skin defects, pressure points, and soft tissue infection are hallmarks of contiguous spread, especially in diabetic foot, intensive care patients, and following surgical or image guided procedures. Knowledge of age and the comorbidity-related relationship between vasculature on one-hand and growth plates and discs, on the other hand, is essential in the diagnosis of infection. Also, imaging features of host response depend on the pressure within anatomical compartments. The most relevant differential diagnostic issues including posttraumatic sequelae, degenerative disease, Charcot foot and spine, sterile inflammatory disease (CRMO, SAPHO), tumours, and also the differentiation between mild and life-threatening infection like necrotising fasciitis will be discussed. The impact of imaging on clinical outcome as it depends on treatment options, cost-effectiveness, predictive values of various imaging studies relative to clinical and laboratory tests, is addressed.

Learning Objectives:
1. To become familiar with pathophysiology of infectious diseases pertinent to imaging features.
2. To understand imaging features of infectious diseases and their differential diagnosis.
3. To appreciate the clinical perspective of imaging infectious diseases.

14:00 - 15:30 Room B

Abdominal Viscera

RC 301

Tumour response assessment in abdominal imaging

Moderator:

S.M. Ertürk; Istanbul/TR

A-0107 14:00

A. Colorectal liver metastases

S.K. Venkatesh; Rochester, MN/US (venkatesh.sudhakar@mayo.edu)

Colorectal liver metastases (CRLM) occur in nearly half of the patients with colorectal cancer. Neoadjuvant chemotherapy (NAC) is the treatment of choice. Surgical resection and locoregional control have evolved as treatment options in the patients with single or oligometastatic disease and in those who show excellent response to NAC. The number, location and response of CRLM are critical in determining their surgical resection. Assessment of treatment response of CRLM to NAC and locoregional treatment is therefore very important to provide guidance for their management. Standard methods of assessment (RECIST) use size (one-dimensional, bi-dimensional, volume) and a reduction in the size is considered a response. However there are pitfalls to these methods and they will highlighted during the presentation. Variable responses of CRLM and to different chemotherapy regimens adds another dimension to complexity of assessment of the response. The most important information is a viable or a residual tumour which tumour size alone cannot predict but can be assessed with additional information from dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), positron emission tomography (PET). NAC and some locoregional treatment also cause liver toxicity including sinusoidal obstruction syndrome (SOS), chemotherapy-associated steatohepatitis (CASH) or simple fatty change that can influence the assessment of response. In this presentation, an overview of response of CRLM to treatment will be presented and this will be followed by review of different methods for response assessment including their limitations and advantages.

Learning Objectives:
1. To learn about different methods to assess the tumour response in the colorectal metastases.
2. To understand usefulness and limitation of techniques and the role of different contrast media.
3. To appreciate the variable response pattern of colorectal liver metastases.

A-0108 14:30

B. Rectal carcinoma

M.J. Lahaye; Amsterdam/NL (M.J.Lahaye@gmail.com)

MRI is the modality of choice for restaging rectal cancer. The high soft-tissue contrast of MRI can accurately assess the extramural tumour spread and relation to surrounding structures after chemoradiation. This lecture will have a practical approach to determining the role of MRI in the restaging of rectal cancer. The relevant anatomy, MRI techniques, the rationale for neoadjuvant treatment, and post-chemoradiation therapy imaging (including detection of patients with a complete response) will be discussed with special attention to how to apply recent advances in knowledge to daily clinical practice.

Learning Objectives:
1. To learn about the rationale for neoadjuvant treatment in rectal cancer and the impact on subsequent surgery.
2. To understand why imaging is needed to assess the response to neoadjuvant therapy, what to look for when judging response and where the challenges lie.
3. To appreciate when surgery can be deferred or avoided and how to best follow-up on these patients.

A-0109 15:00

C. Pancreatic adenocarcinoma

M. Zins; Paris/FR (mzins@hpjs.fr)

Pancreatic ductal adenocarcinoma (PDA) remains among the most challenging malignancies to treat. At diagnosis, the tumour often already extends beyond the confines of the pancreas, spreading to an extent such that primary surgery with curative intent is very rarely feasible. Considerable momentum is now being given to a treatment strategy involving neoadjuvant chemotherapy or chemoradiotherapy in patients with nonmetastatic PDA. The main advantage of this strategy is a better selection of patients likely to benefit from curative-intent surgery via the achievement of negative resection margins. Patients with a rapidly progressive disease are identified and spared ineffective surgery with its attendant morbidity. Neoadjuvant therapy can convert tumours classified as locally advanced by initial imaging studies to resectable tumours. However, the imaging study evaluation of the response to neoadjuvant therapy is extremely complex. Thus, the diagnostic performance of imaging studies is not sufficient to ensure the accurate selection of patients in whom negative-margin resection is likely to be achieved. More specifically, standard criteria for predicting vascular invasion, based on the amount of tumour-vessel contact, are not valid after neoadjuvant therapy.

Learning Objectives:
1. To understand the rationale for neoadjuvant treatment in pancreatic adenocarcinoma.
2. To learn the limitations of CT in assessing treatment response.
3. To learn how to accurately select patients for curative-intent surgery after neoadjuvant therapy.
The hybrid room is a high-complexity operating room, fully equipped for C. Optimisation/dose management in the hybrid interventional suite. Many interventions no longer only open surgery but a combination of B. Clinical impact of hybrid interventional imaging. With the possibility offered by technology in a hybrid room, there are different options for dose optimisation. Modern fluoroscopy machines reduce the dose delivered while maintaining high-level image quality and some tools have been introduced to limit operators' x-ray exposure. This has indeed allowed an improvement in terms of safety, but it should not be forgotten that the continuous application of the basic rules of radiological protection remains of fundamental importance. The proper application of radiological protection is one of the most prominent responsibilities of the radiographer's duty. A proper application of radiation protection, with continuous and updated training, can minimise the radiation issues, increasing the procedure safety, without compromising the effectiveness of the procedures.

Learning Objectives:
1. To review current options for optimisation in the hybrid interventional suite.
2. To understand the radiographer's role in optimisation and dose management in the hybrid suite.
3. To discuss occupational radiation protection issues in the hybrid suite.

A-0110 14:00
A. PET/CT
M. Zeilinger; Wiener Neustadt/AT (markus.zeilinger@fhwn.ac.at)

The establishment of highly sensitive molecular imaging techniques, in combination with the synthesis of novel radiolabelled bioactive molecules for the visualisation and quantification of numerous specific (patho)physiological processes and biochemical targets, merged the fields of molecular imaging and personalised medicine. In this context, PET belongs the most sensitive imaging modality with an excellent molecular sensitivity, capable of providing high temporal resolution for kinetic analysis of the biochemical phenomena, any molecular processes. The combination of a dedicated PET with a CT modality, as a morphological imaging technique, has the potential to provide essential, comprehensive information and to increase the scope of application for modern molecular imaging.

Learning Objectives:
1. To review the technology underpinning PET/CT.
2. To understand important staff and patient safety issues.
3. To discuss the current and potential clinical applications of PET/CT and optimal imaging protocols.

A-0111 14:30
B. Clinical impact of hybrid interventional imaging
S. Robinson; Manchester/UK (sharon.robinson@mft.nhs.uk)

With many interventions no longer only open surgery but a combination of open and endovascular or purely endovascular, a hybrid endovascular theatre is recommended. Hybrid theatres combine access for safe open surgery with the ability to perform high quality rotational fluoroscopic imaging. As lead Interventional Radiographer at a busy tertiary vascular referral centre, the author has knowledge and experience in the implementation and use of the Hybrid theatre setting and will discuss the benefits of patient care and advanced imaging techniques provided by Hybrid imaging.

Learning Objectives:
1. To review clinical indications for hybrid interventional procedures.
2. To understand the radiographer's role in patient care and management in the hybrid suite.
3. To discuss image acquisition and processing techniques required for hybrid examinations.

A-0112 15:00
C. Optimisation/dose management in the hybrid interventional suite
D. Maccaioni; Milan/IT (maccaioni.davide@gmail.com)

The hybrid room is a high-complexity operating room, fully equipped for minimally invasive procedures and provided with imaging techniques such as fluoroscopy/angiography, ultrasound, computed tomography, or magnetic resonance imaging. In this environment, the radiographer works with a team of health professionals including cardiologists, cardiac surgeons, vascular surgeons, urologists, anesthesiologists, sonographers, radiologists, engineers and nurses, sharing the knowledge and skills necessary to assist these specific hybrid procedures. Managing radiation exposure in the hybrid room is of utmost importance. The risk related to radiation exposure is represented by tissue reactions, (e.g., skin burns), and stochastic effects, where the risk of an outcome is proportional to the dose received, (e.g., cancer). This issue can affect patients but can also have harmful consequences for the operators that are present in the room, during the entire procedure. Nowadays, with the possibility offered by technology in a hybrid room, there are different options for dose optimisation. Modern fluoroscopy machines reduce the dose delivered while maintaining high-level image quality and some tools have been introduced to limit operators' x-ray exposure. This has indeed allowed an improvement in terms of safety, but it should not be forgotten that the continuous application of the basic rules of radiological protection remains of fundamental importance. The proper application of radiological protection is one of the most prominent responsibilities of the radiographer's duty. A proper application of radiation protection, with continuous and updated training, can minimise the radiation issues, increasing the procedure safety, without compromising the effectiveness of the procedures.

Learning Objectives:
1. To review current options for optimisation in the hybrid interventional suite.
2. To understand the radiographer's role in optimisation and dose management in the hybrid suite.
3. To discuss occupational radiation protection issues in the hybrid suite.

BE 3 - Rising Stars Programme: Joint Session with ESOR
Radiologic anatomy: chest
Moderator: J. Villar; Valencia/ES
M. Occhipinti; Florence/IT (mariaelena.occhipinti@gmail.com)

Several pathological conditions can arise from such a complex anatomical structure as the mediastinum, including large airways, large and small vessels, lymph nodes, adipose tissue, nerves, esophagus, heart, and pericardium. The wide spectrum of mediastinal diseases makes their differential diagnosis very challenging at times. To simplify the clinical approach to the mediastinal lesions many classifications of the mediastinum based either on either chest radiography or CT have been proposed. Knowledge of the most appropriate technique to use in each clinical context as well as knowledge of specific imaging signs and features are needed to narrow the spectrum of differential diagnosis and to address most questions arisen when a mediastinal mass is either seen or suspected at chest radiography. Old and new classifications will be compared and their value discussed as well as signs useful in localising and characterising mediastinal lesions will be examined.

Learning Objectives:
1. To review the mediastinal anatomy according to old and new classifications.
2. To recap signs useful in localising and characterising mediastinal lesions.
3. To know how to choose the most appropriate imaging modality to explore the mediastinum according to the diagnostic question.

Author Disclosure:
M. Occhipinti: Consultant; Immio LLC. Grant Recipient; Menarini Foundation.
The combination of big data and artificial intelligence are dramatically changing the healthcare landscape. Radiologists are being asked to perform more quantitative analysis on complex dynamic volumes, increasing complexity and less time to do the work. Radiologists are being told to work faster as the screws continue to tighten; more images, greater case volume, increasing complexity and less time to do the work. Radiologists are increasingly asked to perform quantitative analysis on complex dynamic studies such as prostate and breast MRI, analyse multi-parametric imaging from MRI, PET, CT, and to follow new guidelines for lung cancer and other screening studies. Deep learning represents a fundamentally different approach to the development of algorithms for image acquisition, quantitative analysis, and interpretation based on learning by example from large image sets. It offers numerous advantages over more “traditional” Computer Aided Design approaches including decreased time, and less specialised medical imaging expertise required for development as well as the potential for continuous and personalised refinement of algorithms. In fact, Deep Learning may actually have its greatest initial success in solving non-image related challenges such as image quality, workflow efficiency, improved communication and patient safety. This technology, however, is also fraught with limitations including the requirement for large amounts of annotated data, regulatory, medicolegal, and relative brittleness with regard to lack of generalizability from a few to a multitude of different scanners. Overall, despite the challenges, Deep Learning will undoubtedly have a major impact in the next several years on positively resetting radiology’s current “tipping point”.

Learning Objectives:
1. To know the challenges of knowledge management in radiology.
2. To know the advantages of machine learning technologies compared to traditional approaches.
3. To know the technical limitations of machine learning.

A-0127 14:28
How to integrate AI technology in radiology today
W.J. Niessen; Rotterdam/NL (w.j.niessen@erasmusmc.nl)

The combination of big data and artificial intelligence are dramatically changing the possibilities for prevention, cure and care, and are changing the landscape of the healthcare system. Biomedical imaging data will play a central role in this revolution. In this presentation, I will show examples of possible large benefits of big data analytics of imaging, genetic and clinical data in dementia and oncology. Both conventional machine learning techniques, such as radiomics for tumour characterisation, and deep learning techniques that directly learn from the imaging data will be addressed. Also, the concept of deep imaging, full integration of medical imaging and machine learning, will be discussed. Finally, I will address the challenges of how to successfully integrate these technologies into the daily clinical workflow.

Learning Objectives:
1. To know the challenge: multitude of AI engines to be integrated in one workflow.
2. To learn how to collect and annotate radiology data for machine learning.
3. To learn how to organise radiologist’s workflow when using AI.
4. To learn to manage radiology data to be used for machine learning.

Author Disclosure:
W.J. Niessen: Consultant; I am Scientific Lead at Quantib BV, Shareholder; I am shareholder of Quantib BV.

A-0128 14:51
How will the introduction of AI change the role of the radiologist?
H. Harvey; London/UK (hugh@kheironmed.com)

An overview of how machine learning technologies may play a role in the workflow and task automation of radiologists, from appropriateness criteria to image acquisition, to image perception tasks and report generation, this talk will look at the entire ecosystem of diagnostic radiology and AI in the coming years.

Learning Objectives:
1. To learn how radiologists will use machine learning in clinical routine.
2. To learn how machine learning will change the role of the radiologist (doctors-patient relationship, relationship between radiologists and referring physicians).
3. To learn how radiologists can prepare for machine learning.

Ethical considerations when using AI in radiology.

Wednesday
Learning Objectives:
1. To learn the MRI technique for imaging the peritoneum in advanced ovarian cancer.
2. To learn the appearances of WB-MRI in metastatic ovarian cancer.
3. To be aware of the pitfalls to interpretation.

A-0131 14:34
B. PET/CT and PET/MRI in cervix and endometrial cancer: current status
L. Umutlu; Essen/DE

"no abstract submitted"

Learning Objectives:
1. To learn the indications for use of hybrid imaging in cervix and endometrial cancer.
2. To know the strengths and weaknesses of the technique.
3. To be familiar with the role of hybrid imaging in patient prognosis.

A-0132 15:02
C. Advanced imaging techniques in metastatic gynaecological cancer
E. Sala; Cambridge/UK (es220@cam.ac.uk)

Tumour heterogeneity in metastatic gynaecological cancer and especially advanced ovarian cancer has been reported at the histological and genetic levels and found to be associated with adverse clinical outcomes. Classic tumour evaluation using standard CT or MRI techniques does not account for the intra- or inter-tumoural heterogeneity in advanced ovarian cancer with peritoneal carcinomatosis. As such, computational approaches in assessing tumour heterogeneity have been proposed using radiomics and radiogenomics to capitalise the whole tumour heterogeneity as opposed to single biopsy sampling. As part of radiomics, texture analysis which includes the extraction of multiple data from the images has been proposed recently to evaluate advanced ovarian tumour heterogeneity. The preliminary data suggests that it can unravel tumour heterogeneity and predict response to treatment both conventional and immunotherapy.

Learning Objectives:
1. To learn about the concept and technique of texture analysis.
2. To be familiar with the key associations of biology and texture features.
3. To be familiar with the potential added value of texture analysis in imaging interpretation.

14:00 - 15:30 Room M 5

E³ - ECR Academies: Functional Imaging for Disease Management: Research to Medical Practice

E³ 320

Functional imaging of the brain

A-0133 14:00
Chairperson’s Introduction
T.A. Yousry; London/UK (t.yousry@ucl.ac.uk)

Functional imaging has come a long way from being a demanding research tool to becoming an integral part of clinical MRI protocols essential for the decision-making process and therefore management of various CNS diseases. In this exciting session, we will explore the spectrum of its use from research to clinical practice in 3 distinct diseases: stroke, brain tumours, and small vessel diseases.

A-0134 14:06
A. Stroke
T. Touzas; Bordeaux/FR

Brain imaging is an emergency when an acute stroke is clinically suspected. Such acute imaging is crucial (i) to establish the diagnosis of an ischemic or hemorrhagic stroke while ruling out stroke mimics, (ii) to provide etiological and prognosis clues and mainly (iii) to guide the acute therapeutic strategies. Either computer tomography (CT) or magnetic resonance imaging (MRI) can be used depending on their availability. The protocol is typically multimodal including for CT: non-contrast acquisition, angio-CT of head and neck vessels and brain perfusion CT; and for MRI: FLAIR, diffusion, T2*, angio-MR of head and neck vessels and brain perfusion MR. In ischemic stroke, the functional information provided by diffusion and/or perfusion can now be used to select the appropriate candidates for mechanical recanalisation within an extended time window (up to 24h after stroke onset) based on the concept of penumbra.

Learning Objectives:
1. To be aware of relevant functional studies in the emergency room.
2. To learn about the most useful functional parameter to be quantified.
3. To learn about the impact of functional data for patient management.

A-0135 14:24
B. Brain tumours
A. Majos; Lodz/PL (agata.majos@umed.lodz.pl)

There are quite many advanced MR imaging techniques which are currently available in the majority of MRI centres and can be used in daily routine. They offer different kinds of functional data resulting from their physical basis which can be helpful in differentiation between brain tumours and other pathological items as well as in the determination of tumour types and grades. They are also the source of vital information for clinicians to provide the most effective and safe ways of treatment. The essentials of main functional methods will be introduced including diffusion and perfusion techniques, functional MRI and just a touch of susceptibility weighted imaging. The selection of techniques will be discussed, and some diagnostic algorithms will be proposed. The examples of clinical cases will be presented to illustrate the validity of multiparametric imaging in practice. Lastly, future perspectives will be mentioned, e.g. - randomised and use of machine learning developments.

Learning Objectives:
1. To learn about how functional data may help in characterising brain tumours.
2. To understand significance of quantitative data patient management.
3. To become familiar with limitations and pitfalls of functional techniques.

A-0136 15:02
C. Cerebral small vessel diseases
M.A. Van Buchem; Leiden/NL

"no abstract submitted"

Learning Objectives:
1. To know about main imaging criteria for characterisation of diseases.
2. To learn about the role of functional techniques for grading diseases.
3. To understand how functional imaging allows following diseases process.

16:00 - 17:30 Room X

ESR Audit and Standards Session

ESR Audit
Audit across Europe: directive and perspective

A-0137 16:00
Chairperson’s introduction
D.C. Howlett; Eastbourne/UK (david.howlett@nhs.net)

This session on clinical audit aims to further promote knowledge and understanding of clinical audit and its application in the departmental radiology setting. Topics include radiographic and industry perspectives, giving insight and guidance on local implementation of clinical audit programmes. An important update on inspection is also provided. The ESR Guide to Clinical Audit, Esperanto, is designed to support radiology departments in developing audit programmes, with an emphasis on compulsory, regulatory, radiation protection types audit and a brief update on the latest version of this guide will be provided.

Session Objectives:
1. To understand the principles of clinical audit.
2. To update on the Esperanto audit project.
3. To evaluate individual experience on implementation of a clinical audit programme.

A-0138 16:10
Clinical audit and inspection: HERCA update
S. Ebdon-Jackson; Didcot/UK (steve.ebdon-jackson@phe.gov.uk)

Carrying out clinical audits in accordance with national procedures is a requirement of the Basic Safety Standards Directive (BSSD) 2013/59/Euratom Article 58(e). The Heads of the European Radiation protection Competent Authorities (HERCA) intends to publish a position paper on the differences between inspection and audit and the expectations of radiation protection competent authorities regarding the requirements. The contents of this paper will be discussed.

Learning Objectives:
1. To understand the differences between inspection and clinical audit.
2. To update on Heads of the European Radiological Protection Competent Authorities (HERCA) and departmental inspection.
A-0139 16:20
Implementing a clinical audit programme: the Finland experience
T. Autti; Helsinki/FI (taina.autti@hhs.fi)

The purpose of clinical audits is to improve the quality and outcome of patient care by reviewing imaging practices against agreed standards for good medical practices and evidence-based medicine. The national advisory committee for the clinical audit (NACA) was founded to support this goal in 2002. The members of the NACA are clinical experts independent of the auditing organisations and public officers from radiation and nuclear safety authority, and the Ministry of social affairs and health. So far, NACA has given 14 recommendations for the clinical implementation of the clinical audit process. These recommendations will be presented and discussed in this presentation. In a clinical audit, the auditors should be independent of the audited organisations. Their role is to produce an independent assessment and report the findings and recommendations to the audited unit. The interval of clinical audits for Finnish medical units using radiation has been five years. Thus, we have experience of three completed audit rounds. Interestingly, the largest number of auditor recommendations were given in the second audit round. Based on our experience, the coordinating and advisory role of the NACA has turned out to be highly important in ensuring good quality of the clinical audit process. In addition, the recommendations of NACA help to harmonise the clinical audit process. Finally, consistent guidelines for auditors given by the recommendations seem to be necessary to produce comparable audit results.

Learning Objectives:
1. To learn about Finnish clinical audit rounds performed between 2002 and 2016.
2. To introduce the recommendations issued by the Finnish advisory committee for clinical audit and evaluate the effectiveness of these recommendations.
3. To evaluate the future of clinical audits in Finland.

A-0140 16:40
Implementing a clinical audit programme: the radiographic perspective
M.-L. Ryan; Dublin/IE (marielouise.ryan@ucd.ie)

Clinical audit is arguably the most important part of a quality programme. It allows the radiology team to measure performance against specified standards—local, national and international. This session will help the audience understand something that is often feared in clinical practice and make clinical audit something that is useable, practical and achievable. This session will bring the audience through suggested clinical audits in their department and show real examples—namely patient identification, workflow optimisation and radiation dose optimisation and justification. The presenter will show examples of where real-life audits have fed into quality improvement in the radiology department around patient and staff safety, financial savings and optimising processes. Different challenges and how to overcome them will be discussed including staff involvement, time management and creating a culture of quality improvement.

Learning Objectives:
1. To learn how important clinical audit is in day-to-day practice.
2. To appreciate the opportunities and challenges of clinical audit in practice.
3. To understand the impact on quality improvement of clinical audit in a radiographer department, using real life examples.

A-0141 17:00
Quality improvement and change management: audit in industry
S. Lee; Guildford/UK (steven.lee.1@philips.com)

A clinical audit might be likened to the process of ‘continuous improvement’ of quality in the industry. The later focusing on improving competitive performance by raising the quality (for customers) and reducing the cost of products and services. While the former focuses on improving the quality of patient care by ensuring clinical practice is delivered in line with defined standards. Both face the challenges of engaging people, developing supportive cultures and of using systematic methods for sustaining the improvement process. While the industry has been deploying quality improvement for achieving competitiveness in an industrial setting, the emphasis has been on using agreed and systematic processes to improve performance. The evolution of different industrial management ‘paradigms’ concerned with quality improvement from the middle of the last century. Furthermore advances in computational power enables to use sophisticated processing algorithms in real time. Thus reading in 2D, as done in the previous millennium, will be gradually replaced by volumetric reading as well as extracting diagnostic information from parametric images. Moreover, for personalised medicine Radiology has to deliver more detailed information, especially to measure tumour volumes or characterise contrast uptake on perfusion imaging. In order to get familiar with those now really emerging techniques, three well-known speakers will cover essential subtopics and provide a roadmap of how to migrate from reading style in the last millennium to current millennium.

Learning Objectives:
1. To learn about the state-of-the-art information regarding 3D post-processing.
2. To understand how 3D post-processing can most optimally be used in daily clinical practice.
3. To appreciate how automated 3D post-processing and quantification will lead to increased use of 3D visualisations for diagnostics and therapy planning, over 2D viewing.

Chairperson’s introduction
E. Sorantin; Graz/AT (erich.sorantin@medunigraz.at)

Progress in imaging technology equipment enables to scan patients in high geometrical and temporal resolution as well as in multidimensional space (e.g. 4D). The amount of resulting data cannot be read any more in 2D as done in the last millennium. Furthermore advances in computational power enables to use sophisticated processing algorithms in real time. Thus reading in 2D, as done in the previous millennium, will be gradually replaced by volumetric reading as well as extracting diagnostic information from parametric images. Moreover, for personalised medicine Radiology has to deliver more detailed information, especially to measure tumour volumes or characterise contrast uptake on perfusion imaging. In order to get familiar with those now really emerging techniques, three well-known speakers will cover essential subtopics and provide a roadmap of how to migrate from reading style in the last millennium to current millennium.

Session Objectives:
1. To learn about the genesis of audit.
2. To appreciate the importance of audit in industry.
3. To understand the importance of clinical audit in successful management.

Author Disclosure:
S. Lee: Author; The author is an employee of Philips. Speaker; The speaker is an employee of Philips.

A-0143 16:05
A. 3D post-processing in 2019
A. Alberich-Bayarri; Valencia/ES (alberich_angel@gva.es)

There is a need for the incorporation of advanced tools to assist the specialist in the study evaluation. Automated segmentation of structures based on convolutional neural networks (CNN) has already been established as a powerful tool to detect organs and regions within the body. However, there is a computational limit when working with 3D CNN. Current technology allows for the automated detection of the organs’ location and identification of most of the tissue using bounding boxes. These applications may be used today in clinics for the automated assessment of tissue properties. These zero-click algorithms can run seamlessly in the back-end between image acquisition and radiological reporting, with no humans involved, and will provide a paradigm shift in 3D post-processing for radiologists, having the results of the 3D assessment already generated in their PACS even before starting a review of the study. The results of these algorithms though must be verified to provide expected results by a quality check process before getting integrated with the electronic health records.

Learning Objectives:
1. To learn about recent advances in 3D post-processing techniques.
2. To understand how these techniques can now be used in clinical practice.
3. To learn new tips and tricks to use in your daily practice.
A-0144 16:28
B. Making better use of your 3D package: tips and tricks
P.M.A. van Ooijen; Groningen/NL (p.m.a.van.ooijen@umcg.nl)

Advanced visualisation, simulation and planning software is increasingly used in clinical practice providing a shift from 2D to 3D visualisation, processing and interpretation. With this ongoing trend, the radiological profession should not only focus on the diagnosis to be made but also on the utilisation of our imaging data in patient simulation, planning, and treatment. Current functionality moves in this direction with providing extensive possibilities for support of surgical interventions and treatment planning in 3D including the advent of Virtual and Augmented Reality. With this 3D is also moving into the operating theatre. Although these new possibilities are interesting and exciting one should be very aware of the pitfalls that come with 3D visualisation and processing of data. This not only includes the technical but also the procedural pitfalls where image acquisition optimal for diagnosis is not always optimised for the intended use by the referring physician. To adequately use the new techniques and to provide optimal support from radiology to the referring physicians, training is required, and dedicated staff should be involved in this process.

Learning Objectives:
1. To learn about the functionality of state-of-the-art 3D packages.
2. To understand the pitfalls in use of 3D post-processing.
3. To appreciate the need for training in 3D post-processing techniques.

A-0145 16:51
C. Interpretation of 3D processing results: from image to volume reading
T. Frauenfelder; Zurich/CH (thomas.frauenfelder@usz.ch)

The widespread introduction of multidetector computed tomography has revolutionised the field of computed tomography (CT). This revolution can be attributed to three primary properties of MDCT: its ability to produce a vast quantity of volumetric data in a reduced amount of time, the high resolution, and the ability to create isotropic voxel data and, consequently, reliable multiplanar and three-dimensional reconstructions. Specialised 3D reconstruction techniques permit the visualisation of anatomical details, which would be difficult to evaluate using axial reconstructions alone. The architecture of the IT systems has undergone dramatic changes. From thick client systems to thin-client systems and continue to cloud-based architectures. The current trend is to merge the routine diagnostic console and 3D-reconstruction workstation. Whereas there was only a single post-processing station for a whole department, a variety of functions are now available at every single workstation. Although many of us believe that the use of 3D-reconstructions greatly increases total exam evaluation time, there are reports showing how using 3D reconstruction techniques for examining volumetric data are effective and improve the speed of interpretation, recognition, and description of specific clinical conditions. But this lean “infrastructure” has not only advantages. Whereas in the old days the radiologist could decide by himself about the systems, radiology is now embedded in a hospital-wide network asking for standards. This may enable the use of new software. Nevertheless, AI and other features ask for a rapid adaptation of IT-software and increase the need for storage.

Learning Objectives:
1. To learn about different developments in creating 3D anatomical and functional models for diagnostic and therapy planning purposes.
2. To understand the pros and cons of such technologies.
3. To appreciate that automated 3D image analysis will lead to new ways in which diagnosis and therapy planning will be performed.

17:14
Panel discussion: Will we still look at 2D images in 10 years’ time?

16:00 - 17:30 Room O

Cardiac

RC 403
From diagnosis to prognosis: how does cardiac imaging affect patient outcome?

Moderator:
A. Kaiflattby; Thessaloniki/GR

A-0146 16:00
A. In myocarditis
M. Francone; Rome/IT (marco.francone@uniroma1.it)

Natural history of acute and chronic myocarditis is often unpredictable being independent on the clinical onset of disease and even poorly correlated with more traditional clinical predictors like end-diastolic volume or ejection fraction. In most cases, patients typically improve within weeks to months, but an unfavourable clinical evolution may be observed in a minority of individuals contributing to the development of chronic dystrophic progressing to transplantation or death in 25% of cases. CMR has emerged as a central prognostic indicator in inflammatory cardiomyopathies, mainly because of its ability to detect tissue fibrosis in vivo. This has been demonstrated with a growing and consistent scientific evidence, derived from late enhancement imaging and, more recently from native T1 mapping and ECV. Present lecture will aim to illustrate CMR capabilities as a prognostic indicator in acute and chronic myocarditis, providing an overview of the most important published studies and ongoing clinical trials. Particular emphasis will be given to the importance of T1 and T2 mapping techniques, being a new standard of reference for CMR diagnosis and the patient’s prognostic stratification.

Learning Objectives:
1. To learn about the correlation between clinical presentation and imaging findings.
2. To understand the current state-of-art MRI methods for the evaluation of patients with suspected myocarditis.
3. To learn how MRI could be used to inform prognosis and management decisions in myocarditis.

Author Disclosure:
M. Francone: Speaker; Bracco Medical Imaging, General Electric Speaker Bureau.

A-0147 16:30
B. In non-ischaemic cardiomyopathy
B.K. Velthuis; Utrecht/NL (b.k.velthuis@umcutrecht.nl)

Imaging has established a diagnostic and prognostic value for non-ischaemic cardiomyopathies. Early recognition of non-ischaemic CMPs is important for timely management and risk stratification. Cardiac MRI (CMR) provides both the most multiparametric information of all imaging modalities as well as different powerful imaging biomarkers for diagnosis and risk stratification. CMR should help differentiate early CMP from normal variation to prevent over-diagnosis and unnecessary anxiety. Ventricular volumes and function, as well as biventricular involvement, are important for all cardiomyopathies. Atrial size and function are underused but easily obtainable with CMR. Late gadolinium enhancement (LGE) can range from a specific hinge-point (insertion) fibrosis in all types of cardiomyopathies to more specific or diffuse LGE. Location, extent and biventricular involvement of LGE are important diagnostic and prognostic factors that are underutilised in current clinical risk stratification calculators. Promising tools are T1 mapping and feature tracking (FT-CMR). T1 mapping without (native) and with contrast - to calculate the extracellular volume (ECV) - are easily obtainable and have additional value to ventricular volume, function and LGE. Feature tracking (FT-CMR) is a post-processing technique performed on the standard cine imaging and is used to assess global and regional myocardial function. It is comparable to echocardiographic strain analysis and has potential as a new CMR biomarker. The presentation will provide information how to recognise early and typical manifestations of arrhythmogenic (ACM), hypertrophic (HCM) and dilating (DCM) cardiomyopathies on CMR, as well as signs that indicate a risk of progression or adverse prognosis.

Learning Objectives:
1. To recognise typical and early signs of ARVC, HCM and dilated cardiomyopathy that indicate progression and prognosis.
2. To understand what findings should be reported.
3. To appreciate the role of MRI in early diagnosis and prognosis assessment in these cardiomyopathies.

Author Disclosure:
B.K. Velthuis: Board Member; ESCR.

A-0148 17:00
C. In coronary artery disease
M. Kantarci; Erzurum/TR (akkanrad@hotmail.com)

In most patients with coronary artery disease, the decision to perform revascularisation procedures should be based not only on coronary anatomy but also on the functional severity of the lesion. If such a lesion can be clearly demonstrated by myocardial ischemia, exercise, or pharmacological stress testing, revascularisation is appropriate when medical therapy and control symptoms. Noninvasive tests, however, are inadequate in some patients. The technology estimates the reference standard fractional flow reserve (FFR) measurement in catheter angiography to determine lesion-specific ischemia. Myocardial FFR is a new index of functional severity of coronary stenosis calculated from pressure measurements during coronary arteriography. In 2015, FDA approved a computational flow dynamics (CFD) method for the diagnosis of hemodynamically significant coronary artery disease by noninvasive coronary CT angiography. FFR FFR is the reference standard in catheter angiography to determine if the lesion is causing ischemia. The clinical significance of moderate coronary artery stenosis may be difficult to determine. FFR = Distal Pressure/Proximal Pressure. If Causes 0.8 ischemia or> 0.8 if it does not cause ischemia. The understanding of the functional
postgraduate educational programme

E³ 426a
The high-risk patient enigma

Moderator:
F. Kilburn-Toppin; Cambridge/UK

A-0149 16:00
A. Lesions with an elevated risk for breast cancer
G. Forrai; Budapest/HU (forrai.gabor@t-online.hu)

The histological, clinical presentation, together with the mammography and US appearance of the high-risk lesions would be demonstrated. They have very different probability figures for developing cancer. This would be detailed for each type of lesion. The concept and the global problem of the management of these lesions will be explained, together with the conflict of over/under diagnosis/treatment.

Learning Objectives:
1. To learn about different types of high-risk lesions.
2. To become familiar with the risk of developing cancer.
3. To appreciate the standard protocols in different countries.

R.M. Mann;
Nijmegen/NL (r.m.mann@rad.umcn.nl)

The evaluation of high-risk lesions on biopsy with MRI is commonly performed. One of the major ideas is to ascertain that there is not more disease present than seen with other techniques. As many high-risk lesions are, in fact, accidental findings on needle biopsy, the absence of enhancement within the breast reduces the likelihood of more extensive disease. Nevertheless, the underestimation rate with MRI is dependent on the type of high-risk lesion initially found and is still substantial for lesions like atypical ductal hyperplasia and lobular neoplasia. Moreover, several high-risk lesions may, in fact, enhance strongly in breast MRI, but are not upgraded at subsequent pathological assessment. In this lecture, MRI features of common and less common high-risk lesions will be discussed. In general, MRI cannot preclude the need for extensive tissue sampling, but it may be used for guiding of the biopsy and may obviate complete surgical excision.

Learning Objectives:
1. To learn about the evidence on MRI for evaluating high-risk lesions.
2. To become familiar with various imaging appearances of high-risk lesions.
3. To appreciate the added value for diagnosis and treatment decision.

Author Disclosure:
R.M. Mann: Grant Recipient; European Union (FP7, EUROSTARS, EFRO), Dutch Research Council, Dutch Cancer Society, Research/Grant Support; Siemens Healthineers; Bayer Healthcare; Medtronic; Sono Medical, Identification Solutions, Screenpoint medical, Volpara, Shareholder; Transonic Imaging

A-0150 16:30
B. Value of breast MRI. Rate of underestimation and impact on treatment decision: is breast MRI increasing the number of high-risk lesions?
R.M. Mann; Poznan/PL (r.m.mann@rad.umcn.nl)

evaluation of coronary arteries is explosive in the last five years and will be increasingly encountered in clinical practice. However, calculation of FFR from pressure measurements is limited to small vessel disease, diffuse coronary artery disease and left ventricular hypertrophy. A precise understanding of FFR by the radiologist is important in terms of causing new discoveries for new or improved diagnostic tools related to the pathophysiology of vascular diseases.

Learning Objectives:
1. To appreciate the role of anatomic assessment of the coronary arteries versus functional imaging in different patient groups.
2. To learn to report on anatomic and functional imaging in patients with suspected coronary artery lesions.
3. To appreciate the role of non-invasive imaging in prognosis assessment.

SF 4
My three top tips in neuroimaging (not only for neuroradiologists)

A-0152 16:00
Chairperson’s introduction
M. Stajis; Poznan/PL (stajis@gmail.com)

I do hope that this new format of education will gain a lot of interest among radiologists. Nine hot topics in neuroradiology were deliberately chosen to be presented as short 8 minutes mini-lectures. All presenters will focus on fundamental knowledge of different pathological entities. The role of different diagnostic imaging methods and techniques as well as typical imaging findings will be overviewed. Each lecture will end with ‘3 top tips’ based on lecturer’s practical experience.

Session Objectives:
1. To highlight the importance of ‘key point’ knowledge of the pathological entities listed below.
2. To be familiar with most common and typical imaging features in these conditions.
3. To present crucial tips and tricks that allow you to make confident diagnoses.

A-0153 16:05
MRI T2 brain white lesions
A. Krainik; Grenoble/FR (a.krainik@chu-grenoble.fr)

T2 hyperintensities are a very common finding on brain MRI, especially in elderly. Indeed, white matter hyperintensities (WMH) might be detected in up to 50% in healthy subjects before 50yo. Beside non-specific WMH of the centrum semiovale and the brainstem suggesting microangiopathy, numerous diseases harbour brain T2 hyperintensities. To further discuss their aetiology and improve MR protocol, three tips are given on their location, their appearance on other weighted images, and patient’s history.

Learning Objectives:
1. To be able to identify physiological T2 white matter hyperintensities.
2. To be aware of age-related most common T2 white matter lesions.
3. To give practical clues in quick differentiation of T2 white matter lesions based on their location and appearance.

A-0154 16:13
Multiple sclerosis
K. Katulska; Poznan/PL (katarzyna_katulska@op.pl)

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that is characterised by inflammation, demyelination and degenerative changes. The clinical use of Magnetic Resonance Imaging (MRI) in patients with MS has advanced markedly over the past few years. The benefits of the 2010 McDonald MRI criteria included the focus on lesion location; the presence of gadolinium-enhancing and gadolinium-non-enhancing lesions allows very early diagnosis in some patients who undergo a single MRI examination at any time after symptom onset. Be presented the basic symptoms differentiating demyelinating changes from other hyperintensive
lesions in T2 images dependent in the brain and spinal cord. To assure how to be confident with the correct diagnosis of MS lesions present.

Learning Objectives:
1. To give a short overview of McDonald criteria in multiple sclerosis.
2. To present the typical findings in cerebral and spinal cord multiple sclerosis.
3. To assure you how confident one can feel with correct diagnosis of the multiple sclerosis lesions presence.

A-0155 16:21
Acute disseminated encephalomyelitis (ADEM)
A. Rivira-Cañellas; Barcelona/ES (alex.rivira@idi.gencat.cat)

Acute disseminated encephalomyelitis (ADEM) is a severe, immune-mediated inflammatory-demyelinating disorder of the central nervous system that predominantly affects the white matter of the brain and spinal cord characterised clinically by new-onset polyfocal neurologic symptoms including encephalopathy, coupled with neuroimaging evidence of multifocal white matter inflammatory-demyelinating lesions. The disorder is mainly a condition of the pediatric age group, but on rare occasions, adults and elderly patients can also be affected. In the absence of specific biologic markers, the diagnosis of ADEM is based on clinical and radiologic features. This presentation includes special consideration of the value of neuroimaging in the diagnoses of ADEM and the distinction with and other immune-mediated inflammatory demyelinating diseases, in particular, multiple sclerosis.

Learning Objectives:
1. To describe the basics of ADEM entity.
2. To be familiar with morphology, distribution and other characteristic radiographic features in patients with ADEM.
3. To highlight my point of view in the most correct diagnosis of ADEM.

A-0156 16:29
Encephalitis
H.R. Jäger; London/UK

"no abstract submitted"

Learning Objectives:
1. To be aware of different etiology of encephalitis.
2. To learn the typical imaging picture of brain structural abnormalities in patients with encephalitis.
3. To present my tips in evaluation of encephalitis-suspected brain lesions.

A-0157 16:37
Meningitis
M.M. Thumber; Vienna/AT (majda.thumber@medunwien.ac.at)

Imaging findings in meningitis are unspecific. Computed tomography (CT) is the initial method to exclude other pathologies. Magnetic resonance imaging (MRI) findings include several indirect features suggesting meningeal pathology. Most important MR techniques to detect meningitis are FLAIR with and without gadolinium, diffusion-weighted MR imaging (DWI), postcontrast-T1WI. This lecture will teach you how to interpret MR imaging findings on different MR techniques to make a correct diagnosis of meningitis.

Learning Objectives:
1. To be familiar with different causes of meningitis.
2. To describe the most common MRI findings in acute and chronic meningitis.
3. To present my advice: ‘does thickened and enhancing dura always mean meningitis?’

A-0158 16:45
Transient ischemic attack
J. Hödel; Créteil/FR

TIA represents a major public health issue. It is crucial to identify the cause of TIA to avoid an acute stroke. The radiologist plays an important role in the management of patients with TIA. Indeed, the objective of imaging is to detect parenchymal and/or vascular abnormalities that can explain the transient clinical symptoms. Such abnormalities are frequently subtle, and the imaging protocol can be thus optimised to further improve the diagnostic performance. MRI or CT can be used, with the advantage for MRI of better visualisation of parenchymal lesions. Imaging of the supra-aortic trunks is an important step of the diagnostic work-up. Using MRI, optimised diffusion, perfusion (including arterial spin labelling) and post-contrast 3D TSE sequences can be also very useful.

Learning Objectives:
1. To understand the importance of imaging in patients with transient ischemic attack (TIA).
2. To highlight the most important imaging features.
3. To present my tips in evaluation of patients with TIA.

A-0159 16:53
Venous sinus thrombosis
P. Vilela; Almada/PT (lenrovilela@sapo.pt)

Infratentorial venous sinus thrombosis is an important cause of stroke, especially in young patients and children, and only imaging can make the diagnosis. Imaging is essential to establish the venous thrombosis diagnosis but also to evaluate and monitor associated brain lesions. Obtaining orthogonal imaging planes improves the venous thrombosis diagnosis accuracy. CT multiplanar reconstructions (MPR) views improve the CT accuracy for depicting venous thrombosis, especially cortical venous thrombosis. On MRI, the use of T2*WI and T1WI on two orthogonal planes, such as axial and coronal, are highly accurate to depict vessel thrombosis. An important pitfall is that a low T2 signal inside of a venous structure does not exclude thrombosis since a subacute thrombus is hypointense on T2WI and isointense on T1WI due to the presence of deoxyhaemoglobin. Computed Tomography Venogram (CTV) or Contrast-Enhanced Magnetic Resonance Venogram (CE-MRV) prove the presence of venous thrombosis by exhibiting complete or partial filling defects inside the dural sinus and/or veins. Venous thrombosis is well-known clinical and imaging mimicker with different forms of presentation. It is extremely important to think on venous thrombosis in the differential diagnosis of a brain lesion, since in a significant number of cases is not suspected by the clinician, and choose the correct imaging protocol.

Learning Objectives:
1. To be familiar with basics of pathology in cortical venous and venous sinus thrombosis.
2. To learn the most common radiologic presentation in venous sinus thrombosis.
3. To provide the hints how to avoid the confusion with sinus thrombosis mimics.

A-0160 17:01
Hydrocephalus
A. Ramos; Madrid/ES (ramosana3@yahoo.es)

Imaging plays a central role in the diagnosis of hydrocephalus, CT is the first imaging test in emergency patients, but MRI is the first-line imaging modality. Hydrocephalus can be divided into communicating and non-communicating and obstructive and non-obstructive, depending if there is an obstruction in the ventricular system or the subarachnoid space. Communicating hydrocephalus can be further subdivided in: a) cases with no obstruction to CSF absorption, normal pressure hydrocephalus (NPH) is the most important cause in this category, b) cases with obstruction to CSF absorption due to damage to arachnoid granulations, as occurs in subarachnoid haemorrhage and meningitis. Non-communicating hydrocephalus implies a mechanical problem affecting the passage of CSF through the ventricular system (masses or stenosis in the ventricular system). MRI is useful in detecting the cause and location of the obstruction, imaging protocol should always include sagittal high-resolution T2WI, and especially rewarding are balanced steady-state gradient echo sequences that appear as highly T2 weighted sequences without fluid artefact. When an inflammatory aetiology is suspected, imaging with contrast agent administration is necessary. However, the diagnosis of NPH is difficult because of commonly associated diseases, such as Alzheimer’s disease and microangiopathy. With MRI we try to predict which patients are going to respond to a ventricular shunt and include the following parameters: ventriculomegaly with frontal and temporal horns of the lateral ventricles most affected, dilated sylvian fissures, tight high convexity, acute callosal angle, and focal sulcal dilatation.

Learning Objectives:
1. To gain a short knowledge of different types of hydrocephalus.
2. To learn how to differentiate normal pressure and obstructive hydrocephalus.
3. To present my ‘hot points’ in evaluation of patient with hydrocephalus.

A-0161 17:09
Microbleeds
L. van den Hauwe; Antwerp (Edegem)/BE (lucvdhauwe@mac.com)

Cerebral microbleeds (CMBs) are detected with increasing frequency since MRI has become more widely available over the last decade. Especially with the introduction of high magnetic field strength (3 T) and newer dedicated MR imaging sequences such as susceptibility effects. CMBs may be observed as an increasing signal loss due to susceptibility effects. CMBs are detected on SWI as small hypointense foci with a maximum size of 5-10 mm. They represent focal accumulations of hemosiderin-containing macrophages with paramagnetic properties causing signal loss due to susceptibility effects. CMBs may be observed as an incidental finding in the normal aging population, as well as in various disorders such as Alzheimer dementia, cerebrovascular disease and trauma. Rare causes include endocarditis, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and radiation therapy. Small (so-called type IV) cavernous malformations may be indistinguishable from CMBs. Not every black dot on SWI constitutes a CMB;

Infratentorial venous sinus thrombosis is an important cause of stroke, especially in young patients and children, and only imaging can make the diagnosis. Imaging is essential to establish the venous thrombosis diagnosis but also to evaluate and monitor associated brain lesions. Obtaining orthogonal imaging planes improves the venous thrombosis diagnosis accuracy. CT multiplanar reconstructions (MPR) views improve the CT accuracy for depicting venous thrombosis, especially cortical venous thrombosis. On MRI, the use of T2*WI and T1WI on two orthogonal planes, such as axial and coronal, are highly accurate to depict vessel thrombosis. An important pitfall is that a low T2 signal inside of a venous structure does not exclude thrombosis since a subacute thrombus is hypointense on T2WI and isointense on T1WI due to the presence of deoxyhaemoglobin. Computed Tomography Venogram (CTV) or Contrast-Enhanced Magnetic Resonance Venogram (CE-MRV) prove the presence of venous thrombosis by exhibiting complete or partial filling defects inside the dural sinus and/or veins. Venous thrombosis is well-known clinical and imaging mimicker with different forms of presentation. It is extremely important to think on venous thrombosis in the differential diagnosis of a brain lesion, since in a significant number of cases is not suspected by the clinician, and choose the correct imaging protocol.

Learning Objectives:
1. To be familiar with basics of pathology in cortical venous and venous sinus thrombosis.
2. To learn the most common radiologic presentation in venous sinus thrombosis.
3. To provide the hints how to avoid the confusion with sinus thrombosis mimics.
phase information obtained with SWI allows to discriminate CMs from calcifications. Clinical information and previous medical history of the patient, spatial distribution of the lesions (superficial or lobar versus deep, supratentorial versus infratentorial), morphology, and associated imaging findings such as convexity subarachnoid hemorrhage, cortical superficial siderosis, prior lobar intracerebral hemorrhage, white matter abnormalities, are important clues to obtain the correct diagnosis.

Learning Objectives:
1. To understand the impact of presence and number of cerebral microbleeds.
2. To understand the diffusion of cerebral microbleeds in different pathological conditions.
3. To give you advice how not to overestimate cerebral microbleeds and how to differentiate them from their mimics.

Author Disclosure:
L. van den Hauwe: Consultant; icometrix.

17:17
Panel discussion: 'You can ask me for additional tips' - questions from the audience, answers from experts

E³ - Rising Stars Programme: Joint Session with ESOR

BE 4

Radiologic anatomy: abdomen

Moderator:
A. Palkó; Szeged/HU

A-0162 16:00

Small bowel
S.A. Taylor; London/UK (csytaylor@yahoo.co.uk)

Cross-sectional imaging is increasingly replacing fluoroscopic techniques for imaging the small bowel, but both still have a role. It is crucial to recognize the normal appearances of the bowel on all imaging modalities to diagnose abnormality and recognize normal variants. This talk will review the embryological development of the small bowel of importance to radiologists. The aetiology of common congenital malformations such as malrotations and Meckel’s diverticulum will be outlined. The appearance of the normal small bowel on the various imaging modalities will be reviewed, along with pitfalls in interpretation.

Learning Objectives:
1. To appreciate the embryological development of the small bowel.
2. To learn about the anatomy of the small bowel relevant to radiological imaging.
3. To understand the pitfalls of the normal small bowel appearance during imaging interpretation.

Author Disclosure:
S.A. Taylor: Consultant; Robarts.

A-0163 16:30

Anorectal
S. Gourtsoyianni; Athens/GR

"no abstract submitted"

Learning Objectives:
1. To review the normal anatomy of the anorectum.
2. To learn how well depicted the different anatomical landmarks of the anorectum are with different available imaging methods.
3. To discuss the clinical scenarios for which it is necessary to be aware of the anatomy of the anorectum.

A-0164 17:00

Peritoneum and mesentery
P.K. Prassopoulos; Thessaloniki/GR (ppprasopo@med.duth.gr)

Peritoneal anatomy plays a key role in the dissemination process of intraabdominal inflammatory fluid collections or malignant diseases. The peritoneum, a serous membrane, is reflected over abdominal organs to form a series of folds known as ligaments, mesenteries and omenta. They may act as conduits or barriers in the spread of intra- or extra-peritoneal diseases and they influence the peritoneal fluid circulation responsible for malignant intraperitoneal seeding - along with bowel peristalsis, gravity and hydrostatic pressure gradients. Although not directly visible on imaging, the twelve major peritoneal ligaments and mesenteries can be identified by their typical position and organ relationships, fatty composition and anatomical landmarks provided by their constituent vessels. Peritoneal folds involved by oedema, inflammation or neoplastic infiltration after their composition, become thickened, and they are directly recognised on imaging. Multiplanar CT reconstructions and specific MRI sequences are useful in demonstrating ligaments and mesenteries. Peritoneal reflections subdivide the peritoneal cavity into multiple compartments and recesses that are visualised when distended by the fluid. These subdivisions provide the anatomic basis for localisation of ascites, abscesses, seeded metastases and traumatic effusions. Familiarity with the normal anatomy is essential in the clinical radiologic analysis and differential diagnosis of peritoneal and mesenteric pathology.

Learning Objectives:
1. To review the radiologic anatomy of peritoneal ligaments, mesenteries and omenta on cross-sectional imaging.
2. To describe the most clinically important peritoneal compartments and fluid collections.
3. To discuss the key role of anatomy in the dissemination of malignancies, or the restriction of inflammatory processes in the abdomen.

Author Disclosure:
L. van den Hauwe: Consultant; icometrix.

Emergency Imaging

RC 417

Imaging of 'foreign bodies'

A-0165 16:00

Chairperson’s introduction
U. Linsenmaier; Munich/DE (Ulrich.Linsenmaier@helios-kliniken.de)

This integrated refresher course (IRC) will provide a thorough overview on the role of diagnostic imaging in the assessment of I) implanted surgical and orthopaedic devices, II) diagnosis of sharp foreign bodies as well as III) the role of interventional radiology in the management of foreign bodies. The speakers will explain the current role of CR, CT and US in the assessment and diagnosis of implanted devices as well as ingested foreign bodies. The correct assessment of surgical and orthopaedic devices is a daily routine in many radiological institutions. The speaker will explain the appearance of established and newly introduced materials and discuss their proper positioning as well as early signs of postoperative complications. Many foreign bodies pass through the gastrointestinal tract without problems. However, sharp foreign bodies may cause perforation, haemorrhage or bowel obstruction and can be complicated by abscess formation and septicaemia. The speaker will discuss characteristics of commonly ingested foreign bodies as well as signs of early complications. Interventional treatment for foreign bodies is relatively rare in many radiological institutions. It comprises not only endovascular removal techniques but also techniques the treatment of complications resulting from inserted or ingested foreign bodies.

Session Objectives:
1. To become familiar with commonly used surgical and orthopaedic devices and materials.
2. To learn their proper positioning and early signs of postoperative complications.
3. To understand the imaging pathway in management of ingested foreign bodies.

A-0166 16:05

A. Surgical and orthopaedic devices: are they really properly positioned?
E. Dick; London/UK (elizabeth.dick@imperial.nhs.uk)

This session will address the common surgical and orthopaedic devices that we encounter in everyday Radiology practice. What do the clinicians consider to be the optimal placement of each device? How can we assess if positioning is suboptimal? What kind of language should we use to describe devices? It will cover lines and tubes, how to evaluate if an endotracheal tube, chest and abdominal drains are correctly placed, including assessing the position of ETT beyond vocal cords, satisfactory inflation of ETT balloon Surgical packing used in damage control surgery. How to evaluate the post-operative trauma/emergency abdomen when radiopaque and non-radiopaque packing is present. Neuurosurgical devices: cervical and thoracolumbar spinal fixation: principles of stabilisation, how to evaluate if correctly positioned, what language to use, complications including malplacement and neurovascular injury. Orthopaedic devices: Rib and Pelvic fixation devices: how to assess stability, considerations of neurovascular compromise.

Learning Objectives:
1. To become familiar with different types of commonly used surgical, neurosurgical and orthopaedic devices in clinical practice.
2. To understand how to evaluate their proper positioning.
3. To be familiar with imaging signs of incorrect implementation of neurosurgical and orthopaedic devices.
If a sharp foreign body gets stuck in the oesophagus, the patient usually will notice its presence and will seek medical help rapidly. However, when it reaches stomach or bowel and penetrates the wall there, the ensuing symptoms are atypical and treacherous and serious delay may ensue. Perforating foreign bodies in stomach and bowel are increasingly recognised by the use of US and spiral CT with multiphase reconstructions, and may be of help in guiding minimal invasive treatment. The most frequently encountered penetrating sharp foreign bodies are chicken bones, fish bones and wooden sticks as toothpicks. Most patients do not recall having swallowed such an object. Over two-thirds have a history of a previous operation with kinking of bowel loops caused by adhesions, which inhibit the foreign body to "take the corner". Once a sharp object penetrates the wall of the stomach or bowel, omentum and mesentry will try to wall-off the ensuing perforation. Often an abscess develops in the peritoneal cavity, in the liver or the abdominal wall. Eventually, significant migration of the object may be the result. If the sharp foreign body is beyond the reach of the endoscope, patients usually undergo laparotomy for removal of the foreign body and drainage of the abscess. US and CT are important in the diagnosis and the minimal invasive treatment of sharp foreign bodies.

Learning Objectives:
1. To be familiar with characteristics of commonly ingested foreign bodies.
2. To understand which imaging modalities are best suited for detection of foreign bodies in different clinical scenarios.
3. To understand how to detect and characterise unclear pathologies.

US 1

How to perform ultrasound fusion imaging

Moderator:

P.S. Sidhu; London/UK

A-0169 16:00

Liver

E.M. Jung; Regensburg/DE (emst-michael.jung@ukr.de)

Ultrasound image fusion means a combination of real-time imaging of ultrasound B-Mode or colour-coded Doppler sonography (CCDS), Power Doppler (PD) or contrast-enhanced ultrasound (CEUS) with computed tomography (CT) or magnetic resonance tomography (MRT). These techniques of image fusion are integrated into high-end ultrasound machines and need experienced examiners. Beginning with the imaging registration step by step would be shown for a successful imaging fusion. For interventional procedures fusion could be combined with volume navigation with GPS markers. This technique could be used for improved punctures, biopsies, drainage or interventional procedures of ablation therapies like radiofrequency ablation (RFA) or irreversible electroporation (IRE). The results from literature would be discussed about interventional procedures using US fusion techniques. For better detection and characterisation of tumours fusion could be used by a combination of CEUS with contrast-enhanced CT or MRI. Fusion could be used for differentiation of benign from malignant lesions, for detection and characterisation of microvascular changes, and for the planning of interventional procedures. Actually, fusion by CEUS with CT or MRI could be used to realise interventional procedures like operative procedures, intra-articular chemoembolization (TACE) or radionuclide application (SIRT) in cases of hepatocellular carcinomas or diffuse malignant tumour lesions. There are more and more reports about post-interventional control and follow up after interventional procedures like RFA, TACE or surgery. But also for the follow up after chemotherapy fusion could be used.

Learning Objectives:
1. To learn about the advanced liver imaging fusion technique.
2. To learn how to optimise scanning protocols by using the image fusion tool.
3. To learn about common benign and malignant lesions and differential diagnosis by using image fusion.
4. To understand how to use fusion imaging of US, CT and MRI for treatment of liver tumour.

Author Disclosure:

E.M. Jung: Speaker; Bracco, Siemens, Philips, Samsung.

A-0170 16:20

Kidney

J. Rüenthaler; Munich/DE

Ultrasound is a widely accepted imaging technique for the diagnosis and monitoring of cystic renal lesions. The widely used Bosniak classification (I-IV) categorises renal cystic lesions in five distinctive groups by the help of ultrasound and CT image criteria. In unclear cases, Contrast-enhanced ultrasound (CEUS) and MR/CT-ultrasound fusion image fusion could be used to detect and characterise difficult pathologies. In contrast to CT or MRI, ultrasound image fusion is a real-time imaging technique that can be used in combination with other cross-sectional imaging techniques. This talk explains the latest possibilities of image fusion with CEUS to detect and characterise unclear reninal pathologies.

Learning Objectives:
1. To understand the imaging features of kidney lesions.
2. To become familiar with unclear cystic lesions by using the Bosniak classification.
3. To understand how to detect and characterise difficult pathologies using image fusion.
4. To understand the potential pitfalls in image fusion.

Prostate

D.A. Clevert; Munich/DE (Dirk.Clevert@med.uni-muenchen.de)

Prostate cancer (PCA) is one of the most common malignancies in men. The diagnostic standard to confirm prostate cancer is the transrectal ultrasound-guided biopsy. During that procedure 10-12 biopsy cores are taken. However, the standard transrectal biopsy of the prostate is associated with the underdetection of clinically significant prostate cancer and therefore needs to be improved. In the last years, MRI fusion based targeted biopsy gained importance as a consequence. Several studies already confirmed that MRI guided biopsy of the prostate improves the accuracy in detecting and localising clinical significant cancer.

Learning Objectives:
1. To explain the PIRADS system in prostate imaging.
2. To become familiar with the technical requirements for performing image fusion of the prostate.
3. To understand how to detect and biopsy guided suspicious MR-lesions using the ultrasound image fusion technique.
4. To understand the potential pitfalls and discuss the evidence for the use of these technologies in routine clinical practice.

Author Disclosure:

D.A. Clevert: Speaker; Bracco, Siemens, Philips, Samsung.

A-0172 17:00

Minimise the risk of infection transmission and effective decontamination protocols in the setting of ultrasound fusion

C. Nyhsen; Strasbourg/FR (nyhsenc@doctors.org.uk)

Ultrasound is generally considered one of the safest diagnostic modalities available. Causing significant harm to imaged patients by performing ultrasound is neither anticipated by professionals nor patients. However, risks of infection transmission through ultrasound have been highlighted, and public awareness is increasing. A previous survey by the ESR ultrasound working group showed a wide range of decontamination protocols throughout Europe. This led to the publication of best practice recommendations on decontamination of equipment as well as the choice of US gel and transducer covers. Ultrasound fusion is a well-established technique for diagnostic but also interventional procedures, necessitating the use of extra equipment, which may be installed as needed in different settings. Strict hygiene protocols are...
Septic arthritis is often a clinical diagnosis based on physical examination and A-0179
A. Osteomyelitis
Bone, joint and soft tissue infection
RC 410
Moderator:
V. Njagulj; Novi Sad/RS
Bone, joint and soft tissue infection
RC 410
Osteomyelitis (OM) is an infection of the bone and can present clinically in an A-0178
A. Osteomyelitis
Bone, joint and soft tissue infection
RC 410
Musculoskeletal
Panel discussion: How to start ultrasound image fusion 17:20
16:00 - 17:30 Room D
M. Zanetti; Zurich/CH (marco.zanetti@hirslanden.ch)
A-0179 16:30
B. Septic arthritis
M. Zanetti; Zurich/CH (marco.zanetti@hirslanden.ch)
Septic arthritis is often a clinical diagnosis based on physical examination and prompt arthrocentesis. Sampling at arthrocentesis can usually be achieved with needle aspiration imaging-guided, such as fluoroscopy, ultrasound, MRI, or CT. Plain radiography and ultrasound have been suggested to be the preferred initial imaging method. If further imaging is required, MRI is the most accurate technique. FDG-PET is also used less commonly. Staphylococcus aureus infection is most commonly seen in acute bacterial arthritis in adults and children older than two years. Most septic joints develop hematogenously. Rarely, acute septic arthritis may also occur as a result of joint aspiration or local corticosteroid injection. In addition, bacterial arthritis may arise secondary to trauma even without an obvious break in the skin. Bacterial arthritis, in association with arthroplasties, is commonly seen in our areas. In infants, small capillaries cross the epiphyseal growth plate and permit sinusoidal veins and is usually contained by the growth plate. The joint is spared unless the metaphysis is intracapsular. In adults, the growth plate has resorbed, and the infection may again extend to the joint spaces. Based on these considerations the basic imaging criteria for the diagnosis of septic arthritis in adults will be shown.

Learning Objectives:
1. To explain the pathophysiology and disease spectrum of septic arthritis.
2. To describe the imaging criteria for diagnosis of septic arthritis in children and adults.

A-0180 17:00
C. Pyomyositis and other soft tissue infections
D.J. Wilson; Oxford/UK (davidwilson.stlukes@btconnect.com)
Soft tissue infection can range from a minor wound infection through cellulitis to pyomyositis and necrotising fasciitis. At one end of the spectrum, the treatment may be limited to anti-sepsis and oral antibiotics whilst at the other many months of intravenous antibiotics, and radical surgery may be necessary. Severe infection may be rapidly fatal. Imaging plays a crucial role in the detection of the extent of infection, the detection of abscesses and the planning of surgical procedures. It is also very useful in determining response to therapy. Ultrasound and MRI are the principal techniques. The strength of ultrasound has its rapid availability and discrimination of free fluid from oedematous solid tissue. It is also critically helpful in detecting foreign material which could be a source and irritant causing persisting infection. MRI gives us a better overview showing bone involvement and the extent of tissue damage. There is a role for both techniques and their often complementary. The first lesion that recognises the risk of infection, especially for patients who are immunosuppressed or diabetic. Imaging may be used to guide aspiration of cavities and biopsy of tissue to identify organisms. On rare occasions the primary treatment of abscesses may be via sump drainage catheter is placed using ultrasound guidance. Normally these patients are treated with surgery to include excision of necrotic tissue, but there are occasions when patients are unfit for anaesthetic, and ultrasound-guided techniques assist.

Learning Objectives:
1. To explain the pathophysiology and disease spectrum of pyomyositis and other soft-tissue infections.
2. To describe the imaging criteria for diagnosis of pyomyositis and other soft-tissue infections.

Author Disclosure:

16:00 - 17:30 Room G
Physics in Medical Imaging
RC 413
Striking the balance: image quality assessment in radiological optimisation
A-0181 16:00
Chairperson's introduction: The big picture, can we be objective about image quality?
N. Marshall; Leuven/BE (nicholas.marshall@kuleuven.be)
Current generations of medical imaging devices come with a great deal of flexibility “designed-in”, where for example, the number, energy and the temporal rate of the X-ray photons used to generate the images can be varied. Where applicable, reconstruction algorithms add further flexibility. The medical physicist is faced with the challenge of ensuring the optimal setup of imaging systems for the tasks relevant to the local clinical site. This optimisation cannot be performed without a relevant definition of image quality, and this session covers methods of assessing imaging quality in projection radiography, interventional radiology and CT. At the equipment level, we can use Fourier transforms to make technical, physics-based assessments of x-ray component performance such as the sharpness and noise. These parameters are reproducible and relatively quick to implement, but are not task-weighted and come with potential limitations in terms of task description and validity in anatomical backgrounds. An alternative, classic approach is to assess image quality using the Receiver Operating Curve (ROC) or related methods, giving a task-based figure of merit (FOM) for use in optimisation. These methods require observers, either human or algorithmic and a dataset of tasks/cases, which can be time-consuming to assemble but deliver a quantitative measurement of image quality for the imaging system and task in question. This session surveys the available methods for image quality evaluation in radiological imaging and how they are applied, thus allowing an informed choice for optimisation studies.

Session Objectives:
1. To appreciate the reasons why image quality is important in radiological optimisation.
2. To understand the main methods of image quality assessment and optimisation.
3. To learn how image quality assessment is applied in clinical practice.
Image quality assessment is an important yet challenging aspect of radiation protection and integral to the ALARA principle. Radiological image quality may pertain to the fidelity of the radiological image relative to the imaged subject, the information that may be gained from the image and the radiation cost required. Assessment methods may, therefore, measure physical or subjective/psychophysical parameters. Physical parameters include spatial resolution, signal to noise ratio and contrast to noise ratio. Spatial resolution is a measure of how close two anatomical can be in an image and still be distinguished in space. Signal to noise ratio is the mean Hounsfield Unit value within a region of interest divided by the standard deviation. Contrast to noise ratio reflects the ability to distinguish differences in intensity and radiation dose. Subjective assessment remains vital as X-ray images are visual representations of clinical information and human judgement is required. Parameters such as lesion detection can be quantified using receiver operating characteristic curves, which relate observer findings to the image contents and which reduce bias by compensating of varying reader confidence. The area under the curve serves as a figure of merit of image quality and can be used to compare systems or assess new techniques. This method is more suited to clinical trials, however, and in practice, subjective assessment of image quality entails observers reviewing anatomy on appropriate clinical images in ‘normal’ patients. Ultimately we aim to standardise imaging performance to provide image quality tailored to clinical indications.

Learning Objectives:
1. To learn about traditional and practical methods of determining image quality.
2. To understand how the methods are applied to projection radiography, interventional radiology and CT.
3. To identify limitations of current techniques.

A-0183 16:28

B. Bridging the gap between physical and clinical image quality

E. Samei; Durham, NC/US (samei@duke.edu)

Clinical image quality is the cornerstone of imaging optimisation, as images are as good as the value that they offer clinically. Over years various have been developed and used to measure image quality in terms of first-order physics-based metrics of contrast, resolution, and noise. While foundational, these attributes fall short of fully capturing the quality of images for clinical tasks. The first-order metrics need to be extended to second- and third-order metric of task transfer function (TTF), noise power spectrum (NPS), detectability and estimability indices, and noise heterogeneity. Recent work has shown that these metrics can offer better reflections of clinical quality and integrate them in the optimisation process. This presentation offers a description of the traditional and new CT image quality metrology, outlines the new methods of their assessment, and highlights their utility for improved patient care.

Learning Objectives:
1. To learn about physics-based methods of determining image quality.
2. To understand how they are applied to projection radiography, interventional radiology and CT.
3. To identify how to bridge the gap between the physics methods and the clinical image quality assessment.

Author Disclosure:
E. Samei: Other; The author lists relationships with the following entities unrelated to the present publication: GE, Siemens, Bracco, Imaloxig, 12Sigma, Gammex, and Metis Health Analytics.

A-0184 16:51

C. Sharing the message: image quality optimisation for multiple scanners and clinics

J. Sjöberg; Stockholm/SE (johan.a.sjoberg@isl.se)

The management of quality of radiological examinations in any department with multiple CT scanners is a non-trivial task. More so in larger multi-departmental university hospital settings, as both the specialisation of the examinations and the complexity of the organisation multiplies. The situation is also exacerbated by the increasingly sophisticated and diverse imaging and reconstruction technology. A systematic approach to assuring a high-quality practice can be greatly benefited through the adoption of a quality management system, in which two key components are: 1. All quality improvement processes are documented, measured and regularly revised and 2. All quality improvement efforts are directed by the lead radiologist and thereafter initiated and executed by a multi-disciplinary working group consisting, as a minimum, of the section lead radiologist, section radiographer and a medical physicist. In this manner, all aspects of quality are properly managed by a representation of the relevant specialty such as consistency and balance of clinical image quality, radiation dose and patient management. Any decent quality management system in a complex high-technology environment with limited resources must also increasingly rely on the fundamental principles of automation and quantification. Efforts should be invested in automating basic and repetitive tasks, such as aggregation of data and computation of key performance indicators of image quality and equipment performance.

Learning Objectives:
1. To learn about how to apply image quality assessment techniques across multiple scanners and clinics.
2. To learn how to apply image quality assessment methods to partner clinically-indicated DRLs.
3. To understand how to ensure consistency using standardised protocols.

Panel discussion: Can we balance image quality and dose needs in an objective manner?

A-0185 16:00

Artefacts in hybrid imaging

T. Beyer; Vienna/AT (thomas.beyer@medunwien.ac.at)

A proposal to combine PET with CT was made in the early 1990s by Townsend, Nutt et al. In addition to the intrinsic alignment of complementary images, the anticipated benefit of PET/CT was to use the CT-images to derive the mandatory attenuation maps for the PET data. In short, CT-based attenuation correction (CT-AC) is based on the assumption that a CT image can be segmented into bone and non-bone tissues; voxels in each tissue class are then scaled with corresponding scale-factors. CT-AC is prone to several errors arising from the methodological shortcomings of the segmentation-scaling method in light of CT-transmission measurements in clinical conditions. These include truncation artefacts, artefacts from high-density implants and positive contrast agents and others. More frequently, errors from patient motion during the examination propagate through CT-AC into the final emission images and lead to distortions/bias of the reconstructed data. In addition, artefacts and biases may occur from involuntary mistakes made during the set-up/conduct of the imaging procedure. During this presentation, we will rehearse the principles of CT-AC in PET/CT and point to the source of artefacts arising from the methodology of CT-AC and from specific imaging workflow scenarios not optimised for routine PET/CT. Following this presentation, the audience will understand image distortions, artefacts and bias from methodological point of view in PET/CT imaging, and appreciate and understand solutions to frequent image distortions in PET/CT, also, understand the methodological limitations of PET/CT.

Learning Objectives:
1. To understand methodological pitfalls in hybrid imaging.
2. To highlight frequent image distortions.
3. To review solutions to limit clinical misinterpretation from image artefacts.

A-0186 16:30

Clinical pitfalls in FDG-PET/CT and PET/MR

C. Pfannenberg; Tübingen/DE (christina.pfannenberg@med.uni-tuebingen.de)

Besides potential artefactual uptake patterns, the use of hybrid imaging is also prone to some potential clinical pitfalls and interpretative challenges you should be aware of when reading the images. A variety of benign conditions like physiological variations of normal tracer uptake increased FDG uptake due to inflammatory disorders, treatment-related effects (e.g. recent surgery, chemoradiation) and hypermetabolic benign tumours are sources of potential false positive interpretations of FDG-PET scans. Less frequent, lesions may be missed on FDG-PET/CT due to low FDG uptake of some tumours, small lesion size or high neighbourhood activity. To avoid misinterpretations in hybrid imaging, it is therefore very important to have a profound knowledge of normal tracer distribution and its physiological variants to reduce false positive interpretations of the uptake and overdiagnosis of benign conditions. Each tracer uptake in PET should be precisely correlated with CT or MRI and interpreted in the context of all available clinical and other imaging data. Furthermore, to minimise potential artefacts and pitfalls the adequate timing of PET/CT, a careful patient preparation (e.g. diabetic patients, BAT) and an optimised scanning protocol concerning contrast agents, breathing pattern and
positioning are important factors. In the lecture, we will discuss characteristic pitfalls in PET/CT and PET/MRI and how to avoid misdiagnosis.

Learning Objectives:
1. To learn about the key imaging features of the physiological distribution of 18F-FDG and its frequently encountered normal variants.
2. To become familiar with the most common clinical pitfalls caused by non-physiological FDG uptake due to benign conditions like inflammation, medication and benign tumours.
3. To discuss the principles of adequate patient preparation and scanning protocols to avoid artefacts and misinterpretation in PET/CT and PET/MRI.

A-0187 17:00
Clinical and technical pitfalls in SPECT/CT
J. Howard; Manchester/UK (james.howard@mnrt.nhs.uk)

Molecular and anatomical imaging with SPECT/CT provides accurate localisation and specificity of disease. As with all imaging studies clinical and technical pitfalls are encountered, and in hybrid imaging the combination of modalities provides a new challenge. In this lecture, we will discuss how to recognise the pitfalls and limitations that can be encountered with SPECT/CT and give some recommendations to help overcome these issues.

Learning Objectives:
1. To discuss common clinical and technical pitfalls that can be encountered in SPECT/CT imaging.
2. To recognise possible clinical and technical limitations/pitfalls and correctly interpret these pitfalls.
3. To learn about solutions and recommendations to deal with clinical and technical pitfalls in routine clinical practice.

Paediatric RC 412 Imaging in abdominal emergencies: an (evidence-based) update

Moderator:
C.E. de Lange; Oslo/NO

A-0188 16:00
A. The acute abdomen in neonates
A. Coma; Barcelona/ES (acoma@vhbbron.net)

The acute abdomen in neonates is a frequent emergency room challenge. Neonatal abdominal emergencies comprise a wide variety of congenital and acquired conditions. This review discusses the most common ones in which radiologic evaluation contributes substantially to the diagnosis. Hepatobiliary, genitourinary, gastrointestinal, intraperitoneal, retroperitoneal, and iatrogenic emergencies are discussed. Establishing the diagnosis of acute abdominal conditions in neonates requires a high index of suspicion clinically and detection of subtle findings on imaging. Several imaging techniques are available for this purpose. A general radiologic approach to these conditions is outlined, and individual investigations are subsequently analysed in each case. Although the diagnosis can sometimes be made on prenatal imaging, patients present more commonly after birth and require a prompt diagnosis to facilitate early treatment. Plain radiography, conventional contrast studies and ultrasonography have major roles in evaluating the acute abdomen in neonates. CT and MRI contribute to the diagnosis in certain situations. Particular emphasis is placed on the radiologic clues found in typical neonatal abdominal emergencies. A practical approach to the acute abdomen in neonates is discussed and illustrated. Because the findings can be subtle, use of an appropriate imaging modality and a correct differential diagnosis are essential. To provide optimal patient care radiologists should be aware of the clinical presentation and imaging tips related to the acute abdomen in neonates.

Learning Objectives:
1. To learn about typical neonatal abdominal emergencies.
2. To understand the choice of modalities in acute abdomen in neonates.
3. To provide optimal patient care radiologists should be aware of the clinical presentation and imaging tips related to the acute abdomen in neonates.

A-0189 16:30
B. The acute abdomen in young children
A.D. Calder; London/UK

Common causes of the acute abdomen in children beyond the neonatal period are reviewed, with a focus on three conditions with major roles for imaging: hypertrophic pyloric stenosis, intussusception and acute appendicitis. The evidence base underlying the roles imaging plays is evaluated for each condition. The role of ultrasound in pyloric stenosis is well established and is generally highly sensitive and specific. The pyloric length and muscle thickness parameters remain robust measures for correct diagnosis but may need to be adjusted for age and size. Additional signs which may be useful, such as pyloric muscle shape and colour Doppler findings are discussed. Surgical management remains the mainstay of treatment, despite evidence of the effectiveness of medical therapy in some children. The role of ultrasound in the diagnosis of intussusception is similarly well supported and is highly accurate even in relatively inexperienced hands. Radiologists also typically play the leading role in initial attempts to reduce intussusception and are mostly successful. Various techniques for reduction are available, each with their own advocates and evidence base. Acute appendicitis is the most common acute abdominal emergency requiring surgery. Pre-operative imaging diagnosis is now the norm. Ultrasound is recommended as the primary imaging tool in children but can lack sensitivity, and in most centres, equivocal sonography is followed by cross-sectional imaging. CT has a strong evidence base for accurate diagnosis of appendicitis but conveys significant radiation burden. Low dose protocol CT and MRI offer alternatives with potentially similar levels of accuracy.

Learning Objectives:
1. To learn about the causes of acute abdominal pain in children.
2. To understand the choice of imaging techniques and their limitations.
3. To appreciate typical radiological features of abdominal emergencies.

A-0190 17:00
C. Polytrauma: differences between adult and paediatric protocols
M. Raissaki; Iraklion/GR (mraissaki@yahoo.gr)

Trauma is a frequent cause of mortality and disability in childhood and adolescence. Emergency physicians have to thoroughly assess injured children following high-energy trauma. Traumatised children differ from adults: haemodynamically stable children may be actively bleeding. Conversely, children have smaller calibre vessels, stronger vasoconstriction, stronger solid organ capsules; bleedings may stop spontaneously, organ rupture is more difficult and delayed rupture rare. Consequently, children are imaged aggressively although few will undergo surgery or trans-arterial embolisation. Imaging is mandatory for diagnosis and management, especially during the primary survey. Its goal is to exclude life-threatening injuries, identify children that may rapidly deteriorate because of clinically silent active bleeding, increase the surgeon’s confidence level by clarifying injuries that need to be treated and ultimately determine short and long-term management. Radiographs and ultrasonography play a basic role in haemodynamically unstable patients. Contrast-enhanced ultrasound is an emerging diagnostic tool in low-energy trauma and suspected isolated abdominal injuries. In stabilised patients, CT scanning has been considered a sensitive, specific, and accurate test for identification and grading of multi-organ injuries. Due to children increased radiosensitivity, CT scans should be indicated based on appropriate early clinical evaluation of the closely monitored child and assessment of risk factors for CNS, chest, MSK and abdominal injuries. ALARA includes avoiding non-contrast scans, avoiding multiple phases, applying age/weight-dependent exposure parameters and radiation-saving reconstruction algorithms. CT should not be performed for follow-up unless there is clinical deterioration. Objective documentation of injuries is extremely important in suspected child abuse.

Learning Objectives:
1. To learn how paediatric trauma differs from adult trauma.
2. To understand how examination techniques and protocols must be tailored accordingly.
3. To appreciate the importance of multidisciplinary team collaboration in planning and conducting radiological investigations in a trauma setting.

Wednesday

E3 - ECR Master Class (Oncologic Imaging)

E3 426b Novelties in oncologic imaging

Moderator:
P. Bradar; Graz/AT

A-0191 16:00
A. Imaging-guided liver interventions in oncology
B. Gebauer; Berlin/DE (bernhard.gebauer@charite.de)

Interventional techniques in primary and secondary liver tumours play a crucial role in most therapy algorithms, especially in hepatocellular cancer (HCC). Local ablation using thermal ablation (e.g. RFA or MWA) are widely used in liver tumours smaller 35 mm, in larger tumours combined therapies together with transhepatic (chemo-) embolisation might be possible. TACE is mostly performed in HCC, but also in other entities like colorectal or neuroendocrine liver metastasis. In the follow-up imaging after TACE, a precise knowledge about the used TACE intervention and material is necessary to interpret the
post-TACE imaging correctly. Another transarterial treatment option is radioembolisation (RE, SIRT). In RE new multicenter studies like SARAH, SIRVENIB, SORAMIC and FOXFIRE are recently published and influenced the use and indications for RE. Localised therapy has a systemic effect on micrometastasis at other sides. This effect and the combination of local ablative and systemic treatments including immunotherapeutic agents will be the next scientific challenges in hepatic interventional radiology.

Learning Objectives:
1. To learn about newly established treatment options in interventional oncology.
2. To understand the role of pre- and post-treatment imaging for improving clinical outcome.
3. To appreciate potential future applications of interventional oncology.

Author Disclosure:
B. Gebauer; Advisory Board: BAYER. Author: Pfizer. Research/Grant Support: AngioDynamics, Boston. Speaker: ROCHE, Sirtex. Other: PAREXEL. ICON.

A-0192 16:30

B. Radiomics: the role of imaging

S. Rizzo; Milan/IT (stefania.rizzo@ieo.it)

Radiomics, is an emerging translational field of research, aiming to extract mineable data from clinical images. The concept underlying radiomics is that digital images, commonly acquired for staging or follow-up of patients, contain much more information than those commonly used for reporting. The digital data may indeed reflect the pathophysiology of the tumoral tissue. The extracted information may be associated with clinical data and can be used to assess prognosis and to support a clinical decision. Specific software allows the extraction of radiomic features from digital images (CT, MR, PET), and convert them into high-dimensional data for hypothesis generation, testing, or both. The steps necessary for a radiomic study include: acquisition of the images; identification and segmentation of volumes of interest that may contain prognostic value; extraction of radiomic features; clustering of the extracted features; creation of a database; inclusion of the extracted data to develop models, possibly in combination with demographic, clinical and genomic data. Imaging is used in routine practice for oncological patients worldwide, at many stages of diagnosis and treatment. In the current era of targeted therapies, radiomics offers the possibility to quantify and monitor phenotypic changes many times during treatment. The power of a predictive classifier model is dependent on the amount of data; hence, it is desirable that the radiomic studies will consider sharing of data among different centres, with the creation of databases including radiomics data and covariates, such as genomic profiles, histology, serum markers, patient histories, and biomarkers.

Learning Objectives:
1. To learn about the concept of radiomics and personalised medicine.
2. To learn how radiomics can be extracted from standard clinical examinations.
3. To appreciate the consequences of radiomics for radiologists in the future.

A-0193 17:00

C. Is PET/MRI better than PET/CT plus MRI?

H.-P. Schlemmer; Heidelberg/DE (h.schlemmer@dkfz.de)

PET/CT has emerged as an important imaging tool to detect, characterise, and guide therapy in patients with various types of cancer. PET/MRI, on the other hand, is known to provide superior soft tissue contrast and functional information about, e.g. tissue perfusion and diffusion. Accordingly, sequential MR and PET/CT imaging is performed in certain clinical situations. Since 2010 fully integrated whole-body PET/MRI systems are commercially available from different vendors. Temporal and spatial coregistration of PET and MR data has been proven beneficial concerning image coregistration. Simultaneous imaging furthermore enables to improve PET imaging of moving organs by taking advantage of MR-gating. The X-ray exposure of the patients is furthermore reduced, which is important particularly for pediatric patients and patients who need multiple follow-up examinations during treatment and follow-up. Research on simultaneous PET/MR imaging has proven advantages for the diagnosis and therapy monitoring of different tumour entities, e.g. lung cancer, breast cancer, prostate cancer, rectal carcinoma, lymphoma, melanoma, etc. But until improved diagnostic accuracy, influence on therapeutic management and economic reasonability has been evidenced by clinical studies, the crossfire of criticism is still justified from a practical perspective. The presentation will discuss what unmet clinical needs can be addressed by the PET/MR imaging technology. The added value of simultaneous PET/MR imaging will be discussed in comparison to sequential PET/CT and MR imaging.

Learning Objectives:
1. To learn in which clinical scenarios PET/MRI is considered to be the most helpful.
2. To understand the difference between the use of PET/MRI and PET/CT plus MRI in the patient pathway.
3. To discuss impediments for future adoption of PET/MRI.
Learning Objectives:
1. To learn about the role of PET in prostate cancer.
2. To understand the advantages and limitations of PET and PET/MRI.
3. To become familiar with potential pitfalls through case review.

Author Disclosure:
I.A. Burger: Research/Grant Support; GE Healthcare, Swiss Life, Iken-Kohaut foundation. Speaker; GE Healthcare, Bayer Healthcare, Astellas Pharma AG.

A-0197 17:02
C. PET and PET/MRI in prostate cancer
I.A. Burger; Zurich/CH (irene.burger@usz.ch)

The introduction of the new PET Tracers targeting the prostate specific membrane antigen (PSMA) changed the approach in patients with biochemical recurrence after radical prostatectomy dramatically. With promising detection rates of 58% and 76% for PSA ranges of 0.2-1 ng/ml and 1-2 ng/ml, PSMA-PET surpasses all other imaging modalities and enables an early localisation of recurrent disease. For restaging prostate cancer PSMA-PET/CT is usually performed, with the CT component used for attenuation correction, localisation of the tracer activity (e.g. ureter vs lymph node) and characterisation of the lesions (e.g. sclerotic vs lytic bone lesions). Given the high sensitivity for metastasis in the recurrence situation, there is an increasing interest for PSMA-PET to stage primary high-risk cancers. With PSMA-PET/MRI not only the detection of metastasis but also the utility of PSMA-PET to improve the detection of primary prostate cancer is under investigation. First results showed an improved detection rate for significant prostate cancer with PSMA-PET/MRI compared to mpMRI. However, despite these promising results it is important to keep in mind that around 10% of the prostate cancers (low grade and high-grade tumours) are PSMA negative and therefore will not be detected with PSMA-PET. Furthermore, the term “prostate specific” is misleading. It is important to know that there are physiological structures (e.g. duodenum, kidneys) as well as neovascularisation with high PSMA expression, leading to potential false positive lesions on PSMA-PET such as secondary primaries (e.g. lung cancer, renal cancer), hemangiomas or Padgett’s disease.

Learning Objectives:
1. To learn about the role of PET in prostate cancer.
2. To understand the advantages and limitations of PET and PET/MRI.
3. To become familiar with potential pitfalls through case review.

A-0198 16:00
Chairperson’s introduction
M. Gutberlet; Leipzig/DE

A-0199 16:06
A. Functional techniques for clinical cardiac MR
R. Manka; Zurich/CH (robert.manka@usz.ch)

Over the past decade, cardiovascular magnetic resonance (CMR) has become an established non-invasive imaging modality in cardiology and medicine. CMR provides clinicians and researchers with an unmatched flexibility of diagnostic options such as cardiac morphology, function, myocardial texture, perfusion and flow. CMR is safe, free of ionising radiation and proved higher diagnostic accuracy.

Learning Objectives:
1. To learn about main functional techniques useful in clinical cardiac MR imaging.
2. To become familiar with pharmacological testing approaches.
3. To learn about some more advanced techniques.

A-0200 16:34
B. Ischaemic diseases
J. Bogaert; Leuven/BE (Jan.Bogaert@uz.kuleuven.ac.be)

Ischemic heart disease (IHD) remains the most frequent cause of mortality. Cessation of blood flow, due to temporary or persistent occlusion of the CA lumen, causes loss of function in the myocardium downstream the occluded vessel. The impact on the pump capacity of the heart directly depends on the loss in contractile power. Therefore, functional imaging is obligatory. Amongst cardiac imaging modalities, CMR is the most comprehensive technique to study IHD, including functional imaging. The latter is achieved using bright-blood cine steady-state free-precession (SSFP) sequences. Typically, the heart is imaged along the different cardiac axes. These images allow calculating ventricular volumes, ejection fraction and myocardial mass. Moreover, the regional function can be assessed by visual analysis or by using dedicated software - e.g. feature tracking - providing data with regard to myocardial strain (in the different directions). Cine imaging is combined with myocardial tissue characterisation and/or first-pass perfusion imaging. In this way, functional impairment can be directly related to the presence and severity of myocardial damage and/or impaired myocardial perfusion. This approach allows to describe different presentations and link them to clinical scenarios. Moreover, stress functional imaging is of valuable interest to depict hemodynamically significant stenoses and to determine myocardial viability in patients with chronic myocardial ischemia. This lecture will provide a deep view of how to use functional imaging by CMR in different clinical scenarios of IHD, i.e. acute chest pain (diagnosis/differential diagnosis) - angor pectoris - chronic IHD.

Learning Objectives:
1. To learn about the impact of functional parameters for therapeutic orientation in emergency.
2. To learn about the validated biomarkers of prognosis.
3. To learn about how to follow the patients.

A-0201 17:02
C. Non-ischaemic cardiopathies
L. Natale; Rome/IT (luigi.natale@unicatt.it)

Non-ischemic cardiopathies potentially represent a huge amount of cardiac diseases; nevertheless, the term is frequently used for myocardial diseases. Non-isodose non-invasive imaging (Echo, MR, CT) has taken the lead in diagnosis, choice of treatment and treatment assessment. Particularly, MR has unique capabilities in morpho-functional phenotyping and tissue characterisation, but more recently CT showed new tools (i.e. spectral imaging) and potential role in this field. Inflammatory diseases of the myocardium represent an important application of multimodality imaging, particularly MRI, because of its multiparametric approach, that allows the assessment of oedema, capillary leak and necrosis/scar. Furthermore, imaging techniques can provide important data about the outcome, both with functional approach (Echo, MRI) or tissue characterisation approach (MRI). Tissue characterisation is mainly aimed to discover fibrosis: replacement fibrosis is typically assessed by late Gadolinium enhancement, while interstitial and plexiform fibrosis are recognised and quantified by parametric CMR imaging (T1 mapping, ECV); A huge amount of data have been published about fibrosis and prognosis, demonstrating that fibrosis is a stronger independent predictor or events than ejection fraction. Finally, morphology, function and tissue characterisation are extremely helpful in the assessment of response to treatment. Again, MR plays a major role in this field.

Learning Objectives:
1. To learn about diagnostic criteria of non-ischaemic cardiopathies.
2. To understand the impact of functional imaging for outcome prediction.
3. To learn about their impact in treatment response.
Radiologists

Urinary tract (UT) obstruction secondary to urolithiasis is the most common

B. Non-traumatic urinary tract emergencies

A-0203 08:30

A. Urinary system trauma
V. Logager; Copenhagen/DK (vibeke.logager@regionh.dk)

According to the American Association of Surgeons in Trauma (AAST), approximately 10% of all trauma admissions have kidney injuries. Blunt traumas can be graded in a 5-point Renal Injury Scale. On the basis of the patient's clinical findings, an imaging algorithm is set. In general, patients that are normotensive with microscopic haematuria have less than 0.2% risk of serious kidney damage and imaging is unnecessary, whereas patients with either: (A) gross haematuria, (B) microscopic haematuria and blood pressure less than 90 mmHg or occasionally, (C) microscopic haematuria, will require imaging. Contrast-enhanced CT is the way to go. Imaging should be in 3 phases (cortico-medullary, delayed 3-5 min and late phase (more than 10 min). Image reading should be by the multipane approach. Most of the findings do not require surgical intervention. Some can be treated with minimal invasive therapy. Only a few cases need surgical intervention. On the basis of case presentations, findings will be analysed, discussed and correlated to the patient's clinical status and treatment possibilities, including where and which signs to look for. Which modality could be used to solve the diagnostic problem when the clinical picture does not fit with the radiological picture. Relevant questions will be asked during this session for the participants to vote and the results will be discussed.

Learning Objectives:
1. To identify the signs of trauma.
2. To outline the clinical impact of these findings.

A-0203 09:15

B. Non-traumatic urinary tract emergencies
G. Masselli; Rome/IT (gabriele.masselli@uniroma1.it)

Urinary tract (UT) obstruction secondary to urolithiasis is the most common urologic emergency in patients presenting with abdominal pain. Serious complications of acute obstruction include ureteral rupture, pyelonephrosis or abscesses. Radiologists need to define the extent of obstruction, its likely duration and whether an intervention is required, aware that ultrasound (US) is usually normal in case of acute onset. In such cases, computerised tomography (CT) is the gold standard diagnostic tool. UT infection (UTI) is another common emergency, and it may vary in severity, from ureteral to focal renal infection, emphysematous pyelonephritis or pyonephrosis. UTI diagnosis is usually clinical, but in the case of uncertainty, CT provides early diagnosis, outlining the extent and severity of the disease. Magnetic resonance diffusion-weighted imaging (DWI) is of particular value when differentiating pyonephrosis from simple hydronephrosis. DWI of the kidneys is highly sensitive for the detection of focal or diffuse infections, a reason why is gaining more and more popularity. T2-weighted (static fluid) urography is performed in pregnant women to outline the ureters in their entirety. A challenge of MR urography is the differentiation between physiologic hydronephrosis and pathologic obstruction. Vascular UT emergencies include renal infarcts (commonly of thromboembolic origin), renal vein thrombosis (typical of hypercoagulable states and neoplastic patients), and spontaneous haemorrhage (due to angiomyolipoma rupture). These are among the most common non-traumatic UT emergencies, and it is fundamental for every radiologist to be fully confident in their diagnosis. The role of each imaging modality will be interactively discussed in the different clinical scenarios.

Learning Objectives:
1. To understand the imaging technique.
2. To become familiar with the differential diagnosis.

Postgraduate Educational Programme

08:30 - 10:00 Room A

E³ - ECR Academies: Interactive Teaching Session for Young (and not so Young) Radiologists

E³ 521 Emergency radiology II
A-0202 08:30

A. Urinary system trauma
V. Logager; Copenhagen/DK (vibeke.logager@regionh.dk)

Gastrointestinal (GI) bleeding is common in the daily practice and needs rapid diagnosis and treatment. It might be acute, overt and chronic. GI bleeding has many causes and can appear anywhere throughout the GI tract. Hematemeses, melena or hematochezia are forms of acute or overt GI bleeding. Chronic GI bleeding presents as iron deficiency or positive faecal occult blood. Computed tomography (CT) is the method of choice in the diagnosis of acute massive GI bleeding. The CT examinations used are CT angiography and CT enterography depending on the clinical context. Angiography is used in well-selected cases for the treatment of GI bleeding. CT also can complement scintigraphy in chronic bleeding.

Session Objectives:
1. To define acute, overt and occult GI bleeding.
2. To learn about different imaging modalities that can be utilised in the work-up of GI bleeding.
3. To define the role of the interventional radiologist in the management of the GI bleeding.

A-0205 08:35

A. Acute GI bleeding
G.H. Mostbeck; Vienna/AT (gerhard.mostbeck@wienkav.at)

Acute gastrointestinal (GI) bleeding has high morbidity and mortality. The clinical presentation of acute GI bleeding varies with the location of the bleeding site, the cause, the amount of blood loss and the presence of comorbidities. The ligament of Treitz is the border between the upper (mouth to Treitz) and lower GI bleeding. However, it is not always possible to differentiate between upper and lower GI bleeding clinically, although the clinical presentation is different, as is the aetiology. In decreasing order, erosions and ulcer, variceal bleeding, Mallory-Weiss-tears, vascular lesions and neoplasms are responsible for upper GI bleeding. In contrast, lower GI bleeding occurs in the elderly population, with diverticular disease, angiodysplasia, neoplasms, colitis and benign ano-rectal lesions being the main etiologies. The main diagnostic objective is the identification of the aetiology and site of bleeding. Endoscopy is the initial diagnostic step in upper GI bleeding, but limited in lower GI bleeding due to difficulties in colonic cleansing in an emergency situation. Accordingly, CT is the imaging method of choice (technique: no positive oral contrast, high dose /iodine content/flow of contrast material (e.g.100-150ml, 350 mgI/ml, 4-6ml/sec), plain, arterial and parenchymal phases, dual-energy CT with iodine maps if available, multiplanar reformations, high anatomic resolution). We search for high-attenuation (> 80HU) lumenal or wall lesions not seen on unenhanced CT data. Detection rates vary, and an amount of bleeding > 0.35 to 0.5ml/min is required. As bleeding might be intermittent, CT should be performed when active bleeding is present.

Learning Objectives:
1. To learn about the common causes of the acute upper and lower GI bleeding.
2. To understand the rationale for different investigative pathways depending on the likely site of bleeding.
3. To appreciate how to best optimise imaging protocols to identify the site and cause of bleeding, and assist with treatment planning.

A-0206 08:58

B. Occult and overt GI bleeding: the role of radiology
C. Stroszczynski; Regensburg/DE (Christian.Stroszczynski@klinik.uni-regensburg.de)

Acute gastrointestinal bleeding often presents a challenging clinical situation. The impact on radiological imaging depends on the clinical setting and the presence or absence of sufficient endoscopic procedures. Thus, diagnostic pathways are strongly varying from hospital to hospital. Causes of GI bleeding strongly depend on the topography of the bleeding source (upper or lower GI bleeding) and age of the patient. Most common causes of upper and lower GI bleeding will be discussed in this presentation. In addition, differences between obscure, occult and overt GI bleeding in interaction with gastroenterologist and surgeons will be focused on. The clinical value of radiologic methods for imaging the GI tract such as MS-CT, MRI, scintigraphy and digital subtraction angiography will be demonstrated as well as common diagnostic pathways.
proposed by interdisciplinary societies such as ESAGE.

Learning Objectives:
1. To learn about the differences between obscure, occult and overt GI bleeding, and the most common causes of each.
2. To understand which tests to perform when imaging is indicated, and the most important diagnoses to look for.
3. To appreciate the interaction between endoscopic and radiologic investigations in managing patients with obscure GI bleeding.

A-0207 09:21

C. When is the interventional radiologist needed?

D.K. Tsitsis; fraktion/GR (tsitis@med.uoc.gr)

Gastrointestinal (non-variceal) bleeding is a medical emergency with an associated mortality of approximately 10%. Acute significant gastrointestinal bleeding is defined as bleeding requiring transfusion of at least four units of blood within 24 hours or showing signs of hemodynamic instability. Most cases are resolved endoscopically, pharmaco logically, or by correction of coagulation parameters. Due to its minimally invasive nature, endovascular treatment is the method of choice, after the failure of the previous methods. Standard access for embolisation is via common femoral, brachial or radial artery. After reaching the appropriate visceral artery through diagnostic 4 or 5F catheter, and verification of the source of bleeding, microcothers are introduced coaxially. Embolic materials include microcoils, PVA microspheres, gelatin foam and occasionally tissue glue. The upper gastrointestinal tract is characterised by a rich network of collateral supply with a lower risk of ischemia. In the risk of rebleeding via collaterals, it is necessary to perform embolisation proximally and distally from the site of bleeding (so-called sandwich method). In the lower gastrointestinal tract, ischemia risk is higher due to the higher proportion of terminal branches, and embolisation should be as selective as possible. In the case of too proximal embolisation, there is a higher risk of bowel ischemia.

Learning Objectives:
1. To learn about the role of interventional radiology in the management of acute and chronic GI bleeding.
2. To learn about the variety of techniques available to the interventional radiologist to evaluate obscure GI bleeding and control acute GI bleeding.
3. To understand when interventional radiology is clearly indicated, when it should be considered and when it should be avoided, if possible.

09:44

Panel discussion: Guidelines for management of GI bleeding and real life: why are they different?

Room C

General Radiography (Radiographers)

RC 514

Radiography audit and quality management

Moderators:
F. Zarb; Msida/MT
E.J. Adam; London/UK

Session Objectives:
1. To understand the importance of Radiography Quality Management.
2. To appreciate the role of PACS in driving quality improvements.
3. To promote discussion on practical concerns in a Radiology department.

A-0208 08:30

A. Understanding PACS to support radiography quality management processes

M. O’Connor; Dublin/IE (michelle.oconnor@ucd.ie)

Quality management in the field of radiography plays an important role in the improvement of the performance of and processes related to diagnostic procedures, including the selection of imaging and procedural services, the quality and safety of healthcare delivered and the effectiveness and management of all imaging services. Many factors have contributed to the growing importance of evaluating quality in radiography practice such as the rapid evolution of technology, legislative requirements, increased reliance on diagnostic imaging in healthcare, role development and patient safety factors particularly related to radiation risks. One of the key tools for evaluating services is clinical audit. Through clinical audit, healthcare staff may identify and measure areas of risk within their service. The Medical Exposure Directive 97/43/EURATOM defines clinical audit as ‘a systematic examination or review of medical radiological procedures. It seeks to improve the quality and the outcome of patient care through structured review whereby radiological procedures, procedures, and results are examined against agreed standards for good medical radiological procedures’. Modifications of the practices are implemented where indicated and new standards applied if necessary. Picture archive and communications system (PACS) is commonly used to support radiography service evaluation as it contains a large database of radiology investigations and as easily filtered thus provides extensive audit opportunities, e.g. identifying workflow inefficiencies, image reject analysis, assessing compliance with protocols and policies etc. Practical tips to enhance audit readiness have been developed.

Learning Objectives:
1. To highlight the need for evaluating radiographic quality within clinical practice.
2. To understand the ability of PACS to support radiography service evaluation.
3. To identify practical tips to enhance audit readiness.

A-0209 09:00

B. An expert in radiography quality management

D. Catania; Milan/IT (cataniadiego@hotmail.com)

The presentation will relay current literature on the topic of the audit with respect to patient referrals, waiting times and turnaround times. The focus will be predominantly related to radiography and radiography professional activity. The discussion will include guidelines from professional agencies such as the IAEA, Radiology professional Societies and Radiography Societies. Radiography research published on the topics above and key current/future considerations for our professional societies will be discussed. To broaden the discussion on quality management, the many aspects of radiography activity which require quality management will be proposed, and as part of the presentation, the role of a designated radiographer to manage these radiography quality needs will be discussed. Current structures which support such roles will be presented, and the presentation will explore the current evidence for developing additional roles within the profession of radiography, to support the broad spectrum of possible radiography quality needs. Consideration will be given to how professional staffing structures vary across Europe and the potential impact on effective radiography quality management. Specific examples from the clinical environment will be provided to illustrate “real world” examples of radiography quality management. These examples will cover a broad spectrum of medical imaging activity. The discussion will include how other professionals interact within the quality processes undertaken by radiographers and the need for interdisciplinary cooperation will be emphasised. Barriers to successful quality management activity performed by radiographers will be included.

Learning Objectives:
1. To understand the importance of auditing the status of referrals, waiting times and turnaround times.
2. To introduce the role of a designated radiographer to manage the radiography quality process.
3. To provide “real world” examples of radiography quality management.

A-0210 09:30

C. Back to basics: auditing radiographic technique

L. Harding; Warrington/UK

“no abstract submitted”

Learning Objectives:
1. To discuss the importance of regular auditing of radiographic practice.
2. To highlight the importance of Radiology Information System (RIS) dashboards in promoting high quality imaging.
3. To understand how a departmental quality improvement team, using audit, can maintain and raise imaging standards.

08:30 - 10:00

Room X

Joint Session of the ESR and UEMS

ESR/UEMS

Imaging professionals in the EU: radiologists without borders

A-0211/A-0212 08:30

Chairpersons’ introduction

M. Adriaensen; Heerlen/NL (miruade@gmail.com)
L. Bonomo; Rome/IT

The UEMS (European Union of Medical Specialists) is the oldest European medical organisation representing the interests of more than 50 different medical specialties and involving more than 1.6 million healthcare professionals. The ESR (European Society of Radiology) is the world’s biggest radiological society, encompassing more than 82,000 members from 161 different countries. It was founded in 2005 by merging the European Congress of Radiology and the European Association of Radiology, aiming at...
establishing a single, powerful and unified voice for European radiologists. Through the section of radiology of the UEMS, UEMS and ESR share the same ambitious objectives of promoting the highest quality of care and medical practice in radiology, by serving the needs of patients and the general public, harmonising radiological training and defending free movement and professional interests of European radiologists. This Joint Session will focus on the concept and importance of advocacy at the level of the European Union, with specific emphasis on the value of qualifications across borders and the consequences of a Brexit. With regard to harmonisation of radiological training, the revised European Training Curriculum will be discussed. Furthermore, you will be informed how to gain European recognition for your degree in radiology as well as for your radiology department. Finally, particular attention will be dedicated to the working methodologies of EACCME (European Accreditation Council for Continuing Medical Education) and ACI (Accreditation Council in Imaging) in the framework of CME (Continuing Medical Education) and CPD (Continuing Professional Development) programmes.

Session Objectives:
1. To describe the role of the UEMS within the EU.
2. To understand the difference between the ESR and the UEMS.
3. To understand the importance of cooperation between the ESR and the UEMS.

Author Disclosure:
M. Adriaensen: Other; Board member, UEMS section of Radiology; member, Committee of the European Board of Radiology; member, ETAP 2.0 Scientific Committee.
K. Riklund: Advisory Board; Swedish Medical Product Agency. Board Member; Dicom Port AB.

A-0213 08:35
Putting your interests first: UEMS and ESR advocacy in the EU (part 1)

P.M. Parizel; Antwerp/BE

The ESR was founded in 2005 by merging the European Congress of Radiology (ECR) and the European Association of Radiology (EAR) to adequately represent a unified and powerful voice for European radiologists. In recent years, the EU institutions have increasingly shaped policies in the fields of health, research and digitalisation, which has impacted clinical practice for radiologists and biomedical research across the Member States. Under the guidance of the Board of Directors, the ESR closely monitors and assesses EU legislation and policy developments to ensure EU initiatives benefit clinical practice and patient safety. Equipped with a toolbox of instruments, the ESR participates in EU stakeholder consultations, regularly organises policy events and issues statements and position papers to get across the radiologists’ point of view. Taking into account the complex EU policymaking arena, the ESR has adopted a proactive approach by successfully establishing good working relations with the EU institutions and engaging with other stakeholders active in the fields of health and research. In this respect, the ESR is widely recognised as a major healthcare stakeholder that has successfully promoted the interests of the radiology profession and patient safety at the pan-European level. As collaboration is the key to success at EU level, the ESR is grateful to have found a respected partner in the UEMS to jointly defend the interests of the medical profession and to strive for the highest standards in healthcare, teaching and research.

Learning Objectives:
1. To understand the structure of the UEMS and the ESR.
2. To understand the differences between the ESR and the UEMS.
3. To understand the importance of UEMS/ESR political involvement in EU affairs.

A-0214 08:40
Putting your interests first: UEMS and ESR advocacy in the EU (part 2)

B. Mallet; Brussels/BE (bernie.mallet@sky.net)

One of the basic principles of the European Union is Free Movement. Of course, this concerns people, products, funds manpower but also Healthcare and can be found in this particular field in three domains. First the free movement of students organised by the Bologna Process, the free movement of physicians organised by the EU Directive on Professional Qualification Recognition (PQR) and recently the free movement of patients organised by the EU Directive on Patient Safety on Cross Border Healthcare. Concerning the PQR the first initiative was in 1993 with the first version of the Directive that was amended regularly up to 2013 (EC 2013/55), but the most important version is the EC 2005/35. This Directives recognises automatically the Diplomas of Medicine between the different Member States and also grants recognition for some specialities. The Directives have to be revised every seven years, and the next scheduled revision is planned in 2020, so this would be the ideal moment to try to “fuse” those both specialities and have only “Radiology” mentioned in Annex V and abolish “Diagnostic Radiology”. A joint effort of both the UEMS and the ESR could be considered to achieve this revision.

Learning Objectives:
1. To understand the structure of the UEMS and the ESR.
2. To understand the differences between the ESR and the UEMS.
3. To understand the importance of UEMS/ESR political involvement in EU affairs.

A-0215 08:45
To be or not to be at the table: why advocacy matters for radiologists

K. Riklund: Umea/SE (katrine.riklund@umu.se)

ESR and UEMS Radiology section work together for better patient care, harmonised professional and standards. The radiological community is affected by developments in healthcare and financial constraints for healthcare spending together with a growing demand of healthcare combined with an under-representation of the radiologist in decision making and emerging value-based concept. In the talk the need for coordinated actions to an activator for the highest standard of patient care in radiology will be discussed. We will work all through the three levels of the European legislation process and the representation of ESR in EU networks and stakeholder groups.

Learning Objectives:
1. To understand the concept of advocacy and the importance of advocacy at the EU level.
2. To understand the three levels of the European Legislation process.
3. To understand the influence of EU directives on national legislation and daily practice.

Author Disclosure:
K. Riklund: Advisory Board; Swedish Medical Product Agency. Board Member; Dicom Port AB.

Part 1: What does the EU mean for me? A radiologist’s guide

A-0216 08:53
Creating a European radiology (or healthcare) workforce: the value of qualifications across borders

H. Käfer; Vienna/AT; F. Brussela/BE (francois.kaefer@ec.europa.eu)

EU Member-States are free to regulate professions and thus restrict access of certain professions on their territory, as long as they respect the principles of non-discrimination and proportionality under EU law. From this derives that EU law does not primarily seek to harmonise professional qualifications and access to professions. This exists only in a few areas, such as transport and health. For doctors, Directive 2005/36/EC on the recognition of professional qualifications foresees minimum harmonisation of training based on years and hours of study and acquired knowledge and skills, which entail an automatic recognition mechanism. This applies to doctors with basic medical education, general practitioners and currently 54 medical specialist categories including radiology and diagnostic radiology, given that the professional is fully qualified in its home Member-State. Evidence of formal qualifications in medical specialist training, which are covered by the automatic recognition system, are listed in point 5.1.3. of Annex V to the Directive. For the remaining medical specialisations, EU law provides recognition mechanism with Directive 2013/35/EU, based on the principle of mutual recognition of professional qualifications. This kind of recognition allows the host Member-State to compare the substance of training and in case of substantial differences, to impose compensation measures in the form of an aptitude test or an adaptation period. Doctors are the most mobile profession in Europe under the Directive when it comes to recognition for the purpose of a permanent establishment with more than 3500 recognition decisions per year throughout Europe, including the EEA and CH.

Learning Objectives:
1. To understand the concept of advocacy and the importance of advocacy at the EU level.
2. To understand the three levels of the European Legislation process.
3. To understand the influence of EU directives on national legislation and daily practice.

A-0217 09:01
Brexit means Brexit: radiologists with borders?

V. Papalois; London/UK

no abstract submitted

Learning Objectives:
1. To understand the concept of advocacy and the importance of advocacy at the EU level.
2. To understand the three levels of the European Legislation process.
3. To understand the influence of EU directives on national legislation and daily practice.
Part 2: Educating the next generation of radiologists

A-0218 09:09

The benefits of harmonised training for the radiologists of tomorrow

C. Catalano; Rome/IT (carlo.catalano@uniroma1.it)

One of the aims of the ESR is to harmonise and standardise training all over Europe. A major effort has been done in the past few years in the preparation of the European Training Curricula and the Undergraduate Training Curriculum, which have recently been updated and received the endorsement of the UEMS. The ETC and the ETU are the cornerstones of the training outcomes of trainees in radiology. The ETC is a living document continuously revised in order to keep up with the developments and knowledge in radiology. The CESMA is an advisory body of the UEMS created to provide recommendation and advice on the organisation of European examinations for European medical specialists. The ESR has therefore developed the EDIR which is available to radiologists and last year radiology residents. It certifies that their level of knowledge and competency is in line with the ETC. The EDIR is an additional qualification of excellence for general radiology, fully endorsed by the UEMS and the ESR. The European Training Assessment Programme (ETAP) has been recently updated to a version 2.0, based on a new platform, which enables a quick and easy online certification process for both applicants and medical specialists. ETAP 2.0 ensures that the training departments comply with the quality standards set by the ESR European Training Curriculum and the UEMS. All these activities of the ESR aim at improving throughout Europe the level of knowledge of Radiologists and Radiologists in training by standardising training.

Learning Objectives:

1. To get an overview of the different levels and the changes made in the revised European Training Curriculum in radiology.
2. To learn about the Council for European Specialist Medical Assessment (CESMA).
3. To know about the value of the European Diploma in Radiology (EDIR).
4. To learn about the facts and figures of the European Training Assessment Programme (ETAP) 2.0.

A-0219 09:17

Making your qualifications count at home and abroad: the European Diploma in Radiology and the CESMA

H.J. Lamb; Leiden/NL (h.j.lamb@lumc.nl)

Short informative presentation on the structure, organisation, outcome and future projections for the European Diploma in Radiology (EDIR). Furthermore, short overview of the different levels and the changes made in the revised European Training Curriculum in radiology. Also an introduction to the Council for European Specialist Medical Assessment (CESMA). Finally, facts and figures will be discussed of the European Training Assessment Programme (ETAP) 2.0.

Learning Objectives:

1. To get an overview of the different levels and the changes made in the revised European Training Curriculum in radiology.
2. To learn about the Council for European Specialist Medical Assessment (CESMA).
3. To know about the value of the European Diploma in Radiology (EDIR).
4. To learn about the facts and figures of the European Training Assessment Programme (ETAP) 2.0.

A-0220 09:25

ETAP 2.0

L. Oleaga Zufiria; Barcelona/ES (lauroaleega@gmail.com)

The European Training Assessment Programme (ETAP) is a joint initiative of the European Society of Radiology (ESR) and the European Union of Medical Specialists (UEMS) Radiology section, with the aim of assessing and harmonising the radiology training department programmes in Europe. A qualitative adaptation was made in 2016 modifying the structure of a face-to-face audit to an online audit to facilitate access to a larger number of centres and lighten the work of the assessors, establishing as ETAP 2.0 programme. ETAP 2.0 represents an instrument for the centres to compare the quality of the training and assess the suitability of the program with the European Training Curriculum (ETC). It is strongly linked with the European Diploma of Radiology (EDIR); ETAP 2.0 is a certificate of excellence for training institutions that ensure that their training department meets the quality standards set by the European Society of Radiology and the UEMS. Both initiatives favour the standardisation of the European training, and they both contribute to increase the quality of training across Europe. The differential element of the ETAP 2.0 is its platform, which enables a quick and easy certification process for both applicants and assessors. Representatives of the applicant institutions and the assessors can easily and efficiently store, access and manage all documents and information necessary for the certification process. ETAP 2.0 offers training centres an opportunity to audit their programme as an instrument to check the level of competence, attitude and development of new skills the trainees acquire during the training period.

Learning Objectives:

1. To get an overview of the different levels and the changes made in the revised European Training Curriculum in radiology.
2. To learn about the Council for European Specialist Medical Assessment (CESMA).
3. To know about the value of the European Diploma in Radiology (EDIR).
4. To learn about the facts and figures of the European Training Assessment Programme (ETAP) 2.0.

Author Disclosure:

L. Oleaga Zufiria: Consultant; Telemedicine Clinic.

Part 3: Staying ahead of the curve with continuing professional development (CPD)

A-0221 09:33

Patient safety and job security for life: CME/CPD in Europe

P. Ricci; Rome/IT (paolo.ricci@uniroma1.it)

CME - Continuing Medical Education - consists of educational activities which serve to maintain, develop, or increase the knowledge, skills, and professional performance and relationships that a physician uses to provide services for patients, the public, or the profession. CPD - Continuing Professional Development - can be defined as the systematic maintenance, improvement and continuous acquisition or reinforcement of the lifelong knowledge, skills and competencies of health professionals. CME-CPD is a clinical and professional duty as well as an ethical obligation for healthcare professionals. It can also be a powerful instrument free from commercial influence in the hands of qualified medical specialists which is capable of being adopted in the European Union, where healthcare systems became inter-dependent, yet still inhomogeneous, with mandatory and voluntary CME-CPD systems coexisting side by side. At EU-level, the role of CME to help safeguard patient safety within the context of cross-border mobility has been addressed in several legal instruments: e.g. Council Recommendation on Patient Safety, Directive 2011/24/EU on patients’ rights in cross-border healthcare, and Directive 2013/55/EU on the recognition of professional qualifications. The UEMS - European Union of Medical Specialists actively promotes high standards in CME-CPD through the European Accreditation Council for Continuing Medical Education (EACCME), created in 1999 with the aim of encouraging high standards in development, delivery and harmonisation of CME through the international accreditation of events, and the establishment of a “currency” system for the International accreditation of CME credits (ECME - 1 ECME = 1 hour of CME).

Learning Objectives:

1. To learn about the European Accreditation Council for Continuing Medical Education (EACCME).
2. To know about the existence of European CME credits (ECMEC).
3. To learn about the importance of credits in different European countries.

A-0222 09:41

It's easier than you think: the many ways to gain European CME/CPD credits

M.A. Lucic; Sremska Kamenica/RS (milos.a.lucic@gmail.com)

Understanding the tendency of Continuing Medical Education (CME) shift from voluntary to mandatory within Europe, European Union of Medical Specialists (UEMS) and its European Accreditation Council for CME (EACCME) introduced European Continuing Medical Education Credits (ECMEC’s), as CME “tokens” reflecting objectively the CME activity, that facilitate the exchange of CME credits between European countries and comparable systems outside Europe. Considering CME as educational activities which serve to maintain, develop or increase the knowledge, skills, professional performance and relationships that physician/radiologist uses to provide services for patients or profession, ECMEC’s are awarded for both live educational events, and e-learning materials, but from recently also for Continuing Professional Development (CPD), defined as the educative means of updating, developing and enhancing how physicians apply the knowledge, skills and attitudes required in their working lives. As CPD incorporates and goes beyond CME, EACCME 2.0, adopted in 2016, enabled EACCME recognition of the several CPD/CME activities, that includes reviewing and/or publishing scientific and educational material, learning by teaching, and examining in UEMS exams, including EDIR exam. Based on surveys conducted by Accreditation Council in Imaging (ACI) during the last two years, that provided not only valuable information on accreditation systems differences in European countries, but more important, indicated important standard of the European radiology community, that include the recognition of ECMEC’s as universal European CME “tokens”, and unification of CME/CPD systems within Europe, and shall be acknowledged as the “voice of European radiologists” in future considerations.
Learning Objectives:
1. To learn about the European Accreditation Council for Continuing Medical Education (EACCME).
2. To know about the existence of European CME credits (ECMEC).
3. To learn about the importance of credits in different European countries.

Author Disclosure:
M.A. Lucic: Research/Grant Support; Provincial Secretariat for Science and Technology Development of the Autonomous Province of Vojvodina; Grant No. 142-451-2433/2018.

09:49 Panel discussion: The state of radiology in the EU: a diagnosis of “the bigger picture”

08:30 - 10:00 Room O

E³ - ECR Master Class (Cardiac)

E³ 526
Cardiac imaging in arrhythmia and sudden cardiac death

A-0223 08:30
Chairperson’s introduction
P. Donato; Coimbra/PT (donato.pj@gmail.com)

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are used to detect underlying cardiac conditions that can lead to ventricular arrhythmia (VA) and sudden cardiac death (SCD). VA includes a wide spectrum of ECG forms from premature ventricular complex to ventricular fibrillation, and a wide spectrum of clinical presentations, from a total lack of symptoms to cardiac arrest. SCD is the most common consequence of sudden cardiac arrest and is responsible for 50% of all cardiovascular deaths. The risk for VA and SCD vary with different underlying cardiac conditions, and with specific family history and with genetic variants. To prevent SCD is important to identify patients at risk and apply preventive strategies. The risk increases with age, related to the increase of ischemic heart disease, which remains the most common cause of sudden cardiac arrest. There are also various forms of cardiomyopathy leading to cardiac fibrosis or hypertrophy responsible for SCD that can be early depicted by cardiac imaging. AHA 2017 guidelines recommend that in patients presenting with VA who are suspected of having structural heart disease, cardiac MRI or CT can be useful to detect and characterise underlying structural heart disease. The strength of each technique is under study. Imaging arrhythmic patients are challenging due to difficulties on ECG synchronisation. These patients have frequently implanted devices at the time of the MR study, is also important to know the risk that each patient occurs and to know strategies to decrease artefacts caused by the devices.

Session Objectives:
1. To learn about existing imaging biomarkers to prevent sudden cardiac death.
2. To understand how to face the challenge of arrhythmia in cardiac imaging.
3. To become familiar with the prerequisites for MR in patients with active implants.

A-0224 08:35
A. The role of CMR in sudden cardiac death
D. Pietrowska-Kownacka; Warsaw/PL

Cardiovascular diseases are responsible for over 4 250 000 sudden cardiac deaths (SCD) each year worldwide, with the risk almost five times higher in men. The major cause of SCD is known or unknown coronary artery disease, but the list of cardiac diseases leading to SCD is much longer especially in the younger population. It includes cardiomyopathies, inherited primary arrhythmia syndromes, inflammatory, rheumatic and valvular heart diseases. The risk stratification for the prevention of sudden cardiac deaths includes invasive and non-invasive diagnostic procedures. Complementarily to echocardiography, cardiovascular magnetic resonance (CMR) is an important imaging technique that enables excellent morphology, function and tissue characterisation of the heart. CMR could be used for diagnostic purposes but also for risk stratification in cases of known cardiac pathology. The lecture will focus on CMR prognostic factors in acute and chronic ischemic heart disease, myocarditis, selected cardiomyopathies and systemic diseases with cardiac involvement.

Learning Objectives:
1. To become familiar with the pathophysiology of sudden cardiac death.
2. To introduce cardiac MR biomarkers to prevent sudden cardiac death.
3. To learn how to perform and how to interpret cardiac MR to prevent sudden cardiac death.

A-0225 09:00
B. Preventing sudden cardiac death with CT: pure theory or new diagnostic paradigm?
K. Nikolaou; Tübingen/DE (Konstantin.Nikolaou@med.uni-tuebingen.de)

Sudden cardiac death (SCD) is a major health problem, and there is an urgent need to establish diagnostic tools for primary prevention, e.g. by selecting appropriate patients for implantable defibrillators. Today, diagnostic methods of selecting candidates for preventive measures and therapies still have significant shortcomings. Cardiac CT and Coronary CT Angiography have seen major advancements, e.g., for detecting (malignant) coronary anomalies. But also in the field of myocardial abnormalities such as left ventricular hypertrophy, or in the assessment of vulnerable coronary artery plaques, CT shows great potential, with growing evidence on the use of cardiac and coronary CT for the detection of patients at risk for SCD. Probably in the future, a mixture of established and novel imaging biomarkers for predicting SCD, potentially including several imaging modalities, will be incorporated into clinical guidelines. The goal of this talk is to discuss the current status and future potential of cardiac CT imaging to enhance risk stratification for SCD.

Learning Objectives:
1. To learn what to look for in CT to prevent sudden cardiac death.
2. To get an overview about existing evidence of cardiac CT in this indication.
3. To discuss the possible future role of cardiac CT in preventing sudden cardiac death.

Author Disclosure:
K. Nikolaou: Research/Grant Support; Siemens Healthineers, GE Healthcare, Bayer Healthcare, Bracco. Speaker; Siemens Healthineers, Bayer Healthcare, Bracco.

A-0226 09:25
C. Imaging of patients with arrhythmia and implantable devices
G. Pontone; Milan/IT (gianluca.pontone@ccfm.it)

Evaluation of cardiac arrhythmias using both cardiac magnetic resonance (CMR) and cardiac computed tomography angiography (CCTA) represents an extremely interesting topic in cardiac imaging. CMR allows obtaining data regarding myocardial tissue characterisation as well as correct evaluation of ejection fraction. Information that CMR provides to arrhythmologist can mainly be divided as follow: sudden cardiac death risk stratification, decision-making for cardiac resynchronisation therapy with evaluation of cardiac anatomy, late gadolinium enhancement (LGE) and characterisation of an arrhythmogenic substrate in order to guide ablation of complex arrhythmias. CCTA is mainly used in patients with atrial fibrillation (AF). Indeed, in patients with AF, CCTA allows a detailed evaluation of pulmonary veins anatomy and rule out of coronary artery disease. Furthermore, in patients with AF, CCTA can play a key role for the correct planning of left atrial appendage closure, in particular, if a 3D model is printed. Furthermore, some articles highlight the role of CCTA for accurate definition and location of ventricular arrhythmias. The adverse effect of CMR on pacemaker (PM) and implantable cardioverter defibrillator can be induced by electromagnetic interference or can provide the mechanical effect. Moreover, it is important to consider the heating of cardiac leads. CMR in patients with a cardiac device should take in account safety of patients.

Learning Objectives:
1. To learn about tips and tricks for successful cardiac CT in patients with arrhythmia.
2. To learn about tips and tricks for successful cardiac MR in patients with arrhythmia.
3. To become familiar with workflow issues for MR imaging in a patient with an implanted device.

Author Disclosure:
G. Pontone: Grant Recipient; General Electric, Bracco, Medtronic, Bayer, Heartflow.

09:50 Panel discussion: Should we screen, who should we screen and how should we screen in order to prevent sudden cardiac death?
The total number of asylum seekers who migrate to another country to have a better job or life has increased from 15,000 to almost 1.4 million annually in last two decades in the countries of EU are fleeing from violence, torture, persecution, political or ethnic oppression and poverty. Migration is associated with different cultural, social, political outcome besides the health status of immigrants. The health of immigrants is affected by mainly infectious diseases such as Tuberculosis, HIV, viral hepatitis, Malaria, Schistosomiasis, Echinococcosis, Neurocysticercosis or similar diseases which reflect the epidemiology in the country of origin. The other include psychological problems, cancer, neurological diseases and acute or chronic malnutrition resulting in anaemia, bone disorders, mental and physical development disorders, immunosuppression and bone disorders which are easy to overlook. Therefore, impact of immigration has to be recognised as an important variable on the status of the current health system of the country which hosted the immigrants to improve the status of immigrants' health. Radiological examinations of patients with these diseases play an important role in the diagnosis of most of these diseases. Although these diseases are often incidental radiological findings in the daily practice, most of the radiologists in the western European countries are unfortunately not familiar to the features of these diseases. We should discuss how to raise awareness on migration-related diseases among radiologists. The health issues of immigrants are very challenging to physicians. Awareness of these conditions is mandatory to ensure good clinical practice for these patients’ population.

Session Objectives:
1. To describe the reasons of migration.
2. To evaluate humanitarian and political consequences of migration.
3. To get an overview on the importance of migration related disease.
4. To understand how we can recognise these diseases on clinical and radiological levels.
5. To raise awareness on migration related diseases among health professionals.

A-0228 08:35 Impact of migration on health: WHO perspective
S. Severoni; Copenhagen/DK

“no abstract submitted”

Learning Objectives:
1. To describe the impact and consequences of migration on health as a global problem.
2. To teach how public health has been importantly influenced by human mobility patterns.
3. To discuss how to raise awareness among health professionals to struggle against the diseases related to migration.

A-0229 08:53 Importance of migration for neglected tropical diseases: WHO perspective
B. Abela-Ridder; Geneva/CH (abelar@who.int)

With increasing levels of conflict, civil unrest, poverty and persecution, there is an estimated 68.5 million people currently forcibly displaced worldwide. Malnourished, stressed people with poor housing and sanitation and restricted access to healthcare results in populations at a high risk of disease, especially neglected tropical diseases (NTDs). Global migration is changing the epidemiology of many of these diseases with emergence and re-emergence of NTDs in non- or low endemic countries. The lack of awareness, diagnostics and treatment available in host countries poses a challenge in appropriately diagnosing and treating affected individuals and poses a risk for endemic foci of disease to be established. Outbreaks of dengue, Leishmania and schistosomiasis have been recorded in low prevalence areas where appropriate vectors or intermediate hosts could allow for local transmission. The prevalence of Chagas disease, strongyloidesis and schistosomiasis in migrant populations ranges from 4.2- 48.5%, 11.56.1% and 5.8 to 44% respectively. Cases of cystic echinococcosis and neurocysticercosis, have also been detected in Europe, with 53% of neurocysticercosis cases attributed to immigrants. Consideration should be given to systematically screen migrant populations on arrival to a host country using standardised screening procedures to reduce the progression and severity of health conditions. It will, however, be important to appropriately manage that individuals are not discriminated against because of a health condition. Better data on disease prevalence and burden in migrant populations will allow increased awareness in host countries, particularly in healthcare practitioners, assure access to timely and appropriate clinical care and management of risk.

Learning Objectives:
1. To describe the importance of neglected tropical diseases on the global level emphasising its relation with poverty.
2. To evaluate how migration changes the dimensions of the problem for neglected tropical diseases in Europe.
3. To discuss how to raise awareness for neglected tropical diseases on global and European levels.

A-0230 09:11 Clinical importance of the diseases related to migration
T. Junghanss; Heidelberg/DE

“no abstract submitted”

Learning Objectives:
1. To become familiar with the list of diseases related to migration and their clinical findings.
2. To discuss how to think about unusual clinical conditions when facing these patients.
3. To teach how to make differential diagnosis on the clinical ground.

A-0231 09:29 Radiology of the diseases related to migration
T. Weber; Heidelberg/DE (tim.weber@med.uni-heidelberg.de)

Globalisation and migration impact on the spectrum of infectious diseases that health care providers are confronted with. Although a major health care problem in a global context, the majority of these diseases may be uncommon in the autochthonal European population. In several frequently imported infectious diseases, imaging studies play an important role in timely diagnosis and treatment stratification. The migration associated infectious diseases most pertinent for the radiologist include, e.g., cystic echinococcosis, schistosomiasis, and neurocysticercosis as well as tuberculosis and visceral leishmaniasis.

Learning Objectives:
1. To learn radiological patterns of diseases related to migration.
2. To discuss how to evaluate unusual radiological conditions of these patients.
3. To teach how to combine radiological and epidemiological features of the patients on the basis of imaging modalities for appropriate differential diagnosis.

09:47 Panel discussion: How do we raise awareness among health professionals to recognise diseases related to migration? How can we adapt migration and migration related diseases into our education?

A-0232 08:30 MRI for early detection, staging and management of breast cancer
P.A.T. Baltzer; Vienna/AT (patbaltzer@gmail.com)

Imaging plays an important role in early detection, staging and management of breast cancer. MRI is the most sensitive method for detection of breast cancer and thus can contribute to all fields of breast cancer diagnosis and treatment. In addition, multiparametric breast MRI provides a number of imaging biomarkers that reveal diagnostic and prognostic information beyond simple cancer detection. Nevertheless, breast MRI has faced several challenges during the past decades due to controversial opinions and contradicting scientific results. Many of these can be attributed to the fact that MRI is more complicated than standard breast imaging methods including newer developments such as digital breast tomosynthesis, ultrasound elastography and contrast-enhanced dual energy mammography. In addition, breast MRI is less readily available, and its application thus needs to be applied to tailored clinical scenarios. One way of overcoming these limitations is simplified and abbreviated protocols that would allow a broader application of MRI, e.g. in intermediate or high-risk screening.
1. To understand the contribution of MRI to preoperative staging and the context within which it should be recommended.
2. To learn about the different MRI biomarkers and in which clinical setting they are of value.
3. To recognise the steps required to move to abbreviated MRI for high-risk screening.

A-0233 08:35
A. Preoperative staging with MRI: results of preoperative MRI (MIPA) trial
F. Sardanelli; San Donato Milanese/IT

The MIPA study aimed at verifying the impact of preoperative breast MRI. Up to November 2018, over 7,000 patients were recruited in 30 centres. Data from 2,425 patients were: 1,201 (49.5%) received MRI, 1,224 (50.5%) did not. Of these 1,224 MRIs, 210 (17%) were performed for screening (4%) or diagnostic purposes (13%). Of 1,014 MRIs performed as preoperative studies, 59% were ordered by radiologists alone, 32% by surgeons alone; radiologist and surgeons were involved in 68% and 40% of cases, respectively. Mastectomy rate planned at mammography/ultrasound was 185/1,201 (15.4%) in the no-MRI group, 245/1,224 (20.0%) in the MRI group (p<0.001). In the MRI group, 21 additional mastectomies (1.7%) were planned after MRI, while 25 patients planned with mastectomy shifted to conservative surgery (CS). Of the 1,004 patients planned for CS before MRI, MRI did not change surgery in 733 (73%), while prompting a wider CS in 143 (12.5%), a less extensive CS in 128 (12.7%). Mastectomy rate was 192/1,201 (16%) in no-MRI group and 257/1,224 (21%) in MRI group (p<0.001). Per-patient reoperation rate for close/positive margins were 135/1009 (13.4%) and 80/967 (8%), respectively (p<0.001). Most mastectomies were already planned at mammography/ultrasound, using MRI as a confirmation tool, contributing in determining a lower reoperation rate in women undergoing MRI. Additional mastectomies were compensated by mastectomies shifted to CS and CS surgery was modified by MRI according to disease extent, balancing increased and decreased tissue removal. No increase in tissue removal has been determined by MRI.

Learning Objectives:
1. To learn about the evidence for and against the use of MRI in preoperative staging.
2. To understand the background, design and early results of the MIPA trial.
3. To be able to explain the role of preoperative MRI during multidisciplinary tumour board meetings.

Author Disclosure:
F. Sardanelli: Advisory Board; Bracco, General Electric. Equipment Support Recipient; General Electric. Grant Recipient; Bayer. Research/Grant Support; Real Imaging.

A-0234 09:00
B. MR imaging biomarkers for the clinical setting
E. A. Morris; New York, NY/US (emorris@mskcc.org)

1. To describe MRI biomarkers for breast cancer. 2. To understand the value of biomarkers in clinical practice. 3. To know the new possibilities for the future.

Biomarkers - Diagnostic Biomarker - Detection or confirmation of a disease - Risk Biomarker - Identifies women at increased risk of breast cancer - Predictive Biomarker - How is the therapy working? - Prognostic Biomarker (needed more) - Identify cancer aggressiveness relates to patient outcome - MRI BPE. Native fibroglandular tissue will demonstrate variable enhancement patterns and levels of enhancement on breast MRI. The enhancement of the existing underlying fibroglandular tissue has been termed background parenchymal enhancement. As background parenchymal enhancement is related to vascular flow, it has been proposed that this may represent an imaging biomarker of the underlying proliferation of fibroglandular tissue. Investigations have shown that there is an extremely strong association between BPE and risk of breast cancer, at least a strong as the association between mammographic density and breast cancer. As with breast density and distribution of breast parenchyma on mammography, it appears that the background parenchymal enhancement of breast MRI is also extremely variable and women have different patterns and intensity of background parenchymal enhancement. In fact, it has been observed that not all mammographically dense breasts demonstrate increased background parenchymal enhancement. Therefore, it is possible that MRI can further stratify women at high risk for developing breast cancer on the basis of background parenchymal enhancement.

Learning Objectives:
1. To learn about the different biomarkers that are available and the evidence for using them in patients with breast cancer.
2. To understand in which clinical settings biomarkers might be of value.
3. To appreciate the newer techniques that are being developed and tested clinically.
growth rate of >5mm/2years. EUS should evaluate these patients. However, the vast majority of cystic lesions is <3cm and do not show worrisome features. Follow-up schedules have been suggested, stratified according to cyst size. Fukuoka guidelines suggest indefinite F/U, whereas ACR recommendations suggest stop of F/U, if a cyst is unchanged for ten years. In younger patients, an abbreviated F/U MR protocol without IV contrast could save resources. An important consideration should be directed toward clinical consequences of imaging F/U in elderly patients.

Learning Objectives:
1. To become familiar with the imaging features of different types of IPMN.
2. To discuss the different international guidelines that define the management of the patients.
3. To understand the multidisciplinary team approach necessary when deciding between conservative or surgical management.

Author Disclosure:
W. Schima: Speaker; GE Healthcare, Siemens.

A-0238 08:58

Diagnosis of IPMN: the mimickers and how to sort them out

M. P. Vullieme; Clichy/FR (marie-pierre.vullieme@bjh.aphp.fr)

IPMN develops on the abnormal ductal mucosa. Abundant mucus secretion is related with enlargement of pancreas ducts, main duct and/or branch ducts. Enlargement of the main duct upstream to stenosis could be misinterpreted as IPMN. Stenosis must be ruled. The enlarged ductal lumen should be continuous with the duodenal lumen. When all MPD is enlarged, it remains difficult to locate the exact place of the abnormal mucosa. Because the mucus flows downstream to be excreted in the duodenal lumen, downstream enlargement could appear. Then, for example, IPMN of the tail could be associated with enlargement of the body’s MPD, but without IPMN of this body. Enlarged branch duct appears as a round cyst communicating with the main pancreatic duct through an enlarged sinusu branch duct, appearing as a tubular pattern. This communication is not obvious, and must be affirmed as IPMN. Particularly serious cystadenoma is made of cysts, but without enlarged ducts and without communication. The thickening of the mucosa is often too thin to be visible with CT or MR. Intraluminal nodule could be seen when this thickening is larger. This nodule when present could locate with a good specificity the exact place of IPMN. Descated mucus could appear as a lacuna in the lumen, usually with a marked hyposignal with T2, and without enhancement after contrast injection. Chronic pancreatitis could appear upstream to obstructive mucus into the MPD. Ductal and pancreatic abnormalities have the same aspect than with other cause of chronic pancreatitis.

Learning Objectives:
1. To highlight the imaging features, which distinguish IPMN from other cystic pancreatic neoplasms.
2. To specifically discuss the differential diagnosis with chronic pancreatitis.
3. To understand the value of the integration of the imaging modalities that define the correct diagnosis.

A-0239 09:21

Follow-up of IPMN: how many MRs do we need?

R. Pozzi-Mucelli; Stockholm/SE (Raffaella.pozzi-mucelli@sll.se)

IPMN is the most frequent pancreatic cystic lesion, which is often incidentally detected by CT or MR. Since IPMN has variable malignant potential, it should be followed-up until the patient is considered fit for surgery. MR should be preferred to CT for the surveillance of IPMN, as it does not expose the patient to ionising radiation and it has a higher sensitivity for the identification of mural nodules. Clinicians/surgeons need to tailor the follow-up and its intervals according to several aspects, such as the patient’s age and comorbidity, “first-time” detection without previous imaging, presence or absence of risk factors (i.e., diameter of the main pancreatic duct, cyst size, enhancing mural nodules, growth rate), previous pancreatic surgery for IPMN and family history of pancreatic cancer. The surveillance of IPMN might be life-long as this lesion poses the patient at risk of developing an associated invasive carcinoma or a concomitant adenocarcinoma, arising somewhere else in the pancreatic gland. Thus, multiple follow-up MRs are needed, leading to high health-care costs. Therefore, it is essential to customise MR’s protocols. We will discuss the indications and pitfalls of extensive protocols (i.e., including MRCP and contrast agent) compared with shorter protocols (i.e., without MRCP and contrast agent).

Learning Objectives:
1. To discuss the methods, intervals and length of surveillance in branch ducts IPMN.
2. To understand why MR is an adapted tool for surveillance and which protocol should be proposed.
3. To specifically discuss the development of distinct ductal adenocarcinoma of the pancreas during follow-up of branch duct IPMNs.

A-0240 09:44

Panel discussion: Management of IPMN: what is the Achilles heel of our current concept?

M. Zins; Paris/FR (mzins@hpsj.fr)

Intraductal Papillary Mucinous Neoplasm of the pancreas are cystic pancreatic injury, often fortuitously discovered, increasingly recognised in recent years due to improved diagnostic techniques. IPMNs are mucin-producing neoplasms, causing pancreatic duct (main duct and/or branch duct) dilatation. From adenoma to adenocarcinoma, IPMNs present a broad spectrum of development. Accurate initial diagnosis with CT, MRI and EUS and Follow up using mainly MRI are needed.

08:30 - 10:00

Room F1

E3 - Rising Stars Programme: Basic Session

BS 5 Abdominal emergencies

Moderator:
B. Mariniec; Kilchberg/CH

A-0241 08:30

Perforation of the GI tract

V. Maniatis; Aabenraa/DK (vmaniatis67@gmail.com)

Perforation of the GI tract represents an emergency and life-threatening condition. Causes of perforation may be traumatic (endoscopy, blunt trauma, ingested foreign body), inflammatory (peptic ulcer disease, diverticulitis, appendicitis, Crohn’s disease or other enteritides), bowel ischemia or neoplasms. Clinical diagnosis may be challenging, and patients may be first radiologically evaluated with plain radiographs or ultrasound, although with limited information in cases of perforation. CT scanning is the imaging method of choice in these patients. CT findings of GI tract perforation are divided to direct and indirect. Direct findings include free air and/or oral contrast either intra- or extra- intestinal. Indirect findings comprise mainly an inflammatory mass surrounding an appendicolith or a radiopaque foreign body. Non-specific findings include bowel wall thickening, mesenteric infiltration, interloop fluid and abnormal bowel wall enhancement. The sensitivity of CT in diagnosing GI tract perforation is up to 92%. False-positive results usually occur in post-operative patients, where free air as a result of the previous operation can be misdiagnosed as a sign of an anastomotic leak or iatrogenic bowel trauma. CT is also able to depict both the site (with an accuracy of 82-90%) and the cause (in up to 67% of cases) of perforation. It is well documented that CT plays a crucial role in the assessment of acute abdomen, including patients with GI tract perforation, by offering fast and accurate essential information to the clinicians and enabling the correct therapeutic choice.

Learning Objectives:
1. To review the aetiologies of the perforation.
2. To present current imaging techniques for evaluation of the perforation.
3. To describe the typical features of the perforation.

A-0242 09:00

Bowel obstruction

A. Filippone; Chieti/IT (filipponea37@gmail.com)

Nowadays imaging has become the primary focus in the treatment of bowel obstruction (BO). Therefore, radiology assumes considerable relevance in assisting the therapeutic decision of the surgeon in cases of BO by addressing the following questions: Is the bowel obstructed? How severe is the obstruction, where is it located, and what is its cause? Is strangulation present? Plain abdominal radiography continues to be the initial examination in these patients due to its wide availability and relatively low cost. However, radiographs are diagnostic in only 50%-60% of cases. Nevertheless, the results of this modality should serve as a basis for triage for further imaging workup and assist in the therapeutic decision. Ultrasound, although not commonly used for the evaluation of BO, may be useful when the obstructed bowel segments are filled with fluid, because allows detecting the level as well as the cause of the obstruction by using the fluid-filled bowel as a sonic window. Multidetector CT scanners with multiplanar reformaion capability are significantly more effective in the evaluation of BO. Owing to the early demonstration of strangulation, CT is now considered the best modality for determining which patients would benefit from conservative management and close follow-up and which patients would benefit from immediate surgical intervention. An algorithmic and schematic approach will be proposed for imaging workup and evaluation of patients with BO, based on a review of the literature and the current approach to this entity.
1. To review the most common causes of bowel obstruction.
2. To present current imaging techniques for evaluation of bowel obstruction.
3. To become familiar with the typical findings of bowel obstruction.

Author Disclosure:
A. Filippone: Consultant; BRACCO.

Vascular emergencies
V.E. Sinitsyn; Moscow/RU (vasin@mail.ru)

Abdominal vascular emergencies are life-threatening conditions which are very difficult to recognise with the physical examination. Clinical signs may be unspecific and delay with correct diagnosis could lead to catastrophic consequences. Knowledge of the underlying disease and high clinical suspicion help to use modern imaging modalities for diagnosis. Acute vascular emergencies could be arterial or venous. Their major types are active haemorrhage due to rupture or laceration of vessel or occlusion (thrombosis, compression) of the artery or vein. Contrast-enhanced MDCT is a modality of choice for timely diagnosis of acute mesenteric ischaemia (arterial or venous). Its diagnostic performance is equal to invasive catheter angiography. The abdominal US also could be used for this purpose. CT with contrast enhancement of the area can see not only blood clots and haematomas but also areas of active bleeding seen as extravasation of contrast media. In case of acute vessel occlusion sign of organ ischaemia (malperfusion) could be detected with CT. Diagnostic pitfalls may be related to the small rate of blood extravasation and mucosal bleedings. Late complications of arterial injuries are the formation of pseudoaneurysm and dissection. In case of life-threatening vascular emergencies, different types of radiological interventions procedures such as thrombolysis, embolisation, stenting or grafting could be used for the rapid treatment of the patient without the need for open abdominal surgery.

Learning Objectives:
1. To review the most common causes.
2. To present current imaging techniques.
3. To become familiar with the role of interventional radiology.

A-0243 09:30

SF 5b

Basic interventional radiology for non-interventionalists: let’s start with biopsy!

P. Popovic; Ljubljana/SI (peter.popovic@kclj.si)

Percutaneous imaging-guided biopsy (PB) is used extensively in daily clinical practice for the pathologic confirmation of certain diseases in the area of thorax, abdomen and musculoskeletal system. Indications for PB include, but are not limited to the following: to establish the nature of diffuse parenchymal disease; to obtain material for microbiological analyses in suspected or known infections; to establish the benign or malignant nature of a suspected tumour; to classify a malignancy (including immunohistochemistry evaluation); to stage a patient with known (or suspected) malignant tumours elsewhere; to evaluate response to therapy or to confirm recurrence and to obtain material for molecular analysis. Patient clinical assessment and preparation are critical for the success of PB. Before the procedure, special attention should be paid to the review of relevant medical history, medications and laboratory data. The evaluation of coagulation status is essential. When possible, antiplatelet/anticoagulation medications should be discontinued before the procedure in particular for biopsies with a moderate or significant risk of bleeding. Procedure planning starts with choosing the most proper imaging modality and technique of access and choice of biopsy needle and device. This is followed by the careful planning of the needle access taking into account the lesion type and location, patients’ compliance and technique availability. PB performed by experienced operators are generally safe procedures with a low rate of complications, these still do occur. Therefore a proper and detailed informed consent should be obtained from the patient with presenting the benefits and potential complications of the procedure.

Learning Objectives:
1. To become familiar with indications for percutaneous biopsy.
2. To learn what to check before your procedures, taking in mind patients’ safety first.
3. To explain how it is possible to obtain a really informed consent.

A-0246 09:53

How to guide your procedure
L. Crocetti; Pisa/IT (laura.crocetti@med.unipi.it)

Once indication to perform a biopsy has been established, the careful review of pre-procedural images allows the appropriate planning including the selection of the most proper imaging guidance, patient’s position and access routes. Percutaneous needle biopsy (PNB) can be performed under a variety of imaging modalities, including US, CT, MR and fluoroscopy. The selected imaging modality should allow complete visualisation of the target and surrounding relevant anatomy, visualisation of the needle during the procedure, comfortable patient positioning and operator’s manoeuvres; finally, after the execution of the procedure, an adequate evaluation of possible complications should be guaranteed. Each imaging modality has its own features that allow the radiologist to choose the most advantageous according to different anatomical compartments. US is widely used as a guidance modality for PNB in solid organs such as liver and kidney. The puncture of lesions located in the lung, mediastinum and bone, as well as of masses in the retroperitoneal and peritoneal spaces is usually performed by CT-guidance. MR guidance can be useful for lesions not detectable with other imaging modalities, provided that special non-magnetic needles are used. Once imaging guidance modality has been chosen, selection of an adequate access route is critical to ensure the success of PNB. Generally, the route should be as short as possible and should avoid all risky structures (lum fissures and bullae, large vessels, bowel, etc.). In specific situations, a longer route is recommended, i.e. in subcapsular lesions when a longer tract with intervening normal liver parenchyma reduces the risk of hemoperitoneum.

Learning Objectives:
1. To appreciate the importance of pre-procedural planning and selection of image-guidance technique.
2. To learn about advantages and disadvantages of different imaging modalities for guidance.
3. To learn about new techniques and future prospective for improving your results.

A-0247 09:11

How to do your procedure
P.M. Vilares Morgado; Porto/PT

"no abstract submitted"

Learning Objectives:
1. To become familiar with needles, and how to handle the biopsy specimen.
2. To learn which device is needed for which patient and lesion based on indication.
3. To highlight how to minimise potential complications.
Increasing the static magnetic field strength in an MRI scanner leads to a corresponding increase in signal-to-noise ratio (CNR). With this increased noise ratio, small structures can be exploited for high-resolution imaging including pituitary gland imaging. The knowledge of the cortical microinfarcts at 7T was used for the detection and characterisation of multiple sclerosis (MS) lesions including the detection of cortical lesion burden in MS patients. Furthermore, 7T MRI was used for the detection of brain tissue lesions in epilepsy patients especially in epilepsy patients with a negative MRI result at lower field strengths. Finally, 7T MRI has been used in patients with suspected pituitary adenomas with negative MRI results at lower field strengths. 7T MRI may show pituitary adenomas in patients and guide neurosurgeons.

Learning Objectives:
1. To learn about the benefits of 7 T for intracranial vessel wall imaging, microbleed detection and microinfarct detection.
2. To become familiar with clinical applications of 7 T MR in brain tumour imaging including pituitary gland imaging.
3. To understand the added value of 7 T MR in MS, epilepsy and dementia.
field strength comes along with increases in signal- and contrast-to-noise ratio. This benefit is expected to be translated into higher spatial and temporal resolution and faster imaging techniques. Translation into histology like images as well as in the evaluation of pathophysiology are the offers we are getting using 7 Tesla. The main technical challenges like field inhomogeneity, lack of coils, gating problems or inconvenient handling are meanwhile nearly solved. Technical improvements by experienced physicists and engineers are still ongoing. That offers completely new insights like sodium-, potassium-imaging as well as cardiac functional de-oxygenation-imaging. A significant step is given by the excellent quality of non-contrast angiography allowing the delineation of small peripheral as well as abdominal vasculature. It was already shown, that CMR is reliable at 7T and has added value by identifying tiny structures like gaps in the myocardium. AMR seems to give the chance to detect small lymph nodes, but MRA is the current focus. There are still challenges at 7T, but solving them will be a significant step towards personalised medicine. Driving this development means establishing the additional value.

Learning Objectives:
1. To understand the current challenges in this field at 7 Tesla.
2. To become familiar with dedicated technical solutions at 7 T for patient handling.
3. To learn about the added diagnostic value and unique opportunities in cardiovascular and abdomen MR.

Session Objectives:
1. To provide an overview of imaging and dose banks.
2. To discuss the opportunities provided by big data repositories in clinical practice.
3. To understand how big data can support research.
4. To become familiar with dedicated technical solutions at 7T for patient handling.

Learning Objectives:
1. To provide an overview of imaging and dose banks.
2. To describe the imaging findings of articular disorders that present with chronic forefoot pain.
3. To learn about obstacles in obtaining validated and annotated images and dose data in a systematic fashion.
4. To become familiar with dedicated technical solutions at 7T for patient handling.

EFOMP Workshop

EF 1

Big data and the big picture: deep learning in optimisation of medical imaging (part A)

Moderators:
- J. Damilakis; Iraklion/GR
- P. Gilligan; Dublin/IE

A-0264 08:30

Chairperson’s introduction

J. Damilakis; Iraklion/GR (damilaki@med.uoc.gr)

Deep learning methods can be used for a large number of tasks in medical imaging. These tasks may cover image production steps such as image reconstruction, dose optimisation, image processing etc. Deep learning can also support research in the field of medical imaging. Machine-learning algorithms and deep-learning methods can be used to develop non-invasive imaging-based biomarkers. Radiomics refers to a method designed to extract a large amount of quantitative and reproducible characteristics from medical images, thereby enabling data mining. Coupled with machine learning methods, radiomics allows for several types of pathologies discovered on radiological images to be automatically classified. Big data and deep learning will be used in everyday medical imaging in the future to improve quality and safety. However, there are several technical, medicolegal and ethical challenges. Medical physicists must be prepared for facing this new technology by updating their training and education programs.

Session Objectives:
1. To become familiar with the concept of big data and their management.
2. To discuss the opportunities provided by big data repositories in clinical practice.
3. To understand how big data can support research.

Learning Objectives:
1. To provide an overview of imaging and dose biobanks.
2. To understand how to gain access to the data.
3. To learn about obstacles in obtaining validated and annotated images and dose data in a systematic fashion.

A-0265 09:00

C. Imaging-guided percutaneous treatment of forefoot pain

R.L. Cazzato; Strasbourg/FR

The forefoot is the most common location for foot pain in adults. Women are more likely to be affected than men, and it has been estimated that forefoot pain causes disabling symptoms in more than 1/3 individuals older than 70. The most common causes of forefoot pain are related to acquired deformities of the toes (e.g. hallux valgus, hammertoes) or of the plantar surface (e.g. corns, calluses), for which a conservative or surgical treatment is routinely proposed and effectively applied. Nevertheless, there are some less common causes of forefoot pain for which percutaneous image-guided interventional treatments have been progressively proposed in the last few years, with results that are encouraging although preliminary in many cases. In such perspective, innovative or ablative treatments are becoming increasingly popular to treat degenerative, tumoral or tumour-like painful conditions of the forefoot. Such tendency is mainly related to the main advantages of percutaneous image-guided treatments including their minimally invasive profile accounting for a low post-interventional morbidity rate and a fast convalescence period, and the possibility to be repeated over time.

Learning Objectives:
1. To explain the rationale behind the imaging-guided percutaneous treatment of forefoot pain.
2. To describe the imaging-guided percutaneous procedures for the treatment of forefoot pain.

EF 2

Big data and deep learning in medical imaging

Moderators:
- E. Neri; Pisa/IT
- K. Van Leemput; Copenhagen/DK

A-0266 08:35

Chairperson’s introduction

E. Neri; Pisa/IT (emanuele.neri@med.unipi.it)

"no abstract submitted"

Learning Objectives:
1. To provide an overview of imaging and dose biobanks.
2. To understand how to gain access to the data.
3. To learn about obstacles in obtaining validated and annotated images and dose data in a systematic fashion.

A-0266 09:05

Statistical methods for analysis of multidimensional imaging data

K. Van Leemput; Copenhagen/DK

This presentation will provide an introduction to two complementary approaches for computationally analysing medical images, namely discriminative vs generative models. The pros and cons of each of these approaches will be highlighted, with a specific emphasis on the role of training...
Learning Objectives:
1. To learn about the main features of a system for collection and analysis of multidimensional imaging data.
2. To become familiar with different analytical uses of collected imaging data.
3. To understand the difference between the current approaches used in statistical analysis/deep learning in medical imaging.

A-0267 09:35
The use of radiomics in medical imaging
P. Lambin; Maastricht/NL
"no abstract submitted"

Learning Objectives:
1. To understand how convolutional neural networks can be used for features extraction in medical imaging.
2. To become familiar with the capabilities of features extraction tools and their connection with image analysis and interpretation.
3. To identify the possible limitations of radiomics in providing meaningful relationships between features and their clinical interpretation.

08:30 - 10:00 Room K

Chest

RC 504
Pulmonary neuroendocrine proliferations and neoplasms
Moderator:
M. Silva; Parma/IT

A-0268 08:30
A. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH)
G. Chassagnon; Paris/FR (gchassagnon@gmail.com)

Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia (DIPNECH) is an under-recognised disease characterised by proliferation of neuroendocrine cells in the bronchial wall. DIPNECH preferentially affects middle-aged women. It is considered a pre-invasive lesion for lung carcinoid tumours and is found in 5.4% of patients undergoing surgical resection for lung carcinoid tumours. Other manifestations of DIPNECH include bronchial obstruction and formation of tumourlets. On computed tomography (CT), an association of mosaic attenuation with multiple small nodules is very suggestive of DIPNECH diagnosis.

Learning Objectives:
1. To learn about the diagnostic criteria of this syndrome.
2. To understand the correspondence between imaging and pathology.
3. To know when to suggest this diagnosis on CT.

A-0269 09:00
B. Carcinoid tumours
H. Prosch; Vienna/AT (helmut.prosch@medunwien.ac.at)

Neuroendocrine tumours of the lung arise from neuroendocrine cells of the bronchial tree and are subdivided into the low-grade typical and atypical carcinoids, as well as the malignant small-cell lung carcinomas (SCLC) and large-cell neuroendocrine lung carcinomas (LCNEC). Carcinoids of the lungs are rare tumours comprising only up to 5% of all lung cancers. Most carcinoids (80%) are typical carcinoids, which are primarily located in the lung periphery. Only about 20% of pulmonary carcinoids are atypical, which are more frequently found in the lung core. Since carcinoids originate from the bronchial system, the most common presenting symptoms are attributable to the consequences of obstruction (wheezing, post-obstructive pneumonia, atelectasis) or hemoptysis. While the prognosis for carcinoids is good in most patients, the prognosis for SCLCs and LCNECs is usually very poor. As imaging plays a key role in the diagnosis, staging, and follow-up of neuroendocrine tumours, radiologists need to be familiar with the peculiarities of these tumours.

Learning Objectives:
1. To learn about the radiological features of central and peripheral carcinoids.
2. To know when to suspect a carcinoid tumour in case of bronchial obstruction.
3. To learn about the role of FDG and DOTATOC PET/CT in the evaluation of carcinoid tumours.

Author Disclosure:
H. Prosch: Advisory Board; Boehringer Ingelheim, Roche, MSD, AstraZeneca, BMS.

A-0270 09:30
C. Small cell lung cancer
M. Das; Duisburg/DE (Marco.Das@helios-gesundheit.de)

Small cell lung cancer (SCLC) is one of the most aggressive tumours, with a 5-year survival rate of only 5-10%. Most of the patients present with advanced disease at diagnosis. SCLC is classified by recent TNM classification and UICC criteria, as well as traditional as limited and extensive disease. As SCLC is usually treated by chemotherapy/radiation therapy patients, undergo frequent imaging for response control. The role of radiology is to assess initial diagnosis and extent of disease as well as follow up assessment and tumour response.

Learning Objectives:
1. To learn about the common radiological manifestations of small cell lung cancer.
2. To learn how to distinguish between limited or extensive forms.
3. To learn how the TNM staging system should be integrated into the classification of SCLC.

08:30 - 10:00 Room M 1

Special Focus Session

SF 5c
MSK intervention: the road from low to no invasion

A-0271 09:30
Chairperson’s introduction
J. Hodler, Zurich/CH (juerg.hodler@usz.ch)

Musculoskeletal interventions commonly are performed as an elective procedure. Radiologists, therefore, have a special responsibility to reduce side effects. Correct indication for any procedure, reduction of radiation dose, avoiding medication-related side effects and technically correct procedures are relevant aspects. Technical innovation may assist radiologists in making image-guided interventions safer. These aspects and more will be presented and discussed by experts in their field.

Session Objectives:
1. To appreciate the prevalence and importance of complications in MSK interventions.
2. To learn about strategies reducing side effects and complications of MSK procedures.
3. To become familiar with innovations leading to reduced invasiveness in MSK interventions.
4. To appreciate the role of radiologists in developing less invasive interventions.

Author Disclosure:
J. Hodler: Research/Grant Support; Siemens Healthineers, Guerbet, Bayer.

A-0272 09:35
Avoiding side effects and complications by using MR guided high-intensity focused ultrasound
A. Napoli; Rome/IT (alessandro.napoli@uniroma1.it)

Current treatments for patients with bone metastases include localised therapies (radiation and surgery), systemic therapies (chemotherapy, hormonal and radiopharmaceutical therapies, and bisphosphonates), and analgesics. External beam radiotherapy (EBRT) is the current noninvasive standard for local pain palliation; however, 20%-30% of patients do not achieve symptom relief, and pain may recur in up to 25% of patients following treatment. Magnetic resonance-guided focused ultrasound (MRgFUS) is already clinically approved in the European Union for the palliative care of bone metastases. MRgFUS combines focused ultrasound energy to thermally ablate tissue in combination with continuous MR imaging and thermal feedback. The treatment is noninvasive, does not require ionising radiation, and usually conducted in an outpatient setting. Because focused ultrasound energy is nonionizing, there is no dose limit; treatment can be repeated if needed. The major advantages of MRgFUS include MR-guided three-dimensional visualisation for high-accuracy treatment planning, real-time monitoring of thermal damage in the target zone.
using MR thermometry and immediate post-treatment assessment of therapy. An additional advantage of MRgFUS is that it can be administered during chemotherapy. MRgFUS ablation is indicated in patients who are considered radiation failures. In our department, we have evaluated the safety and efficacy of MRgFUS treatment for the pain palliation of lesions from different known primary tumours even as a first line modality. In conclusion, MRgFUS ablation is an extremely promising alternative therapy for pain palliation in patients suffering from bone metastases. Focused ultrasound might have a future role in local tumour control.

Learning Objectives:
1. To understand the physics of high-intensity focused ultrasound.
2. To understand the role of MR guidance in high-intensity focused ultrasound.
3. To appreciate effects and side effects of high-intensity focused ultrasound.
4. To become familiar with indications for high-intensity focused ultrasound.

A-0273 08:50
The 10 most important side effects and complications in MSK interventions
M. Obradov; Nijmegen/NL (m.obradov@maartenskliniek.nl)

The musculoskeletal radiologist has to tailor interventional procedures to a patient’s specific anatomy, pathology and comorbidities. Before the start of each procedure, the radiologist has to follow the guidelines to help avoid simple errors. Those guidelines consist of: reading the request, looking at recent radiographs/imaging, patient interview, an explanation of the procedure and obtaining informed consent. The most common general complications during musculoskeletal intervention procedures are haemorrhage, infection and drug-related reactions including complications of intra- and peri-articular steroid and anaesthetic injection. Anticoagulation alone is not a contraindication to most interventional musculoskeletal radiology procedures. The risk of bleeding if therapy is continued against the possibility of a thromboembolic occurring when anticoagulation therapy is withdrawn or reversed must be weighted. Since musculoskeletal procedures are generally considered clean, the guidelines recommend absolute sterile technique which would include scrub attire, hair coverings and masks in the presence of open instruments/trays, sterile gowns and gloves for participants, use of sterile drapes allowing for generous coverage of the sterile field, minimization of traffic in the procedure area. Adverse events associated with corticosteroid injection can be minimised by ensuring appropriate injecting procedures by a well-trained radiologist and limiting steroids into an annual dose of 3 mg/kg of triamcinolone or its equivalent. An allergic reaction has a higher incidence of local anaesthetics of ester type. Image guidance with smaller gauge needle helps minimise the risk of misadventure and complications. With proper planning and precautions, the consequences of possible complications can be minimised.

Learning Objectives:
1. To become aware of potential side effects and complications in MSK interventions.
2. To appreciate the relative importance of side effects and complications in MSK interventions.
3. To recognise the requirements regarding patient information before MSK interventions.
4. To become familiar with the imaging appearance of complications in MSK interventions.

A-0274 09:10
Radiation exposure: from reduction to avoidance
D.J. Wilson; Oxford/UK (davidwilson.stlukes@btconnect.com)

The advent of ultrasound for needle guidance has to move the need for radiation exposure in the injection of joints. It also increases the precision as the technique allows real-time confirmation that the injectate is entering the joint. It is also allowed precise placement of needles into tendon sheaths and adjacent to ligaments. There are strong arguments that some injection procedures should only be undertaken using ultrasound guidance. Unfortunately, until recently spine injections including facet joint injections, disc injections, nerve root blocks and procedures at the vertebral bodies have not been practical using ultrasound guidance and required radiation exposure either by fluoroscopy or CT. Now we have ultrasound MRI or ultrasound CT fusion imaging which permits placement of needles and a real-time ultrasound examination with considerable precision and no radiation to the operator, and none to the patient and MRI images are used. Needle tracking techniques allow prediction of the route that the needle will take as well as direct tracking of the needle tip. The only disadvantage of this method it cannot administer contrast agents to identify where injection materials will track. This is a particular disadvantage when will that the needle might be inadvertently placed in a vessel that supplies the spinal cord or the brain. In this presentation, I will present examples of how fusion imaging has changed the preferred technique for complex musculoskeletal injections.

Paediatric

RC 512
Intensive care paediatric radiology: the very sick neonate
A-0276 08:30
Chairperson’s introduction
S. Stafrace; Doha/QA (samstafrace@yahoo.com)

Imaging of neonates in the intensive care setting is somewhat restricted by the fact that these infants are very unstable and best imagined at their bedside, if at all possible. Portable plain films play a vital role - often these neonates have multiple supporting tubes and lines that are prone to displacement and that require correct localisation. Knowing the appropriate landmarks for tube and line positioning and being able to identify pitfalls is very important for the radiologist reporting radiographs in such a setting. Ultrasound is the next big player - mobile, radiation-free, and in the trained hands, often gives the answer serving as a problem solver. Other modalities will come to play once plain films and ultrasound reach their limitations. This session, presented by experts in their field, offers a deep dive into the imaging of the neonate in intensive care, specifically focusing on the brain, the chest and the abdomen.

Session Objectives:
1. To learn about the most common neurological emergencies in the intensive care neonates.
2. To understand the wide variety of thoracic devices that may be used in these patients.
3. To discuss the role of US in abdominal emergencies in the critically ill child.

A-0277 08:35
A. Neuroimaging in the neonatal intensive care unit
M.I. Argyropoulou; Ioannina/GR (margyrop@cc.oi.gr)

The imaging modality of choice to evaluate the neonatal brain in the intensive care unit is the Ultrasound (US) coupled with Colour Doppler. State of the art technique should be applied by using the anterior fontanel and accessory acoustic windows. Sectorial and high frequency linear transducers should be used for detailed evaluation of the neonatal brain. Knowledge of the age-related changes of the brain are necessary to assess what is abnormal. The most common abnormalities in premature babies are brain hemorrhagic

A-0275 09:25
Preventing side effects and complications by new procedures: management by radiologists
A. Bazzocchi; Bologna/IT (abazzocchi@linwind.it)

The endpoint of the “road from low to no invasion” is focused on obtaining the desired effect with no complications or side effects; thus the ultimate purpose is the highest possible therapeutic index. This can be reached by developing new and minimally invasive techniques and tools. The achievement is based on an in-depth knowledge of the procedure itself and on the further investigation about how it works on a biological system. To be able to predict the reaction of the human body is essential. The awareness of different pathophysiological mechanisms involved in processes is also important to stimulate effective and safe approaches and treatment strategies. The management of the radiologist is crucial. The patient needs the radiologist to fully undertake and play this role.

Learning Objectives:
1. To become familiar with new methods in MSK interventions.
2. To appreciate solutions to reduce side effects and complications in MSK procedures.
3. To promote the role of radiologist in advancing new technology.
4. To appreciate responsibilities of radiologists in reducing side effects and complications in MSK procedures.

09:45
Panel discussion: How minimal can invasiveness in MSK intervention become?
A large number of tubes and catheters are required to ensure life support and disease (BHD) and periventricular leukomalacia (PVL). BHD is easily depicted and the different grades can be evaluated as well as complications such as venous infarct and post-hemorrhagic hydrocephalus. The focal form of PVL in early stages appears as heterogeneous hyperechogenicity and later as multiple periventricular cysts of different size. In the early stages of the diffuse form of PVL, US does not show any abnormality, but later on, ventricular enlargement with regular ventricular outlines appears. In full-term babies, hypoxia-ischemia is one of the main morbidities. Dependent on the duration and the severity, US may depict hyperechogenicity of the basal ganglia and in the most severe cases heterogeneity along with extensive encephalomalacia lesions. MRI is the gold standard for brain imaging and in neonates can be used to give additional information. MR compatible incubators are useful to provide a safe environment for those fragile babies.

Learning Objectives:
1. To understand the role of imaging in emergencies in the critically ill neonate: Ultrasound is the mainstay of emergency imaging in the very sick neonate at essential emergency US applications at the NICU will be presented. Furthermore, restrictions of an ultrasound exam will be discussed. The role of the typical ultrasound approach to urgent neonatal abdominal queries typical abdominal US applications and beyond.
2. To discuss the variety of devices that is used in the intensive care unit. A good quality radiography is essential for the babygram is the imaging modality of choice to check for the position of tubes, catheters and other devices. A qualityFullX-ray (or babygram) is the imaging modality of choice to check for the position of tubes, catheters and other devices. A quality radiography is essential for the establishing of the position of the baby and deviation of overlap external lines, should not be overlooked. Additional imaging, such as a lateral film and ultrasound, are helpful in doubtful cases. Knowledge of the optimal position for each device, early recognition of wrong or dangerous positions and their resultant complications, and understanding pitfalls in imaging interpretation (and how to overcome them) are basic requisites that every radiologist should know.

Learning Objectives:
1. To learn the crucial role of simple views in critically ill children.
2. To understand the variety of devices that is used in the intensive care unit.
3. To discuss how to avoid the most common pitfalls.

A large number of tubes and catheters are required to ensure life support and disease (BHD) and periventricular leukomalacia (PVL). BHD is easily depicted and the different grades can be evaluated as well as complications such as venous infarct and post-hemorrhagic hydrocephalus. The focal form of PVL in early stages appears as heterogeneous hyperechogenicity and later as multiple periventricular cysts of different size. In the early stages of the diffuse form of PVL, US does not show any abnormality, but later on, ventricular enlargement with regular ventricular outlines appears. In full-term babies, hypoxia-ischemia is one of the main morbidities. Dependent on the duration and the severity, US may depict hyperechogenicity of the basal ganglia and in the most severe cases heterogeneity along with extensive encephalomalacia lesions. MRI is the gold standard for brain imaging and in neonates can be used to give additional information. MR compatible incubators are useful to provide a safe environment for those fragile babies.

Learning Objectives:
1. To understand the role of imaging in emergencies in the critically ill neonate: Ultrasound is the mainstay of emergency imaging in the very sick neonate at essential emergency US applications at the NICU will be presented. Furthermore, restrictions of an ultrasound exam will be discussed. The role of the typical ultrasound approach to urgent neonatal abdominal queries typical abdominal US applications and beyond.
2. To discuss the variety of devices that is used in the intensive care unit. A good quality radiography is essential for the babygram is the imaging modality of choice to check for the position of tubes, catheters and other devices. A quality FullX-ray (or babygram) is the imaging modality of choice to check for the position of tubes, catheters and other devices. A quality radiography is essential for the establishing of the position of the baby and deviation of overlap external lines, should not be overlooked. Additional imaging, such as a lateral film and ultrasound, are helpful in doubtful cases. Knowledge of the optimal position for each device, early recognition of wrong or dangerous positions and their resultant complications, and understanding pitfalls in imaging interpretation (and how to overcome them) are basic requisites that every radiologist should know.

Learning Objectives:
1. To learn the crucial role of simple views in critically ill children.
2. To understand the variety of devices that is used in the intensive care unit.
3. To discuss how to avoid the most common pitfalls.

A-0278 09:00
B. Chest Imaging in the ICU: tubes and catheters
M. Lobo; Lisbon/PT (mluisalobo@gmail.com)
A large number of tubes and catheters are required to ensure life support and disease (BHD) and periventricular leukomalacia (PVL). BHD is easily depicted and the different grades can be evaluated as well as complications such as venous infarct and post-hemorrhagic hydrocephalus. The focal form of PVL in early stages appears as heterogeneous hyperechogenicity and later as multiple periventricular cysts of different size. In the early stages of the diffuse form of PVL, US does not show any abnormality, but later on, ventricular enlargement with regular ventricular outlines appears. In full-term babies, hypoxia-ischemia is one of the main morbidities. Dependent on the duration and the severity, US may depict hyperechogenicity of the basal ganglia and in the most severe cases heterogeneity along with extensive encephalomalacia lesions. MRI is the gold standard for brain imaging and in neonates can be used to give additional information. MR compatible incubators are useful to provide a safe environment for those fragile babies.

Learning Objectives:
1. To understand the role of imaging in emergencies in the critically ill neonate: Ultrasound is the mainstay of emergency imaging in the very sick neonate at essential emergency US applications at the NICU will be presented. Furthermore, restrictions of an ultrasound exam will be discussed. The role of the typical ultrasound approach to urgent neonatal abdominal queries typical abdominal US applications and beyond.
2. To discuss the variety of devices that is used in the intensive care unit. A good quality radiography is essential for the babygram is the imaging modality of choice to check for the position of tubes, catheters and other devices. A qualityFullX-ray (or babygram) is the imaging modality of choice to check for the position of tubes, catheters and other devices. A quality radiography is essential for the establishing of the position of the baby and deviation of overlap external lines, should not be overlooked. Additional imaging, such as a lateral film and ultrasound, are helpful in doubtful cases. Knowledge of the optimal position for each device, early recognition of wrong or dangerous positions and their resultant complications, and understanding pitfalls in imaging interpretation (and how to overcome them) are basic requisites that every radiologist should know.

Learning Objectives:
1. To learn the crucial role of simple views in critically ill children.
2. To understand the variety of devices that is used in the intensive care unit.
3. To discuss how to avoid the most common pitfalls.

A-0279 09:25
C. The role of imaging in emergencies in the critically ill neonate: abdominal US applications and beyond
M. Riccabona; Graz/AT (michael.riccabona@medunigraz.at)
The objective is to list the various imaging modalities, particularly ultrasound, in imaging emergencies of critically ill neonates at the NICU. Besides refreshing the typical ultrasound approach to urgent neonatal abdominal queries typical findings of common findings in this patient group will be presented; furthermore, restrictions of an ultrasound exam will be discussed. The role of other imaging in these emergency situations will be revisited in the light of patient care, gentle handling, and therapeutic implications in critically ill pre-term and neonates. Finally, some typical image examples of FAST and other essential emergency US applications at the NICU will be presented. Ultrasound is the mainstay of emergency imaging in the very sick neonate at the NICU, complemented by plain film. Rarely other modalities such as fluoroscopy, CT or MRI may become necessary or are feasible.

Learning Objectives:
1. To learn about typical body (abdomen, chest and other) emergencies that can be addressed by US in the NICU.
2. To understand some typical findings that may help in the disease characterisation.
3. To appreciate the considerable impact on the prognosis and survival of the critically ill neonate.

09:50 Panel discussion: Is there a role for FAST scan in the paediatric IC unit?

Thursday 08:30 - 10:00 Room M 3

Oncologic Imaging

RC 516

Role of imaging in cancer of unknown primary (CUP)

A-0280 08:30
Chairperson’s introduction
S. Courteyann; Athens/GR (agy76@gmail.com)
Radiologists involved in CUP MDTs are essentially asked to guide the clinical team to solve the mystery of patients presenting with metastatic disease and an unclear primary, via imaging. The workhorse of oncologic imaging is CT of the torso and based on the spread of disease more dedicated imaging examinations might be requested. PET-CT certainly plays a role in reducing the number of confirmed CUP cases. In addition involved radiologists are able to select the most suitable lesions amenable to biopsy so that tissue diagnosis can be performed. CUP serves as a very good example of rad-path collaboration, as the two disciplines truly join forces for the best possible treatment to be provided. During this session, important issues such as avoiding unnecessary investigations and how to best follow up these patients will be also discussed.

Session Objectives:
1. To discuss the role of imaging for the diagnosis of CUP.
2. To review the role of the interventional radiologist in the management of suspected CUP.
3. To learn how to best assess treatment response.

A-0281 08:35
A. MDCT: the imaging workhorse for suspected CUP
C. Kelly-Morland; Framingham/UK (christian.kellymorland@gmail.com)
Cancer of unknown origin is a heterogeneous subset of metastatic malignancy in which the primary tumour of origin remains elusive despite exhaustive imaging and often invasive investigation. It accounts for approximately 2% of all new cancer diagnoses, and the initial presentation varies widely. This lecture aims to outline common patterns of presentation and present to the audience a systematic approach to imaging evaluation in these patients with examples from a tertiary centre. Issues relating to CT protocoling and multimodality imaging will be addressed with a focus on review areas and important benign mimics of disease. A brief outline of key diagnostic adjuncts including immunohistochemical indices will be provided along with suggestions for disease response assessment methodology.

Learning Objectives:
1. To discuss the different patterns of disease spread in CUP.
2. To review optimal protocols and how not to miss important findings.
3. To learn how to best assess treatment response.

A-0282 08:58
B. Role of PET/CT in suspected CUP
L. Umuru; Essen/DE
"no abstract submitted"

Learning Objectives:
1. To review the role of PET/CT in localised versus widespread metastatic disease.
2. To discuss potential false positive and false negative findings.
3. To learn when PET/CT is most appropriate in treatment response assessment.

A-0283 09:21
C. The role of the interventional radiologist
F. Cornelis; Paris/FR (francois.cornelis@aphp.fr)
Interventional Radiology is occupying an increasingly prominent role in the care of patients with cancer, with involvement from initial diagnosis, right through to minimally invasive treatment of the malignancy and its complications. However, approximately 3% to 5% of new diagnoses of cancer are classified as cancer of unknown primary (CUP). Imaging and management of these patients are often frustrating for both clinicians and patients. Adequate diagnostic samples can be obtained under image guidance by percutaneous biopsy and needle aspiration in an accurate and minimally invasive manner. In biopsy planning, modern cross-sectional imaging techniques help define lesion location, accessibility, and suitability for biopsy and aid in ensuring the correct lesion is sampled in the context of multiple lesions. It is important in analysing the patient with CUP to determine where the metastases are and if they have any suggestive imaging features that may allow a tailored search for the likeliest primary site. The advent of PET scanning may have a significant
Despite recent advances in diagnosis and therapy of gynaecological cancer, tumour relapse remains a challenging issue. Despite surgery and radiotherapy delivered with curative intent in early stage gynaecological cancers, up to 30% of patients recur in the pelvis (10-15%). Treatment of isolated pelvic recurrences depends on previous treatment, site of recurrence, disease-free interval, and patient-related factors (morbidity, performance status). Total pelvic exenteration carries high morbidity. In radiation-naïve, locally recurrent gynaecological cancer, radiotherapy is the salvage treatment of choice. Stereotactic body radiotherapy (SBRT) enables dose escalation while reducing dose to organs-at-risk (OARs). However, to deliver SBRT effectively, accurate delineation of the gross tumour volume (GTV) is vital. Tissue contrast on CT is inadequate where pelvic anatomy is distorted by previous surgery and/or radiotherapy. MRI provides superior soft-tissue contrast for GTV delineation but requires that motion and distortions are recognised and corrected for. Differences in observer interpretation of the tumour outline are greater with CT, while MR does not provide the required electron density information for radiation dosimetry. Therefore, fusion techniques between CT and MRI are frequently employed. Where salvage treatment is not possible, palliative treatment is employed. High intensity focused ultrasound (HIFU) is a non-invasive ablative therapy with the potential to achieve this under MR guidance. Its current worldwide experience is limited.

Challenges in delivering this extremely precise ablative technology are related to the depth and site of recurrence, adjacent bowel, bladder and vascular structures, and the thickness of overlying fat and muscle layers, which affect the placement of the ablative focus. Nevertheless, MR guided HIFU is a feasible and viable means of managing these difficult-to-treat patients.

Learning Objectives:
1. To be familiar with the imaging considerations for stereotactic radiotherapy in relapsed disease.
2. To be familiar with the concepts of imaging in directing RT treatment plan.
3. To be familiar with the use of HIFU for treatment of pelvic relapse.

Author Disclosure:
N.M. deSouza: Grant Recipient; Cancer Research UK, EU Framework 7.

E³ - ECR Academies: Functional Imaging for Disease Management: Research to Medical Practice
E³ 520
Functional imaging of the lungs
A-0288 08:30
Chairperson's introduction
C.M. Schaeter-Prokop; Amersfoort/NL
A-0289 08:36
A. Perfusion methods for vascular and airway diseases (CT/MRI)
M. Rémy-Jardin; Lille-FR (marline.remy@chu-lille.fr)

Over the last decade, lung perfusion has progressively left pure clinical research to enter clinical routine, based on the availability of new CT technological advances. This should not lead to forgetting basic approaches proposed with MDCT like the evaluation of dynamic changes within vessels of interest, analysis of bolus speed and propagation time of bolus peak. An important step was the introduction of dynamic CT which allowed evaluation of perfusion changes over time, mostly applied to oncologic indications. iodine maps resulting from dual-energy CT acquisitions have revolutionised this concept as they can be derived from the same data sets as that used for morphological imaging. This combination has mostly been investigated, then
Malignant tumours are biologically complex and show genomic and phenotypic variation. Lung cancer, tumour heterogeneity and tumour response

CT-based quantitative imaging biomarkers in airway disease are related to:

A. Quantitative CT-imaging biomarkers in airways diseases

B. Applied, in the context of pulmonary vascular diseases, with the objective of:

1. To learn about modern imaging of lung tumours.
2. To understand the role of perfusion imaging in airway diseases.
3. To learn about main functional biomarkers of tumour response.
4. To understand the role of functional criteria of tumour heterogeneity.
5. To learn about the impact of functional imaging in pulmonary hypertension.

Learning Objectives:

1. To review main functional CT methods of the lungs in airway diseases.
2. To review most useful CT and MRI perfusion methods for lung imaging.
3. To learn about the functional imaging techniques for lobar analysis of LAA as well as patient selection for successful endoscopic lung volume reduction and therapy response assessment.
4. To become familiar with the features at multiparametric US that improve the probability of malignancy. With all the aspects of MPUS the ability to be confident in the assessment and the ability to dictate clinical management becomes possible.

Learning Objectives:

1. To review main functional CT methods of the lungs in airway diseases.
2. To learn about their impact in diagnostic differentiation.
3. To learn how these methods may help in treatment follow-up.

Author Disclosure:

H.-U. Kauczor: Research/Grant Support; Siemens, Philips, Bayer. Speaker; Siemens, Philips, Boehringer, Bracco.

Learning Objectives:

1. To understand the clinical issues about diagnosis and management of incidental scrotal lesions.
2. To understand the role of conventional US modes, CEUS and elastography in scrotal lesion characterisation.
3. To learn how to fit in a multidisciplinary team to manage patients with incidental scrotal lesions.

The widespread use of scrotal US in urology and andrology has caused an increase of incidentally detected testicular lesions. Many such lesions are simple cysts which require neither surgery nor follow-up. When the incidental nodule is solid in nature, it raises the concern for a malignant tumour. Most of these lesions are nonpalpable, presenting as small hypoechoic, asymptomatic nodules with negative markers. In such cases, there is the clinical dilemma of whether to perform orchectomy or to adopt a more conservative approach. This is justified by the high prevalence of benign nodules presenting in this way, accounting for up to 80% of cases. There is increasing evidence that the multiparametric US, combining the use of grey-scale, Doppler, elastography, and CEUS improves lesion characterisation. Moreover, most of the incidentally detected testicular lesions do not show significant growth during the long-term evaluation and can be safely surveilled with close follow-up. The para-testicular area includes a variety of anatomic structures. US is nearly 100% sensitive for lesion detection, but specificity is lower. The multiparametric US may improve lesion characterisation. However, the overlap of the imaging findings of benign and malignant tumours may always be possible and should be kept in mind. MRI represents a useful supplemental imaging technique in the characterisation of scrotal masses, particularly recommended in cases of nondiagnostic ultrasonographic findings.

Session Objectives:

1. To understand the clinical issues about diagnosis and management of incidental scrotal lesions.
2. To understand the role of conventional US modes, CEUS and elastography in scrotal lesion characterisation.
3. To learn how to fit in a multidisciplinary team to manage patients with incidental scrotal lesions.

Learning Objectives:

1. To become familiar with the features at multiparametric US that improve the probability of malignancy. With all the aspects of MPUS the ability to be confident in the assessment and the ability to dictate clinical management becomes possible.

Learning Objectives:

1. To become familiar with the features at multiparametric US that improve the probability of malignancy. With all the aspects of MPUS the ability to be confident in the assessment and the ability to dictate clinical management becomes possible.
2. To understand the potential of multiparametric US in imaging testicular lesions.
3. To understand the specific role of conventional US modes, CEUS and elastography in testicular lesion characterisation.
Learning Objectives:
1. To learn about the current EAU recommendations for the diagnosis and management of the incidental testicular lesion.
2. To understand the current trends for the workup of incidental testicular lesion.
3. To become familiar with the value of a multidisciplinary team in planning and performing testicular sparing surgery.

Panel discussion: Multiparametric imaging of the testis - how and when can we avoid orchidectomy?

10:30 - 12:00 Room A

E³ - ECR Academies: Interactive Teaching Session for Young (and not so Young) Radiologists

E³ 621 Oncologic imaging

A-0306 10:30
A. Lung cancer: key signs in the new TNM
A.R. Larici; Rome/IT (annarita.larici@unicatt.it)

Lung cancer is a leading cause of cancer-related mortality worldwide. A correct staging is the prerequisite for an adequate management of patients with lung cancer. Recently the 8TH edition of the TNM classification introduced relevant changes of the descriptors T and M. Regarding T1, it has been demonstrated by survival analyses that from 1 to 5 cm of diameter every centimetre counts, and those larger tumours are best aligned with either T3 (tumour size of more than 5 to 7 cm) or T4 (tumour size of more than 7 cm). This finding further confirms the common intuition that the larger the tumour, the worse the prognosis. Regarding M, the category of extrapolobaric lesions has been distinguished in M1b and M1c to indicate respectively one (oligometastatic disease) and more than one lesion. In this context, it is advisable that radiologists report the number of lesions if only one organ is involved and the number of organs if many. This approach has a relevant clinical impact because oligometastatic disease nowadays is managed and treated differently respect to an extensive M stage disease. Several limitations remain, as the classification of a tumour adjacent to the chest wall, mediastinum and diaphragm, as well as the categorisation of lymphangitic carcinomatosis as an independent descriptor and the evaluation of multiple lung lesions. Certainties and controversies on the topic will be argued in this session, taking into account that cancer staging should be always considered a multidisciplinary process.

Learning Objectives:
1. To learn about the new staging system for lung cancer.
2. To highlight the differences in the meaning of CT findings between the new system and the previous one.

A-0307 11:15
B. Incidental findings in oncologic patients
M.-P. Reveill; Paris/FR (marie-pierre.reveill@aphp.fr)

Incidental findings are unanticipated findings discovered in the course of medical care, which can affect the way the oncologic disease is managed. Among incidental findings in oncologic patients, incidental pulmonary embolism (PE), lung nodules and adrenal masses are frequent findings. Incidental PE is more frequently peripheral, and thus more difficult to diagnose. The recurrence risk in untreated patients is 12%, versus 6% with anticoagulation. Thus, anticoagulant treatment is recommended for cancer-associated incidental PE. The annual incidence of VTE in patients receiving chemotherapy is estimated at 11%. This risk can climb to 20% or higher depending on the type of drug(s) being administered. Incidental PE is not associated with an increased risk of death when adjusted for tumour stage and performance status. Incidental lung nodules are frequently found in oncologic patients. As indicated in the 2005 Fleischner guidelines for management of small pulmonary nodules, patients should be cared for according to the specific clinical situation. Pertinent factors include the site, cell type, and stage of a primary tumour and whether early detection of lung metastases will affect care. Among differential diagnosis of metastasis, Langerhans cell histiocytosis, DIPNECH (Diffuse Idiopathic Pulmonary Neuro Endocrine Cell Hyperplasia) and infectious nodules should be discussed. Regarding incidental adrenal masses, benign adenoma can be diagnosed if the attenuation on unenhanced CT acquisition is below 10 Hounsfield units. If it is not the case, PET CT should be performed and in case of increased FDG uptake, histological assessment is required.
Learning Objectives:
1. To recognize the importance of different incidental findings in patients with cancer.
2. To learn how to manage patients with incidental findings.

10:30 - 12:00 Room B

ESR meets Africa

EM 1
Radiology in Africa: facing challenges and opportunities

Presiding:
L.E. Derchi; Genoa/IT
H.A. Gharbi; Tunis/TN

A-0308 10:30
Chairpersons' introduction (part 1)
L.E. Derchi; Genoa/IT (derchi@unige.it)

Africa is a large continent, with people of different cultures and habits, which may be difficult to understand as a whole. Therefore, a number of speakers from different African regions have been selected to present an overview of Radiology in Africa from a variety of perspectives. They will present topics about professional issues such referral guidelines, radiation protection, use of radiological services and promotion of Radiology in their regions. Furthermore, there will be a discussion on how to develop cooperation between African Radiological Societies and the ESR. This point, specifically, will underline the bilateral nature of the relationship, discussing what ESR can do to help African radiologists as well as on what African radiologists, can offer to European societies.

Session Objectives:
1. To give an overview of radiology in Africa.
2. To list the existing cooperation programmes of the European Society of Radiology in Africa.
3. To point out what African radiologists can do for the ESR and what the ESR can do for radiology in Africa.

A-0309 10:35
Chairpersons' introduction (part 2)
H.A. Gharbi; Tunis/TN (hassen.aghbari@planet.tn)

Africa is a real mosaic of 54 different countries with a population of more than 1.2 Billion inhabitants, making up 16% of the world’s population. The diversity of mosaic is multifaceted. There are variable socioeconomic levels with GNP’s ranging from less than 500 USD, in Somalia to more than 34000 USD in Equatorial Guinea. There are many different cultures and languages, but fortunately English, French, Arab and Portuguese, and internet facilities are widespread, adapted and efficient means of communications. The impact study of medical imaging on radiologists is challenging for several reasons. No complete official statistics are available in all countries. The medical imaging market is often very disorganised. There are enormous differences between the different countries and even between different regions in the same country. The number of radiologists varies from less than one radiologist for one million inhabitants, to more than 80 radiologists per one million inhabitants. We can divide the radiological situation in Africa into two regions; the North including Egypt, Tunisia, Algeria and Morocco and South Africa where the situation is more or less acceptable and the centre including 49 countries and 75% of the population where the situation require an urgent solution. In fact, the needs are everywhere and require more or less the same solution from the European Society of Radiology, training, collaborating programs, but Radiation Protection rules must be established and respected so that we can guarantee an efficient and good development of the Radiology.

Session Objectives:
1. To give an overview of radiology in Africa.
2. To list the existing cooperation programmes of the European Society of Radiology in Africa.
3. To point out what African radiologists can do for the ESR and what the ESR can do for radiology in Africa.

A-0310 10:40
Structured strategies to combat radiation protection challenges in Africa. What can the ESR do?
D. Hussein Salama; Cairo/EG (drdinahasalama@yahoo.com)

The advances in health technology continue opening new horizons for the applications of ionising radiation in health care in Africa. This has resulted in an increase in the number of medical procedures, professionals and patients involved, and in the need for structured strategies and a holistic approach towards the full integration of radiation safety and the clinical imaging guidelines in the African health sector. There have been proactive actions in Africa to improve the situation and enhance the implementation of radiation protection in seven African countries, however further actions and joint activities are needed to enhance the process. The European Society of Radiology and its Eurosafe campaign have always been at the forefront trying to promote the safe use of ionising radiation in medicine, and this presentation will address strategic planning through which the ESR- African cooperation can act through to impact the future of radiology and radiation-protection in Africa and similar countries in the globe.

Learning Objectives:
1. To give an overview on the situation of imaging referral guidelines and clinical decision support (CDS) in Africa.
2. To update on the European societies’ activities in the region in regard to guidelines.
3. To give tips from African radiologists on solutions and the way forward.
4. To present the bilateral strategic planning with the ESR to improve the performance of radiation protection.

A-0311 10:50
Is imaging underused in Africa? East Africa as an example. Solutions: what can the ESR do?
S. Vinayak; Nairobi/KE

The challenges faced by underdeveloped countries are immense; manpower, education, lack of equipment, maintenance of equipment etc. are just a few examples. Radiology equipment is often unaffordable, so innovative solutions have to be found, tried and tested so that communities can benefit. There are only 500 radiologists serving a population of 200 million inhabitants in Eastern Africa. For ultrasound, WFUMB already has three established COEs (centres of education) providing regular CMEs, training courses and other activities related to education on a regular basis. In addition, Bergen University trains physicians in Addis Ababa. In Khartoum, doctors are being trained to perform abdominal ultrasounds. All these initiatives are in conjunction with MASU & WFUMB. The current use of imaging can be robustly stimulated by using innovative ideas and technology. The WFUMB centre of education (COE) in Nairobi trained midwives to perform basic obstetric ultrasounds on a tablet ultrasound machine with a view to identifying high-risk pregnancies. The scans were transmitted using mobile phone internet technology for validation by radiologists. Imaging is still underutilised in East Africa, and governmental bodies are looking for local solutions to these problems. Help from European societies of radiology can take the form of education and training. How this can be implemented will be articulated in detail. Also, universities of this region can work with radiologists from Europe to carry out research. ESR can help coordinate these activities in a well-structured and robust format that is sustainable.

Learning Objectives:
1. To present the current situation in Eastern Africa.
2. To describe what we are doing to promote radiology in Africa.
3. To present what we would like to request from the ESR.

A-0312 11:05
How to promote radiation protection in West Africa. Needs and expected role of the ESR
E.H. Niang; Dakar Fann/SN

"no abstract submitted"

Learning Objectives:
1. To summarise the radiation protection situation in West Africa, discuss workforce aspects and present an overview of educational facilities and maintenance services.
2. To update on the role of European societies in our region, what is done in general and in the field of radiation protection in particular.
3. To explain what we, as African radiologists, can offer to European societies.

A-0313 11:15
Most important challenges for imaging in North Africa
L. Rezgui Marhou; Tunis/TN (lamia.rezgui@rns.tn)

The Maghreb region refers to five countries, three from North West Africa, Morocco, Algeria and Tunisia, also known as the Small Maghreb and two Central Maghreb countries, Mauritania and Libya. It has about 89 million inhabitants. The distribution of medical equipment using ionising radiation in this region is very disparate and depends on multiple factors. The number of radiologists is also very variable from one region to another. Radiation protection has made great strides in some countries, and much work remains to be done for the protection of patients and personnel.

Learning Objectives:
1. To present the current situation in North Africa.
2. To describe what we are doing to promote radiology in Africa.
3. To present what we would like to request from the ESR.

Thursday
to be done in others. Rigorous regulations applied at different levels to guarantee quality and safety in terms of radiation protection exist in some countries, but challenges remain to be faced by others. The Maghreb enjoys a considerable level of development in terms of health development and radiation protection. He remains dependent on deficiencies. These are not all of the same nature and do not require the same solutions.

Learning Objectives:
1. To give an overview of the radiology situation in North Africa.
2. To present the WHO’s role, objective, core functions, structure and where/how radiology fits into them.
3. To explain the WHO’s programmes in Africa and the place of radiologists and radiologists in the context of the current priorities in the global public health agenda.
4. To understand the WHO’s views about radiation protection in Africa.
5. To present the WHO’s radiology programmes/activities in Africa. What has been done? What is currently being done? What is planned in the future?
6. To understand the concept of neck spaces and their boundaries.
7. To present the WHO’s programme in Africa: the past, the present and the future.

The WHO’s Programme in Africa: the Past, the Present and the Future

The WHO (World Health Organization) coordinates the international health work with the objective of attaining by all peoples the highest possible level of health. The WHO’s programme of work establishes a ‘triple billion’ target: 1 billion more people enjoying better health and well-being, 1 billion more people benefiting from universal health coverage and 1 billion more people better protected from health emergencies. Medical imaging plays a key role in the achievement of this “triple billion” target because diagnostic radiology and image-guided interventions are linked to the entire healthcare pathway (e.g. health promotion, preventive services, diagnosis, treatment, follow-up, rehabilitation, palliative care). WHO is conducting a Global Initiative on Radiation Safety in Health Care Settings to enhance global access to safe and appropriate use of radiation in health care services. This initiative is currently focused on supporting the implementation of the 10 priorities to improve radiation protection in medicine identified in the Bonn Call for Action. WHO has contributed to the development and launching of the AFROSAFE Campaign to enhance radiation safety and quality in health care in Africa and continues cooperating with local and international partners to support its implementation. A culture of radiation safety and quality can be embedded into policies, processes and institutions as the health care systems grow and develop as it is the case in many African countries. This, which represents at the same time a challenge and an opportunity, can be achieved with good leadership, robust planning and strategic investment.

Learning Objectives:
1. To present the WHO’s role, objective, core functions, structure and where/how radiology fits into them.
2. To explain the WHO’s programmes in Africa and the place of radiologists and radiologists in the context of the current priorities in the global public health agenda.
3. To understand the WHO’s views about radiation protection in Africa.
4. To present the WHO’s radiology programmes/activities in Africa. What has been done? What is currently being done? What is planned in the future?
significant shortening and change of shape. To accommodate these changes, a malleable material (fat) fills the "gap" between muscles and the rigid shield. The lateral "fat-filled-gap" between muscles involved in vocal cord vibration and the cartilage framework is named paralaryngeal space. A midline "fat-filled-gap" separates the epiglottis from the rigid thyroid laminae. CT and MR may precisely delineate the submucosal structures: muscles, fat-filled-gaps (paralaryngeal and pre-epiglottic spaces) and depict un-ossified and ossified cartilages.

Learning Objectives:
1. To understand the anatomy and signals of the cartilage framework of the larynx.
2. To learn the surgical subdivision of the paraglottic space of the larynx into key compartments.
3. To learn the anatomy and signals of the muscles within the larynx.

EFOMP Workshop

EF 2
Big data and the big picture: deep learning in optimisation of medical imaging (part B)

Moderators:
M. Brambilla; Novara/IT
M. Kortesniemi; Helsinki/FI

Chairperson's Introduction
M. Brambilla; Novara/IT (marco.brambilla@maggioreosp novara.it)

The purposes of this session are to provide an overview of the application of deep learning (DL) methods in image optimisation and to understand why DL methods are capable of supporting research. Improvement in radiological optimisation requires patient-specific and indication-specific adjustment of imaging parameters and image analysis methods. DL has been used increasingly in radiology because typical imaging objects such as lesions and organs presented in medical images are in most occasions far too complex to be represented reliably by a certain simple equation and, therefore, robust analysis methods are needed. This session will first introduce an application of DL in the computerised analysis of chest imaging emphasising the complementary role of visual reading and computer-aided diagnosis. The application of DL methods in medical physics such as scatter removal, spatial resolution improvement, noise reduction and dose estimation will be outlined as an example of how such methods can impact on quantitative aspects of medical imaging. The illustration of a paradigm shift: from image quality to care outcome, driven by the introduction of DL methods, will conclude the session together with an analysis of the challenges which must be faced for the introduction of DL in the clinical practice, namely: 1. gaining access to medical archives according to ethical and legislative requirements and 2. obtaining validated and standardized image data in a systematic fashion.

Session Objectives:
1. To provide an overview of application of deep learning methods in image optimisation.
2. To understand the need for a deep learning approach in medical imaging.
3. To understand why deep learning algorithms are capable of supporting research.

Computer analysis in chest imaging: from rule-based to machine learning to deep learning
B. Van Ginneken; Nijmegen/NL (bram.vanginneken@radboudumc.nl)

Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarised and illustrated for various applications of CAD in the chest.

Learning Objectives:
1. To give an overview of application of deep learning methods in the diagnosis of thoracic lesions.
2. To understand issues related to the technical implementation of these methods.
3. To learn about the complementary role of visual reading and computer-aided diagnosis.

Author Disclosure:
B. Van Ginneken; Founder; Thirona. Grant Recipient; Thirona, Delta Imaging System, MeVis Medical Solutions. Shareholder; Thirona.

A-0326 11:05
Deep learning in CT optimisation
M. Kachelriess; Heidelberg/DE (michael.kachelriess@dkfz.de)

With the introduction of deep learning in general, and with deep Convolutional Neural Networks (CNN) in particular, machine learning has spread into many medical areas with great success. In particular medical imaging may benefit from the new technology. Important applications such as image analysis, image segmentation and object recognition are well-known and start to become widely available. The applications of machine learning to the field of CT image formation, which describes the process of data acquisition, preprocessing, image reconstruction and post-processing, however, are less known, not as mature and hardly available, yet. Here, the use of machine learning can be mainly categorised into the categories 1) replacement of missing data (sparse view acquisition, limited angle tomography, --), 2) replacement of time-consuming computations (image reconstruction, scatter prediction, material decomposition, --), and 3) the incorporation of a priori knowledge (non-contrast CT from contrast-enhanced CT, pseudo CT from MR, --). This lecture discusses the underlying technology and selected application examples. Not all proposed methods may keep their promises. This may be partially attributed to the fact that the field of deep learning in CT optimisation is rather young and by far not mature. Other methods, in contrast, are highly promising and it appears as if the future will bring CT images at a lower patient dose and with fewer artefacts in clinical routine. Thus, deep learning has the potential to significantly improve and optimise CT image formation.

Learning Objectives:
1. To provide the rationale of deep learning methods in image optimisation.
2. To describe application of deep learning methods in medical physics tasks such as scatter removal, spatial resolution improvement, noise reduction, dose estimation.
3. To understand how these methods will impact on quantitative aspects of medical imaging.

A-0327 11:35
From image quality to care outcome
M. Kortesniemi; Helsinki/FI (mika.kortesniemi@helsinki.fi)

Medical physicists have a long tradition of measuring image quality with objective metrics including contrast, noise and resolution, and their frequency-based derivatives. These methods have supported our main tasks related to quality assurance and optimisation. Along with the technical imaging modality development, the optimisation process has transformed into a more demanding and multi-professional challenge where the image quality metrics should evolve accordingly from technical towards clinical presentation. In the parameter level, this development may include clinical task function and observer-related parameters supplementing the traditional MTF and NPS parameters. New methods enable model observer based detectability and diagnostic accuracy estimates. Ultimately, we should aim beyond the concept of technical quality, to extend our methods and knowledge towards measuring and optimising the diagnostic value in terms of care outcome. Improved optimisation process and more consistent imaging quality (evaluated by target value, its uncertainty and precision) require objective and quantitative connections from diagnostic and technical parameters to clinical outcome parameters. Comprehensive methodology to enable this approach involves combining several types of data together. Deep learning methods - including data quality control and validation - are prerequisites for this kind of data analysis, due to inherent non-linearity of the problem and a large amount of heterogeneous data which is not equitable by traditional methods. Our medical physicist professional role should follow this development and incorporate AI & in-depth learning topics accordingly into our educational programs.

Learning Objectives:
1. To introduce the need of measuring the diagnostic value in terms of outcome.
2. To discuss its relevance and limitations regarding the traditional concept of image quality.
3. To introduce the challenges in deep learning based artificial intelligence methods.
E³ 619
Tumour relapse in urological cancer

A-0328 10:30
Chairperson’s introduction
V. Logager; Copenhagen/DK (vibeke.logager@regionh.dk)

Relapse of cancer is one of the most difficult tasks. First, you have to know what kind of treatment the patient has undergone? Was it surgical, chemotherapy, radiation or a combination of these? Maybe the patient has undergone some newer minimal invasive therapy that you are not familiar with? The treatments could be in the form of proton therapy, cryotherapy, focused ultrasound or theranostics? There are different organs and different treatments. Nonetheless treated tissue and organs all have ways of reaction that we cannot avoid to know, and to recognize. Within these tissues, we shall find the vital cancer tissue, and this could be relapsing cancer, residual cancer or even a new clone of disease. It is therefore mandatory to learn the imaging strategies in post-treatment follow-up and relapse including the strength and weakness of the different modalities. When relapse has been found, a decision of treatment can be made.

A-0329 10:36
A. Prostate cancer relapse
V. Panebianco; Rome/IT (valeria-panebianco@uniroma1.it)

An elevated serum PSA is a first sign of relapse and imaging is needed to determine the localisation of the recurrence, which may be locally in the prostate area and/or metastatic. The precise localisation of the local recurrence by imaging is needed if this localisation could change treatment planning. Treatment for prostate cancer is significant because of the high potential of metastasis, the appearance of the residual prostate gland or the prostate bed, complicating imaging evaluation. It’s necessary to discern post-therapy changes from local recurrence. An overview of current imaging procedures and their performance in local recurrent PCs will be done, focusing on mpMRI. Therefore, mpMRI protocol (consists of T2W images, DWI/ADC and DCE-MRI) and evaluation of the images require specific considerations based on treatment received. For this reason, a standardised method of image assessment is needed to help in image analysis and reporting and to diminish variation in the acquisition, interpretation and reporting of prostate mpMRI in case of local recurrence. The relationships with PSA values will be also discussed. MpMRI can be currently considered as the most reliable imaging biomarker to detect local PCs recurrence in patients with biochemical failure after RP, especially for those PSA values where PET/CT is not recommended (0.2 - 1 ng/mL).

Learning Objectives:
1. To learn the follow-up strategy post radical prostatectomy.
2. To recognise relapse and know the patterns of spread.
3. To learn the use of imaging in planning salvage therapy.

A-0330 11:04
B. Non prostate urological cancer relapse
H.A. Vargas: New York, NY/US

Tumour relapse is an undesirable reality in all cancer patients, and short of minimising its occurrence by applying to optimal treatment modality at the time of diagnosis, the best outcomes are achieved by early detection of recurrence and prompt initiation of salvage therapies. Early detection on imaging is facilitated by understanding the expected treatment findings and learning common patterns of recurrence for different cancers. In this session, we will review the patterns of recurrence and multimodality imaging appearance of cancers involving the urinary system (kidneys, ureters, bladder).

Learning Objectives:
1. To recognise the expected post treatment appearances.
2. To know follow-up strategies for detection of relapse.
3. To learn to recognise pitfalls by case review.

A-0331 11:32
C. Theranostics in urological cancer
M. Hartenbach: Vienna/AU (markus.hartenbach@meduniwien.ac.at)

Emerging techniques and new targets in nuclear medicine have enabled new therapeutic approaches following the very own concept of biomarker imaging and therapeutic imaging using identical biochemical structures and metabolic properties as targets are summarised with the portmanteau-word ‘theranostics’. But theranostics can be seen in a broader spectrum of applications, especially when focusing on diagnostics that lead to an impact on therapeutic decisions. This lecture will give an overview of biomarker imaging in urological cancer, that has a direct impact on therapeutic decisions, as well as treatment with the same target structure focusing on prostate cancer. A prime example is given by the use of bone scintigraphy for Imaging osteoblastic activity which is targeted by 223RaCl2 therapy, proven to provide a survival benefit in castration-resistant prostate cancer patients. Beyond this, PSMA ligand positron emission tomography, as a specific method for imaging the folate hydrolase, has emerged as an almost routinely applied procedure in high-risk prostate cancer primary staging, biochemical recurrence and advanced tumour stages. Recent studies have proven its impact on therapeutic decisions in almost a third of the patients with primary disease and even 75% of the patients with biochemical recurrence who were negative on conventional imaging. Applying the direct theranostic approach in patients who underwent 177Lu-PyPSMA therapy (RLT), PSMA ligand PET response correlated with overall survival, overcoming the known issues of RECIST criteria. In summary, the theranostic approach enables a more personalised concept with highly specific therapeutic effect and low side effect profile.

Learning Objectives:
1. To learn diagnostic options in urological cancers.
2. To understand the advantages and limitations of theranostic approaches.
3. To become familiar with new the indications and outcomes of theranostic approaches.

E³ 620
Functional imaging of the liver

A-0332 10:30
Chairperson’s introduction
L. Marti-Bonmatí: Valencia/ES (marti_luli@gva.es)

Functional imaging is the study of human organs and related lesions by the analysis of imaging data. As opposed to structural imaging, functional imaging focuses on revealing biological and physiological activities based on either image features or signal modelling. Results are obtained throughout computer-based image processes for the detection and depiction of specific tissue changes. If successfully implemented, the main advantages of functional imaging will relate to the evaluation of quantitatively measured characteristics, as objective expressions of normal biological and processes, pathological changes, or pharmaceutical responses. The subrogated imaging biomarkers can be shown as features or parameters extracted from medical images, giving information on the regional distribution and magnitude change of the target process. The obtained organs and lesions properties are resolved in space (parametric images and analysis) and time (longitudinal and delta studies).

Considered as a non-invasive virtual biopsy, functional imaging and related data will provide fundamental information on the presence, distribution and amount of different pathological changes in diffuse liver diseases and liver tumours. Despite the major progress on their implementation over the last decades, the lack of consistency in the heterogenous-source medical images has deeply limited replication studies, leading to the failure of most multicentre projects and clinical trials validation. Most efforts are devoted to decrease uncertainty and biases in this precision radiology/medicine approach before they can be used to phenotype, predict treatment and evaluate prognosis.

External validation studies. External validation studies are essential before implementing functional imaging in clinical practice and trials.

A-0333 10:36
A. Diagnostic and staging of diffuse liver diseases using functional MRI
B.E. van Beers; Clichy/FR (bernard.van-beers@aphp.fr)

Quantitative MR imaging offers a multiparametric approach to assess the severity of hemochromatosis, nonalcoholic fatty liver disease, chronic viral hepatitis, and cirrhosis. The most validated methods are multi-echo gradient-echo MRI imaging to quantify hepatic iron and fat, as well as MR elastography to quantify liver fibrosis, cirrhosis, and potentially liver inflammation. Alternative methods for liver fibrosis staging include apparent diffusion measurements and T1 relaxometry, without or with gadodiamide enhancement. The diagnostic performance of these methods should be further compared to that of MR elastography. MR imaging has the potential to become a method of virtual biopsy that may decrease the need for invasive reference examinations in diffuse liver diseases. The integration of ultrasound and MR imaging biomarkers with blood sample biomarkers to further improve the assessment of diffuse liver diseases is a point of current research.
Learning Objectives:
1. To review functional MRI approaches of liver diseases.
2. To learn about their impact in characterising diffuse liver diseases.
3. To be aware of validated biomarkers of prognosis.

A-0334 11:04
B. Diagnostic and staging of diffuse liver diseases using multiparametric US
P.S. Sidhu; London/UK (paul.sidhu@btinternet.com)

The use of contrast-enhanced ultrasound (CEUS) to assess focal liver lesions is now well established, with superb ability to characterise lesions visually. The ability to measure parameters of the CEUS examination objectively is realised by the fact that the microbubble contrast agent is truly intravascular and has a linear dose response. This differs from the dynamics of other contrast agents used in CT and MR imaging. The drawback of CEUS is the ability to identify the lesion clearly. The use of time intensity curves, particularly calculating washout is undergoing continuing research, and the usefulness is extended to other organs such as the kidney and testis to evaluate different enhancement patterns. Segmentation, colour mapping and use of artificial intelligence will move the usefulness of objective measurements of dynamic CEUS imaging, allowing the definition of the levels of liver fibrosis, with different techniques available, impacting on clinical management of chronic liver disease. All these new techniques, combined as multiparametric ultrasound (MPUS), as advanced the practice of ultrasound imaging, and is a robust, patient-friendly imaging tool.

Learning Objectives:
1. To review functional US approaches of liver diseases.
2. To learn about their impact in characterising diffuse liver diseases.
3. To be aware of validated biomarkers of prognosis.

Author Disclosure:

A-0335 11:32
C. Characterisation of liver tumours and prediction of tumour response
B. Taouli; New York, NY/US (bachir.taouli@mountsinai.org)

We will discuss the role of multiparametric MRI including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic post-contrast T1WI imaging for the characterisation of focal liver lesions: to differentiate benign and malignant lesions and characterise subtypes of malignant lesions based on a combination of imaging features. We will also discuss the role of DWI and dynamic contrast-enhanced MRI for assessing tumour response. Finally, we will discuss future directions such as radiomics methods used for assessing liver tumours and tumour response.

Learning Objectives:
1. To learn about multiparametric imaging of liver tumours.
2. To understand the role of functional criteria of tumour characterisation.
3. To learn about main functional biomarkers of tumour response.

Author Disclosure:
B. Taouli: Grant Recipient; Bayer, Guerbet.

12:15 - 12:45 Room A

Headline Session

HL 1

Wilhelm Conrad Röntgen Honorary Lecture

Presiding:
L.E. Derchi; Genoa/IT

A-0336 12:15

Oncologic imaging: a new beginning has just begun
R.O.H. Reits-Tan; Amsterdam/NL

"no abstract submitted"

Learning Objectives:
1. To know the challenges in cancer management.
2. To understand the role of modern imaging in this management.
3. To learn about future directions in oncologic imaging.

12:30 - 13:30 Room C

E³ - The Beauty of Basic Knowledge:

Pancreas

E³ 24B

Chronic pancreatitis

Moderator:
C. Mato; Lisbon/PT

A-0340 12:30

How to diagnose and classify
G. Zamponi; Verona/IT (gzamponi@hotmail.com)

Chronic pancreatitis is a chronic inflammation of the pancreas resulting in the destruction of the pancreatic parenchyma, leading to endocrine and exocrine insufficiency. Chronic pancreatitis has many different recognised etiologies: toxic, idiopathic, genetic, autoimmune, recurrent, obstructive. Different pathogenetic theories have been proposed, but the common final pathway is the development of parenchymal fibrosis. Recurrent episodes of clinical or subclinical acute pancreatitis lead to chronic pancreatitis. In the early stages of chronic pancreatitis, imaging has a role in diagnosing the disease, especially with MRI and MRCP, and in identifying a possible aetiology, for example, recognising the presence of variant ductal anatomy, e.g. pancreas divisum. In the more advanced stages, the diagnosis is easy. Imaging has then a role in differentiating between the different morphological types of pancreatitis (macro- or micro-obstructive), in the differential diagnosis, especially with tumours, and in the follow-up.

Learning Objectives:
1. To learn about diagnosis of chronic pancreatitis.
2. To understand classification of chronic pancreatitis.
3. To appreciate the role of imaging in the follow up of chronic pancreatitis.

A-0341 13:00

Functional evaluation of chronic pancreatitis
M.A. Bali; Brussels/BE (mbali@ulb.ac.be)

Chronic pancreatitis (CP) is a continuing inflammatory process, responsible for irreversible morphologic changes, pain and exocrine/endoctrine impaired function. Parenchymal changes consisting of loss of functional parenchyma and vascularity with fibrotic replacement precede ductal abnormalities. The detection of early stages (the initial parenchymal changes prior to parenchymal/ductal abnormalities not detectable on conventional imaging) and the differential diagnosis between solid focal pancreatic lesions still represent challenges for conventional imaging. Secretin-enhanced MRCP (S-MRCP) allows depiction of ectatic secondary ducts (not visible on conventional unenhanced MRCP) present in early CP. Pancreatic exocrine reserve estimation: differences were reported between severe CP and normal, but not between mild CP and normal. S-MRCP may be useful in differentiating focal CP and pancreatic adenocarcinoma (PAC): the “duct penetrating sign” has been associated more frequently to focal inflammatory mass rather than PAC. New MR innovative technologies such as T1-mapping and MR elastography (MRE) may appreciate parenchymal changes in early CP. T1 relaxation time is a tissue-specific property, independent of imaging parameters: T1 relaxation time seem to be greater in mild CP compared with normal. Fibrotic parenchymal replacement is responsible for increased stiffness which can be detected by MRE prior to ductal and parenchymal abnormalities detectable on conventional imaging. DW-MR imaging allows the evaluation of microscopical properties of the tissue at a molecular level. Several clinical investigations have evaluated quantitative DWI for differentiating pancreatic solid lesions: overlapping ADC and D values have been reported for CP and PAC. More promising seem to be perfusion-related parameters.

Learning Objectives:
1. To appreciate functional evaluation of chronic pancreatitis.
2. To learn about the role of imaging in recurrent pancreatitis.
E³ 25B
Bone tumours
Moderator: V. Wörtler; Munich/DE (klaus.woertler@tum.de)

The diagnosis of a bone tumour is based on clinical findings, the age of the patient, the anatomic location of the lesion, its radiologic appearance, and if imaging does not allow for a specific diagnosis, its histopathologic features. Radiography remains the initial imaging modality for evaluation of the location of the lesion with respect to the longitudinal and axial planes of the involved bone, for estimation of its biologic activity by analysing the patterns of bone destruction and periosteal response, and for the depiction of matrix mineralisation. CT is typically used to obtain "radiographic" information in regions of complex skeletal anatomy such as the skull, spine, pelvis and shoulder girdle. MRI imaging is best suited to determine the local extent of a bone tumour (local staging), but can also be helpful to narrow the differential diagnosis in specific lesions such as cysts and cartilage-forming tumours. With a clear emphasis on conventional radiography, this course will review the basic imaging features of the most common benign and malignant bone tumours. Important radiographic findings, such as bone destruction patterns, types of periosteal reactions and matrix mineralisation, will be explained step by step in correlation with histopathology as well as advanced imaging techniques.

Learning Objectives:
1. To become familiar with the imaging features of benign and malignant bone tumours.
2. To appreciate their imaging characteristic hallmarks on plain film radiography.
3. To learn how best to use imaging modalities in differential diagnosis.

Joint Session of the ESR Ultrasound Subcommittee and the Undergraduate Education Subcommittee

ESR US SC/UES
US teaching to undergraduate students: why, how and from whom?
Moderators: C. Nyhusen; Strasbourg/FR
V. Válek; Brno/CZ

Ultrasound training is time-consuming limiting its presence, especially during medical school curricula. Today, ultrasound is the most used interdisciplinary non-ionizing imaging technique in daily clinical routine. While students have to learn pathology early in their medical curricula, ultrasound should be taught parallel to pathology to create a better understanding of imaging. One major limitation of ultrasound is the accurate image acquisition and interpretation by the use of real-time non-standardized planes (contrarily to standardised planes in CT or MRI). While some organic parts are not visible by ultrasound, the focus of US anatomy and pathology should be on orientation and localisation of the organs or cavities. Therefore, the combination of anatomic structures (in cadavers) and US image fusion with CT or MRI may help to understand the anatomy of organs and landmarks in ultrasound. Focused assessment for sonography in trauma (FAST) represents the most used ultrasound examination. Therefore, US courses of FAST should be offered to each student to learn both anatomic (relationship of organs, landmarks) and technical imaging (settings) basics of abdominal ultrasound. The introduction of artificial intelligence (AI) in ultrasound during the common years will improve the diagnostic performance in image interpretation. Therefore, radiologists in the future will focus on US-guided interventions and coordinating an interdisciplinary team. While US has to be performed manually, a replacement by robots/AI or sonographers is not predicted. To generate good quality standards in the performance of US, education and practical training by medical professionals are irreplaceable.

Learning Objectives:
1. To learn how ultrasound may be used effectively when teaching anatomy and pathology to undergraduate students, including access to hands-on practice.
2. To understand how the importance of ultrasound as an imaging modality in daily clinical practice may be highlighted to students.
3. To learn how US teaching can be used to raise students' interest in radiology as a career choice.

Author Disclosure:
T. Fischer: Advisory Board; Canon, Siemens, Bracco. Consultant; Canon. Speaker; Canon, Siemens, Bracco.

A-0338 12:35
How: US teaching in the radiology department and hands-on classroom teaching using living models and simulators
M. Bachmann Nielsen; Copenhagen/DK (mbn@dadlnet.dk)

The number of medical students in a large university may bring an overwhelming demand for ultrasound equipment and for hands-on training. Students can train by scanning each other but getting enough patients may be difficult. Also, the level of competencies the students should aim for is different in different clinical and surgical aspects of a specific disease. Therefore, US courses of FAST should be offered to each student to learn both anatomic (relationship of organs, landmarks) and technical imaging (settings) basics of abdominal ultrasound. The introduction of artificial intelligence (AI) in ultrasound during the common years will improve the diagnostic performance in image interpretation. Therefore, radiologists in the future will focus on US-guided interventions and coordinating an interdisciplinary team. While US has to be performed manually, a replacement by robots/AI or sonographers is not predicted. To generate good quality standards in the performance of US, education and practical training by medical professionals are irreplaceable.

Learning Objectives:
1. To learn how ultrasound may be used effectively when teaching anatomy and pathology to undergraduate students, including access to hands-on practice.
2. To understand how the importance of ultrasound as an imaging modality in daily clinical practice may be heightened to students.
3. To learn how US teaching can be used to raise students' interest in radiology as a career choice.

Author Disclosure:
T. Fischer: Advisory Board; Canon, Siemens, Bracco. Consultant; Canon. Speaker; Canon, Siemens, Bracco.

A-0333 12:35
From whom: the importance of radiologists delivering US teaching and staying experts in this field
K. Rosendahl; Bergen/NJ (karen.rosendahl@helse-bergen.no)

Traditionally, ultrasound (US) has been an important part of the radiologist's integrated imaging approach. The US findings, together with additional information provided by the patient during the bedside examination often help tailor further imaging, be it radiography, CT, MRI or nuclear medicine. During the past decades, specialties other than radiology, ranging from trauma surgeons to obstetricians and cardiologists, have taken an interest in ultrasound in order to answer very specific questions during the clinical examination, so-called point-of-care US. While ultrasound technicians and midwives are formally trained to perform the US, standardised training curriculum for clinicians are lacking. As radiologists we are medical expert consultants on imaging, and as such should have a key role in the initial training and setting of standards for diagnostic ultrasound procedures by non-radiologists and medical students. During this lecture, I will discuss how radiologists can continue to be regarded as experts in US through teaching and suggest ways to show students how radiologists provide an effective clinical service in this technique.

Learning Objectives:
1. To understand the importance of radiologists maintaining an interest in US and in US teaching in an era where US technology is more affordable and will be used by many specialties other than radiology.
2. To learn how radiologists can continue to be regarded as experts in US through teaching.
3. To become familiar with ways to show students how radiologists provide an effective clinical service in this technique.

Panel discussion: How can radiologists use US to teach undergraduate students effectively, within time and cost constraints, whilst promoting their specialty as a career choice?
ESOR Session

ESOR

Artificial intelligence: presented with new lecture formats
Moderator: V. Vilgrain; Clichy/FR
A-0368 14:00
Introduction
B. Brkjačić; Zagreb/HR (boris@brkjac.com)

In this session, the European School of Radiology (ESOR) will present new lecture formats with an emphasis on artificial intelligence (AI). Three speakers will discuss the concept of AI and machine learning applied in radiology, how neural networks can extract patterns from images and how deep learning can extract radiomics data.

A-0369 14:05
ESOR in action 2019
V. Vilgrain; Clichy/FR

A-0370 14:10
Artificial intelligence (AI) and machine learning (ML) in medical imaging
W.J. Niessen; Rotterdam/NL

“no abstract submitted”

Learning Objectives:
1. To define the concept of AI and the underlying techniques that can be applied to radiology.
2. To learn the needs and resources involved in the generation of new machine learning solutions for radiology.
3. To understand how AI can be integrated as a clinical tool to assist radiologists in their daily practice.

A-0371 14:30
Deep learning (DL) in medical imaging
A. Alberich-Bayarri; Valencia/ES

Deep Learning in Radiology can either be applied to reports by deep neural networks (DNN) or to images through convolutional neural networks (CNN). The main applications of deep learning in radiology include image reconstruction, image segmentation, classification, regression, content-based image retrieval and natural language processing of radiology reports, among many others. Specifically, CNN are generally outperforming deterministic computer vision algorithms used for filtering and segmentation. Nowadays, CNN-based algorithms allow for the automated segmentation of organs and tissues within the body with applications like 3D liver segmentation from MR, 3D prostate segmentation from MR, vertebrae detection and labelling from CT, 3D lung and emphysema segmentation from CT, 3D brain lesion detection and segmentation in MR. Deep learning has dramatically changed image analysis pipelines in radiology and has become a key piece in the automation of imaging biomarkers quantification within radiology departments.

Learning Objectives:
1. To learn the concept of DL and how neural networks (NN) can extract patterns from images.
2. To understand how DL can extract information from big radiomics data through training/test process.
3. To learn how convolutional NN can automatically extract imaging features.

Author Disclosure:
A. Alberich-Bayarri: Board Member; QUIBIM SL. CEO; QUIBIM SL. Founder; QUIBIM SL. Shareholder; QUIBIM SL.

A-0372 14:50
My experience: one-year fellowship
Y.M. Purcell; Dublin/IE

15:00
Awards

14:00 - 15:30 Room M 4

E³ - ECR Academies: Chest Imaging

E³ 722

Cavitary and cystic diseases of the lung

A-0373 14:00
Chairperson’s introduction
J. Biederer; Heidelberg/DE (biederer@radiologie-darmstadt.de)

Air-filled lung lesions are an important diagnostic feature on chest X-ray and CT with a wide range of differential diagnoses. They may result from different conditions such as central necrosis of solid lung lesions and consolidations (malignant or inflammatory), congenital disorders, degeneration (emphysema, bronchiectasis) or trauma. Typically they are an incidental finding and radiology often plays an important role in routing further management of the case. The keys for the most probable diagnosis are on the one hand a precise description for the differentiation of cysts (round, circumscribed, thin-walled space) and cavities (gas-filled space inside a consolidation, nodule or mass) as well as size, profusion and ancillary findings of the lesions on imaging. On the other hand, age, gender, history (tobacco fume exposure) of the patient and other clinical parameters contribute to the interpretation of the case. This session aims to review the diagnostic criteria for air-filled lung lesions by discussing cavitary lesions, cystic lung lesions (focusing on Langerhans cell histiocytosis and lymphangioleiomyomatosis) and their differentials. The attendees will be provided with a practical approach for image interpretation in everyday work based on CT features and clinical background information.
A cavity is defined as “a gas-filled space, seen as a lucency or low-attenuation area, within pulmonary consolidation, a mass, or a nodule”. The wall thickness may vary considerably. There is a continuous transition from cavities to cysts. Cysts are usually thin-walled (i.e., < 2 mm). A wall thickness < 7 mm is highly specific for the benign disease, a thickness >24 mm is highly specific for malignant disease. However, this is not absolute, as thin-walled carcinomas do exist. An additional indicator for malignancy is the lack of perilesional centrilobular nodules around a cavity. The cavity content is unhelpful in differentiating benign and malignant lesions. Wall rim enhancement on contrast-enhanced CT is common in abscesses. A connecting pulmonary artery may be seen in smaller metastases, but not in larger ones, as the larger nodules tend to compress the vessels, so no feeding artery does not always imply benign nodules. The acute onset of symptoms is sometimes helpful to distinguish malignant and non-malignant disease. Hemothysis is not a useful symptom to differentiate between benign and malignant cavities. Benign diseases may also cause fatigue and weight loss similar to malignancies. Acute onset of fever is usually helpful to distinguish benign disorders from malignant, but pulmonary cancer may cause a super-infection secondary to the tumour. However, the combination of symptoms, laboratory results, past clinical history, and imaging findings leads to recognition of the correct diagnosis. This presentation will guide you through the most commonly encountered cavity lung in adults.

Learning Objectives:
1. To review the diagnostic criteria and differentials of cavity lung lesions.
2. To learn about the most common causes.
3. To learn about an algorithmic approach to narrow the differential diagnosis.

A-0375 14:34

B. Langerhans cell histiocytosis (LCH)

A. Devaraj; London/UK

The presentation will review the typical and atypical features of Langerhans B. Langerhans cell histiocytosis (LCH).

Learning Objectives:
1. To understand the pathophysiology of LCH.
2. To review key features on CT.
3. To learn about the various stages of the disease.

A-0376 15:02

C. Lymphangioleiomyomatosis

A. Oikonomou; Toronto, ON/CA

Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by infiltration of the lung with smooth muscle cells. It occurs in patients with tuberous sclerosis complex (TSC-LAM) and in a “sporadic” form in patients without tuberous sclerosis (S-LAM). S-LAM is seen exclusively in women of reproductive age while TSC-LAM may also be seen in men. Parenchymal lesions in LAM include cysts, which are thin-walled, well-defined, round, usually small in size up to 2 cm and may reach large numbers. They have no zonal lung predominance. Nodules are extremely rare in S-LAM and are more commonly seen in TSC-LAM. They may either be solid or ground-glass and usually tiny. They represent multifocal micronodular pneumocyte hyperplasia. Pleural manifestations include chylothorax and pneumothorax. Chylous pericardial effusions may be seen. Recent guidelines for LAM from the European Respiratory Society LAM task force classify LAM as definite, probable and possible. LAM is differentiated by other cystic lung diseases such as Langerhans histiocytosis (PLCH), Birt-Hogg-Dubbe (BHD), lymphocytic interstitial pneumonia (LIP) and amyloidosis. In PLCH the cysts have a bizarre shape, are variable in number and are upper and middle lobe predominant. In BHD the cysts are round and variable in size but usually small and random in distribution surrounded by ground glass opacity. In BHD the cysts are elliptical in shape and have a subpleural, lower zone predominance adjacent to vessels. In amyloidosis, the cysts are variable in size but usually large and diffusely distributed. Nodules are seen in PLCH and amyloid.

Learning Objectives:
1. To learn about the current concepts on pathogenesis.
2. To review the typical and atypical CT features.
3. To learn about the tuberous sclerosis complex.
Learning Objectives:
1. To review main methods of renal perfusion measurement.
2. To learn about the place of functional approaches in strategy management of RVD.
3. To understand its impact for therapeutic decision.

A-0380 15:02
C. Characterisation of chronic kidney diseases (CKD)
N. Grenier: Bordeaux/FR (nicolas.grenier@chu-bordeaux.fr)

Renal physiology is complex with two compartments functioning under highly different conditions. The cortex is highly perfused with a high level of oxygen whereas medulla shows a poor perfusion level and works under hypoxic conditions. Water movements are multiple along the nephrons to maintain normal homeostasis. Glomerular filtration rate is a major marker of renal function, but its measurement is complex to obtain in clinics. All these parameters can be approached using functional MRI with DCE, DWI, BOLD. Some of these techniques may reflect changes within the extracellular matrix of renal tissue during the process of renal scarring. However, validation of these tools and their impact on patient management still requires further prospective studies.

Learning Objectives:
1. To understand the link between functional approach and renal physiological and tissue changes.
2. To learn how functional approach can help in differentiating renal diseases.
3. To be aware of their role in evaluating prognosis of CKD.

Author Disclosure:
N. Grenier: Advisory Board; Supersonic Imagine, Aix-en-Provence, France. Grant Recipient: Guerbet, GE Healthcare and Bracco.

16:00 - 17:30 Room A

E³ - ECR Academies: Interactive Teaching Session for Young (and not so Young) Radiologists

E³ 821
Gastrointestinal radiology
A-0390 16:00
A. Inflammatory bowel disease
J. Rimola: Barcelona/ES (jrimola@clinic.ub.es)

Bowel imaging had experienced relevant clinical advances in the last decade and represents the first diagnostic tool for assessing bowel inflammation in patients with Crohn’s disease (CD). There is growing evidence that cross-sectional imaging is able to accomplish main endpoints in the diagnosis of CD, including the detection of active disease, especially severe lesions, and the achievement of healing of inflammatory lesions. The identification of structuring and penetrating complications is also a key aspect that has implications in therapeutic management as well as in the determination of bowel damage. The lecture will provide the key points to confidently diagnose activity and complications related to CD.

Learning Objectives:
1. To review the spectrum of imaging findings in inflammatory bowel disease, mainly in Crohn’s disease.
2. To learn about the management options.

Author Disclosure:
J. Rimola: Advisory Board; Gilead, Takeda, TiGenix. Consultant; Parexel, Robarts Clinical Trials. Research/Grant Support; Abbvie. Speaker; Janssen.

A-0391 16:45
B. Rectal cancer staging: key findings
G. Brown: Sutton/UK

"no abstract submitted"

Learning Objectives:
1. To understand the imaging technique.
2. To identify the key imaging findings.

16:00 - 17:30 Room B

Special Focus Session

SF 8a
Artificial intelligence (AI): our future cannot be predicted, but we have to be prepared
A-0392 16:00
Chairperson’s introduction
G. Langs: Vienna/AT (Georg.langs@medunivien.ac.at)

Machine learning and radiology are rapidly gaining joint momentum as an interdisciplinarian research field. After initial expectations start to transition into joint research, it is time for a reality check to understand where we are and which are the most promising and difficult efforts for this emerging interdisciplinary field. The session will give an overview of the current state of machine learning in medical imaging and will explore valuable directions of joint research. Four distinguished speakers from areas covering radiology, machine learning and medical image computing will provide a realistic assessment of where we are, and offer their views about most directions that will have advance both fields having an impact on research in novel biomarkers, and clinical applications. The session will highlight challenges in methodology, the integration of machine learning in radiological routine, and the enablers of successful development of novel and reliable machine learning approaches in medicine. As both fields evolve, and the role of radiology and machine learning is expanding, the session will give a forum for critical, informed discussion.

Session Objectives:
1. To learn about the basics of machine learning and deep learning, its current capabilities and limitations and its contribution to research and routine.
2. To understand the current state-of-the-art, where ML/DL techniques struggle and in which directions the major methodological and application advances are being made right now.
3. To appreciate the need for interdisciplinary research and conscious creation of means to exploit the capabilities of AI, and to coordinate development across machine learning and radiology communities.
4. To become familiar with examples of how AI can be used in radiology.

Author Disclosure:
G. Langs: Founder; contextflow GmbH. Grant Recipient; Siemens, Novartis. Shareholder; contextflow GmbH. Speaker; Siemens, Roche.

A-0393 16:05
Basics of machine learning and deep learning
B. Van Ginneken: Nijmegen/NL

"no abstract submitted"

Learning Objectives:
1. To get basic understanding of techniques of machine learning with a focus on deep learning techniques.
2. To understand supervised and unsupervised learning techniques.
3. To know current capabilities and limitations of deep learning methodology in the context of radiology.

A-0394 16:20
AI for lesion detection and characterisation
B. Stieltjes: Basle/CH

"no abstract submitted"

Learning Objectives:
1. To see specific examples of AI application in clinical radiology and research.
2. To understand challenges, solutions and pitfalls in translating ML methodology to successful clinical implementation.
3. To learn what AI can add to the management of the radiology department.

A-0395 16:35
Machine learning in medical imaging going forward
P. Golland: Cambridge, MA/US

"no abstract submitted"

Learning Objectives:
1. To understand machine learning, where current technology development is heading and how it is aligned with clinical needs.
2. To understand which tasks ML/DL perform well, where the challenges are, where we can expect improvement and what the prerequisites for this are.
3. To learn what machine learning can add to the management of the radiology department.
A-0396 16:50
Which impact does AI have on medicine?
S.O. Schlenberg; Mannheim/DE

"no abstract submitted"
Learning Objectives:
1. To be prepared for the future role of AI and radiologists, and their interaction, when using AI as a tool for development and clinical routine.
2. To understand how AI will impact the role and tasks of radiologists in the future.
3. To know what the beneficial directions are and how we can facilitate effective joint research at the interface of the involved communities.
4. To try to foresee what the emerging role of AI means for educating the next generation of radiologists.

17:05
Panel discussion: What is the future role of a radiologist in the diagnostic process?

16:00 - 17:30 Room C

General Radiography (Radiographers)
RC 814
Forensic imaging
A-0397 16:00
Chairpersons’ Introduction (Part 1)
A. Dominguez: Lausanne/CH (Alexandre.DOMINGUEZ@hesav.ch)

The implementation of radiographers in forensic medicine is becoming more and more widespread. The use of the technical skills of a radiographer increases the quality of services, especially in the field of postmortem imaging angiography. The multi-disciplinary collaboration between pathologists, the radiologists and the radiographers allows the implementation of these new practices. Thanks to the contribution of forensic imaging, the sensitivity of the post-mortem examination within medico-legal investigations are increased.

Session Objectives:
1. To provide insights into the role of imaging, and radiographers, in forensic imaging.
2. To appreciate the key aspects of a quality forensic imaging service using angiography.
3. To understand the challenges associated with forensic imaging.

A-0398 16:03
Chairpersons’ Introduction (Part 2)
H.T. Patel; Ahmedabad/IN (hemantmitt@gmail.com)

Forensic Radiology is a segment within the field of medical imaging that focuses on using radiology imaging techniques where evidence may be gathered in a court of law. The use of radiography in support of evidence has a long history dating back to the first few months after Wilhelm Roentgen's discovery in 1895. A bullet seen using an x-ray was used for cases of attempted murder. Pathologists commonly use radiographs when performing autopsies. The images can help them identify elements that are out of place or questionable and then allows them to investigate further. As the radiologic sciences have advanced over the years to include MRI’s, CT’s, and ultrasound, the accuracy has increased to a much greater degree and has made it even more relevant for investigating crimes and gathering evidence.

Session Objectives:
1. To provide insights into the role of imaging, and radiographers, in forensic imaging.
2. To appreciate the key aspects of a quality forensic imaging service using angiography.
3. To understand the challenges associated with forensic imaging.

A-0399 16:05
A. The chain of evidence
M. Davis; Dublin/IE (michaela.davis@ucd.ie)

Diagnostic imaging is a useful tool for and clinical case management. Radiographers by the nature of their work create material which can be potentially used as evidence. This material may be in a variety of formats. It is important that radiographers maintain continuity of evidence within their working practices as the material, may be used by other professionals as part of their decision-making process as well as the courts including both the child and family and criminal courts. The presentation will draw upon examples and discuss potential pitfalls in this area.

Learning Objectives:
1. To appreciate the importance of continuity of evidence and record keeping.
2. To learn about essential steps for radiographers to follow.
3. To discuss potential pitfalls when conducting forensic examinations.

A-0400 16:28
B. Post-mortem cardiac angiography
H. Precht; Odense/DK (hepr@UCT.DK)

Computed Tomography (CT) is a widely used imaging tool with high diagnostic accuracy and prognostic value. Cardiac CT Angiography (CCTA) scanning is often used to diagnose cardiology patients as coronary atherosclerosis is a worldwide disease and counts for millions of deaths every year. The CT technology is developing rapidly given new possibilities for optimisation. A CCTA scan can identify elements as coronary stenosis, coronary atherosclerotic-, low attenuation- and spotty calcification plaques, positive remodelling. These components have been considered as important features of coronary plaque vulnerability and instability. As the coronary arteries have an average diameter of 1-4 mm, the CCTA images need to image small details with low attenuation. The CT scanner is challenged to image small details with good contrast and temporal resolution; therefore optimisation of the CT protocol is necessary. New developed CT techniques need to be implemented with caution to ensure the images not change coronary plaques size or content inappropriate. To evaluate new CCTA technique influence of coronary plaques, a correlation with the gold standard of histopathology could give us useful information. To be able to reflect these results to in-vivo CCTA it is important to prepare the heart and arteries with correct pressure, contrast filling in the arteries as contrast/water in the heart chambers. Scattered radiation from the surrounding tissue needs to be included as the most challenging parts is an exact procedure for three-dimensional alignment procedure for PMCCCTA and the histopathology data.

Learning Objectives:
1. To learn about the development of multiphase post-mortem cardiac angiography (PMCCCTA).
2. To appreciate the benefits and limitations of PMCCCTA examinations.
3. To understand the role of the radiographer in the PMCCCTA.

A-0401 16:51
C. Paediatric forensic imaging
A.L. Brookes; Fulwood/UK

Forensic imaging is the application of any form of diagnostic radiography to the law and is used to provide evidence for a potential criminal investigation. This sub-speciality of radiology is ever expanding, and recent developments have seen forensic imaging utilised and researched more widely, particularly the use of CT in post-mortem settings. Paediatric forensic imaging is the mainstay of routine forensic cases undertaken in imaging departments. Most often, this is the investigation of Suspected Physical Abuse (SPA) in both living and deceased children. In these cases, imaging is used as an adjunct to other evidence collected in the detection of SPA. However, recognition and further prevention of child abuse can be achieved through the use of radiological findings. Nevertheless, forensic imaging in paediatrics extends beyond use for detection of SPA, and in almost all types of forensic imaging, paediatric cases will be found.

Learning Objectives:
1. To appreciate the role of the radiographer in paediatric forensic imaging.
2. To understand the challenges associated with conducting paediatric forensic examinations.
3. To discuss the imaging options available for paediatric forensic imaging.

17:14
Panel discussion: Safeguarding the wellbeing of staff involved in forensic imaging

16:00 - 17:30 Room X

Multidisciplinary Session
MS 8b
Brain imaging in psychiatry
A-0402 16:00
Chairperson’s introduction
J.-P. Pruvot; Lille/FR (jean-pierre.pruvo@chru-lille.fr)

This session will introduce the potential of MRI use in Psychiatry. First, the prevalence and burden of the main psychiatric disorders will be presented by Dr Amad. He will notably synthesise the available findings in first-episode of psychosis and the rationale for systematic MRI in this indication. Then, Pr Pruvot will discuss the choice of structural/ functional MRI sequences in this
context. He will present a collaborative psychiatry-radiology network in France as proof of concept. Dr Lopes will then develop the perspective of high-field MRI in psychiatry research together with clinical applications based on advanced Machine-Learning adapted to the field of Psychiatry. Finally, Pr Jardri will conclude on applications of image-guided therapy to relieve drug-resistant hallucinations.

Session Objectives:
1. To introduce the potential of MRI use in psychiatry.
2. To present the context and introduce the faculty.

A-0403 16:05
The epidemiology of psychiatric disorders: why is MRI needed?
A. Amad; Lille/FR (ali.amad@chru-lille.fr)

The prevalence, severity, and overall burden of morbidity and mortality represented by psychiatric disorders reflect an urgent global public health priority. According to a systematic review of data and statistics from community studies in European Union (EU) countries, the WHO estimated that 27% of the adult population (18-65 years old) had experienced at least one of a series of psychiatric disorders in the past year representing about 83 million people being affected. Despite psychiatric disorders are now defined as brain disorders, the use of brain imaging, especially brain MRI, in psychiatric clinical practice remains limited. Currently, the main indication of brain MRI in psychiatric clinical practice corresponds to the identification of differential diagnoses as many diseases (e.g. brain tumours, neuroinflammatory disorders, aneurysm) can cause and/or be associated to psychiatric conditions. In this talk, we are going to answer to the question "why MRI is needed in psychiatry", with a focus on the first psychosis episode, by highlighting that considerable research is indicating that the potential uses of brain MRI in clinical practice are numerous for both diagnostic and prognostic purposes but also to guide treatments.

Learning Objectives:
1. To know the prevalence and burden of the main psychiatric disorders.
2. To synthesise the available findings in the case of the first-episode of psychosis.
3. To discuss the rationale for systematic MRI in first-episode psychosis.

A-0404 16:23
Strengths of structural and functional MRI in psychiatry
J.-P. Pruvot; Lille/FR

Being able to predict as soon as possible the clinical outcome following a first episode of psychosis (FEP) is crucial, and should allow providing the most appropriate care to patients. Several biomarkers for FEP outcome have already been proposed, including anatomical and functional neuroimaging, neuropyschological and biological biomarkers, but they still lack large-scale validation. In the Hauts-de-France region, the Federation for mental health research (F2RSM) constituted radiologists-psychiatrists pairs and harmonised magnetic resonance imaging sequences to be used in FEP, forming the "PSYNAC clinical network". This procedure also includes follow-up visits to maintain harmonisation over time. The choice of the most adapted sequences to be conducted in this context will be discussed. We expect to later develop and generalise such a network nationwide.

Learning Objectives:
1. To discuss the choice of structural/functional MRI sequences in the first-episode of psychosis.
2. To present a collaborative psychiatry-radiology network in North of France.
3. To present the clinical perspective of the PREDIPSY project.

A-0405 16:41
Advanced MRI and clinical applications: the structured report
R. Lopes; Lille/FR (renaud.lopes@gmail.com)

In this presentation, we will talk about the interest of advanced MRI in clinical applications with a focus on a structured report. First, we will discuss the interest of 3T MRI in a better understanding of the physiopathology of neurological and psychiatric diseases. We will synthesise 5-years of 3T MRI research in biomarkers of these diseases. Next, we will present some studies using ultra-high field MRI in psychiatric diseases and will show the complementarity with 3T MRI. Finally, we will conclude by demonstrating the interests of these biomarkers identified at 3T and 7T MRI in the diagnosis of psychiatric and neurological diseases using artificial intelligence and structured report.

Learning Objectives:
1. To synthesise 5-years of 3T-MRI research in psychiatry and neurology.
2. To present the perspective of ultra-high field MRI in psychiatry research.
3. To present clinical applications of machine-learning on MRI-data in the field of psychiatry.

A-0406 16:59
From fMRI capture of hallucinations to innovative image-guided treatments
P. Jardri; Lille/FR (renaud.jardri@chru-lille.fr)

Hallucinations have held the fascination of science since the dawn of humanity. However, their study has become critical with the recent development of functional brain imaging that allowed to explore the neural underpinnings of these experiences. This presentation will briefly summarise the available methods to analyse first-hallucinatory fMRI signal, called ‘hallucination capture’ methods. Recent developments using Machine-Learning will also be presented. Crucially, these methods pave the way to innovative fMRI-guided treatment of drug-resistant hallucinations, including neuro-navigated brain stimulation (e.g. rTMS) and fMRI-based neurofeedback.

Learning Objectives:
1. To know the neural bases of hallucinations.
2. To know the different fMRI strategies used to capture hallucinations.
3. To present fMRI-guided treatments of refractory hallucinations.

A-0407 17:17
Multidisciplinary case presentation and discussion
J.-P. Pruvot; Lille/FR (jean-pierre.pruvo@chru-lille.fr)

16:00 - 17:30 Room N
To appreciate the progress made in recent years with respect to DRLs and for radiation protection of patients.

To understand the place and the importance of DRLs in the Euratom system requirements for DRLs.

The European Commission launched the ‘European study on clinical diagnostic reference levels for x-ray medical imaging’ (EUCLID) project to provide up-to-date clinical dose reference levels (DRLs). The main objectives of the project are to a) conduct a European survey to collect data needed for the establishment of DRLs for the most important, from the radiation protection perspective, x-ray imaging tasks in Europe and b) specify up-to-date DRLs for these clinical tasks. EUCLID started on August 1, 2017, and the duration of the project is 33 months. A comprehensive review has been carried out to identify the status of existing clinical DRLs for CT, interventional radiology and radiography in Europe and beyond by analysing recent studies, standards and publications. Information about existing clinical DRLs has also been collected from competent national authorities and other organisations involved in the project. A survey has been developed for the collection of data needed for DRLs determination from 14 European countries. Data are collected for 10 CT clinical indications and four fluoroscopically guided interventional procedures. While the hospitals are collecting data and uploading them to a secure platform, literature is reviewed, and different methods of data analysis are investigated by EUCLID experts. Preliminary results will be summarised during this presentation.

Learning Objectives:
1. To learn about the concept of CDRls in CT and interventional radiology.
2. To understand the importance of local DRLs.
3. To appreciate the need to develop local repositories covering the field of quality and safety.

Experience from the EUCLID (European study on clinical DRLs) Project
J. Damilakis; Iraklion/GR (damiaki@med.uoc.gr)

The substantial contribution of computed tomography (CT) to the collective population dose requires efforts to optimise CT radiation doses. Diagnostic reference levels (DRLs) are a useful tool to support this optimisation. Recently, the DRLs for CT have been updated in Switzerland compared to the previous national assessment from 2010. Radiation dose data from 50 CT scanners were collected with locally installed dose management software solutions between 2014 and 2017. Compared to the previous DRLs, a clear trend towards lower doses was observed. The average relative change in CTDIvol was -30% (0% to -47% depending on the protocol) and -22% for dose length product (+20% to -40%). Furthermore, comparing to other European countries, the recently updated national DRLs for CT in Switzerland is lower. The substantial reduction of the DRLs reflects well the efforts of the Swiss radiological community towards the use of dose-efficient protocols.

Learning Objectives:
1. To learn about the methodology of updating the national DRLs for CT in the era of dose management software.
2. To learn about the main differences of the updated national DRLs for CT.
3. To understand the impact of the updated national DRLs for CT.

Discussion
17:20

Special Focus Session
SF 8c
The art to transmit and to receive: how to communicate critical information to our patients

A-0414 16:00
Chairpersons’ introduction (Part 1)
M.H. Fuchsjaeger; Graz/AT (michael.fuchsjaeger@medunigraz.at)

This session is aimed at all radiologists to learn to understand the power of communication as such, as well as the communication of critical information to our patients. During the last two decades, the term of the invisible radiologist has been coined, something that does not at all reflect the true clinical work of any radiologist which is in many subspecialties very close to our patients. Still, many medical universities do not have communication skills training incorporated into their curricula. In this session stress is laid on the fact that active communication is important, acknowledging that active listening is perhaps the most important part of it. We will learn about the fundamentals of physician-patient communication, the patients’ needs as well as the patients’ perspective of physician-patient communication, as well as strategies to improve our communication with our patients.

Session Objectives:
1. To understand the importance of direct communication with patients.
2. To learn about the differences between delivering and receiving critical information.
3. To become familiar with the needs of patients for communication with medical specialists.

A-0415 16:03
Chairpersons’ introduction (Part 2)
C. Loewe; Vienna/AT (christian.loewe@medunivien.ac.at)

The continuous transformation of Radiologists from very technical Physicians far away from patients and clinical decision making towards clinically involved doctors playing a central role in tumour boards and treatment decisions has changed the demands on modern clinical Radiologists. Besides the traditional needs for a highly accurate and precise language for written reports, clinical Radiologists nowadays should also be skilled in direct communication with clinical colleagues and – even more important - with patients. There is an increasing number of situations and occasions where clinical Radiologists are the first ones to inform patients about a possibly unfavourable finding. It is important for Radiologists nowadays to understand how to communicate critical information to patients.

Learning Objectives:
1. To learn about the 2017 Irish national CT survey.
2. To understand DRL differences when derived from clinical indications in contrast to anatomical region.
3. To appreciate aspects for improvement of future surveys.

A-0413 17:05
Update of the national DRLs for CT in Switzerland
S.T. Schindera; Aarau/CH (sschindera@al.com)

The substantial contribution of computed tomography (CT) to the collective population dose requires efforts to optimise CT radiation doses. Diagnostic reference levels (DRLs) are a useful tool to support this optimisation. Recently, the DRLs for CT have been updated in Switzerland compared to the previous national assessment from 2010. Radiation dose data from 50 CT scanners were collected with locally installed dose management software solutions between 2014 and 2017. Compared to the previous DRLs, a clear trend towards lower doses was observed. The average relative change in CTDIvol was -30% (0% to -47% depending on the protocol) and -22% for dose length product (+20% to -40%). Furthermore, comparing to other European countries, the recently updated national DRLs for CT in Switzerland is lower. The substantial reduction of the DRLs reflects well the efforts of the Swiss radiological community towards the use of dose-efficient protocols.

Learning Objectives:
1. To learn about the methodology of updating the national DRLs for CT in the era of dose management software.
2. To learn about the main differences of the updated national DRLs for CT.
3. To understand the impact of the updated national DRLs for CT.

17:20
Discussion
A-0416 16:05
How patients feel about communication
C. Justsch: Vienna/AT (cjustsch@ine.com)
A bigger picture has become the basic requirement in today’s medical world. High expectations demanded from physicians have to be met on a professional level and with compassion for the patient. The key to success lies in recognising the importance of communication resulting in a doctor-patient-relationship based on trust. The secret is, how you say what by whom. How: Radiologist with limited time need to find quick and effective ways to communicate, in most cases, they are the first ones to approach a patient (technique examples). Who: Each patient should have one medical leader who guides them. Patients tend to hand over the total responsibility to doctors, and they should be empowered to take it back and to play an active role in their care and healing process. The medical leader has to be the single point of communication to all persons involved. The time between examination and issuing its results must be kept short, the information being provided only after a decision has been made (personal example liver). Today we know, that a positive expectation together with the care of an acknowledged expert, can work better than a placebo. As physicians, you have the power to reduce your patients’ stress and anxiety but also to increase them. Statistics are fabulous but be careful about giving prognoses and taking away hope. To set up your wording in the right way will improve the outcome (examples). Making an effort is well worth it, the benefits will be yours.

Learning Objectives:
1. To understand the immense impact of communication.
2. To demonstrate how different ways of communication influenced me as a patient.
3. To appreciate benefits of good communication for the physician.

A-0417 16:30
Fundamentals of physician/patient communication
L. Fallowfield: Brighton/UK

Learning Objectives:
1. To understand what questions and information are important to patients.
2. To learn some basic principles and techniques of doctor-patient communication.
3. To apply these principles to some common clinical situations.

A-0418 16:55
How can we improve communication with our patients?
F.J. Gilbert: Cambridge/UK

The interaction of radiologist with patient varies in type of examination undertaken. With mammograms, there may be no interaction, with ultrasound it’s challenging to avoid communication with the patient who is anxious and will ask questions during the procedure. This is similar to image guided procedures where sometimes informed consent is required. A clear explanation of interventional procedures is essential as patients are giving consent implicitly if no direct consent is being requested. The communication of radiological findings with patients depends on the nature of the discussion. Often when there is an uncertainty of diagnosis, radiological findings are explained together with next steps for patient management. Commonly there is uncertainty about mammographic findings, i.e. microcalcification or asymmetry and further imaging or biopsy is required. The importance of conveying the same message as the clinician in charge of the patient cannot be emphasised enough. Essentially the radiologist must not undermine or contradict the clinician who has to take the ultimate responsibility for the patient. An agreed management plan is important and is often developed in the Multidisciplinary team meeting (MDT). Patients appreciate clear communication together with written plan of management. Communication courses give practical tips on effective communication strategies together with advice on how to check whether or not the patient has understood what is being said. An empathic approach is important in breaking bad news.

Learning Objectives:
1. To understand the communication of radiological findings with patients.
2. To discuss communication of uncertainty about radiological findings and why further tests are required.
3. To appreciate the importance of conveying the same messages to the clinician in charge of the patient.

Panel discussion: How to convey that we care

16:00 - 17:30
Studio 2019

Special Focus Session
SF 8d
Non-contrast MR angiography: ready to go?

A-0419 16:00
Chairperson’s introduction
R. Iezzi: Rome/IT (roberto.iezzi.md@gmail.com)
MR angiography represents an accepted non-invasive alternative to conventional angiography in vascular imaging. Furthermore, using MR to delineate vascular anatomy has changed dramatically due to continuous technological evolution which provided more advanced equipment and complex software, making it faster with more detailed information obtained. Advantages of MRA over CTA include increased signal-to-noise ratio, easier 3D post-processing, and utility in young patients or in patients who require recurrent follow-up imaging given its lack of ionising radiation. One of the biggest concerns in radiology in recent years is the safety of gadolinium-based contrast agents used in MR imaging. It is well-known that patients with moderate to severe renal insufficiency and vascular or metabolic disorders cannot filter the gadolinium, being at risk for developing the debilitating and possibly life-threatening disease of nephrogenic systemic fibrosis. However, there has been little evidence showing patient safety issues in those with normal renal function. These points will be discussed during the session, also highlighting the renewed interest on non-contrast MRA imaging, obtained with improvements in MR hardware and software, as reported in recent literature, that could overcome MRA. Interestingly, phase-contrast NCE-MRA methods could also offer the potential to provide additional hemodynamic information that currently is obtained using invasive methods.

Session Objectives:
1. To understand the role of MR angiography in vascular imaging.
2. To become familiar about the risk of gadolinium injection.
3. To learn about the existing literature on the usefulness of non-contrast MRA imaging.

A-0420 16:05
Non-contrast MR angiography techniques
T. Leiner: Utrecht/NL (t.leiner@umcutrecht.nl)
Magnetic resonance angiography is a highly reliable tool for detection of presence, extent and severity of arterial narrowing in virtually any vascular bed in the body except the coronary arteries. In clinical practice, most radiologists use contrast-enhanced MR angiography (CE-MRA) techniques due to wide availability and ease of use. However, recent advances in scanner hardware and pulse sequence design have led to the development of a set of methods that utilise the intrinsic properties of blood to generate images with high vessel-to-background contrast without the need for an injection of an extrinsic contrast agent. These methods are also known as native or non-contrast MRA (NC-MRA). NC-MRA methods rely on a variety of contrast mechanisms. The most commonly used mechanisms are Flow-independent MRA; non-subtractive inflow-dependent MRA; subtractive 3D MRA, and velocity-selective 3D MRA. In my lecture, I will discuss these mechanisms as well as the evidence for clinical efficacy in various body regions.

Learning Objectives:
1. To become familiar with MRI technologies and innovations.
2. To learn about the alternative sequences to study vascular structures.
3. To learn what you need to technically optimise your protocols.
Determining that gadolinium contrast agents caused NSF and brain accumulation led to the preference of non-contrast MRI applications more frequently. In recent years, there has been an increase in the number of non-contrast MR angiography techniques. The most preferred method in the non-contrast angiographic evaluation of the aorta is the ECG and navigator-gated 3D-SSFP (3D-SSFP) sequence. Protocols that include cine SSFP, ECG gated 2D black blood TSE, ECG gated white and black blood single shot sequences, and 3D-SSFP provide a comprehensive assessment of aortic pathologies. In this presentation, advantages, disadvantages and artefacts of non-contrast MRI protocols used in the evaluation of aorta will be discussed.

Learning Objectives:
1. To understand the role of MR angiography in aortic imaging.
2. To discuss how non-enhanced MRI sequences could replace gadolinium-enhanced sequences.
3. To learn how to optimise your protocols to avoid the use of intravenous gadolinium.

Peripheral non-contrast MR angiography

For evaluation of peripheral vascular disease non-contrast, TOF MRA was replaced by long acquisition times plus in-plane flow saturation effects and was soon supplanted by gadolinium-based contrast-enhanced techniques. The extensive craniocaudal coverage and necessity for high spatial resolution required to evaluate the lower limb arteries down to the feet accurately has remained challenging for NC-MRA. Nevertheless, there has been significant progress with both ECG-triggered subtraction FSE (exploiting arterial and venous flow differences, e.g., FBI) and flow-independent bright-blood techniques such as SSFP with IR (NATIVE SPACE, TRANCEC) and (ECD)-triggered quiescent interval single shot (QISS) MRA being refined. There is increasing evidence of the accuracy (particularly for QISS); however, the uptake of these techniques has been relatively limited and this presentation will explore the reasons behind this which are in part due to technical limitations & competition from alternative techniques but also more prosaic challenges in the implementations that impact on workflow.

Learning Objectives:
1. To understand the role of MR angiography in peripheral disease.
2. To discuss how non-enhanced MRI sequences could replace gadolinium-enhanced sequences.
3. To learn how to optimise your protocols to avoid the use of intravenous gadolinium.

Non-contrast MR angiography in paediatric vascular imaging

Contrast-enhanced MR angiography (CE-MRA) has long considered the modality of choice for vascular imaging in children. The main contraindication of CE-MRA has been the renal failure because of the risk for developing nephrogenic fibrosis. State of the art CE-MRA necessitates lack of motion, a good intravenous access and collaboration of the patient in breath holding, conditions that may be difficult to obtain in young children. Over the last years, there is an increasing concern about the deposition of gadolinium in the brain of pediatric and adult patients leading to an increasing interest in developing new non-contrast-enhanced MRA (NC-MRA) techniques. NC-MRA has been successfully applied in imaging the thoracic and abdominal aorta and its branches. “Black blood” and “white blood” sequences have been used in the evaluation of aortic rings and pulmonary slings. NC-MRA and cine-MRI have been used for the evaluation of coartation of the aorta and complications such as residual stenosis or restenosis, development of a false aneurysm and aortic dissection. NC-MRA has been successfully used evaluation of aberrant vessels crossing the ureteropelvic junction resulting in hydrourephrosis and in the evaluation of the splenoportal vessels. NC dynamic MRA techniques based on arterial spin-labelling can be used in the evaluation of brain vessels offering the possibility to separate arteries from veins and to detect temporal flow differences between the anterior and posterior circulation.

Learning Objectives:
1. To learn about the risk of gadolinium injection in the paediatric patient.
2. To discuss the implications of the new knowledge for clinical practice in paediatric radiology.
3. To learn how to optimise your protocols to avoid the use of intravenous gadolinium.

Non-contrast MR angiography for large vessels

T. Haziroglu; Ankara/TR (tuncay.haziroglu@yahoo.com)

This session will present the physiological changes and benign breast diseases and highlight the challenges and opportunities of breast MRI imaging in pre-menopausal women. The objective is to provide an overview of how to manage the enhancement of parenchyma. Then, will be discussed the place of breast screening in pre-menopausal women and present the risk factors that define groups of women that would benefit a breast screening the balance between risk and benefit of radiation dose. Finally, an overview of breast diseases associated with pregnancy will be done in order to learn which imaging techniques could be used to investigate pregnancy-associated breast lesions and breast cancer.

Session Objectives:
1. To highlight the different pathologies we may encounter in pre-menopausal women.
2. To present controversies about screening in pre-menopausal women.
3. To become familiar with breast diseases associated with pregnancy.

Learning Objectives:
1. To present the physiological changes and benign breast diseases.
2. To highlight the challenges and opportunities of breast MRI imaging in pre-menopausal women.
3. To provide an overview on how to manage enhancement of parenchyma.
Learning Objectives:
1. To discuss the place of breast screening in pre-menopausal women.
2. To present the risk factors that define groups of women that would benefit a breast screening.
3. To evaluate the balance between risk and benefit of radiation dose.
4. To learn about the value of tomosynthesis with synth2DMG and MRI in this group of women.

Author Disclosure:
P. Clauser: Speaker; Invited talks for Siemens Healthcare.

A-0427 16:55
Pregnancy-associated breast cancer (PABC)
C. Van Oeneva: Leuven/BE (chantal.vanoneva@uz.kuleuven.ac.be)

The incidence of PABC is estimated at 1:1000 to 2000 pregnancies. Initially, pregnancy-associated breast cancer (PABC) was defined as breast cancer during pregnancy or within 1 to 2 years postpartum. Because of different physiology and treatment, more appropriate definitions are: BC diagnosed during pregnancy and BC diagnosed in the postpartum period. Correct staging is essential in the selection of treatment. BCP women are almost always present with a palpable mass. Physiological changes of the breast during pregnancy may cause the patient’s and doctor’s delay. The differential diagnosis ranges from benign lesions (lactating adenoma, galactocele, abscess, cystic disease, fibroadenoma) to malignant epithelial BC and sarcoma or lymphoma. Local staging starts with ultrasound (US) and additional core-needle biopsy of all US abnormalities (distortion, heterogeneity of parenchyma, mass lesion). Additional evaluation of the axilla is mandatory. The physiological changes of the breast composition and lymph nodes during pregnancy and breastfeeding will be discussed. The rate of complication of CNB is low. In case of a histologically proven malignancy, to find additional information on DCIS related microcalcifications, mammography (2 views) is mandatory: radiation safety rules will be described. The sensitivity of MRI during pregnancy may be compromised by physiological changes, but also the prone position may be difficult if pregnancy is farther along. The rules of admission of intermediate and lowest risk gadolinium contrast media are described in the ESUR-contrast-medium-safety protocol. An alternative for GD-admission is the use of diffusion-weighted (DWI) breast imaging. For systemic staging, whole-body-DWI MRI seems very promising.

Learning Objectives:
1. To become familiar with breast diseases associated with pregnancy.
2. To recognise specific characteristics of pregnancy-associated breast cancer.
3. To learn which imaging techniques could be used to investigate pregnancy-associated breast lesions and breast cancer.

17:20 Panel discussion: At what age should we start to screen women for breast cancer?

16:00 - 17:30 Room E2

Neuro

RC 811 State-of-the-art paediatric neuroradiology

A-0428 16:00
Chairperson’s introduction
C. Call: Izmir/TR

Session Objectives:
1. To understand the spectrum of applications and indications for imaging in paediatric neuroradiology.
2. To understand the relevance in order to apply the appropriate image acquisition protocols of disease in the field.
3. To appreciate the clinical relevance of imaging for the diagnostic process of neurological disorders in infants and children.

A-0429 16:05
A. Imaging myelin maturation disorders
N. Wolf: Amsterdam/NL

“no abstract submitted”

Learning Objectives:
1. To learn about normal and pathological patterns of myelination.
2. To understand the role of imaging with respect to narrowing the differential diagnosis and supporting the clinical diagnosis.
3. To appreciate the importance of pattern recognition for the diagnosis of myelination disorders in children.

A-0430 16:28
B. Imaging of developmental disorders
B. Ertl-Wagner: Toronto, ON/CA (Birgit.Betina.Ertl-Wagner@sickkids.ca)

To understand congenital abnormalities of the brain, it is important to be familiar with the embryologic development. Neuronal proliferation, migration and cortical organisation are important steps in the development of the cortex. Group I disorders of cortical development are disorders of neuronal and/or glial apoptosis or proliferation. Among these are congenital microcephaelises (I.A), congenital agenesis cephalhies (I.B), and diffuse or focal cortical dysgenesis or dysplasia (I.C). Microlissencephaly is characterised by a reduced gyration and microcephaly. Hemimegalencephaly is a hamartomatous overgrowth of one cerebral hemisphere or parts thereof. Group II disorders are disorders of neuronal migration. Among these are periventricular (subependymal) heterotopia (II.A), lissencephalies (II.B), focal subcortical heterotopia (II.C), or disorders of terminal migration, e.g. cobblestone lissencephalies (II.D). Heterotopia are defined as areas of grey matter in an ectopic location; they are isointense to the cortex. Group III disorders are disorders of postmigrational development. Among these is polymicrogyria with schizencephaly (III.A), polymicrogyria without clefts or calcifications (III.B), focal cortical dysplasia (III.C), or postmigrational microcephaly. In schizencephaly, there is a cleft that extends from the ependymal to the cortical surface, and that is lined by dysplastic grey matter. In polymicrogyria, there are too many too small gyri and sulci and an irregular grey matter-white matter interface. Important infratentorial congenital abnormalities include Chiari malformations, cistic abnormalities of the posterior fossa / the Dandy Walker spectrum, molar tooth malformations / Joubert syndrome and dysplastic cerebellar gangliocytoma/Lhermitte-Duclos syndrome.

Learning Objectives:
1. To understand the spectrum of developmental disorders of the brain.
2. To understand the key imaging features that lead to the correct diagnosis.
3. To appreciate the importance of making a correct imaging diagnosis.

A-0431 16:51
C. Imaging in paediatric neuro-oncology
G. Morana: Genoa/IT (giovannimorana@gaslini.org)

Central nervous system tumours are the most common solid neoplasms in children and encompass a wide spectrum of heterogeneous neoplasms, each with its own biology, prognosis, and treatment. Paediatric brain tumours may share similarities with their corresponding adult variants, but incidence rates, locations, molecular and genetic features, and even certain histopathological characteristics are often different and thus may be considered biologically distinct entities. Conventional MRI represents the backbone of brain tumour identification and characterisation, but has limitations in distinguishing tumours from tumour mimics, defining tumour grade, evaluating treatment response and predicting patient outcome. Advanced MRI modalities, such as diffusion-weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy have improved our understanding of brain tumours, overcoming some of the main limitations of conventional MRI and providing additional microstructural, hemodynamic and metabolic information of brain tumours. Beyond MRI, metabolic imaging with PET provides further insights into a tumour biological activity; indeed, PET imaging combined with MRI, either by off-line co-registration or via hybrid PET/MRI systems, is emerging as a valuable imaging modality not competing with but rather complementing MRI. Depending on the radiotracer used, different molecular processes can be assessed, and a growing body of evidence supports the promise role of radiopharmaceuticals that target amino-acid transport. The contribution of these methods to the evaluation of paediatric brain tumours is the focus of the present work.

Learning Objectives:
1. To learn about the spectrum of neuro-oncological diseases in children.
2. To understand the role of imaging beyond the diagnostic process.
3. To appreciate the increasing clinical relevance of advanced imaging techniques in paediatric neuro-oncology.

17:14 Panel discussion: Ask the expert: what is relevant for my own daily clinical practice?
The most common renal pathologies are focal renal masses (cystic or solid) and are incidentally detected on cross-sectional imaging during the workup of other pathologies. The main task of the radiologist is to categorise these lesions: cystic lesions are stratified according to the Bosniak classification, whereas solid renal masses often correspond to renal cell carcinomas; angiomyolipomas and oncocytomas as benign lesions are less frequent and sometimes show typical imaging findings. Unenhanced CT is the method of choice for the detection of renal calculi and allows to provide information on the size, location and composition of the stone as well as evaluation of upper urinary tract dilatation. Imaging to detect upper urinary tract infection is only performed in case of a search for complications such as abscesses, renal vein thrombosis and pyonephrosis needing intervention. In this context, MRI including diffusion-weighted sequences allows differentiating an abscess from a complicated cyst or a cystic renal cell carcinoma. In addition, imaging of the kidneys is also performed to detect obstruction due to various underlying diseases including intrinsic and extrinsic ureteral pathologies. For the evaluation of most renal pathologies, CT is the method of choice. In pregnant woman and children, ultrasound is preferred, whereas MRI can be helpful as a problem-solving tool to better characterise focal renal masses, to detect diffuse renal pathologies or assess pyleonephritis noninvasively, e.g. in young and/or pregnant woman or children.

Learning Objectives:
1. To review the most common pathologies.
2. To present current imaging techniques for evaluation of renal pathologies.
3. To demonstrate the most important imaging findings of the common renal pathologies.

A-0432 16:00

Renal pathologies

M. Stajgis: Fribourg/CH (stajgis@gmail.com)

Adrenal glands can be affected by a variety of lesions. Still growing number of adrenal pathologies. The main task of the radiologist is to categorise these lesions: cystic lesions are stratified according to the Bosniak classification, whereas solid renal masses often correspond to renal cell carcinomas; angiomyolipomas and oncocytomas as benign lesions are less frequent and sometimes show typical imaging findings. Unenhanced CT is the method of choice for the detection of renal calculi and allows to provide information on the size, location and composition of the stone as well as evaluation of upper urinary tract dilatation. Imaging to detect upper urinary tract infection is only performed in case of a search for complications such as abscesses, renal vein thrombosis and pyonephrosis needing intervention. In this context, MRI including diffusion-weighted sequences allows differentiating an abscess from a complicated cyst or a cystic renal cell carcinoma. In addition, imaging of the kidneys is also performed to detect obstruction due to various underlying diseases including intrinsic and extrinsic ureteral pathologies. For the evaluation of most renal pathologies, CT is the method of choice. In pregnant woman and children, ultrasound is preferred, whereas MRI can be helpful as a problem-solving tool to better characterise focal renal masses, to detect diffuse renal pathologies or assess pyleonephritis noninvasively, e.g. in young and/or pregnant woman or children.

Learning Objectives:
1. To review the most common pathologies.
2. To present current imaging techniques for evaluation of renal pathologies.
3. To demonstrate the most important imaging findings of the common renal pathologies.

A-0435 16:00

Blunt polytrauma: CT protocols, CT interpretation and interventional radiology options

A. CT protocols in blunt polytrauma

K.H. Nieboer: Brussels/BE (koenraad.nieboer@uzbrussel.be)

Blunt polytrauma patients. As radiologists, we want the highest standards on imaging, interpretation and treatment for this subgroup. But do we agree on the most optimal CT imaging protocol? Is there a “one scan fits it all whole-body CT scan protocol” solution, or can we use clinical parameters to create subgroup WBCT scan protocols? How do we describe and score solid organ injuries? Do we pay enough attention to intraparenchymatous non-vascular and vascular lesions? How can we optimise our screening technique for these injuries? Who do we call? The surgeons or our interventional radiology colleagues? What is the actual place of IR in the polytrauma setting, what is established and what is new? In this refresher course, we will highlight these questions.

Session Objectives:
1. To understand the different CT and contrast protocols that can be performed in blunt polytrauma patients and when to apply them.
2. To be able to quickly identify and classify solid organ injuries.
3. To recognise injuries that can be treated with interventional radiology.

Author Disclosure:

K.H. Nieboer: Speaker; GE Healthcare.

A-0436 16:05

A. CT protocols in blunt polytrauma

E. Kasht: London/UK (elkadoc@icloud.com)

Trauma is a global pandemic with a high incidence of disability and death. Whole-body Multi-detector Computed Tomography (MDCT) is now the default imaging of choice in the severely injured patient with demonstrable results that early use improves survival. The CT imaging protocol usually includes two separate “dual-phase” arterial and portal-venous phases of the Chest, abdomen and pelvis. Some centres perform an unenhanced CAP CT first, which is becoming less commonplace due to the delay to treatment with little clinical yield. At our centre, patients with blunt or major trauma undergo single-pass biphasic or “combi” CT imaging. However, patients with penetrating injuries or major haemorrhage protocol activation continue to undergo the classic dual-phase imaging. The standard Dual-Phase and Combi scan can diagnose or exclude solid organ injury including, liver, spleen, pancreas, kidney injuries as well as hollow viscous injuries which will be shown at this lecture. Imaging in urogenital and Neck injuries require extension or modification of the classic protocols, which can aid in the diagnosis of supra-aortic or non-vascular renal injuries. Follow up imaging in solid organ injury is equally important as delayed bleeding and pseudoaneurysm formation are associated with...
Learning Objectives:
1. To understand the advantages and disadvantages of different CT protocols adopted in blunt polytrauma patients.
2. To learn the goal in the use of single and dual phase contrast injection protocols in trauma.
3. To become able to incorporate the most suitable CT protocol in defined clinical scenarios.

A-0437 16:30
B. Solid organs injuries: a tailored approach
M. Patlas; Hamilton, ON/CA (patlas@HHSC.CA)

Multi-detector computed tomography (MDCT) is the modality of choice for the detection of vascular injuries in solid organs, in trauma centre audits, the disproportionate number of misses resulting in mortality (a quarter of patients) are caused by delayed intervention for haemorrhage. The presentation will focus on the critical imaging features of blunt solid organ injuries, particularly vascular injuries (haemorrhage, pseudoaneurysms, and arteriovenous fistulae) of solid organs. The presentation will also review numerous challenges in accurate prospective MDCT detection of blunt pancreatic injuries. The role of emergency/trauma radiologist in time management and proper communication of these complex injuries will be elucidated. The misses and misinterpretations related to suboptimal technique and inadequate follow up of critical solid organ injuries will be highlighted. The scenarios requiring interventional radiology and/or surgical intervention will be discussed. Recent radiological and surgical literature will be reviewed.

Learning Objectives:
1. To learn about the main traumatic injuries to be detected in solid organs.
2. To understand which crucial findings will change patient management.
3. To understand what surgical and intensive care teams need to know about detected injuries.

A-0438 16:55
C. Interventional radiology in trauma: diagnosis and management
T. Jarzgelo-Lublin/PL (tojarg@interia.pl)

Blunt trauma may affect any part of the human body. It is devastating because of high kinetic energy usually evoked by motor vehicle accidents or fall from elevations. The most serious conditions are blunt injuries of abdominal solid organs and great vessels. When we consider solid organ blunt trauma we think of the liver, spleen and kidneys. Frequent venous injuries of the liver are usually treated conservatively when stable, and they need surgery in unstable patients. Arterial hepatic trauma is subjected to embolisation. Management of splenic injuries is controversial, but surgeons operate most of them. Renal injuries are less common but when active extravasation happens endovascular therapy is the first-line treatment. Among great vessels, the aorta is the most frequently injured. A spectrum of injury includes aortic transection, false aneurysm and less common dissection. Majority of these injuries are located at isthmus. Aortic root or descending aortic injuries are less frequent as well as iliac or mesenteric transections. Aortic stent-grafts or covered stents are a good solution in these cases. Conversely, venous interventions (especially IVC rupture) usually need immediate surgery. Traditionally, endovascular methods were offered to hemodynamically stable patients. Now the role of IR increased greatly, and there are lots of encouraging data of unstable patients treatment. Minimally invasive embolisation and stent-grafting have much to offer as the definitive treatment or as an initial adjunct before surgery. The use of hybrid rooms giving both methods of treatment at the same time is possibly the best choice.

Learning Objectives:
1. To learn which vascular injuries in solid organs can be treated with interventional radiology.
2. To become familiar with the imaging findings of great vessel injuries.
3. To understand how vascular injuries can be treated.

17:20 Panel discussion: What is the best CT protocol in the evaluation of blunt trauma patients?
Postgraduate Educational Programme

Learning Objectives:
1. To understand the importance of imaging in supporting oncology research.
2. To learn about the roles of trials evaluating imaging techniques.
3. To appreciate the importance of team working in enabling effective research.

Author Disclosure:
M. Smits: Other; Independent reviewer (EORTC-1410) | Parexel Intl. Corp. (financial compensation paid to institution).

A-0441 16:40
Fostering excellence in radiation oncology research through a clinical research culture
H. McNair; London/UK (Helen.McNair@mhn.nhs.uk)

Research provides the evidence base for good clinical practice and is an essential component of any health care delivery service. However, conducting research in the clinic by radiography and radiotherapy staff can be difficult. Few research mentors may be available because of the lack of clinical academic positions. Clinical service takes priority when there are staff and time pressure. To create a research culture within these constraints is often difficult but not unachievable. Clinical staff are best placed to pose and answer research questions around the patient pathway and patient technology interface. The first step is to define a research question, consider what needs to be measured and the tools required to measure. The research method may be an audit, service evaluation or trial. Audits are extremely useful tools and are easily accessible to clinical staff. BSc(Hons) educated radiographers, having developed their research skills in training should be ready to engage in research on qualification. Postgraduate courses can also be a driver. Patient and public input (PPI) from idea conception to the dissemination of results is essential. PPI gives insight into the research question from the patient perspective and is essential when developing patient information sheets. To apply for funding output is critical, posters, presentations and papers. Finally, examine the academic pathways of doctors, physicists and other allied health professionals to determine if a similar academic career path can be created for radiography. Radiographers are an essential part of research activity.

Learning Objectives:
1. To understand the barriers and enablers which impact upon delivering effective research.
2. To learn how clinical departments can utilise the resources already available with the goal of developing a more confident and competent clinician-researcher culture.
3. To appreciate the importance of patient and professional input into trial design.

A-0442 17:00
Radiation therapy quality assurance (RTQA) in clinical trials: the role of the radiographer/radiation therapy technologist
M. van Os; Rotterdam/NL (m.j.h.vanos@erasmusmc.nl)

The European Organisation for Research and Treatment of Cancer (EORTC) is involved in many multicentre trials in Radiotherapy. It is mandatory that included patients are treated similarly in all internationally participating institutes, and that outcome of the treatment is consistent for analysis. Therefore quality assurance per trial is required checking the equipment and procedures per participating institute. Within the Radiation Oncology Group this task is assigned to the multidisciplinary RTQA-team consisting of radiation oncologists, physicists and radiotherapy technologists (RTTs). While overall survival or progression free survival are common endpoints to many trials, secondary endpoints often include toxicity. Since radiation induced toxicity is related to delineated volumes, it is of importance that the outlining of the organs at risk (OAR) is performed consistently enabling to ascribe differences in outcome to treatment and discrepancies in OAR delineation. It is also important to be able to disentangle radiation-induced from drug-induced toxicities. However, delineation has proven to show large interobserver variability and especially in delineation of OAR there often is no consensus on clear guidelines. While increasingly more RTTs are involved in the process of treatment planning and volume delineation, the RTT subgroup initiated the RTQA Delineation Project aiming to develop clear guidelines for OAR delineation in EORTC trials. In this presentation, I will describe the role of RTTs within the EORTC RTQA-group initiating a delineation study on OAR in the male pelvic area and consequently analysing and improving volume definition during two EORTC trials by means of questionnaires and delineation workshops.

Learning Objectives:
1. To understand the essential role of the radiographer/radiation therapy technologist in RTQA.
2. To appreciate the potential impact of poor RTQA practices on clinical trials.
3. To consider best practice in multi-centre RTQA for clinical trials.

17:20
Panel discussion: Preparing our departments for high quality clinical trials
Postgraduate Educational Programme

A-0445 17:00 C. Looking around the corners: posteromedial and posterolateral U. Aydingoz; Ankara/TR (uydingoz@hacettepe.edu.tr)

Posteromedial and posterolateral corners of the knee (PMC, PLC) can be injured along with anterior (and, less commonly, posterior) cruciate ligament tears. If an injury to the PMC and/or PLC is not properly addressed, cruciate ligament surgery may fail. Although rare, isolated injuries to the PMC and PLC may also occur. Radiologists need to be familiar with the MR imaging appearances of the PMC and PLC structures, and their injury patterns. Semimembranosus is the principal stabiliser of the PMC, while posterior oblique ligament is the main PLC structure that needs repair or reconstruction after an injury to this corner. Popliteus tendon is the key structure that helps in identifying on MR imaging the arcuate and popliteofibular ligaments at the PLC.

Learning Objectives:
1. To describe the anatomical structures of the posteromedial and posterolateral corners of the knee.
2. To explain the imaging appearances of pathological conditions that affect the posteromedial and posterolateral corners of the knee.

16:00 - 17:30 Room G

Special Focus Session

SF 8f

The 3D printing lab from bench to bedside

A-0446 16:00 Chairperson’s introduction F. Kainberger; Vienna/AT (franz.kainberger@medunwien.ac.at)

3D printing has been in use for medical applications since more than 20 years but is currently under strong technological development as the use of machine types for 3D printing labs has become more feasible with improvements in spatial resolution. Radiologists have to define the role of biomedical imaging within this interdisciplinary field, in which advances are mainly driven by surgeons and medical physicists. Current clinical applications of 3D printing are mainly in cardiovascular interventions, maxillofacial, orthopaedic and trauma surgery as well as in health economy. Major goals are the customising surgical devices, personalised surgical training with a focus on complex anatomic situations, and patient empowerment by explaining the procedures with a 3D print. Non-clinical applications are in classic anatomy and related disciplines for educational purposes. With 3D printing, the radiological workflow is changing dramatically, as it is moving from the traditional stepwise referral-report approach to a totally different device-oriented process. There are trends to centralise 3D printing which, on the other hand, have a high potential for personalising the radiological service. As such, 3D printing should be regarded as a holistic approach and substantially influences the personalisation of imaging diagnostics with a prognostic, a preventive and a participatory impact.

Session Objectives:
1. To understand the requirements for building a 3D printing lab.
2. To learn the assessment of the impact of 3D printed models for cardiovascular interventions.
3. To understand the value of customising surgical tools and prostheses and to inform the patient.
4. To become familiar with the management changes due to centralised 3D printing.

A-0447 16:05 Creating a 3D printing lab in radiology F. Moscato; Vienna/AT (francesco.moscato@medunwien.ac.at)

As 3D printing and its role in medicine receive greater attention, dedicated labs with this focus become more and more common. When planning such a 3D lab an understanding of the variety of different available principles, technologies, methods, and printed material properties is necessary. This technological understanding is complemented by the appreciation of the central role clinical imaging plays. In particular how image planning, resolution and overall image quality impact the whole process of 3D printing. Finally, creating a 3D printing lab takes on the challenges of combining and coordinating knowledge from different technical and clinical disciplines while at the same time guaranteeing strict adherence to medical regulations. In this talk, all these key aspects for the establishment of a 3D printing lab will be discussed drawing upon state-of-the-art knowledge, best practices and examples at our Institution.

Learning Objectives:
1. To learn the principles of 3D printing in terms of printer technology, methods, properties of printed material and 3D printing's role in medicine.
2. To appreciate and specify the role of radiologists in image planning during the 3D printing process.
3. To understand the correlation of spatial resolution and other image quality parameters among 3D printing, 3D and 2D visualisation.

Author Disclosure:
F. Moscato: Grant Recipient; Austrian Research Promotion Agency, M3dRES Project (nr. 858060).

A-0448 16:23 Cardiovascular applications of 3D printing M. Tam; Southend/UK (matthewtam2005@gmail.com)

How to print your first vascular model? I will share personal experience into all steps of the printing process, from patient to model, using aortic aneurysms as cases. The various steps from image acquisition, DICOM editing, segmentation, the creation of a printable mesh or STL file, through to the final print are discussed. What is the current state of the art? A literature review and multi-source update into cardiovascular applications are offered. From bench to bedside! Personal insights are offered on the potential value and limitations of embedding 3D printing into a hospital practice from different perspectives - that of a clinician, but also from business and entrepreneurial perspectives.

Learning Objectives:
1. To learn the potential applications for aortic and cardiac diseases to facilitate decision making.
2. To appreciate the impact of 3D models for interventional treatment planning.
3. To understand the value of 3D models for diagnosis and treatment in situations with complex anatomy.

A-0449 16:41 Supporting the surgeon with 3D printing P. Brantner; Basle/CH (philipp.brantner@usb.ch)

3D Printing is becoming an increasingly relevant part of the surgical workflow. It has the potential to improve patient care, shorten operating time and reduce costs in surgical interventions. The lecture will introduce three main concepts with which 3D printing can help the surgeon: anatomical representation, virtual surgery and customised training models. While anatomical models will help surgeons to understand complex anatomy before surgery and allow to pre-contour plates, virtual surgery serves as a template to create patient-specific jigs and guides as well as patient-specific implants. 3D prints can also be used for training purposes allowing residents to become more proficient in common procedures while helping experienced surgeons to prepare for difficult cases. Specific examples will be shown for each concept illustrating how 3D printing can be a radiologic extension to improve patient outcome.

Learning Objectives:
1. To learn the standardised and the emerging surgical applications of 3D printing and their dependency on the anatomic complexity.
2. To appreciate the high potential in customising and shortening the workflow of planning, pre-contouring and conducting surgery.
3. To understand the potential of 3D printing as an extension of diagnostic imaging with view on patient outcomes.

A-0450 16:59 Challenges of centralised 3D printing K.A. Eley; Cambridge/UK (Karen.a.eley@gmail.com)

Three-dimensional (3D) printing continues to attract considerable attention in the medical community, fuelled by improvements in technology and an associated reduction in costs. However, capital investment for high-end 3D printers (which provide the accuracy required for complex anatomical shapes), combined with the annual maintenance and software licensing fees remain prohibitive for many hospitals, particularly those within the National Health Service (NHS). Housing 3D printing services within the hospital afford a number of advantages, including close communication during image preparation to ensure that the resultant 3D model meets the expectations of the requesting clinician. Whilst individual clinical departments have strived to acquire their own 3D printers. This is not the most cost-effective solution due to replication of costs, including the time commitment for segmentation and post-processing of 3D models. In an attempt to address these issues, we established a fully centralised 3D printing facility employing a full-time dedicated 3D technician. The interdisciplinary approach of centralisation results in a cross-pollination of ideas and provides a centre point of expertise benefiting all specialties across the hospital and wider community. However, centralisation is not without its challenges. The ever-tightening financial constraints of the NHS requires ongoing adaptation and innovation to ensure long-term sustainability.
Learning Objectives:
1. To learn the strategies behind a centralisation of 3D printing.
2. To appreciate the potential added value of sharing biomedical print files and other data related to 3D printing.
3. To understand the workflow changes and the potential of quality control and education in treatment planning with 3D printing support.

17:17
Panel discussion: What are the real advantages of 3D printing?

Special Focus Session
SF 8b
Challenging HRCT patterns: tips and tricks from the experts

A-0451 16:00
Chairperson's introduction
J. Babar; Cambridge/UK (jude_babar@yahoo.co.uk)

In this session, the focus will be on the central role of HRCT in investigating a broad spectrum of pulmonary diseases. The session aims at demonstrating the pathophysiological correlation of the principal imaging patterns encountered on CT, (airspace disease, nodules and reticulation), and the significance of these patterns in diagnostic decision-making, clinical outcomes and prognosis.

Session Objectives:
1. To understand HRCT patterns in relation to the anatomy of the secondary pulmonary lobule and small airways.
2. To revise the causes and pathologies of various HRCT patterns with case based examples and image interpretation pearls.
3. To revise how the pattern and distribution of disease helps in formulating a differential diagnosis.

A-0452 16:05
The mosaic attenuation pattern
M.-P. Revel; Paris/FR (marie-pierre.revel@aphp.fr)

The mosaic attenuation pattern is characterised by a patchwork of regions of decreased, normal and increased attenuation. If there is no asymmetry of vessels among the different regions, the mosaic attenuation pattern usually represents patchy interstitial disease, characterised by focal ground-glass opacity. In this situation, areas of increased attenuation represent the diseased lung whereas areas of lower attenuation represent the normal lung. When there is no asymmetry of vessels among areas of increased and decreased attenuation, this should be termed mosaic perfusion. There are two main causes of mosaic perfusion. The first one is occlusive vascular disease, during which there is a redistribution of the arterial pulmonary blood flow towards lung areas which remain patent. The areas of increased attenuation represent the preserved lung, showing more numerous vessels or vessels of larger size than hypodense areas, corresponding to occluded lung areas. The second cause of mosaic perfusion is an obstructive bronchial disease. There is vascular constriction in lung areas with abnormal ventilation, causing the redistribution of the pulmonary arterial blood flow towards normally ventilated lung areas.

Learning Objectives:
1. To understand the pathophysiology of mosaic attenuation pattern.
2. To revise the common causes.
3. To discuss the common pitfalls in diagnosis.

A-0453 16:20
Inter-and intralobular septal thickening
N. Sverzellati; Parma/IT

A number of linear abnormalities may be evident on HRCT scans, including either interlobular septal lines and intralobular opacities. Interlobular septal thickening is the most diagnostically useful. Thickening of interlobular septa may be seen in conditions associated with dilatation of the pulmonary veins, infiltration of the pulmonary lymphatics, or with infiltration of the pulmonary interstitium by cells, fluid, or fibrosis. Thickened septa should be characterised as smooth, nodular, or irregular. Smooth interlobular septal thickening is commonly seen with pulmonary oedema and lymphangitic carcinomatosis, although nodular interlobular septal thickening is more characteristic of the latter disease. Intralobular interstitial thickening reflects infiltration and thickening of the interstitial framework of the secondary pulmonary lobule and may be caused by pulmonary fibrosis or inflammation in the absence of fibrosis. When underlying fibrosis is present, the reticulation often appears coarse, and traction bronchiectasis and architectural distortion may also be seen.

Learning Objectives:
1. To understand the pathophysiology of this pattern.
2. To revise the common causes.

A-0454 16:35
Approach to nodular pattern
O. Hamer; Regensburg/DE (oka.hamer@klinik.uni-regensburg.de)

Multiple lung diseases present with multinodular densities as the dominant feature. The differential diagnosis can be challenging though it is of utmost importance for guiding therapy. In order to determine the correct diagnosis, several aspects should be considered: First, the imaging modality of choice is HRCT. Second, nodule morphology in terms of size, margination and density has to be evaluated. Third, the distribution of nodules relative to the pulmonary lobule must be determined. Here the radiologist should be familiar with three different distribution patterns, namely centrilobular (with tree-in-bud as a subtype of centrilobular), perilymphatic and random. Fourth, collateral HRCT findings, clinical, functional and laboratory data have to be integrated into radiological considerations. When considering these aspects in most cases, a short list of differentials including the most likely diagnosis can be given. The talk will give a review of anatomic considerations regarding the pulmonary lobule. Differences in nodule morphology will be highlighted. A step-by-step analysis of HRCT images in order to determine nodule distribution will be presented. Differential diagnoses will be discussed.

Learning Objectives:
1. To understand the pathophysiology of this CT pattern.
2. To revise the common causes.
3. To discuss the common pitfalls in diagnosis.

A-0455 16:50
Perilobular consolidation
T. Frauenfelder; Zurich/CH (thomas.frauenfelder@usz.ch)

If you search with the search term “perilobular consolidation” in the PubMed, you will find exactly 11 publications. Anatomically the perilobular region is defined as the region bordering the periphery of the secondary lobulus. In the glossary of the Fleischner Society, the perilobular consolidation or pattern is characterised by the alteration of the structures that border the pulmonary lobules (i.e., interlobular septa, visceral pleura, and vessels). The appearance on HRCT is bowed or polygonal opacities with poorly defined margins around the interlobular septa, whereas the thickening is related to the activity of the disease. Perilobular opacities are accompanied by consolidation and/or GGO in the same region. The term has the close relation to organising pneumonia.

Learning Objectives:
1. To understand the pathophysiology of this CT pattern.
2. To revise the common causes.

A-0456 17:05
Mixed ground-glass opacification and reticulation
S.J. Copley; London/UK

“no abstract submitted”

Learning Objectives:
1. To understand the pathophysiology of this combined CT pattern.
2. To revise the common causes.
3. To discuss the common pitfalls in diagnosis.

17:20
Questions and panel discussion: The reality of daily practice - what do experts struggle with on interpretation of HRCT?

16:00 - 17:30 Room K

Molecular Imaging

RC 806
Merging the best: hybrid imaging
Moderator:
G. Antoch; Düsseldorf/DE

A-0457 16:00
A. Hybrid imaging with SPECT/CT
A. Scarsbrook; Leeds/UK (a.scarsbrook@nhs.net)

Latest generation SPECT/CT cameras incorporate multi-detector CT and state-of-the-art gamma camera technology in tandem. These scanners improve the efficacy of a wide variety of nuclear medicine tests by providing more accurate localisation of lesions, exclusion of potentially misleading physiological uptake, characterisation of equivocal or indeterminate activity and detection of
Paediatric

RC 812
Prediciting fracture risk in children

A-0460 16:00
Chairperson's introduction
K. Halliday; Nottingham/UK (kath.halliday@nuh.nhs.uk)

Assessment of fracture risk in children and babies is of vital importance, not only in those children who are known to have issues with their bone health but also in cases of suspected physical abuse. Issues around bone density and strength often arise both clinically and in court and it is essential that any radiologist involved in the care of children is conversant with new developments in this rapidly changing field. This promises to be an excellent session with an overview of all available techniques.

Session Objectives:
1. To learn the diverse factors that may influence fracture risk in the paediatric population.
2. To understand the role of the various techniques in predicting fracture risk in children.
3. To discuss the limitations of the different techniques.

A-0461 16:05
A. Radiographs and DXA
R.A.J. Nievelstein; Utrecht/NL

Fractures are common in children. It is estimated that by the age of 16 years about 50% of boys and 30% of girls will have sustained a fracture, whereas 20% of children will have sustained 2 or more fractures. The major challenge of the clinician lies in the early detection of those children with skeletal pathologies related to an increased risk of fractures. Investigations of those children at risk are aimed to determine whether the child is suffering from an underlying bone fragility disorder and its aetiology in order to guide management. Besides laboratory investigations, radiology plays an important role in the diagnosis and follow up of these children, and Conventional Radiography (CR), as well as Dual-Energy X-Ray Absorptiometry (DXA), are often the imaging techniques of the first choice. This lecture will focus on the role of CR (including Digital X-ray Radiogrammetry (DXR) of the hand) and DXA in the assessment of bone health and prediction of fractures in children. Strengths and limitations of the different techniques will be discussed, and guidelines for its use in daily practice will be presented.

Learning Objectives:
1. To learn about the principles for the technique.
2. To understand the potential for use.
3. To discuss the limitations.

A-0462 16:23
B. Quantitative ultrasound
H.-J. Mentzel; Jena/DE (hans-joachim.mentzel@med.uni-jena.de)

Quantitative ultrasound (QUS) of bone is intended for identifying the children who could have an increased risk of osteoporosis in adulthood. QUS is a safe, portable, easy to use and cheap technology for the estimation of bone quality. Measurements can be performed on peripheral skeletal sites (calcaneus, tibia, phalanges), but not on the spine. Several parameters are used to estimate bone elasticity and stability, the speed of sound and broadband ultrasound attenuation. Using age and sex-matched reference values QUS Z-scores can be calculated in children. QUS Z-scores cannot be compared to the golden standard DXA scores. The number of false positives or negatives obtained with QUS depends on the cut-off value utilised. QUS may be a screening method at the moment and can be used to monitor patients previously diagnosed on osteoporosis.

Learning Objectives:
1. To learn about the principles for the technique.
2. To understand the potential for use.
3. To discuss the limitations.

Author Disclosure:
H.-J.: Mentzel: Consultant; Bayer Schering, Siemens. Equipment Support Recipient; Sunlight. Research/Grant Support; Bayer, Bracco, Novartis, Sunlight, Speaker; Bayer, Bracco, Novartis, Pfitzer. Other; Scientific societies (ECR, DRG, GPR, DEGUM, TGRN).
Millions of people worldwide suffer from bone diseases, predisposing them to fractures and related comorbidities that have devastating consequences. Imaging plays an important role in fracture risk assessment, diagnosis, staging, and treatment monitoring of patients with bone diseases. In particular, the flexibility of MRI has paved the way for non-invasive assessment of bone quality at multiple levels, including trabecular and cortical bone. For example, it is now possible to assess many aspects of bone quality in patients using MRI, including trabecular bone microstructure, cortical bone porosity, bone water content, bone mineral density, marrow composition, and bone strength. Specific MRI pulse sequences used for bone imaging include SPGR, CSI, UTE/ZTE. Many of these new MRI techniques have been developed and applied for assessment of bone quality in adults. This lecture will discuss how pediatric bone imaging could potentially benefit from novel MRI methods.

Learning Objectives:
1. To learn about the principles for the technique.
2. To understand the potential for use.
3. To discuss the limitations and disadvantages of this technique.
Pulmonary vascular disease covers a wide spectrum of disease entities, many of which have overlapping clinical and imaging features. CT of the pulmonary vasculature has become an integral part of the work-up of such entities. In this session, we will evaluate three distinct disease subcategories of pulmonary vascular disease: pulmonary arterial hypertension, pulmonary vasculitis and hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome). The first talk will discuss pulmonary hypertension, the current clinical classification of pulmonary vasculitis, CT signs suggestive of the diagnosis, and CT signs that help discriminate between different causes. The comprehensive nature of CTPA in evaluating the mediastinum, vasculature and lung parenchyma will be shown. The second talk covering pulmonary vasculitis will emphasise the importance of combining CT signs with clinical features and laboratory results since vasculitis may mimic other disorders and sometimes the clinical features can be the major clue. CT findings in granulomatosis with polyangiitis and eosinophilic granulomatosis with polyangiitis will be shown, particularly emphasising the imaging differences between the two entities. The imaging findings of pulmonary haemorrhage will also be shown alongside the commonest causes. Finally, the association between interstitial lung disease and the ANCA associated vasculitides will be discussed. The third talk covering hereditary hemorrhagic telangiectasia will show the typical imaging features of this disease with a particular emphasis on those imaging aspects that determine outcome and treatment strategies. The talk will also cover contemporary aspects of endovascular treatment and their complications.

A-0470 16:06
A. CT imaging of pulmonary hypertension

N.J. Screaton; Cambridge/UK (Nicholas.Screaton@papworth.nhs.uk)

Pulmonary hypertension (PH) typically presents insidiously with non-specific symptoms and is usually progressive with poor outcome independent of aetiology. CT plays a vital role both in suggesting the possibility of pulmonary hypertension, whether initially clinically suspected or not, and in identifying a specific cause of pulmonary hypertension. The causes of pulmonary hypertension can be broadly divided into those affecting primarily the small vessels, PH secondary to left heart disease or chronic lung disease/hypoxia (the most common causes), chronic thromboembolic PH, and multifactorial causes. CT is widely available, inexpensive, and permits a comprehensive assessment of the heart, pulmonary vasculature and lung parenchyma. CT signs such as dilatation of the proximal pulmonary arteries and right heart chambers can be considered as generic features associated with PH of any cause. Signs of a specific cause may lie in the mediastinum (left heart disease, shunt, oesophageal varices, oesophageal dilatation), vasculature (signs of CTEPH, tumour, large vessel vasculitis, fibrosing mediastinitis) or lungs (parenchymal lung disease, mosaic perfusion in CTEPH, signs of a small vessel vasculopathy). CTEPH is a not uncommon sequela of previous acute embolism. If the distribution is proximal, it is potentially cured by surgical pulmonary endarterectomy or by balloon pulmonary angioplasty. Imaging in general and CT in particular play fundamental roles in both identification of CTEPH, its differentiation from acute PE, and in characterising its distribution. Imaging signs in CTEPH can be a subtle and systematic evaluation of a CTPA is essential.

Learning Objectives:
1. To learn the common imaging features of granulomatosis with polyangiitis (GPA).
2. To learn how to differentiate between GPA and eosinophilic granulomatosis with polyangiitis (Churg-Strauss).
3. To learn about the imaging features and differential diagnosis of pulmonary haemorrhage.

A-0472 17:02
C. Rendu-Osler and Behcet's diseases

B. Peyrin-Biroulet; Ankara/TR (borapeny@gmail.com)

Behcet disease is a rare multisystem condition associated with HLA-B51 positivity. Arterial involvement in Behcet's disease (BD) is less common than venous lesions. The most commonly affected arteries are: the aorta, lower extremity arteries, mesenteric, femoral, coronary, renal, subclavian and pulmonary arteries. Behcet-related pulmonary vasculitis is an uncommon and heterogeneous group of conditions, often with associated pulmonary artery thrombus formation. These microthrombi can result in a misdiagnosis of acute pulmonary embolism. Hereditary hemorrhagic telangiectasia also known as Osler-Weber-Rendu syndrome is an autosomal dominant disease that occurs due to vascular dysplasia associated with the disorder in the signalling pathway of transforming growth factor β(TGF-β). The clinical consequence is a disorder of blood vessels in multiple organ systems with the existence of telangiectasia which causes dilation of capillaries and veins, are present from birth and are localised on the skin and mouth, respiratory, gastrointestinal and urinary tract. Many patients with gastrointestinal and other organ manifestations are frequently clinically asymptomatic; therefore, organ screening is essential to avoid later complications and should be performed in centres with particular expertise. Hemoptysis is a life-threatening complication that is likely related to pulmonary artery aneurysm (PAA). Diagnostic imaging is the key to success in the management of these patients pulmonary vasculature. CT is the tool with some known advantages and drawbacks. Vascular interventional radiology may offer effective emergency and or elective therapeutic option. Transcatheter embolotherapy should be considered as the first-line emergency treatment for PAA-related hemoptysis, in association with the immunosuppressive regimen.

Learning Objectives:
1. To become familiar with the CT manifestations of these diseases.
2. To identify imaging features determining outcome and treatment strategies.
3. To learn about endovascular treatment modalities and complications.
Functional imaging of breast and female pelvis

A-0473 16:00

Chairperson's Introduction

K. Kinkel; Château-Bougêtes/CH (karen.kinkel@grangettes.ch)

The introduction to this functional imaging session in the field of breast and female pelvis will present a short historical overview of what has been developed and accomplished in the last 20 years. Examples of clinical situations where functional imaging is crucial in daily practice are illustrated to raise interest in the three following lectures. Common problems in image characterisation/staging are discussed in the lectures to overcome these problems are briefly presented.

A-0474 16:06

A. Breast tumours

J. Camps Herrero; Valencia/ES (juliacamps@gmail.com)

Imaging biomarkers (IBM) yield anatomic, molecular or functional characteristics that can be measured as indicators of underlying normal or pathologic biologic processes. IBM can be further divided into quantitative and qualitative, and those that will be the topic of this talk will be the functional quantitative or qualitative IBM derived from image bio-signals (electromagnetic or photonic). These include not only MRI but also mammography and ultrasound. IBM can also be characterised as risk-prediction BM, tumour characterisation and prognosis o therapy (response) monitoring. Risk prediction IBM can be analysed quantitative- or qualitatively in the mammographic breast density or the amount of fibro-glandular tissue or background parenchymal enhancement that can be seen through MRI. IBM of tumour characterisation and prognosis, as well as response evaluation to therapy, are mainly extracted from MRI images that analyse neo-angiogenesis (DCE-MRI), tissue microstructure and cellularity (DWI) and metabolism (MR spectroscopy). The lecture will focus mainly on these IBM of risk prediction, tumor characterisation and response evaluation but will also briefly explain IBM in ultrasound that analyze tissue stiffness (elastography) and angiogenesis (Doppler and contrast-enhanced ultrasound) and will also briefly mention the new IBM (Sodium imaging, spectroscopy with 13P MRSI, Saturation transfer CEST MRI and hyperpolarized MRSI).

Learning Objectives:

1. To review actual functional methods of breast imaging.
2. To learn about functional biomarkers of tumour grading.
3. To understand functional approach of tumour response.

Author Disclosure:

J. Camps Herrero: Consultant; BD BARD.

C. Ovarian tumours

A-G. Rockall; London/UK (a.rockall@imperial.ac.uk)

Ovarian cancer remains the gynecologic malignancy with the highest mortality. This poor prognosis is partly due to late presentation, with disseminated disease in most cases. Researchers are actively trying to identify methods to improve patient outcomes. Accurate characterisation of adnexal masses has been improved by the development of standardised imaging and reporting methods, both in ultrasound and MRI. MRI characterisation has benefited by the use of dynamic contrast enhancement of adnexal masses, with the categorisation of curves and the use of diffusion and T2 signal intensities, to allow risk stratification for the likelihood of cancer. Accurate risk stratification should, in turn, allow optimal treatment planning, identifying high-risk tumours for the referral to the gynecologic oncology team and conversely ensuring that low risk, likely benign tumours, are managed appropriately. In patients presenting with disseminated disease, advanced imaging techniques, including diffusion and contrast MRI of the peritoneal cavity, allow better delineation of the extent of disease. In addition, the use of radiometric prognostic vector on CT can predict phenotypically distinct tumours types, with biological and prognostic associations. Current reports of prognostic biomarkers will be discussed as well as the need for robust validation to allow translation into clinical practice.

Learning Objectives:

1. To learn how functional methods help in characterising ovarian tumours.
2. To review their role for patient management.
3. To be aware of validated biomarkers of prognosis.

Author Disclosure:

A.G. Rockall: Speaker; Guerbet.
In the radiology report, the PI-RADS score is used to communicate the imaging findings to the clinician. Learning Objectives:
1. To become familiar with the technique of mpMRI of the prostate.
2. To understand the role of mpMRI in the detection of clinically significant prostate cancer.
3. To appreciate the importance of image-targeted biopsy.

A-0479 16:25
The pathologist: guardian of the truth
S. Verteske; Ghent/BE
Prostate cancer (PCa) is one of the most frequent tumours in men. The diagnosis is based on the microscopic evaluation of prostate tissue. The current standard of care is to obtain at least 10-12 systematic 18-gauge prostate core biopsies. The evolutions in imaging (MRI fusion biopsies) and histological assessment (Grade Group system) have improved the diagnostic and clinical accuracy of this technique. The most common histological type of PCa is acinar adenocarcinoma and accounts for more than 95% of the PCas. Different histological variants have been described which can be of significance due to difficulty in diagnosis (e.g., deceptively benign-looking atrophic variants) and due to prognostic differences (e.g., signet ring-like variants have a worse prognosis). Furthermore, other subtypes such as ductal carcinoma, small-cell neuroendocrine tumours, intraductal carcinoma, urothelial carcinoma, squamous neoplasms, basal cell carcinoma, sarcoma and lymphoma are less common. The worldwide used grading system initially created by Dr. Gleason for PCa is uniquely and solely based on the architectural pattern of the tumour. The grade is defined as the sum of the two most common grade patterns (Gleason score). The grading of PCa was revised in 2014; the initial Gleason patterns 1 and 2 are no longer in use since these patterns are more likely a benign condition. Furthermore, different patterns have been re-categorised, and a set of different grade groups associated with a unique prognosis have been introduced. Hereby, a more accurate grade stratification and simplified categorisation have been accepted which has also implications for treatment.

Learning Objectives:
1. To appreciate the importance of good tissue sampling.
2. To become familiar with the different histological subtypes of prostate cancer.
3. To understand the reasons for false positive and false negative results.

A-0480 16:40
The urologist: knight of swords in the prostatic badlands
N. Lumen; Ghent/BE (Nicolaas.Lumen@ugent.be)
Radical prostatectomy is a standard treatment option for intermediate and high-risk localised prostate cancer and can be an option for locally advanced prostate cancer. When offering radical prostatectomy to the patient, surgical morbidity and functional complications (urinary incontinence, erectile dysfunction) must be taken into account. Appropriate patient selection for radical prostatectomy is thus of utmost importance, and MRI can help to this. Radical prostatectomy obtains the removal of the whole prostatic gland with the prostatic urethra and seminal vesicles. However, some modifications are possible to reduce the functional complications of the surgery. These modifications include bladder neck sparing, nerve sparing, posterior dissection and urethra sparing. MRI can help to decide whether one or more of these modifications are possible for the individual patient.

Learning Objectives:
1. To understand the role of imaging in the choice for prostatectomy.
2. To become familiar with open and robotic prostatectomy techniques.
3. To appreciate the need for imaging in radiotherapy planning.

A-0481 16:55
The radiation- oncologist: smooth irradiator of the rogue elements
V. Fonteyne; Ghent/BE (valerie.fonteyne@ugent.be)
External beam radiotherapy (EBRT) is an established treatment option for prostate cancer (PC) patients. A dose-response relationship for biochemical control is extensively described. The implementation of modern radiotherapy techniques and improvements in patient positioning during treatment enable the safe delivery of 74-78 Gy to the prostate. However, the close vicinity of surrounding organs at risk (OARs), limits further dose escalation to the entire prostate. The incidence of local failure after EBRT is dose-dependent supporting the hypothesis that aggressive tumours are more radioresistant. To avoid excess in toxicity, one can increase the dose exclusively to the area that is at highest risk of local relapse, i.e., the location of the initial tumour site called the dominant intraprostatic lesion (DIL). Theoretically, this might improve local control and positively impact on the risk of developing distant metastases and PC death. Of course, none of these developments are possible without the integration of modern imaging and more precisely magnetic resonance imaging (MRI). The implementation of MRI in the treatment planning has resulted in a refined delineation of the target volume with a clear impact on target volume and enables the precise delineation of the DIL for simultaneous integrated boost. Also, a correct daily positioning is of utmost importance when considering high dose EBRT, again illustrating the benefit of incorporating imaging in the radiotherapy treatment. The combination of an MRI machine with a linear accelerator in one device allows greater precision in cancer treatment and is currently being investigated in clinical practice.

Learning Objectives:
1. To become familiar with the various prostate irradiation techniques.
2. To appreciate the need for imaging in radiotherapy planning.
3. To illustrate the importance of imaging in radiotherapy monitoring.

A-0482 17:10
Multidisciplinary case presentation and discussion
G.M. Villeirs; Ghent/BE
The prostate unit is the heart of every multidisciplinary team that treats the man with suspected or confirmed prostate cancer. In this session, the role of all players in the team (radiologist, pathologist, urologist and radiation oncologist) will be explained, with emphasis on the importance of radiology for each of them.
Postgraduate Educational Programme

Friday, March 1
Imaging of the complicated postoperative abdomen

A. Liver
- C. Ayuso: Barcelona/ES (cayuso@clinic.ub.es)

Resection is proven to achieve long-term survival in selected patients with primary or secondary focal liver lesions. Advances in surgical techniques including robotic liver surgeries, systemic adjuvant chemotherapy and postoperative intensive care improved the outcome of liver resection. An adequate liver remnant is crucial to guarantee the correct liver function after radical potentially curative liver resection. In borderline cases, portal vein embolisation (PVE), or associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) has been proposed before surgery to increase the liver remnant. Preoperative volumetric analysis of the liver based on imaging plays an essential role in the preoperative workup previous to liver resection. Also, the knowledge of the hepatic vasculature anatomy and possible variants of the biliary system are also key aspects to avoid postoperative complications. Imaging tools based on multidetector computed tomography (MDCT) and magnetic resonance (MR) influencing preoperative decisions and surgical approaches will be discussed. The role of different imaging techniques as plain ultrasonography (US) contrast-enhanced ultrasound (CEUS), MDCT and MR for the detection and management of hepatic complications after liver resection or transplantation (infectious, vascular, biliary, parenchymatous (liver resection) will be analysed.

Learning Objectives:
1. To learn about indications for liver interventions and different surgical approaches to focal liver lesions.
2. To understand the role for the different imaging techniques (US, CEUS, CT and MR) in assessing different types of complications.
3. To appreciate the spectrum of parenchymal, biliary and vascular complications occurring after liver resection or transplantation.

Author Disclosure:
- C. Ayuso: Speaker; Speaker fees and travel grants from Bayer.

B. Pancreas
- R.M. Gore: Evanston, IL/US (rgore@uchicago.edu)

Both benign and malignant pancreatic disease carry significant morbidity and mortality. Because of the fastidious nature of the pancreas and its local and regional anatomy, treatment of these disorders also carries significant morbidity. Indeed, perioperative morbidity of pancreaticoduodenectomy is approximately 30-40%. Due to the diversity of pathology, detection and characterisation of postoperative complications can be challenging. Familiarity with the normal imaging appearances of the spectrum of surgical procedures and their complications is vital. In this presentation, the common pancreatic surgical procedures performed for tumour resection (i.e. the Whipple's operation, enucleation, central and distal pancreatectomy, spleen-preserving distal pancreatectomy) and chronic pancreatitis (i.e. Puestow procedure, Beger procedure, Frey procedure) and their normal postoperative appearances are discussed. The common post-surgical complications including pancreatic fistulas and leaks, abscess formation, haemorrhage, and delayed gastric emptying are then described in detail.

Learning Objectives:
1. To learn about the various surgical approaches for acute and chronic pancreatitis, benign and malignant pancreatic neoplasms.
2. To understand the profound impact that the partial and complete pancreatectomy have on the adjacent abdominal organs.
3. To appreciate the common postoperative complications of pancreatic surgery.

A.0486 08:35
- A. Liver
- C. Ayuso: Barcelona/ES (cayuso@clinic.ub.es)

A.0487 08:58
- B. Pancreas
- R.M. Gore: Evanston, IL/US (rgore@uchicago.edu)

A.0485 08:30
- Chairperson's introduction
 - C.J. Zech: Basle/CH (christoph.zech@ussb.ch)

Imaging of the postoperative abdomen is a crucial part in the evaluation of postoperative complications and will lead the clinician in the decision for treatment of postoperative complications with either re-laparotomy, interventional-radiology treatment or conservative/medical treatment. Knowledge of the performed surgical techniques and procedures, the normal imaging appearance postoperative and typical findings of frequent complications are inevitable to successfully treat patients with complications. Good interaction between the surgeon and the abdominal radiologist is needed. Nowadays, radiology should be able to diagnose most complications and minimise the number of mere diagnostic laparoscopies to evaluate a complicated postoperative clinical course.

Session Objectives:
1. To learn about the most common indications for abdominal surgery.
2. To understand the normal imaging findings in a postoperative abdomen.
3. To describe and identify the most common postoperative complications.
Clinical simulation and its role in radiography education

A-0489 08:30
Chairpersons’ introduction (Part 1)
L. Oleaga Zuñiría;
Radiology and Radiography education are evolving in line with developments in informatics and information technology evolution are going to substantially reshape the practice of Radiology and Radiography over the next decade. There are a number of interesting developments within informatics, which may have a significant impact on Radiology and Radiography, education, and training in the near future. These include the extended functionality of handheld computers, web-based skill and knowledge assessment, standardisation of procedural training using simulated or virtual patients and worldwide online learning. Simulation programmes have proved to be effective in other specialties as a method for teaching and learning. There are mannequin-based simulation programmes, computer-based and simulators for an ultrasound and interventional radiology. Simulation training impacts on the learning curve with numerous benefits for the preparation of radiology/radiography students which will, in turn, benefit the service provided to patients. Simulation provides an option for training, but the place of this within any curricula needs to be carefully determined to promote the highest levels of competency. The education of the future must be a learner-centred education. Trainees must have an active role in the learning process. The teachers are not suppliers of knowledge and information, but organisers of activities and directors of learning experiences.

Session Objectives:
1. To review the evolution of training and radiology education in Europe.
2. To evaluate the challenges facing radiology education with the expanding use of informatics.
3. To analyse how clinical simulation methods can transform education in radiology.

Author Disclosure:
L. Oleaga Zuñiría: Consultant; Telemedicine Clinic.

A-0490 08:33
Chairpersons’ introduction (Part 2)
F. Zard;
Radiology and Radiography education are evolving in line with developments in informatics which has provided a range of new tools for teaching and learning, which are going to substantially reshape the practice of Radiology and Radiography over the next decade. These include the extended functionality of handheld computers, web-based skill and knowledge assessment, standardisation of procedural training using simulated or virtual patients and worldwide online learning. Simulation programmes have proved to be effective in other specialties as a method for teaching and learning. Simulation training impacts on the learning curve with numerous benefits for the preparation of radiology/radiography students which will, in turn, benefit the service provided to patients. Simulation provides an option for training, but the place of this within any curricula needs to be carefully determined to promote the highest levels of competency.

Session Objectives:
1. To review the evolution of training and radiology education in Europe.
2. To evaluate the challenges facing radiology education with the expanding use of informatics.
3. To analyse how clinical simulation methods can transform education in radiology.

A-0491 08:35
Clinical radiography education across Europe: an overview
J. McNulty;
The European Federation of Radiographer Societies (EFRS) represents over 8,000 radiography students through a unique part of our organisation, namely, the Educational Wing which consists of 61 educational institutions. Education and training are at the heart of several strategic priority areas of the EFRS. The educational aim of the EFRS is to promote and develop all levels of radiography education and research across Europe. Objectives include: the development and advancement of educational standards for radiographer education in Europe; the development of European Qualifications Framework benchmarking documents for radiographers at Bachelors and Masters levels; to research, develop, disseminate and publish materials and knowledge generated by the Educational Wing; and to provide assistance to those institutions wishing to develop or enhance their radiography programmes; and to develop evidence-based practice and radiographer-led research. High educational standards for radiographers are of utmost importance for our profession. This is especially true for the clinical training components of radiography education programmes. However, the clinical components of our curricula present many challenges, some of which were identified through recent EFRS surveys. While similarities exist in the provision of clinical radiography education across Europe, some major differences were also identified in terms of the amount of clinical time in programmes, the supervisory structures, and the governance and oversight of these placements. Professional societies should work collaboratively to establish guidelines for effective clinical placements. This will help ensure our graduates are fit for purpose.

Learning Objectives:
1. To present the developments of radiography education.
2. To discuss the current status of radiography education in Europe.
3. To evaluate the challenges and future of radiography education.

A-0492 08:50
Innovation in education: virtual education/computer-based simulator vs patient imaging
A. England;
Full-body high-fidelity simulations have formed part of healthcare education for a number of years, especially within the nursing and medicine disciplines. These lifelike mannequins are operated from a computer system with the ability to generate complex events and respond to multiple stimuli. The author, as a radiography educator, has a number of years of experience in integrating patient simulation into radiography training. Such teaching sessions are typically divided into the pre-simulation experience, the simulation and the post-simulation experience. Such an approach is essential to promote realism and allow the identification of knowledge and development opportunities. Within the undergraduate radiography programme, a case scenario on contrast anaphylaxis is commonly undertaken using high-fidelity simulation. Within this presentation the contrast anaphylaxis scenario is used as an example of clinical simulation, the advantages and disadvantages of this teaching method, as identified by teaching staff and students, are also discussed. Comparisons are also made with alternative teaching and learning approaches. It is important to stress than simulation is an extremely valuable pedagogical approach, but its merits must be considered amongst the other available teaching and learning methodologies. A diverse curriculum is essential for a high-quality radiography degree programme.

Learning Objectives:
1. To demonstrate the benefits of using new teaching approaches.
2. To show how new teaching instruments can improve and shorten the learning curve.
3. To evaluate the pros and cons of radiography education through simulation and patient imaging.

A-0493 09:05
High fidelity: clinical simulation for undergraduate radiography
A. Louw;
Within the radiography domain, Simulation-Based Education (SBE) is valued as a pedagogical approach, but the design of simulation experiences, incorporating educational and cognitive theories, still needs exploration to advise best practice guidelines. Educational psychologists indicate that no new knowledge is created in passive manners and they emphasise the need for interaction and stimulation from the environment. Creative teaching methods that capture the interest and imagination of students are also said to stimulate the creative problem-solving ability that radiography students need in their daily working environment – an ability which various researchers point out as lacking among radiography students. SBE offers interaction, stimulation and various opportunities for creativity, but to optimise learning and teaching, educators must also consider the impact of cognitive load, scaffolding and reflection, when they develop simulation experiences. Whereas SBE in the health professions initially developed in response to the awareness of ethical issues, the use of patients as teaching aids and skills practice commodities, the call for equal and optimal training opportunities that will result in optimal patient centred care now provides further impetus. The increasing authenticity of simulation experiences, however, presents with unexpected ethical issues of concern. Students experience high fidelity manikins often as real-life patients, and the deterioration and demise of these patients can have a major emotional impact on them. Educators should acknowledge that the principle of beneficence applies to both patients and students and must be aware of the possible emotional effect on students and how to manage it.
Learning Objectives:
1. To discuss ethics in simulation practices.
2. To provide an overview on how to prepare and execute a simulation experience.
3. To highlight the challenges and opportunities of clinical simulation at the undergraduate level.

A-0494 09:20
How simulation can help prepare students and have a positive impact on interprofessional working
A. Henner, Oulu/FI (anja.henner@oamk.fi)

Interprofessional education is a collaborative approach to develop healthcare students as future interprofessional team members. Interprofessional teams can address complex medical issues. Training future healthcare providers to work in such teams improve healthcare outcomes for patients. With the didactic program, interprofessional collaboration skills, knowledge of professions, patient-centred care, service learning and the impact of culture on healthcare delivery are improved. The community-based experience demonstrates how interprofessional collaborations provide service to patients and how the environment and availability of resources impact one’s health status. The interprofessional-experience describes clinical team skills training in both formative and summative simulations. In a simulation-based experience, formative assessment or summative evaluation can be used. Formative assessment fosters personal and professional development and helps participants progress toward achieving objectives. Assessment of student learning in a simulation is no longer a passive activity in which the educator determines how well individual or group performs. Summative evaluation focuses on measurement of outcomes or achievement of objectives and supports the assessment or evaluation of behaviours cognitive (knowledge), affective (attitude), and psychomotor (skills) areas. A successful experience in simulation helps students to understand their professional identity while gaining an understanding of other professional’s roles on health care team and offers a safe environment exercise even difficult tasks. Commitment from departments and colleges, diverse calendar agreements, curricular mapping, mentor and faculty training, a sense of community, adequate physical space, technology, and community relationships are critical resources for a successful simulation and positive attitude to work together.

Learning Objectives:
1. To demonstrate how interprofessional collaborations improve a service to patients.
2. To describe clinical team skills training in formative summative simulations.
3. To discuss the benefits of student preparation through simulation.

A-0495 09:35
Providing opportunities for practical ultrasound training
B. Kraus: Vienna/AT (barbara.kraus@fh-campuswien.ac.at)

The major challenge in the education of Radiographers in Ultrasound or "Sonographers" all over Europe is, to create a training scenario closely related to clinical reality. To perform Ultrasound in a proper way, hands-on training is mandatory and cannot be replaced by anything else. One option is Skill Lab Training Sessions. Students train on each other to learn and strengthen the major skills by correctly using the Ultrasound probe, implementing the theoretical knowledge about physics and optimization in correctly manipulating scan parameters to adequately demonstrate and be able to visualize anatomical structures in a correct manner. These are the key points in diagnostic ultrasound performance. Other options are different web-based skill and knowledge assessments and simulator-based training settings. Utilities from different providers are for example augmented with real patient scans, including haptic feedback by using a probe, real-time assisted guidance and comprehensive metric-based assessment in one system. Trainers and tutors are able, to upload their own patient scans/cases and share them with other users. The major difference between simulated practice and scanning on each other is the benefit of simulating real clinical case scenarios, including pathological findings during training. However, a balanced combination of hands-on training (Students on each other), simulator-based/web-based training and clinical experience under medical supervision in compliance with all ethical aspects is the ultimate goal in practical ultrasound education.

Learning Objectives:
1. To know the role of hands-on training in ultrasonography.
2. To appreciate the value of learning ultrasonography through hands on training.
3. To discuss the opportunities for radiographers training in ultrasound.

09:50
Panel discussion: Is simulation enough to meet the current challenges facing radiography education? Can simulation replace hands-on patient experience?
account. Recent research efforts have realised a proof-of-concept system where first MR images of tissue-mimicking phantoms have been successfully acquired with a clinical in-beam MR scanner during proton beam irradiation. This offers the prospect that the development of a clinical prototype MRiPT system within the next five years should not be considered beyond the realms of possibility. This contribution provides an overview of the current status of MRiPT research achievements and discusses technology issues that need further investigation.

Learning Objectives:
1. To learn about the current state-of-the-art in image-guided proton therapy.
2. To understand the rationale for the need to integrate MRI and proton therapy.
3. To become familiar with the technical risks and challenges to integrate MRI and proton therapy.
4. To appreciate which risks and challenges have been overcome by recent research efforts.
5. To discuss the technology issues that need further research.
6. To become familiar with the implications for future developments and clinical treatment workflow.

Author Disclosure:
A. Hoffmann: Research/Grant Support; Ion Beam Applications, SA, Louvain-la-Neuve, Belgium.

A-0500 09:15
MR-based functional imaging
R.G.H. Beets-Tan; Amsterdam/NL.

"no abstract submitted"

Learning Objectives:
1. To learn about functional MRI.
2. To appreciate its value as the guidance of radiation treatment.
3. To understand the synergy of an interdisciplinary collaboration between radiologists and radiation oncologists.

A-0501 09:35
Adaptive workflow: current status and challenges
S. Kharuzhyk; Minsk/BY

MRI is used at different stages of oncological patient management including tumour staging, treatment (surgery, radiation therapy) planning and tumour response assessment. Traditional radiation therapy planning workflow integrates high contrast resolution and anatomical details provided by MRI with electron density values obtained from CT. More recently MRI-only radiotherapy planning workflow has been implemented with synthetic CT images generated from MRI data. On-treatment MRI-guidance is a new paradigm of precision radiotherapy that enables a scan-plan-treat approach or adaptive radiotherapy. MRI linac machines integrating clinical MRI scanner with linear accelerator are the current reality in some cancer centres around the globe.

Learning Objectives:
1. To understand the role of image-guidance in adaptive radiotherapy.
2. To become familiar with the advantages of MRI guidance compared to CBCT guidance.
3. To learn principles of real-time MRI guidance in radiotherapy.
4. To discuss the current state and further perspectives of MR-guided adaptive radiotherapy.

09:55
Panel discussion: We need more integration than originally thought: how to get there?

PIER @ ECR Session (Jointly organised with the ESR eHealth Subcommittee)

PI 1

Reporting and communication today and tomorrow: challenges to implement structured reporting (RS) and deal with artificial intelligence (AI)

A-0502/A-0503 08:30
Chairpersons’ introduction
A. Brady; Cork/IE (adrianbrady@me.com)
E. Neri; Pisa/IT (emanuele.neri@med.unipi.it)

Structured reporting is rapidly replacing free-text forms of reporting in radiology, in response to the desires of referring clinicians, and as part of ongoing radiology efforts to optimise quality by standardising the format, content and structure of our principal work output, radiology reports. This session will explain how report template structures are developed, how the elements contained within structured reports can be utilised for information extraction and the potentialities for utilising artificial intelligence in supporting radiologists’ reporting activity. The value of using structured formats in communicating with referrers will be explained and demonstrated.

Session Objectives:
1. To understand what is meant by structured reporting in the context of the likely future of radiology.
2. To appreciate the requirements for and potentialities of radiology structured reporting.
3. To learn about the role of structured reporting in communication with referrers and patients.

Author Disclosure:
E. Neri: Advisory Board; QUIBIM. Speaker; GE/Healthcare.

A-0504 08:36

Update on developments for structured reporting: Radreport 2.0, TLAP, MRRT

P. Mildenberger; Mainz/DE (mildenbe@uni-mainz.de)

Structured Reporting is in the discussion for many years. There is a broad interest, and consensus to improve quality by providing more precise and focused reports. ESR and RSNA have formed a joint committee (Template Library Advisory Panel, TLAP) to review and validate templates. The development of templates is time-consuming, using approved templates could facilitate the process in a relevant way. Such template, based on the internationally accepted IHE MRRT profile, could be incorporated into radiological information system or dedicated reporting solutions. Especially for epidemiological or research activities, the use of consensual templates could be a huge step forward, because data aggregation would be enabled directly.

End of 2018, the new template repository has been launched and is now open for radiologists.

Learning Objectives:
1. To learn about new concepts for supporting structured reporting.
2. To appreciate the opportunities of consensual templates based on international standards.
3. To become familiar with the template repository.

A-0505 08:52

The concept of common data elements (CDE) for reporting

C.E. Kahn; Philadelphia, PA/US (cekahn@gmail.com)

Today’s radiology reports typically convey the results of imaging studies using unstructured text. This format limits the ability to automatically extract data to support patient care, quality improvement, and medical research. A common data element (CDE) defines the attributes and allowable values of a unit of information. CDEs are “data elements that are collected and stored uniformly across institutions and studies and are defined in a data dictionary.” The data dictionary specifies the item’s name, data type (e.g., number or text), allowable values, and other attributes. In essence, a CDE is a predefined question and a set of allowable answers to that question. CDEs provide the structure that allows automated systems to extract and exchange key data in a uniform way. This presentation describes the efforts to develop CDEs to support clinical reporting, research, and the application of artificial intelligence systems in radiology.
A-0506 09:08
Decision support and artificial intelligence (AI) to improve reporting in radiology
T.K. Alkasab; Boston, MA/US (TALKASAB@mgh.harvard.edu)

Artificial intelligence (AI) tools form a natural synergistic pairing with structured reporting (SR) to enable a new, data-enabled paradigm for imaging workflow. As SR modules and templates are defined, they specify a data model for AI tool designers to aim their products at. SR modules also form a natural integration point for the output of AI tools into the clinical workflow. Finally, SR modules can capture feedback from radiologists about AI-generated data elements, which can be fed back to improve the AI tools incrementally. However, in order to realise this vision, the radiologist reporting workflow and toolset will have to re-orient away from prose text creation and more toward data flow. In this new environment, radiologists will review incoming data, augment it through their own interpretation of images, and provide structured data to downstream systems.

Learning Objectives:
1. To learn about the next steps for IT-support in reporting.
2. To appreciate the opportunities for quality improvement.
3. To understand the concept of how to implement AI-support in a SR-solution.

Author Disclosure:
T.K. Alkasab; Other; Nuance Communications.

A-0507 09:24
Communication with referring physicians and patients: what is relevant?
J.M.L. Bosmans; Ghent/BE (janbosmans@telenet.be)

A radiology department creates two products from each patient visit: an imaging study and a report interpretation of the findings. Dimensions of service quality can be defined as reliability, assurance, tangibles, empathy and responsiveness. Multiple surveys have shown that, in case of complex studies, referring clinicians prefer structured reporting (SR) examinations over free text reporting. Moreover, the number of studies reporting the benefits of SR in daily practice is increasing. Despite this, questions have been raised concerning the lack of completeness and flexibility of SR and their influence on radiologists’ performance. Patient empowerment is a key element of patient-centred healthcare. Patient empowerment requires that patients have enough information to make decisions concerning their health. Nowadays, as technologists perform the imaging procedure and the radiologist reports the results at another location, the radiologist has become invisible to the patient. In popular media and television shows, radiology is prominently present, but radiologists are virtually absent. A survey among 1146 patients has shown that patients are even ill-informed as to the question whether radiologists are medically qualified and enjoy all the privileges thereof. Despite this, most patients find radiologist consultation beneficial. Patients are comfortable hearing results from the radiologist. Many patients would also like to view their images and receive copies of their reports, potential avenues through which radiologists could add value. It is essential that radiologists learn how to communicate with patients, both directly and through patient-oriented reports.

Learning Objectives:
1. To learn about communication pitfalls.
2. To appreciate the potential of SR in communication with referrers and patients.
3. To become familiar with best practice examples.

Panel discussion: How to use structured reporting and artificial intelligence in reporting
2. To review current indications for carotid stent implantation.

3. To discuss the future role of carotid stent implantation.

Learning Objectives:
1. To learn about the technique of carotid stent implantation.
2. To review current indications for carotid stent implantation.
3. To discuss the future role of carotid stent implantation.

08:30 - 10:00 Studio 2019

Special Focus Session

SF 9a

Pain palliation in cancer patients

A-0511 08:30
Chairperson's introduction
A. Gangi; Strasbourg/FR (A.shin.Gangi@chru-strasbourg.fr)

The prevalence of pain in newly diagnosed cancer patients is approximately 30% but 75% of cancer patients in the advanced stages of the disease deal with a pain every day. Approximately 10% of patients will have pain that is difficult to manage, and in a small group (2% to 5%), the pain is refractory. Interventional procedures may be indicated in some patients with chronic, refractory, and/or severe pain. This percutaneous image-guided interventions in selected patients offer the potential for improved quality of life, function, and independence. These interventional procedures also broaden the ability of palliative care providers to control pain and limit medication side effects.

Session Objectives:
1. To learn about the percutaneous pain palliation techniques in cancer patients.
2. To learn about pain evaluation and clinical selection of the patients.
3. To learn about when to propose these methods during an MDT.

A-0512 08:35
Pain from bone metastases
G. Tsoumakidou; Strasbourg/FR (gtsooumakidou@yahoo.com)

Different interventional radiology procedures can be used to alleviate pain from bone metastases resistant to analgesic therapies (non-opioids, mild and strong opioids). As metastatic bone disease usually represents a complex clinical scenario, a case-based approach is necessary. The origin and type of pain (mechanical or not) should be predefined. The degree of bone destruction, the location of the painful lesion (flat vs long bones, cortical vs medullary lesions) and the presence or absence of cortical rupture and will define the treatment strategy. Cement injection is usually sufficient to treat pain from an impending compression fracture of painful bone tumours involving flat weight-bearing bones without invasion of the surrounding soft tissues. In specific regions, percutaneous bone osteosynthesis (femoral neck, displaced pelvic fractures etc.) can be further proposed. For painful bone tumours with extension into the surrounding soft tissues, thermal ablation (radiofrequency, cryoablation, microwave ablation) is required to treat pain caused by the soft tissue invasion. An additional consolidation technique (percutaneous cement injection for flat bones and surgical stabilisation in cases of long bones) may be also required. In cases of spinal metastasis with epidural extension not responding to EBRT and when surgery is contraindicated, thermal ablation (combined with insulation techniques, temperature and electrophysiologic monitoring) can be proposed in order to limit tumour burden and prevent spinal cord compression. In all cases, the precise clinical evaluation of the patient is mandatory and should include previous treatments, patient-tolerated anaesthesia and life expectancy.

Learning Objectives:
1. To learn about the indications and techniques of MSK tumours pain palliation.
2. To learn about patient selection and clinical and imaging follow up.
3. To learn about the indication of consolidation techniques.
4. To become familiar with how to promote interventional procedure in MDT.

A-0513 08:58
Abdominal pain management with minimally invasive techniques
D.C. Madoff; New York, NYUS (dcn9006@med.cornell.edu)

Chronic abdominal pain occurs as a complication of various malignant diseases including pancreatic cancer, and when present may contribute to a lower quality of life and higher mortality. Though various pain management strategies are available as part of a multimodal approach, they are often incompletely effective and accompanied by side effects. Pain originating in abdominal viscera is transmitted via the celiac plexus, an autonomic plexus located in the retroperitoneum at the root of the celiac trunk. Direct intervention at the level of the plexus, referred to as celiac plexus block or neurolysis depending on the injectate is a minimally invasive therapeutic strategy which has been demonstrated to decrease pain, improve function, and reduce opiate dependence. Various percutaneous techniques have been reported, but, with appropriate preprocedural planning, use of image guidance, and postprocedural care, the frequency and severity of complications is low and the success rate high regardless of approach. The main benefit of the intervention may be in reduced opiate dependence and opiate-associated side effects, which in turn improves quality of life. Celiac plexus block and neurolysis are safe and effective treatments for chronic abdominal pain and should be considered early in patients experiencing such symptoms. Other minimally invasive strategies, including catheter placement for malignant bowel obstruction and embolisation for tumour-related pain, will also be discussed.

Learning Objectives:
1. To learn about the indication and patient selection.
2. To learn the techniques of pain palliation in abdominal cancer.
3. To learn about patient and clinical follow up, complication management and pain evaluation.
4. To become familiar with how to promote interventional procedure in MDT.

Author Disclosure:
D.C. Madoff: Advisory Board; Renovox. Consultant; Guerbet, GE Healthcare, Argon Medical Devices, Embofix, Penumbra.

A-0514 09:21
Pelvic pain management with minimally invasive techniques
B. Kastler; Paris/FR (b.kastler@noos.fr)

Pain is the most fearsome symptom patient cancer and relatives will experience. It is estimated to be present in pelvic pain in a wide-ranging prevalence of 40 % up to 100% in patients with advanced stages particularly. In the end stage of the disease, pain usually becomes refractory to 3rd step WHO analgesic drugs as strong opioids. To address these pelvic pain issues, various interventional techniques CT-guided techniques can be performed. - Patients with osseous structure involvement (mets or local invasion) usually respond well to analgesic cocktail infiltrations, bone ablation and/or cementoplasty. We will demonstrate how we proceed under local anaesthesia and tumoral block. - Patients with pelvic pain due to non-neural tumors pelvic pain are more difficult to manage. Initially, they suffer from nociceptive pain due to inflammation and irritation of nerves and later on, via traction and destruction of neural structures, neuropathic pain (causalgia and deafferentation). These patients may be treated by blocks and neurolysis: hypogastric plexus aimed procedures (presacral and/or hypogastric nerves) are used to relieve various pelvic cancer pain syndromes. Ganglion impar block to treat lower pelvic or perineal pain, coccydynia, troublesome tenesmus and anorectal pain from local malignancy. Pudendal infiltration in pelvic posterior or sacral involvement by tumours can also be considered. Radiation-induced or surgical pelvic pain patients may also benefit from these techniques.

Learning Objectives:
1. To learn about the indication and patient selection.
2. To learn the techniques of pain palliation in pelvic pain in cancer patients.
3. To learn about patient and clinical follow up, complication management and pain evaluation.
4. To become familiar how to promote interventional procedure in MDT.

09:44
Panel discussion: How to integrate the interventional radiologist in the “palliative care” team?

E³ - ECR Master Class (Emergency Imaging)

E³ 926

Post-treatment emergencies in oncologic patients

A-0515 08:30
Chairperson's introduction: The role of imaging in the early detection of complications in oncologically treated patients
D.R. Kool; Amsterdam/NL

Oncology patients can present with life-threatening conditions. Those conditions may be caused by local expansion or invasion of a primary tumour or metastases, for example, haemorrhage, venous cava superior syndrome or spinal cord compression. Furthermore, complications can be caused indirectly by malignancies, for instance, thromboembolic disease or paraneoplastic metabolic or neurological symptoms. Life-threatening complications can also be an unwanted consequence of tumour therapy. Surgery, radiotherapy, interventional radiology (IR) procedures, chemotherapy and immunotherapy, each have their own set of potential complications that can present in the emergency setting. Hematologic and metabolic complications are mainly
diagnosed with clinical and laboratory findings. For other complications, diagnostic imaging is essential for making the correct diagnosis and imaging will influence the treatment. Complications of surgery, radiotherapy and IR procedures will mostly be near the treated area. Adverse effects of systemic therapies, chemotherapy and immunotherapy, can occur at remote sites. Complications of oncological treatment can be life-threatening. However, when treated in time they often are reversible. Recognising the imaging findings of complications of tumour therapy timely and accurately is important. Immunotherapy is a more recent treatment, and the adverse effects differ from the more familiar complications of the other tumour therapies. Immunotherapy is increasingly used, and a radiologist will encounter these complications more frequently. In this session complications in the chest and abdomen and of IR procedures will be discussed and their imaging findings will be demonstrated. Interventional techniques used in the treatment of complications of different tumour therapies will be discussed as well.

Session Objectives:
1. To learn about different approaches in modern tumour therapy.
2. To understand the radiological appearance of complications following treatment in oncologic patients.
3. To appreciate the role of different imaging modalities in further management of patients.

A-0516 08:35

A. Chest

H. Prosch; Vienna/AT (helmut.prosch@meduniewien.ac.at)

Lung cancer is the most common cause of cancer-related death in Western countries. Treatment in lung cancer is based on three pillars: surgery; radiation therapy; and systemic therapy. Imaging plays a major role in treatment decisions, response evaluation, and last, but not least, in assessing adverse events following therapy. After surgery, acute (early) complications include pulmonary oedema (hydrostatic permeability), atelectasis, hemorhorax, acute infections, and broncho-pleural fistulas. Acute complications after radiation therapy include mainly early radiation pneumonitis and infections. Following systemic therapy, in addition to infections, non-infectious pneumonitis and sarcoïd-like reactions are important complications that must be considered when investigating a patient who presents with acute symptoms.

Learning Objectives:
1. To become familiar with the modern approach to malignant chest tumour therapy.
2. To learn how to differentiate clinically important complications.
3. To understand how to look for the early signs of severe and urgent conditions.

Author Disclosure:
- H. Prosch: Advisory Board; Boehringer Ingelheim, Roche, MSD, BMS, AstraZeneca.

A-0517 09:00

B. Abdomen

R. Basilio; Chieti/IT (rbasilic@unich.it)

Despite many improvements in perioperative, post ionising radiation therapy or pathological morbidity in abdominal tumour treatments, acute complications after tumour therapies in the abdomen are still common. A number of different therapies, including surgery, by means of a laparoscopic approach or minimally invasive robotic surgery, radiotherapy, chemotherapy and immunotherapy, may be effectively used to treat abdominal tumours. However, these kind of treatments are not devoid of complications and, last, abdominal emergencies may also occur after therapies used for extra-abdominal tumours. Cross-sectional imaging and particularly CT plays a crucial role in the diagnosis and management of most common abdominal emergencies after tumour therapies. The main complications following abdominal, urologic or gynecologic surgery include peritonitis, abscesses, haemorrhage, small-bowel obstruction and anastomotic leaks. Specific complications following hepatobiliary surgery include bile leakage and bile duct injuries: US and MRI with Magnetic Resonance Cholangiopancreatography (MRCP) sequencers are the preferred modalities for assessment of the postoperative biliary tract. Less common postoperative emergencies are vascular complications such as pseudoaneurysms. Small-bowel obstruction caused by radiation enteritis represents one of the most frequent abdominal complications after radiotherapy of prostate and rectal cancer. Whereas, a less known disease such as pneumatosis cystoids intestinals, may be associated with systemic chemotherapy. Due to the increasing use of immunotherapy for different type of tumours, new inflammatory and immune-related adverse events also occur in the abdomen, and they need to be managed by a multidisciplinary approach.

Learning Objectives:
1. To learn about different therapies used in abdominal tumours.
2. To become familiar with possible complications.
3. To understand the effectiveness of imaging modalities in the evaluation of emergent complications.

A-0518 09:25

C. How can interventional radiologists help in the management of oncological treatment complications?

K.K. Pyra; Lublin/PL (k.pyra@poczta.fm)

Patients being treated for cancer frequently experience adverse effects. Interventional radiology plays an important role in the management of oncological treatment complications. Managing these effects improves quality of life and reduces mortality. The most commonly used interventional radiology techniques include embolisation, thermal ablation, vertebral augmentation, cementoplasty, percutaneous internal fixation, drainage of an intra-abdominal abscess, radiologically guided peripheral insertion of central catheters, parenteral nutrition, percutaneous transhepatic cholangiography, inferior vena cava filter implantation and many others. IR can manage the majority of procedure-related complications so that surgical reintervention is required in only a small percentage of patients. Even than presurgical endovascular treatment can be invaluable. Blocking pain signal with ablation of the nerve is one of the examples. It is important for clinicians to understand the goals of endovascular treatment and recognise the importance and role of the IR in the management of these patients undergoing oncological treatment.

Learning Objectives:
1. To understand the role of interventional radiology in modern tumour therapy and the complications.
2. To be familiar with interventional techniques used in the treatment of complications of different tumour therapies.
3. To learn which tumour therapy complications can be treated with interventional radiology.

09:50

Panel discussion: What is the impact of complications findings on the continued management of oncologic patients?

08:30 - 10:00 Room E2

Neuro

RC 911

Update on cerebrospinal fluid (CSF) diseases

Moderator: Z. Merhemic; Sarajevo/BA

A-0519 08:30

A. Imaging strategies for hydrocephalus

C.A.J. Romanowski; Sheffield/UK (charles.romanowski@sth.nhs.uk)

The classical bulk flow hypothesis of CSF production and flow is still widely taught in medical schools and textbooks. In recent years however new scientific evidence has led to some groups challenging this hypothesis. There is now much evidence to support the view that CSF is filtered and reabsorbed across the whole capillary bed of the CNS. In addition, MRI studies have confirmed that CSF flows not simply in a unidirectional manner from the choroid plexus to the subarachnoid space but in a bidirectional manner driven by a systolic expansion of intracranial arteries during the cardiac cycle. This refresher lecture will begin by looking at these new views regarding CSF physiology and flow. The different aetiologies leading to hydrocephalus will be examined. The role MRI in assessing normal CSF flow and disturbances of CSF flow will be examined. This refresher lecture will also include the clinical imaging assessment of the planning and follow-up of modern neurosurgical treatments of hydrocephalus.

Learning Objectives:
1. To learn about different types of hydrocephalus and how to distinguish them in imaging.
2. To understand the pathophysiology of CSF circulation.
3. To appreciate MR imaging techniques for diagnosing abnormalities of the CSF flow.

A-0520 08:53

B. Diagnosis and treatment of intracranial hypotension

E. Papadaki; Iraklion/GR (epapadaki@otenet.gr)

Spontaneous intracranial hypotension (SIH) usually involves middle age women presented with orthostatic headaches. It is caused by spinal CSF leakage due to dual weakness involving nerve root sleeves and rupture of the protruded arachnoid layer, ventral tears of the dura caused by calcified disc herniations and spiculated osteophytes or CSF-venous fistulas within a spinal epidural vein. Although the International Classification of Headache Disorders (ICHD) provides diagnostic criteria for SIH, based on CSF pressure measurements and imaging evidence of CSF leakage, misdiagnosis is
Acute intracranial hypertension (ICH) is among the most critical emergencies in medicine, which requires active management in neurointensive care and neurosurgery. Increasing pressure within the rigid spaces of the skull may lead to brain herniation through the dural openings, at risk of compression of the central nervous system and cerebral arteries. Besides arterial compression at risk of stroke, the compression of the mesencephalon is at risk of coma, and the compression of the medulla oblongata is at risk of respiratory, cardiac, and blood pressure dysregulations. Thus, careful analysis of the subarachnoid spaces is mandatory in order to identify acute intracranial hypertension that might worsen the short-term prognosis of any expanding lesion. Additionally, daily CSF production is three times its total volume. Thus any acute obstacle on its circuit may also lead to acute ICH. Chronic intracranial hypertension is mostly due to resorption dysfunction of arachnoid granulations and venous drainage into dural sinuses. Because of brain volume changes with ageing, morphological consequences and semiology depend on age, from benign ICH with bed rest, caffeine, and oral hydration, targeted or not epidural patching, or even surgery.

Learning Objectives:
1. To learn about the underlying pathophysiology of spontaneous intracranial hypotension (SIH).
2. To understand imaging strategies for this condition.
3. To clarify myths and misperception of intracranial hypotension.

A-0521 09:15
C. RCVS, PRES and others
F. Bonneville; Toulouse/FR (bonneville@chu-toulouse.fr)

Reversible Cerebral Vasocostriction Syndrome (RCVS) and Posterior Reversible Encephalopathy Syndrome (PRES) are disorders of the cerebrovascular autoregulation and are likely to share a common pathophysiology. PRES is mostly due to acute hypertension, that causes blood-brain barrier disruption. It occurs in case of preeclampsia/eclampsia, uremic encephalopathies or drug toxicity such as cyclosporine, tacrolimus or cisplatin. Patients with PRES present with headaches, seizure, altered consciousness or even neurological deficit. Most cases are regressive after blood pressure normalisation or withdrawal of causal agent. CT and MRI typically demonstrate bilateral posterior vasogenic oedema, that involves cortex and subcortical white matter in the temporal, occipital and parietal lobes, as well as in the watershed zones and the cerebellum. Basal ganglia and brainstem may be involved too. Patchy enhancement may be observed in the cortex. Haemorrhage is not rare and may be depicted in the subarachnoid spaces or in the brain parenchyma. CTA and MRA may demonstrate multifocal areas of distal arterial narrowing, a finding similar to RCVS. The latter is a rare disorder characterised by recurrent severe thunderclap headaches, with or without neurological symptoms, and transient narrowing of the cerebral arteries which is reversible within three months. RCVS onset is often associated with vasoactive medications or illicit drugs and the post-partum state. An ischemic or hemorrhagic stroke develops in about one-third of cases.

Learning Objectives:
1. To learn about the current controversial mechanism of posterior reversible encephalopathy syndrome (PRES).
2. To understand therapeutic and prognostic implications of PRES and reversible cerebral vasocostriction syndrome (RCVS) diagnosis.
3. To appreciate imaging features of PRES, RCVS and their differentials.

A-0522 09:38
D. Hypertension-associated brain changes
A. Krajinic; Grenoble/FR (akrainik@chu-grenoble.fr)

Acute intracranial hypertension (ICH) is among the most critical emergencies in medicine, which requires active management in neurointensive care and neurosurgery. Increasing pressure within the rigid spaces of the skull may lead to brain herniation through the dural openings, at risk of compression of the central nervous system and cerebral arteries. Besides arterial compression at risk of stroke, the compression of the mesencephalon is at risk of coma, and the compression of the medulla oblongata is at risk of respiratory, cardiac, and blood pressure dysregulations. Thus, careful analysis of the subarachnoid spaces is mandatory in order to identify acute intracranial hypertension that might worsen the short-term prognosis of any expanding lesion. Additionally, daily CSF production is three times its total volume. Thus any acute obstacle on its circuit may also lead to acute ICH. Chronic intracranial hypertension is mostly due to resorption dysfunction of arachnoid granulations and venous drainage into dural sinuses. Because of brain volume changes with ageing, morphological consequences and semiology depend on age, from benign ICH in younger patients with subtle subarachnoid spaces enlargement into the sella and the optic nerve sheaths, to chronic hydrocephalus without intracranial hypertension in elderly.

Learning Objectives:
1. To understand the causes of intracranial hypertension.
2. To understand the threats of intracranial hypertension on central nervous system and arterial integrity.
3. To recognise intracranial hypertension and its complications on CT and MR.
Learning Objectives:
1. To become familiar with the criteria for the endovascular treatment.
2. To present current methods of the endovascular treatment.
3. To recognise complications of the treatment.

08:30 - 10:00 Room F2
Breast
RC 902
Screening for breast cancer
A-0526 08:30
Chairperson’s introduction
F.J. Gilbert; Cambridge/UK (fggilb@cam.ac.uk)
In 2003 the European Council recommended that mammography is offered two years between the ages of 50-70 years. All countries offer two yearly mammography or digital breast tomosynthesis (DBT) apart from the UK at three yearly. Nine countries start at age 40 or 45 years with 18 commencing at age 50 years. Three countries stop at age 64 years, with the majority at stopping at age 69 years although three countries continue until age 74 years. Uptake varies between 37-85%, Latvia and Poland the lowest uptakes and Finland, Ireland and Holland the highest rates. Some countries have adopted DBT while others are conducting large randomised controlled trials to establish the impact, costs and benefits. It is important to ascertain whether or not this will result in a survival benefit and not merely increase overdiagnosis. Some countries offer supplemental screening with ultrasound to women with increased breast density as this increases the likelihood of developing breast cancer by two-fold in the over 50 year age group and increases the chance of cancer being missed or not being detected until the tumour is larger in size. In women at higher family history risk, a multimodal approach is justified. The increased sensitivity of MRI, especially in younger women with denser breasts, means that this more expensive modality is justified where there are more cancers to be found. However, it is important to balance the risks and benefits of MR based screening.

Screening Objectives:
1. To learn about the strengths and weaknesses of different forms of breast cancer screening.
2. To understand the value of the various screening modalities and how they should be used in practice.
3. To recognise that no single screening strategy serves every patient equally well.

Author Disclosure:
F.J. Gilbert: Advisory Board; Google DeepMind, Grant Recipient; GE Healthcare, Hologic, Research/Grant Support; Hologic, GE Healthcare, volpara. Speaker; GE Healthcare.

A-0527 08:35
A. Screening with mammography and digital breast tomosynthesis alone
R.M. Pijnappel; Utrecht/NL (r.m.pijnappel@umcutrecht.nl)
Mammographic screening is beneficial to the population. Apart from a reduction in mortality less intense treatment is often possible due to the fact that the tumour burden is lower compared to a non-screening situation. Despite these advantages screening also creates inevitable harm to women. It is the challenge to balance the benefits and harms in order to optimise a screening program. Compared to FFDM tomosynthesis has advantages and disadvantages regarding recall, detection and clinical outcome. The differences between FFDM and tomosynthesis in a screening environment will be highlighted. Errors in screening are inevitable. The main errors are false-positives and false-negative results. The reasons for these errors, consequences for women and possible solutions will be discussed.

Learning Objectives:
1. To learn about the benefits and limitations of population-based mammography screening.
2. To become familiar with the advantages and disadvantages of digital breast tomosynthesis.
3. To appreciate sources of error in mammography screening.

Author Disclosure:
R.M. Pijnappel: Equipment Support Recipient; GE, Hologic; Volpara. Research/Grant Support; Hologic, Bayer.

A-0528 09:00
B. Combined screening with mammography and ultrasound
T.H. Helbich; Vienna/AT (Thomas.Helbich@meduniwien.ac.at)
The sensitivity and specificity of mammography are limited in highly fibroglandular dense breasts. Digital mammography provides increased sensitivity in young women and those with moderately dense breasts, and digital three-dimensional mammography (Tomosynthesis) promises further improvement. For women with the densest breasts, however, radiography is unlikely to be the optimum solution. MRI, although not affected by breast density, is expensive and access is often limited. Ultrasonography is attractive for breast cancer screening because, likewise, it is not impaired by breast density, and it avoids the use of ionising radiation and the need for breast compression. Nevertheless, enthusiasm for the use of ultrasonography has been limited because its specificity has been much lower than that of mammography, but technical developments have given rise to sharper, more informative images. These improvements foster the use of ultrasound particularly in those women with higher breast density. Different trials have been performed, and promising results have been reported.

Learning Objectives:
1. To learn about the added value of ultrasound in screening and its indications.
2. To become familiar with the current level of evidence for screening with ultrasound.
3. To appreciate the role of ultrasound in clinical practice.

Author Disclosure:
T.H. Helbich: Grant Recipient; EU Grants, Research/Grant Support; Siemens, Guerbet, Bard.,...

A-0529 09:25
C. Personalised multimodality screening with MRI
U. Bick; Berlin/DE (Uli.Bick@charite.de)
High-risk women with a genetic predisposition will develop breast cancer not only more frequently but also at a much younger age than average-risk women. Traditional population-based mammography screening programs aiming primarily at postmenopausal women are therefore not sufficient as surveillance for these women. Contrast-enhanced breast MRI with its high sensitivity independent of breast density has been shown to be the ideal screening tool for young premenopausal high-risk women. Depending on the age and risk constellation of the individual patient, this can be supplemented by mammography and/or tailored second-look ultrasound. To be effective, high-risk multimodality screening should be offered annually starting at age 25 to 30. However, even annual multimodality screening with MRI may not be sufficient in BRCA1-mutation carriers to detect a sufficiently large proportion of cancers in a curable stage, and risk-reducing mastectomy may be considered as a viable alternative in these patients. Whereas age-specific breast cancer incidence is fairly well established for BRCA1/2 mutation carriers, breast cancer risk prediction in high-risk patients without such a mutation is much more difficult, and substantial variations in calculated risk exist between the currently available models. This is of great importance, as accurate breast cancer risk prediction is vital for correctly tailoring the high-risk screening program. If the observed breast cancer incidence in the screened population is too low, the positive predictive value will decline to unacceptable levels and screening will become ineffective.

Learning Objectives:
1. To learn about multimodality screening strategies for high-risk patients.
2. To become familiar with the difficulties in predicting individual breast cancer risk.
3. To appreciate the careful balance of risks and benefits in MRI-based screening.

Author Disclosure:
U. Bick: Patent Holder; License agreement and Royalties, Hologic, Inc.

09:50
Panel discussion: What is the best approach to screen for breast cancer?

08:30 - 10:00 Room Y
E³ - Rising Stars Programme: EFRS Radiographers’ Basic Session
BR 9
Career planning
A-0530 08:30
Chairperson’s introduction: What do new graduates need to look like?
G. Lebranski; Larnaca/GR (giliorgio@yahoo.gr)
The world of radiology is an everyday evolving science. Its development entangles all those involved in its everyday life. Radiographers are the main characters in the development of radiology. Young graduates who have the basic training from their school start offering their services to patients, although they have the duty to develop their knowledge as well as the science of radiology. This is achieved by participating in specialised training courses, participating in radiology courses, in research protocols as well as enriching
their knowledge from other specialities. The most important thing though is to
gain experience. Experience is gained from daily contact with radiology. Taking
part in an everyday service of a radiology lab confers self-confidence to the
radiographer, especially if there is a possibility of attending a large hospital
curacy. Feeling confident for his knowledge the radiographer is ready to look
for the specialised knowledge in his subject and consequently to develop his
specialty. Finds out what it can offer to the other specialities and increases
with his knowledge the demands by doctors.

Session Objectives:
1. To understand how best to prepare your professional profile.
2. To appreciate the potential for radiographers to work in various jurisdictions.
3. To consider the utility of professional development planning in achieving
 your professional goals.

A-0531 08:35
The role of preceptorship in first post-radiography positions
A. Martin; Manchester/UK (amanda.martin@boltonft.nhs.uk)

Many radiographer vacancies are filled by newly qualified radiographers who
are stepping away from the supportive and safe environment afforded to them
as a student, where they are supervised closely and move into clinical practice
as an accountable and autonomous practitioner. Confidence levels may be low
as they suddenly find themselves being wholly responsible for their decisions
for the first time in their radiography journey. Add to this the lack of familiarity in
a new department, along with the expectations of staff, the pressure put on the
newly qualified radiographer, by themselves or by others, may soon become
too much. This may lead to mistakes being made, which could cause patient
harm. It could also lead to increased stress levels, periods of sickness or
resignation from their post. The provision of a structured support framework
for newly qualified radiographers in the first few months of employment is pivotal in
their transition into confident and effective practitioners who are likely to stay
in post and develop further into valued, experienced and highly skilled
radiographers. There are different approaches to preceptorship, but all should
share the same key components, leading into the appraisal cycle. The models
of preceptorship will be explained before one department approach to
preceptorship is discussed.

Learning Objectives:
1. To understand the value of preceptorship.
2. To become familiar with common preceptorship programmes.
3. To be aware of how preceptorship programmes can benefit patients,
radiographers and health care institutions.

A-0532 08:58
Practising radiography around the world
C. Buissink; Groningen/NL (c.buissink@pl.hanze.nl)

Globalisation and collaboration in an international setting can no longer be
ignored. This also applies to the profession of the radiographer. That is why it
is important for us as Radiographers to deepen our knowledge and to look for
opportunities in the international field. International collaboration has always
been strong in research. However, this is not the only place where
internationalisation is visible. An international mindset starts at the beginning of
a Radiographer career. Therefore, many universities have included
internationalisation in their curricula. The first steps could be
internationalization@home (Crowther et al. 2001). Students often come into
contact with internationalisation through internships, exchange programs or
Summer schools. But in recent years, working for shorter or longer periods
abroad has also become more common. A difficult challenge is recognition of
the diploma, within Europe there are different forms of education and level of
education. These are also important discussion points for national and
European associations. Working as a radiographer around the world is still
quite a challenge. Exchanging experiences is the first step.

Learning Objectives:
1. To be aware of the potential to use your radiography qualification in various
 jurisdictions.
2. To consider barriers to practicing as a radiographer abroad.
3. To appreciate the potential for charitable/voluntary work in developing
 countries.

A-0533 09:21
The importance of professional registration and CPD
L.A. Rainford; Dublin/IE (louise.rainford@ucd.ie)

Medical imaging is becoming increasingly diverse with the continued
development of multiple sub-specialities. The manner in which radiographers
work within these sub-specialities and how professional work structures have
developed across different countries all place a need on radiographers to
continually develop and increase their knowledge and understanding of the
areas of imaging they work within. Medical imaging technology and changes in
practice alter rapidly. The importance of professional development planning for
radiographers will be discussed in maintaining, developing and improving
radiographer competencies to ensure optimal practice and service delivery, in
our ever-changing and challenging clinical environment. Mandatory or voluntary
CPD is becoming a common requirement across European Radiography
professions. The importance of CPD for radiographers will be discussed, and the EFRS CPD guidelines will be outlined. Professional
registration and its importance to Radiography will be discussed in the context
of professional society registration and state registration of our profession by
government regulators. The benefits and challenges of registration will be
outlined and “real world” details will be provided to evidence points addressed
in the presentation.

Learning Objectives:
1. To understand the importance of professional development planning for
 radiographers in maintaining, developing and improving radiographer
 competencies.
2. To be aware of the essential role of CPD and further education for
 radiographers.
3. To appreciate the importance of professional registration.

09:44
Panel discussion: My best career advice

08:30 - 10:00 Room D

Musculoskeletal

RC 910

**Inflammatory and infectious diseases of the spine: how to differentiate from
degeneration**

Moderator:
J.L. Bloem; Leiden/NL

A-0541 08:30
A. Spondyloarthritid: a diagnostic chameleon
V. Zubler; Zurich/CH

The group of spondyloarthritis comprises a number of closely related
rheumatic diseases with common clinical features: Ankylosing Spondylitis,
Psoriatic Arthritis, Arthritis and Spondylitis related to inflammatory bowel
disease, and Reactive Arthritis. Patients can also be grouped into two
categories based on their predominant clinical presentation: axial or peripheral.
Axial Spondyloarthritis is inflammatory arthritis primarily involving the sacroiliac
joints and the spine. Presumably, the process of inflammation starts as
enthesis, mainly visible as bone marrow oedema at the insertion of ligaments or
tendons into bone. However, bone marrow oedema is an unspecific feature
and occurs amongst others frequently in the context of mechanical changes
and degenerative processes of the axial skeleton. Imaging is an important
component of the classification criteria for axial Spondylarthristis. Conventional
radiography is an essential part of the internationally accepted modified NY
criteria for Ankylosing Spondylitis but visualises only the late structural
changes of the inflammatory process after years. Magnetic Resonance Imaging can detect the early changes in up to four months after clinical onset. MRI of the sacroiliac joints has being integrated as a key diagnostic criterion of axial Spondyloarthritis according to the Assessment of SpondyloArthritis International Society (ASAS) in 2009.

Learning Objectives:
1. To explain the pathophysiology and disease spectrum of spondyloarthritid.
2. To describe the imaging findings of spondyloarthritid.

A-0542 09:00
B. Crystals: may also affect the spine
P.J. O’Connor; Leeds/UK (philip.oconnor@nhslte.net)

Crystal deposition in the spine is unusual. The presentation varies from acute
pain syndromes to subclinical disease usually detected as an incidental finding
on cross-sectional imaging. The pathophysiology, clinical presentation and
imaging appearances of crystal disease will be presented. Spinal gout, acute
longus colli hydroxyapatite deposition and Crown dens syndrome resulting
from either hydroxyapatite or pyrophosphate deposition will be described.
Differentiating crystal disease from ligamentous ossification, degeneration and
other deposition diseases such as amyloid will be discussed. Gout is a
common inflammatory arthritis most commonly seen on men and post-
menopausal women. The prevalence of gout is currently increasing over time.
Spinal gout typically presents with localized pain, incidental lytic vertebral
lesions usually detected on cross-sectional imaging or with symptoms resulting
from neurological compromise. Spinal gout most commonly affects the posterior elements of the spine. Crowned dens syndrome results from crystal
deposition around the odontoid peg of the cervical spine. It presents with acute
neck pain and unless recognised often leads to misdiagnosis and inappropriate
treatment. The deposition can be either hydroxyapatite or hydroxyapatite
crystals with both having identical imaging appearances. A similar clinical presentation is also seen in Acute calcific longus colli hydroxapaptite deposition. This is a rare cause of severe neck pain, dysphagia and odynophagia is often mistaken for other common causes of neck pain. Similar to crowned dens syndrome prompt recognition is important to prevent unnecessary imaging or treatment.

Learning Objectives:
1. To explain the pathophysiology and disease spectrum of crystal deposition diseases that affect the spine.
2. To describe the imaging findings of crystal deposition diseases that affects the spine.

Author Disclosure:
P.J. O’Connor: Advisory Board; european Golf tour medical advisory board.
Author; action Editor Grainger and Allison. Research/Grant Support; IHR research grant support.

A-0543 09:30
C. Infection: imaging, indiction and techniques for biopsy
J.-L. Drape, Paris/FR (jean-luc.drape@och.aphp.fr)

The diagnosis of spinal infections is often made by a combination of clinical symptoms and radiologic abnormalities. Magnetic resonance imaging is the main imaging modality for this diagnosis. Confirmation is based on histopathologic findings and/or identification of pathogens from biopsy specimens or blood cultures. Percutaneous biopsies are widely practiced in this indication, with the more accurate and safer guidance of computed tomography (CT). Two main types of percutaneous biopsies are available: fine needle aspiration biopsy and core needle biopsy. Specific techniques and approaches with varying needle systems are described for each spinal region. It is the procedure of choice in the definitive diagnosis of pathologic lesions of the spine.

Learning Objectives:
1. To describe the imaging findings of spinal infection.
2. To explain the biopsy indication and techniques in spinal infection.

08:30 - 10:00 Room G
Joint Session of the ESR and EFOMP
ESR/EFOMP
Medical imaging and emerging issues in occupational radiation exposure

Moderators:
M. Brambilla; Novara/IT
W.R. Jaschke; Innsbruck/AT

A-0544 08:30
Is fear of radiation-induced occupational cancer irrational?
P. Vock; Spiegel/CH

Starting with a short overview of the development of occupational dose limits, this presentation will concentrate on the quantitative estimation of the risk of radiation-induced occupational cancer. While facts are often statistically solid in the higher dose range, below around 50 mSv of effective dose the linear-no-threshold (LNT) model of dose-risk relation has been questioned by a number of radiobiological studies; existing epidemiological data, due to limited power, do not differentiate between LNT, non-linear and threshold-based models. In other words, the LNT model might either overestimate or underestimate the risk. Furthermore, even for the same physical dose the gender, age at exposure, the temporal distribution of exposure, whole-body vs regional exposure, and individual radiosensitivity will modify the biological impact and, thus, the cancer risk. Known and unknown influences of these modifications will be discussed. Despite open questions, enough facts are established to give the exposed workers clear rules to protect themselves. The communication, therefore, has to show known and disputed risks and to clarify that a medical worker (above all an interventional radiologist) can avoid a lot of unnecessary exposure and reduce the risk to a low, tolerable level by his/her behaviour and skills that are based on a solid training, and the proper use of technical options of the equipment as well as of protective devices. In conclusion, while occupational exposure to ionising radiation asks for our respect and a continuous ALARA culture, nonspecific fear of cancer is not justified.

Learning Objectives:
1. To learn how occupational dose limits have been established by ICRP to reduce the probability of stochastic effects.
2. To appreciate the order of magnitude of additional risk of cancer induced by occupational exposures.
3. To understand how these risks should be properly communicated to workers.

A-0545 08:50
Eye lens radiation dose and cataractogenesis
J. Damilakis; Iraklion/GR (damilakis@med.uoc.gr)

Several recent studies have shown a significant association between long-term exposure to low-dose radiation and increased risk of cataract formation. It is evident that exposure limits are justified.

Author Disclosure:
M. Brambilla; M. Damilakis

A-0546 09:10
Occupational exposure from interventional radiology procedures: how to measure it, how to reduce it
W.R. Jaschke; Innsbruck/AT (werner.jaschke@i-med.ac.at)

The occupational dose of the Operator in fluoroscopically guided interventions can be assessed by personal dosimetry using thermoluminescence Dosimeters and real-time dosimetry. Personal dosimetry is a reliable tool to measure personal dose but suffers from the fact that the operator gets the dose information with a time delay of weeks or sometimes even months. Real-time dosimetry is less accurate but provides real-time dose data. The operator gets immediate feedback on dose rate and how the dose rate changes if certain protective measures are put in place. Real-time dosimetry is, therefore, very important for individual radiation protection and optimisation.

Learning Objectives:
1. To learn which technical factors contribute to occupational exposures from interventional radiology procedures.
2. To appreciate that optimisation of a patient's exposure is a way to also reduce occupational exposure.
3. To understand additional means to reduce the occupational exposures.

A-0547 09:30
Selection and usage of personal protective equipment in the fluoroscopy and interventional radiology operating room
M. Brambilla; Novara/IT (marco.brambilla@maggioreosp.novara.it)

Workers can be exposed to significant scatter radiation during fluoroscopically guided interventions. Radiation-attenuating personal protective equipment (PPE) includes aprons to protect radiosensitive body organs, glasses to prevent cataract development, thyroid collars to protect a radiosensitive organ, lead equivalent surgical gloves and caps to reduce hands and head exposure. PPE can afford very different degrees of protection of different parts of the body during fluoroscopy and interventional radiology procedures. The concept of dose reduction factors (DRFs), equal to the ratio of the dose to the part of the body with no PPE, divided by that when PPE are worn will be introduced.

Learning Objectives:
1. To learn which personal protective equipment is needed for specific radiological practices.
2. To become familiar with occupational dose reduction provided by personal protective equipment.
3. To understand that a correct selection, use and periodic check of personal protective equipment are needed to ensure radiation protection of healthcare personnel.

09:50 Panel discussion: Has the optimisation of occupational radiation exposure in radiology procedures reached a plateau?

08:30 - 10:00 Room K

Chest

RC 904

Lung nodule management in 2019

A-0548 08:30
Chairperson’s introduction
A. Deymarg; London/UK

An overview of recent developments in lung nodule characterisation and management will be provided. Tips on optimal nodule characterisation and measurement will be presented, including how to avoid false positives and false negatives; as well as a brief overview of the appropriate use of lung nodule management guidelines in 2019.

Session Objectives:
1. To avoid common errors in nodule categorisation or measurement.
2. To summarise the recent knowledge about nodule management.
3. To understand the place of risk prediction models.

A-0549 08:35
A. Radiological assessment
T. Frauenfelder; Zurich/CH (thomas.frauenfelder@usz.ch)

Lung nodules are common radiological findings in the clinical practice, and the majority of them remain indeterminate at imaging. Determination of lung nodule malignancy is pivotal because the early diagnosis of lung cancer could provide a curative intervention. Therefore the correct interpretation and management of a lung nodule represent relevant issues for radiologists. The probability of nodule malignancy depends on patient risk factors and nodule characteristics (size, morphology, attenuation, growth). In addition, management is substantially influenced by the nodule size, attenuation (solid, ground-glass, part-solid) and growth rate. But in daily life we often struggle by the question: is this a real nodule? And more often: what type of nodule is it, especially if there is a slightly blurry rim? Furthermore, although knowing that perifissural nodules are known to be benign, there are clear definitions what this means. Nevertheless, also here there is no clear black or white. Following the guidelines and definitions, we will establish the characteristics of the different types of nodules.

Learning Objectives:
1. To learn how to recognise false nodules.
2. To learn how to classify lung nodules as solid, part solid or non-solid.
3. To be aware of the typical and atypical characteristics of perifissural opacities.

A-0550 08:58
B. Computer-aided diagnosis and AI perspective
A.A. Larici; Rome/IT (annarita.larici@unicatt.it)

Machine learning (ML) describes a subfield of artificial intelligence (AI) in which algorithms are trained to perform tasks by learning patterns from digital data. In classic ML approach, as the ones used in CAD algorithms, programmers define the features that appear distinctive of a disease and mathematic models are trained to identify such features. Newer ML techniques, as deep learning (DL), are focused on a particular outcome (e.g. nodule characterisation), and the distinctive features are identified through a training learning process. ML uses computational models and algorithms that imitate the architecture of the brain (artificial neural networks-ANNs). AI has the potential to replace the tasks of radiologists. Especially decreasing false-positive results. Using recent CNNs 90% accuracy processes and has been applied in the Radiomics analysis. Newer AI approaches will increase the accuracy of CAD in lung nodule detection, especially decreasing false-positive results. Using recent CNNs 90% accuracy.

Session Objectives:
1. To learn how to recognise false nodules.
2. To learn how to classify lung nodules as solid, part solid or non-solid.
3. To be aware of the typical and atypical characteristics of perifissural opacities.

A-0551 09:21
C. Management guidelines
A.A. Bankier: Boston, MA/US (abankier@bidmc.harvard.edu)

Pulmonary nodules detected on chest CT examinations often pose a substantial management problem. This presentation will review current guidelines designed to approach this problem. The presentation will also address models for evaluating the risk of a pulmonary nodule to be malignant. Finally, the presentation will discuss the fundamental differences between screening-detected and incidental pulmonary nodules.

Learning Objectives:
1. To review the incidentally-found nodule management guidelines.
2. To become familiar with the LungRADS classification of screen-detected nodules.
3. To learn about Brock and Herder and other prediction models for evaluating the malignancy risk.

Author Disclosure:
A.A. Bankier: Consultant; Spiration, Hummingbird Diagnostics, Daiichi Medical.

09:44 Panel discussion: What do radiologists need to better manage pulmonary nodules?

08:30 - 10:00 Room M 1

ESHI(MT) Session

ESHI(MT) 2

Artificial intelligence in hybrid imaging

Moderators:
C.C. Cyran; Munich/DE
H.K. Hahn; Bremen/DE

A-0552 08:30
Radiomics+: prediction model using convergent data
A. Leimgruber; Lausanne/CH (antoine.leimgruber@hopitalvierachablais.ch)

Medical Imaging generates large amounts of data commonly assessed visually using scientific evidence and expert knowledge combined with clinical patient-specific information. Quantitative methods have also been developed in today’s multi-modality environment, providing morphologic, functional and biological information. Recent advances in data mining of quantitative image features together with powerful image analytic tools have lead to what is known today as “radiomics”. Naturally, radiomics analytic techniques have been welcomed with both enthusiasm and scepticism. The process used in radiomics involves the identification of vast arrays of quantitative parameters within digital images. The major challenge is to integrate radiomics data with clinical, pathological, and genomic information to decode the different types of tissue biology and specificities of the disease within a patient in a new paradigm that we introduce in this talk as “radiomics+”. Imaging is indeed not the only field roaming the uncharted territory of large medical datasets. Pathology, liquid biopsy techniques or genetic analyses all provide an increasing number of molecular biomarkers. Oncology is the large port of entry of this trend given the need to tailor an increasingly diverse array of targeted therapies to the specificities of each patient and the history of each cancer within each individual. Many institutions are in the process of developing analytic personalised oncology programs (APOs). Through this prism and early local and wider APO experience, this talk will endeavour to give credit to both the traditional expert visual assessment and the radiomics approach and analyse the challenges ahead.

Learning Objectives:
1. To present new trends in radiomics.
2. To present trends in radiomics.
3. To understand personalised medicine initiatives by the example: where does radiomics+ fit in?
Hybrid imaging lends itself to the measurement of a large number of radiomic features. These include so-called handcrafted features and deep features derived either from the native images or from parametric images. This wealth of image-based information has a great potential for decision making using modern AI approaches. Yet, it is likely that if images are necessary for in vivo probing of biological mechanisms, they are not sufficient for accurate prediction of the patient outcome that depends on a number of other parameters. This is why radiomic data have to be enriched with other relevant omic or clinical data, yielding the concept of holomics. The integration of that huge diversity of data into accurate and robust models for guiding precision medicine raises a number of new challenges that will be presented and illustrated. Addressing these challenges may actually need rethinking the way we conduct research in imaging as will be discussed. In addition, the overwhelming trend towards AI-based data analysis should not hide the crucial importance of both the quality and the relevance of the input data, whatever they are. Only a clever and thorough use of sensitive and specific images reflecting biological mechanisms in an understandable way and combined with other data that also express phenomena to be accounted for will allow us to approach the truth. In that respect, AI has to be combined with human intelligence to make the most of imaging and non-imaging data in the context of precision medicine.

Learning Objectives:
1. To get an overview about shallow and deep learning.
2. To appreciate supervised, unsupervised and reinforcement learning with examples.
3. To learn about Holomics: a holistic approach for precision medicine, concept and examples.

A-0553 08:50

AI and Holomics: predicting the truth from hybrid imaging and non-imaging data

I. Buvat: Orsay/FR (irene.buvat@u-psud.fr)

Hybrid imaging lends itself to the measurement of a large number of radiomic features. These include so-called handcrafted features and deep features derived either from the native images or from parametric images. This wealth of image-based information has a great potential for decision making using modern AI approaches. Yet, it is likely that if images are necessary for in vivo probing of biological mechanisms, they are not sufficient for accurate prediction of the patient outcome that depends on a number of other parameters. This is why radiomic data have to be enriched with other relevant omic or clinical data, yielding the concept of holomics. The integration of that huge diversity of data into accurate and robust models for guiding precision medicine raises a number of new challenges that will be presented and illustrated. Addressing these challenges may actually need rethinking the way we conduct research in imaging as will be discussed. In addition, the overwhelming trend towards AI-based data analysis should not hide the crucial importance of both the quality and the relevance of the input data, whatever they are. Only a clever and thorough use of sensitive and specific images reflecting biological mechanisms in an understandable way and combined with other data that also express phenomena to be accounted for will allow us to approach the truth. In that respect, AI has to be combined with human intelligence to make the most of imaging and non-imaging data in the context of precision medicine.

Learning Objectives:
1. To get an overview about shallow and deep learning.
2. To appreciate supervised, unsupervised and reinforcement learning with examples.
3. To learn about Holomics: a holistic approach for precision medicine, concept and examples.

A-0554 09:10

Sharing is caring: on the need for open research data

O. Rakic: Geneva/CH

The developments of imaging biobanks and cloud-based data storage services have radically changed the way we deal with communication and data management in our daily life. On-line storage of medical images is not new; several vendors have offered such services for decades already as part of their commercial solutions. What has really changed is that recent years is the emergence of such services for the wide public offering very attractive commercial solutions. What has really changed is the emergence of such services for the wide public offering very attractive commercial solutions at a very low cost. In medical applications, however, such systems must comply with strict regulations and guidelines geared toward protecting patient confidentiality and data security. Medical imaging is becoming a major component of the data required in every medical decision in diagnostic, assessment of treatment response, follow-up of disease recurrence and in support for therapeutic and surgical interventions. The weight of data acquired in clinical routine these days is overwhelming and has not been apprehended yet. The main limiting factor of the development of these new analysis techniques is the lack of sufficiently large sets of structured and well-documented imaging data. There are also major difficulties in the ability to collect these large sets of imaging data due to restrictive regulatory constraints and data protection rules that prevent the usage and exploitation of medical data without formal patient approval.

Our presentation will focus on the specific issue of gathering and collecting medical images for the development of large Big-Data repositories for scientific research and review the current challenges that prevent their widespread use today.

Learning Objectives:
1. To give an introduction to new concepts of Open Research Databases and Big-Data repository and their impact on development of new paradigm of data-driven patient management and personalised healthcare.
2. To understand the underlying challenges and requirements as well as the ethical and legal framework that regulates the setup and usage of large collection of patient data for open research.
3. To review of potential applications in molecular imaging and in support of multi-centric clinical trials.

09:35 Panel discussion: AI in HI: incremental value or feeding the data explosion?

E³ - ECR Academies: Radiology Leaders' Bootcamp

E³ 918 Captain's dashboard

A-0555 08:30

Chairperson's introduction

S. Morozov: Moscow/RU (spmorozov@gmail.com)

Aplethora of dashboard’s concepts are thoroughly developed for the general management applications. A basic principle beyond dashboards states that only measurable things can be managed. Hospitals and healthcare systems around the world have developed or purchased and customised dashboards for tracking their patients’ and hospitals’ parameters. Being a captain in a radiology department requires a set of management skills which can be learnt and developed through a career. This session calls together experienced leaders, entrepreneurs and managers who are going to share their insights and practical examples of utilising managerial skills. Basic and advanced techniques to run radiology and healthcare projects through will be presented, including MBO, delegation, PDCA, BSC, KPIs, waterfall, agile, etc.

A-0556 08:36

A. Fundamentals of imaging management and administration

B. Bian: Sacramento, CA/US (dbianbian@gmail.com)

Functioning efficiently, at the level of director/chairperson/executive/chief, requires certain knowledge, skills and experience. Traditionally, the need for such managerial training was less crucial however in today’s rapidly growing imaging universe, having formal training in such areas has become mainstream. Many chairpersons are actively trying to get formal training in management, attending hi-yield management and leadership courses and actively trying to broaden their knowledge, learn new skills and obtain experience. For the sake of time, here at ECR-2019, I will focus my presentation on the crucial areas of the art of building an efficient team, usage of the “Imaging informatics” technology to the max, to understand imaging economy and finance, to understand the concept of “system efficiency”, communication and interaction protocols as well as risk management and the feedback system in place including dashboard monitoring.

Learning Objectives:
1. Strategy for a radiologist in a changing healthcare landscape.
2. How to leverage a physician’s role by learning managerial skills.
3. Setting a goal, making it doable, prioritising, focusing and choosing what not to do.

A-0557 09:04

B. Being in a driver’s seat and managing by objectives

Y. Menu: Paris/FR (yves.menu@sat.aphp.fr)

For medical, technical, regulatory, networking and behavioural reasons, the challenge for managers is to adapt to a rapidly evolving environment. The initial analysis is achieved by different formal or informal tools including interviews, risk mapping and Lean 6 Sigma methods. It identifies gaps between performance and strategic goals, chosen as useful, shared and reachable objectives. Key Performance Indicators (KPIs) are powerful tools that will allow the follow-up of action. They are ensuring tools. They are usually related to structure, process or outcome. They follow the SMART method (Specific, Measurable, Assignable, Realistic, Time-related) and measure specific services, like the best use of a CT platform, or Patient wait time. They include and quantify the objective, define the responsible person, method of sampling and criteria for success. Balanced scorecards are syntheses aimed at sharing information easily and visually. They summarise KPIs. It is the manager’s preferred dashboard. Balanced scorecards can also be used as a hierarchical presentation of information, with the possibility to access to a “clickable” detailed and analytic level. PDCA (Plan, Do, Check, Act) is a more global tool for management as it highlights strategy (Plan), production (Do), monitoring (Check) and improvement (Act). It helps to classify all management initiatives in a global plan. It is commonly used for certification of a department. Whatever the tool, the manager is still in charge of kick-off initiatives and final decisions. Tools will help him driving the projects and sharing it in and outside the team, but will never be a substitute.

Learning Objectives:
1. Definition of a workflow, roles and results.
2. Balanced scorecard, KPIs, dashboard and PDCA instruments for a radiology department.
3. IT solutions for automating and increasing efficiency.
Radiology is at the brink of change because of all new developments are shown in Medical Imaging Informatics. For a radiology department to keep up with all developments, quick changes and adaptability of the staff and workflow models is an absolute requirement. Not only for radiologists, but also for radiographers, clinical physicists and other employees. Furthermore, new professional experts will enter the radiology domain such as medical computer scientists, data scientists and technical physicists. All these developments mean that the status quo is heavily challenged and radiology should be prepared to make new things happen. For leaders in radiology, this means that they have to be able to lead those changes against the wind by implementing change management. Furthermore, instruments already common in IT development such as Scrum and Agile will start entering the radiology domain and should be understood by radiology leaders. The overall observed change is that radiology should move (or already moves) into a value-based service using new developments to get to a more patient-centric workflow with extensive integration of the imaging in the patient workflow throughout the health process.

Learning Objectives:
1. Leading the changes against the wind: principles of change management.
2. Project management and new instruments, including Scrum, Agile.

Paediatric RC 912 Foetal and neonatal imaging pearls

A-0559 08:30

Chairperson’s introduction

E. Vázquez; Barcelona/ES (evazquez@vhebron.net)

Fetal MRI has acquired an important role in the diagnostic workup of fetal abnormalities suspected on ultrasound study. Radiologists and clinicians involved in this task should be aware of the uses and limitations of fetal MRI. Suspected CNS disease continues to be the most common clinical indication for this imaging technique. Congenital malformations such as corpus callosum anomalies are among the most common requests, in which MRI can rule out other associated abnormalities, such as sulcation abnormalities or grey matter heterotopia, with high diagnostic accuracy when compared to postnatal findings. In acquired brain damage, the previously normal tissue is destroyed by diverse mechanisms, such as hypoxia, infection, metabolic disease, and even space-occupying lesions. The effect of these insults can be precisely detected with MRI and correlated with postnatal features. This technique can also be of help for evaluating fetal abdominal conditions. For example, ultrasound visualisation of some genitourinary abnormalities may be difficult because of associated oligohydramnios. MRI can accurately delineate the anatomy and identify normal renal parenchyma and cysts. In addition, newer sequences, such as diffusion-weighted imaging, are useful for assessing the normal functional kidney. This course will provide an educational overview of the main techniques and recent technological advances in fetal MRI, applicable in both CNS and body examinations. Finally, a panel discussion will be conducted, focused on overcoming certain challenges in fetal MRI performed for routine and research purposes, including technical and safety concerns.

Session Objectives:
1. To learn about the advanced techniques in foetal MRI.
2. To understand some useful applications in brain malformations or acquired injuries.
3. To discuss the main limitations and challenges of foetal MRI.

A-0560 08:35

A. Foetal MRI advanced techniques

G. Kasprian; Vienna/AT (gregor.kasprian@meduniwien.ac.at)

A human foetus can be considered as the most “uncooperative” patient. Thus, any “advanced” foetal MRI imaging technique has to deal with the problem of unpredictable foetal motion. Since the beginnings of foetal MRI in the 1980s, the most promising strategy in addressing the problem of foetal motion was shortening the acquisition time of MR sequences. This strategy has been successful for those sequences, which are nowadays regarded as “standard”: T2-TSE, T1SE, SSFP, EPI/T2* and DWI sequences. After shortening Echo Time (TE) sequences to a maximum acquisition time of 2 minutes, it has been possible to reconstruct main sensorimotor and commissural pathways in normal and pathological cases. Postmortem histo-tensor and postnatal DTI studies have recently validated these results. Thus, DTI is commonly regarded as “experimental” in fetal MRI - can even provide clinically important data for our understanding of fetal brain pathologies. If fetal “resting state” fMRI data are processed with meticulous motion, slice timing, bias field and noise correction, connectivity profiles of the fetal brain or the placenta can be generated even in single subjects. Adjusted single voxel spectroscopy sequences can be applied prenatally and may complement standard fetal MRI protocols, revealing insights into fetal or placental metabolism. Although interpreting the results of advanced fetal MRI techniques may have its uncertainties and risks, careful incorporation of these methods into clinical fetal MRI protocols further strengthens the position of fetal MRI as an important complement to ultrasound in the assessment of fetal pathologies.

Learning Objectives:
1. To learn about the principles for advanced techniques in foetal MRI.
2. To understand the potential for their use.
3. To discuss the limitations and disadvantages of these techniques.

Author Disclosure:

G. Kasprian: Consultant; Bellaria Diagnose. Grant Recipient; Austrian Science Research Fund, Jr. 13925. Speaker; Shire, Biogen.

A-0561 08:53

B. Corpus callosum anomalies: pre- and postnatal correlation

C. Garel; Paris/France (catherine.garel@aphp.fr)

Corpus callosum (CC) malformations include complete and partial CC agenesis, short CC and CC dysgenesis. They can be isolated or observed in the setting of various syndromes. Moreover, pericallosal lipomas or interhemispheric cysts may also be observed in association with CC malformations. The diagnostic contribution of prenatal MRI ranges between 0 and 20% according to the sonographer’s skill and the conditions of the US examination. In about 22.5% of cases, MRI can detect additional abnormalities. The presence of such abnormalities may have a prognostic impact. Disagreement between pre- and postnatal imaging with the postnatal identification of associated cerebral anomalies considered as having a prognostic impact, is observed in about 9%. The prognosis of CC malformations associated with a curvilinear lipoma or with an interhemispheric cyst without cortical anomalies is very good. Except for these two entities, associated CC agenesis usually carries a poorer prognosis than an isolated one. Identification of genes mutations observed in children presenting with CC anomalies with or without intellectual deficiency is currently under development.

Learning Objectives:
1. To evaluate the diagnostic accuracy of foetal MRI for diagnosis.
2. To compare pre- and postnatal MRI data.
3. To ascertain the outcome in cases of isolated complete or partial agenesis.

A-0562 09:11

C. Foetal MR imaging of acquired brain pathology

P.D. Griffiths; Sheffield/UK (p.d.griffiths@sheffield.ac.uk)

MR imaging of the unborn baby’s brain has become an established method of detecting brain pathology ante-nataly. Most structural brain abnormalities shown on fetal MR are developmental in nature (e.g. agenesis of the corpus callosum, Dandy-Walker malformation) but there is increasing recognition that some brain abnormalities are ‘acquired’ that is occurring in a brain that was otherwise developing normally (e.g. stroke, trans-placental infections). In this presentation, I will review the types of pathology that can lead to brain injury acquired in utero and present data from the MERIDIAN study that shows the prevalence and range of such abnormalities.

Learning Objectives:
1. To learn about the various types of acquired brain pathology in the foetus.
2. To understand the limitations in the comprehension of the underlying cause.
3. To discuss about the best estimates of the prevalence of acquired brain pathology.

A-0563 09:29

D. Pre- and postnatal congenital cystic renal diseases

M. Cassart; Brussels/BE (mcassart@his-izz.be)

The finding of hypechogenic kidneys in foetuses and children is a challenge for radiologists. It can be simply a normal variant with further resolution or an early sign of congenital renal cystic disease. These renal diseases can be uni or bilateral, isolated or part of polymalformative syndromes. Various entities can be encountered in this context: obstructive uropathies if associated with dilatation of the collecting system, multicystic kidney disease if macrocysts are present. Inherited renal cystic diseases should also be considered: recessive polycystic kidney disease in bilateral undifferentiated enlarged kidneys, dominant polycystic kidney diseases in slightly enlarged well-differentiated kidneys with cortical cysts or renal diseases associated with TGF-β mutations that can have many different aspects. The contribution of imaging can be optimised by the knowledge of the normal sonographic appearance of the kidneys at various ages and the typical patterns of different inherited renal diseases. Syndromes should be suspected in typical renal patterns associated with extrarenal anomalies (central nervous system, limb–) like for example in...
E³ - ECR Academies: Chest Imaging

E³ 922
Chronic obstructive pulmonary disease (COPD)

A-0564 08:30
Chairperson’s introduction
D. Litmanovich; Boston, MA/US

A-0565 08:36
P.A. Grenier; Paris/FR

COPD is a slowly obstructive airway disorder resulting from an exaggerated inflammatory response to cigarette smoking and air pollution that ultimately destroys lung parenchyma and induces an irreversible reduction in calibre and number of small airways. Both phenomena (emphysema and small airway disease [SAD]) are responsible for airflow limitation. Because often SAD precedes lung destruction, patients having equal impairment of lung function may present different morphologic appearances on CT scans. Although quantitative CT is useful for identifying and sequentially evaluating the extent of emphysematous lung destruction, changes in airway walls and expiratory air trapping, visual assessment of CT scans is important to describe patterns of altered lung structures in COPD. Emphysema is classified as centrilobular (subclassified as trace, mild, moderate, confluent and advanced destructive emphysema), panlobular and paraseptal (subclassified as mild or substantial). Airway disease is commonly found with all forms of emphysema but also commonly occurs in the absence of emphysema as a predominant expression of COPD. The CT features of the bronchial disease include thickening of the walls of segmental and subsegmental airways. CT features of SAD include peripheral centrilobular micronodular opacities (inflammatory SAD) and gas trapping on expiratory CT (obstructive SAD). Associated features may be seen on large airway disease (tracheobronchomalacia, sabre sheath trachea, tracheobronchial outpouching/diverticula). Interstitial lung abnormalities include patchy ground-glass abnormality and/or mid subpleural reticular abnormality. Other associated features include pulmonary arterial enlargement suggesting pulmonary hypertension, and bronchiectasis.

Learning Objectives:
1. To learn about imaging-based phenotypes.
2. To understand the limitations of visual assessment.

Author Disclosure:
P.A. Grenier; Speaker; oxyvie.

A-0566 09:04
B. Quantitative imaging biomarkers
J.B. Seo; Seoul/US

A biomarker is defined as an indicator of a biological state that is objectively measured and evaluated. Biological state includes including, normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Imaging modality can also be used to extract biomarkers. In recent studies on COPD, CT has been accepted as one of the important research tools in evaluating disease severity and characteristics. The extent of low attenuation area and bronchial wall thickening at a segmental and distal level on volumetric CT scan acquired at suspended inspiration state are commonly used as useful imaging markers for evaluating the severity of emphysema and airway wall inflammation, respectively. The clinical values of these two imaging biomarkers are as follows: 1) Many recent studies have proved that the extent of emphysema and bronchial wall thickening are independently related with the degree of airflow limitation, 2) The extent of emphysema is correlated with other clinical parameters such as osteoporosis, exercise capacity, respiratory symptoms and most importantly with BODE index, which is known to be one of the best predictors of mortality. 3) Both parameters may be useful in subgrouping/phenotyping of patients, prediction of treatment response, and prediction of disease progression 4) Both parameters are related to frequency of exacerbation. Furthermore, many additional potential imaging biomarkers have been proposed. They include; (1) assessment of air trapping by direct anatomical matching of inspiration and expiration CT, (2) assessment of peripheral vascular changes in COPD, and so on.

Learning Objectives:
1. To understand the role of quantitative imaging in identifying COPD phenotypes.
2. To appreciate the recent development of quantitative imaging methods.

Author Disclosure:
J.B. Seo: Shareholder; Coreline Soft Co.

A-0567 09:32
C. Is there a role for MRI?
M.O. Wielputz; Heidelberg/DE

Magnetic resonance imaging (MRI) has emerged as a new modality for lung imaging only recently, with airway diseases being the most accepted indications for clinical routine imaging. Beyond being a substitute for X-ray and computed tomography (CT), MRI combines morphologic and functional information more congruently than any other technologies. Morphological sequences for proton MRI suitable for airways disease will be introduced, but the focus will be on functional techniques that have been introduced into clinical routine imaging or are most advanced in scientific studies. These are dynamic contrast-enhanced perfusion MRI, T1-mapping with inhalative oxygen, and non-contrast Fourier-decomposition MRI, which allow for a regional analysis of lung function. Further, noble and fluorinated gas MRI will be discussed as advanced scientific methods to study regional lung ventilation. It has been shown that MRI may sensitively detect changes in lung morphology related to large airways diseases such as airway wall thickening, bronchiectasis, mucus plugging or tracheobronchomalacia with lower resolution than CT, but with similar clinical impact. Ventilation abnormalities attributable to small airways disease are closely linked to subsequent perfusion changes, which can be sensitively detected by dynamic contrast-enhanced perfusion MRI. By a combination of morphological with functional techniques, MRI has the potential to specifically differentiate reversible from irreversible lung changes especially in airway diseases such as COPD and cystic fibrosis. This makes MRI an important modality for non-irradiating regional disease monitoring and therapy follow-up. Subsequently, it has now been used as an endpoint in pioneer clinical trials, which will be presented briefly.

Learning Objectives:
1. To learn about the morphological and functional evaluation achievable with MRI.
2. To learn about the recent developments in lung MRI.

Author Disclosure:
M.O. Wielputz: Advisory Board; Boehringer Ingelheim. Grant Recipient; Boehringer Ingelheim, Vertex.

A-0568 08:30
A. Normative measures in the temporal bone
F. Veillon; Strasbourg/FR

The normal size of certain parts of temporal bone structures is important to be known for the CT diagnosis of the very frequent minor malformations of the inner ear, the increased thickness of the footplate (chronic inflammation otosclerosis) or the abnormal enlarged facial nerve canal (malformations, tumours). The knowledge of the normal size of the saccule in MRI permits to diagnose its dilatation. In CT, the round window (normal width: 1.5 mm in the axial and coronal planes; small from 1.3 mm), the oval window (normal height: 1.5 mm-1.9 mm in the coronal plane, small from 1.3 mm), the normal thickness of the footplate in recent machines: 0.3 mm, increased: 0.5 mm, the normal central islet (surface circumscribed by the lateral semicircular canal in the axial plane, 7-10 mm², small from 6 mm²), the medial part of the lateral semicircular canal in the axial plane (normal minimum: 1.7 mm, enlarged from 1.8 mm), the

Postgraduate Educational Programme
modiolus (normal width: 2 mm in the axial plane, small from 1.3 mm, enlarged from 3 mm), the normal aqueduct of vestibule (in the axial plane: 1.5 mm, enlarged: 1.7 mm). The inferior part of the basal turn of the cochlea (normal length: 9 mm, small from 7.3 mm), the geniculate ganglion fossa (3 mm on average, normal limits: 1.8-4.5 mm). The normal sacculle in MR coronal view (normal maximal height: 1.6 mm, 1.3 mm on average, normal width: 1.4 mm). You can easily use these measurements in your daily practice.

Learning Objectives:
1. To learn about the appearance of the bone in the normal population.
2. To understand the changes in size and shape due to aging.
3. To show some examples of structures which are too large or too small.

A-0569 09:00
B. Normative measures in the orbit
R. Kohler; Sion/CH

In the daily routine, it is not infrequent that the radiologist does not know if his/her observations of the orbit and eye at CT and MRI are in the normal range or a true pathology. Normative measures are objective data that help the radiologist for the diagnosis of many issues but also are useful for the follow-up of some pathologies. A selection of normative measures but also some changes of shape and anatomic variations will be discussed in this presentation according to five main chapters based on the anatomy: Bony orbit: how to define and grade exophthalmos and how to determine hyper-/hypotelorism? Eye: a review of main shape abnormalities. For example, coloboma, microphthalmia and axial myopia will be discussed. Optic nerve and optic nerve sheath: what is their normal size? Hypertrophy, atrophy and tortuosity of the nerve as well as dilatation of the nerve sheath will be exposed. Attention will also be given to two special applications of measurement of the optic nerve: variations in size in case of intracranial hypertension and diffusion-weighted imaging. Extracranial muscles: how to measure them, especially in case of thyroid orbitopathy? Miscellaneous: a short review of abnormalities of the size of the superior ophthalmic vein and lacrimal gland. The normative data covered during this lecture should make the interpretation of cross-sectional imaging of the orbit and eye easier and more confident by giving radiologists a useful "rigid frame" of interpretation.

Learning Objectives:
1. To understand differences in the size and shape of the eye.
2. To learn about the normal appearance and anatomic variations of the optic nerve.
3. To discuss normative measures of the soft tissue structures in the orbit.

A-0570 09:30
C. Anatomical variations in the face and neck
E. Vassallo; Msida/MT (edithvassallo@gmail.com)

The head and neck is an anatomical compartment of the body that is fascinating as it is complex. This complexity may, at times, render radiological interpretation daunting. In addition to this, many anatomical variations may be encountered in the head and neck which, unless identified and clearly documented by the radiologist, may lead to undesired (and sometimes catastrophic) outcomes. In this discussion, we present a number of such non-pathological entities, outlining how they may present as pseudolesions or pose added risks of iatrogenic injury at surgery.

Learning Objectives:
1. To gain insight into the great variability of head and neck anatomy.
2. To be able to recognise pseudo lesions.

08:30 - 10:00 Tech Gate Auditorium

Genitourinary

RC 907 Imaging strategies in renal tumours

A-0571 08:30
Chairperson's Introduction
B. Brkjacic; Zagreb/HR (boris@brkjacic.com)

Renal tumours are an important cause of mortality, and timely and accurate diagnosis is crucial for optimal treatment. The session will deal with optimal protocol and medication for CT, CEUS and MRI of renal tumours, with differences at the diagnosis, with the optimal staging protocols and with organ-preserving strategies.

Session Objectives:
1. To become familiar with current and emerging renal imaging modalities.
2. To learn about the capabilities of renal imaging in diagnosis and staging of renal tumours.

A-0572 08:35
A. CT, contrast-enhanced ultrasound (CEUS) and MRI: the best out of them
M. Bertolotto; Trieste/IT (bertolot@units.it)

CT is the imaging modality of choice for evaluation of renal masses. The advantages of CT are its widespread availability, high speed of acquisition, high spatial resolution and isotropic imaging. MRI can be a powerful problem-solving tool for lesion characterisation, especially if a small amount of intrarenal fat is suspected. The highest contrast resolution provided by MRI and CEUS allows characterisation of lesions with indeterminate enhancement at CT. Like CT, MRI provides excellent anatomic information. Moreover, advanced MRI techniques can provide information about tissue structure and function. The disadvantage of MRI compared to CT is the longer examination time and lesser panaromacy. CEUS lacks panaromacy and suffers from the same technical limitations of conventional US modes. Optimal MDCT protocol for renal masses includes a non-contrast phase followed by postcontrast acquisitions with corticomedullary, nephrographic and delayed phases of enhancement. The nephrographic phase is acquired for assessing the presence of a renal lesion and its enhancement, and is therefore sufficient for detection and characterisation of renal lesions. Corticomedullary and urographic phases are often performed to provide additional information for presurgical planning. Optimal MRI protocol for renal mass evaluation includes TSE T2-weighted imaging, TSE T1-weighted imaging with and without fat suppression, T1-weighted opposed-phase imaging (with in-phase and out-of-phase sequences) for the detection of microscopic fat. DWI, fat-suppressed 3D T1-weighted gradient-echo acquisition before and after administration of intravenous gadolinium-based contrast in corticomedullary, nephrographic and urographic phases, and subtraction imaging.

Learning Objectives:
1. To become familiar with the optimal CT and MRI protocols for renal imaging.
2. To understand the best choice of CT, CEUS or MRI according to the clinical need.
3. To illustrate the advantages and disadvantages of CT, CEUS and MRI.

A-0573 08:58
B. Differential diagnosis of renal masses
N. Grenier; Bordeaux/FR (nicolas.grenier@chu-bordeaux.fr)

Imaging is the main source of detection of renal masses. Differentiation between complex cystic and solid masses is not always straightforward and may require several contrast-enhanced methods and DCE-MRI and CEUS are more sensitive for that purpose. Considering cystic masses, Bosniak classification is required. Considering solid masses, characterisation of fat-rich angiomylipomas is based on plain CT, but fat-poor AMLs can be distinguished from carcinomas by multiparametric MRI only. Multiparametric MRI includes chemical shift gradient echo (GRE) sequences, signal intensity on T2-weighted images, DCE sequences, diffusion-weighted sequences and late contrast-enhanced images. Using different combinations of two or several parameters, now makes it possible to clearly distinguish some renal tumours such as fat-poor AMLs, papillary carcinomas and clear cell carcinomas the later being difficult to separate from oncocytoma when a central scar is absent. A larger validation of all these combinations is still necessary to define those having a clinical significance for routine practice. Percutaneous biopsy remains mandatory before such a validation, as soon as the pathological result is supposed to have an impact on tumour management.

Learning Objectives:
1. To learn about the histologic spectrum of renal tumours.
2. To understand the capabilities of imaging for renal tumour characterisation.
3. To become familiar with functional techniques applied to characterise renal tumours.

Author Disclosure:
N. Grenier: Advisory Board; Supersonic Imagine, Aix-en-Provence, France. Grant Recipient; Guerbet , GE Healthcare and Bracco.

A-0574 09:21
C. Staging and organ-preserving strategies
P. Asbach; Berlin/DE (patrick.asbach@charite.de)

Accurate CT- or MRI-based staging of the two most common malignant neoplasms involving the kidneys, renal cell carcinoma (RCC) and transitional cell carcinoma (TCC), is an important prerequisite for surgical decision making, especially in early stages of the disease. The TNM staging system is particularly different between RCC and TCC regarding the T-stage. Tumour size and invasion of the perirenal fat are important criteria for local staging of RCC, whereas invasion of the muscular layer of the renal collecting system and invasion into the renal parenchyma are important criteria for staging TCC. Different organ-preserving strategies are evolving especially for treatment of RCC (e.g. local excision versus local ablation). Also, important additional information such as detailed vascular anatomy is needed by the surgeon, which has an impact on the respective preoperative imaging protocol.
Learning Objectives:
1. To understand the TNM-staging system for renal tumours.
2. To become familiar with optimal staging protocols and imaging findings in the staging of renal tumours.
3. To learn about actual organ-preserving strategies.

09:44
Panel discussion: How to implement an optimal renal imaging protocol?

10:30 - 12:00 Room A

ESR meets Italy

EM 2
From morphology to function

Presiding:
L.E. Derchi; Genoa/IT
R. Grassi; Naples/IT

A-0579 10:30
Introduction: Radiology in Italy
C. Bibbolino; Rome/IT (corrado.bibbolino@gmail.com)

The Italian Society of Medical Radiology (SIRM) counts about 11,000 members. It is Italy’s largest scientific society and one of the largest in Europe. Its members include nearly all the radiologists working in Italian hospitals and public or privately owned health facilities, self-employed, residents and retirees. It is organised in twenty regional groups and twenty subdisciplinary sections. According to the OECD data, Italian Radiology runs more than 2,000 CT scanners and 1,715 MRI scanners, of which only 30% are less than five years old. A recent SIRM census showed that approx. 120,000,000 X-ray, US, CT and MRI examinations are performed every year. Many of the examinations mentioned above are not included in the figures published by the OECD and the Italian Ministry of Health. However, they cause problems of appropriateness and overdiagnosis. Many regional health services have general radiological archiving systems creating important databases. In Italy US investigations are performed by physicians: CT examinations are thus fewer than in countries where US screenings are performed by ultrasound technicians. Mammographic screening covers >70% of the female population between 50 and 70 years whereas screening of the lung and colon is routinely carried out only in some regions. In negotiations with the government and the owners of health facilities, the National Union of Radiologists counting more than 3,500 members represents the Italian radiologists. In 2016, SIRM supported Choosing Wisely by hosting the 3rd World Meeting in its Training Center in via del Cardello 24, Rome, near the Colosseum.

Session Objectives:
1. To describe the most important features of Italian radiology.
2. To reflect on new developments of imaging in Italy and Europe.
3. To discuss the role and function of a systemic vision of a radiological society.

A-0580 10:35
Italian emergency network
V. Miele; Florence/IT (vmiele@sirm.org)

Italy’s healthcare system is a regionally organised National Health Service that provides universal coverage largely free of charge for Italian citizens. The request for emergency diagnostic and therapeutic services is constantly growing, due to both clinical and epidemiological factors, such as the increasing amount of traumatic events and non-traumatic clinical emergencies. Moreover, there is an overcrowding of the Emergency system, due to the fact that patients with minor health problems are also taken into care, in case of lack of immediate response in the territorial health system. In the care of emergency patients, diagnostic imaging has a very important role, so the majority of patients accessing the Emergency Department performs at least one diagnostic examination, mandatory to decide the care path (immediate treatment, hospitalisation or discharge). The availability of Department of Radiology staffed on a 24-hours a day for emergencies greatly influences the diagnostic performance. Generally, the regional emergency service is organised in specialised centres (“hub”), which are equipped and staffed to provide care for patients suffering from major traumatic and non-traumatic emergencies. In traumatic emergencies, Major trauma Centers (MTCs) are directly connected with peripherals, radially diffused, trauma units (“spokes”) that don’t provide major trauma care but still play an essential role in less severely injured patients. Despite the longer transport times, this envolves, triage of major trauma patients to an MTC results in a 30% decrease in mortality in the first 48 h compared with transport to a non-MTC, which may be the closest medical facility.

Learning Objectives:
1. To learn about the organisation of the journal as the official organ of the SIRM.
2. To discuss the strengths and weaknesses of an international, general radiology scientific journal.
3. To consolidate knowledge and to explore future prospects in the international editorial scenario.

11:45
Panel discussion: How will the radiologists’ profession evolve?
PI 2
Clinical audit: how to deal with the legal and professional requirements

Moderator:
G. McGinty; New York, NY/US

A-0585 10:30
Chairperson’s introduction
D.C. Howlett; Eastbourne/UK (david.howlett@nhs.net)

This session examines clinical audit and its relationship with the legal and professional requirements of radiological practice, with particular reference to the BSSD, its uptake and what the BSSD and inspection mean for radiology departments. A review and update are provided of currently available audit tools and how they can be used to help implement or enhance audit pathways. A North American perspective is provided discussing peer review, with discussion also of IT and artificial intelligence developments supporting both clinical audit and quality improvement pathways-the potential benefits of peer review and artificial intelligence in the support and enhancement of effective clinical audit programmes are highlighted.

Session Objectives:
1. To appreciate the various tools available to facilitate effective clinical audit.
2. To understand the aims and scope of the BSS.
3. To appreciate the potential of peer review and IT/Al to improve quality in radiology now and in the future.

A-0586 10:36
ESR’s concept and tools for clinical audit
K. Drinkwater; London/UK (karl_drinkwater@rcr.ac.uk)

The European Society of Radiology’s (ESR) concept for clinical audit is a “process of assessing one’s practice against defined standards, altering practice if necessary to meet standards, and re-assessing following changes to confirm improvement.” The ESR’s tool for clinical audit (Esperanto) is designed to facilitate local clinical audit in line with this concept by providing a set of principles, a collection of audit templates and pointers to sources for further information. An effective audit requires repeated cycles, appropriate methodology and an intention from the outset to document the extent of change against standards and resulting health impacts. Such documentation constitutes evidence of safe practice for departments undergoing inspection by regulatory authorities. The audit pathway comprises preparation and planning, measuring performance, implementing change, and sustaining improvement. A wide range of tools have been identified with potential for improving the effectiveness of clinical audit; each of which can be applied at one or more of these stages. Individual tools are used to best effect in combination, guided by a structured framework, and within a team working arrangement. However, knowledge gaps and conflicting evidence make it difficult to predict what works best and when.

Learning Objectives:
1. To understand the potential for improving the effectiveness of clinical audit using audit tools.
2. To learn when certain audit tools may be most effective within the audit pathway.
3. To appreciate the differing audit tools currently available.

A-0587 10:52
Overview on adoption of BSS throughout Europe
A. Brady; Cork/IE (adrianbrady@me.com)

The Basic Safety Standard (BSS) which took effect throughout EU member countries in February 2018 imposes certain new practice requirements on radiology departments in the field of radiation safety, and re-emphasises other activities, including the obligation to engage in clinical audit, according to the stipulations of national legislation in each member country. This talk will describe the specific audit-related activities required by the BSS. Information which has been collated by the ESR Audit & Standards Subcommittee and Eurosafed Imaging on BSS adoption, standards already met and audit structures and supports in place will be discussed. The role of the ESR Esperanto Audit support tool in assisting individual departments in meeting their obligations under the BSS will be explained.
Learning Objectives:
B. Baeßler; Initiating and participating in quality improvement projects often allow to
A-0597
A. How to find the best people and make them a part of a long-time
A-0596
The “Dream Team” term was used for the 1992 USA men’s Olympic basketball
team, the first American Olympic team to feature active professional players
from the National Basketball Association. Even some years before it was used
for a group of superheroes in the Marvel Comics universe with different
magical energies, surprising powers and marvellous skills. In professional and
business developments, great teams are hard to come by. Great team
members need to be selected and empowered. To keep abreast of the
visionary projects and agreements that keep your radiology department
growing and prosperous, there are a number of skills each team member
needs to have. From excellent communication skills to expert negotiating
tactics, they need to be able to work together to bring in more development and
innovative business. Positions to be considered in this Dream Team are
Research and Clinical Trials, Education and Certification, Clinical Service and
Innovation, IT and Artificial Intelligence, Workflow and Quality, Patient safety
and Patient experience, New business and Integrated Diagnosis (radiology, pathology, genetics).

A-0595 10:36
A. How to find the best people and make them a part of a long-time
success
J.H. Thrall: Boston, MA/US (thrrall.james@mgh.harvard.edu)
Long-term success starts with establishing a favourable culture and work
environment and, for radiology, a well-equipped department that will attract the
best people. Hiring decisions should balance the desire for the highest intrinsic
abilities with good personality traits. After people are hired, they should be
mentored and provided regular feedback on professional progress. Further
feedback must also include assessment of their behaviours from direct
observation (360-degree assessment) and possibly through personality
assessment tools such as the Myers-Briggs Type Indicator (MBTI), Enneagram
or Hogan Personality Inventory to strengthen their understanding of
themselves and their impact on co-workers. Elimination of adverse behaviour-
remediation or separation- is critical to achieving a conducive working
environment. To maximise and sustain good performance, each person should
know his/her roles and responsibilities and those of others. In this regard, the
Responsibility Assignment Matrix (aka RACI) approach or variants are useful
for unambiguously defining tasks and responsibilities, especially for new
initiatives. As people advance in their careers through mentorship and experience,
the progressive delegation of responsibilities and leadership
opportunities to people with the demonstrated ability is crucial. This creates a
stimulus for them, increases departmental bandwidth to get work done and
sets the stage for long-term growth. Success in establishing a repeatable
virtuous cycle of recruitment, mentorship, feedback, achievement of personal
and professional growth and delegation of responsibility with sharing and then
the transition of leadership is the key to sustained excellence.
Learning Objectives:
1. Defining roles and responsibilities in a team: RACI tool.
2. To know who you are and whom you need (MBTI, enneagram, Hogan).
3. How to delegate without losing quality and time.

A-0596 11:04
B. Leadership in radiology
M. Forsting: Essen/DE
"no abstract submitted"
Learning Objectives:
1. Radiologist: a ratio of a manager and a specialist.
2. Psychological aspects of leadership (EQ, enthusiasm, energy, sport, hobby).
3. Tools for organising a team’s work, delegating and managing
virtual/distributed teams.

A-0597 11:32
C. Leading quality improvement projects
B. Baeßler; Mannheim/DE (bettina.baessler@uk-koeln.de)
Initiating and participating in quality improvement projects often allow to
achieve incremental and measurable changes, which make a real difference to
patients’ experience in a hospital or medical students’ learning success. The
Model for Improvement helps define what should be accomplished, what
change should be made, and what is being measured to know that any change
has led to an improvement. Having a clear vision and objectives is of crucial
importance, and SMART goals (which are specific, measurable, achievable,
relevant, time-bound) will help in achieving continuous improvement. This talk
focuses on the basic principles of leading quality improvement projects and
shows personal experiences from a quality improvement project in medical
education.
Learning Objectives:
1. Measuring and managing errors.
2. Peer review and continuous learning.
3. Effective feedback, basics of tutoring and coaching.
In the last decade, huge improvements in prognosis and quality of life have been achieved in the treatment of many cancers, due to the development of targeted therapies. Immune checkpoint inhibitors are effective in the treatment of many cancers, and their use is expanding beyond cancers driven by specific mutations. For example, immune checkpoint inhibitors are now used in the treatment of non-small cell lung cancer (NSCLC), where they can significantly improve survival in patients with advanced disease.

Learning Objectives:
1. To know about the impact of programmed death ligand 1 (PD-L1) positivity.
2. To know how to evaluate the tumour response after immunotherapeutics.
3. To be aware of the imaging features of immune therapy complications.

A-0601 11:32
C. ALK-rearranged and other mutations of lung adenocarcinomas
M. Silva; Parmal/IT (marcissilvamed@gmail.com)

In the last decade, huge improvements in prognosis and quality of life have been achieved in the treatment of many cancers, due to the development of targeted therapies. Immune checkpoint inhibitors are effective in the treatment of many cancers, and their use is expanding beyond cancers driven by specific mutations. For example, immune checkpoint inhibitors are now used in the treatment of non-small cell lung cancer (NSCLC), where they can significantly improve survival in patients with advanced disease.

Learning Objectives:
1. To learn about clinicopathologic features characterising anaplastic lymphoma kinase (ALK)-rearrangements.
2. To learn about other mutations and their implications for management.
3. To see some illustrative cases.
1. To understand diagnostic imaging findings of other cystic neoplasms.

Learning Objectives:
1. To learn about classification of cystic pancreatic neoplasms.
2. To appreciate the classification of IPMNs.
3. To understand the diagnostic imaging findings of IPMNs.

A-0608 13:00
Other cystic pancreatic neoplasms
R. Manfredi; Rome/IT

"no abstract submitted"

Learning Objectives:
1. To understand diagnostic imaging findings of other cystic neoplasms.
2. To appreciate differential diagnosis of pancreatic cystic lesions.
3. To understand the follow-up of cystic pancreatic neoplasms.

12:30 - 13:30 Room D

E³ - The Beauty of Basic Knowledge: A Survival Guide to Musculoskeletal Imaging

E³ 25C
Spinal trauma: how to get it right

Moderator:
V.N. Cassar-Pullicino; Oswestry/UK

A-0614 12:30
Spinal trauma: how to get it right
A. Leone; Rome/IT (a.leonemd@tiscali.it)

Spinal trauma is an extremely complex event, whose effects and related appropriate treatment choice and timing are classically based on the evidence of the lesions, their anatomic landmarks and mechanisms of injury at diagnostic imaging. The primary aim of this lecture was to describe: 1) range of injuries resulting from high-energy trauma in patients of all ages; 2) indications to the different diagnostic imaging modalities; and 3) imaging findings which have to be looked for in spinal trauma patients, in order to adopt a pattern-based approach for efficient imaging interpretation and communication with all specialists involved in spinal trauma. Radiography and, above all, CT provides most of the information needed for the diagnostic workup; therefore, CT is the preferred imaging modality. MR imaging can provide additional information on the state of paraspinal soft tissues thanks to the high contrast resolution allowing oedema detection; moreover, it is needed to determine the integrity of the discoligamentous complex, contributing to a better evaluation of spine stability, and is thus mandatory in all cases of neurological compromise. In conclusion, the appropriate use of radiography, CT and MR imaging has the potential of correctly identifying the injured spine, allowing early treatment while minimising the risk of a delayed diagnosis.

Learning Objectives:
1. To become familiar with imaging features of cervical, thoracolumbar and sacral trauma.
2. To understand the importance of mechanism of injury in the setting of spinal trauma.
3. To appreciate the usefulness of radiography, CT and MR imaging in the detection and evaluation of spinal trauma.

14:00 - 15:30 Room C

EFRS meets Denmark

EM 4
EFRS meets Denmark

Presiding:
J. McNulty; Dublin/IE
H. Precht; Odense/DK

A-0619 14:00
Session introduction
J. McNulty; Dublin/IE (jonathan.mcnullty@ucd.ie)

Introduced for the first time for ECR 2013, the ‘EFRS meets’ sessions follow the tradition of the ‘ESR meets’ sessions and give the European Federation of Radiographer Societies (EFRS) the opportunity to highlight the contributions of one of their member societies to the profession of radiography each year. Having met with Spain in the first of these sessions in 2013, the EFRS has gone on to meet with societies and radiographers from Russia, Germany, Sweden, Belgium, Portugal, and Switzerland. The Danish Society of Radiography, Radiograf Rådet, is a founding member of the EFRS and have been an active member of the EFRS throughout our ten-year history. University College Lillebelt is currently the only Danish educational institution within the Educational Wing of the EFRS and joined in 2009. The Danish Society of Radiographers is extremely active in promoting our profession, advancing education and training opportunities, encouraging radiographers to undertake research at the highest level, and in lobbying for their radiographers. Danish radiographers are currently involved in the EFRS leadership and across a number of our active working groups.

A-0620 14:05
Introduction: Across Denmark
C. Graugaard Falkvand; Copenhagen/DK (charlotte@radiograf.dk)

You will be presented to Denmark as a country with a focus on the good Danish life, Danish culture and the Danish radiography profession. The presentation will also have a focus on the possibilities and struggles in the profession and how to work politically for the profession in Denmark.

Learning Objectives:
1. To introduce the EFRS meets session and the involvement of Denmark in the EFRS.
2. To introduce the country of Denmark, Danish life and culture and the Danish radiography profession.

A-0621 14:10
Machine learning: a new aspect of radiography
L.M. Pehrson; Copenhagen/DK (Lea.marie.pehrson@gmail.com)

Machine learning (ML) and deep learning (DL) are becoming established disciplines in the broad field of applying artificial intelligence in analysing and utilising patterns in data sets. As the complexity - as well as the sheer amount of data increases, applying these patterns to the benefit of, e.g. clinical decision making, becomes increasingly nontrivial. Extraordinary advancements in areas of technology such as high-performance computing have made it possible to attempt solving these problems algorithmically. The purpose of various ML and DL algorithms may be to improve quality, consistency and/or capacity of data interpretation in diagnostics, thus improving diagnostics and treatment decisions to the benefit of clinical outcomes. Considering the implications this may have for the practice of medicine / healthcare, it is important to engage in this area of research from many perspectives. ML is already being applied to the practice of radiology, and the systems being developed today are showing to be robust to real-world conditions. In this discussion, the general concept of AI methods, together with an overview of early results in the field of medical imaging will be introduced. Furthermore, aspects of implementation and its impact will be discussed.

Learning Objectives:
1. To recognise Machine learning as a tool for medical image analysis.
2. To learn about the opportunities within machine learning, the challenges and new directions in clinical practice.
3. To acknowledge the potential impact for the patient, radiographer and radiologist.

A-0622 14:27
Improvements in healthcare
P. Blackburn Andersen; Kolding/DK (picaandersen@yahoo.dk)

The number of patients in Danish hospitals increased by 50,000 during the years 2015-2017 while the number of hospital staff increased by 4 in the same period. Furthermore, today’s patients expect a higher level of individualised...
treatment and care whilst most hospitals struggle with hospital infections. As we see how time-consuming and expensive medical mistakes are also recognise improvements that need to happen to increase patient safety, satisfaction and quality of hospital care. Patient involvement and shared decision making have been shown to increase patient satisfaction and safety whilst decreasing medical mistakes. Consequently, patient involvement is fundamental to a cost effective and successful improvement process. As radiographers, we encounter a large number of hospitalised patients every day. Naturally, we also see inefficiencies of the hospitalised patients journey to the radiology department. At times we even recognise actual harms made prior to the patient’s arrival at the Department of Radiology, and this is where radiographers have two choices - do we ignore these errors and inefficiencies because they do not occur in our department, or do we think “patient first” and address the problem to the involved departments? Could we perhaps take it a step further and think “how can we contribute”? By presenting some improvement cases from Kolding hospital, we will see how resourceful and valuable radiographers are to patient safety and satisfaction when improvements are created systematically, vertically and in collaboration with other staff and patients.

Learning Objectives:
1. To understand the need for improvement in Danish healthcare (and perhaps European healthcare).
2. To appreciate how radiographers can contribute beyond the radiology department.
3. To acknowledge the need for patient and staff involvement to create improvements.

A-0623 14:44
Technologically mediated patient and radiographer experience
S. Helm; Faaborg/DK (suo@ucl.dk)

The Danish healthcare system has a great focus on patient-centred care in all elements of a patient trajectory. In diagnostic imaging settings, previous qualitative research into patient’s experienced care generally investigates verbal and non-verbal communication in the relation between the patients and professionals. The effects that imaging technologies have on these experiences and relations are nonetheless seldom investigated. Yet technological devices and systems play a significant role in shaping human experience, communication and relations in these settings and needs to be addressed. To explore how technologies mediate experience in diagnostic imaging practice, I turn to a particular philosophy of technology, as a theoretical and analytical framework, for studying human and technology relations. Applying concepts developed within this position provides theoretical and methodological means to explore embodied and perceptual lived experience. In particular, postphenomenology reflects on how technological mediation transforms our perceptual experience of our world. This talk suggests that by applying this approach in the unfolding of the specific human dimension of Radiography, we are able to identify important issues that can help professionals to perform improved patient-centred care.

Learning Objectives:
1. To understand what is meant by technological mediation.
2. To learn about embodied perception.
3. To explore how technologies mediate experience in radiographic practice.

A-0624 15:01
MR safety
A.D. Blankholm; Aarhus/DK (annebl@rm.dk)

MR safety is a hot topic amongst MR professionals. Incidents related to MR are rare but can be dangerous. MR safety is related to the three types of fields: main magnetic field, gradient field and the radio frequency (RF) field. The main magnetic field accounts for the projectile effect, torque/rotation and translational forces. The gradient field accounts for the noise and peripheral nerve stimulation. The RF-field accounts for heating. Most MR incidents can be avoided. The key to avoiding MR related incidents is correct planning of the site, awareness about MR safety and MR safety education of internal and external staff. The fact that no databases containing information about the type of implants patients have exists. Often such information in the patient record is inadequate, and the information from the manufacturer is not standardised and can be inaccurate. Furthermore, control forms with missing or wrong information is a challenge. A search in a national database reflected few reported incidents but that incidents and near-incidents are happening. A national questionnaire amongst MR operators reflected that more than half of the respondents had been involved in an MR related incident, that was reported to the national database, but one forth had been involved an MR related incident that was not reported. Sixty-one per cent of the respondents indicated that guests in the MR environment are a safety risk.

Panel discussion
14:00 - 15:30
Room N

PIE at ECR Session (Jointly organised with the ESR Research Committee)

PI 3
Professional issues for radiology departments to enable research
Moderator: J.K. Bell; Manchester/UK
A-0625 14:00
Chairperson’s introduction
O. Clement; Paris/FR (olivier.clement@aphp.fr)

One of the major issue for academic radiology is to attract the young generation to our discipline in a time of big potential changes in the way we practice with artificial intelligence and the necessity to be visible to the patient. The aim of this session is to explore how research is the main way to follow.

Session Objectives:
1. To learn about research in imaging or imaging for clinical research.
2. To appreciate how to attract residents in research.
3. To learn about examples of implementing AI research in radiology.

A-0626 14:06
How to attract residents to research
H-U. Kauczor; Heidelberg/DE (Hans-Ulrich.Kauczor@med.uni-heidelberg.de)

In the era of fast technological advances in medical imaging, high-quality research plays an essential role in advancing radiology as an independent specialty with its sustained development and radiologists remaining leaders in the field of biomedical imaging. Identifying young radiology residents interested in research, encouraging and supporting them to become a proficient and competitive academic radiologist is an important task for every academic radiology department. It is important that the residents’ subspecialty interests are identified early and considered by department chairs for the clinical training and scientific career. In times of ever increasing clinical responsibilities, protected research time for research for residents is crucial. Empowering young residents with an optimal research environment consisting of qualified mentoring, training courses on clinical research methods, study design, biostatistics, human, infrastructure and financial resources and last but not least administrative grant support is of utmost importance. Since the specialty of radiology is tremendously influenced by developments in artificial intelligence, deep learning and other technological advancements, multidisciplinary and integrative research approaches are indispensable. There is no doubt that residents exposed to research will gain experience in critical thinking and leadership in order to pursue a successful career either in academia or many other fields.

Learning Objectives:
1. To learn basic concepts for research options for residents.
2. To appreciate the value of research activities in the professional career.
3. To understand the requirements for research environments for residents.

A-0627 14:22
How to organise an imaging department for clinical research
L.S. Fournier; Paris/FR (laure.fournier@aphp.fr)

Radiology and nuclear medicine imaging provide independent and complementary information from clinical examination and biological explorations, such as drug development and validation. In these cases, imaging is not the object of the research but a tool to measure outcomes, therefore its quality must be assured to guarantee the quality of the overall research data. This clinical research occurs on imaging platforms in public or private structures, most of which are part of clinical departments organised to deal with clinical care. There are several challenges to integrate a research among a clinical workflow. First, the volume of imaging dedicated to clinical research is steadily increasing, as imaging is recognised as giving useful biomarkers of disease and drug efficacy. Second, the quality assurance and quality control required are also becoming more stringent. However, there has
not been a proportional investment in departments in terms of material and personnel resources. Departments need to organise imaging research units embedded in clinical departments, for quality control, archiving and processing. For this, dedicated personnel needs to be identified, including imaging CRAs and radiographers with training in clinical research, and financial self-sufficiency needs to be reached by including specific overcosts for imaging.

Learning Objectives:
1. To learn about concepts for research facilities.
2. To appreciate how to implement quality approaches.
3. To understand the financial background.

A-0628 14:38
How to deal with legal requirements in research activities
P.M.A. van Ooijen; Groningen/NL (p.m.a.van.ooijen@umcg.nl)

One of the major challenges nowadays when performing research is how to comply with the legal requirements that are posed upon the researcher based on the General Data Protection Regulation (GDPR) in Europe. Through the GDPR the rights of the patients or participants in your research are protected, but how to work within this framework and still be able to get your research done might be a challenge. Especially since the GDPR not only restricts the use of prospective data but also retrospective data and the ability to link a number of databases into a new research database. On the other side, open science is gaining interest, and the question is how to make your database open when all these restrictions are in place. In this lecture, we will look into the GDPR and how it affects prospective and retrospective research. Furthermore, we’ll discuss how multi-centre studies could be set up with multiple participants from different European countries. Finally, we’ll look at some of the concepts and tools that are available to ensure data protection and data security.

Learning Objectives:
1. To learn about the relevance of legal framework for research.
2. To appreciate the European perspective for multi-centre projects.
3. To become familiar with best practice concepts for data-protection and data-security.

Author Disclosure:
P.M.A. van Ooijen: Advisory Board; MedicalPHIT. Board Member; EuSoMII.

A-0629 14:54
How to implement research on artificial intelligence in radiology
K.J. Dreyer; Boston, MA/US

"no abstract submitted"

Learning Objectives:
1. To learn about the key-concepts of AI and the challenge for radiology.
2. To appreciate the opportunities for radiologists active in AI-research.
3. To become familiar with new concepts for supporting research on AI in radiology.

15:10
Panel discussion: Will research in radiology survive?

14:00 - 15:30 Room E1

ESR/BBMRI-ERIC

ESR/BBMRI-ERIC

Will the General Data Protection Regulation (GDPR) hamper the secondary use of clinical imaging data for research?

Moderators:
E. Steinfelder; Graz/AT
A. van der Lugt; Rotterdam/NL

A-0630 14:00
Why is secondary use of existing imaging data important for research progress?
E. Steinfelder; Graz/AT (erik.steinfelder@bbmri-eric.eu)

There is no medical innovation without biobanking, and there is no biobanking without patients and their consent. In this context, the question of secondary use of samples and data is a very relevant one. BBMRI-ERIC, the world largest biobanking directory, is collaborating with more than 90 public and private health research organisations to provide guidance on how to use the GDPR to both protect patients’ rights to privacy and empower medical research. The result of the collaboration will be a Code of Conduct for Health Research, a soft law instrument that research organisations and EU countries can use to better implement the GDPR. One of the main risks is that a piecemeal implementation of the GDPR might affect the European Research Area and obstruct collaboration among European and international research groups, slowing down innovation. Another risk is that the GDPR will negatively impact on the amount of samples and data shared by biobanks. We know that around 5-10% of samples stored in BBMRI-ERIC biobanks is shared for research purposes. While BBMRI-ERIC is developing a new strategy to increase access, the GDPR can pose new obstacles that will make our final objective, “making new treatment possible”, more time- and resource-consuming.

Learning Objectives:
1. To learn about Biobanking and BioMolecular resources Research Infrastructure (BBMRI).
2. To learn what BBMRI can do for you in the GDPR era.
3. To learn about the importance of existing imaging data for research in imaging biomarkers, radiomics and artificial intelligence.

A-0631 14:15
Can I reuse, share or give open access to existing imaging data for research?
M.T. Mayrhofer; Graz/AT (michaela.th.mayrhofer@bbmri-eric.eu)

This presentation will give an overview of the EU General Data Protection Regulation, focusing on imaging data for research. It will discuss privacy principles and the new data protection framework. The privacy framework will be contextualised within the policy goal of open access and open science. Thereafter, it will turn to data reuse and data sharing, which are standard practices for research that pose complex challenges upon researchers and research participants alike and include, among others, data security, privacy and good scientific practice. How can data reuse be simplified? How can compliance be demonstrated by controllers and processors towards the regulation? How can open access help to ensure trust by the research participants?

Learning Objectives:
1. To learn what you can do with imaging data in the PACS and observational research studies.
2. To learn what you can do with data from investigator initiated or industry sponsored RCTs.
3. To learn how to prevent future problems with re-use of clinical data.

A-0632 14:40
Can I sell or licence imaging data to industry or spin-off companies?
J.A. Bovenberg; Aardenhout/NL (jabovenberg@xs4all.nl)

My talk will discuss whether and, if so, how medical imaging data can be shared with commercial partners or used by spin off companies. To that end, we will map the various rights vested in these data and examine the various legal bases for sharing. Taking a case based approach, we will specifically explore the various mechanisms to share imaging data with commercial partners outside the EU.

Learning Objectives:
1. To understand the issues of sharing data with industry.
2. To learn about proper informed consent for sharing data with industry.
3. To learn whether data can be shared outside the European Union.

A-0633 15:05
How to anonymise imaging data for research?
B. Gibaud, E. Cordonnier, G. Pasquier; Rennes/FR (bernard.gibaud@univ-rennes1.fr)

Secondary use of clinical imaging data is becoming a major topic, especially in the context of the growing needs of training and testing Artificial Intelligence (AI) algorithms. The General Data Protection Regulation (GDPR) which entered in application in Europe in May 2018 enforces strict constraints regarding protection of personal data, especially for sensitive data such as medical images. As a general rule, de-identification is needed to ensure patient confidentiality and can be achieved through anonymisation or pseudonymisation. This presentation will focus on the de-identification of DICOM data. Therefore, the basic principles of DICOM syntax will be recalled, as well as the general organisation of image metadata and pixel data. Then, the principles of DICOM de-identification and re-identification will be introduced (DICOM Part 15 Security and system management profiles). The need for DICOM Confidentiality Profiles will be explained, as a means to address the balance between the removal of any information that might directly or indirectly lead to patient identification, and the need to retain information so that the DICOM data remain useful for its intended purpose in the context of secondary use. Examples of such DICOM Confidentiality Profiles will be shown and explained. Several tools implementing DICOM de-identification will be briefly introduced. A concrete use case will be presented to illustrate the use of de-identification / re-identification.

Learning Objectives:
1. To learn the difference between anonymisation and pseudonymisation.
2. To become familiar with tools for pseudonymisation.
3. To understand the secrets of the DICOM header.
E³ - ECR Academies: Radiology Leaders’ Bootcamp

E³ 1118

Investment strategies

A-0634 14:00
Chairperson’s Introduction
E. Kotter; Freiburg/DE (elmar.kotter@uniklinik-freiburg.de)

Investment strategies are key to successfully running both a private practice and a radiology department. This session will give insights into the principles of investment strategies for radiology. Participants will be given the keys to understanding how to consider a radiology unit from an economic point of view. The focus will be on the return of investment.

A-0635 14:06
A. Giovagnoni; Ancona/IT (a.giovagnoni@univpm.it)

In simple terms, an operating budget is a projection or a snapshot of the results a practice hopes to achieve or believes it will achieve. The words “hope” and “believe” are used because budgeting is an intuitive process that can be employed for different purposes and executed in various ways. Mapping out a strategic plan involves goal setting, a plan of action to achieve the goals, and monitoring systems to measure the efforts intended to achieve those goals. Operating budgets can tangibly show the results of numerous decisions that have been made and often act as a report card on the success of any given strategy. While hospitals tend to be steeped in the budgeting process, in many radiology practices, budgets are often wrongly considered unimportant or unnecessary. A general feeling that the clinical side of practice lacks control over the business aspects of revenues and expenses can lead to the mindset that there is no reason to project them. While a budget does not define how effective an operation is, without one, operating results are left to chance with no real measure of success or failure. Good budgeting includes both science and intuition in making projections. Practices working with budgets control their destiny better and operate less blindly. This presentation intends to define and illustrate the necessary components that radiology practices must consider as they carve out a budget.

Learning Objectives:
1. Why to be aware of financial literacy.
2. Major financial indicators for radiology: to dig into numbers with profit.
3. How to make all these boring numbers work for you and do more with fewer resources.

A-0636 14:34
B. Value-based imaging
M.G.M. Hunink; Rotterdam/NL

Value-based imaging is in vogue. But how do we measure value? For the patient, quality of life and length of life are fundamental. Most of the conveniently-measured patient outcomes are proxies or intermediate outcomes. The value of medical imaging performed for screening, surveillance, diagnosis, or prognosis is a function of pre-test probability of disease, sensitivity and specificity of the imaging test, risk and burden of the imaging test, the gains if the disease is identified, the harms if a non-diseased patient is inadvertently labelled as diseased. The expected value of imaging is largest when the pre-test probability of disease is at the treatment threshold. In treatment planning, the added value of imaging is determined by the net reclassification to a different treatment plan and the net gains from the change in treatment plan. In treatment guidance, the added value of imaging comes from reduced risk and increased effectiveness of the treatment. From the healthcare system perspective, costs are included and should consider not only the imaging tests but also costs of treatment and long-term costs of events during follow-up. From the societal perspective, additionally, productivity gains and losses are important to elucidate in order to fully quantify the value of imaging. Finally, investing in the health, happiness, and skills of our employees is crucial in order to provide value-based care since a competent resilient workforce translates into patient safety and quality of care.

Learning Objectives:
1. To understand the value of what we do in radiology.
2. To understand how cost-effectiveness analysis can demonstrate the value in imaging.
3. To recognise how investing in our employees increases the value of what we do.

A-0637 15:02
C. Start-up in radiology
A. Alberich-Bayarri; Valencia/ES (alberich_ang@gva.es)

The main steps when creating a new start-up company in the field of radiology are be presented, including the do’s and don’ts from the experience in creating a start-up dedicated to Imaging Biomarkers quantification and artificial intelligence. The topics include bringing to market the developments in research, how to raise funds from zero, deal with investment funds and regulatory aspects. Start-ups must be focused on value, and for that, the hypothesis for the value proposition of the company must be validated from the very beginning. After that validation, the company must dedicate the efforts to be able to demonstrate some traction among stakeholders and potential customers. In parallel, there must be an intense progress in regulatory aspects to reach the clinical market.

Learning Objectives:
1. Understanding successful investments: which number you really need to take care of.
2. Designing a standalone imaging centre.
3. Investments: how to find money for new projects in imaging informatics.

A-0646 16:00
A. Oncologic application
F.E. Lecouvet; Brussels/BE

This interactive session will illustrate the wide range of indications of whole-body MRI in oncology, the protocols and technical requirements, the contribution of anatomic and functional diffusion sequences and their respective strengths and pitfalls. Latest technical refinements and efforts to decrease examination duration and tailor sequences to the targeted disease will be presented. Simple and more complex cases will highlight how the technique extends the exploration of the body beyond the musculoskeletal system to lymph nodes and visceral metastases screening. Specific cases will show how WB-MRI has become a modality of choice for detecting bone metastases from many cancers and bone marrow involvement by multiple myeloma or lymphoma. The comparison will be provided with bone scintigraphy, CT and PET by the time of lesion detection and for assessment of the response to treatment.

Learning Objectives:
1. To become familiar with the technical aspects of whole-body MR.
2. To learn the role of whole-body MR in the management of oncologic patients.
be helpful for early diagnosis, evaluation of the extent and activity of the disease, and evaluation of therapeutic response. Current MRI protocols usually include anatomical sequences as T1-weighted and water-sensitive sequences as STIR, but could also provide functional DWI sequences.

Learning Objectives:
1. To become familiar with the indications for whole-body MR in non-oncologic patients.
2. To learn about the different types and clinical conditions in which acute mesenteric ischemia occurs.
3. To appreciate the radiographers’ effort to keep up to date with evidence-based practice in imaging services in Africa.
4. To become familiar with the complications and the most important differential diagnoses of acute colonic diverticulitis.
5. To understand how the imaging features are related to the underlying pathophysiology.
6. To understand the importance of imaging-guided interventions for the management of complicated acute colonic diverticulitis.

A-0649 16:30

B. Low-dose abdominal CT for evaluating suspected appendicitis

K.H. Lee; Seoul/KR (kholeemail@gmail.com)

Evaluation of suspected appendicitis in adolescents and young adults is one of few LDCT applications which were validated to be safe and effective regarding clinical outcomes through large randomised clinical trials. As summarised in recent systematic reviews, high-level evidence has been accumulated for the use of LDCT (down to 2 mSv) in diagnosing appendicitis. However, the adoption of LDCT is disappointingly slow. Given the evidence level, there is no reasonable basis to insist on using radiation dose of multi-purpose abdomen CT for the diagnosis of appendicitis, particularly in adolescents and young adults.

Learning Objectives:
1. To emphasise the need for reducing radiation exposure in adolescents and young adults with suspected appendicitis.
2. To critically review published evidence indicating that LDCT is comparable with normal-dose CT for diagnostic performance and clinical outcome.
3. To review LDCT imaging techniques and other practical issues for the successful implementation of LDCT in practice.

Author Disclosure

K.H. Lee: Grant Recipient; Korea Health Industry Development Institute, National Research Foundation of Korea, Seoul National University Bundang Hospital, Dasol Life Science, Bracco Imaging Korea, GE Healthcare Medical Diagnostics Korea.

A-0650 17:00

C. Acute colonic diverticulitis

S. Schmidt Kobbe; Lausanne/CH (sabine.schmidt@chuv.ch)

Acute colonic diverticulitis (ACD) frequently occurs in the Western worlds, and the severity ranges from minor, self-limiting disease to complicated disease with pericolic abscesses or perforation with feculent peritonitis. Only about 25% of patients show complications during the first acute presentation. Imaging plays a crucial role in the initial diagnosis of colonic diverticulitis as well as for excluding the various differential diagnoses. Depending mainly on the location the latter include epiploic appendagitis, acute appendicitis, ischemic, inflammatory, or infectious colitis, gynaecological diseases, such as tuboovarian abscesses, and infarction of the great omentum. Computed tomography (CT) is the most commonly performed imaging modality in an emergency to detect and to confirm ACD although false negative results may occur in 2-21% of cases. Ultrasonography has been known for a high specificity for ACD, but results remain very operator-dependent. Magnetic resonance imaging (MRI) is still not a first-line emergency modality, but very sensitive for fistulous complications. The most specific imaging finding is the inflamed diverticulum (arrowhead sign), often with pericolic stranding and colonic wall thickening. Complications of ACD may be regional, such as adjacent abscesses and fistulae, or distant, such as thrombophlebitis or organ abscesses, ideally demonstrated by CT with intravenous contrast medium injection. Treatment of colonic diverticulitis has evolved away from immediate surgery towards more conservative and minimally invasive strategies. Today, small abscesses are managed conservatively, while abscesses of >3-4cm require percutaneous drainage, often conducted by radiologists. Surgery has become less and less straightforward but considered as second-line treatment after previous imaging-guided intervention.

Learning Objectives:
1. To review the typical and atypical imaging features of acute colonic diverticulitis and their influence on patients’ management.
2. To become familiar with the complications and the most important differential diagnoses of acute colonic diverticulitis.
3. To understand the importance of imaging-guided interventions for the management of complicated acute colonic diverticulitis.

ISRR meets Africa

EM 5

Radiographers’ challenges offering imaging services in Africa

Presiding:

D. Newman; Fargo, ND/US

P. Gerson; Paris/FR

A-0651/A-0652 16:00

Chairpersons’ Introduction

D. Newman; Fargo, ND/US

P. Gerson; Paris/FR (philippe.gerson@htd.aphp.fr)

This paper is about ISRR involvement in Africa for the past 24 years in more than 10countries. Beginning in 1994 in Tanzania, ISRRT has organised several workshops and congresses in this continent especially in French-speaking African countries. The involvement has contributed to help countries to set up associations and establish a huge network in Africa.

Session Objectives:

1. To recognise the demographics and patient accessibility to health services of a particular African country.
2. To understand the infrastructure of the imaging health services and their contribution to the primary and hospital health services to sustain the population and individual health.
3. To appreciate the radiographers’ effort to keep up to date with evidence-based practice in imaging services.
4. To become familiar with the radiology education system and lifelong learning opportunities for radiographers practicing in Africa.

A-0653 16:08

Nigeria. Healthcare services in Nigeria: the radiographers’ opportunities and challenges

E. Olasunkami Balogun; Lagos/NG (kannibalo@yahoo.com)

Radiography is an art and science of the application of both ionizing and non-ionizing radiation in diagnostics and treatment of diseases when medically indicated. The study of radiography dates back in Nigeria, first as hospital-based training after which foreign examinations were taken. These examinations were conducted by the college of radiographers, London, United Kingdom. The certificates evolved from MSR, DSR, to DCR in the year 1965 the first indigenous school was established in Lagos (Circa) and then another in Ibadan in the year 1972. The bachelors of Science (Bsc) in Radiography started in the year 1983 and has spread over the years with seven universities offering radiography at a first-degree level and three at postgraduate levels. Training of manpower is the bedrock of better practice, therefore, the increase in training schools brought about an increase in manpower and translated to...
Postgraduate Educational Programme

better practice across the country. The status of being a developing Nation as well as a Small non-influential market brought great challenges to the availability and maintenance of infrastructure. Recently the Nigerian government introduced the public, private, partnership (PPP) model of funding which has helped with increasing access to very expensive but needed equipment. There are a few challenges with the Scope of practice, hands-on training and limitations by government policies. Radiography training and practice in Nigeria is progressing and still an arrowhead even in Africa as a continent. However, Research funding opportunities are required.

Learning Objectives:
1. To recognise the demographics and patient accessibility to healthcare services in a densely populated country as Nigeria.
2. To understand the infrastructure of the imaging health services and their contribution to the primary and hospital health services to sustain the population and individual health.
3. To appreciate the radiographers' effort to keep up to date with evidence-based practice in imaging services.
4. To become familiar with the radiography education system and lifelong learning opportunities for radiographers practicing in Nigeria and its environs.
5. To look at the challenges of team work/professional rivalry/nomenclature even in the face of infrastructural challenges.

A-0654 16:26
South Africa. The South African radiographer: button pusher or creative thinker?
H. Friedrich-Nel; Bloemfontein/ZA (hfried@cut.ac.za)

In 2014 two of the Universities of Technology in South Africa implemented four-year degrees in radiography. The Health Professions Council of South Africa (HPCSA) and specifically the Professional board for Radiography and Clinical Technology (RCT) guided this process. Previously the education and training model was a two-year hospital-based diploma and a three-year bachelor's degree or diploma. Six years after the first universities implemented the revised education and training model, the question lingers: Do universities deliver radiography graduates with the ability to work independently, think critically and creatively? Recently the HPCSA updated the scope of practice of a radiographer to align this with the four-year bachelor's degree education and training model to offer expanded opportunities to the radiographer who wishes to engage in lifelong learning opportunities. In South Africa, it is a statutory requirement for a health care practitioner to register with the HPCSA. To maintain his or her HPCSA registration each registered healthcare practitioner (radiographer) must pay a yearly registration fee and earn 30 continuing education units (CEUs). Five CEUs must be collected in the category ethics, patient-centred care and patient rights. Learning Objectives:
1. To learn about the radiography education models in South Africa.
2. To become familiar with continuing education requirements and registration.
3. To share the revised scope of practice.

A-0655 16:44
Côte d'Ivoire. Professional practice of radiology and imaging in Africa: radiographers for more commitment and responsibility in patients' safety
K. B. Yao; Abidjan/Ci (kwame_boniface@yahoo.fr)

Radiology is the pathway to clinical settings and Diagnostic Imaging. It is a powerful tool in medicine, and its influence is expected to increase for years to come. Besides, the growth of modern imaging depends on advances in technologies, and the professional practice includes the development of radiographers' skills as well as the implementation of radiation safety culture. However, in Africa, hundreds of hospitals and institutions do not have the possibilities to perform the most fundamental imaging procedures, for lack of appropriate technologies, and skills. Moreover, setting a careful balance between the benefits and the risks related to patients’ exposure is a challenge. Despite the recurrent shortage, African Technologists keep on struggling to bridge the gap. The methodology of approach consists in covering the state of art of professional practice and safety, revealing the main gaps and actions carried out to bridge them up and, the perspective and operational plan for a better view on the future. As deliverable outcomes, different projects carried out by radiographers and results are presented, and their impact on professional practice and safety discussed. They are essentially made up by the development of homemade equipment for professional practice purpose, training project to strengthen radiographers' skills. The global situation of practice is characterised by a gap between international standards and local settings. Therefore, radiographers are urged to demonstrate more commitment and responsibility in the management of their activities. Besides, ISRRT's support is very much appreciated and exchange between technologists, through international congress is strongly encouraged.

Learning Objectives:
1. To reveal the challenges faced by African radiographers in practicing their profession.
2. To learn about the different actions carried out by radiographers for radiographers within Africa, in seeking alternatively affordable means of practicing their profession.
3. To appreciate the ISRRT's initiatives and capacity building projects to provide sustainable support to radiographers in Africa.
4. To understand the clues set up by ISRRT regional officers to improve patient care.

A-0656 17:02
Kenya. Discovering Kenyan radiographers: past, present and future
C. Muchuki; Nairobi/KE (cmuchuki@gmail.com)

Kenya is a country in East Africa with a coastline on the Indian Ocean with a population of 49 Million. It’s a home to wildlife and Masai Mara Reserve known for its annual wildebeest migrations. The Kenyan radiographers are governed by Society of Radiography in Kenya (SORK) a registered professional body whose overall aim is to promote, support, regulate the professional standards of practice, conduct, and ethics of radiographers. Currently, they are 1200 registered radiographers and 300 radiologists in the country. Kenya medical training college offers Diploma in imaging courses for three years. Additional training is Bachelor of Radiography program an integrated academic and clinical course of 4 years duration. The Kenyan radiological system is continuously innovating. Previously, radiographers would process the films in a darkroom, now we have jumped into a new era. The workflow is greatly facilitated by automatic machine-facilitated workflow processes, and Patients receive digital imaging. Kenya’s health care system is structured in a step-wise manner so that complicated cases are referred to a higher level. Gaps in the system are filled by private and church-run units. There are three major national hospitals in Kenya, where Kenyatta National Hospital is the largest Referral Hospital in Kenya and the entire East and Central Africa. It caters for 80,000 in-patients, >500,000 out-patients annually with a bed capacity of 1800. It offers diagnostic imaging service to >300 patients daily. Concerning radiation safety, AFROSANE campaign addresses issues arising from radioprotection in medicine in Africa.

Learning Objectives:
1. To understand the current situation and trend of radiographers in Kenya.
2. To understand the Kenyan health system.
3. To become familiar with Kenyan radiation safety issues; Afro safe Kenyan chapter.

17:20
Panel discussion

16:00 - 17:30 Room N

EuroSafe Imaging Session: jointly organised with the ISR and the IOMP

EU 3

Improving radiation protection in medical imaging in low- and middle-income countries: past actions and future directions

A-0657/A-0658 16:00
Chairpersons’ introduction
L. Donoso; Barcelona/ES (ldonoso@clinic.ub.es)
M.M. Rehan; Boston, MA/US (madan.rehan@gmail.com)

The international professional societies have the mandate and responsibilities to extend outreach to low and middle-income (LMI) countries. In this respect, both the International Organization for Medical Physics (IOMP) and International Society of Radiology (ISR) join hands to assess and improve the situation of radiation protection in medical applications of radiation. This session involves important stakeholders like the International Atomic Energy Agency (IAEA), World Health Organization (WHO) and representative of an important region-Africa. The session will deliberate not only on actions taken, result achieved but also on a vision for the future. There have been important developments through IAEA in LMI countries with the support of WHO, IOMP and ISR such that reasonable information is available on radiation doses to patients in various imaging procedures dominantly in CT and interventional procedures and diagnostic reference levels (DRLs) are available from some of the LMI countries. There are few situations where patient doses are on higher side. However, the information comes largely from few major centres in each country (lacking in breadth), and depth of penetration of radiation protection actions is lacking. The session will identify actions that can be taken to improve the situation to cover the breadth and depth in LMI countries.
Session Objectives:
1. To learn about the situation of medical imaging and radiation protection in low- and middle-income countries.
2. To understand the past challenges and possibly future ones in the area of radiation protection in medical imaging in low- and middle-income countries.
3. To learn about the activities of worldwide organisations to support low- and middle-income countries.

A-0659 16:05
The International Society of Radiology's (ISR) vision
G. Frigia; Paris/France (guyl.frigia@aphp.fr)

Universal health coverage includes health promotion, preventive services, diagnostics, and measures for communicable and non-communicable diseases. Regarding diagnostics, a global plan for imaging is needed, covering equipment, manpower, and regional governance. Quality and safety need to be addressed in each aspect. The Quality and Safety Alliance of the International Society of Radiology (ISRSOSA) is working closely with the WHO and IAEA to improve radiation protection in low- and middle-income countries (LMICs). It acts as a convener of radiation safety campaigns across the globe and encourages campaign creation in regions where none currently exist. Following the need for a multi-stakeholder approach to radiation protection, the ISRSOSA seeks collaboration with related international organisations, including IOMP and ISRRT. The ISR recently defined its forthcoming work plan with the WHO, which will focus, among others, on the following areas: advocating the development of a global plan for equipment and manpower, also in LMICs; awareness raising and advocacy activities towards the implementation of the International Radiation Basic Safety Standards (BSS) and Bonn Call for Action; facilitating access to imaging referral guidelines and providing expertise to support implementation particularly in LMICs; fostering teamwork approaches and linking communication on safety and quality in the medical use of non-ionizing radiation. In addition, the ISR is involved in the Lancet Oncology Commission on medical imaging and nuclear medicine with the aim of increasing global awareness of the importance of cancer imaging and improving access to imaging.

Learning Objectives:
1. To learn about the ISR’s radiation protection policy.
2. To appreciate actions which are currently developed.
3. To understand the challenges of low- and middle-income countries to improve radiation protection.

A-0660 16:20
Patient doses in large part of the LMI countries and way forward: The International Organization for Medical Physics’ (IOMP) vision
M.M. Rehani; Boston, MA, USA (madan.rehani@gmail.com)

The radiation doses to patients in diagnostic imaging examinations and optimisation of dose with image quality is something akin to medical physicists. Medical physicists have published hundreds of papers covering data from more than 50 LMI countries. IOMP collated the data and information on patient doses pertains to computed tomography (CT) dominantly, but also for interventional procedures, mammography and other radiographic imaging. The patient dose information from Eastern European countries is more than other regions like Africa and Latin America, primarily because of Euratom. The past challenges pertained to crossing the threshold of dose assessment, shift from machine focus to patient focus, whereas future challenges pertain to creating focus on the protection of the individual patient. A large part of the data from LMI countries comes through the work of the IAEA. IOMP plays a role in creating agenda; organising training events; motivating professionals to work, produce results and publish them; disseminating the work; act as an expert for international organisations and provide leadership in creating and propagating outreach programs. Further, IOMP identifies the changing scenario and create a vision for professional colleagues with an emphasis on LMI countries. IOMP works with international organisations like IAEA and WHO and professional bodies.

Learning Objectives:
1. To learn about the current situation of patient doses in a large part of the world.
2. To appreciate the challenges and needs based on experience gained.
3. To understand the needs that will impact future actions.

A-0661 16:35
The International Atomic Energy Agency’s (IAEA) approach
D. Gilley; Vienna/Austria (D.Gilley@IAEA.org)

The International Atomic Energy Agency’s mission is to assist its Member States, in the context of social and economic goals, in planning for and using nuclear science and technology for various peaceful purposes and facilitates the transfer of such technology and knowledge in a sustainable manner to developing the Member States. Challenges in low and middle income have been identified, and the IAEA is achieving positive results in radiation protection with the support of local radiology professionals. The IAEA, through the radiation protection of the patient’s unit and technical cooperation, have seen improvements in patient safety activities at the local, national and regional levels. The success of these efforts would not be possible without the strong commitment of local radiology professions who support the IAEA goal of bringing the beneficial and safe uses of nuclear and radiology technology to all of society.

Learning Objectives:
1. To learn about regional challenges in radiation protection in healthcare.
2. To appreciate the efforts professionals are demonstrating in achieving progress in radiation protection in a resource-limited region with the help of the IAEA.
3. To understand the effects this has on the overall improvement of radiation protection of patients and workers.

A-0662 16:50
The World Health Organization’s (WHO) approach
M.d.R. Perez; Geneva/CH (perezm@who.int)

The UN Member States made a commitment towards 17 Sustainable Development Goals (SDGs) by 2030: the SDG #3 aspires to “ensure healthy lives and promote well-being for all at all ages”. Half the world lacks access to essential health services. Many countries have adopted national commitments to achieve universal health coverage (UHC), which means ensuring that all people have access to quality essential health services they need for their health and well-being without incurring financial hardship. This presents a unique opportunity for all to join hands, in this context, ensuring safety and quality in medical imaging services will be central to the success of these efforts. Indeed, both diagnostic radiology and image-guided interventions are linked to health promotion, preventive services, diagnosis, treatment, follow-up, rehabilitation and palliative care. A culture of radiation safety and quality can be embedded into policies, processes and institutions as the health care systems grow and develop as it is the case in low and middle-income countries. This represents at the same time a challenge and an opportunity and requires strong leadership, robust planning and strategic investment. This presentation will summarise WHO’s views on the importance of safety and quality in medical imaging for globally advancing patient care, describe the roles and responsibilities of different stakeholders in strengthening radiation protection in health care and identify challenges and opportunities in enforcing radiation protection in medical imaging in low- and middle-income countries.

Learning Objectives:
1. To learn about WHO’s views on the importance of safety and quality in medical imaging for globally advancing patient care.
2. To identify challenges and opportunities for enhancing radiation protection in medical imaging in low- and middle-income countries.
3. To understand the role and responsibilities of different stakeholders in strengthening radiation protection in health care.

A-0663 17:05
Africa’s vision to improve radiation protection
B. Mansour; Algiers/DZ (boudjema.mansour@gmail.com)

Radiation protection: Needs and challenges in Africa: The burden from communicable and non-communicable diseases, including the socio-economic impact of these, has adversely affected development in Africa due to a poor or absent legislative and regulatory framework for radiation protection in many countries, an inadequate awareness of the radiology safety policies an insufficient awareness about radiation doses and the associated risks in the other health professions, an inequitable distribution of radiation facilities, equipment and skilled personnel, and the financial and political constraints. The continent’s health care system faces big challenges to match health workforce supply and demand. Contemporary discussions in radiation protection entail a systematic articulation of the African health system as well as an explanation of how the professionals apprehend reality and interpret their experiences. To avoid to be left behind the progress and the international actions for safety is recommended, to provide an efficient response for a good medical practice, ensuring that the benefits outweigh risks in all radiological medical procedures using customized systems adapted to the heterogeneous African context. The establishment and implementation of regulations to standardize with the development of policies, guidelines the practice of radiation is required and need to be adapted to the specific status of the health system in Africa. It is requested to all the stakeholders and the international organisations to develop national and regional action plan constructed from current discussions about conceptions in African thought and realities ensuring Africa’s patients the same quality and safety.

Learning Objectives:
1. To understand the African gaps and to identify the challenges with the existing opportunities.
2. To learn about the implementation of a safety culture in medical radiation protection in Africa and the support provided by international organisations, like IAEA and WHO, and professional societies, like ISR and ESR.
3. To learn about the Afrosafe campaign, in particular about the lessons from the past and the envisaged programme for the next three years 2019-2021.

17:20 Panel discussion: What are the main obstacles for the safe use of imaging in low- and middle-income countries?

16:00 - 17:30 Room O

E³ - ECR Master Class (Vascular)

E³ 1226
Cone-beam, 4D and more: new diagnostic tools for vascular diseases

Moderator:
F. Fanelli; Florence/IT

A-0664 16:00
A. The role of intra-procedural perfusion assessment in peripheral arterial disease
J.A. Reekers; Amsterdam/NL (j.a.reekers@amc.uva.nl)

Non-invasive measurement of blood vessel flow can be performed in many ways. The most used modalities to measure flow are Doppler flow imaging and MRA. The restriction of these flow measurements is that only intravascular flow can be measured while more than 80% of the organ perfusion flows through the microcirculation. To investigate the perfusion of an organ we need to know the total blood flow through that organ and the tissue volume because perfusion is the volume of blood flowing through certain mass (or volume) of tissue per unit time. If we measure true perfusion in a volume of tissue, we measure foremost the flow through the microcirculation of the tissue. With specially designed DSA 2D perfusion acquisition software on the X-ray system, the DSA data are processed instantaneously, allowing for immediate evaluation and comparison. The time taken for contrast to pass through the arterial vasculature and to enter into the venous system is the duration of the maximal analysis possible on the tool. Improvement of tissue perfusion after revascularisation could be a parameter for success and might be a predictor for outcome. Several competing mechanisms play a role in the final interpretation of the perfusion data. The value of each mechanism depends on the clinical situation and the intervention performed. The value of intra-procedural perfusion assessment will be discussed.

Learning Objectives:
1. To understand the technique of intra-procedural perfusion assessment.
2. To learn how to target peripheral revascularization therapy based on perfusion assessment.
3. To discuss the value of using intra-procedural perfusion assessment on the outcome of endovascular therapy for peripheral artery disease.

A-0665 16:30
B. CT 4D imaging after (T)EVAR
R. Schernthaner; Vienna/AT (Ruediger.schernthaner@meduniwien.ac.at)

Endovascular Aortic Repair (EVAR) has evolved into a successful treatment option for aortic aneurysms and dissections; however, the possibility of remaining endoleaks after the procedure requires continuous imaging follow-up of these patients. However, the reliable classification of different endoleak types is sometimes challenging, especially in patients with complex, customised stent-graft designs. By adding time as the 4th dimension, 4D CT angiography allows the visualisation of blood flow within the aorta and its branches. Thus, 4D CT angiography facilitates a more detailed analysis of endoleaks and their underlying cause. However, 4D CT angiography requires thorough planning by a vascular radiologist before and during the examination to achieve optimal visualisation at the lowest possible exposure to ionising radiation and contrast material following the ALARA principle. In addition, it is important to understand that 4D CT angiography cannot replace regular imaging follow-up, but should only be used as a supplemental technique in uncertain cases.

Learning Objectives:
1. To understand the challenges of imaging follow up after (T)EVAR.
2. To become familiar with the technique of 4D CT.
3. To learn how to establish treatment recommendations based on 4D CT results after (T)EVAR.

A-0666 17:00
C. How cone-beam CT can change your practice in interventional radiology
R. Uberoi; Oxford (Raman.Uberoi@ouh.nhs.uk)

C-arm cone-beam computed tomography (CBCT) is a new imaging technology that enables acquisition of cross-sectional imaging with modern angiographic systems equipped with a flat panel detector. Volumetric tomographic images can be combined and co-displayed with conventional 2D angiographic imaging and dedicated software used to plan treatment, navigate/position the catheter or device, monitor the treatment, and assess the final result or verify margins. This technique has the potential to improve outcomes in a wide range of IR treatments. An excellent example of the huge potential benefits of CBCT is in the field of interventional oncology. CBCT with its 3D nature, soft tissue contrast, and with the post-processing software is superior to DSA in lesion detection and tumour-feeding vessel identification. In addition Dual Phase CBCT, where a bi-phasic CBCT is acquired using a single contrast injection allows increased tumour detection versus single phase CBCT alone comparable to gold standard contrast-enhanced MDCT and MRI in lesion detection and in predicting therapy response. Similarly, for Selective internal radiation therapy (SIRT) CBCT also has several potential advantages. Angiographic work-up is required to identify hepatopancreatic arteries, originating from the hepatic arteries, defining the vascular territory of all targeted hepatic arteries; and identifying the tumoral lesions within these vascular territories. CBCT can demonstrate extrahepatic contrast enhancement in 52 % of cases, in 33 % of cases these additional CBCT observation scan lead to additional coil embolisation and/or change in catheter position.

Learning Objectives:
1. To understand the technique of cone-beam CT.
2. To learn about the role and applications of the cone-beam in the angi suite.
3. To discuss the influence on daily clinical practice in interventional radiology.

A-0667 16:00
Doppler imaging
F. Calliada; Pavia/IT (fabrizio.calliada@gmail.com)

Doppler, it’s undoubtedly a not new imaging technique, but an adequate knowledge of the basic physics and the scanner tuning it’s essential to avoid errors and misunderstanding. In the first part, the presentation will cover the principal sources of error that should be avoided during a Doppler examination and the major tuning tricks needed for an optimal and successful examination. In the second part, we will try to become familiar with new Doppler imaging techniques dedicated both to very low-velocity microvascular flow and to high-velocity complex flow representation.

Learning Objectives:
1. To learn about actual indications and applications of Doppler imaging.
2. To show better parameter settings for optimal technical results.
3. To illustrate tips and tricks for technical and clinical successful examinations.
4. To become familiar with the new Doppler imaging techniques and applications.

Author Disclosure:
F. Calliada: Equipment Support Recipient; Shenzhen Mindray Bio-Medical, Hitachi Medical System Europe, Toshiba Medical System Europe, Research/Grant Support; Bracco Imaging Milan. Speaker; Hitachi Medical System Europe, Shenzhen Mindray Bio-Medical.

A-0668 16:20
CEUS
M. D’Onofrio; Verona/IT (mirko.donofrio@univr.it)

Contrast-enhanced ultrasonography (CEUS) is a safe and accurate imaging method to evaluate the vascularity of abdominal organs. CEUS improve the ultrasound characterisation of tumoral masses. CEUS should be performed when possible immediately after the US detection of indeterminate mass in abdominal organs. CEUS is accurate in the characterisation of neoplastic lesions such as liver metastases and pancreatic ductal adenocarcinoma. The use of CEUS in studying focal liver and pancreatic lesions found at the US, especially in the same session of ultrasound examination is, therefore,
recommendable to promote faster diagnosis. In particular, liver metastases detection could be improved by the use of contrast-enhanced ultrasound in respect to basal examination. Actual indications and applications of CEUS are presented in official published guidelines. Every CEUS examinations should be performed with better parameter settings for optimal technical results.

Learning Objectives:
1. To learn about actual indications and applications of contrast-enhanced US (CEUS).
2. To show better parameter settings for optimal technical results.
3. To illustrate tips and tricks for technical and clinical successful examinations.
4. To become familiar with the new CEUS techniques and applications.

Author Disclosure:
M. D’Onofrio; Advisory Board; SIEMENS. Consultant; SIEMENS, BRACCO, HITACHI. Speaker; SIEMENS, HITACHI, BRACCO.

A-0669 16:40 Elastography
D.A. Clevert; Munich/DE (Dirk.Clevert@med.uni-muenchen.de)

In the daily clinical routine characterisation of focal lesions using native B-mode ultrasound and colour-Doppler can be difficult or insufficient. Therefore, additional diagnostic information must be taken into consideration, using ultrasound-elastography it is possible to evaluate and characterise tissue properties and focal lesions regarding their stiffness to gather additional information on a non-invasive basis. Regarding the liver, elastography techniques can also be used for the evaluation of fibrosis/cirrhosis. Nowadays, elastography has been implemented into every modern ultrasound system and has been established as a supplementary examination technique to the conventional ultrasound techniques.

Learning Objectives:
1. To learn about actual indications and applications of elastography.
2. To show better parameter settings for optimal technical results.
3. To illustrate tips and tricks for technical and clinical successful examinations.
4. To become familiar with the new elastography techniques and applications.

Author Disclosure:
D.A. Clevert; Speaker; Bracco, Siemens, Philips, Samsung.

A-0670 17:00 Fusion imaging
C. Ewertsøn; Copenhagen/DK (caroline.ewertsøn@dadilenet.dk)

Image fusion software is available on most high-end ultrasound systems, and several publications for different clinical applications are available. Ultrasound images can be fused with images from CT, MRI or PET/CT, which enables the user to target biopsies or verify the nature of incoercible lesions. In order to fuse the images, a co-registration or alignment must be made. This can be done manually, by choosing common points or planes in the different datasets, or automatically by the system by recognition of pixel intensities in the images. This applies for some systems, but not for all modalities. The theory behind these different co-registration methods will be covered as well as their accuracy. Furthermore, examples of clinical applications will be demonstrated.

The technique is more time consuming than conventional B-mode ultrasound, but time spent decreases with increasing user experience. Depending on the body size of the patient and the organ of interest patient positioning should be identical to when the previously recorded data set was recorded, but this is not mandatory. However, for liver applications, accuracy of the co-registration may improve if this is taken into account. Also identical in- or expiration may improve accuracy. Real-time image fusion enables real-time assessment of lesions in several anatomical regions.

Learning Objectives:
1. To learn about actual indications and applications of fusion imaging.
2. To show better parameter settings for optimal technical results.
3. To illustrate tips and tricks for technical and clinical successful examinations.
4. To become familiar with the new fusion imaging techniques and applications.

Panel discussion: When do we need additional imaging techniques and how could we include them in our workflow?

Postgraduate Educational Programme

Breast

RC 1202 Minimally-invasive local treatment of breast cancer: the time is now

A-0671 16:00

Chairperson’s introduction
A. Athanasiou; Athens/GR (aathanasiou@mileria.gr)

Breast cancer management is evolving towards “less-is-more”. Image-guided percutaneous biopsies provide accurate histologic diagnosis thus replacing open surgical biopsies in more than 90% of cases. Breast conservation therapy is the standard treatment for early-stage breast cancer. Sentinel lymph node biopsy has replaced axillary lymph node dissection in many cases. Is treating early breast cancer without surgery the next challenge? For liver metastases, treatment by means of ablative techniques has widely replaced surgery. Is there any place for minimally invasive treatment of early breast cancer? During this course, three main procedures will be presented, and current indications, advantages and disadvantages will be discussed. They include radiofrequency ablation, high intensity focused ultrasound ablation, and cryotherapy ablation. They may offer effective tumour management in selected cases (small-2cm tumours, elderly patients) and provide treatment options that are oncologically safe and cosmetically acceptable. By means of excessive local heating or freezing under imaging guidance, these procedures can cause cell death and tumour destruction. Surgical excision remains the standard local treatment of breast cancer. However, these procedures may represent an interesting alternative of successful treatment in selected cases. Large prospective trials should evaluate the efficacy, cost-effectiveness, cosmetic results and long-term outcome of minimally imaging-guided local treatment compared with the traditional surgical approach.

Session Objectives:
1. To learn about HIFU, radiofrequency ablation and cryotherapy that challenge traditional surgical excision in the management of breast cancer.
2. To become familiar with the role of imaging in using these new technologies.
3. To understand the potential advantages and disadvantages for each of these techniques.

A-0672 16:05

A. High-intensity focused ultrasound (HIFU) therapy
F. Pediconi; Rome/IT (federica.pediconi@uniroma1.it)

Surgical treatment of breast cancer has changed over time, evolving from radical mastectomy to more conservative approaches. This has been possible thanks to technical advantages in the field of diagnostic imaging that allowed the early diagnosis of breast cancers with very small dimensions. Mini-invasive technologies (radiofrequency ablation, cryoablation, etc.) can preserve the original breast volume avoiding glandular resections and surgical scars and ensuring at the same time complete tumour ablation. Ablation with high-intensity focused ultrasound (HIFU) is based on the use of an extra-corporeal ultrasound transducer that selectively destroys target tissue avoiding thermal damages to surrounding structures. The technique can be performed under ultrasound or magnetic resonance (MR) guidance. MR guidance offers several advantages that improve the safety and efficacy of the procedure: a visualization of the planned US beam during each phase of the procedure, a real-time monitoring of the progressive temperature increase within the target tissue and surrounding tissues, an accurate treatment planning, an evaluation of the treatment efficacy thanks to the use of intravenous gadolinium-based contrast agent. HIFU ablation of breast cancer is a new and promising technique that deserves large interest in the field of clinical research in order of its potential application in the clinical practice.

Learning Objectives:
1. To learn about the basics of HIFU therapy.
2. To become familiar with the different types of imaging guidance.
3. To appreciate its role in treating benign and malignant lesions.

A-0673 16:30

B. Radiofrequency ablation therapy
B. Brkic; Zagreb/ZI (boris@brjkic.com)

Radiofrequency ablation (RFA) is promising, but quite rarely used minimally invasive modality to treat small breast cancer in patients in whom general anaesthesia is contraindicated or who refuse surgery. In most studies, cancers were surgically excised shortly after RFA. In very few studies, RFA was used as the only treatment modality, instead of surgery. The procedure is most conveniently performed under ultrasound guidance, in local anaesthesia, which allows constant contact with the patient during the procedure. Precise...
preprocedural imaging is crucial and should include contrast-enhanced MRI in addition to mammography and ultrasound. Preprocedural core biopsy is mandatory, and the pathology must be assessed to determine whether the tumor should be treated. Invasive lobular cancers should not be treated with RFA. Our results will be presented in a small group of patients who were treated with RFA, and who refused surgery, had a contraindication to general anaesthesia and opted for RFA. The technique, preprocedural, intraprocedural and postprocedural imaging findings, as well as the long-term result will be presented.

Learning Objectives:
1. To learn about the cryotherapy technique.
2. To become familiar with its use in clinical practice.
3. To appreciate the added value of imaging in addition to the clinical findings and laboratory tests including CSF analysis.

A-0676 16:05
A. Autoimmune encephalitis
P. Demaere; Leuven/BE (philippe.demaere@uzleuven.be)

Autoimmune Encephalitis (AE) is emerging as a more common cause of encephalopathy than previously thought. AE remains a difficult diagnosis. The presence of antibodies (Ab) in the CSF confirms the diagnosis, but it can take several weeks before the results become available and a negative result does not exclude AE. Therefore, MR plays an important role in these patients, who often present with nonspecific neurological symptoms. Subacute encephalopathy, new onset seizures or psychiatric symptoms should raise the suspicion of a possible AE. AE consists of a large number of Ab-related diseases. Neuromyelitis Optica and ADEM are typical examples of AE with specific Ab. The diseases are anti-neutrophil Ab-negative and divided into three groups: (1) Ab to cell-surface antigens, (2) Ab to intracellular antigens and (3) Ab to intracellular antigens. The imaging-related findings will be reviewed in this course. The most common imaging finding consists of uni- or bilateral FLAIR hypersignal in the hippocampus and/or amygdala. It is important to emphasise that these signal changes can be very subtle. Extrapontine lesions in the cerebral cortex, the grey nuclei, the cerebellum and the brainstem have been reported too and can support the clinical suspicion of AE. Brain MR can also remain normal, and FDG-PET is certainly recommended in these patients. Finally, central nervous system involvement can be observed in several autoimmune diseases. The MR findings can sometimes be very specific. This will be illustrated in, e.g., Susac syndrome, Rasmussen encephalitis, granulomatous angitis and neuropsychiatry.

Learning Objectives:
1. To learn about the imaging pattern of autoimmune encephalitis.
2. To understand the limited role of conventional MRI and the need for advanced imaging techniques in the diagnostic process and for follow-up purposes.
3. To appreciate the role of imaging in a multidisciplinary and multimodal approach.

A-0677 16:28
B. Infectious encephalitis
A. Zimny; Wroclaw/PL (abernac@wp.pl)

Infectious encephalitis is an infection of the brain which can be caused by different pathogens. Majority of them are viruses, less frequently bacteria, fungi and parasites. Immunocompromised patients or people travelling to endemic regions may develop encephalitis due to less frequent pathogens. Adult patients with encephalitis present with acute onset of fever, headache, confusion, and sometimes seizures. Encephalitis may be accompanied by the involvement of meninges (meningoencephalitis) or spinal cord (encephalomyelitis). It is a life-threatening condition. The imaging-r elated findings will be reviewed in this course. The most common imaging finding consists of uni- or bilateral FLAIR hypersignal in the hippocampus and/or amygdala. It is important to emphasise that these signal changes can be very subtle. Extrapontine lesions in the cerebral cortex, the grey nuclei, the cerebellum and the brainstem have been reported too and can support the clinical suspicion of AE. Brain MR can also remain normal, and FDG-PET is certainly recommended in these patients. Finally, central nervous system involvement can be observed in several autoimmune diseases. The MR findings can sometimes be very specific. This will be illustrated in, e.g., Susac syndrome, Rasmussen encephalitis, granulomatous angitis and neuropsychiatry.

Learning Objectives:
1. To learn about the correct choice of imaging modalities and image acquisition parameters for the detection and monitoring of infectious diseases of the central nervous system.
2. To understand the benefits and challenges of image pattern recognition for diagnostic purposes.
Postgraduate Educational Programme

3. To appreciate the heterogeneity of the disease spectrum and challenges to interpret imaging findings in the context of the clinical presentation and possible comorbidities.

A-0678 16:51
C. Inflammatory and infectious myelitis
M.M. Thurnher; Vienna/AT (majda.thurnher@meduniwien.ac.at)

Transverse myelitis (TM) is an "umbrella term" used to describe an inflammatory disorder of the spinal cord that can be idiopathic or associated with the central nervous system (CNS) autoimmune inflammatory diseases, connective tissue autoimmune diseases, or post-infectious neurological syndromes. Myelitis can present either as monophasic or recurrent disease. The most common monophasic diseases causing TM are idiopathic transverse myelitis and acute disseminated encephalomyelitis (ADEM), whereas recurrent disorders include multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NOMOD), vasculitis (Behcet disease, SLE, Sjögren syndrome) and neurosarcoidosis. The recent discovery of multiple novel neural-specific autoantibodies accompanying autoimmune and demyelinating disease has improved the current understanding and classifications. This lecture will provide an overview of radiological, clinical, serological, and prognostic differences of inflammatory and infectious spinal cord diseases. **Learning Objectives:**
1. To learn about the spectrum of infectious diseases of the spinal cord level and their most characteristic imaging features.
2. To understand the difficulties in image acquisition and image interpretation.
3. To appreciate the heterogeneity of the disease spectrum and challenges to interpret imaging findings in the context of the clinical presentation and possible comorbidities.

17:14
Panel discussion: Ask the expert: is imaging the key diagnostic modality for an early and specific diagnosis of infectious diseases, leading to a better functional outcome?

16:00 - 17:30 Room F1

E³ - Rising Stars Programme: Basic Session

BS 12
Paediatric oncology
Moderator:
L.-S. Ording Müller; Oslo/NO

A-0679 16:00
The most common brain tumours
E. Vázquez; Barcelona/ES (evazquez@hhebron.net)

Brain tumours are the most common group of solid tumours in the paediatric age. Clinical onset commonly includes signs and symptoms related to increased intracranial pressure, gait disorders, or cranial nerve deficits. Although usually insidious, acute presentations due to stroke or obstruction of cerebrospinal fluid flow can occur. Certain previous histological classifications, such as that of medulloblastoma, are being replaced by new classifications based on genetic characteristics, which enable better prediction of tumour aggressiveness and help to better guide therapy according to the specific tumour type. Magnetic resonance imaging (MRI) imaging has an important role in tumour characterisation, surgical planning and follow-up, but structural or anatomic brain MRI is often limited. Advanced MR techniques, including diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, and spectroscopy, help to improve the accuracy on tumour malignancy and risk in initial diagnosis and to facilitate therapy effectiveness monitoring and diagnosis of possible recurrence during tumour follow-up. The main imaging clues of the most common brain tumours (astrocytoma, ependymoma, and medulloblastoma) in children will be presented in a didactic manner in this talk, together with the updated MR imaging protocols for diagnostic approach and therapeutic monitoring. **Learning Objectives:**
1. To present current imaging techniques and describe the typical features of astrocytomas.
2. To present current imaging techniques and describe the typical features of medulloblastomas.
3. To present current imaging techniques and describe the typical features of ependymomas.

A-0680 16:30
The most common chest tumours
A.S. Littooij; Utrecht/NL (aaltjeooj@hotmail.com)

Malignant thoracic tumours may arise from the chest wall, pleura, lung parenchyma or mediastinum. When a chest mass is discovered on a conventional chest X-ray, cross-sectional imaging is often required to accurately localise and characterise the mass in order to narrow the differential diagnosis. Magnetic resonance imaging is preferred for mediastinal and chest wall lesions, whereas CT is commonly used for imaging of pulmonary lesions. The location of the lesion is important in determining the differential diagnosis: Mediastinum: tumours in the mediastinum are best characterised by the compartment in which they arise. Tumours arising from the anterior mediastinum are most common due to lymphoma or leukaemia followed by germ cell tumours. Lesions in the middle mediastinum are usually seen in association with anterior mediastinal lesions. The tumours of the posterior mediastinum are usually of neurogenic origin with neuroblastoma being the most common. Lung: in children, most pulmonary malignancies are metastatic in nature. Primary pulmonary malignant neoplasms are rare in children. The majority of pulmonary lesions are congenital or inflammatory lesions. Chest wall: the most common malignant chest wall tumours include Ewing's sarcoma and rhabdomyosarcoma and occur in children older than seven years. Ewing's sarcoma classically causes a permissive lytic expansive lesion of the rib with bone destruction, periosteal reaction and soft tissue mass. When the soft tissue component is massive, bone involvement may be very subtle. This lecture will highlight the most common malignant thoracic tumours with emphasis on those with characteristic imaging features. **Learning Objectives:**
1. To present current imaging techniques and describe the typical features of malignant mediastinal tumours.
2. To present current imaging techniques and describe the typical features of pulmonary tumours.
3. To present current imaging techniques and describe the typical features of chest wall malignancies.

A-0681 17:00
The most common abdominal tumours
S. Franchi-Abella; Le Kremlin-Bicêtre/FR (stephanie.franchi@bct.aphp.fr)

Wilms Tumor or Nephroblastoma is the second most common abdominal and renal paediatric tumour. The aims of imaging are to establish the local tumour extension, the lymph nodes involvement, the presence of bilateral disease, the vascular invasion and the presence of metastases (mostly in the lungs). Both MR and CT can be performed for the abdominal extension. CT is standard for pulmonary metastases. US-Doppler can be helpful for the assessment of vascular extension in addition to CT or MR. Lymphoma is the third most common paediatric neoplasm. Non-Hodgkin lymphoma (NHL) commonly involves extra-nodal sites. Patients typically present with widespread disease. CT and MRI are used for staging. FDG-PET/CT plays a role to evaluate the extension of the disease and the response to the treatment. Neuroblastoma is the most common abdominal paediatric solid tumour accounting. The adrenal gland is the most common site of origin (50 %). The aim of imaging is the tumour staging prior to surgery and chemotherapy. The International Neuroblastoma Risk Group staging system is now based on the presence of “image-defined risk factors” (IDRFs) which allow children to be assigned to specific risk groups at the time of diagnosis. IDRFs include vascular invasion, invasion of adjacent solid organs, soft-tissue structures and extension into the spinal canal. CT and MRI are used. MRI is more sensitive for characterising bone marrow involvement, extension to the central nervous system. MIBG scintigraphy or SPECT/CT allows identification of both primary tumours and metastatic disease including bone marrow. **Learning Objectives:**
1. To present current imaging techniques and describe the typical features of Wilms' tumour.
2. To present current imaging techniques and describe the typical features of non-Hodgkin's lymphomas.
3. To present current imaging techniques and describe the typical features of neuroblastomas.
A-0682 16:00
Chairperson's introduction
S. Wirth; Munich/DE (stefan.wirth@med.uni-muenchen.de)

Fractures are the most common type of missed injuries, especially at the lower extremity and in particular, the foot. Although there are limitations, Radiography is the imaging standard for fracture detection. Typical reasons for overlooking fractures are missed soft tissue signs, insufficient imaging parameters or views, satisfaction of search, small fracture extent or missing displacement of fragments. Appropriate strategies to reduce the number of missed fractures are the correlation of findings with clinical features, knowledge of difficult regions and technical limitations, re-assessment in cases of ongoing pain or disability: if necessary by using cross-sectional imaging, checklists, appropriate communication/ information flow.

Session Objectives:
1. To learn the typical constellations and findings of missed fractures.
2. To understand the potential complications resulting from missing fractures.
3. To appreciate direct and indirect fracture signs with different imaging modalities.

A-0683 16:05
A. Missed fractures in children
K.J. Johnson; Birmingham/UK (karl.johnson@bch.nhs.uk)

Traumatic injury and subsequent fracturing are one of the commonest reasons that children attend hospital and undergo some form of imaging. While the majority of injuries are easily detected, in some instances, a fracture may be missed. Broadly speaking, missed fractures occur in children for three reasons, namely; Perception - the fracture was not seen interpretation - an abnormality was seen but reported as something else Occult injuries - the fracture is present but not visible on the imaging. The fact that the paediatric skeleton is developing and not fully ossified can lead to confusion between normal development and pathological changes. In addition, the plastic nature of a child's bones and the presence of growth plates means that the fracture patterns are seen different from those in adults. This presentation will discuss the commonly missed fractures that occur in childhood. There will be a discussion on how to avoid perception errors. There will be a review of those anatomical areas in which interpretation errors commonly occur, such as the elbow and wrist, typically due to confusion with normal variations in the growing skeleton. It will highlight those occult injuries in which additional or follow up imaging is useful.

Learning Objectives:
1. To become familiar with the commonly missed fractures in childhood.
2. To understand the choice of the best-suited imaging modality.
3. To learn about atypical imaging findings in different clinical scenarios.

A-0684 16:30
B. Missed fractures in adults
S. Döring; Brussels/BE (seema.doring@uzbrussel.be)

Missed fractures are a common problem in the emergency department. Poor X-ray exposure factors, improper positioning, an inadequate number of views are common technical reasons for missed fractures. Subtle non-displaced fractures, inadequate experience, misinterpretation as normal variants, difficulty in the visualisation of fractures due to severe arthrosis or osteopenia, satisfaction of search (SOS) and working under distress in the emergency are important contributory factors. Commonly missed fractures in upper extremity include posterior shoulder dislocation, non-displaced greater humeral tuberosity, radial head, non-displaced radial styloid, scaphoid and hook of hamate fractures. In the lower extremity, femoral neck, Segond, osteochondral fracture of talus dome, lateral and posterior talar process, anterior calcaneal process, Lisfranc dislocation, os peroneus fractures can be easily missed. Apart from long-term pain and morbidity, missed fractures can lead to serious consequences such as osteoarthritis, non-union, delayed union, malunion, avascular necrosis and heterotopic ossifications. Reduction in misdiagnosis of fractures can be achieved by continued education of technical staff to improve X-ray quality. Similarly, continued education and supervision of younger less experienced radiologists can be very helpful. Systematic evaluation of the X-rays, avoiding SOS, knowledge of injury mechanisms and corresponding expected fracture patterns, knowledge of indirect signs of fractures, requesting complementary CT/MRI in negative X-rays with a high degree of suspicion and follow-up repeat X-rays when required are important measures that experienced radiologists employ to decrease misdiagnosis of fractures.
The potential for a patient centred approach to all diagnostic imaging begins from the moment a patient arrives within the Radiology department. The prime opportunity for attaining the required trust and rapport with the patient is during the consent process. The complexities of gaining such consent can be influenced by a wide range of varying factors including age, gender, culture and capacity all of which require a very different approach to ensure that informed consent is definitively attained. The presentation of challenges associated with consent may be overt or have the potential to be relatively subtle, and so the radiographer must be aware of both the values of the individual patient and also the requirements of the radiographic examination in order to not enter the delicate balance that these potentially opposing concepts present. The increasing pace, expectations and evolution of the role of the radiographer lead to this perpetual dilemma which must be sensitively and adequately broached to avoid the potential for litigation and overall patient dissatisfaction. Student and qualified radiographers alike must ensure that informed consent is achieved by employing a systematic approach alongside appropriate problem solving and open discussion to allow for transparency and candour during every patient encounter.

Learning Objectives:
1. To understand the current issues surrounding consent within radiographic practice.
2. To become familiar with methods needed to ensure correct consent for radiographic procedures.
3. To discuss the changing role of the radiographer with regards to patient consent.

Communication and compliance difficulties in imaging

Compliance with advice and instructions in the medical imaging department is important because we frequently use ionising radiation in our daily work and have long waiting lists for specialist examinations. Not adhering to instructions may result in repeating of the examination, thereby, increased waiting times for other patients and an additional radiation dose for the patient. Noncompliance can occur at any stage of the medical process - for example, failure to attend for outpatient appointments is regarded as a specific form of noncompliance. Knowledge and understanding of the various types of non-compliance would allow the formation of strategies to tackle them effectively. It is important to understand why patients do not comply with the information they are asked to follow. Compliance is generally seen to improve when patients are given more information about their state of health, investigations and treatment. Studies have shown that increasing the amount of information for the patient not only improves satisfaction but also empowers the patient and increases compliance. Affective and cognitive empathetic communication styles have a significant positive relationship with both patient satisfaction and compliance. However, providing information to certain groups of patients (people with dementia) is a challenge for healthcare professionals. Due to the projected increase in the percentage of the population suffering from dementia, who are frequently referred to imaging departments, it is suggested a CPD program (with theoretical knowledge and practical training of dementia) be provided to all radiographers.

Learning Objectives:
1. To be aware of communication and compliance issues within radiology.
2. To discuss methods for improving communication and compliance.
3. To appreciate the need for CPD in areas such as dementia, obesity.

Professionism in an era of social media (part 1)

Social media has become a useful tool for health professionals. The most frequent advantage of using social media is receiving news and updated information about research, and new technologies. However, professionals are getting more involved in other ways of using social media; for instance, for getting in touch with other colleagues and for sharing opinions about different topics related to our profession. These discussions, often motivated by some publication, are an excellent intellectual exercise that helps us stay updated and in touch. Many radiographers have taken a step forward. Social media has served to narrow the gap between professionals and patients, which is an excellent way to provide first-hand information. The close contact with individual patients and patient’s associations has another utility; make our profession visible and showing the valueable role of radiographers. In our opinion, it is mandatory to review the quality of the content we share and maintain a proactive and generous attitude. In our experience, the benefits far outweigh the efforts. It is also a work that can be done as a team. As a result, we identify ourselves more intensively with our profession and contribute to generating a public profile of it. Social networks should be seen as a meeting point between people. It is at this point that we understand the relevance of these tools for those of us who must be health agents.

Learning Objectives:
1. To learn about professionalism in social media by showing activity models of radiography professionals in social media.
2. To appreciate the impact of digital information on the profession of radiography.
3. To understand professionalism in social media through the proposal of quantitative and qualitative research models.

Professionism in an era of social media (part 2)

Professionalism in Social Media implies using digital tools to innovate processes and products and keep up with the digital development. One of the keys to professionalism in Social Media is to incorporate the evidence-based radiology resource in order to evaluate the behavioural impact (qualitative and quantitative). This is done by mastering a specific metric and its research with tools provided by Digital Marketing on each of the Social Networks and Digital Platforms based. Examples of shared and unpublished professional practices in various Social Networks and platforms will be presented, and the case of the creation of audio-visual content in Spanish (videos on YouTube) that, through digital narrative, the informative and formative context, and the measurement of quantitative and qualitative data, we can identify better non-clinical communicative practices in the performance of CT and MRI tests, addressing the problem of claustrophobia, and improving the professionalism of the radiographer before the patient in radiology.

Learning Objectives:
1. To learn about professionalism in social media by showing activity models of radiography professionals in social media.
2. To appreciate the impact of digital information on the profession of radiography.
3. To understand professionalism in social media through the proposal of quantitative and qualitative research models.

Musculoskeletal

The radiological investigation of musculoskeletal tumours

Plain films are generally the initial imaging modality in the detection and characterisation of bone tumours, as they accurately depict matrix, cortical permeation or disruption, and periosteal reaction. However, the sensitivity of this technique for the detection of small lesions is limited. CT can be used for characterisation in anatomically complex areas, such as the spine, pelvis and skull. The CT appearance is similar to plain radiographs. Due to radiation restraints, CT is not recommended in children nor for evaluation of the appendicular skeleton in adults. Conventional MRI may be of additional help in narrowing the differential diagnosis of bone tumours. Soft Tissue Tumours (STT) based on imaging remains even more limited, and histology is usually required for a definitive diagnosis. Ultrasound is mostly nonspecific but may be used for superficially located cystic STT. On MRI, analysis of multiple parameters (shape, the presence of signal voids, fluid-fluid levels, SI, intratumoral necrosis, multiplicity, pattern/degree of enhancement) yields the best results. The highest confidence is reached in benign lesions, such as lipomas, vascular lesions, benign neural tumours, pericystic cysts, hematomas, PVNS, GCTTS, and abscesses. The major role of MRI consists - however - of local tumour staging and monitoring of treatment. Recently, the European Society of Musculoskeletal Radiology (ESSR) has published guidelines for detection, characterisation, and referral pathway of musculoskeletal tumours based on conventional imaging. The specific aim of this session is to discuss the role of recent advances in ultrasound technology, advanced CT and MR techniques and hybrid imaging in the imaging evaluation of musculoskeletal tumours.
Session Objectives:
1. To discuss how to differentiate tumours from other non-tumoural pathological conditions.
2. To discuss the value of imaging modalities in this field.
3. To explain how to differentiate tumours from other non-tumoral pathological conditions.

A-0692 16:05
A. Radiographs and ultrasound
L.M. Sconfienza; Milan/IT (io@lucaconfienza.it)

Besides advanced techniques, such as computed tomography and magnetic resonance imaging which are important in the workup of musculoskeletal tumours, plain films and ultrasound still play a crucial role. Plain films represent the cornerstone in the evaluation of bone tumours, as they allow for distinguishing the presence of a bone lesion and giving important information about characterization of the lesion such as the presence and type of periostal reaction, the pattern of bone destruction, the lytic or sclerotic appearance of lesion, the presence of soft tissue involvement or associated findings such as pathological fractures. However, plain films have limitations in particularly complex anatomical locations (e.g., spine and pelvis) and in the evaluation of soft tissue tumours not involving the bone. Ultrasound has limitations in the evaluation of bone tumours, as the ultrasound beam can minimally cross the bony cortex. However, ultrasound may detect the presence of a periostal reaction in early stages and may be used to assess the involvement of surrounding soft tissues and neurovascular bundles by bone tumours. On the other hand, ultrasound is accurate in the detection and evaluation of soft tissue tumours, being able to correctly evaluate the size and the relationship of the mass with the surrounding structures. The use of supplementary tools, such as power Doppler, contrast-enhanced ultrasound, and elastography has been proved to be useful in increasing the diagnostic performance of ultrasound in certain conditions. However, ultrasound may be limited by low contrast resolution, small field of view, and deep lesions.

Learning Objectives:
1. To discuss the value of radiography and US in the diagnostic work-up of MSK tumours.
2. To explain the most recent advances and trends in the development of US technology, including contrast-enhanced US and elastography.

Author Disclosure:
L.M. Sconfienza; Speaker; Fidia Pharma Group, Abiogen. Other; Travel grants from Abiogen, Bracco Imaging Italia.

A-0693 16:28
B. MRI and whole-body MRI
S.L.J. James; Birmingham/UK (stevengames@nhs.net)

This presentation aims to review a number of aspects of MR imaging related to primary bone tumours. Initially, a review of a basic MR protocol will be performed to establish a minimum requirement to adequately image this type of pathology. The role of some more advanced techniques including chemical shift imaging, diffusion-weighted imaging, MR spectroscopy and perfusion MR imaging will also be discussed. Finally, the role of whole-body MRI will be described. It should be noted that the focus of this talk will be on primary bone tumours and not on the use of these techniques in metastatic disease, myeloma or lymphoma.

Learning Objectives:
1. To describe how to perform an advanced clinical MR protocol for MSK tumours.
2. To explain the potential of new MR techniques.
3. To discuss the impact of MR imaging and whole-body techniques in MSK tumour imaging.

A-0694 16:51
C. CT and hybrid imaging
T. Bäuerle; Erlangen/DE (tobias.bauerle@uk-erlangen.de)

For diagnosis, staging and follow-up of musculoskeletal tumours, CT and the hybrid techniques PET/CT and PET/MRI offer a broad spectrum of methods. On the morphologic level, bone destruction ranging from osteolytic to -blastic lesions and adjacent soft tissue tumours, e.g. In Ewing sarcoma or lytic bone metastases, are captured by CT. Beyond morphology, PET radiopharmaceuticals including [18F]-fluorodeoxyglucose ([18F]-FDG) or [18F]sodium fluoride ([18F]-NaF) display tumor and bone metabolism, respectively. Whereas the soft tissues of tumours of rhabdomyosarcoma or bone marrow involvement in multiple myeloma is assessed by [18F]-FDG, osteoblastic activity is captured using [18F]-NaF for example in sclerotic metastases. Due to the excellent sensitivity of PET, information on the molecular level is available when administering tumour-specific radiotracers such as the [68Ga]Ga- or [18F]-labeled prostate specific membrane antigen (PSMA) ligands for prostate cancer bone metastases. This lecture will summarise the use of CT and the hybrid imaging techniques PET/CT and PET/MRI in primary and secondary musculoskeletal tumours as well as in hematologic disease affecting bone. Current state-of-the-art techniques on the morphologic, metabolic and molecular level will be reviewed, including an outlook on future developments, particularly for hybrid imaging.

Learning Objectives:
1. To discuss the role of CT and hybrid imaging in the evaluation of MSK tumours.
2. To describe how hybrid imaging allows the intrinsic combination of functional and anatomical image information.
3. To explain how future developments of novel PET tracers and integrated PET/CT and PET/MRI may impact the management of MSK tumours.

Panel discussion: Guidelines for, and the role of, imaging techniques in the management of musculoskeletal tumours
16:00 - 17:30 Room G

Special Focus Session
SF 12
IT-security and GDPR
Moderator: O. Ratib; Geneva/CH

A-0695 16:00
Chairperson’s introduction
E. Kotter; Freiburg/DE (elmar.kotter@uniklinik-freiburg.de)

The introduction of the GDPR has raised many questions among radiologists and hospital administrators. Standard procedures of data management had to be modified, and IT systems had to be modified to adopt. This session will give an overview of GDPR, will summarise the practical aspects of GDPR and patient consent and highlight the special aspects of using mobile devices.

Session Objectives:
1. To give an overview on the GDPR and patient consent.
2. To understand practical aspects of GDPR and patient consent.
3. To know security aspects specific to mobile devices and social media.

Author Disclosure:
E. Kotter; Advisory Board; Agfa.

A-0696 16:05
Understanding the key points of GDPR
C.D. Becker; Geneva/CH

The General Data Protection Regulation implies several new rules for the protection of the confidentiality of patient data, access of data for patients, processing, as well as technical and organisational safeguards. Explicit informed consent is necessary prior to processing and communication of imaging data. Patients have the right to access their image data and to obtain copies of their data ("data portability"). Data must be rectified in case of errors, and the patient and/or supervising authority must be informed in the case of inadvertent or voluntary inappropriate disclosure of patient data ("data breach"). Derogations may be defined for special purposes, including research or public health, and special guidelines may be defined by national law.

Learning Objectives:
1. To give an overview of the GDPR.
2. To understand the key points of GDPR.
3. To review what is important for radiological practice.

A-0697 16:28
Issues related to patient consent to allow access to the data
O. Ratib; Geneva/CH

The developments of imaging biobanks for research and development of analysis tools and machine learning techniques must comply with strict regulations and guidelines geared toward protecting patient confidentiality and data security. The recent legal frameworks and regulatory data protection rules prevent the usage and exploitation of medical data without formal patient approval. Traditional informed consent principles used in medical research require that the patient is informed of the purpose and goals of the research performed with the data collected. This defeats the basic principle of deep learning and Big-Data analytics which looks for random patterns and correlations without a specific pre-established hypothesis. To overcome this dilemma, regulatory bodies, government agencies and academic experts in ethics have promoted new concepts of innovative legal frameworks that will allow and regulate the ability of each individual to contribute to the development of Big-Data collections of images while complying with fundamental ethical principles and regulatory directives. Our presentation will focus on the different technical and practical issues of implementing adequate patient consent and data protection strategies for the development of imaging biobanks repositories for scientific research and data mining.
Learning Objectives:
1. To understand the difference between general consent and informed consent.
2. To learn how to manage patient consent.
3. To understand special aspects of data access in the context of scientific data.

A-0698 16:51

Security aspects when using mobile devices and/or social media
E.R. Ranschaert; Tilburg/NL (ranschaert@telenet.be)

Medical specialists and radiologists are using mobile devices to share and exchange medical information and images with other healthcare professionals. Usually, they need advice regarding a diagnosis or treatment, sometimes in an acute setting. Popular messaging services such as WhatsApp are frequently used for such purpose. Transmission of patient data with mobile devices and messaging services, however, does have several risks and limitations, mostly related to the security and privacy of patients, but also from an ethical and legal point of view. Some questions need to be answered: is this type of communication unsafe and/or illegal, and if yes, why? Is this type of communication compliant with the GDPR legislation? What safe and secure options are available for sharing patient information on mobile devices and with messaging services? In this session, these issues will be discussed in more detail.

Learning Objectives:
1. To understand the vulnerability of data on mobile devices and in social media.
2. To learn how to protect data on mobile devices.
3. To learn how to protect data and identity in social media.

17:14

Panel discussion: Data protection: benefit or burden?

16:00 - 17:30 Room K

RC 1204

Fibrotic lung diseases

A-0699 16:00

Chairperson’s introduction
S.R. Desai; London/UK

Session Objectives:
1. To understand the implications of diagnosing UIP.
2. To be aware of the various fibrotic entities prognosis.
3. To review illustrative cases with pathological assessment.

A-0700 16:05

A. Idiopathic pulmonary fibrosis
N. Sverzellati; Parma/IT

Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of idiopathic interstitial pneumonia. Two guidance documents for the diagnosis of IPF have been recently published by international experts representing major respiratory and radiological societies. The documents have reached similar level of view. Some questions need to be answered: is this type of communication unsafe and/or illegal, and if yes, why? Is this type of communication compliant with the GDPR legislation? What safe and secure options are available for sharing patient information on mobile devices and with messaging services? In this session, these issues will be discussed in more detail.

Learning Objectives:
1. To learn about drug-induced lung fibrosis.
2. To review CT features of post-radiation fibrosis.
3. To learn about smoking-related lung fibrosis.

Author Disclosure:

C.P. Heussel: Board Member; ECLL-3, ECCMID, EORTC/MSG, Consultant; Schering-Plough, Pfizer, Basilea, Boehringer Ingelheim, Novartis, Roche, Astellas, Gilead, MSD, Lilly, Intermediate, Fresenius; Employee; Head of Diagnostic and Inter Radiology with Nuclear Medicine, Thoraxklinik Heidelberg • Member of the German Center for Lung Research, Grant Recipient; Siemens, Pfizer, MeVis, Boehringer Ingelheim, German Center for Lung Research, Patent Holder; Method and Device For Representing the Microstructure of the Lungs. IPC8 Class: A61B5/00SFI, PAN: 20080258038, Inventors: W Schreiber, U Wolf, AW Scholz, CP Heussel, Shareholder; GSK, Speaker; Gilead, Essex, Schering-Plough, AstraZeneca, Lilly, Roche, MSD, Pfizer, Bracco, MEDA Pharma, Interhome, Chiesi, Siemens, Coviden, Pierre Fabre, Boehringer Ingelheim, Grifols, Novartis Basilea, Bayer.

17:14

Panel discussion: What is the radiologist's role in the evolving spectrum of pulmonary fibrosis?
16:00 - 17:30 Room M 1

Oncologic Imaging

RC 1206

Translating functional and molecular imaging in oncology

A-0703 16:00
Chairperson's introduction
R.J. Méndez, Madrid/ES (ramiro.mendez@outlook.com)

Different functional imaging techniques are currently able to in vivo assay many biological features of cancer, and they can be used in the detection, characterisation and follow-up of neoplasms. The non-invasive monitoring of the molecular and physiologic changes offers clear advantages for preclinical studies of the disease and the development and analysis of new therapies. Many of these functional imaging techniques and imaging biomarkers even being proved useful in cellular or animal cancer models, will never be brought into a clinical scenario for diagnosing cancer patients, for therapy tailoring or follow-up. To cross this translational gap the imaging technique must be reproducible; it has to be available using clinical equipment, the imaging biomarker should prove its validity for cancer detection, characterisation, prognosis or monitoring. Then, cost-effectiveness would also be considered. All these steps are part of a long road for translating functional and molecular imaging techniques from laboratory research to the comprehensive clinical management of cancer patients. In this session three different functional/molecular imaging techniques (PET, SPECT, MRI) will be introduced, presenting current understanding of MR-based methods of functional cancer imaging and their technical principles. Clinical applications of MR-based functional cancer imaging will be summarised, and methods for advanced analysis of complex imaging data will be discussed.

Learning Objectives:
1. To understand the basic principles of functional and molecular imaging methods in oncology.
2. To appreciate the challenges in translating novel functional and molecular imaging methods.
3. To learn approaches to enhance clinical translation of functional and molecular imaging methods.

A-0704 16:05
A. Functional cancer imaging with MRI
S. Gatidis, Tübingen/DE

Medical imaging plays an increasingly important role in diagnosis, risk stratification and response assessment in oncology. While morphological assessment of tumour size and localisation is a prerequisite for oncologic imaging, the concept of personalised and precise medicine demands further information on tumour biology for the guidance of the therapeutic decision. MRI is the most versatile clinical imaging modality providing both, morphologic and functional information about tissues and organs in vivo and is thus an effective method for functional cancer imaging. This presentation will give an overview of MR-based methods of functional cancer imaging and their technical principles. Clinical applications of MR-based functional cancer imaging will be summarised, and methods for advanced analysis of complex imaging data will be discussed.

Learning Objectives:
1. To learn the basic principles of functional cancer imaging with MRI.
2. To understand the biological process that can be assessed using functional MRI.
3. To learn about clinical applications of functional MRI in oncology.

A-0705 16:28
B. New PET tracers in oncology
M. Herranz, Santiago de Compostela/ES (michel.herranz.carnero@sergas.es)

Advances in imaging modalities both anatomical (MRI, CT, US) and functional (PET, SPECT, fMRI) have provided with a new tool for earlier and more accurate diagnoses, and for personalised treatments follow-up. Positron Emission Tomography (PET), currently always combined with an underlying anatomical technique such as CT or MRI, is a non-invasive molecular imaging technique that enables visualisation, measurement and quantification of metabolic events by detecting the distribution of molecules (targeting agent) bound to a positron-emitting compound, chemical complex known as a radiotracer. Development of new specific and sensitive radiotracers, nowadays, targeting practically any biological process (transporter, receptor, nucleic acid, enzymes, and many other molecular targets), is generating huge scientific and clinical interest. Currently, not only cancer but multiple pathologies including cardiovascular and neurogenerative, are being visualised with specific radiotracers. The huge variability of the chemistry behind the synthesis, the different radionuclides (positrons-emitting-compounds beyond 18F: 11C, 13N, 15O, 68Ga, 62Rb, 89Zr) allow almost infinite combinations for the majority of the processes that occur into the cell, getting closer and closer to a more specific, and more personalised medicine. Here we review the biological bases of different pathological processes and the way they can be visualised with different radiotracers, their clinical utility and future developments.

Learning Objectives:
1. To learn the basic concepts in the development of new PET tracers.
2. To understand the biological process that can be assessed using novel PET tracers.
3. To learn about clinical applications of new PET tracers in oncology.

A-0706 16:51
C. Optical imaging in cancer
D. Razansky, Zurich/CH (daniel.razansky@uzh.ch)

Microscopy has been a major optical imaging tool since the seventeenth century. Optical imaging is still a rapidly emerging field with remarkable new approaches continuously emerging to improve on the capabilities and application potential; ultimately impacting biological discovery and healthcare. A significant role in these developments has played the discovery, development and propagation of fluorescent proteins and probes, as well as bioluminescence, to in-vivo imaging applications. Linked to this progress is the ability to visualise disease features and biomarkers with high versatility. The recent, novel developed multi-modality optical methods are poised to revolutionise optical imaging by delivering high-resolution visualisation of structural, functional, metabolic and molecular information deep from optically opaque living tissues. These modalities are uniquely endowed with rich and label-free hemodynamic contrast, excellent spatial and temporal resolution, centimetre-scale penetration into living tissues, and versatile exogenous contrast approaches. State-of-the-art handheld and intraoperative imaging solutions are further transforming medical diagnostics by offering a new level of precision in non-invasive clinical observations of patients, demonstrating high diagnostic efficacy in a number of indications, including skin and breast lesions, cardiovascular and inflammatory diseases and metastatic lymph node detection.

Learning Objectives:
1. To learn the basic concepts of optical imaging in oncology.
2. To understand the biological process that can be assessed by optical imaging.
3. To learn about clinical applications of optical imaging in oncology.

Author Disclosure:
D. Razansky: Shareholder; iThera Medical GmbH.

17:14
Panel discussion: Key competences to close the translational gap more efficiently

E³ - ECR Academies: Radiology Leaders' Bootcamp

E³ 1218

Secrets of radiology communications with patients and referring physicians

A-0707 16:00
Chairperson's introduction
M. Fathih, Tehran/IR (fathih@irsr.org)

While the referring physicians are looking for a detailed but concise description of patient’s problem enriched by recommendations for the next step or action, the patients and their loved ones, look for an ordinary explanation of the situation in daily life language. The effectiveness of a professional report is based on not only the imaging aspect of the procedure including anatomy, pathology and physical principles of image acquisition but also mechanisms of decision making in the clinical discipline of the referring physician. In other words, the knowledge requirements of the successful radiology reports are not limited to medical imaging but to the subspecialty profession of the physician. It is not possible to ask patients to avoid reading their professional radiology interpretation but obviously, the report may increase their anxiety. So we need new tools and channels of communicating with patients. The major challenge is to find the best way to inform patient without additional workload and without breaking principles of the medical discipline.
A fluid transfer of information among radiologists, referring physicians and patients is essential for timely care, patient satisfaction and optimal health outcomes. As radiology practices become larger, and more centralised, communication should be efficient and streamlined. While the introduction of sophisticated systems like computerised order entry, voice dictation systems and picture archiving and communication systems have certainly improved the information transfer, they may come at the expense of personal interaction with patients, referring physicians and medical colleagues. As the practice of radiology is evolving to become more patient-oriented and more multidisciplinary with the radiologist having an important clinical value in the care team, it is obvious that adequate personal communication is essential. Each person has a style of communication that is unique and refers to the choices made when communicating with others. Differences in communication style can be a barrier to effective communication. So it is important to identify its own personal communication style, to identify the barriers one might face when communicating with others no matter what communication style they have.

Learning Objectives:
1. Patients, patients’ organisations and referring physicians: “know your client” in radiology.
2. Communications styles for building trust and the role of informed consent.
3. Psychology tips and tricks for effective communications and negotiations.

A-0709 16:34
B. Marketing channels for radiology promotion
D. Pinto dos Santos: Cologne/DE (daniel.pinto-dos-santos@uk-koeln.de)

As radiologists (or any other physician) we are constantly marketing ourselves and our practices, whether we are aware of it or not. In this talk, an overview is given about the various channels by which we are already marketing radiology and how to improve these. Also, some channels that traditionally receive less attention are discussed. The 5 P’s mnemonic of marketing (product, price, placement, promotion and people) will be introduced to further explain some fundamentals of marketing. These fundamentals naturally have some overlap with the five dimensions of service quality (reliability, assurance, tangibles, empathy and responsiveness) as proposed by Parasuraman et al. which will also be reviewed. To conclude, potential implications on current clinical practice will be discussed, with a special focus on how feedback from patients and referring physicians can be gathered as well as how the radiological report (especially structured reports and lay-language reports) can contribute to improving the perception of radiology.

Learning Objectives:
1. Traditional and new marketing channels in healthcare.
2. Multi-media, multifaceted and lay-language reporting: is there a way to change the format of radiology reports?
3. Referring physicians’ and patients’ feedback as a driver of quality improvement.

A-0710 17:02
C. Personal-branding and promotion for a radiologist
S. Morozov: Moscow/RU (smorozov@gmail.com)

Current social media channels provide unparalleled possibilities for a wide promotion of healthcare services and professional expertise. Potential favourable outcomes include continuous communications within and outside a professional community, wider promotion of new medical technologies, and quicker distribution of professional news. Relatively low signal-to-noise ratio is a significant limitation of social media’s effectiveness. Moreover, care should be taken to avoid misinterpretation of the superficial and brief information. A promotion and communication activity allows to achieve the expected result if it follows a pre-defined plan with an agile modification as it is realised. The major definitions to be preliminary made are the following: mission, executive, partners and strategy, target audience, key messages, tools and tactics, metrics, budget, schedule and amendments. The expected SMART result is a major differentiator of leisure social activities from a coordinated art of actions. Careful planning and execution do not exclude a personal touch in the communications. Moreover, a combination of personal and professional messages allows to effectively reach out to a wider audience. Recommendations on the content: at least 20% of personal messages, at least 20% of videos, description, hashtags, geo-tags, and face-tags. Publications about events, meetings with interesting people, resumes of books, teamwork reports, and personal motivations sources are the most attractive. Although social activities are attractive and joyful, their amount should be limited to less than 5% of daily working time. Core professional activities include clinical, research, administrative, teaching, and writing are the most valuable.

Learning Objectives:
1. A personal touch in healthcare marketing and challenges of “Group Practice” in developing a brand.
2. The best recipe for building a radiologist’s personal brand to be known internationally.
3. Radiologist’s role in an early diagnostics promotion and education of patients.

Author Disclosure:
S. Morozov: Advisory Board; Agfa, Philips.

A-0711 16:00
A. Chairperson’s introduction: What are the problems of morphologic evaluation
E. De Kerviler: Paris/FR (eric.de-kerviler@lsls.aphp.fr)

Since the 1980s, there have been many criteria to assess response of cytotoxic agents in solid tumours: WHO, SWOG, RECIST…. These various criteria have evolved over a period of time to establish their consistency in the assessment of efficacy in various solid tumours. Using these criteria, the primary endpoint is a significant decrease in the overall tumour burden, with thresholds for a response depending on the method used. For years, the main debate was therefore around the use of unidimensional versus bidimensional measurement of target lesions, the number of target lesions, and the assessment of non-target lesions. In the era of precision oncology, there has been a marked growth of targeted therapies and immunotherapies. Now there is evidence that single morphological response criteria may not be good enough. Evaluating early responses to precision therapy is essential for “go” vs. “no-go” decisions for these expensive molecularly targeted drugs. In the near future, it is clear that CT perfusion, functional MRI and molecular imaging will offer new perspectives in the assessment of the therapeutic response of non-cytotoxic drugs. More than ever before, imaging will play a prominent role in the management of cancer patients.

A-0712 16:05
A. CT perfusion techniques
H. Schöllnast: Graz/AT (helmut.schoellnast@medunigrat.at)

CT-Perfusion imaging is a functional imaging tool which enables qualitative and quantitative evaluation of tumour perfusion and, therefore, assessment of tumour-related angiogenesis. Clinical applications for CT-perfusion imaging have mainly evolved to improve the decision of prognosis, prediction of response to therapy and assessment of response to local or systemic therapies. Perfusion values have shown significant differences when comparing normal tissue with tumours and between benign and malignant lesions, although there is an overlap between benign and malignant lesions. The degree of tumour perfusion is potentially associated with tumour aggressiveness as tumour-related angiogenesis determines the ability of tumours to metastasise and, therefore, affects prognosis. On the other hand, hypoxia within a tumour reflected by restricted perfusion Limits the effect of chemotherapy and radiotherapy, potentially allowing for prediction of response. Both conventional chemotheraphy and targeted therapies such as angiogenesis inhibitors may affect tumour vascularisation. In contrast to conventional chemotherapy, which mainly shows a cytotoxic effect on the tumour, angiogenesis inhibitors show rather a cytostatic effect. Traditional tumour size-based response criteria may underestimate the response to angiogenesis inhibitors in the early course of treatment due to stable tumour size despite effective therapy. In contrary, CT-perfusion imaging allows detection of a decrease in tumour perfusion which precedes decrease in size. Use of different models for Perfusion calculation such as compartmental model and deconvolution model, use of different CT-perfusion protocols including contrast media injection protocols and inter- and intraobserver variability when using Perfusion software limit use of CT-perfusion imaging in clinical Routine.

Learning Objectives:
1. To learn about current approaches for CT perfusion.
2. To understand the basic principles behind each technique.
3. To discuss radiation exposure from CT perfusion techniques.
4. To appreciate the clinical usefulness of these techniques in routine clinical practice.

Author Disclosure:
H. Schöllnast: Speaker; Invited Speaker for Canon Medical Systems (formally Toshiba Medical Systems) in the past.
It is recognised that cancer is a biologically heterogeneous disease. Thus a 'one size fits all' management approach may not bring about the best outcome for the individual patient. Oncologic therapies have evolved substantially over the last two decades providing cancer patients with a greater opportunity for a cure. This personalised approach has also required a paradigm shift in oncologic imaging to capture this biological heterogeneity and improve patient triage. MRI provides a unique opportunity to combine high contrast and spatial resolution imaging of tumour morphology with physiological imaging of water diffusion, vascularity and oxygenation status. At initial diagnosis and staging this may allow tumours to be phenotyped better and during therapy, for tumours to be assessed more comprehensively, particularly where therapy is cytostatic and will not result in significant size change. In this lecture, the different functional imaging techniques that can be applied in clinical practice will be discussed, and evidence for practice highlighted. The potential of integrated PET/MRI will also be considered.

Learning Objectives:
1. To learn about different functional MR techniques such as diffusion and perfusion.
2. To understand the basic principles behind each technique.
3. To appreciate the clinical usefulness of these techniques in routine clinical practice.

Author Disclosure:
J.E. Wildberger; Modern high-end CT scanners with faster scan acquisition times allow for...
A. Trojanowska;

After radiotherapy, imaging may be used to monitor tumour response, and to

neck

H.B. Eggesbø;

Head and neck cancer in the Western countries accounts for 3-4% of all

Post-treatment imaging of the head and

RC 1208

16:00 - 17:30 Room M 5

Secondary to resection, flap reconstructions, oedema, inflammation and the
cancer may complicate imaging findings. Differentiating post-

radiation therapy techniques and the addition of concurrent and neoadjuvant

1. To become familiar with different methods of treatment.
2. To understand post-surgical and post-RT complications.
3. To know how to follow-up with patients in order to depict early recurrence.

Learning Objectives:
1. To get acquainted with the problem of recurrence in imaging studies.
2. To understand how to estimate signs of recurrence in CT and MRI.
3. To learn about false positive and false negative findings.

False positive findings arise from post-treatment changes, especially

induced tumours and granulomatous polyps.

Panel discussion: What are the challenges in differentiating post-

Assessment of the head and neck cancer is both challenging, because of the presence of scar tissue. Therefore, it is essential to be familiar with normal findings after surgery and radiotherapy, to distinguish these characteristics from tumour recurrence and treatment-related complications.

Learning Objectives:
1. To get acquainted with the most frequent surgical procedures in the head and neck.
2. To understand how to evaluate post-surgical patients.
3. To learn how to assess microvascular flaps.

A. Trojanowska;

Nowadays, the management of head and neck cancer involves multidisciplinary evaluation and treatment, which usually includes surgery, radiation therapy and chemotherapy. The various approaches to surgical resection and tissue reconstruction, the types of neck dissection, different radiation therapy techniques and the addition of concurrent and neoadjuvant chemotherapy regimens may complicate imaging findings. Differentiating post-treatment changes from tumour recurrence with the use of different imaging modalities is challenging, because of the presence of altered anatomy secondary to resection, flap reconstructions, oedema, inflammation and the presence of scar tissue. Therefore, it is essential to be familiar with normal findings after surgery and radiotherapy, to distinguish these characteristics from tumour recurrence and treatment-related complications.

Learning Objectives:
1. To get acquainted with the most frequent surgical procedures in the head and neck.
2. To understand how to evaluate post-surgical patients.
3. To learn how to assess microvascular flaps.

A. Trojanowska;

Nowadays, the management of head and neck cancer involves multidisciplinary evaluation and treatment, which usually includes surgery, radiation therapy and chemotherapy. The various approaches to surgical resection and tissue reconstruction, the types of neck dissection, different radiation therapy techniques and the addition of concurrent and neoadjuvant chemotherapy regimens may complicate imaging findings. Differentiating post-treatment changes from tumour recurrence with the use of different imaging modalities is challenging, because of the presence of altered anatomy secondary to resection, flap reconstructions, oedema, inflammation and the presence of scar tissue. Therefore, it is essential to be familiar with normal findings after surgery and radiotherapy, to distinguish these characteristics from tumour recurrence and treatment-related complications.

Learning Objectives:
1. To get acquainted with the most frequent surgical procedures in the head and neck.
2. To understand how to evaluate post-surgical patients.
3. To learn how to assess microvascular flaps.
Session Objectives:
1. To learn about emergent issues regarding safe use of contrast media.
2. To understand the mechanisms underlying acute reactions and renal function deterioration after contrast media injection.
3. To provide evidence-based recommendations for safe use of contrast media and for the management of acute reactions.

A-0724 16:05
A. Post-contrast acute kidney injury (PC-AKI)
A.J. van der Molen; Leiden/NL (molen@lumc.nl)

The prevalence of Contrast-Induced Nephropathy, or more appropriately termed Post-Contrast Acute Kidney Injury (PC-AKI), has in recent times been the topic of intensive research. For intravenous CM administration large propensity score based studies showed a much lower frequency than was previously taught. Therefore, the Contrast Media Safety Committee of ESUR has recently systematically reviewed the existing literature and updated their guideline on Prevention of PC-AKI. The recommendations of this update will be explored. Also, results of a follow-up survey study among ESUR members into the barriers and facilitators of the implementation of this guideline in practice will be briefly shown.

Learning Objectives:
1. To understand the definition of PC-AKI.
2. To learn about the possible causes for PC-AKI.
3. To review current evidence regarding PC-AKI.

Author Disclosure:
A.J. van der Molen: Author; Incidental, ESUR CMSC Safety Book. Speaker; Incidental, Guerbet and Canon Medical Systems in past.

A-0725 16:30
B. Iodine-based contrast media in myeloma patients
F. Stacul: Trieste/IT (fulvio.stacul@aots.sanita.fvg.it)

Many radiologists and clinicians still consider multiple myeloma (MM) and monoclonal gammopathies (MG) a contraindication for using iodine-based contrast media. The ESUR Contrast Media Safety Committee performed a systematic review of the incidence of post-contrast acute kidney injury (PC-AKI) in these patients. A systematic search in Medline and Scopus databases was performed for renal function deterioration studies in patients with MM or MG following administration of iodine-based contrast media. Data collection and analysis were performed according to the PRISMA statement 2009. Eligibility criteria and methods of analysis were specified in advance. Cohort and case-control studies reporting changes in renal function were included. Thirteen studies were selected that reported 824 iodine-based contrast medium administrations in 642 patients with MM or MG, in which 12 unconfounded cases of PC-AKI were found (1.6%). The majority of patients had intravenous urography with high osmolality ionic contrast media after preparatory dehydration and purgation. In conclusion, MM and MG alone are not risk factors for PC-AKI. However, the risk of PC-AKI may become significant in dehydrated patients with impaired renal function. Hypercalcemia may increase the risk of kidney damage and should be corrected before contrast medium administration. Assessment for Bence-Jones proteinuria is not necessary.

Learning Objectives:
1. To learn about the relationships between iodine-based contrast media and myeloma.
2. To understand the mechanisms of AKI in myeloma patients.
3. To review current evidence regarding risk of PC-AKI in myeloma patients.

Author Disclosure:
F. Stacul: Consultant; Bracco International.

A-0726 16:45
C. Ongoing evidence for acute adverse reactions
O. Clement: Paris/FR (olivier.clement@aphp.fr)

Contrast media (CM) use may lead to immediate hypersensitivity (IH) reactions, which should be distinguished from other adverse effects (pain, the sensation of heat, altered taste) and numerous pretreatment protocols have been implemented, but with uncertain efficacy. Different mechanisms were hypothesised to account for this until new diagnostic tests demonstrated an allergic mechanism in some patients through elevated tryptase and histamine concentrations and positive skin tests. Differingiating allergic from non-allergic IH is crucial, as allergy means immune memory and systematic recurrence at re-administration of the responsible or related agents (cross-reactivity), whereas non-allergic IH depends on direct toxicity. Numerous studies have been published over the last few years demonstrating these new pathophysiological pathways, both for iodinated and gadolinium-based agents, originating from European and Asian investigators. As a result, a clear modification of the clinical guidelines on hypersensitivity reactions is being witnessed, with an emphasis on skin testing for patients having presented immediate or delayed reactions. American (ACR Manual on Contrast Media Version 10.2), and European guidelines (ESUR, French, Spanish, British, German) are going to be compared on different aspects of hypersensitivity to contrast media; -pathophysiology - risk factors - skin testing - biological testing (histamine, tryptase and other mediators) - provocation tests. The practical implications in terms of department organisation and medical responsibilities will be discussed.

Learning Objectives:
1. To learn about the acute adverse reactions for contrast media.
2. To understand the current evidence regarding risk factors.
3. To illustrate the first-line treatment of acute adverse reactions.

Author Disclosure:
O. Clement: Advisory Board; Bayer. Speaker; Bracco, Guerbet.

17:10
Panel discussion: Towards a safer use of contrast media
Postgraduate Educational Programme

Saturday, March 2
Postgraduate Educational Programme

08:30 - 10:00 Room A

E³ - ECR Academies: Interactive Teaching

Session for Young (and not so Young) Radiologists

E³ 1321

Writing reports: a survival guide

A-0732 08:30

A. Lung nodule: managing uncertainty
 M. Prokop; Nijmegen/NL (mathias.prokop@radboudumc.nl)
 "no abstract submitted"

Learning Objectives:
1. To identify the key imaging findings.
2. To become familiar with the new Fleischner guidelines.

A-0733 09:15

B. Interstitial lung disease: searching for clarity
 N. Sverzellati; Parma/IT

Diffuse interstitial lung diseases (DILDs) are an important but difficult group of disorders. High-resolution computed tomography (HRCT) is at the centre of the assessment of patients who have a suspected DILD. The term DILD comprises more than 200 separate disease entities. However, their pathological and HRCT patterns are relatively restricted compared to their number. This is an essential concept for understanding either the basics of the interpretation of HRCT scans or the need for a multidisciplinary discussion for securing the correct diagnosis. Having an organised approach is important for the efficient and accurate interpretation of HRCT scans. An example of this approach is a systematic sequential analysis of all the anatomical compartments of the thorax (e.g. airways, followed by the lung parenchyma, the pleura itself, and the mediastinum). Each finding should be further described concerning size, shape, location within the lungs, and relationship to any normal surrounding structures. Radiologists are to recognise basic HRCT patterns and key HRCT signs that may link abnormal imaging patterns to lung diseases. Some of these are specific to a disease, whereas others help narrow the differential diagnosis. Recognising these imaging patterns and HRCT scan signs are thus very important for the differential diagnosis.

Learning Objectives:
1. To become familiar with the differential diagnosis.
2. To identify the key imaging findings.

08:30 - 10:00 Room B

Special Focus Session

SF 13a

Radiology and pathology: will we ever be (digitally) married?

A-0734 08:30

Chairperson's introduction
 L. Donoso; Barcelona/ES (ldonoso@clinic.ub.es)

Pathology and radiology are the core for clinical diagnosis, yet the workflows of both specialties remain in separate "silos," with no direct linkage between their reporting systems, even when both departments belong to the same host institution. Because both radiologists and pathologists' data are essential to making correct diagnoses and appropriate patient management and treatment decisions, this isolation of radiology and pathology workflows can be detrimental to the quality and outcomes of patient care. With the information technologies advances currently occurring in healthcare, there is a clear opportunity to develop an integrated diagnostic reporting system that supports both specialties and, therefore, improves the overall quality of patient care. In this session, we will review the potential benefits of merging both specialisations and the most relevant technical and organisational factors involved in the integration process.

Session Objectives:
1. To learn about digital pathology.
2. To understand the differences with digital radiology.
3. To appreciate the opportunities of a possible integration.

A-0735 08:34

Are digital pathology and AI the definitive factors for the merging?
 P.J. van Diest; Utrecht/NL
 "no abstract submitted"

Learning Objectives:
1. To learn about key aspects in the implementation of digital pathology.
2. To understand the AI impact in pathology.
3. To appreciate the opportunities of a common workflow in the imaging domain.

A-0736 08:58

How would the integration work? (Part 1)
 P.J. van Diest; Utrecht/NL (P.J.vanDiest@umcutrecht.nl)

Where radiology has been digital for decades, pathology is at the brink of the digital revolution. Around the world, several labs have turned to full digital diagnostics, and many more labs are working on it. This offers new possibilities for integration of radiological and pathological diagnostics, as the first step towards integrated diagnostics. Both specialties will benefit from seamless access to each other's images. This presentation will provide a visionary combination of such benefits, as well as the first impressions from the integration of digital radiology and digital pathology at the University Medical Center Utrecht.

Learning Objectives:
1. To understand the difficulties of the professional integration.
2. To become familiar with the common workflow.
3. To appreciate the disease-specific needs for radiology-pathology integration.

Author Disclosure:
 P.J. van Diest: Advisory Board; Sectra and Philips.

A-0737 09:10

How would the integration work? (Part 2)
 W.B. Veldhuis; Utrecht/NL
 "no abstract submitted"

Learning Objectives:
1. To understand the difficulties of the professional integration.
2. To become familiar with the common workflow.
3. To appreciate the disease-specific needs for radiology-pathology integration.

A-0738/A-0739 09:22

What difference would there be for patients?
 R. Palmqvist; Umea/SE (richard.palmqvist@umu.se)
 K. Riklund; Umea/SE (katrine.riklund@umu.se)

Diagnosis, staging, treatment evaluation and follow up is managed with a combination of patient information sources. Imaging with radiology and nuclear medicine and pathology are the main contributor of information during the entire lifespan of a disease. The already done digital transformation of radiology has meant higher availability to the examinations. The images are accessible when and where they are needed. The consequence of this has been an increased exposure of images to the patient, to the treating clinician and others. The conversion to digital pathology will have the same positive consequences but also with another added value - the combination of digital radiology and pathology in the multidisciplinary meeting room, when meeting the patient, for teaching and evaluation - all information accessible when and where needed. Radiology is often used to determine the site for biopsy or cytologic examination, but the radiologist does not routinely receive the results. The opposite counts for the pathologist that rarely take part in the radiology findings. The novel possibility to have accessibility to both radiology and pathology will be an important base not only for more accurate interpretations but also for continuous education. Examples of how radiologists and pathologists can make use of the digital development in radiology and pathology to make the best for the patients will be discussed at the session.

Learning Objectives:
1. To learn about clinical efficiency improvement.
2. To understand the impact on research and innovation.
3. To appreciate the improvement in patient care.

Author Disclosure:
 K. Riklund: Advisory Board; Swedish medical product agency. Board Member; DicomPort AB.

09:46

Panel discussion: What benefits are there to merge the two specialties?
Postgraduate Educational Programme

Professional Challenges Session

PC 13
Working in radiology: burnout and bore-out or engaged and passionate?

A-0740 08:30
Chairperson’s introduction (part 1)
M.G.M. Hunink; Rotterdaml/NL (m.hunink@erasmusmc.nl)

Symptoms of chronic stress and burnout occur in approximately half of all healthcare professionals leading not only to diminished health and quality of life among the professionals themselves but also to concerns about patient safety, quality of care, patient outcomes, professionalism, and sustainability of our healthcare systems. Radiologists rank in the top 10 of medical specialists with burnout, and they are among the most unhappy physicians. Key symptoms of burnout are emotional exhaustion, a detached, callous, cynical attitude, and a feeling of personal inadequacy. Chronic stress and burnout are due to an imbalance between stressors and resources. Stressors include ambition, perfectionism, self-criticism, lack of self-care, 24/7 electronic connectivity, interpersonal conflicts, employer demands, litigation, digitalisation, the complexity of care, and financial concerns. Resources include resilience training, healthy lifestyle, social support, meaningful activities, effective communication, and efficient work processes. To combat burnout among radiologists and radiographers, and thereby improve the quality of care, effective interventions are needed at both the organisational and individual level. In this session we will discuss the signs and symptoms of chronic stress and burnout, the factors that lead to the problem, and preventive measures that can be taken that will lead to active work engagement, meaningful work, and well-being among professionals working in radiology.

Session Objectives:
1. To learn to recognise the symptoms of chronic stress and burnout.
2. To understand what factors contribute to chronic stress and burnout among radiologists and radiographers.
3. To learn what preventive measures can be taken to prevent chronic stress and burnout among radiologists and radiographers.
4. To appreciate what is needed to achieve work engagement, meaningful work and well-being among radiology staff.

Author Disclosure:
M.G.M. Hunink: Advisory Board; EIBIR. Author; Textbook: Decision Making in Health and Medicine. Research/Grant Support; American Diabetes Association.

A-0741 08:33
Chairperson’s introduction (part 2)
E. Metsala; Helsinki/FI (eija.metsala@metropolia.fi)

Work wellbeing is essential to keep on working in fast developing professions such as radiology. Most of the factors contributing work well-being and job tenure and vice versa to burnout and willingness to change workplace are the same for all the healthcare staff. However, there are differences amongst professional groups. In the light of the current studies work autonomy, job design, leadership and possibilities for professional development as well as possibility to fluently combine family life, hobbies and work e.g. by the means of autonomous work time planning seem to be associated with low levels of stress, work satisfaction and commitment to ones’ workplace amongst radiographers. Commitment to ones’ workplace predicts job tenure. Having low pay, too little time for patients, working under tensed circumstances. Insufficient resources and amount of employees, as well as administrative pressures, cause stress and dissatisfaction amongst radiographers. Also, one big issue affecting all healthcare staff work circumstances if technological development, e.g. fast coming of Artificial Intelligence coming as a part of our work environment. About all these, we hear more in the upcoming session.

Session Objectives:
1. To learn to recognise the symptoms of chronic stress and burnout.
2. To understand what factors contribute to chronic stress and burnout among radiologists and radiographers.
3. To learn what preventive measures can be taken to prevent chronic stress and burnout among radiologists and radiographers.
4. To appreciate what is needed to achieve work engagement, meaningful work and well-being among radiology staff.

A-0742 08:35
A personal story
M.F. Berger; Nottwil/CH (marcus.berger@paraplegie.ch)

In this talk, I shall present my episode of burnout that I experienced about seven years ago, from a first-person point of view: early warning signs, failed attempts at self-help, sudden break-out of symptoms, medical workup, interventions and, finally, resolution and consequences. Mindfulness played a major role in my recovery. I shall describe my personal experience with mindfulness and explain how the practice not only can help you cope with stress and find meaning in your private and professional life but how it may actually make you a better radiologist.

Learning Objectives:
1. To learn to recognise the early symptoms of burnout in oneself.
2. To understand how life events and work stress in radiology contribute to burnout.
3. To appreciate the challenges in dealing with burnout.
4. To understand what is needed to prevent chronic stress and burnout.
5. To appreciate the value of mindfulness in being a better radiologist/radiographer.

A-0743 08:53
The role of technology in the job satisfaction and well-being of radiology workers
S. Aarts; Eindhoven/NL (s.aarts@fontys.nl)

The rate of the pace at which technological developments are introduced in healthcare is enormous; especially people working in technology-driven professions are confronted continuously with technological innovations. Unfortunately, technological developments are not always positively perceived by healthcare professionals. For example, the occurrence of ‘power supply issues’ and lack of knowledge of the technology at hand, can make health professionals sceptical about using new technology. For a technological application to be adequately implemented, health care professionals need to see the benefits of such an application and should feel competent to use it. To date, the role technology plays in the work of health professionals is intensively studied. Research shows that aspects such as ‘responsibility’ and ‘privacy’ are important for healthcare professionals when technology is involved: they feel it as their responsibility to safely, efficiently and effectively use the available technological devices and applications. They expressed the need to understand the background and principles of the technological applications they use, rather than ‘push a button’. Hence, technology affects multiple aspects of the day-to-day profession of radiology workers, which, in turn, affects job satisfaction and well-being. We will discuss how the role of technology is perceived by health care professionals, especially by radiographers, nuclear medicine technologists and radiation therapist. In addition, several barriers to the implementation of new technological developments will be brought forward during this talk. Moreover, possible solutions for these barriers will be discussed to maintain high job satisfaction and well-being.

A-0744 09:11
Dealing with daily battles: factors that lead to chronic stress and burnout
A. Montgomery; Tusszsaloniki/GREE (antmont@uom.gr)

Today all evidence in regard to causal factors associated with burnout points to the direction that burnout is an organisational, rather than an individual problem, rooted in issues related to the working environment and organisational culture. Burnout should be viewed as an obvious outcome of systems that are developed within medical education and fostered all through the career of physicians. Burnout, in terms of exhaustion, cynicism, and inefficacy, are experienced by individuals, but this focus on the individual can cause us to forget that it’s a shared experience in response to common job stressors meaning that we should frame it as a systems problem, and not simply as an individual one. Thus, we need to move the focus away from a physician-centric approach towards what can be done for the modern healthcare setting to enhance the ability of doctors to thrive. In other words, it is time to move from the burnout experienced by the resilient health care organisation.
Learning Objectives:
1. To learn about factors that lead to chronic stress and burnout among healthcare professionals.
2. To appreciate that preventive intervention should be setting-specific and context-dependent.
3. To become familiar with possible interventions at the organisational and individual level.

A-0745 09:29
From chronic stress and burnout to work engagement, meaningful work and employee well-being
J. Hakkanen; Helsinki/FI

Learning Objectives:
1. To learn what preventive measures can be taken to prevent chronic stress and burnout.
2. To shift the focus from prevention of chronic stress towards positive work experience.
3. To appreciate what is needed to achieve work engagement, meaningful work and well-being.

09:47
Panel discussion: Achieving well-being among radiology staff

08:30 - 10:00 Room N

EuroSafe Imaging Session
EU 4
Advanced clinical dosimetry in interventional radiology
A-0746 08:30
Chairpersons' introduction (part 1)
W.R. Jaschke; Innsbruck/AT (werner.jaschke@i-med.ac.at)

The term "clinical dosimetry" in scientific literature was until recently, mainly used for radiotherapy, but is now also applied to diagnostic and interventional procedures although the term "dosimetry for imaging in clinical practice" including patient and staff dosimetry would be more appropriate. Several publications of the International Commission on Radiological Protection (ICRP) recommend that patient protection and occupational protection be managed in an integrated approach. First, interventional radiologists have to learn which parameters of the DICOM dose report are reliable indicators for patient dose. Second, they have to understand that occupational dose is mainly due to scattered radiation originating mainly from the patient. Thus, patient dose and occupational dose are somewhat related to each other, especially in fluoroscopy guided interventional procedures. New electronic personal dosimeters and automatic registry systems for patient and staff doses allow access to detailed information on doses derived from all the radiation events (fluoroscopy, cine, DSA and CBCT runs). Real-time information on occupational doses (and dose rates) during interventional procedures inside the catheterisation rooms are also available in addition to the patient dose information and skin dose maps. Such information allows active optimisation strategies during and after the interventional procedures. The new interventionalists should be trained on the basic dosimetry aspects to properly use the information available inside the catheterisation room during the procedures, and apply it to improve their clinical practice and the radiation safety aspects. Continuous comparison of patient and staff doses with diagnostic reference levels is now possible. The introduction of automatic patient dose registries (with proper validation of the dosimetric data) will help optimise radiation protection and support to decide which patients could require a clinical follow-up for potential radiation skin injuries.

Session Objectives:
1. To learn about the clinical value of dosimetry.
2. To understand the technique of dosimetry and the implementation of real time personal dosimetry.
3. To appreciate the impact of dosimetry for dose management in interventional radiology.

A-0748 08:35
The basis of clinical dosimetry in interventional radiology
K. Bacher; Ghent/BE (Klaus.bacher@ugen.t.be)

Interventional radiology procedures can be linked to high patient radiation exposures. In order to be able to avoid deterministic (skin) effects and to evaluate the potential risks for radiation-induced cancer and genetic effects, accurate dosimetry is needed. First of all, dosimetric indexes such as dose area product and kerma at reference point are important quantities as they are measures during the fluoroscopy procedures and stored in a DICOM Radiation Dose Structured Report format. These dosimetric indexes are a useful tool for optimisation and the generation of diagnostic reference levels, but they don't describe the actual patient dose. Skin dose can be directly measured by means of small dosimeters, but the latter technique is cumbersome and time-consuming. The generation of skin dose maps, to identify peak skin doses during/after the procedure can overcome these issues. Accurate patient-specific dosimetry requires detailed information concerning patient characteristics and all irradiation events. Nowadays, modern systems allow for the collection of most of the required data. In this lecture, an overview of various dosimetric quantities will be presented, together with their use in clinical dosimetry and optimisation.

Learning Objectives:
1. To learn how to assess dose to patients and staff.
2. To appreciate the importance of dosimetry for optimisation.
3. To understand the potential pitfalls in clinical dosimetry.

A-0749 08:45
Real time staff dose monitoring
F. Vanhavere; MOL/BE (fvanhavere@SCKCEN.BE)

Staff working in interventional procedures are classified as occupationally exposed workers. Their doses need to be monitored by personal dosimetry. This dosimetric monitoring is done mostly by passive dosimeters. These have to be sent back after a wearing period of mostly one month so that the results are normally only available to the staff weeks or even months after the exposure. Using active dosimeters would be beneficial to the workers because they can get immediate feedback from their exposure and thus apply better the ALARA principle. Several types of active dosimeters can be used in interventional procedures. But when using active devices, it is important to verify that their characteristics are good enough for use in the specific hospital fields. Especially the low energies, high angles and the pulsed aspect of the X-ray fields can give problems for many active dosimeters. A series of tests in realistic hospital fields have been done within the EURADOS WG12, and the results of these tests and the limitations of the active dosimeters will be reported. But not only active dosimeters are being further developed and used, but also computational methods are more and more used to visualise the radiation fields around the patient. If this can be made available to the workers in real time, this will also be a good ALARA tool. It is possible to go even a step further and determine the doses to the staff with purely computational methods.

Learning Objectives:
1. To understand how on-line dosimetry can help in radiation protection of medical staff in interventional procedures.
2. To learn how the ALARA principle (as low as reasonably achievable) can be applied for medical staff in interventional procedures.
3. To become familiar with the tools, which are available for radiation protection of medical staff in interventional procedures.
Some interventional procedures may require large fluoroscopy times, many DSA images and/or several procedures on the same patient to address complex lesions. In such cases, the radiation dose to patients’ skin has to be monitored in real time and in case of high radiation doses, to propose a follow-up for potential skin injuries. In the case of repeated procedures, information about the radiation received in previous interventions may be necessary to manage the radiation dose and avoid potential skin injuries. The management of radiation dose will need several physical quantities as fluoroscopy time, number of images, air kerma at the patient entrance reference point, kerma area product and peak skin dose. An overview of the relevance of these quantities and their units will be provided. Modern C-arms offer some tools to monitor patient doses, from the simplest consisting in an indicator of fluoroscopy time and number acquired images, through the amount of radiation delivered by the X-ray tube, to the most complex skin dose calculators that provide quite accurate dose maps in patients’ skin in real time or at the end of the procedures.

Learning Objectives:
1. To learn about the motivation for real-time patient dosimetry.
2. To understand quantities and units to monitor patient dose.
3. To learn about prototypes and systems currently available.

Dose management of patients and staff in interventional radiology
J. Damilakis; Iraklion/GR (damilaki@med.uoc.gr)
Fluoroscopically-guided interventional procedures are associated with the relatively high patient and occupational doses mainly due to high utilisation, long fluoroscopy time and a large number of cine acquisitions. Optimisation of protection is essential to reduce patient dose while keeping image quality at acceptable levels. Advanced dosimetry methods will be presented and discussed. Optimising patient dose will result in a decrease in scatter radiation to the staff. To decrease the patient dose, operators should increase the distance of the X-ray tube from the patient as much as practicable and decrease the distance of the imaging detector. To avoid radiation exposure accidents in interventional suites, interventional radiologists in cooperation with medical physicists should establish standard clinical protocols for each specific type of procedure performed. Cumulative absorbed dose to the skin should be limited to the minimum necessary for the clinical task. To decrease occupational radiation doses, exposed personnel must use protective garments, i.e. a lead apron to protect body trunk, leaded gloves, radiation-protective glasses and a thyroid shield. Interventional radiologists should keep hands outside the primary beam. If hands are inside the beam, the automatic exposure control will increase exposure parameters and, therefore, radiation doses to both patient and staff will increase. Radiation dose to staff is reduced drastically when ceiling-suspended protective lead shielding or mobile floor shielding is used.

Learning Objectives:
1. To learn about radiation doses and risks associated with fluoroscopically-guided procedures.
2. To describe the actions that should be taken to enhance patient and staff safety during interventional radiology procedures.
3. To learn parameters that can be modified to decrease patient dose without compromising image quality.

Discussion

Vascular

RC 1315
US and vascular disease: a perfect match
Moderator:
V. Bérczi; Budapest/HU

A-0752 08:30
A. Abdominal aorta
D.A. Clevert; Munich/DE (Dirk.Clevert@med.uni-muenchen.de)

Abnormalities of the abdominal aorta may represent a diagnostic challenge in patients both with acute and chronic clinical symptoms. In addition to the examination using colour-coded duplex ultrasound, contrast-enhanced ultrasound (CEUS) with low-mechanical-index (low MI) may contribute to achieving a precise diagnosis. CEUS is a new and promising method in the diagnosis and follows up of aortic and visceral artery lesions. Colour code duplex ultrasound and CEUS with SonoVue® allow for rapid and noninvasive diagnosis, especially in critically ill patients since these methods can readily be applied bedside. In this RC, the contribution of colour-coded duplex ultrasound and CEUS as compared to Multi-Slice Computed Tomography Angiography (MS-CTA) in various pathologies of the abdominal aorta will be addressed.

Learning Objectives:
1. To learn how to perform the examination and its role in diagnostic assessment.
2. To learn about US findings in AAA treatment planning and post-treatment evaluation.
3. To appreciate the role of CEUS and technological innovations in routine practice.

Author Disclosure:
D.A. Clevert: Speaker; Bracco, Siemens, Philips, Samsung.

B. Upper and lower limb: arterial district
B. Brkljači; Zagreb/HR (borki@brkljaccc.com)

B-mode ultrasound enables evaluation of arterial anatomy and of the vessel wall, detects early atherosclerotic changes, and allows detection of stenosis and occlusions, but tends to overestimate the degree of stenosis and should not be used for stenosis grading. Colour duplex Doppler ultrasound (CDUS) enables fast visualisation of the vessel to be examined. It demonstrates haemodynamic changes, including velocity increase. Underestimation of disease is likely if only colour is used and the precise assessment of haemodynamic disturbances is impossible without a spectral analysis. In general, CDUS has a high diagnostic accuracy, it is cheap and widely available, and there is no exposure to ionising radiation and no contrast media injection. However, the examination is time-consuming and requires high operator dependence. The thorough understanding of haemodynamics and physics is needed for adequate interpretation of Doppler findings. The factors influencing spectral morphology will be discussed in the lecture and the different types of spectra presented. Waveform changes will be presented in stenosis and occlusion. The typical findings of pseudoneuromy and arteriovenous fistulas will be presented. Findings in acute occlusion and collateral flow will be discussed, both for native arteries and bypass grafts. The role of ultrasound in endovascular recanalisations will be discussed, both in planning and performing of the procedure and in the follow-up. Several clinical examples will be presented.

Learning Objectives:
1. To understand how to perform the examination and its role in diagnostic assessment.
2. To understand US findings for diagnosis and follow-up.
3. To underline tips and tricks to start your activity.

A-0754 09:30
C. Ultrasound as guidance for vascular interventions
W.K. Matzek; Vienna/AT (Wolfgang.Matzek@medunivwien.ac.at)

While there is a long tradition of blind puncture of arterial vessels which works quite well in many cases, ultrasound-guided puncture might be advantageous in certain situations. The main reasons for ultrasound-guided puncture are, e.g. unusual puncture site, severely calcified wall, avoidance of double-wall puncture, non-palpable vessel, or small vessel diameter. Eventually, ultrasound-guided arterial puncture can aid the less experienced interventionist at finding appropriate access to the vessel. Vascular malformations are congenital anomalies of veins, arteries, capillaries, lymphatic vessels, or a combination of these. These lesions become clinically apparent at almost any age, starting with newborns. Most of the venous, arteriovenous, and lymphatic lesions, simple or combined, can be treated using interventional techniques and ultrasound guidance contributes significantly to the success of this treatment. A couple of selected cases and treatment options will be presented. Varicose veins can be treated using different strategies. Ultrasound-guided foam sclerotherapy will be discussed, as well as endovenous ablation therapy using radiofrequency and laser ablation.

Learning Objectives:
1. To understand the value of ultrasound guidance for arterial puncture.
2. To learn about the possibilities of ultrasonographic guided therapy of AVMs.
3. To become familiar with endovenous treatment of varices.
Spontaneous intracranial hypotension caused by spinal CSF leaks can be a frustrating diagnosis from both diagnostic and therapeutic standpoints. While the classic finding is an orthostatic headache which may be exacerbated with a cough, sneezing or valsalva, a wide variety of other symptoms can be attributed to the disorder including photophobia, imbalance, hearing abnormalities and mental status change. Underlying etiologies may be a dural a CSF-venous fistula.

Learning Objectives:
1. To recognize the advantages and disadvantages of digital breast tomosynthesis compared to 2D mammography.
2. To understand how to improve on spinal imaging.
3. To learn about new interventional spine techniques available in low back pain.

A-0759 09:20

Cutting edge minimally invasive spine interventions
L. Manni, Catania/IT (lmanni@ime.com)

During the last decade, we attended an incredible improvement in spine biomechanics knowledge and powerful diagnostic tools, as well as the development of a new generation of “minimally invasive” devices and “covert surgery” procedures, that changed our mind about who, when and how to treat a patient affected by spine disease. The use of X-ray and/or CT-guided interventions of the spine: a wide range of new possibilities in treating spinal diseases with minimally invasive procedures can be performed in mild sedation. Last, but not least, CT-X ray guided procedures allows significant cost reduction for the Health Care System, as smaller medical staff is needed, with no operating room occupation as well as beds/patients rate reduction, a must in our money-saving critic times. Interventional Radiology, however, cannot progress without an advanced knowledge of Diagnostic Radiology of the Spine, that is fundamental when a decisional route must be proposed to the patient. We will analyse all the most recent CT-guided technique in the treatment of tumours, degenerative and traumatic disease of the Spine, treated with fully CT-guided techniques in simple analogue-sedation.

Learning Objectives:
1. To review the current state-of-the-art in minimally invasive spine interventions.
2. To learn how to choose an optimal minimally invasive treatment in low back pain.
3. To learn about new interventional spine techniques available in low back pain.

Panel discussion: How can we make spinal imaging better?

Breast

RC 1302
New mammography: digital breast tomosynthesis and future techniques

A-0760 08:30

Chairperson’s introduction
E.M. Fallerberg, Munich/DE

Early detection of breast cancer through X-ray mammography (MG) has been shown to reduce mortality; however, the method is limited by a decreased sensitivity and specificity particularly in young patients and women with radiographically dense breasts due to tissue overlying and masking tumours or architectural distortions. The introduction of full-field digital mammography gave the possibility to develop further technical methods, to overcome these limitations. Some of these are tomosynthesis, contrast-enhanced mammography and contrast-enhanced tomosynthesis as well as most recently also breast CT. In this talk will be presented the background of 2D mammography, tomosynthesis and contrast-enhanced mammography techniques and breast CT. Potential advantages and disadvantages will be indicated, and a sample of clinical cases will be presented to illustrate how the different techniques contribute to the detection of lesions.

Session Objectives:
1. To review the current state-of-the-art in minimally invasive spine interventions.
2. To interpret different imaging studies in spinal CSF leaks.
3. To learn the value of different imaging techniques in detecting spinal CSF leaks.

Postgraduate Educational Programme

SF 13b
Cutting edge imaging and minimally invasive interventions of the spine

A-0755 08:30

Chairperson’s introduction
J. Van Goethem; Antwerp/BE (johan.vangoethem@uantwerpen.be)

This session will present the latest developments in spine imaging. The topics that have been chosen cover a wide range of frequently occurring spinal pathology. The best and most renowned speakers will bring you up-to-date on the newest developments in the field. These will be presented in a way to make it easy to implement them in your daily practice.

Session Objectives:
1. To become familiar with state-of-the-art spinal imaging and minimally invasive spine interventions.
2. To learn about advanced imaging of the spine.
3. To learn how to improve on spinal imaging.

A-0756 08:35

Imaging strategies in spine and spinal cord trauma
P.C. Maly Sundgren; Lund/SE (Pia.Sundgren@med.lu.se)

Spinal injuries to the spinal column or spinal cord are devastating for the patient, their family and costly for the society. Depending on the degree of trauma, the age and condition of the patient, clinical, and neurological symptoms different imaging strategies are suggested. Different imaging rules and schemes have been suggested where the degree of trauma and the patients symptoms play an important role in the imaging decision making. The presentation aims to focus on when and how to image and present the differences that can be seen in injuries between the pediatric and the adult population.

Learning Objectives:
1. To review the imaging strategy in spinal trauma.
2. To know the most optimal imaging techniques in spinal trauma.
3. To learn about new developments in imaging spinal trauma.

A-0757 08:53

Advanced imaging of spinal cord lesions: do we need DWI, perfusion and spectroscopy?
M.M. Thumher; Vienna/AT (majda.thumher@medunwien.ac.at)

Despite its high sensitivity but low specificity, magnetic resonance imaging (MRI) is the modality of choice for diagnosis of spinal cord diseases. Spinal cord examination is one of the most challenging MR examinations from a technical, interpretative, and differential diagnostic standpoint. In practice, there are no satisfactory ways to distinguish among different forms of myelitis and neoplastic conditions when conventional MR sequences are used. In the last decade, several indications for diffusion-weighted MR imaging (DWI) and diffusion tensor imaging (DTI) in the spine have been reported. DTI could provide reliable postoperative evaluation and analysis for cervical spondylotic myelopathy patients. DTI has been proven useful for differentiation of ependymoma and astrocytoma of the spinal cord. This lecture will review advantages and disadvantages of the advanced MR sequences (such as DWI, DTI, Perfusion) when used for the spine. Possible pitfalls, helpful clinical information, and recognition patterns will be discussed.

Learning Objectives:
1. To understand the indications for advanced imaging in spinal cord lesions.
2. To differentiate spinal cord lesions.
3. To learn the different imaging patterns of spinal cord lesions.

A-0758 09:11

Spinal CSF leaks: the precise “roadmap” for clinicians
J.S. Ross; Phoenix, AZ/US (Ross.Jeffrey1@mayo.edu)

Spontaneous intracranial hypotension caused by spinal CSF leaks can be a frustrating diagnosis from both diagnostic and therapeutic standpoints. While the classic finding is an orthostatic headache which may be exacerbated with a cough, sneezing or valsalva, a wide variety of other symptoms can be attributed to the disorder including photophobia, imbalance, hearing abnormalities and mental status change. Underlying etiologies may be a dural tear from osseous spur or disc, meningeal diverticulum or CSF-venous fistula. Up to 1/3 of patients may have no aetiology defined. The workup of these patients may vary widely and can include multiple imaging modalities and strategies ranging from nuclear medicine, CT, MR, and myelography. Our workup includes an initial evaluation with contrast-enhanced brain MR and epidural blood patch X2. If the blood patch fails, then a complete spine MR is performed looking for an epidural fluid collection (fast leak). If a fast leak is discovered, then additional dynamic imaging is performed (either dynamic myelography or dynamic CT myelography). If no extradural fluid is identified (presumed slow leak), then routine CT myelography is performed. If this routine study is negative, then MR myelography is performed with attention to defining a CSF-venous fistula.

Learning Objectives:
1. To review the most optimal imaging strategy in spinal CSF leaks.
2. To interpret different imaging studies in spinal CSF leaks.
3. To learn the value of different imaging techniques in detecting spinal CSF leaks.
Switching from analogical to digital technology has lead breast imaging to a new era where it has been possible to develop and introduce in the clinical practice new techniques such as tomosynthesis, CT mammography, contrast-enhanced spectral mammography (CESM), CAD and, eventually, advanced breast biopsy techniques, blurring the lines between diagnosis and treatment. CESM combines a iodinate contrast agent with the standard mammographic technique providing not only a morphological but also a functional examination of the breast, being able, in a similar fashion as MRI does, of depicting the enhancement related to the neoangiogenesis of tumour growth. CESM has been shown from literature studies to be a valuable tool in diagnosis and staging of primary breast cancer with a better diagnostic accuracy compared to conventional mammography, especially in women with dense breasts. It is also being explored the potential value of CESM as a screening tool. Further development of digital techniques is ready to be developed and implemented in breast imaging. In the near future, the introduction of Artificial Intelligence (AI) could let mammogram to become a tool of precision medicine. In fact, mammography could be used not only in a diagnostic setting but also as image-driven risk assessment tool and tumour biomarkers in order to move to a personalised screening approach and personalised treatment.

Learning Objectives:
1. To become familiar with further developments in digital mammography, such as contrast-enhanced mammography and contrast-enhanced digital breast tomosynthesis.
2. To understand the role of these new techniques in detection and characterisation of breast lesions.
3. To learn about the new potential of combining mammography with molecular imaging, optical imaging and texture analysis.

09:50 Panel discussion: Mammography, digital breast tomosynthesis and contrast-enhanced mammography: where will we stand in 10 years?

Room E2

Neuro

RC 1311

Altered mental state

A-0764 08:30
Chariperson’s introduction
M.A. Van Bucchem; Leiden/NL

Session Objectives:
1. To learn about the complex spectrum disease entities presenting with cognitive decline.
2. To understand the role of standardised imaging and reporting in the context of diagnosis and monitoring of patients with neurocognitive disorders.
3. To appreciate importance of multimodal imaging approaches in the diagnosis of neurocognitive disorders.

A-0765 08:35
MRI in the diagnosis of cerebral amyloid angiopathy (CAA)
J. Linn; Dresden/DE (Jennifer.Linn@uniklinikum-dresden.de)

Cerebral amyloid angiopathy (CAA) is defined as the deposition of β-amyloid in the walls of cortical and leptomeningeal cerebral vessels. It is very common in the elderly population with prevalence rates up to 60% and associated with Alzheimer’s disease. Intracerebral lobar microhemorrhages (ICH) are the most devastating presentation of CAA and the main cause of morbidity and mortality. However, in addition, CAA patients can also suffer from transient neurological symptoms and/or progressive cognitive impairment ultimately resulting in dementia. Besides ICH, typical MRI signs of CAA include multiple cerebral microbleeds in a cortical-subcortical localisation, focal subarachnoid haemorrhage, cortical superficial siderosis (cSS), silent cortical infarcts, white matter hyperintensities, and enlarged perivascular spaces. Evidence of previous ICHs and/or (disseminated) cSS represents an important risk factor for recurrence of CAA-related intracranial haemorrhages. To date, there exist no diagnostic test that allows the definite diagnosis of CAA related haemorrhage during life. The “classic” and the “modified” Boston criteria estimate the likelihood of the presence of CAA in vivo based on the pattern of intracranial hemorrhagic lesions on neuroimaging studies.

Learning Objectives:
1. To recognise cerebral amyloid angiopathy in imaging studies.
2. To understand the pathophysiology of the disease.
3. To know the clinical consequences of the diagnosis.

Author Disclosure:
J. Linn: Author; Springer, Thieme Publishers. Speaker; Bayer Healthcare.
A-0768 08:58
B. Imaging in an altered mental state
J. Boban: Novi Sad/RS (jasmina.konstantinovic@gmail.com)

Altered mental state (AMS) represents a group of clinical symptoms associated with different degrees of mental functioning disorder, including cognitive, attention, arousalal disorders and decreased level of consciousness. Clinical entities that are endorsed by this term are divided into brain death, coma, vegetative state/unresponsive wakefulness state, minimally conscious state, acute confusional state and Locked-in syndrome. A separate entity included in the definition is dementia from the point of mild cognitive impairment to manifest dementia. Aetiology of these conditions is different and varies greatly, including trauma, infectious diseases, metabolic disorders, psychiatric diseases, psychoactive substances and other, less common causes. The diagnosis of AMS is based on clinical observation and standardised neurobehavioral assessments. A focused clinical examination remains essential in distinguishing between separate entities, including testing of sleep-wake cycles, awareness, motor skills, auditory function, visual function, communication and emotional integrity. Since the rate of misdiagnosis reaches 40%, imaging studies are a complementary tool. Classic diagnostic modalities were computed tomography (CT) and magnetic resonance imaging (MRI), especially useful in the setting of trauma, infection and metabolic disorders. However, emerging new techniques, such as functional MRI and PET scan show promising results in defining etiological factor and neuropathological substrate in AMS. The aim of this lecture would be to present the main differential diagnosis in AMS and to summarise current diagnostic possibilities in different clinical settings.

Learning Objectives:
1. To learn about the role of imaging in the diagnosis of neurocognitive diseases: from the exclusionary approach to the inclusionary approach.
2. To understand the challenges when diagnosing neurocognitive disease in a very early stage using imaging.
3. To appreciate the complexity of differential diagnosis of neuroimaging in cognitively affected individuals and the crucial need for other biomarkers to support the clinical diagnosis.

Panel discussion: Ask the expert: how can I standardise my image reading and reporting in order to support the clinical process in cognitively impaired patients?

08:30 - 10:00 Room F1

E³ - European Diploma Prep Session

E³ 1323
Gastrointestinal and abdominal

A-0768 08:30
Chairperson's introduction
C. Stoepis, Männedorf/CH (c.stoupis@spitalmaennedorf.ch)

One of the most important focus of current abdominal imaging is not only to detect abnormalities but being able as well to characterise lesions in the parenchymal organs, facilitating the final diagnosis, noninvasively. Knowledge of anatomy, embryology, physiology and pathology of the liver, pancreas and spleen is essential to understand, diagnose and differentiate congenital, inflammatory, neoplastic and other miscellaneous lesions of those upper abdominal organs. Similar issues apply to the gastrointestinal tract, with regard to pathologies affecting not only the lumen but the wall also and beyond, areas not accessible by endoscopy. In this session, the role of multimodality imaging will be discussed (including hybrid imaging), in order to demonstrate the radiological features of common abdominal diseases, including emergency situations, targeting to the specific diagnosis in acute and chronic abnormalities and displaying the crucial role of radiology in the personal managed management of each patient, facilitating on this way not only the diagnosis but enabling as well an efficient and specific therapy.

Learning Objectives:
1. To understand the typical imaging features of benign and malignant lesions of the hepatobiliary system.
2. To learn the typical imaging features of benign and malignant lesions of the pancreas and spleen.
3. To become familiar with the methodological basis and to differentiate typical features in imaging examinations of the gastrointestinal tract.
4. To understand the role of different imaging modalities including hybrid imaging in diagnosing and staging neoplasms, gastrointestinal and abdominal organ systems.

A-0769 08:36
A. Hepatobiliary system
I. Santiago: Lisbon/PT (ines_ago_santiago@hotmail.com)

An overview of the anatomy, normal variants and congenital disorders of the hepatobiliary system will be provided, followed by the discussion of the imaging features of the most relevant benign and malignant diseases of the biliary tract. Primary and secondary imaging features of acute and chronic diffuse liver diseases will be briefly discussed. The underlying causes and imaging features of the most frequent and relevant benign and malignant focal liver lesions, including cysts, haemangiomas, adenomas, focal nodular hyperplasia, hepatocellular carcinomas and metastases will also be addressed.

Learning Objectives:
1. To learn the anatomy, normal variants and congenital disorders of the hepatobiliary system.
2. To become familiar with the primary and secondary imaging features of acute and chronic diffuse liver diseases.
3. To understand the features and imaging features of benign and malignant focal liver lesions, including cysts, haemangiomas, adenomas, focal nodular hyperplasia, hepatocellular carcinomas and metastases.
4. To learn the various causes and imaging features of benign and malignant diseases of the biliary tract and gallbladder.

A-0770 09:04
B. Pancreas and spleen
W. Schima: Vienna/AT (wolfgang.schima@khgh.at)

In general, contrast-enhanced MDCT is the primary tool of pancreatic imaging, and MRCP is very valuable for assessment of the ductal system. Important anatomic variants and anomalies of the pancreas include pancreas divisum, and annular pancreas is, which are the result of either failure of fusion or rotation of the pancreas anlagen during the fetal period. Both anomalies may result in significant morbidity. Ductal adenocarcinoma is by far the most common malignant tumour of the pancreas, with approximately 80% of patients having non-resectable (advanced) disease at the time of diagnosis. In patients with equivocal CT findings, contrast-enhanced MRI is the technique of choice for visualisation of small tumours. A wide differential diagnosis exists for cystic masses: from (non-neoplastic) benign pseudocysts to benign, borderline and invasive malignant neoplasms. Contrast-enhanced MRI is the best modality for characterisation of lesions and to guide follow-up in patients. Acute pancreatitis is classified as interstitial edematous or necrotising pancreatitis according to the revised Atlanta classification, which has brought consistent terminology for fluid collections and complications of the disease. Imaging of splenic masses is one of the least esteemed tasks in abdominal imaging. Imaging appearances of many splenic lesions are non-specific and may overlap, which makes non-invasive characterisation quite challenging. However, imaging findings of the most important benign lesions such as hemangiomas, hamartomas, and abscesses should be familiar. If the noninvasive characterisation of focal splenic lesions is not possible, US-guided core needle biopsy may be helpful, which can be performed with low risk of complications.

Learning Objectives:
1. To understand the anatomy, normal variants and congenital disorders of the pancreas.
2. To become familiar with the causes and imaging features of benign and malignant pancreatic tumours.
3. To understand the imaging features of acute and chronic pancreatitis and its potential complications.
4. To learn the causes and imaging features of focal and diffuse splenic abnormalities.

Author Disclosure:
W. Schima: Speaker, GE Healthcare, Siemens.
In this session, a brief overview will be provided of the main imaging anatomy and imaging manifestations of the most important pathologies of the gastrointestinal tract, including acute and chronic inflammatory conditions, bowel obstruction and ischemia and the most important GI tumours. This session serves as a preparation for the European Diploma.

Learning Objectives:
1. To become familiar with the anatomy, normal variants and congenital anomalies and their clinical significance.
2. To learn about the normal anatomy of systemic venous drainage, common anomalies and their clinical significance.
3. To be aware of the up-to-date evidence relating to cardiovascular risk and risk factors: obesity, metabolic syndrome, hypercholesterolemia and also smoking.
4. To differentiate the appearances and physiology of RV volume loading and pressure loading.
5. To be aware of the normal appearances of the right ventricle on CT and MRI.
6. To learn the methods of quantifying epicardial fat.

Session Objectives:
1. To become familiar with normal cardiac anatomy and variants outside the cardiac chambers.
2. To understand the important interactions between ventricular chambers and their adjacent structures.
3. To learn what findings are significant and when to report them.
4. To appreciate the strengths and weaknesses of cross sectional imaging techniques when applied to the structures below.

A-0772 08:30
Chairperson’s introduction

C. Peebles: Southampton/UK (Charles.Peebles@suh.swest.nhs.uk)

Cardiac imaging techniques tend to focus on the Left ventricle, coronary arteries and cardiac valves, particularly in the adult patient. This reflects the prevalence and significance of disease affecting these structures in the general population. This session will focus on areas of anatomy, and their functional significance, that is often forgotten in the primary cardiac analysis yet may the cause of significant pathology. This introduction will provide an overview of the imaging techniques available.

Session Objectives:
1. To become familiar with the anatomy, normal variants and congenital anomalies and their clinical significance.
2. To learn about the normal anatomy of systemic venous drainage, common anomalies and their clinical significance.
3. To be aware of the up-to-date evidence relating to cardiovascular risk and risk factors: obesity, metabolic syndrome, hypercholesterolemia and also smoking.
4. To differentiate the appearances and physiology of RV volume loading and pressure loading.
5. To be aware of the normal appearances of the right ventricle on CT and MRI.
6. To learn the methods of quantifying epicardial fat.

A-0773 08:35
Hide and seek: the pericardium

A. Nchimi Longang: Luxembourg/LU (alainnchimi@gmail.com)

Pericardial diseases encompass a broad spectrum for which delayed diagnosis and inappropriate management are associated with high morbidity and mortality, whereas appropriate treatment may dramatically relieve patient symptoms. Imaging is often necessary to evaluate pericardial fluid collections, calcifications, thickening, hyperemia, masses and constriction. The current presentation will emphasize the definition of the pericardial syndromes and the specific advantages and weaknesses of CT and MRI in evaluating pericardial diseases and differentiating normal from abnormal findings.

Learning Objectives:
1. To learn the normal appearances of the pericardium on CT and MRI.
2. To understand the basic spectrum of disease process that affect the pericardium.
3. To be aware of the physiological effects of pericardial disease on cardiac function.

A-0774 08:52
Lost chamber: the right ventricle

G. Bastarrrika: Pamplona/ES (bastarrrika@unav.es)

Even if traditionally the right ventricle (RV) has been the neglected side of the heart, the role of this cardiac chamber in evaluating different cardiovascular, as well as pulmonary diseases, is being increasingly recognized, including pulmonary arterial hypertension, ischemic heart disease, chronic obstructive pulmonary disease, arrhythmogenic RV cardiomyopathy and congenital heart disease. Currently, echocardiography and magnetic resonance imaging (MRI) are the imaging modalities of choice to assess RV morphology and function. Recently, the added value of multidetector computed tomography (MDCT) with its latest advances, i.e., spectral imaging, is being emphasised. In this lecture, the complementary role of different imaging modalities to appraise the RV and pulmonary circulation will be underlined. Further, imaging features of most common diseases involving the RV as well as prognostic markers related to the RV will be reviewed.

Learning Objectives:
1. To learn the normal appearances of the right ventricle on CT and MRI.
2. To differentiate the appearances and physiology of RV volume loading and RV pressure loading.
3. To be aware of adverse prognostic markers related to the RV.

Author Disclosure:

G. Bastarrrika: Grant Recipient; Guerbet. Speaker; General Electric, Siemens.

A-0775 09:09
Friend or enemy: epicardial fat

K. Gruzczynska: Katowice/PL (kgruzczynska@poczta.onet.pl)

Epicardial Fat Tissue (EFT) is the layer of adipose tissue located within the visceral pericardium, directly on the myocardium, around coronary vessels. Paracardial Adipose Tissue (PAT), is located outside the parietal epicardium, in the mediastinum. EFT is metabolically active visceral fat. Under physiological conditions, its function includes myocardial energy supply, lipid-storage, thermoregulation and endocrines secretion. There has been growing interest among researchers in EFT recently, as cardiovascular disease remains the main cause of death in the developed world and due to the epidemic of obesity. The evidence shows the association between EFT and cardiovascular risk factors: obesity, metabolic syndrome, hypercholesterolemia and also smoking. Studies are suggesting that EFT can act as an independent predictor of CAD risk or for adverse coronary events. Traditionally, EFT thickness has been measured by ECHO. However, CT and MRI offer the possibility of the non-invasive quantification of EFT, and the dedicated software already exists. Although EFT is subject to research in diagnostic imaging, it is also useful to recognise its anatomical variants as they could mimic the disease. To sum up, the presentation will give the possibility to get to know current opinions on the role of EFT in asymptomatic and symptomatic population and present its anatomy, variants and methods of measurement to practising radiologists.

Learning Objectives:
1. To understand the difference between epicardial and pericardial fat.
2. To learn the methods of quantifying epicardial fat.
3. To be aware of the up-to-date evidence relating to cardiovascular risk and the extent of epicardial fat.

A-0776 09:26
Wrong ways: anomalies of cardiac veins and venae cavae

M. Hrabak Paar: Zagreb/HR (maja.hrabak.paar@metro.hr)

The normal venous anatomy includes drainage of the superior and inferior caval veins and coronary sinus (CS) into the right atrium (RA), and drainage of all pulmonary veins into the left atrium (LA). The most common anomaly of superior vena cava (SVC) is persistent left SVC (LSCV) that usually drains into the CS and can make detection of central venous catheter position more difficult. Rarely the persistent left SVC drains into the LA causing the right-to-left shunt. Most common anomalies of the inferior vena cava (IVC) include double IVC, less commonly azygos continuation of the IVC can be observed. Anomalous pulmonary venous return (APVR) is commonly partial with one or two pulmonary veins draining into the SVC, IVC or RA; it can be asymptomatic and is frequently incidentally found during thoracic imaging. Partial right-sided APVR can be associated with a sinus venosus atrial septal defect (ASD). Total APVR is cyanotic congenital heart disease with all pulmonary veins draining into systemic veins, RA or CS, and can be divided into supracardiac, cardiac and infracardiac types. The depiction of pulmonary venous anatomy using CT or MRI is commonly performed for the planning of pulmonary vein isolation in patients with atrial fibrillation. CT mapping of the cardiac venous system is especially important for planning of left ventricular pacing in cardiac resynchronisation therapy. Unroofed CS is a rare form of ASD with a high morbidity and its latest advances, i.e., spectral imaging, is being emphasised. In this lecture, the complementary role of different imaging modalities to appraise the RV and pulmonary circulation will be underlined. Further, imaging features of most common diseases involving the RV as well as prognostic markers related to the RV will be reviewed.

Learning Objectives:
1. To learn the normal anatomy of pulmonary venous drainage, common anomalies and their clinical significance.
2. To learn about the normal anatomy of systemic venous drainage, common anomalies and their clinical significance.
3. To learn the normal anatomy of coronary venous drainage, common anomalies and their clinical significance.
How to critically appraise a research article

1. To appreciate the role of the literature review in the research process.
2. To identify strengths and weaknesses in each section of a research report.
3. To critically appraise the overall value of a research report.

Learning Objectives:
1. To understand general qualities of good scientific abstracts.
2. To be aware of typical formats of scientific abstracts.
3. To consider tips for success.

How to produce a high-quality scientific or educational poster

1. To understand general qualities of good scientific abstracts.
2. To identify scientific abstracts.
3. To critically appraise the overall value of a research article.

Learning Objectives:
1. To become familiar with key ethical issues arising in radiography and as individuals in the society that we live in. The first modern code governing ethics in research was developed during the Nuremberg trials in response to the abuse performed during medical experimentation. Various published reports about abuses were the motivating factors that led to the development of legislation on ethical principles and regulations when conducting research. These regulations may be seen as the boundaries that direct us in specific situations to help us make decisions and guide our behaviour while conducting research. Policies and procedures are also generally linked to cultural values and may be explicit to a particular time and are subject to change as attitudes and values evolve in today’s society. Conflicts may arise while performing research and these have to be addressed while being respectful to the participants at all times. It is crucial for researchers to be knowledgeable of any pitfalls that may inhibit the undertaking of the study. Research ethics committees have been set up to ensure that researchers follow procedures during the collection of data so that participants willingly consent to take part and are aware, and know of the associated risks and benefits. These committees also need to ensure that legislation is being respected and adhered to. If integrity is not maintained, public confidence and belief in findings will be lost. Therefore, it is important to be transparent, competent, and follow ethical procedures when conducting research.

Learning Objectives:
1. To understand the importance of ethics in medical research and the role of research ethics committees.
2. To become familiar with common ethical pitfalls in imaging research.
3. To appreciate strategies for avoiding ethical problems in imaging research.

How to produce a high-quality scientific or educational poster

Communication and dissemination of research in an ethical and systematised manner is as important as the research itself. One of the most common, most direct and commonly encountered ways to share data is the scientific poster. There are specific rules about the structure, the format, the presentation devised each time by the respective scientific event at which the poster is submitted and presented. However, there are also some generic rules universally applicable about structure, content and presentation of scientific posters that this talk will delve into. Once these rules adhere to the poster can fulfill its aim, which is to communicate the findings of research and stimulate discussion. Many research collaborations have started from a well-organised poster, and it is considered the predecessor of scientific presentations and research papers. It remains one of the most versatile means of disseminating evidence-based practice.

Learning Objectives:
1. To understand general qualities of good scientific abstracts.
2. To identify scientific abstracts.
3. To critically appraise the overall value of a research article.

How to critically appraise a research article

When planning a research project, it is vital that a good appreciation of the existing literature is gained. Performing a literature search prior to beginning your research enables you to realise trends, understand the gaps in the existing literature, and limitations in the existing knowledge base. Article critique is a core skill for evidence-based practice and it is important to have the skills and knowledge to successfully critique research articles. The different elements of a research paper will be discussed, helping you understand what information you should expect to find, and which aspects of a research paper require close inspection. Good critique is should always be positive and negative, and this session will help you understand the implications of positive and negative aspects of a research article on the overall outcomes and meaning of the research.

Learning Objectives:
1. To understand general qualities of good scientific abstracts.
2. To identify scientific abstracts.
3. To critically appraise the overall value of a research report.

How to write a good scientific abstract

The abstract is the “door” to your scientific publication, and when written in the right way, will open the desire of the reader to continue reading your full work. Although the main objective for the author is that the number of people who read the publication will be all interested by the scientific topic, he must write the abstract as the “big picture” in 250 words in order to sell his work. To achieve this goal, it is needed to choose the words that are capable of creating a desire of continue reading, but also with scientific content and respecting the format covenanted by the rigours scientific community, in other words, sell the work within the rules. In this talk, we will try to use the precise and right words to “How to write a good scientific abstract” according to a scientific structure and with the right message of your work. The measure of the success of your abstract is given by the equivalent number of readers of the full work. To conclude we hope to see you all at this talk, and at the end of that fulfil your expectations, because it is the most important!

Learning Objectives:
1. To understand general qualities of good scientific abstracts.
2. To be aware of typical formats of scientific abstracts.
3. To consider tips for success.

How to produce a high-quality scientific or educational poster

Communication and dissemination of research in an ethical and systematised manner is as important as the research itself. One of the most common, most direct and commonly encountered ways to share data is the scientific poster. There are specific rules about the structure, the format, the presentation devised each time by the respective scientific event at which the poster is submitted and presented. However, there are also some generic rules universally applicable about structure, content and presentation of scientific posters that this talk will delve into. Once these rules adhere to the poster can fulfill its aim, which is to communicate the findings of research and stimulate discussion. Many research collaborations have started from a well-organised poster, and it is considered the predecessor of scientific presentations and research papers. It remains one of the most versatile means of disseminating evidence-based practice.

Learning Objectives:
1. To understand general qualities of good scientific abstracts.
2. To identify scientific abstracts.
3. To critically appraise the overall value of a research article.

How to critically appraise a research article
displacement, which can potentially cause vascular damage. Lesion of the intraarticular disc may be common, but difficult to detect without high-resolution MRI. The stabilising ligaments surrounding the SCJ imply that the sternoclavicular region contains many areas of fibrous tissue inserting into bones (entheses), areas which may be involved by inflammatory disorders, predominantly seronegative spondyloarthritides. Most other joint disorders can also occur in the SCJ, predominantly osteoarthritis due to the joint strain. Detection of SCJ infection is particularly important due to a potential spread to the mediastinum. The SCJs are difficult to visualise by radiography; cross-sectional imaging by ultrasonography, CT, MR or radionuclide imaging is needed for appropriate visualisation. The lecture will encompass illustrations of characteristic imaging features of the most frequent SCJ disorders applying appropriate imaging strategies depending on the suspected disorder.

Learning Objectives:
1. To explain the pathologic conditions that involve the sterno-clavicular joints.
2. To describe the imaging findings of abnormalities that involve the sterno-clavicular joints.

Dose management in paediatric radiology

Physics in Medical Imaging

RC 1313

Dose management in paediatric radiology

A-0785 08:30

Chairperson's introduction

C. Saidleir; Dublin/IE (colm.saidleir@cuh.ie)

The important concept of dose management, specifically in paediatric radiology, is now mainstream following two decades of campaigns by various stakeholder organisations and advocacy groups championed by radiologists, radiographers and medical physicists. The initial drive was to tackle high dose procedures such as CT and interventional radiology. This has now expanded into all diagnostic modalities that use ionising radiation. The IAEA Safety Report No. 71 (2012) highlights and requires the ICRP (2007) concepts of justification, optimisation and risk to be addressed in paediatric radiography, interventional radiology, CT and neonatal imaging, the focus of this refresher session. This report was a tipping point for dose management in paediatric radiology and has led to a significant body of work to implement these concepts in radiology departments and practices across the world. Audit and dose tracking mechanisms are key to this process. Recent initiatives and publications such as the ‘The Gentle Way’ by the IDoR (2015), RP 185 (European Guidelines on Diagnostic Reference Levels for Paediatric Imaging) by the European Commission (2018), along with enactment into law in member states of the strict requirements in the Council Directive 2013/59/Euratom (Basic Safety Standards) for DRL’s and the tracking of same, is timely for the next steps. They provide guidelines, benchmarking tools, meaning processes and data, which are required to assist all stakeholders, including manufacturers, to obtain the best possible outcome for paediatric patients, that is, diagnostic quality images from a paediatric optimised modality at the appropriate dose.

Session Objectives:
1. To become familiar with modern dose management methods in paediatric radiology.
2. To understand the important aspects of paediatric dose management.
3. To appreciate the current trends and limitations.

A-0786 09:35

A. The special case of the paediatric patient: risks and justification

B. Optimisation and technology in paediatric projection radiography, interventional and CT scanning

A-0787 08:58

B. Optimisation and technology in paediatric projection radiography, interventional and CT scanning

A-0788 09:21

B. Optimisation in the neonate

A-0789 08:30

B. Symphysis pubis and its surroundings

A-0784 09:30

B. Symphysis pubis and its surroundings

A-0783 09:00

B. Symphysis pubis and its surroundings

A-0780 08:30

B. Symphysis pubis and its surroundings

A-0779 08:21

B. Symphysis pubis and its surroundings

A-0778 08:20

B. Symphysis pubis and its surroundings

A-0777 08:19

B. Symphysis pubis and its surroundings

A-0776 08:35

B. Symphysis pubis and its surroundings

A-0775 08:30

B. Symphysis pubis and its surroundings

A-0774 08:30

B. Symphysis pubis and its surroundings

A-0773 08:30

B. Symphysis pubis and its surroundings

A-0772 08:30

B. Symphysis pubis and its surroundings

A-0771 08:30

B. Symphysis pubis and its surroundings

A-0770 08:30

B. Symphysis pubis and its surroundings

A-0769 08:30

B. Symphysis pubis and its surroundings

A-0768 08:30

B. Symphysis pubis and its surroundings

A-0767 08:30

B. Symphysis pubis and its surroundings

A-0766 08:30

B. Symphysis pubis and its surroundings

A-0765 08:30

B. Symphysis pubis and its surroundings

A-0764 09:30

B. Symphysis pubis and its surroundings

A-0763 09:30

B. Symphysis pubis and its surroundings

A-0762 09:30

B. Symphysis pubis and its surroundings

A-0761 09:30

B. Symphysis pubis and its surroundings

A-0760 09:30

B. Symphysis pubis and its surroundings
Joint Session of the ESR and EORTC

ESR/EORTC Imaging in oncological trials

Moderator:
M. Smits; Rotterdam/NL

A-0789 08:30 Chairperson’s introduction
N.M. deSouza; Sutton/UK

This educational session of imaging in oncological trials will explore the role of imaging biomarkers as end-points in oncology trials. It will underline the importance of joint organisational working and collaboration for a successful outcome. Designing trials that assess the validity and utility of imaging biomarkers will be discussed using treatment of oligometastatic disease as an exemplar. The use of imaging biomarkers specific to immunotherapy and derivation of quantitative biomarkers from radiomics platforms will be addressed.

Session Objectives:
1. To highlight the collaboration between EIBALL and the EORTC imaging group.
2. To introduce the need for radiologists to learn about oncological trials beyond RCTs and how such knowledge can be used to initiate and advance oncological imaging research.
3. To appreciate the impact imaging has on patient stratification and response assessment.
4. To learn about the requirements for and potential of radiomics in oncological imaging research.

Author Disclosure:
N.M. deSouza: Grant Recipient; Cancer Research UK, EU Framework 7.

A-0790 08:35 Trial design and imaging end-points
L. Collette; Brussels/BE (Laurence.collette@eortc.org)

Nowadays the trial designs that are used for the evaluation of anti-cancer treatments range from the simplest, the traditional single-arm or 2-arm randomized designs addressing a specific histology, to much more complex designs that either address multiple (targeted) treatments for a given cancer type (“umbrella trials”) or assess treatments across histopathological tumour types (“basket trials”). We will discuss the use and characteristics of these designs. Images play an important role in the assessment of the treatment effect through either qualitative or quantitative measures of change over time. We will discuss some quality requirements that need to be met to ensure that the information they convey results in an accurate evaluation of the trial endpoints. Finally, we will give some thoughts on how the images collected for the study may be exploited to meet additional research objectives.

Learning Objectives:
1. To learn about the several types of trial design, including RCT, umbrella and basket trials.
2. To appreciate the different requirements of imaging end-points for different trials and phases.
3. To understand how imaging data acquired in the context of different trials can be used for additional research questions.

A-0791 08:55
Modern imaging-based trials: focus on oligometastatic disease and evaluation of metastatic directed therapies
F.E. Lecouvet; Brussels/BG

Patients with oligometastatic disease (OMD) have controllable symptoms, and cures are theoretically possible. Technical improvements in surgery and radiotherapy have introduced the option of metastasis-directed therapies (MDT) as an adjunct or alternative to the standard of care systemic therapies.

Standard imaging methods recommended by current guidelines often have insufficient diagnostic accuracy for a reliable diagnosis of OMD. Modern imaging methods using positron emission tomography/computed tomography (PET/CT) with a tumour specific radiotracers, and increasingly whole-body magnetic resonance imaging (WB-MRI) with diffusion-weighted imaging (DWI), allow an earlier and more precise identification of metastases. This lecture discusses the evidence and offers recommendations for the implementation of standard-of-care (Response Evaluation Criteria in Solid Tumours measurements on CT, MRI and bone scintigraphy) and advanced imaging modalities for identifying and following patients with OMD in the most frequent cancers. The presentation suggests clinical algorithms for integrating modern imaging methods in the care pathway at the various stages of these cancers in order to identify OMD. Clinical trials utilising modern imaging methods are proposed for evaluating the needs for a reliable identification of OMD and the benefits of metastasis-directed therapies.

Learning Objectives:
1. To understand how imaging modalities may affect patient selection.
2. To appreciate how imaging modalities may affect response assessment.
3. To learn how to design a trial evaluating the best imaging strategy according to the objective.

A-0792 09:15
Assessing treatment response in the era of immunotherapy
C. Caramella; Villejuif/FR (Caroline.CARAMELLA@gustaveroussy.fr)

Immunotherapy has rapidly and profoundly changed the management of many cancer patients. The high level of disease control rate has led to multiple approvals around different types of cancers, mainly in the metastatic situation, but is going to also win new indications in neoadjuvant and adjuvant therapy. The radiological evaluation of patients under immunotherapy is challenging because of the random occurrence of a new pattern of response named “pseudoprogression”, that is (mi)classified by RECIST 1.1 as a progression. Consequently, iRECIST new guidelines were proposed by the RECIST working group in order to clarify and standardise how progressions in trials investigating immunotherapies should be assessed. In particular, a disease described as progressive by RECIST rules, should be named as an immune unconfirmed progressive disease (IUPD) and therefore require a subsequent evaluation in order to confirm -or not- the progression.

Learning Objectives:
1. To learn about new immunotherapies.
2. To appreciate new patterns of response and progression observed under immunotherapy.
3. To learn about the specific criteria derived from RECIST (iRECIST), harmonising data collection in clinical trials.
4. To learn about future functional imaging techniques which could help to better understand effects of immunotherapies.

Author Disclosure:
C. Caramella: Consultant; BMS, Roche, MSK, Amgen.

A-0793 09:35
Radiomics in oncology trials
P. Kickingereder; Heidelberg/DE (philipp.kickingereder@med.uni-heidelberg.de)

Magnetic resonance imaging plays a key role for diagnosis and treatment monitoring of brain tumours and novel imaging techniques that specifically interrogate aspects of underlying tumour biology and biochemical pathways, have great potential in neuro-oncology. This presentation focuses on the emerging role of radiomics and radiogenomics in establishing the diagnosis, for monitoring treatment response and for predicting prognosis in brain tumour patients.

Learning Objectives:
1. To become familiar with the radiomics process.
2. To learn what is important in data collection and curation for radiomics.
3. To understand how radiomics can lead to a new biomarker discovery.

09:55 Panel discussion: What is the future of image-aware clinical trials?

Challenges and opportunities
Learning Objectives:
1. To learn about normal features vs pathology on ultrasound of joints in children with JIA.
2. To appreciate the strengths and limitations of conventional radiography compared to other modalities in JIA.
3. To understand the role of this technique in the diagnosis and follow-up of children.
4. To appreciate the research-based evidence of ultrasound.

E3 - ECR Master Class (Paediatric)

E3 1326
Juvenile idiopathic arthritis (JIA)

Moderator: K. Rosendahl; Bergen/NO

A-0794 08:30
A. Conventional radiography: still a helpful method?
S.C. Shelmerding; London/UK (susie_c_s@yahoo.co.uk)

“Red flag” imaging features such as isolated polyphs, bony erosion, extra sinus extension and skull base defects should be sought on paranasal sinus CT, as these will indicate further evaluation with MRI or endoscopic correlation. Additional inflammatory processes such as polyps, retention cysts, mucoceles, silent sinus syndrome, rhinolith and odontogenic sinusitis may be recognised on CT. Potential extra-sinus extension of sinonasal infection, including that resulting from invasive fungal disease, requires additional evaluation with MRI to demonstrate orbital, intracranial and deep face involvement. Benign tumours such as inverted papilloma, odontogenic lesions and juvenile angiofibroma may present with typical and sometimes pathognomic appearances on CT and MRI, but imaging also provides useful information on the extent of the abnormality. MRI and CT are complementary in the assessment of sinonasal malignant lesions. MRI, in particular, is vital, to assess for direct skull base, perineural, orbital and deep facial extension. Optimised MRI protocols enable delineation of a tumour, and the most useful MRI sequences will be discussed. Miscellaneous entities such as developmental sinonasal abnormalities and destructive midline pathologies also require pattern recognition on CT and MRI for their differential diagnosis.

Learning Objectives:
1. To describe disease patterns in nose and paranasal sinus CT.
2. To learn when additional imaging is mandatory.
3. To provide tools to narrow down the list of differential diagnoses in sinonasal MR studies.

A-0795 09:00
B. Ultrasound for detecting and grading of inflammation in JIA
L. Tanturi de Hortale; Rome/IT

“no abstract submitted”

Learning Objectives:
1. To learn about normal features vs pathology on ultrasound of joints in children.
2. To understand the role of ultrasound in diagnosing and grading of joint inflammation.
3. To appreciate the research-based evidence of ultrasound.

A-0796 09:30
C. MRI and role of contrast in the assessment of synovitis
L.-S. Ording Müller; Oslo/NO (lilsoe.ording@googlemail.com)

MRI scanning is the current gold standard modality for imaging synovitis and tenosynovitis in patients with juvenile idiopathic arthritis. Enhancement of the synovium after gadolinium injection is traditionally regarded as mandatory in the assessment of synovitis, both for diagnosis and grading, and to distinguish between active and inactive disease. There have been huge advances in medical treatment of JIA over the last two decades, and disease remission is now the ultimate goal for all patients. This increases the role of imaging to detect early signs of disease or relapse and subtle response to treatment. Several research groups work on establishing scoring systems to create objective imaging measures of disease activity in JIA. However, repeatability in the differentiation between normal synovial enhancement and inflammation and of the grading of contrast enhancement in early disease is rather poor. The timing of imaging post contrast injection has shown to play an important role in the assessment and grading of synovitis, and dynamic contrast-enhanced might be a better method to improve quantification of synovitis. New focus on potentially harmful effects of Gd-injection forces us to search for alternative methods in synovitis imaging. The diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) seems to be higher in active JIA and may serve as a non-invasive imaging biomarker for JIA in the future. In this lecture, current knowledge on the role of contrast in synovitis assessment, challenges in the standardisation of imaging, potential alternative methods for detection and grading of inflammation in JIA will be presented.

A-0797 08:30
A. Differential diagnoses of nose and paranasal sinus lesions
S. Connor; London/UK (sejconnor@gmail.com)

Sinonasal pathologies will be categorised and discussed as inflammatory/infectious processes, benign tumours, malignant tumours and miscellaneous sinonasal lesions. CT is the initial imaging study performed for an inflammatory disease to establish the extent and to provide an anatomical road-map for surgery. Important anatomical variants should be reported as they are predictive of disease patterns and impact on surgical approaches. “Red flag” imaging features such as isolated polyphs, bony erosion, extra sinus extension and skull base defects should be sought on paranasal sinus CT, as these will indicate further evaluation with MRI or endoscopic correlation. Additional inflammatory processes such as polyps, retention cysts, mucoceles, silent sinus syndrome, rhinolith and odontogenic sinusitis may be recognised on CT. Potential extra-sinus extension of sinonasal infection, including that resulting from invasive fungal disease, requires additional evaluation with MRI to demonstrate orbital, intracranial and deep face involvement. Benign tumours such as inverted papilloma, odontogenic lesions and juvenile angiofibroma may present with typical and sometimes pathognomic appearances on CT and MRI, but imaging also provides useful information on the extent of the abnormality. MRI and CT are complementary in the assessment of sinonasal malignant lesions. MRI, in particular, is vital, to assess for direct skull base, perineural, orbital and deep facial extension. Optimised MRI protocols enable delineation of a tumour, and the most useful MRI sequences will be discussed. Miscellaneous entities such as developmental sinonasal abnormalities and destructive midline pathologies also require pattern recognition on CT and MRI for their differential diagnosis.

Learning Objectives:
1. To describe disease patterns in nose and paranasal sinus CT.
2. To learn when additional imaging is mandatory.
3. To provide tools to narrow down the list of differential diagnoses in sinonasal MR studies.

A-0798 09:00
B. Differential diagnoses of paediatric neck lesions
P. Canuso; Boston, MA/US (pcanuso@partners.org)

We will review those pediatric head and neck lesions, neoplastic, malformative, and inflammatory where consideration of the differential diagnosis is key to avoid missing critical pathology. As we review these lesions, we will see how taking the time to consider the differential diagnoses particular to the pediatric population can inform our search strategies, protocols, and interpretation. We will review the pertinent embryologic and anatomical considerations as well for each case.

Learning Objectives:
1. To become familiar with the normal development of facial and neck structures.
2. To discuss which imaging modality to use: US, CT or MRI?
3. To understand the typical imaging appearance of congenital neck lesions.

A-0799 09:30
C. Differential diagnoses of soft tissue masses in adults
D. Farina; Brescia/IT (davide.farina@unibs.it)

Soft tissue masses of the supra and infrayohoid neck are a rather heterogeneous group of tumours, classified by WHO in nine categories, based on their histologic differentiation: adipocytic, fibroblastic or myofibroblastic, fibrohistiocytic, smooth muscle, skeletal muscle, vascular, pericytic, and chondro-osseseous tumours, and tumours of uncertain differentiation. Based on their clinical behaviour and history such tumours may be described as benign, malignant or intermediate, the latter further subclassified as locally invasive or metastatizing at distant sites. The US is generally the first imaging step in infrayohoid neck lesions; MDCT or MRI are mandatory in suprayohoid masses but are also needed to better define the deep extent and anatomic relationships of infrayohoid tumours. In many cases, imaging findings are overlapping and insufficient for tumour characterisation; nonetheless, some specific clues may orient the differential diagnosis. The site of origin of the lesion is probably the first brick in the wall. Therefore knowledge of the space-
Malignant pleural mesothelioma (MPM) is the most common primary malignant thora-
cic tumour of the pleura and the second most common pleural malignancy after
metastatic disease. MPM has a poor prognosis and limited treatment options.
Imaging plays a central role in the detection, diagnosis, staging, and response
assessment of MPM. Although multimodality imaging, especially PET/CT, is
increasingly used, contrast-enhanced CT alone is often sufficient. MPM has a
unique morphology and growth pattern, making the image interpretation
frequently a challenge. The aim of the presentation is to provide an overview of
the most common and less frequent imaging findings of MPM, staging of MPM
according to the 8th TNM classification, the role of PET/CT in the management
of MPM, and the revised, modified RECIST 1.1 guidelines for MPM response
assessment.

Learning Objectives:
1. To learn about the various presentation of malignant mesotheliomas.
2. To learn about the role of PET/CT.
3. To learn about the modified RECIST criteria.

Malignant pleural mesothelioma is the most common primary malignant
tumour of the pleura and the second most common pleural malignancy after
metastatic disease. MPM has a poor prognosis and limited treatment options.
Imaging plays a central role in the detection, diagnosis, staging, and response
assessment of MPM. Although multimodality imaging, especially PET/CT, is
increasingly used, contrast-enhanced CT alone is often sufficient. MPM has a
unique morphology and growth pattern, making the image interpretation
frequently a challenge. The aim of the presentation is to provide an overview of
the most common and less frequent imaging findings of MPM, staging of MPM
according to the 8th TNM classification, the role of PET/CT in the management
of MPM, and the revised, modified RECIST 1.1 guidelines for MPM response
assessment.

Learning Objectives:
1. To learn about the various presentation of malignant mesotheliomas.
2. To learn about the role of PET/CT.
3. To learn about the modified RECIST criteria.

Pleural metastases are the most common malignant pleural tumours, usually
originating from an adenocarcinoma of the lung, breast, ovary, and stomach.
Pleural malignancy may also be related to lymphoma, a thymoma or may be of
unknown origin. Typical features of malignancy include circumferential
thickening, nodular thickening, thickness greater than 1 cm, and involvement of
the mediastinal pleura. A pleural effusion is commonly seen, sometimes
without any associated pleural thickening. Multiple pleural-based nodules or
focal pleural thickenings, as well as a solitary mass, may also be observed.
Focal pleural thickenings (PT) should not be confused with normal structures,
typical pleural plaques, PT related to previous tuberculosis, silicosis, or other
rarer conditions. Importantly, in case of known or suspected malignancy, the
presence of postero-basal PT in supine examination requires an additional low
dose acquisition on prone position. Indeed, such thickenings may be
reversible, therefore excluding pleural metastasis. Any atypical shape, location
or change of PT should suggest a pleural metastasis in a context of malignancy.
In all cases, a careful analysis of other CT findings, previous imaging studies and
clinical history are determinant for the final diagnosis of pleural metastasis.
Besides contrast-enhanced MDCT, the major imaging modality in this setting, there is an undeniable role of PET imaging. In particular, by using the latest equipment allowing a spatial resolution of 3 mm,
to demonstrate the various normal and abnormal imaging appearances after shoulder instability surgery. Results/Conclusion: Labral re-tear will be evident as contrast or joint fluid extension into linear or complex tear cleft, absent/truncated/fragmented labrum, or labral displacement from an anatomic location. Capsular shift results in smaller capacity joint and sometimes irregular capsular nodularity. Complications of capsulorrhaphy include capsular tears and subluxation of the humeral head. Postoperative MR imaging can evaluate healing after combined remplissage and Bankart repair for moderate size, engaging Hill-Sachs lesions. Laserjet and Bristow procedures may be performed in patients with recurrent dislocations and glenoid deficiency. Incorporated bone will yield non-anatomic glenoid configuration, and complications include non-union, fatty degeneration of subscapularis muscle, and osteoarthrosis.

Learning Objectives:
1. To become familiar with the expected and abnormal MR imaging findings after labral repair.
2. To learn about the postoperative imaging features after capsular shift/capsulorrhaphy.
3. To appreciate normal imaging and complications after remplissage and Laserjet/Bristow procedures.

Author Disclosure:
L.W. Bancroft: Author; Lippincott. Speaker; World Class CME.

A-0805 09:30
C. Interactive case discussion (Part 1)
L. Weinstein: San Francisco, CA/US (lynnesteinbach1@gmail.com)

This interactive session will showcases that relate to the shoulder in the throwing adolescent. This age group has additional problems related to the stress of throwing. These abnormalities were not discussed in the lecture on the throwing shoulder of the adult. Many of the cases relate to stress on the physical plates around the shoulder.

Learning Objectives:
1. To appreciate pathologic and normal developmental changes in skeletally immature throwing athletes.
2. To learn how to differentiate normal and failed labral repairs with MRI.
3. To consolidate the knowledge gained from the session with interactive cases of pre- and postoperative shoulder MRI.

A-0807 09:45
C. Interactive case discussion (Part 2)
L.W. Bancroft: Orlando, FL/US (laurabancroft.md@flhosp.org)

To engage in interactive case discussions with the expected and abnormal MR imaging findings after labral repair, capsular shift/capsulorrhaphy, remplissage and Laserjet/Bristow procedures. An interactive case discussion will be used to demonstrate the various normal and abnormal imaging appearances after shoulder instability surgery. Labral re-tear will be evident as contrast or joint fluid extension into linear or complex tear cleft, absent/truncated/fragmented labrum, or labral displacement from the anatomic location. Capsular shift results in smaller capacity joint and sometimes irregular capsular nodularity. Complications of capsulorrhaphy include capsular tears and subluxation of the humeral head. Postoperative MR imaging can evaluate healing after combined remplissage and Bankart repair for moderate size, engaging Hill-Sachs lesions. Laserjet and Bristow procedures may be performed in patients with recurrent dislocations and lenoid deficiency. Incorporated bone will yield non-anatomic glenoid configuration, and complications include non-union, fatty degeneration of subscapularis muscle, and osteoarthrosis.

Learning Objectives:
1. To appreciate common patterns of athletic injury in the shoulder.
2. To learn how to differentiate normal and failed labral repairs with MRI.
3. To consolidate the knowledge gained from the session with interactive cases of pre- and postoperative shoulder MRI.

Author Disclosure:
L.W. Bancroft: Author; Lippincott. Speaker; World Class CME.

08:30 - 10:00 Tech Gate Auditorium

Genitourinary

RC 1307
Imaging in pregnancy

A-0808 08:30
Chairperson's introduction
G. Masselli: Rome/IT (gabriele.masselli@uniroma1.it)

Modalities that do not use ionising radiation, such as US and MR imaging, should be the preferred examinations for evaluating a pregnant patient. Ultrasound is currently the standard approach for the initial evaluation of fetal anatomy and maternal conditions during pregnancy since it allows a real-time examination and is widely available and cost-effective. Magnetic resonance imaging (MRI) and computed tomography (CT) are less commonly performed due to the potential risks of ionising radiation. However, MRI and CT are essential in certain clinical scenarios, such as the investigation of fetal abnormalities or complications of pregnancy. This session will provide an overview of the indications, technique, and safety considerations of MR imaging in pregnancy.
The placenta can be imaged with ultrasound and MRI for routine assessment, computed tomography for acute complications such as placental abruption, and angiography, should further embolisation be considered for hemorrhagic complication. The placenta can be involved by physiological and pathological abnormalities and may have an abnormal location. Rarely, the placenta can be involved by gestational trophoblastic diseases (hydatidiform mole, invasive mole and choriocarcinoma). Retained products of conception are rarely diagnosed with imaging because obstetricians systematically perform a uterine revision. In vivo assessment of placental vascularisation is routinely performed with Doppler ultrasound but 3D imaging and functional MRI can be used to scrutinise placental functions. Decreased maternal blood flow to the placenta is associated with pre eclampsia and intrauterine growth restriction. Each imaging technique has intrinsic advantages that are counterbalanced by limitations.

1. To learn the imaging characteristics of the different entities.
2. To become familiar with the imaging appearance of the commonest pathological conditions of the placenta.
3. To discuss the added value of cross-sectional imaging in the evaluation of placental abnormalities.

Learning Objectives:

- To understand the appearance of the placenta with different imaging modalities.
- To become familiar with the imaging appearance of the commonest pathological conditions of the placenta.
- To discuss the added value of cross-sectional imaging in the evaluation of placental abnormalities.

Panel discussion: How should we image the pregnant woman, and when?

10:30 - 12:00 Room A

E³ - ECR Academies: Interactive Teaching Session for Young (and not so Young) Radiologists

E³ 1421

Genitourinary radiology for the general radiologist

A-0820 10:30

A. Cystic pelvic masses: differential diagnosis and management
O. Nikolic; Novi Sad/RS (nikolic.olivera@gmail.com)

Cystic pelvic masses are frequent in women and are related to the female reproductive system (gynecologic lesions-usually of ovarian origin). Genital fluid masses in men are less frequent. Moreover, a variety of fluid-filled lesions unrelated to the genital organs may be seen in both sexes, normally associated with the urinary system, gastrointestinal system or miscellaneous group of lesions. The aim of this talk is to present the imaging features of different cystic pelvic entities and their differential diagnoses and to learn the practical workflow in everyday clinical practice. Different types of cystic pelvic masses may have similar imaging characteristics, and therefore radiologic evaluation may be of limited diagnostic use. To avoid misdiagnosis, it is very important to understand the relationship of a mass with its anatomic location, to identify the ovaries at imaging in female patients and correlate imaging findings to the clinical history and laboratory findings.

Learning Objectives:

- To learn the imaging characteristics of the different entities.
- To become familiar with the practical workflow in everyday clinical practice.

A-0821 11:15

B. Gynaecological emergencies
M. Weston; Leeds/UK (michael.weston2@nhs.net)

Gynaecological emergencies may present with abdominal distension, pain, bleeding or sepsis. Normal physiological changes that might mimic disease will be discussed. This presentation will show the common imaging features of ectopic pregnancy, ovarian cyst accidents, hyperstimulation, adnexal torsion, fibroid degeneration, and pelvic inflammatory disease. The appropriate use of US, CT and MR scans will be discussed.

Learning Objectives:

- To understand the imaging characteristics of the different entities.
- To become familiar with the practical workflow in everyday clinical practice.

10:30 - 12:00 Room X

ESR Patient Advisory Group (ESR-PAG)

PA 1

Communicating the role of the radiologist: best practices to manage patient expectations

A-0822/A-0823 10:30

Chairpersons’ introduction
N. Bedlington; Vienna/AT
N.T. Trakova; Plovdiv/GR (nikoletatraikova@gmail.com)

The relationship between the radiologist and patient representative groups is of paramount importance to ESR. A radiologist’s visibility is far too often insufficient to patients due to lack of communication, as a result of understaffed departments, overworked radiologists and not enough time for them to properly communicate with patients. ESR is committed to cooperating with ESR PAQ to improve radiologists’ communication skills, to effectively promote their role to the patients and to make the former better understand and appreciate the patients’ needs. ESR is also committed to maintaining and improving all aspects of patient-radiologist relationships in the modern high tech radiology department.

Session Objectives:

- To explain to radiologists how to effectively communicate their roles to their patients.
- To identify room for improvement in patient communication based on experience reports by patient representatives.
- To discuss approaches on how to maintain a good patient-health professional relationship in the high-tech radiology department.

A-0824 10:40

Explaining the radiologist’s role to patients
A. Brady; Cork/IE (adrianbrady@me.com)

Historically, radiologists have often worked, “undercover”. The perception has been created that radiologists are often the doctors’ doctors, and that we have little or no engagement directly with patients. This is neither desirable nor true. Nonetheless, patients often do not know if they’ve engaged with a radiologist, and may not understand our role and responsibilities. Conversely, radiologists may not understand the main concerns of patients with whom we interact, given that most of the information provided to us to assist us in caring for patients is delivered from a third party, the referrer. One of the responsibilities of a radiologist which is often unfulfilled is that of communicating with patients. This takes many forms, including explaining the reason for an investigation, what a patient will experience, what will happen after the investigation, and what the findings mean. This talk will explore how these pieces of information may be communicated, and how mutual understanding between patients and radiologists may be improved, for the benefit of all.

Learning Objectives:

- To outline the role of the radiologist in patient care.
- To consider how best to explain the radiologist’s input in diagnosis and care to patients.
- To understand how radiologists and patients may communicate for the benefit of patients.

A-0825 11:00

The patient perspective: sharing expectations and experiences (part 1)
B. Bauer; Abensberg/DE (birgit.bauer@manufaktur-fuer-antworten.de)

People diagnosed with a disease like MS or other chronic conditions experience a lot of different exams. One of those is an MRI. I will talk about the information given to patients and what they need and what they have to understand when they sign the information leaflet. With my own story and a lot of research, I will bring up the patient perspective about the needs in information and understandability.

Learning Objectives:

- To understand language used within the radiology department and patients’ needs to effectively communicate with the radiologist.
- To learn about programmes that help patients to better understand the illness and medical imaging procedures used in the hospital.
- To understand both the patient and radiologist’s perspective in order to further empower the patient.
A-0826 11:10
The patient perspective: sharing expectations and experiences (part 2)
E. Briers; Hasselt/BE (erikbriers@telenet.be)

The patient entering the “Medical imaging - radiology department” normally has some knowledge on the way he is there. He has been referred by another clinician for some imaging procedure. This referring clinician may or may not have taken the time to inform the patient on the upcoming procedure. Because of the “may or may not” it would be prudent for the department to ask the patient: “Do you know why you are here?” this could be the starting point of supplementary information. It is possible that the clinician explained that the procedure would help come to a final diagnosis or on the success or progress of treatment. It is not certain that the patient is also informed on the procedure sensu stricto, entering the confined space of a CT or MRI equipment, the use of contrast and much more. There is almost always extra information needed. At the moment the patient enters the department, the moment to choose is over, but if choices can be made it is important that the patient is involved in this decision. Due to time constraints in the department, the waiting time before the actual procedure seems to be the moment when patients could be given extra information, in print or on dedicated screens. If the intervention is special (biopsies) the information should be given to the patient while he is receptive and before any anaesthesia is applied. Any-way the provided information should be adapted to the personal learning capabilities of the patient(s).

Learning Objectives:
1. To outline patient expectations in terms of communication and radiology procedures within the hospital department.
2. To learn about practical solutions in hospital departments to meet patients’ demands for involvement in decision-making regarding the care pathway.
3. To understand how to effectively communicate with patients through face-to-face interaction and online reports.

Author Disclosure:
E. Briers: Advisory Board; Requisite project. Board Member; Us Too Belgium. Speaker; None for Pharmaceutical Companies. Other; Member of EAU Guidelines Committee on Prostate Cancer, Alternate Patient Member Committee Of Advanced Therapies - EMA.

A-0827 11:20
Best practices: tools to optimise communication with patients
L. Robinson; Gatley/UK (leslierob10@gmail.com)

This presentation will consider an effective communication from the standpoint of partnership working; that is partnerships between patients, the public and practitioners. Historically, communication in radiography has been predicated on a paternalistic model; i.e. the practitioner determines what it is that the patient needs to know. This is at odds with current health policy on partnership working and shared decision-making where there should be “no decision about me without me”. In 2018, the UK Society and College of Radiographers convened a group of patients and practitioners to address this mismatch. The outcome was a set of Guiding Principles, written in the patient voice, which establishes what patients perceive to be effective communication and partnership working within diagnostic imaging and radiotherapy services. The presentation will discuss these Guiding Principles focusing in on what patients have told us they want in terms of effective communication.

Learning Objectives:
1. To learn about effective communication and useful information for patients.
2. To learn that an overload of information is equally detrimental to a safe feeling as no information.
3. To understand how patient summaries and online reports can empower patients and contribute to shared decision-making.

11:40
Panel discussion: How to maintain the human touch in the radiology department in an era of rapid technology adoption

E³ - European Diploma Prep Session

E³ 1423
Neuro
A-0828 10:30
Chairperson’s introduction
C. Calli; Izmir/TR

Session Objectives:
1. To learn relevant imaging and interventional algorithms and important imaging features of neurovascular disorders of the brain and spine.
2. To understand imaging features and prognostic implications of tumours of the brain and spine.
3. To become familiar with the role of different imaging modalities including hybrid imaging in diagnosing disorders of the central nervous system.

A-0829 10:36
A. Congenital and white matter disorders of the brain
A. Rossi; Genova/IT (andrearossi@gaslini.org)

In this lecture I will review the basic concepts about brain maturation and myelination, and how to set up a baseline MR study of the brain in the pediatric age group. I will also examine some frequent pitfalls in pediatric neuroimaging, focussing on a frequent finding: pineal gland cysts. Then, I will address the main congenital malformations of the brain, highlighting the role of MR with diffusion tensor imaging (DTI) in their understanding and classification. I will also examine the principal neurocuteaneous syndromes, such as Neurofibromatosis type 1 and 2, tuberous sclerosis, Sturge-Weber syndrome, and von Hippel-Lindau disease. Finally, I will elucidate a few basic concepts about leukodystrophies, focusing on pattern recognition based on MR, and understanding how to differentiate them from acquired white matter disorders, notably acute disseminated encephalomyelitis.

Learning Objectives:
1. To understand the development, normal anatomy and normal variants of the brain.
2. To become familiar with common congenital disorders of the brain and neurocuteaneous syndromes.
3. To learn imaging features and differential diagnoses of white matter disease, inflammation and neurodegeneration.

A-0830 11:04
B. Neurovascular disorders and trauma of the brain
M. Vernooij; Rotterdam/NL (m.vernooij@erasmusmc.nl)

This lecture is part of a series of lectures aimed at preparation for the neuroradiology part of the EDIR examination.

Learning Objectives:
1. To become familiar with the normal anatomy and normal variants of the cranio-axial area and venous system.
2. To learn the causes and imaging features of stroke, haemorrhage and other common vascular lesions of the brain and their relevance to interventional neuroradiology.
3. To understand the imaging features of traumatic injury to the brain.

A-0831 11:32
C. Tumours of the brain and spine
M.M. Thurnher; Vienna/AT (majda.thurnher@medunwien.ac.at)

The fifth edition (2016) of the WHO Classification of Tumors of the CNS is the worldwide standard for classifying and grading brain neoplasms. Standardised MR brain tumour protocol is crucial for the preoperative evaluation and interpretation of postoperative changes. Brain tumour imaging objectives include the diagnosis of a brain tumour and the ability to distinguish it from non-tumoral lesions, assessment of histological grade of the tumour, delineation of the tumour borders and extension, differentiation between a tumour and peritumoral oedema, and finally the evaluation of possible recurrence and therapy-induced phenomena. In this lecture, two major issues will be discussed: the value of different conventional and advanced MRI techniques in evaluation of CNS tumours; most common spine tumours not to miss.

Learning Objectives:
1. To understand the normal anatomy and normal variants of the spine, spinal cord and nerve roots.
2. To learn imaging features of benign and malignant tumours of the neurocranium.
3. To become familiar with the imaging features of benign and malignant tumours of the spine.
TF 1

Highlighted Lectures

Moderators: A. Svare; Riga/LV
T. Teneva; Varna/BG

A-0832 10:30
Spinal emergencies: a look beyond trauma
D. Ivanova; Varna/BG (dari.ivanova@gmail.com)

Nontraumatic spinal emergencies present a wide range of conditions resulting in acute and/or rapid development of neurological symptoms from the spinal cord. The clinical presentation can be very unspecific, and imaging plays a pivotal role in getting the right diagnosis. The causes of nontraumatic spinal emergencies can roughly be classified into two major groups. The group of intrinsic and non-compressive causes, such as spinal cord ischemia and myelitis, and the group of extrinsic and compressive causes, such as spontaneous extramedullary haemorrhages, spondylodiscitis and epidural abscesses, metastatic and malignant entities etc. Most of the cases of compressive spinal cord damage present neurosurgical emergencies and their outcome depend heavily on the timely and correct diagnosis and treatment. MRI is the preferred modality for evaluation of patients with nontraumatic spinal emergencies, and an appropriately tailored and timesaving protocol is always crucial. As an adjunct to MRI, CT and conventional X-ray are very helpful when bone and calcium-containing structures have to be assessed, and ultrasound has a special role in establishing the diagnosis in small children.

Learning Objectives:
1. To learn about the various causes, both compressive and non-compressive, of non-traumatic spinal emergencies.
2. To become familiar with the imaging features of different non-traumatic spinal emergencies.
3. To appreciate the role of different imaging modalities in the diagnosis and differential diagnosis of non-traumatic spinal emergencies and the importance of choosing the right imaging protocol.

A-0833 11:30
Acute aortic syndrome: intimate knowledge through intimate case
G.I. Kirova-Nediakova; Sofia/BG (gat.kirova@gmail.com)

Acute Aortic Syndrome (AAS) is a highly lethal disease responsible for a wide range of clinical manifestations. In any given patient, the particular outcomes effects are related to the pattern and extent of the aortic wall injury, and, in the long term, the ability of the aorta to compensate circulatory pressure forces. It is therefore essential for radiologists to understand the characteristic appearance of the different aspects of AAS while recognising and reporting relevant imaging features, which would affect the patient's management. Using a case-based approach, the lecture will provide essential knowledge in evaluating, diagnosing, reporting and therapeutic planning of patients with signs and symptoms of the acute aortic syndrome.

Learning Objectives:
1. To focus on the appropriate imaging technique in case of acute chest pain.
2. To guide radiologists through an assessment of the characteristics of acute aortic dissection, penetrating atherosclerotic ulcer and intramural haematomata.
3. To focus on some details that could influence the selection of a therapeutic approach.
4. To foster a critical thinking approach based on specific features of the disease process.

Getting it right: how to report an imaging study before the interventional radiology procedure
R. Dezman; Ljubljana/SI (rok.dezman@gmail.com)

Interventional radiology is a medical specialty which provides minimally invasive image-guided treatment of disease. The rapid development and of the specialty has led to the growth of the number and complexity of the procedures, and a consequent subspecialization of interventional radiologists was a logical result. Diagnostic radiologists, however, need to be aware of interventional radiology procedures, know their basic principles, indications and importance of diagnostic follow-up. This lecture will present the importance of a quality report of imaging studies prior to the interventional procedure. The most common interventional procedures that diagnostic radiologists encounter will be presented with focus emergency interventional procedures. Pearls and pitfalls of reporting prior to the intervention and the follow-up studies will be presented. The importance of follow up imaging of the common elective procedures will also be presented.

Learning Objectives:
1. To present core procedures of interventional radiology.
2. To provide tips for reporting imaging studies before potential interventional radiologic procedures.
3. To appreciate the importance of collaboration between diagnostic radiology and interventional radiology.

A-0835 10:30
Chairperson's introduction
J. Stoker; Amsterdam/NL (j.stoker@amc.uva.nl)

Acute abdominal pain can be caused by a myriad of diseases. Clinical history and physical examination have substantial limitations in differentiating between urgent and non-urgent conditions and even more in making an accurate diagnosis. Ultrasound and computed tomography are therefore mainstays in the diagnostic workup of these patients. Magnetic resonance imaging is used to a more limited extent. There are different approaches to using ultrasound and computed tomography, taking advantage of each technique’s strength. A conditional diagnostic strategy with ultrasound in all patients and computed tomography only in those with negative or inconclusive ultrasound has been advocated as being the most accurate and effective approach. Others have encouraged widespread use of computed tomography as a one-stop-shop technique or have advocated a diagnostic approach tailored to the individual patient or suspected disease. The pros and cons of different diagnostic strategies will be discussed.

Pros & Cons Session

PS 1427
US before CT in the acute abdomen?

A-0836 10:35
A. Acute abdomen: US first!
J.B.C.M. Puylaert; The Hague/NL (dr.jbcmpuylaert@wxs.nl)

CT advantages over US in the diagnosis of the acute abdomen: CT is extremely rapid, the actual costs of CT are probably lower than a time-consuming US examination, CT images are not disturbed by gas and bone, while obesity is even an advantage; producing the CT images is not operator-dependent and CT can be reviewed at a later point in time and also from a distance by means of teleradiology. Finally, CT images are easier understood and accepted by clinicians than US images are. US advantages over CT: US has an image definition in the loose range which is much higher. US is more interactive: patient’s history, as well as painful area or palpable mass, can be correlated with the US findings. The US shows peristalsis, pulsations and blood flow. The US shows the effects of respiration. Valsalva manoeuvre, gravity and compression with the probe, allowing to assess whether organs as bowel and gallbladder are soft or rigid.US allows easy puncture of intraperitoneal fluid. US in acute abdomen is performed with graded compression. US examination should be symptom-directed and requires communication with the patient. A US finding may lead to a specific question to the patient and v.v. information provided by the patient may lead to a specific US search for pathology. In patients with an acute abdomen, the entire abdomen should be examined, i.e. from the axilla to the groin. The final US report should be integrated with the clinical findings, laboratory data, CT-scan and possible other radiological examinations.

Learning Objectives:
1. To be familiar with the optimal technique and optimal application of US in acute abdomen.
2. To learn the strengths of US in common diseases causing acute abdomen.
3. To understand the arguments why US should be performed as initial imaging.

B. Acute abdomen: CT of course!
M. Laniado; Dresden/DE (michael@laniado.de)

The acute abdomen is a potentially life-threatening situation that requires an immediate diagnosis of the underlying cause. The optimal CT technique is to use contrast-enhanced CT at least in the portal-venous (PV) phase. If vascular pathologies or haemorrhages are suspected, plain scans and arterial phase imaging are mandatory in addition to the PV phase. Oral contrast is not recommended. Considering the top ten diseases in patients presenting with an acute abdomen (i.e. acute appendicitis, acute cholecystitis, ileus,
Ankle injuries are common in many sports, and the complicated anatomy of the ankle joint can be challenging the reporting radiologist. The ankle joint itself is a synovial hinge joint, but the important movement for ankle function also occurs at the joints of the hind and midfoot which are also susceptible to injury. In addition to conventional radiographs, CT, MRI and ultrasound all have important roles to play in the diagnosis of foot and ankle injuries in the athlete. The ligamentous and tendon structures about the ankle are generally superficial in nature and readily amenable to assessment with ultrasound where assessment can be enhanced due to the dynamic capabilities of the technique. While MRI also demonstrates these structures, it has advantages for assessing deeper joint structures such as the chondral surfaces and bones. The complex 3D anatomy of the foot and ankle means that conventional radiographs can struggle to demonstrate bone injury which means CT also has an important role to play. This lecture will focus on the use of these imaging modalities for the assessment of acute and chronic ligamentous and tendon injury. Emphasis will be put on the mechanisms of injury and how they determine the resultant patterns of injury and imaging appearances.

Learning Objectives:
1. To appreciate the different and often contributory roles that imaging modalities have in the foot and ankle.
2. To recognise the most common ligamentous and tendon injuries in the ankle.
3. To understand how common patterns of injury relate to the mechanisms involved.

A-0841 11:30
C. Interactive case discussion (Part 1)
C.W.A. Pfirrmann; Zurich/CH

This interactive teaching session will show various cases related to upper extremity sports injuries. Case discussion about soft tissues injuries of the wrist such as TFCC lesions and other wrist and hand injuries in athletes will be done interactively. The differential diagnosis and diagnostic challenges, as well as pitfalls, will be discussed.

Learning Objectives:
1. To become familiar with the techniques available and imaging appearances of wrist athletic injury.
2. To become familiar with the techniques available and imaging appearances of foot and ankle athletic injury.
3. To consolidate the knowledge gained from the session with interactive cases of wrist, foot and ankle athletic injury.

A-0842 11:45
C. Interactive case discussion (Part 2)
A.J. Grainger; Leeds/UK

Cases will be presented with the opportunity for audience response highlighting and consolidating ideas presented in the preceding lecture. Abstract for that Lecture: Ankle injuries are common in many sports, and the complicated anatomy of the ankle joint can be challenging the reporting radiologist. The ankle joint itself is a synovial hinge joint, but the important movement for ankle function also occurs at the joints of the hind and midfoot which are also susceptible to injury. In addition to conventional radiographs, CT, MRI and ultrasound all have important roles to play in the diagnosis of foot and ankle injuries in the athlete. The ligamentous and tendon structures about the ankle are generally superficial in nature and readily amenable to assessment with ultrasound where assessment can be enhanced due to the dynamic capabilities of the technique. While MRI also demonstrates these structures, it has advantages for assessing deeper joint structures such as the chondral surfaces and bones. The complex 3D anatomy of the foot and ankle means that conventional radiographs can struggle to demonstrate bone injury which means CT also has an important role to play. This lecture will focus on the use of these imaging modalities for the assessment of acute and chronic ligamentous and tendon injury. Emphasis will be put on the mechanisms of injury and how they determine the resultant patterns of injury and imaging appearances.

Learning Objectives:
1. To become familiar with the techniques available and imaging appearances of wrist athletic injury.
2. To become familiar with the techniques available and imaging appearances of foot and ankle athletic injury.
3. To consolidate the knowledge gained from the session with interactive cases of wrist, foot and ankle athletic injury.
to move and question all the time aids the child's tolerance of the imaging procedure. Many areas of the body are inaccessible to an ultrasound examination, where other imaging techniques are superior. Nevertheless, when ultrasound visualises an organ, it has the best resolution of all the techniques. This is particularly true for abdominal work in the child, where often the body habitus allows for a detailed examination. Ultrasound has long been the poor relation with respect to contrast examinations, often incorrectly a non-contrast ultrasound in the adult is compared unfavourably with the contrast-enhanced CT. Microbubble ultrasound contrast agents have been in clinical practice in adults for 20 years, most used off-license in areas of need, revolutionizing many aspects of the diagnostic capabilities of an ultrasound examination. The introduction of contrast-enhanced ultrasound (CEUS) has been led by a number of pioneers, recognising the usefulness in aiding diagnosis and management with minimal morbidity to the child. This lecture will outline the pathway of CEUS in children to the sanctioning by the FDA.

Learning Objectives:
1. To learn about the application of CEUS in children.
2. To understand the legal implications of using CEUS off-label in children.
3. To appreciate the potential of combining ultrasound with CEUS in assessing the child.
4. To become familiar with the techniques and applications of CEUS.

Author Disclosure:

Session Objectives:
1. To present the structure of the EDIR examination.
2. To describe how to prepare for the EDIR examination and the resources available.
3. To detail the CORE examination.
4. To learn the importance of structured reporting for the CORE examination.

Author Disclosure:
L. Oleaga Zufiría: Consultant; Telemedicine Clinic.

Learning Objectives:
1. To review some practical cases: multiple response questions, short cases and CORE case.
2. To understand resectability criteria.
3. To appreciate the role of imaging in treatment planning.

EDIR Session

EDIR: an instrument to develop excellence in your career

A-0849 12:15
Chairperson's introduction
L. Oleaga Zufiría; Barcelona/ES (lauraoleaga@gmail.com)

The European Diploma in Radiology (EDIR) examination is designed to test knowledge, skills and competence in anatomy, pathophysiology, imaging procedures, physics and management in general radiology. The exam is divided into three parts: a knowledge test with Multiple Response Questions (MRQs) and Short Cases (SCs) and the Clinically Oriented Reasoning Evaluation (CORE) where problem-solving skills are tested. The EDIR teaser that will be presented during the session includes examples of the three different parts of the exam simulating the real exam. The aim is to get the possible candidates to become familiar with the structure and degree of difficulty of the exam, including some tips and tricks to succeed.

Session Objectives:
1. To present the structure of the EDIR examination.
2. To describe how to prepare for the EDIR examination and the resources available.
3. To detail the CORE examination.
4. To learn the importance of structured reporting for the CORE examination.

Author Disclosure:
L. Oleaga Zufiría: Consultant; Telemedicine Clinic.

Objective structured Clinically Oriented Reasoning Evaluation (CORE) examination is a standard method of testing the knowledge in clinical core competencies. Web-based CORE examination represents a simulation of radiological practice in which candidates face a complete case that must be resolved in each of the areas of sub-specialisation as if they were in a real situation. It is crucial for EDIR candidates to be aware of the structure of the exam, establishing a method of reading the images in a structured way. A broad spectrum of educational materials and structured reporting products are readily available online for trainees to prepare for CORE exam. The first step, in the CORE examination, is to detect the disease. It is important to systematically review the whole picture to avoid perception errors, including "satisfaction of search errors". Next step is to create a list of the most relevant findings, it is essential to be consistent, starting from those that respond to the clinical question. The third step is to prepare a preliminary differential diagnosis and suggest, if necessary, the most appropriate imaging modality to further study the patient, and finally define the most likely diagnosis. The practice of making structured reports with a specific script can be perfectly combined with the methodology needed to make a correct CORE exam and succeed. The systematic use of structured reports helps in the standardisation; it is a useful tool that serves as a guide for candidates facing the CORE exam.

Learning Objectives:
1. To review some practical cases: multiple response questions, short cases and CORE case.
2. To learn new online resources for the examination.
3. To answer any questions from the audience.

Author Disclosure:
L. Oleaga Zufiría: Consultant; Telemedicine Clinic.

A-0850 12:50
CORE examination (Part 1)
F. Saez; Barakaldo/ES (fersaez@yahoo.com)

Objective structured Clinically Oriented Reasoning Evaluation (CORE) examination is a standard method of testing the knowledge in clinical core competencies. Web-based CORE examination represents a simulation of radiological practice in which candidates face a complete case that must be resolved in each of the areas of sub-specialisation as if they were in a real situation. A broad spectrum of educational materials is readily available online for trainees to prepare for CORE exam. In order to properly pass the exam, it is necessary to know the structure and establish a method of reading the images.
that allow the candidate, in a structured way, to answer the questions that are asked.

Learning Objectives:
1. To have a look at an action plan for the CORE examination.
2. To better understand the CORE section.
3. To become aware of essential hints for success in the CORE section.
4. To become familiar with structured reporting as a guide for the CORE examination.
5. To understand how to make structured reports.

A-0851 13:15
CORE examination (Part 2)
L. Oleaga Zufiría; Barcelona/ES (lauraoleaga@gmail.com)

Objective structured Clinically Oriented Reasoning Evaluation (CORE) examination is a standard method of testing the knowledge in clinical core competencies. Web-based CORE examination represents a simulation of radiological practice in which candidates face a complete case that must be resolved in each of the areas of sub-specialisation as if they were in a real situation. It is crucial for EDIR candidates to be aware of the structure of the exam, establishing a method of reading the images in a structured way. A broad spectrum of educational materials and structured reporting products are readily available online for trainees to prepare for CORE exam. The first step, in the CORE examination, is to detect the disease. It is important to systematically review the whole picture to avoid perception errors, including “satisfaction of search errors”. Next step is to create a list of the most relevant findings; it is essential to be consistent, starting from those that respond to the clinical question. The third step is to prepare a preliminary differential diagnosis, and suggest, if necessary, the most appropriate imaging modality to further study the patient, and finally define the most likely diagnosis. The practice of making structured reports with a specific script can be perfectly combined with the methodology needed to make a correct CORE exam and succeed. The systematic use of structured reports helps in the standardisation; it is a useful tool that serves as a guide for candidates facing the CORE exam.

Learning Objectives:
1. To have a look at an action plan for the CORE examination.
2. To better understand the CORE section.
3. To become aware of essential hints for success in the CORE section.
4. To become familiar with structured reporting as a guide for the CORE examination.
5. To understand how to make structured reports.

Author Disclosure:
L. Oleaga Zufiría: Consultant; Telemedicine Clinic.

13:40
Panel discussion

12:30 - 13:30 Room D

E³ - The Beauty of Basic Knowledge: A Survival Guide to Musculoskeletal Imaging
E³ 1521
Breast imaging

A-0855 14:00
A. Diagnosis and management of common ductal and nipple-areolar complex (NAC) abnormalities
S. Perez Rodrigo; Madrid/ES (drasilviap@gmail.com)

The nipple-areolar complex lesions deserve particular consideration. They are a group of entities that arise in this specific area. It may be affected by normal variations in embryologic development and breast maturation. Besides, abnormal processes can be found, and benign and malignant pathology can be seen in this region. Eczema, mastitis, abscesses, adenomas, papillomas and duct ectasia should be considered as benign processes. On the opposite, Paget disease, in situ carcinoma, invasive carcinoma and lymphoma should be included as malignant processes. The radiologist should be aware of the clinical manifestations of these entities (inversion, retraction, palpable mass, nipple discharge, skin changes etc.). We should also keep in mind the different radiological findings and their peculiarities. We should be aware of the different imaging techniques and which of them is better for reaching a specific diagnosis. Mammography, ultrasound, galactography, ductoscopy and MRI can be useful in the diagnosis of these lesions. A multimodal diagnosis is required, and a multidisciplinary approach is recommended to correct treatment.

Learning Objectives:
1. To learn about NAC and ductal anatomy, and pathology.
2. To become familiar with the practical workflow in everyday clinical practice.

Author Disclosure:
S. Perez Rodrigo: Advisory Board; BD Bard. Speaker; BD Bard.

A-0856 14:45
B. Techniques, artefacts and pitfalls in breast MRI
R.M. Trimble; Milan/IT (trimblmr@gmail.com)

Over the last three decades, magnetic resonance imaging (MRI) has dramatically entered the clinical field of detection and management of breast cancer (BC). Thanks to the introduction of contrast-enhanced (CE) sequences it gained very high sensitivity and intrinsic multiparametric nature. A modern, robust protocol is essentially composed of an unenhanced T2-weighted sequence; T1-weighted sequences acquired before and after intravenous administration of gadolinium-based contrast agent (GBCA) at a dose of 0.1 mmol/kg/body weight; and diffusion-weighted imaging (DWI). A fat suppression with fat saturation, inversion recovery or alternatively, Dixon method, should be added to T1w and/or T2w scans. Non-uniform magnetic field and patient motion may reduce image quality potentially rendering an image or study non-diagnostic. Artefacts in breast MRI may be grouped under two broad categories: patient-related such as positioning, motion, and susceptibility and technical artefacts such as wraparound, chemical shift, and misregistration. Radiologists should be aware of and identify common artefacts to minimise potential negative effects on image interpretation and patient experience. Close attention must be played to injection of contrast material, the timing of the examination, lymph node evaluation, extra-mammary findings and kinetic assessment for avoiding pitfalls that can make interpretation of breast MR images challenging and lead to misdiagnosis. Recognising pitfalls associated with breast MR imaging is necessary for appropriate and accurate interpretation. Finally, empathic patient management has been reported as the most important factor in the overall quality of the examination.

Learning Objectives:
1. To describe the basic techniques for breast MRI (including DWI).
2. To illustrate patient-related and technical artefacts, and pitfalls in breast MR.

Learning Objectives:
1. To become familiar with the current diagnostic concepts in the imaging of arthritis.
2. To understand the pathology of arthritis and its imaging phenotypes.
3. To appreciate the value of radiography, ultrasound and MRI.

14:00 - 15:30 Room E

E³ 1521
Breast imaging

A-0855 14:00
A. Diagnosis and management of common ductal and nipple-areolar complex (NAC) abnormalities
S. Perez Rodrigo; Madrid/ES (drasilviap@gmail.com)

Arthritis: an imaging approach

Moderator:
V.N. Cassar-Pullicino; Oswestry/UK

A-0854 12:30
Arthritis: an imaging approach
F. Kainberger; Vienna/AT (franz.kainberger@meduniwien.ac.at)

The current diagnostic concept is to embed imaging in the assessment systems in rheumatology. This means that imaging should contribute to the detection of early arthritis and to the quantification of abnormalities with prognostic impact. With the combinations of joint pain, laboratory indicators of inflammation and imaging features of tendovaginitis, joint effusion and/or bone marrow inflammation subforms of early arthritis may be defined. Synovitis is today regarded as part of a systemic autoimmune disease, and certain phenotypes can be classified with relation to the fibroelastic response and different interleukin expression leading to a destructive-erosive, a sclerotic-proliferative or a mixed imaging appearance. With US and radiography, followed by MRI, the patterns of arthritis and their differentiation from normal anatomic structures can be assessed and displayed in dedicated structured reporting templates. The differential diagnosis of autoimmune-mediated arthritis includes crystal-induced arthropathies, erosive osteoarthritis, posttraumatic and other forms of secondary joint inflammation.
Dual-energy CT of the abdomen: the time is now

Moderator: J. Soana; Jerusalem/IL

A-0857 14:00
A. Basic principles and different approaches
L.S. Guimarães; Toronto, ON/CA (luis.s.quimaraes@gmail.com)

Dual-energy CT (DECT) refers to the use of CT data from two different energy spectra for differentiating and classifying tissue composition, in addition to displaying anatomy and pathology. DECT data can be obtained using various hardware solutions (dual source, fast kVp switching, 2-rotation fast-kV-mA switch, dual layer detector and split filter). An explanation of how each of these solutions works, as well as the advantages and disadvantages of each, will be presented. Abdominal DECT has as main advantages the ability to identify/quantify certain materials (iodine, calcium, urate, etc.), as well as to increase the possibility of performing low kV imaging in a wider range of patients, which in turn is associated with an increased conspicuity of enhancing structures and lesions. The background and reasons for each of these advantages will be reviewed. Several challenges remain for full implementation of Dual Energy CT in routine clinical abdominal practices. These challenges, including the absence of standardized post-processing (which may be time-consuming), lack of well-defined advantageous routine applications and limitations in terms of patient size/radiation dose will be discussed.

Learning Objectives:
1. To learn about the types of dual-energy scanners and principles of dual-energy CT.
2. To understand issues of radiation dose and image quality in comparison with single-energy CT.
3. To appreciate the possible advantages of this technology with its many post-processing applications.

A-0858 14:30
B. Applications for genitourinary system
H. Ringl; Vienna/AT (helmut.ringl@medunivwien.ac.at)

Dual-energy CT is increasingly becoming an important diagnostic tool for the non-invasive assessment of the genitourinary system, with a wide range of applications: The use of dual-energy CT with optimised split-bolus protocols enables considerable dose savings by eliminating two scan phases. However, using virtual non-contrast images, this protocol provides the same information as an unenhanced, an arterial, a venous, and a urographic phase. Virtual non-contrast images and iodine maps enable better characterisation of renal cysts with dense content, which often pose a diagnostic dilemma in single-energy CT, and which might require MRI or CT follow-up examinations. The reconstruction of low kV mono-energetic images results in a higher iodine contrast, and, therefore, in better lesion conspicuity in the kidneys and the bladder wall. Dual-energy CT enables the quantification of iodine-uptake, and may, therefore, be used for therapy monitoring of cancer of the urinary tract, and the material decomposition algorithms of dual-energy CT are able to discriminate urate from non-urate stones in the case of nephrolithiasis in the clinical routine, making this method a game-changer in therapy.

Learning Objectives:
1. To learn about the role of dual-energy CT in the genitourinary system.
2. To understand the value of determination of renal stone composition with dual-energy CT.
3. To appreciate the ability of dual-energy CT to exactly quantify the iodine uptake in renal lesions.

Author Disclosure: R. Ringl: Research/Grant Support; Siemens Healthcare.

A-0859 15:00
C. Applications for abdominal organs
M. Karcaaltincaba; Ankara/TR (musturayk@yahoo.com)

Dual-energy CT (DECT) is increasingly used for abdominal applications. DECT can be performed by dual-source CT, fast kVp switching and dual-layer detector CT. The major advantage of DECT is the availability of virtual non-contrast (water) images in every patient. Spectral CT images can allow diagnosis of a low amount of fat (normally invisible on CT) within lesions similar to in-out of phase T1-weighted MR images. DECT can allow diagnosis of calcification or haemorrhage within lesions encountered during routine abdominal CT. Low kV images obtained by DECT is more sensitive to hepatic and pancreas hypervascular lesions compared to standard kV images. DECT can also be helpful in the differentiation of colonic poly/pam from stool detected during routine abdominal CT. In the future, all CT scanners will be most likely produced by DECT capability.

Learning Objectives:
1. To learn about the current applications of dual-energy CT in evaluating the abdominal viscera.
2. To understand the role of dual-energy CT for characterisation of incidental lesions discovered during routine abdominal CT.
3. To appreciate how dual-energy CT increases sensitivity for detecting both hypervascular and hypovascular liver and pancreatic lesions.

Author Disclosure: M. Karcaaltincaba: Speaker; Bayer, Pfizer, Philips Healthcare, GE Healthcare.
Radiography is developing a research community, supporting the profession to gain capability in research skills. The majority of this activity is taking place in academia, yet research is required to develop evidence-based practice. Radiographers are supporting the delivery of research projects through clinical activity, recruitment and support, but are yet to develop clinical independence in research. This presentation will consider the challenges and opportunities for the development of clinical researcher roles, skills and activities. Using case studies examples from practice will explore the challenges and identity future strategies to support personal and professional development.

Learning Objectives:
1. To explore the changing landscape in medical imaging and how this might influence our research.
2. To consider the future radiography profession, what might it look like and where it might lead our research.
3. To propose some research targets for our profession to work towards over the next decade.

The clinical research radiographer: essential for our profession or facilitating the research of others?

B. Snail; Wakefield/UK (bev.snailth@middyorks.nhs.uk)

Radiography is developing a research community, supporting the profession to gain capability in research skills. The majority of this activity is taking place in academia, yet research is required to develop evidence-based practice. Radiographers are supporting the delivery of research projects through clinical activity, recruitment and support, but are yet to develop clinical independence in research. This presentation will consider the challenges and opportunities for the development of clinical researcher roles, skills and activities. Using case studies examples from practice will explore the challenges and identity future strategies to support personal and professional development.

Learning Objectives:
1. To explore the changing landscape in medical imaging and how this might influence our research.
2. To consider the future radiography profession, what might it look like and where it might lead our research.
3. To propose some research targets for our profession to work towards over the next decade.

Dr. Zolda; Vienna/AT (pamela.zolda@myesr.org)

Many national funding schemes do not support a cross-border approach, which limits the scientific collaboration of European research groups. Thus researchers rely on European Union funding sources as provided by Horizon 2020, the largest EU research and innovation programme. However, the programme has become highly competitive, and often even high-quality project proposals cannot be funded. Additionally, successful projects are facing the challenge of navigating through the rules of large EU projects while simultaneously carrying out innovative research with partners from across Europe. Consequently, multidisciplinary and multinational consortia require professional support for proposal preparation and project management. The European Institute for Biomedical Imaging Research, EIBIR, is a non-profit organisation founded by the European Society of Radiology and supports researchers and industry partners in the coordination of biomedical imaging research. EIBIR offers expert advice, professional project management and coordination, as well as dissemination services for international collaborative research projects. The EIBIR services also include advice on funding opportunities and proposal writing support by an experienced team with knowledge of the European Commission’s requirements. Through EIBIR’s large landscape of network members, shareholder organisations, industry partners and media contacts the coordinated research is widely and rapidly communicated. EIBIR is currently a partner and/or coordinator of seven Horizon 2020 projects and relieves researchers of the administrative burden, allowing them to focus on the scientific aspects and thereby ensuring the best project outcome. All services are free of charge for active EIBIR network members and can be used for a moderate annual fee.

Learning Objectives:
1. To learn about EIBIR and its services for researchers.
2. To understand project management and dissemination activities of European projects.
3. To appreciate how EIBIR can support your research project.

Research is nothing without effective dissemination

F. Zarb; Msida/MT (francis.zarb@um.edu.mt)

Research is the contribution to the body of knowledge in a particular area/expertise. Research findings should be disseminated, shared and made available to fellow professionals and others for these findings to have an overall beneficial effect. There are a number of ways for disseminating research findings such as through peer-reviewed publication, conference presentations, posters etc. This presentation aims to highlight the importance of research finding dissemination for both the individual researcher/practitioner and to the clinical/academic departments and countries they represent. The dissemination process may not always seem easy and straightforward, requiring a commitment and perseverance in the work it entails. However, the benefits and satisfaction associated with research dissemination outweigh the hard work involved.

Learning Objectives:
1. To explore the importance of dissemination at the local, national and international level.
2. To explore the importance of publishing for clinical and academic departments.
3. To consider the benefits and limitations of publishing in different journal formats.

Panel discussion: What are the biggest barriers to growing radiographer-led research?

Getting the balance right: radiation risk and imaging benefit in paediatric procedures

C. Owens; London/UK (owensc@gosh.nhs.uk)

This important session takes a multidisciplinary approach on team efforts to facilitate the best use of expensive medical imaging equipment. We will attempt to ask and answer questions about our role in helping to optimise CT technology for best use in children, including our role as radiologists in dose reduction and adaption to the use of lower dose techniques and post-processing methods which assist with noise reduction.

Session Objectives:
1. To learn about risk and benefits in imaging children.
2. To understand the importance of an integrated approach from radiology and medical physics.
3. To appreciate a multidisciplinary approach to imaging optimisation and radiation protection.

Guidelines for the use of conventional radiographs in children and adolescents

R. Seur; Helsinki/FI (raija.seuri@hus.fi)

Conventional radiography, usually nowadays either CR or DR is the most often used medical imaging modality. The rapid development of other modalities - some more sensitive, some without the burden of ionizing radiation - has changed the use of conventional radiography. Also, the wide postprocessing possibilities and the even more sensitive detectors have challenged our knowledge and practise in optimisation. Evidence-based information on the use of radiological modalities and different examinations, also conventional radiography, is widely available. But even when following the most recent literature we must keep in mind that adult rules do not always apply to paediatrics. The digital imaging techniques of computed radiography (CR) and direct radiography (DR) have changed optimization considerably. They give the possibility of diagnostic imaging with very low patient dose, but at the same time the dose is not any more visually seen in the image. This has created the problem of possible “dose creep”. Even if the dose is transferred to the image
display, systematic dose evaluations are needed to verify and maintain the level of dose optimization. The use of pre-set protocols is usually not possible in paediatric imaging. Deep understanding of the postprocessing systems is not easily available during the optimisation process. The key point is close cooperation between professionals. Wide variation in imaging practices and the parameters used have been noticed in Europe. Lack of written guidelines means variation in both image quality and patient exposure.

Learning Objectives:
1. To learn about the current developments in conventional radiography.
2. To understand the strengths and weaknesses of each technique.

A-0873 14:25
Computed tomography: are we doing enough?
E. Castellano; London/UK (elly.castellano@mnh.nhs.uk)

Optimal CT imaging of children requires the concerted effort of manufacturers, radiologists, radiographers and physicists. Only by working together as a multidisciplinary team can images of adequate quality be produced at appropriate radiation doses. Recent developments in CT scanner technology that particularly benefit children, such as lower tube voltages, faster scanning, improved detector design and iterative reconstruction, are reviewed in this talk. Notwithstanding, dose indicators such as dose-length-product can be misleading when scanning children, so the need for better radiation risk estimates remains; recent advances in CT dosimetry will also be considered. The role of the radiologist is vital in maintaining the balance between radiation dose and image quality. Radiation dose reduction without regard to image quality poses a greater clinical risk than a radiation risk and may precipitate a backlash from clinicians. This lecture suggests ways in which the radiologist can work with radiographers and physicists to define image quality requirements and thus complete the optimisation loop.

Learning Objectives:
1. To learn about the current status of CT systems.
2. To understand the strengths and weaknesses of each CT type.
3. To appreciate the importance of dose optimisation and an active physics programme.

A-0874 14:45
Dose reduction strategies in paediatric PET/CT and PET/MR examinations
J. Schäfer; Tübingen/DE (juergen.schaefner@med.uni-tuebingen.de)

High cumulative effective doses (ED) by repetitive PET/CT have been described ranging from 6-400 mSv, whereas the CT proportion up to 80% of the total dose. Usually, the administered tracer dose is adapted to body weight according to published recommendation (e.g., dosage card of the EANM), and therefore relatively standardised. However, the kind of CT acquisition is quite variable reaching from CT used only for attenuation correction (AC) over a reduced dose CT for anatomical allocation to whole-body contrast-enhanced diagnostic CT plus an additional CT for AC which reveals the highest radiation of all variants. According to these purposes (also as a combination), the scan-parameters must be optimised using automatic exposure control (AEC). Depending on the patient size and the CT mode, AEC achieves appropriate dose reduction up to 40% by maintaining image quality. Overall in comparison to PET/CT, PET/MRI has shown to be equivalent concerning the PET component. PET/MRI allows for a reduction in radiation dose by replacing CT with MRI making it particularly suitable for pediatric applications. A dose reduction of up to 80% has been demonstrated in individual cases. Moreover, also the administered dose of the PET tracer can be reduced due to both, the higher sensitivity of PET detectors in PET/MR scanners and the longer PET data acquisition times compared to PET/CT. Thus, ED of PET/MR below two mSv are realistic if a local PET/MRI is performed (e.g., in inflammatory bowel disease) further reduction is possible.

Learning Objectives:
1. To understand the real doses involved in PET/CT and PET/MRI.
2. To appreciate relative risks of multiple examinations and highlight benefits of the different imaging protocols.

Author Disclosure:
J. Schäfer: Research/Grant Support; German Children’s Cancer Charity, Siemens Healthcare - Siemens Healthcare, Bayer AG, Philips Healthcare. Speaker; Philips Healthcare.

A-0875 15:05
Radiation safety in interventional procedures in children
C. Granata; Genoa/IT

Interventional Radiology (IR) encompasses a wide range of techniques, including both cardiac and non-cardiac procedures. During the last decade, there has been a significant increase in IR procedures in children, many of them delivering high radiation doses, without any other treatment option. The few published studies in children mostly concern single centre experience and confirm the very high variation of doses among different centres due to child size, complexity of conditions, technique adopted, experience of medical staff, and available equipment. Furthermore, the underlying disease may require repeated procedures causing a higher cumulative dose. Diagnostic Reference Levels (DRLs) are excellent tools for technique optimisation. Nevertheless, due to the reasons detailed above, national DRLs have not been established in any European country for any IR procedure in children so far. Therefore, a cohesive effort is needed with the initial aim to establish local DRLs at least in the less complex procedures, characterised by a smaller number of variables. Subsequently, local DRLs from different centres should be compared and analysed to better understand the reasons of the large differences in administered doses and to be able to decide if national or even European DRLs for IR procedures in children are feasible and appropriate.

Learning Objectives:
1. To learn about current practices in interventional radiology in children.
2. To understand the range of doses across centres.
3. To appreciate the importance of a cohesive approach.

15:25
Discussion

Saturday

Postgraduate Educational Programme

Cardiac

RC 1503
Cardiac imaging in structural heart disease
A-0876 14:00
Chairperson’s introduction
L. Natale; Rome/IT (luigi.natale@unicatt.it)

Structural heart diseases refer to non-coronary cardiovascular processes and related interventions. The term was first used in 1999 Transcatheter Cardiovascular Therapeutics meeting. A huge amount of efforts have been done in last two decades, embracing recognition of disease, the underlying pathophysiologic mechanisms, the developments of imaging techniques and catheter-based techniques and devices, resulting in improvement of diagnosis and treatment of structural heart diseases. Main examples of structural heart diseases are congenital (ASD, PFO, VSD, PDA), thrombi source assessment and treatment (left atrial appendage and ventricular aneurysm closure), valvular diseases and hypertrophic obstructive cardiomyopathy. Three final considerations are mandatory: first, the need for a multidisciplinary time, due to the different expertise needed; second, the volume of procedures, that is increasing but is still much lower than coronary interventions; third, the huge technical differences in procedures with consequent further subspecialties needs.

Session Objectives:
1. To become familiar with the concept of “structural” heart disease in modern cardiovascular medicine.
2. To get an overview about the minimally invasive treatment possibilities in structural heart diseases.
3. To learn about the requirements and possibilities of modern cardiac imaging in structural heart diseases.

A-0877 14:05
A. CT-guided planning of minimally invasive procedures
R. Salgado; Antwerp/BE (rodrigo.salgado@uza.be)

Transcatheter valve replacement and repair techniques have recently enjoyed significant widespread clinical attention, offering new therapeutic options for certain patient populations with functional aortic and mitral valve disease which were previously unable to undergo surgical valve replacement. While most of the attention has focused on the treatment of severe aortic valve stenosis, intensive research is currently underway investigating the possibilities of transcatheter mitral valve repair and even replacement. While initial trials relied on echocardiography for pre-procedural assessment of the aortic root components, CT has rapidly become the imaging modality of choice for a correct anatomical evaluation. The intrinsic 3D nature of CT offers unparalleled non-invasive access to investigated anatomy, delivering the needed accurate measurements to further optimise the eligibility for and the choice of transcatheter valve best suited for a specific patient. During this lecture, we will further highlight the role of CT in this pre-procedural setting, with attention to the relevant anatomy, the scan protocol and the necessary information that has to be delivered in order to achieve maximal procedural success.
Learning Objectives:
1. To learn about the requirements prior to minimally invasive valvular repair and other diseases.
2. To outline the most appropriate imaging protocols.
3. To gain insights into future developments in devices and minimally invasive treatments.

A-0878 14:28
B. Defining the optimal time to treat valvular heart disease: role of MR
J. Mascherbauer; Vienna/AT

"no abstract submitted"

Learning Objectives:
1. To outline the clinical problem and to approach treatment decision-making in valvular heart disease.
2. To become familiar with the MR derived imaging biomarkers in valvular heart disease.
3. To discuss the possible future role of MR in outcome prediction in valvular heart disease.

A-0879 14:51
C. Follow-up after minimally invasive valvular repair
H. Alkadhi; Zurich/CH (hatem.alkadhi@usz.ch)

Minimally invasive valvular repair has become a well-established alternative for patients with severe valve disease being considered at high or prohibitive surgical risk. Several devices are currently under preclinical and clinical evaluation. In this lecture, the various devices are being described, along with postinterventional imaging of the devices and their complications. Main challenges and future perspectives on this emerging field are discussed.

Learning Objectives:
1. To become familiar with the appropriate imaging technique after minimally invasive valvular repair.
2. To learn about the different devices currently used in treatment of structural heart disease.
3. To become familiar with the normal outcomes and most common procedural complications.

15:14
Panel discussion: How to face the challenges of the increasing demand for imaging evaluation in structural heart disease

14:00 - 15:30 Studio 2019

Special Focus Session

SF 15a
Everything you always wanted to know about metabolic bone disease (but were afraid to ask)

A-0880 14:00
Chairperson's introduction
A. Bazzocchi; Bologna/IT (abazzocchi@inwind.it)

Despite appearances, bone is a very active organ. The metabolic life of bone is frantic and fully involved in human physiology and pathophysiological processes. Cross-talks (interactions) between bone and other organs (and between bone and other MSK system tissues) allow for energy exchanges and modulation of functions. Bone structure and composition are dynamically changed, and pathologic processes can result in bone healing or lead to permanent alteration and eventually dysfunction and failure. Radiologists are not always completely aware of the importance of bone metabolic conditions.

Session Objectives:
1. To become familiar and get answers to the most frequently asked questions regarding findings that could be interpreted or misinterpreted as metabolic bone disease.
2. To become familiar with DXA-based body composition assessment and understand the potential applications of recently developed DXA-based software.
3. To become familiar with the typical and atypical features of insufficiency fractures.
4. To learn about texture analysis and its application to bone architecture assessment.

A-0881 14:05
Could "that" be metabolic?
M.P. Aparisi Gomez; Valencia/ES (pilucaparisi@yahoo.es)

The bone marrow is one of the largest organs in the body. Its composition varies physiologically through life, in the context of normal maturation (red to yellow conversion) and also in response to situations of stress response, trauma, and infection (red to yellow conversion). The bone marrow is present in the background of every MR examination performed, and sometimes its appearances can pose a challenge to interpretation. In addition to this, opportunistic diagnosis of pathology showing changes in the bone marrow should be taken advantage of by every radiologist. In this lecture, we will start by reviewing the histology of the normal bone marrow and its expected age-related appearances. We will review the causes that trigger changes in the appearances of the bone marrow, in a first instance addressing the most common physiological and pathological processes. The second half of the lecture will focus on establishing the ideal structured way to interpret appearances of bone marrow on MRI, with a review of the different additional imaging tools, mainly MRI-based, to orientate diagnosis. The radiologist should develop a rational, structured way to assess bone marrow appearances on MRI, and become familiar with bone marrow patterns and their significance, in the context of known pathology but also to raise awareness on the possibility of underlying processes and orientate diagnosis.

Learning Objectives:
1. To learn about the variety of different physiological and pathological bone marrow patterns.
2. To understand why some types of insufficiency fractures can be missed.
3. To become familiar with the most frequently asked questions regarding findings that could be interpreted or misinterpreted as metabolic bone disease.

A-0882 14:23
Unrevealed fractures: from missed diagnosis to opportunistic screening
C.R. Krestan; Vienna/AT (christian.krestan@meduniewien.ac.at)

This lecture focuses on occurrence, imaging and differential diagnosis of insufficiency fractures. These fractures occur when normal stress is exerted on weakened bone. The morphologic features and the most common sites of insufficiency fractures and their clinical implications are discussed. A large proportion (up to 1/3 or more) of fractures are asymptomatic and do not come to clinical attention. There is a chance for opportunistic identification of insufficiency fractures including vertebral fractures from various imaging modalities including radiographs, computed tomography, magnetic resonance imaging, and PET-scans performed for other clinical indications. Fractures will often be missed on axial scans; thus midline sagittal reformatted images from computed tomography which include the spine in the field of view have the greatest potential for opportunistic detection. It may be a challenge for the radiologist to detect and diagnose insufficiency fractures as well as to differentiate them from malignant fractures. The different modalities have a broad range of sensitivity in detecting insufficiency fractures. Dual-energy Multidetector CT can depict bone marrow oedema and thus has the ability to differentiate acute from old fractures at different body sites. PET-CT and PET-MRI with hybrid-scanners combine different radiological modalities with the properties of tracers. Hybrid imaging has been the upcoming modality for the differentiation of benign from malignant fractures. The lecture also focuses on the importance of the accurate reporting of fractures to avoid underreporting, as vertebral fractures and fractures at other sites are powerful predictors of future fracture risk.

Learning Objectives:
1. To become familiar with the typical features of insufficiency fractures.
2. To understand why some types of insufficiency fractures can be missed.
3. To appreciate the value of opportunistic diagnosis and the potential implications on patient management.

A-0883 14:41
DXA: a much more powerful imaging tool than you thought
C. Messina; Milan/IT (carmelomex@gmail.com)

Dual-energy X-ray absorptiometry (DXA) is the mainstay in clinical practice to evaluate bone mineral density (BMD) in patients with suspected osteoporosis. Nevertheless, DXA can be now considered a multi-parametric tool, being able to offer several other diagnostic possibilities. Among these, one of the most promising is the use of DXA body composition (BC), a technique that is able to quickly assess BC parameters such as lean and fat mass, with very low radiation dose. There is, therefore, a growing interest in DXA BC for the emerging aspects of sarcopenia and osteosarcopenia. DXA BC can be used for the diagnosis of prevalent and incident vertebral fractures using vertebral morphometry, which showed to be comparable to classic radiographic morphometry analysis. In addition, DXA morphometry is computer-assisted, which helps the radiologist to better fracture detection. The lecture will also
cover the clinical utility of Trabecular Bone Score (TBS), a textural index based on grey-level variations that can be obtained from the lumbar spine DXA. Studies in postmenopausal women showed that TBS is associated with vertebral, hip and major osteoporotic fracture risk, but the software also has limitations that can limit its applicability.

Learning Objectives:
1. To learn about vertebral morphometry with DXA.
2. To become familiar with DXA-based body composition.
3. To understand the applicability of a recently developed DXA-based software, the “trabecular bone score” (TBS).
4. To understand the technical principles and the clinical utility of hip structural analysis (HSA), which uses DXA data to derive measurements of bone geometric properties at the proximal femur.

Author Disclosure:
C. Messina: Grant Recipient; Abiogen, Bracco, Sandoz Travel Grant.

A-0884 14:59
The bone naked: texture analysis

C.M. Phan, Paris/FR (catherine.phan@sat.aphp.fr)

Texture analysis is a technique that allows quantification of the spatial arrangement of pixel intensities by using statistical evaluation of image intensities in a region of interest and can be performed with different imaging modalities. Texture analysis is able to detect distinct quantitative differences in tissues, which may not be depicted using a pure visual assessment alone. Texture analysis is an image processing that extracts texture descriptors from an image thereby allowing the mathematical detection of subtle CT attenuation or MRI signal intensity changes amongst image pixels. Most studies have used CT texture analysis in patients with neoplasms to differentiate benign from malignant lesions, to assess tumour grade, and to predict survival. In vivo bone texture analysis is a new application for the assessment of skeletal integrity in different diseases (primary or secondary osteoporosis, haematological diseases). The current features of texture analysis will be reviewed as well as the limitations of this imaging processing.

Learning Objectives:
1. To learn about texture analysis and its application to bone architecture analysis.
2. To understand how texture analysis could be used in differentiating control subjects with normal bone density from patients with osteoporosis and patients with hematological diseases such as multiple myeloma.
3. To appreciate the limitations of this imaging processing.

15:17
Panel discussion: “What lies ahead...?” The future of diagnosis of metabolic bone disease in clinical practice

14:00 - 15:30 Room E1

Special Focus Session

SF 15b

Imaging in Meniere's disease: what to believe and how to interpret

A-0885 14:00

Chairperson’s introduction
J.W. Casselman; Bruges/BE (jan.casselman@azsintjans.be)

A-0886 14:05

Meniere’s disease: the clinician’s perspective
A. Zarowski; Antwerp/BE (andrzej.zarowski@ime.com)

Menière’s Disease (MD) is characterised by a specific set of symptoms comprising vertigo spells with a duration of at least 20 minutes usually accompanied by low-frequency perceptive hearing loss, tinnitus and pressure sensation in the ear. The severity and natural history of MD is highly unpredictable, with often prolonged periods without any symptoms. The fear of getting an acute vertigo spell at virtually any moment of daily activities makes MD very annoying to patients and creates significant behavioural changes. Histologically all patients with MD show an increased volume of the membranous labyrinth (endolymphatic space) that is morphologically described as an endolymphatic hydrops (EH). It is however not known if the occurrence of EH is due to endolymph overproduction, malabsorption or other disorder of endolymphatic homeostasis. Or is it merely an anatomical malformation that needs an additional trigger to become symptomatic. One of the most important problems in MD is that until now there have been no objective criteria available for precise definition of MD. Diagnosis is typically based on mere anamnestic criteria and is not accurate. In clinical practice, many different balance problems show similar symptomatology and are classified incorrectly as MD. There have been numerous endeavours to find objective methods allowing for the precise definition of the definitive MD, but they were not successful. Medical imaging was until now only used for exclusion of other pathologies. The development and availability of the specific MRI hydrops protocols initiate a whole new era in the diagnosis and treatment of MD.

Learning Objectives:
1. To discuss the pathophysiology of Meniere’s disease.
2. To learn about the clinical presentation and diagnostic pitfalls.
3. To become familiar with the therapeutic options for patients with Meniere’s disease.

A-0887 14:15

MR hydrops imaging: how to do it?

A. Attye; Grenoble/FR (aattye@chu-grenoble.fr)

Within the inner ear, there are two distinct compartments filled with endolymph and perilymph. The accumulation of endolymph fluid is called “endolymphatic hydrops” (EH). Two alternative routes for contrast media administration have been assessed to identify EH: intratympanic (IT) and intravenous (IV). The main advantage of an IT injection is a higher perilymphic contrast, particularly in the basal turn if the cochlea, although previous studies suggest this method can cause local toxicity in animal models. In addition, cases of bilateral disease require a double IT injection and an MR scan waiting time of 24 h before imaging acquisition. In contrast, the intravenous method requires a shorter waiting time, which has been evaluated as optimal in the 4-6 hours interval. More recently, the effect of varying the contrast media molecule on normal inner ear structures enhancement has been evaluated, and the use of 3D-FLAIR sequences with constant flip angle proposed are more sensitive than those with a variable flip angle for the hydrops protocol. Finally, radiologists must be vigilant to other inner ear diseases, such as perilymphatic fistulae, Minor syndrome, vestibular neuritis or intralabyrinthine fistulae, which may mimic Meniere’s disease symptoms.

Learning Objectives:
1. To review different MRI techniques for investigation of endolymphatic hydrops.
2. To present tips and tricks for state of the art imaging today.
3. To discuss how to exclude other pathology mimicking Meniere’s disease.

Author Disclosure:
A. Attye: Research/Grant Support; Guerbet and Bayer Manufactory.

A-0888 14:40

MR hydrops imaging: how to interpret it?

B. De Foer, A. Bernaerts; Antwerp/BE (bert.defoer@gza.be)

Delayed intravenous gadolinium-enhanced 3D FLAIR MRI is able to demonstrate endolymphatic hydrops in patients with Meniere’s disease. Various semiquantitative grading criteria have been described. A three-stage grading system for vestibular and cochlear hydrops is most frequently used. In normal circumstances, a barely visible non-enhancing cochlear duct is seen in
Diagnosis of Menière’s Disease (MD) significantly influences the emotional and the enhancing scala vestibuli and scala tympanic. Grade 1 cochlear hydrops is described as a mild dilatation of the non-enhancing cochlear duct into the scala vestibuli with partial obliteration of the scala vestibuli. In grade 2 cochlear hydrops, the scala vestibuli is uniformly obstructed by the distended cochlear duct. In the vestibule -in normal cases- one can clearly discriminate the non-enhancing saccule and utricle in the enhancing vestibule. A grade 1 vestibular hydrops presents as distention of the endolymphatic space of the saccule and utricle, with the enhancing perilymphatic space still visible around it. In grade 2 vestibular hydrops, the saccule and utricle are extremely distended without any visible surrounding enhancing perilymphatic space. Other signs have been described in patients with Menière’s disease such as the more pronounced cochlear perilymphatic enhancement and the obliteration of the endolymphatic sac. In patients with definite Ménière’s disease, the degree of MR morphological hydrops severity correlates significantly with impairment of hearing function and saccule function. However endolymphatic hydrops is not only seen in patients with Menière’s disease. It has also been reported in a variety of other disease entities such as sensorineural hearing loss, otospongiosis and superior semicircular canal dehiscence.

Learning Objectives:
1. To get acquainted with the imaging appearance of endolymphatic hydrops.
2. To correlate imaging findings with clinical presentation.
3. To learn about other causes of endolymphatic hydrops.

A-0899 15:05
MR hydrops imaging: what are the benefits for the surgeon and the patient?
A. Zarowski; Antwerp/BE (andrzej.zarowski@gmail.com)

Diagnosis of Menière’s Disease (MD) significantly influences the emotional and social wellbeing of affected patients. There are different conservative and invasive treatments available for MD, but their value is still questionable. Therapeutic results show large variability and are very difficult to differentiate from placebo effects, which play an important role in the treatment of MD. Lacking objective diagnostic criteria for a precise definition of MD is one of the most important problems for validation of any particular treatment in a placebo-controlled trial. When the study group and the control group comprised patients with an incorrect diagnosis, it becomes very difficult to demonstrate any significant differences between these groups. Since the presence of the endolymphatic hydrops (EH) is the necessary underlying condition for the diagnosis of definite MD, the new MRI diagnostics have dramatically changed the clinical approach to patients with MD by an improved definition of the affected patients. This game-changer gave rise to the re-evaluation of the efficacy of the historically available therapeutic options. In spite of this revolution in MD imaging, some unanswered questions still have to be addressed in future research. Is EH acquired or is it a congenital anatomical malformation? How many patients in the general population show asymptomatic EH? Is EH the necessary and sufficient condition for the development of MD symptoms, so that all patients with a radiologically diagnosed EH will eventually develop symptoms of MD? Does the localisation or the radiological grade of EH correlate with the clinical appearance of MD?

Learning Objectives:
1. To recognise the value of endolymphatic hydrops imaging.
2. To appreciate the impact of imaging findings on therapeutic strategy.
3. To discuss patient outcome after different treatment strategies.

A-0890 15:15
Panel discussion: Did you pick up the essentials?
J.W. Casselman; Bruges/BE (jan.casselman@azsintjans.be)

The audience will be able to test their knowledge about Menière’s disease by answering multiple choice questions. They will be able to answer by using an electronic voting system (using their own smartphone/tablet/laptop). The purpose of these questions is to evaluate what the participant picked-up about the “clinical presentation of Menière’s disease, treatment options, MR technique, mimicking pathology, MR diagnosis and classification, other causes of endolymphatic hydrops and the impact of the MR diagnosis on therapeutic strategy and treatment”. The answers will be analysed and discussed by the presenters.
both the upper abdomen and the pelvis in less than 10 min. Optimised T2-weighted images with and without fat suppression are mandatory, in association with optimal T1-weighted sequences performed with Dixon techniques.

Learning Objectives:
1. To learn about the superior MRI performance in diagnosing specific pathologies such as acute biliary disease, pancreatitis and gynaecological emergencies.
2. To understand that MRI should be used as an alternative to CT for investigating abdominal pain in pregnant, paediatric or young adult patients.
3. To become familiar with new MRI sequences that allow shorter examination times.

A-0894 14:55

CEUS in abdominal inflammatory and infectious conditions (tis and abscesses)

T. Fontanilla; Madrid/ES (fontanilla@gmail.com)

Many abdominal emergencies, including abdominal inflammatory conditions, are evaluated with ultrasound. Contrast-enhanced ultrasound further improves ultrasound effectiveness in this setting. CEUS of inflammatory conditions in any location depends on the presence of liquefied component and its proportion to the phlegmonous component; in the number and thickness of the septa and in the thickness of the wall also. Phlegmonous component enhances in the arterial phase and washes out quickly. The liquefied component does not enhance at all. Abscess walls and septa enhance in arterial phase and wash out quickly or slowly. Pyelonephritis lesions typically enhance initially less than the adjacent parenchyma, quickly enhance similarly the parenchyma and enhance less to it in late parenchymal phase, in which lesions are best depicted. Considering gallbladder, appendix, bowel in diverticulitis or intestinal inflammatory disease, thickening of the wall with arterial phase enhancement happens, except in gangrenous areas. If there is perforation, gas and/or peritoneal fluid and/ or complication with an adjacent phlegmon or abscess occur. CEUS aids in distinguishing phlegmon from an abscess, in measuring the size of the abscess and in defining its internal structure, which influence directly in the therapeutic choice: drainage and antibiotics versus medical treatment alone. CEUS also provides a valuable tool in the follow-up of the lesions: size diminishment, reduction in wall enhancement, and even use of endovascular ultrasound for septum puncture or location of drainage tubes. CEUS findings and usefulness, as well as technical tips to optimise imaging, will be explained with different cases.

Learning Objectives:
1. To learn the CEUS image findings of acute inflammatory conditions and their complications (gallbladder, kidney, inflammatory bowel disease and complicated diverticulitis).
2. To become familiar with the indications, advantages and limitations of CEUS.
3. To review technical issues from a practical standpoint.

Panel discussion: New techniques in emergency radiology: where are we now and where are we going?

15:20

Panel discussion: New techniques in emergency radiology: where are we now and where are we going?

E³ - European Diploma Prep Session

E³ 1523

Principles of imaging and radiation protection

A-0895 14:00

Chairperson’s introduction

C.J. Caruana; Msida/MT (carmel_j.caruana@um.edu.mt)

Medical imaging devices are instruments which measure a physical property of tissue voxels (e.g., linear attenuation coefficient in CT). This is crucial to keep in mind as the quantitative view of medical images gains traction among the radiology community. The 3D matrix of voxel values are then visualised as a grey scale (or colour) image by means of a Look-UP-Table (LUT). By good image quality, one means that the device can demarcate the voxels properly (for high spatial resolution) and that the physical property values of the voxels have been measured accurately (inaccuracy renders the image unusable) and with a low uncertainty (for high contrast resolution). On the other hand the higher the precision with which we want to measure the values the higher is the patient dose in CT or the SAR level in the case of MRI. The optimization which is the creation of the right level of image quality whilst avoiding unnecessary patient risk is therefore crucial. Staff safety also needs careful attention. In these presentations we will present the principles of image formation, image quality, basic optimisation and protection of patient and staff from ionising radiation and other physical agents (e.g., magnetic field and gradient fields in MRI) for ETC Levels I and II.

Session Objectives:
1. To understand the technical and methodological principles of computed tomography.
2. To understand the technical and methodological principles of magnetic resonance tomography.
3. To learn the principles of radiation biology and radiation protection.

A-0896 14:06

A. Principles of computed tomography

M. Kortesniemi; Helsinki/FI (mika.kortesniemi@hut.fi)

Computed tomography (CT) is an imaging method producing 3D image data of the patient. Like any other x-ray modality, the contrast in the CT image is based on the x-ray attenuation. The physical interactions behind the attenuation also produce radiation exposure to the patient. The majority of the cumulative radiation exposure in radiology is produced by CT. Therefore, proper justification and optimisation of CT studies are essential factors in diagnostic radiology. The CT image data is acquired from the patient with a rotating x-ray tube and detector; both mounted on the opposite sides of the rotating gantry structure. In a multi-slice CT scanner (MSCT), a large number (up to thousands) of raw-data projections are measured from different angles, representing the net attenuation of x-rays across the patient. These raw-data projections are then used to calculate the image slices – or rather the volume – representing the 3D attenuation map of the patient. Thus, the CT image reconstruction is an inverse problem, deducing the 3D image from the raw-data “shadow” signal. Mathematical image reconstruction methods have traditionally been based on filtered back-projection, enhanced in the past decade with iterative reconstruction techniques, and recently starting to utilise even deep-learning (a type of artificial intelligence). Modern CT imaging enables very fast, high resolution and wide coverage scanning, acquiring up to 640 axial slices per rotation in axial scan mode, and even 73 cm length per second with high pitch helical scan with a dual-source CT scanner. Development of CT is continuing strong.

Learning Objectives:
1. To understand the physical basis of image formation of computed tomography and the physics of helical, multidetector and dual-source CT.
2. To learn the scale of Hounsfield units and the principle of window centre and width.
3. To become familiar with modern CT technology.
4. To understand the principles of optimising CT protocols with a focus on patient dose reduction.

B. Principles of magnetic resonance imaging

D. Sappey-Marinié; Lyon/FR (Dominique.Sappey-Marinié@univ-lyon1.fr)

After a rapid survey of Nuclear Magnetic Resonance (NMR) discoveries through the numerous Nobel prices, the fundamental principles will be presented through the quantum aspects of the spin states of hydrogen nucleus, the most targeted candidate in MRI, and the use of three magnetic fields, the static B0 field, the resonant B1 field, and the gradient fields, for spin polarization and excitation, and space encoding for image reconstruction, respectively. Relaxation processes, called T1 and T2, will be described to understand the signal measurement and to explain their role in image contrast using a standard spin-echo sequence. Conventional MRI sequences, including T1, T2, T2* tissue contrasts, will be presented to provide an initial comprehension of MRI interpretation, to learn about typical artefacts, and to understand safety issues in MRI.

Learning Objectives:
1. To become familiar with the physical basis of image formation in MRI including the principles of pulse sequences and relaxation times.
2. To become familiar with the typical appearance of tissues, organs and main pathological processes of the most commonly used sequences in MRI, including T2-weighted sequences, T1-weighted sequences, STIR sequences, FLAIR sequences, other inversion recovery sequences, T2* - susceptibility-weighted sequences and MR angiography sequences.
3. To learn typical artefacts on MR imaging and to discuss their respective causes.
4. To understand absolute or relative contraindications against MR imaging and safety issues in the MR environment with regard to patients and staff.

A-0898 15:02

C. Radiation protection

J. Damalakis; Iraklion/GR (damalakis@med.uoc.gr)

The use of ionising radiation for medical imaging requires careful thought so that expected benefits outweigh potential radiation-induced risks. This presentation will provide an overview of medical radiation protection. Specifically, it will cover the main interactions of x-rays and gamma rays with...
matter and will explain why the photoelectric effect and Compton scatter are the most common effects in diagnostic imaging. The basic principles of medical radiation protection as outlined by ICRP will be described, and the importance of patient and staff dosimetry in diagnostic and interventional radiology will be explained. Methods and tools will be presented that can be used to limit patient dose. Paediatric patients are more sensitive to radiation than adults. The exposure of pregnant patients to medical X-rays is often a complex case and involves emotionally sensitive issues for both prospective parents, radiologists and referring physicians. A program for dose management of pregnant and paediatric patients requiring diagnostic and interventional procedures will be described. Fluoroscopically-guided interventional procedures are associated with relatively high occupational doses. This presentation will give key points to remember for staff dose management in fluoroscopy and interventional radiology procedures.

Learning Objectives:
1. To understand the phenomena of x-ray interaction with matter and their effect on image quality and dose.
2. To provide an overview of patient and staff dosimetry in diagnostic and interventional radiology.
3. To understand the basic principles of radiation protection, as outlined by the ICRP (International Commission on Radiological Protection).
4. To become familiar with the concepts and tools for dose management in radiology with regard to adult and paediatric patients.

Special Focus Session
SF 15d
Navigating tumour phenotype with advanced imaging analysis

A-0899 14:00
Chairperson's introduction
E. Sala; Cambridge/UK (es22@icam.ac.uk)

Session Objectives:
1. To become familiar with the concept of tumour microenvironment and habitat imaging.
2. To learn what information habitat imaging and radiomics can provide on tumour heterogeneity.
3. To understand how the radiomics features may relate to tumour biology and characterisation of tumours.

A-0900 14:05
Understanding tumour microenvironment: the role of habitat imaging
J. O’Connor; Manchester/UK (james.oconnor@manchester.ac.uk)

Tumours are complex 3D structures at the anatomical, physiological and metabolic levels. Imaging methods, such as CT, MRI, PET, SPECT and ultrasound can map the spatial variation in these scales. In particular, imaging can detect sub-regions with differing anatomical or microenvironment signatures, which have been referred to as ‘tumour habitats’. It is hypothesised that these habitats identify a tumour with good/poor prognosis or good/poor response to targeted therapy. In this talk, we will consider strategies and tools for identifying these habitats. We will evaluate the evidence that such approaches provide useful information to guide decision-making that merit inclusion in healthcare systems.

Learning Objectives:
1. To understand the concept of tumour microenvironment.
2. To become familiar with habitat imaging analysis tools.
3. To learn what information habitat imaging can provide on tumour heterogeneity.

A-0901 14:30
Unravelling tumour heterogeneity using radiomics
L.S. Fournier; Paris/FR (laure.fournier@aphp.fr)

Radiomics is a new ‘data-driven’ approach for extracting large sets of complex descriptors from routine (or not) clinical images. Advanced methods of image processing are applied to images to extract a large number of descriptors, such as texture analysis from histograms, co-occurrence matrices, fractal analysis, etc. This large set of data can be analysed using bio-informatics and bio-statistics methods then correlated to outcomes, such as treatment response or survival. The purpose of radiomics is to mine images for information on underlying biology, such as gene expression profiles (called radiogenomics), molecular profiles, expression of receptors, microenvironments such as immune cell infiltration or angiogenesis. Texture parameters more specifically are considered to reflect tumour heterogeneity. Radiomics allows discovery of new potential biomarkers, but it is then important to demonstrate their link to tumour biology.

Learning Objectives:
1. To learn the definition of radiomics and radiomics tools available.
2. To understand how the radiomics features may relate to tumour biology and characterisation of low-grade gliomas and liver tumours.

A-0902 14:55
Role of machine learning (ML) and artificial intelligence (AI) for quantitative radiomics
W.J. Niessen; Rotterdam/NL (w.niessen@erasmusmc.nl)

Radiomics techniques aim to establish a relation between a combination of imaging features and clinically relevant outcomes. Radiomics has primarily been applied in the oncology domain and owing to its popularity for different types of tumours radiomic signatures have been developed. Still, there are large challenges in order to bring radiomics to daily clinical practice. Challenges include the robustness and generalisability of radiomic signatures, especially in view of the large heterogeneity in imaging hard- and software, and image acquisition parameters. In this presentation, I will present the basics of a radiomics pipeline. Also, methods for the automatic optimisation of all the parameters in a radiomics pipeline are addressed. Finally, examples of this approach are shown on a variety of applications, including grading of prostate cancer, and characterisation of low-grade gliomas and liver tumours.

Learning Objectives:
1. To understand how machine learning can be used to extract radiomic features.
2. To learn how artificial intelligence can be used in radiomics.
3. To become familiar with available artificial intelligence algorithms that can be used to integrate radiomics with other patient data.

A-0907 14:00
A. Diagnosis and treatment of abdominal aortic aneurysms
F. Wolf; Vienna/AT (florian.wolf@medunivwien.ac.at)

Abdominal aortic aneurysms (AAA) are relatively rare. The annual incidence of new AAA diagnoses is approximately 0.4 to 0.67 % in Western populations. Nevertheless, when radiologists report CT examinations, they will not so uncommonly find pathological changes in the abdominal aorta with a range from simple wall irregularities to large abdominal aortic aneurysms. For radiologists, it is crucial to detect, classify and report aortic aneurysms. It seems to be very complicated to measure an aneurysm in the right way and decide if a stentgraft treatment is possible or not and what kind of stentgraft would be the best. But with a few tips and tricks provided in this lecture, it is relatively easy to decide if an aneurysm has to be treated and if a standard stentgraft would be possible or not. The lecture will end up with different other AAA treatment possibilities beyond the standard AAA stentgrafts - anchors, snorkels, branches and chimneys. For diagnostic radiologists, it makes no sense to plan such complicated procedures - but it is really important to know what is technically possible in order to describe these stentgrafts with its possible complications in the right way in follow-up CT examinations.

Learning Objectives:
1. To learn about the definition and classification of abdominal aortic aneurysms.

Vascular
RC 1515
No time to lose: aortic disease, revisited
Moderator:
M. Krokidis; Cambridge/UK

A-0907 14:00
A. Diagnosis and treatment of abdominal aortic aneurysms
F. Wolf; Vienna/AT (florian.wolf@medunivwien.ac.at)

Abdominal aortic aneurysms (AAA) are relatively rare. The annual incidence of new AAA diagnoses is approximately 0.4 to 0.67 % in Western populations. Nevertheless, when radiologists report CT examinations, they will not so uncommonly find pathological changes in the abdominal aorta with a range from simple wall irregularities to large abdominal aortic aneurysms. For radiologists, it is crucial to detect, classify and report aortic aneurysms. It seems to be very complicated to measure an aneurysm in the right way and decide if a stentgraft treatment is possible or not and what kind of stentgraft would be the best. But with a few tips and tricks provided in this lecture, it is relatively easy to decide if an aneurysm has to be treated and if a standard stentgraft would be possible or not. The lecture will end up with different other AAA treatment possibilities beyond the standard AAA stentgrafts - anchors, snorkels, branches and chimneys. For diagnostic radiologists, it makes no sense to plan such complicated procedures - but it is really important to know what is technically possible in order to describe these stentgrafts with its possible complications in the right way in follow-up CT examinations.

Learning Objectives:
1. To learn about the definition and classification of abdominal aortic aneurysms.
Aortic dissection is the most common acute emergency condition of the aorta, often resulting in the death of the patient. The overall outcome is determined by the type and extent of dissection and the presence of associated complications; therefore, evaluation of the entire aorta, branch vessels, and iliac and proximal femoral arteries is recommended to aid in treatment planning. Early diagnosis and treatment are essential for improving the prognosis. Patients may present with the classic history of acute onset of tearing central chest pain that radiates to the back. Stanford type A dissection involves the ascending thoracic aorta, and the dissection flap may extend into the descending aorta. Type A dissections account for 60%-70% of cases, requiring urgent surgical intervention to prevent extension into the aortic root, pericardium, or coronary arteries. If untreated, type A dissections are associated with a mortality rate of over 50% within 48 hours. Stanford type B dissection involves the descending thoracic aorta distal to the left subclavian artery and accounts for 30%-40% of cases. Management takes the form of medical treatment of hypertension unless there are complications due to an extension of the dissection. CT imaging of the aorta is fast and widely available, which are the important features in making an accurate diagnosis quickly in unstable patients. Multidetector CT allows imaging of the entire aorta with rapid acquisition and data reconstruction to provide prompt and accurate diagnosis and to help identify relevant complications that may have an impact on treatment and management.

Learning Objectives:
1. To learn about definition and classification of aortic dissections and subtypes.
2. To understand the importance of accurate diagnosis for appropriate treatment planning.
3. To appreciate the need for acute diagnosis and treatment indication.

Aortic dissection represents a life-threatening condition, which must be diagnosed immediately. CTA is considered the imaging modality of choice, offering all relevant information on the pathoanatomy with highest spatial resolution. Stanford classification is used to distinguish between type A and type B dissections, whereas the left subclavian artery represents the border between the two types. Actually, surgical repair is the method of choice and indicated in type A dissection, and endovascular repair is the method of choice in type B dissection if indicated. Type B dissection may be uncomplicated or complicated. For uncomplicated type B, best medical treatment is the method of choice, and it is defined by no further symptoms, relief of symptoms and absence of additional dissection associated findings. For complicated type B, endovascular repair including a variety of interventions is the method of choice, and it is defined by mesenterial, renal, peripheral and spinal malperfusion, progressive dissection, aneurysm forming, uncontrollable hypertension, rupture, progressive periarteric and pleural haemorrhage, severe hypotension and shock. Regarding symptom onset and imaging-based diagnosis, type B dissection is classified as acute (<2 weeks), subacute (2-8 weeks), and chronic (>8 weeks). Endovascular repair usually includes prosthesis placement in the descending aorta, to seal the proximal entry tear. This excludes the perfusion of the false lumen along the covered aortic segment and restores the blood flow into the true lumen, maintaining and improving the visceral and peripheral perfusion. Additionally, target visceral artery stenting, membrane fenestrating or embolizing may be indicated. Protocolled CTA follow-up is mandatory.

Learning Objectives:
1. To learn about endovascular treatment possibilities for aortic dissections.
2. To understand the role of radiology in modern treatment of aortic dissections.
3. To appreciate the need to combine the radiological information with the clinical situation.

To generate images in MRI, NMR signals must be “labelled” with their location. Three techniques of spatial encoding are employed, all of which use the magnetic field gradient. By sending electrical current (hundreds of amperes) through a gradient coil, a magnetic field is produced whose strength which varies linearly with the position inside the scanner bore. In frequency-encoding, the NMR signal is recorded while a field gradient is applied. Since the magnetic field varies with position along the gradient direction (e.g. X), the NMR signal detected by a receiver coil contains a range of frequencies. An alternative method called phase-encoding is employed in the second in-plane dimension (e.g. Y); here, the gradient is pulsed on and off prior to data acquisition. A method called selective-encoding is used in the third in-plane dimension (e.g. Z), in which the field gradient is perpendicular to the slice plane (e.g. along Z). To generate data for an image of NxN pixels, the pulse sequence is usually applied N times, varying the phase-encode gradient amplitude with each repetition. A two-dimensional Fourier transform of the raw data matrix yields the MRI image, which can be encoded with NMR parameters (T1, T2, T2*), diffusion etc., to assist diagnosis.

Learning Objectives:
1. To learn how magnetic field gradients encode spatial information.
2. To understand the main ways in which field gradients are used.
3. To appreciate the basic concepts of data collection and image reconstruction in MRI.

Author Disclosure:
D.J. Lurie: Grant Recipient; Recipient of research funding from GE Healthcare (support of PhD studentship).

The MR-sequence is an essential tool to measure MR-properties in tissues, increased contrast between these and quantify relevant data. Besides furnishing the desired tissue-derived MR signal, the sequence must allow spatial encoding to take place as efficient as possible to enable patient compliance, and high-quality MRI at the same time. Starting with a brief introduction regarding MR-tissue properties and spatial encoding in k-space, I will describe the fundamental MR toolkit, based on single echo spin-echo (SE)
and gradient-echo (GE) and show how these are extended to different multiple-echo regimes. Basic image contrast and how imaging parameters: repetition time, TR; echo time, TE; flip angle, FA; inversion delay, diffusion gradients, etc.; influence contrast will be described. The possibility to further enhance imaging by adequate spin-preparation: inversion or magnetisation transfer pulses etc.; will also be discussed. Imaging speed can be achieved while remaining in the single echo regime by faster RF pulsing (shorter TR) giving valuable information linked with magnetic susceptibility like in the GE-based FLASH method, based on spoiling of unwanted echoes. Another possibility is to use multiple (spin) echoes to read out different k-space lines, and hereby speed up spatial sampling, like in the SE-based method RARE. An alternative possibility that further extends available image contrast is to retain the full magnetisation in GE-based sequences and acquire images in the different steady-state-free-precession regimes. The latter techniques have gained momentum through the advent of magnetic fingerprinting and are evolving into another fundamental part of the standard MRI-toolkit.

Learning Objectives:
1. To learn about common types of MR pulse sequence.
2. To understand the difference between gradient-echo and spin-echo.
3. To appreciate the factors influencing choice of pulse sequence.

Chest

RC 1504

Back to basics: how to interpret a chest radiograph?

A-0913 14:00

Chairperson’s Introduction

S.P.G. Padley; London/UK

Session Objectives:
1. To increase the radiologists’ confidence in chest radiography reading.
2. To recognise and interpret the typical abnormalities.
3. To understand the limitations of chest radiography.

A-0914 14:05

A. A chest radiography reading guide

N. Howarth; Chêne-Bougeries/CH (nigel.howarth@grangettes.ch)

The presentation will provide a reading guide for the frontal and lateral chest radiograph. The most useful signs in chest radiology will be introduced, using side-by-side plain film and CT imaging to help understand the imaging features. Although the clinical value of the chest X-ray remains undiminished, errors of interpretation of the chest X-ray remain one of the most frequent causes of malpractice issues. The skills required for accurate interpretation of the chest radiograph will be explored. The objective is to help you improve your performance in plain film interpretation of the chest.

Learning Objectives:
1. To learn about chest radiograph quality criteria.
2. To learn about the normal features.
3. To learn which difficult areas to concentrate on.

A-0915 14:18

B. Alveolar, interstitial and nodular syndromes

F. Molina; Lille/FR (francesco.molinari.dr@gmail.com)

Many acute or chronic diseases of the lung may manifest at imaging with the appearance of an alveolar, interstitial or nodular syndrome. All of these imaging syndromes are well known to thoracic radiologists and can be detected at chest radiography. Especially when interpreted in the correct clinical setting, alveolar, interstitial or nodular opacities can provide hints to the diagnosis. In this presentation, the typical imaging signs that allow to make a diagnosis of an alveolar or interstitial disease or suspect the presence of pulmonary nodules will be reviewed by using anatomic and imaging correlation between chest radiograph and CT.

Learning Objectives:
1. To learn about alveolar opacities characteristics.
2. To learn how to recognise the presence of interstitial changes.
3. To understand the chest radiograph limitations for lung nodule detection.

A-0916 14:31

C. Lobar atelectasis

D. Tack; Baudour/BE (denis.tack@skynet.be)

Lobar collapse or closure of a pulmonary lobe is associated with a loss of volume and results in reduced or absent gas exchange, a condition where the alveoli are deflated down to little or no volume. This presentation aims to review the radiographic and CT signs of lobar collapse, or loss of volume, and associated abnormalities when for example the cause of the collapse is a bronchial obstruction of a mass. Differentiation of lobar collapse and consolidation will be discussed. Distinct entities will be imaged such as aterated lobar collapse and chronic lobar collapse without mass-like consolidation.

Learning Objectives:
1. To review the signs of lobar atelectasis on frontal chest radiograph.
2. To learn about the complementary role of lateral view.
3. To explain the differences with other causes of lung opacity.

A-0917 14:44

D. Pleural syndrome

A.P. Parkar; Bergen/NO (apparkar@gmail.com)

Pleural radiographs are particularly useful to diagnose pneumothorax, albeit smaller ones may be missed on radiographs. Pneumothorax is commonly seen as an area of hyperlucency with lack of vessels in the apical and the lateral regions on the photograph performed standing or sitting. Pneumothorax in the supine position is best seen as the deep sulcus sign as the air moves anteromedially and subpulmonary. Pneumothorax can be spontaneous (either primary or secondary) or iatrogenic. It is important to recognise the “do-not-miss” state of tension pneumothorax, which can be fatal if left untreated. A partial pneumothorax is seen when part of the lung is still adherent to the chest wall. It is, however, important to differentiate it from bullous lung disease, which sometimes may be difficult on radiographs, and may require a CT for a definite diagnosis.

Learning Objectives:
1. To learn how to identify partial pneumothorax.
2. To be able to identify signs of compressive pleural effusion.
3. To be aware of the limitations of bedside chest x-ray for pneumothorax detection.

A-0918 14:57

E. Mediastinal syndrome

M. Occhipinti; Florence/IT (mariaelena.occhipinti@gmail.com)

Chest radiography has been traditionally used to evaluate the chest, including lung parenchyma, airways, and mediastinum. Despite the wide use of computed tomography imaging, chest radiography still plays a fundamental role in the detection and characterisation of mediastinal lesions through the use of mediastinal lines, stripes, and interfaces. Interfaces along with their normal and abnormal appearances allow radiologists to develop an appropriate differential diagnosis of mediastinal lesions before obtaining additional information by using chest computed tomography or magnetic resonance imaging.

Learning Objectives:
1. To review the normal mediastinal lines.
2. To learn about the normal and abnormal mediastinal contour.
3. To know how to use the silhouette sign to localise mediastinal opacities.

Panel discussion: Why does the chest radiograph remain essential in the context of expanding cross-sectional imaging?
TC 1528
Knee sports injuries and postoperative MRI

Moderators:
- L.W. Bancroft; Orlando, FL/US
- A.J. Grainger; Leeds/UK

A-0919 14:00

A. Sports-related injuries of the knee: what does the orthopaedic surgeon need to know?

T.T. Miller; New York, NY/US (millertt@hss.edu)

The anatomy of the normal ACL and menisci will be reviewed, followed by a discussion of the appearances of various abnormalities of the ACL and menisci, as well as mechanisms of injury and injury patterns. Associated injuries will be discussed. Recommendations will be made for imaging the postoperative meniscus.

Learning Objectives:
1. To learn about what to include in knee MRI dictation templates.
2. To understand the most common sports-related injury patterns in the knee.
3. To appreciate which specific orthopaedic indications should prompt additional information in the dictation.

A-0920 14:30

B. ACL reconstruction and cartilage repair

C. Weidekamm; Vienna/AT (weidekamm@icloud.com)

ACL reconstruction aims to stabilise the knee and prevent chondral and meniscal injuries, which are sequelae of anteroposterior translation and are associated with early osteoarthritis. The idea of the double-bundle ACL graft was to restore normal joint kinematics by anatomic reconstruction of the anteromedial and the posterolateral bundle of the original ACL. This was expected to improve clinical outcomes and restore anterior and rotational knee stability. The single-bundle technique, however, causes less osseous defects and is still a popular technique. Complications, such as ACL graft failure, impingement, cyclops lesion, arthrofibrosis, and patellar inferior syndrome, are discussed. The second part of this presentation will illustrate cartilage repair techniques and imaging findings. The radiologist must be familiar with the different cartilage repair procedures and characteristics in cartilage imaging to evaluate long-term progression or failure. Abnormal postoperative findings include hypertrophic filling, incomplete integration of the transplant into the surrounding cartilage, or subchondral defects, osteophytes, cysts, and persistent bone marrow oedema and joint effusion.

Learning Objectives:
1. To review the common and uncommon ACL reconstruction techniques.
2. To appreciate the expected and abnormal MR imaging findings after ACL reconstruction.
3. To understand common cartilage repair techniques, and corresponding normal and abnormal postoperative MRIs.

A-0921/A-0922 15:00

C. Interactive case discussion

T.T. Miller; New York, NY/US (millertt@hss.edu)

C. Weidekamm; Vienna/AT (weidekamm@icloud.com)

Postoperative imaging after ACL or cartilage repair is indicated in patients with ongoing pain/instability or repetitive injury. Radiography remains the initial diagnostic modality; however, a further assessment with CT or MRI is recommended. With a clear emphasis on MRI, we will review normal postoperative findings and complications after ACL reconstructions and cartilage repair. The case discussion will cover the most significant pathologies and pitfalls, and normal postoperative findings will be illustrated.

Learning Objectives:
1. To appreciate common patterns of athletic injury in the knee.
2. To become familiar with the diagnostic features of failed ACL reconstructions, intact and failed cartilage repair.
3. To consolidate the knowledge gained from the session with interactive cases of pre- and postoperative MRI.
A. The 2012 revised Atlanta Classification: what has really changed?

Moderator:
C. Triantopoulou; Athens/GR

A-0925 16:00

The lexicon of acute pancreatitis (AP) has changed since the publication of the 2012 Revised Atlanta Classification (RAC) which replaces the 1992 Atlanta Classification. The RAC makes a distinction between necrotising pancreatitis and interstitial pancreatitis, depending on the presence or absence of tissue necrosis, respectively. Necrotising pancreatitis is subdivided into three forms: pancreatic parenchyma alone (very rare), peripancreatic tissues alone (extrapancreatic necrosis or EXPN), or combined necrosis (most common). Associated collections are either termed acute necrotic collections (ANC) (incomplete wall) or walled-off necrosis (WON) (completely encapsulated). Fluid collections in interstitial pancreatitis are termed acute peripancreatic fluid collection (APFC) (incomplete wall) or pseudocyst (completely encapsulated). The distinction between the various subtypes of AP has implications for prognosis. Intestinal pancreatitis has a mortality of less than 3% and can virtually always be treated conservatively. Pancreatic necrosis, particularly in the presence of infection, is associated with mortality rates as high as 25%, and surgical management may be required. Patients with EXPN have a significantly better prognosis than those with combined necrosis if necrosis remains sterile, but have a similar outcome in case of infected EXPN. For complete reporting in AP, it is essential to describe the presence of pancreatic necrosis (site and extent) and presence of pancreatic collections with all its features (location, shape, size, homogeneity, degree of encapsulation, and presence of haemorrhage or gas bubbles). Associated findings, such as the presence of pleural effusion, ascites, vascular abnormalities, extrapancreatic parenchymal, biliary, and gastrointestinal complications should be evaluated as well.

Learning Objectives:
1. To be aware of the new terminology for the evaluation of acute pancreatitis.
2. To learn about how to report imaging findings.
3. To understand the relationship between imaging findings and prognosis.

B. Role of imaging in diagnosis of acute pancreatitis: new trends

G. Zamboni; Verona/IT (g.zamboni@hotmail.com)

Imaging has an important role in the management of acute pancreatitis, first of all in the differentiation between edematous and necrotising pancreatitis. In order to be accurate in this differential diagnosis, imaging - usually contrast-enhanced CT- must be performed with the appropriate timing: the optimal interval between symptoms onset and imaging is 72 hours. Before this, there is a risk of not recognising necrosis, thus misclassifying the disease. CT can recognise the presence of necrosis and define if it is parenchymal only, extra-parenchymal only or both parenchymal and extra-parenchymal. This has important implications, because parenchymal necrosis may lead to ductal disruption, resulting in the disconnected duct syndrome or in collections that are replenished with pancreatic juice with amylase. Imaging has an important role in defining the presence of collections and in classifying them according to the Revised Atlanta classification: a differentiation between fluid and necrotic collections should be made, in order to plan the best treatment for the patient, including collection drainage or surgery when indicated.

Learning Objectives:
1. To learn about the proper timing of imaging studies in acute pancreatitis.
2. To learn about the imaging manifestations of necrotising pancreatitis.
3. To understand the different nature of fluid collections with regard to further therapy.

C. Intervention radiology in acute pancreatitis: why, when and how

M.M. Maher; Cork/IE (m.maher@ucc.ie)

Acute pancreatitis may have a benign course with minimal abdominal pain and hyperamylasemia or may be life-threatening, usually due to the development of infected pancreatic necrosis, haemorrhage and/or multisystem organ failure. Fortunately, 70-80% of patients with acute pancreatitis have a benign self-limiting course. In the initial management of acute pancreatitis, assessment of metabolic disturbances and systemic organ dysfunction is critical. In more severe cases, cross-sectional imaging (Ultrasound, Computed Tomography and MRI) plays a prominent role in the assessment of the degree of severity and/or determination of complications. It is important that imaging is performed strategically in patients with severe acute pancreatitis as findings on imaging studies frequently impact management and play a central role in determining the appropriate timing of surgery and image-guided interventions. In this presentation, we will review imaging findings in severe acute pancreatitis and specific imaging findings associated with common complications. The question of when, where and why interventional radiology plays a role in the management of severe acute pancreatitis will be discussed. In addition, we will briefly discuss how common and novel interventional techniques may be used optimally to improve patient outcome.

Learning Objectives:
1. To learn indications for interventions and type of complications that requires treatment.
2. To understand how likelihood of success of these interventions vary with severity.
3. To review management of local complications of pancreatitis by interventional radiology.
are several factors that may influence patient safety, not only at the imaging service level but also at the whole healthcare institution level. Learning Objectives:
1. To appreciate the scope of patient safety related to medical imaging services.
2. To consider a selection of examples of patient safety beyond radiation protection, optimisation and justification.
3. To explore the important roles of radiographers and radiologists in working collaboratively to best ensure patient safety.

A-0930 16:32 Value-based imaging and patient safety
A. Brady: Cork/IE (adrianbrady@me.com)
The value-based healthcare concept is growing in importance, as part of a trend away from concentration on the delivery of volume-based services, and towards concentration on the specifics of delivering value-based care to individuals and the population as a whole. The components of what constitutes value differ among physician, provider and patient groups, and thus the parameters of value in healthcare are not fixed. The original model of value-based healthcare began consideration of value at the point when a patient received a diagnosis; the impact of radiology was effectively excluded, given that much of the work of radiology departments are geared towards arriving at a diagnosis in the first instance. This talk will focus on this “classical” model, and explore how and why it should be varied to include the impact of radiology on delivering value-based healthcare to patients. The impact of considering the value of radiology in patient care regarding ensuring patient safety will be explored.

Learning Objectives:
1. To learn about the developing model of value-based healthcare.
2. To appreciate how and why radiology should be included in this model.
3. To understand how this may impact upon patient safety.

A-0931 16:48 Patient safety related education and training
J. McNulty: Dublin/IE (jonathan.mcnulty@ucd.ie)
Patient safety is a major priority for all healthcare professions and one of the biggest areas of public focus. There is no question that embedding the theme of patient safety in undergraduate medical and radiography curricula, together with making it a core part of all postgraduate or specialist education and training, has the potential to improve patient safety. While there has been a lot of focus on this in terms of other professional groups, there is a lack of information regarding the inclusion of patient safety topics within undergraduate radiography curricula or indeed within radiology training programmes. Radiographers and radiologists encounter numerous patient safety issues which stretch far beyond the area of radiation protection. The responsibilities of radiographers and radiologists overlap substantially across most areas; thus team-working within the medical imaging environment is key to ensuring a safe environment for our patients. Recent evidence from the European Federation of Radiographer Societies (EFRS) demonstrated that patient safety is a deeply embedded concept within undergraduate radiography curricula across Europe, however, variations, some of which are significant, do exist in terms of the topics covered, the teaching and assessment methods, and the depth or level in which subjects are taught. This presentation will explore aspects of patient safety-related education and training for radiographers and will highlight the current opinions of the ESR and EFRS in this regard.

Learning Objectives:
1. To emphasise the importance of education and training in progressing patient safety in medical imaging.
2. To consider the current status of patient safety in radiography and radiology curricula.
3. To appreciate the activities of the EFRS and ESR in the area of patient safety education and training.

A-0932 17:04 Patient perspectives on patient safety in medical imaging
E. Briers: Hasselt/BE (enrik.briers@telenet.be)
Safety for patients in medical imaging is linked to the department of “Medical Imaging - Radiology”. It depends on several elements, there is the “why” they are there, the “what” will happen, the “how” does this work and the other personal but important aspects to be in a new environment. Safety has by itself different “imaging” aspects, and there is the radiation, the eventual contrast, the small space, the length of time of being unable to move and others, all of these are important but shall be offset versus the “why” the patient is there. The patient will balance some of the known facts (to him) and associated safety risks versus the risks of having a disease that may or may not cause him a big quality of life loss. The risk taken should be in relation to the expected benefit. A repeated CT-scan for lung cancer looks quite different from a CT scan for a common cold which no-one would do. The information that the patient needs to be able to weigh the risks versus the benefit should come from multiple sources, the medical team is multi-professional, and all can contribute. They should explain each for his part how the (not yet confirmed) disease could evolve and what the benefit of the final diagnosis would be. On the risk side, careful listening to the patient and taking note of previous experiences in imaging and beyond, allergies, psychological issues with confined spaces, being very young or old, all matter and can influence the procedure taken.

Learning Objectives:
1. To understand what patients feel about patient safety in medical imaging.
2. To appreciate the value of active engagement with patients to enhance and promote patient safety.
3. To consider initiatives to implement patient-engagement at the institutional or national level.

Author Disclosure:
E. Briers: Advisory Board; Requite project. Board Member; Us Too Belgium. Speaker; None for Pharmaceutical Companies. Other; Member of EAU Guidelines Committee on Prostate Cancer, Alternate Patient Member Committee Of Advanced Therapies - EMA.

Panel discussion: The role of the ESR and the EFRS in promoting patient safety
16:00 - 17:30 Room N

EuroSafe Imaging Session

EU 6

CT radiation risk in children: an overview

A-0933 16:00 Chairperson’s introduction
E. Cardis: Barcelona/ES

Session Objectives:
1. To learn about the radiological protection issues related to CT scanning in paediatric populations.
2. To understand the state-of-the-art in radiation induced detriment from scanning.
3. To appreciate the need for optimisation in paediatric CT scanning.

A-0934 16:05 A literature update
H. Ducou Le Pointe: Paris/FR (hubert.ducou-le-pointe@aphp.fr)
Ultrasound and MRI are the preferred techniques in paediatrics; nevertheless, the use of computed tomography remains essential. In normal use, deterministic effects of ionising radiation are not to be feared (organ doses reach up no more than to tens milligrays). Cancer is the main stochastic effect of ionising radiation. Pediatric population is a subject of concern due to high tissue radiosensitivity and their long life expectancy. Model-based risk estimations predicted cancer risk associated with pediatric CT scan. Epidemiological studies seem to show a positive association between radiation dose from CT scans and the incidence of leukaemia and cancers. These results are questioned due to small sample size and methodological biases (lack of information about the indication of CT scans, reverse causation, risk factor confounding). Results of a large (950 000 children) European epidemiologic study called EPI-CT (EPIdemiological study to quantify risks for paediatric Computerized Tomography and to optimise doses) are expected soon.

Learning Objectives:
1. To learn the largest epidemiological study (1 million patients) of the health impact of CT radiation in young people and ongoing complementary studies.
2. To understand how the risk is evaluated.
3. To appreciate the difficulty to draw conclusions based on the literature analysis.

A-0935 16:25 Ongoing studies and first results of the European EPI-CT study
E. Cardis: Barcelona/ES

"no abstract submitted"

Learning Objectives:
1. To learn about the largest epidemiological study (1 million patients) of the health impact of CT radiation in young people and ongoing complementary studies.
2. To understand strengths and limitations of the study and to discuss the results.
3. To appreciate the study’s implications for optimisation in paediatric imaging.
Postgraduate Educational Programme

A-0936 16:45 Communicating benefits and risks to parents and carers
C. Granata; Genoa/IT

In the last two decades, the role of CT in paediatric imaging has strengthened, thanks to better image quality and shorter duration of the exam. However, concerns about the exposure of children to the relatively high CT radiation dose have been increasingly raised. Consequently, health care providers and imaging professionals sometimes must face parents' negative perception of radiation risk-benefit ratio. Experts and the public perceive the risk differently. A one-in-a-million risk is perceived as a low risk by an expert, whereas parents may perceive that the "one" could be their loved ones. Therefore, it should be ensured that patients, parents, and carers receive the information they need about CT radiation risks in a way they can understand. When establishing a dialogue in a clinical setting, it is important to talk slowly, use plain language, analogies, and metaphors, repeat key messages, and encourage questions. The expected outcome of the dialogue is that parents/patients trust health care professionals, as they have understood that the benefits of a necessary CT scan always outweigh any associated risk.

Learning Objectives:
1. To learn how to establish a dialogue in a clinical setting with parents and carers.
2. To understand goals and challenges of communicating risks and benefits of CT studies in children.
3. To appreciate the importance of parent and caregiver-centred communication.

A-0937 17:05 Daily practical challenges in CT for children
C. Owens; London/UK (owensc@gpah.nhs.uk)

Children pose a particular challenge as patients in CT, as they are small, mobile and particularly radiation sensitive. Therefore it is important to tailor the examination, customising for each child. Optimising image quality is vital with attention to detail paramount. There are various tips and tricks in terms of immobilisation and distraction devices and important procedure such as ensuring that the child is in the epicentre of the scanner which has a very important role in good image acquisition.

Learning Objectives:
1. To learn about the potential challenges and obstacles faced when performing CT in children.
2. To understand how to tackle these challenges.
3. To appreciate the tips and tricks which can assist in acquisition of diagnostic CT images in children.

17:25 Questions and answers

16:00 - 17:30 Room O

Cardiac

RC 1603 Acute chest pain and cardiac imaging
Moderator:
P. Croisille; Saint-Etienne/FR

A-0938 16:00 A. Acute chest pain: who should see the patient first, the doctor or the CT department?
M. Gutberlet; Leipzig/DE

"no abstract submitted"

Learning Objectives:
1. To become familiar with existing clinical triage scores in acute chest pain and their strengths and weaknesses.
2. To learn about the potential of cardiac CT in the management of acute chest pain patients.
3. To outline recent updates and future developments for triaging patients with acute chest pain.

A-0939 16:30 B. Myocardial perfusion in acute coronary syndrome (ACS): necessity or luxury?
R. Vliegenhart; Groningen/NL (r.vliegenhart@umcg.nl)

Myocardial perfusion imaging (MPI) has a role in the triage setting of acute chest pain patients without ST-elevation myocardial infarction. MPI is used to confirm or exclude myocardial ischemia/infarction and estimate prognosis, in case of low or intermediate risk of an acute coronary syndrome (ACS). In patients with prolonged chest pain, normal/non-diagnostic ECG, and initial negative blood biomarkers, rest MPI has been demonstrated to improve patient outcomes. A normal rest MPI result has a high negative predictive value for ACS and events. After symptoms have resolved, use of stress MPI is to be preferred. There is increasing evidence that MPI can also have value in the diagnostic management of patients suspected of unstable angina or non-ST-elevation myocardial infarction. When used appropriately, non-invasive imaging can reduce the number of missed diagnoses, and guide the management of patients with suspicion of ACS. This lecture covers the imaging techniques used to assess myocardial perfusion, including nuclear imaging, magnetic resonance imaging, and computed tomography perfusion. Contemporary guidelines and current use of MPI techniques in acute chest pain will be discussed.

Learning Objectives:
1. To introduce the acquisition techniques of myocardial imaging: nuclear imaging, MRI, CT.
2. To become familiar with the challenges in using myocardial perfusion in the acute setting.
3. To discuss the possible role of perfusion imaging in acute coronary syndromes.

A-0940 17:00 C. Late gadolinium enhancement (LGE) and more: the role of MRI in and after ACS
J. Bremerich; Basle/CH (jens.bremerich@usb.ch)

Imaging plays a critical role in acute coronary syndrome (ACS). After initial treatment, noninvasive imaging is used to guide therapy further. This paper shall review current diagnostic algorithms with respect to strengths and limitations as well as future directions. In ACS, coronary catheter angiography is considered the first line imaging modality to confirm acute coronary artery disease with the advantage to perform angioplasty within a single procedure. Magnetic resonance imaging (MRI) plays a limited role in acute diagnostic workup but is of utmost importance for further therapy guidance. Cardiac MRI provides an assessment of viability in coronary artery disease for planning revascularisation. Moreover, alternative diagnoses such as myocarditis may be confirmed when coronary angiography did not confirm the initially suspected acute coronary syndrome. Myocarditis and infarction may present in a similar fashion including chest pain, ECG abnormalities and elevated markers of myocardial damage such as troponin. Cardiac MRI is a powerful tool to evaluate prognostic indicators such as the presence and size of infarction, myocardial haemorrhage or microvascular obstruction, myocardium at risk and it is the gold standard for myocardial function. Moreover, MRI shows macrostructural damage such as aneurysm formation, perforation, or papillary muscle rupture. Cardiac MRI is useful to exclude other causes of acute chest pain such as aortic dissection or intramural hematoma. Although catheter angiography remains the first-line modality in ACS, MRI provides added value to establish an alternative diagnosis and to guide further therapy.

Learning Objectives:
1. To become familiar with the technique of late gadolinium enhancement.
2. To learn about quantitative assessment of LGE.
3. To learn about the predictive power of LGE in ACS.

16:00 - 17:30 Studio 2019

State of the Art Symposium

SA 16 Breast cancer screening and treatment: how much is too much?

A-0941 16:00 Chairperson's introduction
G. Forrai; Budapest/HU (forrai.gabor@t-online.hu)

Breast screening is a well designed and scientifically proven, evidence-based procedure. However, some scientists question the current method, raising some arguments regarding overdiagnosis and overtreatment. In this State-of-the-Art Symposium, we will analyse these problems, based on epidemiological and statistical data. New approaches, e.g. active monitoring as a treatment option would be discussed - in order to attempt to decrease unnecessary surgeries.

Session Objectives:
1. To understand the epidemiological issues of screening.
2. To understand that there are lesions not to be recalled from screening.
3. Learn about 'active monitoring' as a new treatment option.
Not all breast cancers are the same. IHC subtypes replaced grade and now 12
Are there breast cancers we do not have to treat?

Screening has been proven to be beneficial to women who do attend all rounds
What can the radiologist do to limit overdiagnosis?

Overdiagnosis in cancer screening is essentially an epidemiological concept. It is
defined as cancer which would not have been diagnosed in the patient’s lifetime if screening had not taken place. This definition has no reference to pathology or treatment. Estimation of overdiagnosis is complicated by underlying trends in incidence taking place independently of screening and by lead time. In this presentation, we discuss the information required for reliable estimation of benefits of screening in terms of breast cancer reduction and the opportunity for less aggressive therapy. We propose a method of estimation of overdiagnosis, based on relative risk of cancer by time since the last screen, which addresses the lead time issue and provides the opportunity for sensitivity analyses to explore a range of potential underlying incidence estimates. We demonstrate the method’s use on NHS Breast Screening Programme data to estimate the total excess of breast cancers due to overdiagnosis, and the excess or deficit, due to screening, of cancers receiving radical treatment (mastectomy and/or chemotherapy). We consider these estimates in the context of the mortality benefit associated with mammographic screening.

Learning Objectives:
1. To learn about estimation of overdiagnosis with minimal assumptions.
2. To understand the potential biases in estimating favourable and unfavourable effects of screening.
3. To appreciate the connection between the epidemiological definition of overdiagnosis and its clinical implications.
4. To understand the arguments for and against organised screening programmes.

What can the radiologist do to limit overdiagnosis?
R.M. Pijnappel; Utrecht/NL (r.m.pijnappel@umcutrecht.nl)

Screening has been proven to be beneficial to women who do attend all rounds in a screening program. Nonetheless, screening has some limitations. The balance between harm and benefits is delicate. To detect all cancers, the test used for screening should be as sensitive as possible. Despite this, there will always be a gap between test sensitivity and program sensitivity. The difference between test and program sensitivity will be explained during the session. The optimal test for breast cancer screening is under debate. FFDM and Tomosynthesis (DBT) compete to be the best test. The advantages and disadvantages of both FFDM and DBT will be discussed. Recall rate plays an important role in relation to program sensitivity. This relationship will be explained. This explanation will give insight to the policy not to recall every lesion and therefore accept false-negative results. Apart from limiting overdiagnosis in a screening environment, radiologist play an important role in overdiagnosis in the assessment of recalled cases. Ultrasound of the breast and especially ultrasound of the axilla constitute an important part of this overdiagnosis. The optimal timing for performing an ultrasound of the axilla in the workflow is defined by recall rate, a positive predictive value of the recalled lesion, tumour board availability and other logistics items. It is more complex than the BI-RADS score alone. By using the optimal screening test, controlling the recall rate and optimising the assessment of recalled cases, radiologists can play an important role in minimising overdiagnosis.

Learning Objectives:
1. To estimate test sensitivity in relation to programme sensitivity in screening.
2. To learn what the optimal test for population based screening is: FFDM or tomosynthesis in relation to overdiagnosis.
3. To understand that there are lesions not to be recalled from screening.
4. To learn the place of the ultrasound of the axilla: in BI-RADS 4, 5 or never?

R.M. Pijnappel: Equipment Support Recipient; GE, Hologic, Volpara.
Research/Grant Support; Bayer, Hologic.

Are there breast cancers we do not have to treat?
M.G. Wallis; Cambridge/UK (mattthew.wallis@addenbrookes.nhs.uk)

Not all breast cancers are the same. IHC subtypes replaced grade and now 12 genetic subtypes of breast cancer all of which have different prognosis and respond differently to treatment. Treatment de-escalation is not new, simple mastectomy has replaced Halstead mastectomy, and now conservation with radiotherapy is routine. Side effects of current treatment are physical, cosmetic and psychosocial, ranging from death from catastrophic sepsis to lymphoedema, chronic pain and musculoskeletal symptoms. Number Needed To Treat quantifies the potential for, but trials are needed to identify which individual woman can safely avoid some or all treatment. It is difficult to recruit to these trials because public risk perception does not match reality as shown by the increasing numbers of bilateral mastectomies in the United States. The concept of low-risk cancer or the need for less treatment is a difficult explain in the face of advertising and fundraising campaigns frequently centred around fighting cancer or the new wonder drug. This is led for calls to relabel lower risk cancers with terms like IDLE. Radiology is changing surgical paradigms. Atypia is managed by vacuum excision, there are trials of no surgery for low-risk DCIS and investigating the role of needle biopsy to identify women with a complete pathological response to NAC who might not need surgery. For those women with low-risk disease, we need to offer and make clear that careful radiological monitoring within a trial is an active treatment option not just ‘being abandoned to follow up’.

Learning Objectives:
1. To review side effects of current treatments.
2. To be able to discuss what lesions we could consider reducing treatment burden.
3. To learn about radiological options to the current surgical treatment paradigm.
4. To learn about ‘active monitoring’ as a new treatment option.

Author Disclosure:
M.G. Wallis: Investigator; Chief investigator LORIS trial Grant for UK HTA.

17:14
Panel discussion: Which one is the real villain, overdiagnosis or overtreatment? For what reason breast screening and diagnostics is blamed?

16:00 - 17:30 Room E1

E³ - ECR Master Class (Musculoskeletal)

E³ 1626a
State-of-the-art imaging of postoperative joints
Moderator:
M.F. Reiser; Munich/DE

Imaging of the postoperative shoulder is challenging because of various surgical techniques, distorted anatomy and the presence of artefacts because of metallic implants. The most commonly performed surgical procedures include rotator cuff reconstruction, instability surgery, and joint replacements. The radiologists should have knowledge of these techniques. In this presentation, these surgical techniques, the normal imaging findings after these procedures and the abnormal findings as well as imaging strategies will be discussed.

Learning Objectives:
1. To explain the most frequently used surgical techniques for glenohumeral instability, subacromial decompression, rotator cuff repair and arthroplasty, and their imaging appearance.
2. To describe potential postoperative complications.

A-0945 16:00
A. Postoperative shoulder
C.W.A. Pfirrmann; Zurich/CH

In this masterclass, we will review the indications for the most commonly performed surgical techniques in the field of meniscal repair, knee ligament reconstruction, and knee cartilage repair, followed by a brief explanation of the surgical procedure. We will also highlight recent advances in joint preserving procedures around the knee. Of each discussed technique, the normal postoperative appearance on imaging will be presented, with an emphasis on MR imaging. This is followed by a discussion on the assessment of potential complications. Among the discussed topics will be complications after ACL reconstruction (tunnel positions, graft re-rupture, impingement, arthrofibrosis, cyclops lesions), assessment of meniscus re-tear after surgical repair, and assessment of the success after cartilage repair procedures.

Learning Objectives:
1. To explain the most frequently used surgical techniques for meniscal repair, ligament reconstruction and cartilage repair.

A-0946 16:30
B. Postoperative knee
E.H.G. Lee; Rotterdam/NL (e.ee@erasmusmc.nl)

In this masterclass, we will review the indications for the most commonly performed surgical techniques in the field of meniscal repair, knee ligament reconstruction, and knee cartilage repair, followed by a brief explanation of the surgical procedure. We will also highlight recent advances in joint preserving procedures around the knee. Of each discussed technique, the normal postoperative appearance on imaging will be presented, with an emphasis on MR imaging. This is followed by a discussion on the assessment of potential complications. Among the discussed topics will be complications after ACL reconstruction (tunnel positions, graft re-rupture, impingement, arthrofibrosis, cyclops lesions), assessment of meniscus re-tear after surgical repair, and assessment of the success after cartilage repair procedures.

Learning Objectives:
1. To explain the most frequently used surgical techniques for meniscal repair, ligament reconstruction and cartilage repair.

A-0947 17:00
C. Postoperative ankle and foot
M.J. Ereh Eralo; Galdacano/ES (mjereno@gmail.com)

Foot and ankle traumatic pathologies are frequent conditions. Diagnosis, treatment and subsequent management of foot and ankle traumatic pathologies are important to avoid big deformities. The most current and innovative techniques of internal fixation and their applications will be shown.
Very different injuries and cases will be detailed: surgical management and complications of high-energy fractures, tibia pilon fractures; calcaneus, talus and Lisfranc lesions, diabetic (Charcot) foot, Morton’s Neuroma, hammer toe, tarsal coalition, adult acquired flatfoot. Also, patients with arthroplasty, arthrodesis and triple fusion and ankle replacement should be recognised.

Learning Objectives:
1. To explain the most frequently used surgical techniques for osteosynthesis, instability, tendon repair and arthroplasty, and their imaging appearance.
2. To describe potential postoperative complications.

16:00 - 17:30 Room E2

Neuro

RC 1611

The degenerative cervical spine

Moderator:
N. Chidambaranathan; Chennai/IN

A-0948 16:00

A. Degenerative uncovertebral and facet disease
J. Van Goethem; Antwerp/BE (johan.vangoethem@uantwerpen.be)

Neck pain is a common problem with many possible causes. The facet joint and the uncovertebral joint are frequently involved in degenerative cervical spine disease. It is important to learn how to differentiate normal and asymptomatic changes that occur with age from abnormal findings that are causing neck and/or arm pain. I will demonstrate the use of plain film, CT, SPECT and MRI in diagnosing an offending uncovertebral or facet joint. Many of these offending joints can be targeted specifically, leading to easy and fast pain reduction in many patients with specific neck pain.

Learning Objectives:
1. To learn about the physiological and pathophysiological degeneration of the cervical spine.
2. To understand the role of imaging in the diagnosis and clinical decision making in the degenerative cervical spine.
3. To appreciate the clinical relevance of imaging findings in the degenerative cervical spine.

A-0949 16:30

B. Cervical spinal stenosis and cervical spondylotic myelopathy
A.S. Gersing; Munich/DE

Degenerative changes of the cervical spine may be caused by mechanical overload or may occur during the ageing process. Patients with spinal stenosis may present with clinical symptoms ranging from neck pain to spastic paraparesis. Imaging is crucial in these cases in order to identify the cause of these clinical symptoms and to select the appropriate treatment option. Spinal stenosis is caused by certain pathological features that occur during the degenerative process, e.g. marginal osteophytes of the vertebrae, hypertrophy of the ligaments and intervertebral disc degeneration with herniation. Radiographs, CT as well as CT-myelography and MR imaging are the common imaging modalities used for the assessment of the severity of the spinal canal stenosis. Next to the assessment of soft tissue structures and osseous structures of the vertebrae, especially T2-weighted MR imaging is crucial for the assessment of signal changes within the myelon. One of the most important aspects assessed with MR imaging is the differentiation between signs of acute myelopathy and myelomalacia, caused by irreversible damage of the spinal cord. These aspects are of importance for the selection of the adequate treatment option, especially in order to decide between conservative or surgical treatment.

Learning Objectives:
1. To learn about the pathophysiology and imaging findings in spinal stenosis and cervical spondylotic myelopathy.
2. To understand the relation between imaging findings and clinical presentation.
3. To appreciate the importance of imaging findings and the clinical presentation with respect to possible treatment options.

A-0950 17:00

C. The postoperative cervical spine
S. Looby; Dublin/IE

Imaging is a routine part of follow up for the postoperative cervical spine. A knowledge of the surgical techniques and/or the hardware used for cervical surgical and instrumentation procedures is very helpful in understanding the postoperative imaging appearances. A knowledge of the imaging modalities and when to use them is required. Ways to reduce metal artefact in imaging should be implemented. Radiography provides information on cervical spine fixation or metallic hardware placement. CT provides information on cervical spine alignment, hardware placement and integrity, and bone graft incorporation or complications. MRI is helpful for complications of surgery not directly related to hardware. These include signs of CSF leakage, pseudomeningocele, epidural or other haemorrhage and infection. In the context of the degenerative cervical spine, MRI shows residual or recurrent disk osteophyte complex. Long-term sequelae of cervical spine fusion such as hardware failure, advanced degeneration, post laminectomy spondylolisthesis and epidural and other scar tissue are detected by follow up imaging. The entity of the failed back surgery syndrome needs to be considered with the postoperative cervical spine and what to look for in imaging it. The combination of understanding the surgical techniques used, using the correct imaging modality for the patient symptoms and having a systematic approach to the imaging evaluation, renders imaging of the postoperative cervical spine safe, practical and useful.

Learning Objectives:
1. To learn about the imaging findings and pitfalls of postoperative cervical spine imaging.
2. To understand the heterogeneity of imaging findings and their clinical relevance.
3. To appreciate the importance of standardised imaging, interpretation and reporting of postoperative imaging findings in the cervical spine.

16:00 - 17:30 Room F1

E³ - European Diploma Prep Session

E³ 1623

Chest

A-0951 16:00

Chairperson’s introduction
J. Vilari; Valencia/ES (vilarsamper@gmail.com)

In this session, the speaker, all of them experts in thoracic imaging will approach the main aspects of chest radiology related to the European Training Curriculum, levels I and II. These topics are the objective of preparation for the European Diploma examination. In the examination, there will be questions related to knowledge, skills and decision making that the authors of the three lectures will offer to the audience. Please pay attention to basic facts, differential diagnosis, the value of imaging techniques, diagnostic clues, and management issues related to the topics of the session.

Session Objectives:
1. To understand the most important signs in chest imaging.
2. To learn the imaging features of benign and malignant lesions of the lung.
3. To become familiar with the imaging appearance of common lesions of the mediastinum, pleura and chest wall.
4. To understand the role of different imaging modalities including hybrid imaging in diagnosing and staging neoplasms of the chest.

A-0952 16:06

A. Fundamentals of chest imaging
M. Occhipinti; Florence/IT (mariaelena_occhipinti@gmail.com)

Chest imaging remains one of the most complicated subspecialties of diagnostic radiology. The fundamentals in the interpretation of chest imaging are the knowledge of the normal anatomy as well as the radiographic signs. Anatomy of the respiratory system and its variants in the different imaging techniques will be reviewed, including chest radiography, CT and MRI. Monitoring and support devices such as different types of tubes and lines will be shown along with their correct position in the chest. Chest radiography signs are helpful in establishing a particular diagnosis of chest diseases. Therefore, their recognition and understanding is of particular interest for general and subspecialised thoracic radiologists. During the presentation, many radiographic signs will be discussed, including silhouette sign, air bronchogram, air crescent sign, cervicothoracic sign, gloved finger sign, golden S sign, deep sulcus sign, coeur en sabot sign, doughnut sign, double density sign, hilum convergence sign, hilum overlay sign.

Learning Objectives:
1. To learn the anatomy and normal variants of the respiratory system, heart and vessels, mediastinum and chest wall and to confidently identify these on radiographs, CT and MRI.
2. To gather an in-depth understanding of the most common chest radiography signs (including silhouette sign, air bronchogram, air crescent sign, cervicothoracic sign, tapered margins, gloved finger sign, golden sign, deep sulcus sign).
3. To learn the appearance and correct position of monitoring and support devices (tubes and lines).
A-0953 16:34
B. Inflammation and tumours of the lung
A. Nair; London/UK

"no abstract submitted"

Learning Objectives:
1. To understand the imaging features and differential diagnoses of diffuse infiltrative and alveolar lung disease and atelectasis.
2. To become familiar with thoracic diseases in immunocompetent, immunocompromised and post-transplant patients.
3. To become familiar with the differentiation of solitary and multiple pulmonary nodules, benign and malignant neoplasms, hyperlucentcies and their potential aetiology and evaluation.
4. To understand the role of different imaging modalities including hybrid imaging in diagnosing and staging neoplasms of the chest.

A-0954 17:02
C. Mediastinum, pleura and chest wall
A.P. Parker; Bergen/NO (apparker@gmail.com)

The normal appearance of the diaphragm is usually similar on both sides. The diaphragm may be elevated on either side due to abdominal tumours, paresis of the phrenic nerve, traumatic rupture, or subpulmonary pleura effusion. The pleura may be thickened due to effusion, fibrosis with or without calcifications or due to malignancy. The chest wall has a varying normal appearance according to the shape of the rib cage and sternum. The mediastinum is a complex anatomic area which is affected by changes in vascular system and lymphadenopathy. In addition, various diseases like infections and tumours can be seen in the mediastinum. The postoperative chest radiograph is sometimes challenging to read because it usually is done in a supine position and only a front image is performed. It is important to recognise “do-not-miss” pathology such as pericardial fluid, tensions pneumothorax, or malpositioned tube and central lines.

Learning Objectives:
1. To become familiar with the imaging features of common pathologies of the diaphragm, pleura and chest wall on radiography, CT and MRI of the chest.
2. To learn the imaging features and causes of mediastinal and hilar diseases.
3. To understand the imaging features of disorders of the pulmonary vascular system and great vessels.
4. To learn the typical imaging features of the postoperative chest.

16:00 - 17:30 Room F2

New Horizons Session

NH 16

The tumour board of the future
A-0955 16:00
Chairperson's introduction
M. Prokop; Nijmegen/NL (mathias.prokop@radboudumc.nl)

Session Objectives:
1. To learn how to structure a tumour board for maximum efficiency and effectiveness.
2. To learn how to incorporate modern Information management tools for a multidisciplinary meeting.
3. To understand current risks and problems and how they affect the role of the radiologist.

Author Disclosure:
M. Prokop: Research/Grant Support; Canon Medical systems, Research grant, Siemens Healthineers, Research grant. Speaker; Bracco, Personal fee. Bayer, Personal fee, Canon Medical Systems, Personal fee, Siemens Healthineers, Personal fee. Other: Thirona, Departmental spinoff, Mevis Medical Solutions, Departmental Licence agreement.

A-0956 16:06
How to set up and run a multidisciplinary meeting
C. Dromain; Lausanne/CH (Clarisse.Dromain@chuv.ch)

Since few years, evidence has shown that multidisciplinary tumour boards (MTB) improve diagnostic accuracy, adherence of clinical practice guideline and clinical outcomes. However, new factors impact the efficiency of MTB including oncologic disease becoming more and more complex, the increased number of oncologic patients, multiplicity of new therapeutic options and new diagnostic approaches, the development of network operation and the need for multidisciplinary apart from oncology. The efficiency of MTB will depend upon the limited available resources especially for transverse specialities (diagnostic radiology, interventional radiology, nuclear medicine, pathology) and the need for high quality required in highly specialised medicine. In addition to its primary goal, optimal treatment management in complex cases, MTB also have an education and a social value role. Key elements for running an effective MTB are the selection of patients, preparation of cases, which questions to ask the MTB, the presence of the referring clinician, availability of all findings (clinical, images, pathology etc.), appropriate equipment for images display and direct reporting of the MTB decision. Other parameters of importance are the case and location of the MTB, the role of the chairman, the delay between the announcement of the cases and the MTB, the order of cases presentation and the link with other TBMs. Good running of MTB also need the availability of images with PACS for review, availabilities of histopathological information and availability of clinical and other information. Projection equipment is also needed to display imaging +/- pathology slide.

Learning Objectives:
1. To learn how to best structure a multidisciplinary meeting to avoid wasting time.
2. To appreciate the various roles in a multidisciplinary meeting and how they influence meeting organisation.
3. To learn how to integrate modern tools for improved data collection, communication and evaluation in tumour boards.

Author Disclosure:
D. Regge: Author; Springer. Consultant; im3D. Research/Grant Support; Sanitas. Speaker; GE Healthcare, GE Medical Systems.

A-0957 16:24
Preparation for tumour boards: how to increase efficiency of the radiologist?
D. Regge; Turin/IT (daniele.regge@ircc.it)

Radiologists are pivotal for the success of MTBs. The probability of reaching a treatment decision for a patient is largely increased when radiologists participate in the meeting and, patient survival improves among several types of cancer. However, MTBs add on to radiologist’s workload significantly due in particular to the time required to review cases prior to meeting. Increasing efficiency in the preparation of tumour boards will impact favourably on radiologist’s workload, increase efficiency and reduce costs for healthcare providers. The lecture aims to provide practical tips and knowledge on technical advancements that may support the radiologists in preparing for MTBs.

Learning Objectives:
1. To learn how effectively prepare for a multidisciplinary tumour board meeting.
2. To appreciate the clinician's perspective and understand the expectations towards the radiologist.
3. To learn how to concisely and efficiently communicate relevant findings.

A-0958 16:42
Physical or virtual multidisciplinary meetings?
E. Neri; Pisa/IT (emanuele.neri@med.unipi.it)

"no abstract submitted"

Learning Objectives:
1. To understand the trade-offs of physical and virtual meetings.
2. To learn how to best set up remote access to a multidisciplinary meeting.
3. To understand how to organise and structure regional multidisciplinary tumour board meetings.

A-0959 17:00
Maximising the added value of tumour boards
C.D. Becker; Geneva/CH

Organ- or disease- specific multidisciplinary tumour boards play a key role for the selection of appropriate modern treatment for patients with neoplastic disease. Radiologic subspecialty expertise is essential and required for both diagnosis and treatment. In the age of personalised medicine, a precise diagnosis must include many different aspects, including morphologic and functional, metabolic, molecular and genetic elements, quantification and individual longitudinal follow-up. Closer integration of all these findings will be required in the future in order to offer the best possible treatment to all patients. Minimally invasive vascular or percutaneous image-guided interventional techniques are gaining increasing importance in tumor treatment. These techniques may be used for curative, adjuvant or palliative indications, and either in an alternative or adjunctive - sequential fashion for a variety of neoplastic diseases. Therefore it is also important that interventional radiology has its place in the multidisciplinary organisation, including decision making at tumour boards.

Learning Objectives:
1. To understand the role and challenges of institutional multidisciplinary guidelines including imaging.
2. To learn about integrating diagnostic information before tumour board meetings.
3. To learn how to include the role of interventional radiology in tumour board meetings.
Panel discussion: How to strengthen the role of the radiologist in multidisciplinary tumour boards while keeping workload under control

16:00 - 17:30 Room Y

E³ - Rising Stars Programme: EFRS Radiographers’ Basic Session

BR 16

Radiation protection: all you need to know

A-0960 16:00

Chairperson’s introduction: Evolving radiographers’ role in radiation protection
B.R. Mussmann; Odense/DK (bo.mussmann@rsyd.dk)

The system of radiological protection is built on science, experience and ethics reflected in the basic principles in ICRP 103, i.e. optimisation of protection, dose limitation and justification. Radiographers are important stakeholders in the maintenance of the system, both legally, ethically and practically. The session reviews different aspects of radiation protection that may form the basis for further development of radiographers’ roles and responsibility.

Session Objectives:
1. To understand radiographers’ current legal responsibilities regarding radiation protection.
2. To consider the role radiographers play in application of the justification principle.
3. To review recent optimisation techniques for projection radiography.
4. To appreciate how radiographers can best communicate risk-benefit information to patients.

A-0961 16:05

The Basic Safety Standards Directive: early experiences of implementing BSS
S.J. Foley; Dublin/IE (shane.foley@ucd.ie)

The European Commission issued its most recent radiation protection Directive (2013/59/Euratom) in December 2013 which repealed five other Directives (including 97/43/Euratom) and had a deadline for transposition by all Member States of the EU by February 2018. Therefore this presentation will review the European-wide adoption of the new Directive, which takes into account new recommendations from the ICRP in light of new scientific evidence and is hoped will strengthen the culture of radiation safety throughout Europe. While the Directive remains faithful to and maintains the already well-accepted pillars of radiation protection – justification, optimisation and dose limitation, these are further strengthened in this Directive. Further new requirements under the Directive will also be discussed, including obligations related to recording dose information and communicating benefit/risk to patients. Additional responsibilities have also been designated to a number of professionals which will impact the work of both radiographers and radiologists alike, so all imaging staff need to be aware of its implications. This will ensure the true ethos of the Directive can be effectively implemented into routine clinical practice. Finally, some potential challenges for practical adoption of the Directive will be addressed.

Learning Objectives:
2. To discuss the additional responsibilities of radiographers and radiologists under the Directive.
3. To understand how the implementation of the BSS Directive may affect practice.

A-0962 16:23

Opportunities for optimising dose in digital radiography
P.H. Hogg; Salford/UK (P.Hogg@salford.ac.uk)

From a dose optimisation perspective, general descriptions of image quality that are divorced from the abnormality to be considered are likely to give less accurate and possibly unreliable results. With a range of perspectives in mind, this presentation offers a reflective critical commentary on contemporary image quality definitions in the absence of relative validity. Building on this, a definition of clinical image quality is then proposed which considers the purpose of the imaging examination; image quality definitions such as this would likely result in ‘personalised’ optimisation which should result in more valid and reliable dose optimisation outcomes. With a personalised definition in mind, both contemporary visual and physical approaches and dose quality assessment, in pure and modified forms, will be considered in relation to optimisation and the abnormality to be considered. The presentation will examine potential pre-emptive personalised image quality assessment optimisation approaches that might be implemented before exposure; post-acquisition personalised image quality assessment will also be examined similarly. The presentation will conclude by offering practical steps which might be taken to optimise images, with dose and personalised image quality in mind. Some consideration will be given to the role of Artificial Intelligence (AI) could play in the assessment of personalised image quality in optimisation, with or without human observers as part of the interpretation process.

Learning Objectives:
1. To discuss the limitations of image quality as a parameter for use in optimising dose in medical imaging examinations.
2. To discuss a range of visual and physical techniques that can be used to assess medical image quality.
3. To discuss a range of practical measures which might be implemented to minimise radiation dose whilst maintaining a level of image quality that is fit for purpose.

A-0964 16:59

Postgraduate Educational Programme

Enhancing the culture of justification
K.B. Lysdahl; Kongsberg/NO (Kristin.Bakke.Lysdahl@usn.no)

Justification of referrals is a primary principle in radiology, with impact within and beyond radiation protection. The practice of justification influences the quality of patient care, the professionals’ working conditions and the allocation of healthcare resources. Still, reported frequencies of unjustified examinations to indicate implementation challenges, explainable by the complexity of the principle. Justification of an examination demands an overview and balancing of a number of relevant benefits and risks, based on outcome predictions. Moreover, the people involved may appraise the benefits and risks differently, and the distribution of responsibility and power in the decision-making process may not be clear. The presentation will address the potential for radiographers to contribute to justified examinations. They can contribute by vetting the amount and quality of information in the referrals, by providing supplementary information, and by authorising referrals according to guidelines. The possibilities, preconditions and scope of the radiographers’ contribution will vary according to cultural and organisation aspects, training and regulations, locally and nationally. Some lessons can be learned by understanding radiographers’ perceived role in justification, reported in the literature. Initiatives from the radiation protection environment to improve adherence to the principle of justification are summarised in the key concepts of Awareness, Appropriateness and Audit. The presentation will consider elements of the AAA approach, and offer reasons why increased involvement by radiologist and radiographers are called for. Finally, initiatives particularly relevant for the imaging departments will be highlighted, including guideline implementation, education, clarification of roles and collaboration in the referral process.

Learning Objectives:
1. To appreciate the key role of justification within radiation protection.
2. To be familiar with the role radiographers can play in justification.
3. To consider initiatives for improving adherence to the principle of justification.

A-0963 16:41

The radiographers’ role in benefit-risk communication
J. Portelli; Maida/MY (jonathan.portelli@um.edu.mt)

By now all EU Member States should have implemented the requirements specified in the BSS Council Directive 2013/59/EURATOM into their respective national legislation, thereby ensuring that relevant practices abide by the revised basic safety standards for the protection against dangers arising from exposure to ionising radiation. In effect, apart from the specific responsibilities relating to the justification and optimisation of each medical radiation exposure, referrers and/or practitioners are now legally obliged to provide each patient or their representative with adequate information relating to the benefits and risks associated with the radiation dose to be received from a proposed medical imaging procedure that involves radiation. While referrers and practitioners may have already been satisfying this new responsibility in their daily practice, the fact that this is now specifically defined within regulations should oblige more health professionals to be attentive to fulfil this responsibility as effectively as possible. This lecture will, therefore, seek to outline and emphasise the key role radiographers play in benefit-risk communication. It will highlight the importance of radiographers being knowledgeable of radiation-related concepts, as well as the associated benefits and risks of medical imaging procedures they perform. Additionally, the need for radiographers to develop and have effective communication skills will also be emphasised, since these are necessary to convey adequate information in accordance with the needs and preferences of different patient groups and their families, as well as to other health professionals that may be involved in the patient’s care.

Learning Objectives:
1. To understand new legislative requirements under the BSS Directive.
2. To be aware of the key role radiographers play in benefit-risk communication.
3. To understand key principles for appropriate benefit-risk communication.
Osteoporosis is still considered one major public health problem, dealing with fractures: bone fragility in the elderly, assessing osteoporosis and treatment.

With increasing age degeneration of the spine is inevitable with a tendency to cause these degenerative processes and their complications ranging from spinal stenosis which can be at multiple sites, to deformity which can be incapacitating and difficult to treat. The combination of advanced degeneration with deformity can alter the balance of the spine and promote unusual biomechanical forces which can overwhelm the bone strength of the vertebral bodies which in the presence of metabolic disease results in bone failure producing destructive discovertebral changes within the spine.

Learning Objectives:
1. To explain the pathophysiology of degenerative changes in the spine.
2. To describe the imaging findings of degenerative diseases of the spine.

Learning Objectives:
1. To explain the pathophysiology of osteoporosis and its relation to fracture risk prediction. Among these the most applied is quantitative CT (QCT) scans, that can measure volumetric BMD (vBMD) and trabecular bone score (TBS), attempting not only to measure the "bone quantity" but also the "bone quality", by means of the study of microarchitecture, structure, bone turnover and bone strength. MRI is also being studied as a tool to assess vertebral bone density based on bone marrow fat content; in fact, vertebral osteoporosis is characterised by thinning trabecular and cortical bone and an increase in fat. A comprehensive assessment of fracture risk requires data on bone density, fracture history, and bone quality, which can be provided by several imaging modalities, each with its advantages and disadvantages. Clinically, Dxa remains to be the only validated method to diagnosis osteoporosis by WHO T-score criteria. The role of densitometers available and used technique to assess BMD as it is the only validated method.

Learning Objectives:
1. To explain the procedures of vertebroplasty and kyphoplasty.
2. To discuss the current role of vertebroplasty and kyphoplasty in spinal fractures.

Learning Objectives:
1. To illustrate examples of clinical relevance for hybrid imaging.
2. To highlight the translational aspects of hybrid imaging.
3. To introduce the session faculty and objectives of the presentations.

The first reports of vertebroplasty were published in the late 1980s. Over the years the technique of polymethylmethacrylate injection under fluoroscopic guidance hasn't changed much. In clinical practice, vertebroplasty became an established therapy for painful mostly osteoporotic fractures. Randomised trials against conservative therapy have consistently shown a benefit for vertebroplasty: the latest study was the VAPOUR trial. On the other hand, vertebroplasty wasn't superior to a sham procedure in three large trials the latest being VERTOS IV. In all sham trials patients benefitted from the intervention (vertebroplasty and sham procedure), so the question is why the sham procedure worked. Despite these trials, vertebroplasty is still offered to many patients suffering from painful vertebral body fractures because of general good pain relief, high patient satisfaction and very few complications.

As with many IR procedures, appropriate patient selection is important. Besides the clinical exam (tenderness on percussion) and history (sudden onset of different pain), an MRI should be performed beforehand. Best outcomes were observed with fractures dark on T1 and bright on T2 fatsat/STIR. For pain relief, vertebroplasty seems sufficient. If height restoration is intended kyphoplasty (balloons) or stentoplasty (balloon expandable stents) can be used. The concept of the stent is to avoid recollapsing after deflating of the balloon. For a successful height restoration, the fracture needs to be mobile, which is typically the case within the first 10-14 days.

Learning Objectives:
1. To explain the procedures of vertebroplasty and kyphoplasty.
2. To discuss the current role of vertebroplasty and kyphoplasty in spinal fractures.

Chairpersons’ introduction (part 1)
O. Ratib; Geneva 14/CH
O. Ratib; Geneva 14/CH

Hybrid imaging combining molecular imaging (PET or SPECT) with anatomical and functional imaging (CT and MRI) offers a scope of new clinical applications. The development of new radiotracers for PET imaging opens a new perspective for more objective evaluation of the efficacy of new treatments. The emergence of hybrid PETMR imaging offers new perspectives for functional hybrid imaging and tissue characterisation. The combination of both modalities improves the accuracy and reproducibility of diagnostic procedures.

Session Objectives:
1. To illustrate examples of clinical relevance for hybrid imaging.
2. To highlight the translational aspects of hybrid imaging.
3. To introduce the session faculty and objectives of the presentations.

Chairpersons’ introduction (part 2)
C.C. Cyran; Munich/DE (clemens.cyran@med.uni-muenchen.de)

The concomitant acquisition of morphological, functional and molecular information using hybrid imaging techniques allows for a high diagnostic accuracy in the detection of tumour manifestations and the timely differentiation of responders from non-responders using different tracers and in various tumour entities. Clinically available tracers such as [18F]-FDG, [68Ga]-DOTA-TATE/-TOC, [18F]-PSMA und [18F]-DOPA allow for the visualisation of glucose metabolism, tumour receptor and protein expression, or enzymatic activity, depending on the indication and tumour entity. Modified criteria for monitoring response to molecular anti-cancer agents are increasingly integrating functional imaging information (Cheson criteria, PERCIST) to improve the standardised and reproducible assessment of therapy response by imaging studies and their application as qualified imaging biomarkers. An array of novel radiotracers for PET and SPECT imaging is under translational development for a broad range of applications in imaging of neurodegenerative, cardiovascular and oncological diseases. The theranostics concept of tracers such as DOTA-TATE and PSMA for radionuclide therapy in metastasised cancer patients has shown success in selected patient groups.
and may serve as a blueprint for future application of novel compounds in oncological therapy.

Session Objectives:
1. To illustrate examples of clinical relevance for hybrid imaging.
2. To highlight the translational aspects of hybrid imaging.
3. To introduce the session faculty and objectives of the presentations.

A-0974 16:05

Prostate-specific membrane antigen (PSMA) PET/MR: guiding clinical management of prostate cancer

P.A. T. Bizez; Vienna/A7

Prostate-specific membrane antigen-based PET has rapidly changed the way prostate cancer is diagnosed. It provides a highly accurate tool to detect, stage, and grade prostate cancer and can further be used to guide and monitor treatment. It further allows a theranostic approach to treat prostate cancer. On the other hand, MRI provides the to date most accurate tool to image-based prostate cancer detection in the prostate. In addition, its superior soft tissue contrast is considered to be superior to CT in many respects. Whether PET-MRI is indeed superior to PET-CT regarding the staging of prostate cancer is a matter of debate, and empirical data regarding this topic is sparse. The talk will address the learning objectives given below.

Learning Objectives:
1. To learn about the requirements in clinical management of prostate cancer.
2. To understand the potential role of PSMA PET/MR in the management of prostate cancer.
3. To learn about the advantages of the hybrid PET/MR technique in this setting.
4. To become familiar with typical findings and pitfalls of hybrid PSMA PET/MR in the evaluation of prostate disease.

A-0975 16:30

On the horizon: novel PET tracers with translational potential

G. Cook; London/UK (Gary.Cook@hcl.ac.uk)

There are few hallmarks of cancer that we cannot exploit with imaging. In particular, there are several PET and SPECT probes that can measure abnormal metabolic processes (e.g. 18F-FDG, 99mTc-sestamibi), proliferation (e.g. 18F-FLT, 18F/11C-choline), receptor overexpression (e.g. 68Ga-dotatate, 68Ga-PSMA, apotosis (e.g. 18F-M10), hypoxia (e.g. 18F-MISO, 64/Cu-ATSM) and angiogenesis (e.g. 82Zr-bevacizumab, 18F-RGD), amongst others. While some of these tracers are useful for diagnosis and phenotyping, many are of interest for predicting early treatment response, especially in the setting of targeted biologic therapies where an early reduction in tumour volume is not expected and where morphologic CT and MRI are therefore limited. Of current interest is the evaluation of response to immunotherapies that may cause pseudoprogression caused by immunocellular infiltration before subsequent tumour shrinkage. In this situation, early pseudoprogression may also been seen with an 18F-FDG PET and hence the interest in more specific tracers such as 82Zr or 99mTc-PD1 antibody. While PET and SPECT probes are invaluable in reporting on underlying biological tumour characteristics, both CT and MRI provide valuable supportive information in hybrid imaging scanners allowing anatomical reference as well as some functional measurements. e.g. cellularity with DWI and perfusion with DCE MRI. The ultimate goal of predicting which patients will respond to which treatment, or at least to determine non-response as soon as possible, is not fully achieved in the clinic with imaging as yet but some areas are now contributing to clinical practice, e.g. 18F-FDG PET/CT to guide treatment escalation/de-escalation in lymphoma.

Learning Objectives:
1. To become familiar with future targets in oncologic hybrid imaging.
2. To learn how hybrid imaging can support the oncologist in diagnosis and therapy response assessment.

Author Disclosure:
G. Cook: Consultant; Nanomab. Research/Grant Support; Serac HC, Nanomab.

A-0976 16:50

Advances in theragnostics: monitoring radionuclide therapy

H. Ilhan; Munich/DE (Harun.Ilhan@med.uni-muenchen.de)

The use of radiolabeled compounds for molecular imaging and therapy represents two pillars of nuclear medicine and serves as a perfect example of the theragnostic concept for decades. In recent years hybrid PET/CT imaging using Somatostatin-Receptor- (SSR-) and Prostate Specific Membrane Antigen- (PSMA-) targeting Peptides established as an indispensable tool in the management of Neuroendocrine Tumor (NET) and Prostate Cancer (PC) patients. The selective uptake and accumulation pattern paved the way for the therapeutic application of beta- and alpha-emitting compounds. FDG-PET and the implementation of the PERCIST criteria have demonstrated value in the evaluation of therapy response in tumours with high metabolic activity. However, up to date little is known about the value of specific PET-compounds that are used in the theragnostic concept of radionuclide imaging and therapy. In clinical practice, response assessment and therapy monitoring are still based on morphological criteria, whereas the value of PET-derived information remains unclear. Currently, SSR- and PSMA PET imaging has not yet been validated for therapy monitoring in NET and PC patients. Nonetheless, response evaluation to radionuclide therapy based on PET-information has been proposed, however, mainly in retrospective single-center studies with low patient numbers. Current imaging guidelines state that the value of PET imaging in the assessment of response to radionuclide therapy remains unclear as decreased PET-tracer uptake after radionuclide therapy does not necessarily indicate response and might be attributed to other factors such as dedifferentiation. However, recent data indicate that there might be a high value of PET-imaging for response assessment.

Learning Objectives:
1. To learn the principles of radionuclide imaging and therapy in the concept of theragnostics.
2. To understand the differences and common ground between morphological and molecular imaging.
3. To discuss new approaches for response assessment in radionuclide therapy.

Author Disclosure:
H. Ilhan: Advisory Board; Bayer; Speaker; Bayer, Ipsen.

17:10 Panel discussion: Hybrid imaging beyond FDG and theranostics: is it a clinical reality?
Learning Objectives:
1. To provide an overview about institutional requirements for a successful endovascular stroke care.
2. To discuss possible solutions including moving the patient to an interventional centre or move the doctor to the patient.
3. To outline the “ideal world” scenario.

A-0979 16:23
Do you like to travel? Move the patient or the doctor?
J.-P. Pruvo; Lille/FR (jean-pierre.pruvo@chru-lille.fr)

Neuro-interventional mechanical thrombectomy is now standard of care for acute ischemic stroke from large vessel occlusion (LVO) and may be extended beyond the traditional 6-hour time window in patients that are properly selected by neuroimaging. Although ideally patients should be transferred to a higher standard, comprehensive stroke centres for intervention, whether on IV t-PA (‘Drip and Ship’) or not; such transfers delay treatment by an average 100 mins, significantly reducing the chance of a good outcome. In an effort to reduce delays to intervention, a recently reported alternative whereby neuro-interventionalists are transported by taxi to perform treatment in primary stroke centres (‘Drip and Drive’) has shown feasibility and effectiveness. Worldwide, health care systems are currently evaluating various ways to improve access to emergent stroke care for eligible patients, including training more specialists, telemedicine models, extending the workforce, etc... Guiding principles for patient safety include the accuracy and reproducibility of neuroimaging process leading to indication to treat, reduction of unexpected sources of delay or failure to treat, i.e. adequate training of staff, successful parallel processing, availability of materials, adequate quality and performance of interventional equipment, safety of femoral puncture and closure technique, availability of neurosurgical backup in case of major complication, and adequacy of post-thrombectomy neurological care. Ultimately, whether the patient or the doctor is “shipped” to the site of intervention, attention to quality remains the best guarantee of good outcomes.

Learning Objectives:
1. To provide an overview about recent data/guidelines about endovascular stroke treatment.
2. To get familiar with the currently accepted/recommended treatment options.
3. To give an outlook about ongoing trials.

A-0980 16:41
Are you experienced, trained or certified? Certification, subspecialisation, specialisation: friend or foe of the patient?
A. Berlis: Augsburg/DE

"no abstract submitted"

Learning Objectives:
1. To get an overview about different certification programmes in interventional stroke treatment.
2. To discuss the risks and benefits for the patients of dedicated certifications, ensuring continuous service for the future.
3. To get familiar with possible future concepts of training and education.

A-0981 16:59
Do you need help? Train the cardiologist, neurosurgeon, interventional radiologist
T.J. Popiel; Krakow/PL (mispopiel@cyf-kr.edu.pl)

In Poland, despite the lack of records from the National Insurance Company (NlC) between January 2012 and December 2016, a total of 586 mechanical thrombectomies (MT) in acute ischemic stroke with the use of new generation devices were performed in 24 centres. In 78% of cases, the MT teams were composed of a neurologist and an interventional neuroradiologist. In the remaining, the neurointerventionist was a neurosurgeon (3%), a vascular surgeon (1%), or intervention cardiologist (1%). Only 15 of these centres worked 24h/7 days a week, and only 2 performed over 40 procedures each. According to the regulation of the Ministry of Health (Ml) of October 16, 2016, apart from (neuro-) interventional radiologists, also neurosurgeons, neurologists, cardiologists, angiologists and vascular surgeons were admitted to performing the MT procedure. The minimum requirement was to perform 'at least five intracranial vessel treatment procedures performed alone or in the presence of a Proctor who performed at least 50 intracranial procedures'. A Pilot Program was launched in 7 centres currently performing most MT procedures. In each of these centres, there are min. three teams that can work on a continuous basis on call, 24h /7 days a week. In most of these centres, procedures are performed by experienced (neuro) interventional radiologists. Each of the participating centres is obligated to conduct training for doctors of other specialties. After finishing the Pilot Program, a network of 17-20 centres capable of performing MT procedures will be created covering the entire territory of Poland.

Learning Objectives:
1. To provide an overview about the situation in Poland: who is doing the endovascular stroke service and who will do it in future?
2. To outline possible problems to ensure continuous service 24/7.
3. To discuss the role of interventional (neuro) radiologists as trainer for other disciplines.

17:17
Panel discussion: The output (outcome) counts, not the input (specialisation)

E³ - ECR Master Class (Chest)
E³ 1626b
Patterns of pulmonary toxicity
Moderator: I.E. Tyurin; Moscow/ RU

A-0982 16:00
A. Drug-induced lung disease
C.M. Schaef er-Prokop; Amersfoort/NL

"no abstract submitted"

Learning Objectives:
1. To learn about the various CT patterns of lung injury.
2. To understand the role of imaging in their recognition.
3. To discuss differential diagnoses.

A-0983 16:30
B. Smoking-related lung disease
S.R. Desai; London/UK

"no abstract submitted"

Learning Objectives:
1. To learn about the classification of smoking-related lung diseases.
2. To understand the most common CT patterns.
3. To highlight newly-recognised entities.

A-0984 17:00
C. Inhalation: lung injury beyond smoking
J.A. Verschakelen; Leuven/BE (johny.verschakelen@uz.kuleuven.ac.be)

Non-smoking related inhalation lung injury is usually secondary to chronic or repetitive occupational or environmental exposures but may also result from inhalation of smoke or of chemical products of combustion, a condition that is mostly associated with significant morbidity and mortality. Every year new agents causing pulmonary injury are described, and although many are isolated cases, others prove to be clustered or repetitive events with more or less specific imaging features. The clinical and radiological presentation of inhalational lung injury depends on one hand on the chronicity of inhalation, the amount and phase of the inhaled agent and its toxicity to the lung, and on the other hand on the reaction of the lung to this injury. This presentation will focus on the CT features seen after non-smoking related lung injury caused by direct chemical toxicity to the bronchial tree and lungs and by chronic or repetitive inhalation of particulates and organic dusts. Attention will also be given to the inflammatory syndrome seen in hypersensitivity pneumonitis.

Learning Objectives:
1. To learn about the various causes of environmental lung diseases.
2. To understand the changes related to acute lung injury.
3. To describe the long-term sequelae of inhalation lung injury.
Multidisciplinary Session

MS 16

How to deal with the epidemics of thyroid nodules?

A-0985 16:00

Chairperson's introduction

A.S. Germano; Amadora/PT (asgermano@gmail.com)

Recently, concerns regarding possible overdiagnosis and overtreatment of thyroid carcinomas have been raised. They are based on an exponential rise in the incidence of thyroid carcinomas in developed countries (the "epidemics" of thyroid nodules), concerning mainly small well-differentiated carcinomas, along with a low and stable mortality rate. Potential reasons for these epidemics include the unrolling of a pool of subclinical tumours due to increased availability and access to health care units, increase in the number and improved sensitivity of imaging procedures, with consequent detection of incidentalomas in CT, MR, Doppler, and PET examinations, exhaustive histological examination of thyroid specimens, and screening for thyroid nodules. The coexistence of factors responsible for a true increase in thyroid carcinomas is also possible, namely radiation exposure, smoking, obesity, and iodine intake status. High-resolution ultrasound and ultrasound-guided fine needle aspiration are the best tools to identify and characterise thyroid nodules. However, it is unfeasible to biopsy every single detected nodule. To add to this problem, different guidelines on how to deal with thyroid nodules have been published worldwide, and are continuously being updated. Likewise, a uniform system for reporting thyroid cytology, the Bethesda system, which includes an attributed risk of malignancy and a management recommendation for each cytodiagnostic category, was created. Different approaches have been attempted to decrease the epidemics: a proposal of active surveillance rather than surgery for microcarcinomas in selected cases; a nomenclature revision of the encapsulated thyroid carcinoma; an update of the Bethesda system (US) findings facilitates correlation with cytology, enhancing the ability to reach a final diagnosis.

Learning Objectives:
1. To understand the concept of the world epidemics of thyroid nodules.
2. To learn about the reasons for this epidemic.
3. To be updated on current guidelines as to how to deal with thyroid nodules.
4. To explain the indeterminate diagnosis on cytology and histology.
5. To discuss approaches to reduce/stabilise the incidence of thyroid nodules detection.

A-0986 16:05

The endocrinologist perspective

1. Sapinho; Amadora/PT (inessapinho@sapo.pt)

We will begin this multidisciplinary session by discussing the true impact of the widespread use of imaging techniques, combined with increased medical surveillance and access to health care services in the generation of thyroid nodules. Ultrasound studies of asymptomatic individuals have reported an incidental detection of 35 to 67%. The important issue is the concerns with malignancy and hyperactivity. So, we will discuss the diagnostic pathway of a patient with a thyroid nodule. Nowadays, thyroid cancer is one of the most frequent endocrine malignancies, with a higher prevalence in females. It's, already, third cancer in females in most countries, like in Portugal. However, overdiagnosis is also an issue because its occurrence rate has extraordinarily risen in the past two decades, whereas mortality rates have not changed. Finally, we will discuss the rare emergencies related to thyroid nodules, paying special attention to the preoperative and postoperative causes.

Learning Objectives:
1. To understand the causes of high prevalence of thyroid nodules worldwide.
2. To outline the diagnostic pathway of a patient with a thyroid nodule.
3. To be aware of the problem of overdiagnosis.
4. To recognise the rare emergencies related with thyroid nodules.

A-0987 16:20

The radiologist role

A. S. Germano; Amadora/PT (asgermano@gmail.com)

High-resolution ultrasoundography is, without a doubt, the best imaging technique to detect and characterise thyroid nodules. The best way to guide and needle aspiration biopsy of thyroid nodules and lymph nodes. However, it is neither possible nor desirable to biopsy every detected nodule, because the procedure is not exempt from complications, the percentage of indeterminate cytology results is not negligible, and most thyroid carcinomas are well-differentiated and have an indolent course. The challenge is to identify the very rare/aggressive malignant nodules among the very common benign ones. Radiologists are partially responsible for the epidemics of thyroid nodules. To achieve Excellence in the evaluation of thyroid nodules, a radiologist needs, beyond a top ultrasound equipment and acquisition of diagnostic and interventional skills, to be updated on the nuances of the current guidelines regarding ultrasound malignancy risk stratification of thyroid nodules. The 2017 EU-TIRADS will be emphasised. It is also fundamental, in order to appreciate uncertainties in cytology and pathology results, to recognise the recent changes in the World Health Organisation classification of tumours of endocrine organs, the modifications of the staging system for differentiated thyroid cancer, presented in the 8th Edition of the American Joint Committee on cancer, and also the recent updates on the Bethesda System for reporting thyroid pathology. Regarding microcarcinomas (≤1cm), active surveillance is being considered as an alternative to surgery. To be implemented, patient preferences need to be taken into account, together with an adequate clinical setting, available resources, and medical expertise.

Learning Objectives:
1. To become familiar with the current guidelines for ultrasound malignancy risk stratification of thyroid nodules-emphasis on the EU-TIRADS.
2. To learn how to deal with the incidentally detected thyroid nodules in other imaging modalities.
3. To understand the concept of "active surveillance" of thyroid nodules.

A-0988 16:35

The surgeon intervention

M. Allen; Amadora/PT (mallen@hospitalduls.pt)

The Surgeon’s intervention (or not) in the patient with nodular thyroid disease is to be taken as a part of a treatment plan. Three topics will be addressed. To know when to send a patient to surgery: Sending patients to an Endocrine Surgeon doesn’t necessarily mean “send a patient to surgery”. Depending on the clinical presentation, echographic features and cytology result in a decision as to be achieved. From the clinical evaluation, compressive symptoms like neck, dysphagia, dysphonia or swallowing discomfort, hoarseness, history of thyroid cancer and mediastinal goitres are to be considered. The importance is to have a team that works together and decides the best treatment to a given patient. To understand what the surgeon needs to know before performing a thyroidectomy. The surgeon needs precious information from the Endocrinologist, the Radiologist, the Cytopathologist, the ENT preoperative evaluation, but above all, he/she needs to understand the Patient expectations from treatment and Balance risk/benefit of a given surgical strategy. Total thyroidectomy and Unilateral lobectomy, have a low incidence of complications, but regardless of the surgical skills and annual case-load, they are not ZERO. To be aware of potential surgical risks and complications, Intra and Post-operative complications and ways to anticipate, prevent and deal with them will be addressed. From bleeding, lesion of recurrent and superior laryngeal nerve, hypoparathyroidism, surgical site infection, to Surgical scar issues. When a surgical procedure goes according to plan and has no complication, the only thing that is left is a scar. Hopefully scarcely identifiable.

Learning Objectives:
1. To know when to send a patient to surgery.
2. To understand what the surgeon needs to know before performing a thyroidectomy.
3. To be aware of potential surgical risks and complications.

A-0989 16:50

The pathologist assessment

P. Borralho; Amadora/PT (punes1@campus.ul.pt)

Fine needle aspiration (FNA) plays a central role in distinguishing benign thyroid nodules that can be managed conservatively from those with suspicious or malignant features requiring further management. However, its performance needs to be selective, since systematic FNA of all nodules, regardless of the size or appearance, is superfluous and may lead to unnecessary diagnostic surgery. A standardised report of thyroid ultrasound (US) findings facilitates correlation with cytology, enhancing the ability to reach a precise diagnosis. The Bethesda System for reporting thyroid cytology (TBSTRC) was a very important development, creating a uniform system for reporting thyroid cytopathology and recognising its limits. Each six-diagnostic category is associated with a specific risk of malignancy (ROM) and a respective clinical management recommendation. An updated TBSTRC recently published includes advances in the molecular diagnosis of thyroid nodules and the noninvasive encapsulated follicular variant of papillary thyroid carcinoma (FV-PTC), renamed as noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) which, together with well-differentiated thyroid tumours of uncertain malignant potential (WD-TUMP) represents a true “gray zone” of “focally” patterned thyroid lesions, that needs to be characterized in order to outright the diagnosis of carcinoma and avoid unnecessary aggressive treatment. Papillary microcarcinoma of the thyroid (PMCT) contributes to the epidemics of thyroid nodules. PMCT is incidentally
found in otherwise healthy humans by ultrasonography and FNA, but surgical therapy is only required for patients who have high-risk factors, such as clinically apparent lymph node metastasis and massive extra-thyroid extension. **Learning Objectives:**

1. To appreciate the utility of conjoint ultrasound/cytology evaluation of thyroid nodules.
2. To understand the cytology diagnosis limits: The Bethesda System.
3. To learn about the indeterminate histology diagnosis: WDT-UMP and NIFTP.
4. To recognise the pathologist contribution to the epidemics: the incidentally detected micrometastases.

A-0990 17:05
Multidisciplinary case presentation and discussion: "The thyroid-team decision: when to follow and when to go beyond the guidelines"
A.S. Germano; Amadora-PT (asgermanno@gmail.com)

In the same manner, as a multidisciplinary board meeting, selected cases of both straightforward and challenging "real-life" cases, regarding patients with thyroid nodules, will be presented and discussed. The "thyroid-team," comprising an endocrinologist, a radiologist, a surgeon, and a pathologist, will present thyroid nodules that are unmistakably benign or malignant, and also pseudo-nodules, incidentally detected thyroid nodules, those with indeterminate cytology and/or histology results, micrometastases, metastatic lymph nodes with no evident thyroid nodule detected, and radiology-cytology discordant cases. Distinctive patient features, including age, symptoms, and co-morbidities, will be fitted into the decision-making process. **Learning Objectives:**

1. To learn the rationale for multidisciplinary decision-making in standard situations.
2. To discuss challenging diagnosis cases.

B. Injectables, percutaneous tendon fenestration and tenotomy: clinical outcomes and current evidence
J.A. Jacobson; Ann Arbor, MI/US (jjacobsn@umich.edu)

For joint abnormalities and tendinopathy, there exist many percutaneous treatment options. Anaesthetic agents are often combined with corticosteroids to inject joints and bursae for diagnostic and therapeutic purposes. All anaesthetic agents are cytotoxic to chondrocytes and synovial cells to some degree. Corticosteroids may be used to decrease inflammation within a synovial space. The use of corticosteroids to treat tendinopathy is counterintuitive, as inflammation is not present, injection into tendon causes tenocyte death, the analgesic effect of corticosteroids is short-lived, and the tendon pathology is not treated. Several ultrasound-guided tendon treatments can be used for tendinopathy. One treatment is tendon fenestration or tenotomy, where a needle is passed through the abnormal tendon segment repeatedly to break up the degenerative process, induce bleeding and inflammation, and initiate tendon healing. Anti-inflammatory medication should be avoided so as not to interfere with the healing response. Another procedure is the injection of autologous whole blood while fenestration, which increases growth factors and other substances to promote tissue healing. Since the majority of growth factors are stored within platelets, the injection of platelet-rich plasma during fenestration has also been used. With this technique, the autologous whole blood is centrifuged to concentrate the platelets for injection. All three of these percutaneous tendon treatments have been shown to be effective, although it is controversial which technique is best. There are more controversial percutaneous tendon treatments, such as injection of mesenchymal stem cells, human amniotic membrane, and dear antler velvet. **Learning Objectives:**

1. To be aware of the indications and benefits of available injectable treatments used to treat sports-related injuries.
2. To learn about technical considerations for performing tendon fenestration and tenotomy.
3. To become familiar with the current evidence on results of MSK procedures in the literature.

A-0993 17:00
C. Interactive case discussion (Part 1)
P. Peetrons; Brussels/BE (ppeetrons@his-izz.be)

Interactive voting will be the main goal of this section lecture. Some cases will be presented to the audience, summarising the previous lecture on pitfalls and techniques of interventional procedures in musculoskeletal ultrasound. Ten questions will follow, performing a good summary about what is important to remember in this field. **Learning Objectives:**

1. To learn the targeted approach to injecting joints, ligaments, tendons and tendon sheaths.
2. To appreciate pitfalls to avoid in MSK procedures for treatment of sports-related injuries.
3. To understand evidence-based data on various MSK procedures in order to give patients realistic expectations after treatment.

Author Disclosure:

P. Peetrons: Consultant; Canon Medical.

A-0994 17:15
C. Interactive case discussion (Part 2)
J.A. Jacobson; Ann Arbor, MI/US (jjacobsn@umich.edu)

The purpose of the interactive case discussions is to emphasise the teaching points made in the prior lecture reviewing injectables, percutaneous fenestration, and tenotomy. One topic to be addressed will be the imaging findings and potential treatment algorithm for greater trochanteric pain syndrome. In this clinical scenario, a true distended and inflamed bursa is not common, and the primary pathology relates to gluteal tendinopathy. Before pursuing an interventional procedure, conservative management such as proper eccentric physical therapy should be exhausted. The next consideration could be an injection of corticosteroid in the subgluteus maximus (or trochanteric bursa) for the primary purpose to provide temporary pain relief so that the patient can tolerate eccentric physical therapy. The corticosteroid injection is not used as an anti-inflammatory agent as true inflammation is not present, and the pain relief is typically short-lived. If the patient again fails eccentric physical therapy, then the patient may be offered percutaneous fenestration, autologous whole blood injection, or platelet-rich plasma injection. While all three have been shown to be effective, it is still unclear which treatment is best. The dramatic differences in cost should be a consideration when selecting the tendon treatment.
Learning Objectives:
1. To learn the targeted approach to injecting joints, ligaments, tendons and tendon sheaths.
2. To appreciate pitfalls to avoid in MSK procedures for treatment of sports-related injuries.
3. To understand evidence-based data on various MSK procedures in order to give patients realistic expectations after treatment.

Author Disclosure:
J.A. Jacobson; Advisory Board; Philips. Author; Elsevier. Consultant; Bioclinica.

Chairperson’s introduction

A-0995 16:00
Renal transplantation

Chairperson’s introduction

Chair: T. El-Diasty; Mansoura/EG (telidasty@hotmail.com)

A kidney was the first and is the most frequently transplanted organ. Imaging evaluation of potential renal donors is crucial to detect renal and extrarenal abnormalities that might preclude donation or lead to alteration of the surgical approach. Despite improved surgical techniques and transplantation management, complications do occur and, if left untreated, may lead to catastrophic consequences. Vascular complications include renal artery stenosis and renal artery and renal vein thrombosis. Urologic complications include urinary obstruction and leak, and peri-transplant fluid collections. Nephrogenic complications include acute tubular necrosis, graft rejection, chronic allograft nephropathy, and neoplasia. Early diagnosis and treatment of these complications are essential to prevent graft failure and other significant morbidities to the patients. Ultrasound can accurately depict and characterise many of the potential complications of renal transplantation and increasingly magnetic resonance imaging and computed tomography also facilitate this role. In addition, interventional radiologic techniques allow nonsurgical treatment. This refresher course highlights the role of imaging in the selection of kidney donors, the imaging features of renal transplantation complications and their interventional management.

Session Objectives:
1. To become familiar with the role of imaging in the selection of renal donors.
2. To understand the role of imaging in transplant dysfunction and other abnormalities.
3. To illustrate the capabilities of Interventional Radiology in renal transplantation.

A-0996 16:05
A. Preoperative evaluation of donors (cadaveric or living)

Chair: C. Nicolau; Barcelona/ES (cnicolau@clinic.ub.es)

Living renal donor transplantation is the best option for recipient and graft survival. Imaging evaluation is crucial for selecting proper donors, adequate kidneys and the best surgical approach. In this lecture, we will review the current role of CT / MR techniques in the selection process of renal donors and the CT / MR acquisition protocols of renal donors including the use of multiplanar reconstructions such as maximum intensity projections and three-dimensional volume-rendering. Moreover, we will describe the main reportable findings of the CT/MR studies. Accurate anatomic information about the donor’s renal parenchyma, renal vasculature and collecting system should be provided to ensure a successful outcome for renal transplantation.

Learning Objectives:
1. To learn about CT/MR techniques in evaluation of cadaveric and living renal donors.
2. To learn about the role of imaging in the selection process of renal donors.
3. To understand the role of image post-processing in planning transplantation.

A-0997 16:28
B. Multiparametric US for diagnosis and intervention

Chair: D.Y. Huang; London/UK

"no abstract submitted"

Learning Objectives:
1. To be familiar with the appearance of renal transplant dysfunction at multiparametric US.
2. To understand the role of US modes in other renal transplant abnormalities, such as stone disease, tumours and inflammatory or ischaemic changes.
3. To understand the limitations of US modes in renal imaging and intervention.

Panel discussion: Could imaging reduce the need for renal graft biopsy?
Postgraduate Educational Programme

Sunday, March 3
Cystic and cyst-like lesions are commonly found in the head and neck and have a unique differential diagnosis based on the patient’s age and precise anatomic location. Whereas in children, most are of embryonic/developmental origin, in adults infectious/inflammatory and cyst-like lesions predominate. Imaging plays an important role in the differential diagnosis and treatment planning, by showing the exact anatomic location, relationship with adjacent structures and architectural features and by guiding tissue/fluid sampling for cytological and biochemical analysis. Ultrasound is the preferred modality to assess superficially located lesions. It is free of ionising radiation and provides real-time guidance for tissue sampling. CT or MRI may be required for deep-seated lesions, to assess the deep extent of transspacial cysts or to redefine the differential by showing other associated findings. Radiologists should be aware of potential cyst mimics: Very homogeneous lesions which can have a pseudocystic appearance (such as nodal involvement by lymphoma) and solid lesions with extensive cystic/necrotic degeneration (such as lymph node metastasis from HPV16+ squamous cell cancer or papillary thyroid carcinoma and cystic degeneration of a schwannoma). As these cyst-like lesions are more often found in older patients, a fine needle aspiration cytology is mandatory in adult patients presenting with cystic lesions in the neck. Cytological analysis after cytopsin, flow-cytometry and biochemical analysis of aspirated fluid can further refine the diagnosis. In this interactive session, we will review cystic neck lesions using a site-specific approach and will highlight the added value of biochemical analysis in the differential diagnosis.

Learning Objectives:
1. To become familiar with the differential diagnosis.
2. To know the usefulness of biochemistry of FNA in the differential diagnosis.

A-0999 08:30

A. Cystic neck lesions

A. Borges; Lisbon/PT (borgalexandra@gmail.com)

B. Non-traumatic head and neck emergencies

A. Rovira-Cañellas; Barcelona/ES (alex.rovira@idi.gencat.cat)

A wide variety of non-traumatic head and neck conditions often present at the emergency departments. CT is in most cases the first-line imaging modality, although, MRI plays an important secondary role in some cases. Radiologists must be able to know and recognise the imaging findings of most common head and neck acute conditions, which usually require a rapid intervention to avoid severe permanent damage or death. These conditions mainly include infectious process and various types of neoplasms involving the oral cavity, pharynx, deep spaces of the neck, the orbital cavity and cervical vessels and nodes. Familiarity with these conditions will facilitate early and accurate diagnosis, a proper assessment of the extent of disease, and the identification of potential complications. In this interactive session different non-traumatic head and neck conditions, which present emergently, will be presented, with a focus on radiological evaluation and interpretation.

Learning Objectives:
1. To become familiar with the most common cause of emergencies.
2. To learn the imaging criteria for differentiation.

08:30 - 10:00 Room B

Abdominal Viscera

RC 1701

Hepatocellular carcinoma: from diagnosis to treatment

A-1001 08:30

Chairperson’s introduction

G. Brancatelli; Palermo/IT (gbranca@yahoo.com)

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. In this session, the imaging criteria to diagnose HCC noninvasively will be presented, along with the benefits of using LI-RADS terminology, interpretation, and reporting for both clinical care and research. The newest LI-RADS and concurrent AASLD updates will be discussed. The typical and atypical appearance of HCC will be shown, along with common mimickers and useful tips of differentiation of focal hepatic lesions in the cirrhotic liver. The role of the available interventional techniques in treating patients with HCC at different stages will be reviewed. Finally, through the presentation of practical cases, the panel will discuss how to improve a patient’s experience and prognosis.

Session Objectives:
1. To become familiar with the international guidelines for HCC diagnosis.
2. To understand the typical and atypical appearance of HCC.
3. To learn why, when and how to treat HCC with interventional techniques.

Author Disclosure:

G. Brancatelli: Advisory Board; Guerbet. Speaker; Bayer, Guerbet.

A-1002 08:35

A. How to diagnose HCC: new guidelines

K. Fowler; San Diego, CA/US (k1fowler@ucsd.edu)

This session will focus on the imaging diagnosis of hepatocellular carcinoma in patients at risk. The attendees will learn about Liver Imaging Reporting and Data System (LI-RADS) approach to HCC diagnosis. New updates in 2018 and changes to the existing categories and approach will be discussed. The performance of LI-RADS in practice and potential regional differences in applicability will be highlighted.

Learning Objectives:
1. To learn the imaging features and criteria for HCC worldwide.
2. To understand the algorithmic approach to imaging diagnosis (LI-RADS).
3. To review emerging evidence, recent changes to diagnostic criteria and future directions.

A-1003 08:58

B. Unusual appearances of HCC and lesions that simulate HCC: can we increase diagnostic confidence?

J.M. Lee; Seoul/US (jmslh@snu.ac.kr)

Hepatocellular carcinoma (HCC) poses a burden on global health. It has become the fifth most common malignant neoplasm worldwide. As HCC typically has a poor prognosis with a 5-year survival rate of only 28.6%, it is of paramount importance to achieve the earliest possible diagnosis of HCC and to recommend the most up-to-date optimal treatment strategy to increase the survival rate of patients who develop this disease. HCC is commonly diagnosed using dynamic CT and/or dynamic MRI without histological confirmation, on the basis of characteristic arterial enhancement and portal venous or delayed phase washout. HCC usually presents with typical imaging characteristics but at times can present with a broad spectrum of atypical appearances. Familiarity with unusual presentations and their imaging findings is critical to ensuring prompt, accurate diagnosis and treatment. Moreover, while imaging techniques have markedly improved in detecting small liver lesions, they often identify incidental benign liver lesions and non-hepatocellular malignancy that can be misdiagnosed as HCC. The common mimickers of HCC in the cirrhotic liver include nontumorous arteriopetal shunts, rapidly enhancing hemangiomas, intrahepatic mass-forming type clear cell carcinoma, combined HCC-CC, metastases, angiofibromas, focal inflammatory liver lesions, and focal nodular hyperplasia-like nodules. Among them, it is essential to recognise the suggestive imaging findings for intrahepatic CC or nonhepatocellular malignancies as the management of those tumours is largely different from that of HCC. Recognition of the typical imaging findings of common HCC mimickers can reduce false-positive HCC diagnosis.

Learning Objectives:
1. To demonstrate atypical appearance of hepatocellular carcinoma at cross sectional imaging.
2. To illustrate common mimickers of hepatocellular carcinoma in cirrhotic liver.
3. To provide useful tips of differentiation of focal hepatic nodules in cirrhotic liver.

Author Disclosure:

A-1004 09:21

C. Interventional techniques (ablation, TACE, radioembolisation): when and how to treat

R. Duran; Lausanne/CH (raelaf.duran@chuv.ch)

The incidence of hepatocellular carcinoma (HCC) has been rising worldwide over the last decades and is expected to increase in the coming years. The treatment of HCC is complex and requires a multidisciplinary approach. Treatment allocation and prognostic prediction are mainly based on the Barcelona Clinic Liver Cancer (BCLC) staging system; patients are classified into five stages (0, A, B, C and D). Patient selection is crucial and involves, in
particular, the assessment of the liver function, tumour extension and performance status although surgical treatments (resection and liver transplantation) are considered the mainstay of HCC treatment, in fact, 80% of patients present with disease that is not amenable to surgery. Interventional radiology is playing a major role in the management of these patients and provides patient-tailored therapies. Image-guided percutaneous ablation (radiofrequency ablation / microwave ablation) is the most frequently used therapeutic strategy in patients with limited disease (BCLC 0 (single tumor <2cm) and (1-3 tumors <3 cm)). Transarterial chemoembolization is the gold standard for patients with multifocal disease (BCLC B). Yttrium-90 radioembolization is a recognised treatment option for locally advanced disease (BCLC B-C) and is challenging the hegemony of chemotherapy (sorafenib, lenvatinib, regorafenib, cabozantinib) which is the standard treatment in advanced-stage disease (BCLC C).

Learning Objectives:
1. To understand the role of each interventional technique depending on the patients' characteristics and HCC stage.
2. To review the different interventional techniques available for HCC management.
3. To review the patients' outcomes associated with interventional treatment of HCC.

09:44 Panel discussion: How to improve a patient's experience and prognosis

08:30 - 10:00 Room C

General Radiography (Radiographers)

RC 1714 Ultrasound: continuing to make waves

Moderators:
T. Herlihy; Dublin/IE
S.B. Grover; New Delhi/IN

Session Objectives:
1. To review technological changes in an ultrasound that facilitates advanced scanning.
2. To understand the current best use of ultrasound in early pregnancy.
3. To appreciate the emerging role of ultrasound in biomechanics and elite sport.

A-1005 08:30
A. Technology advances: from 3D to elastography
M.R.V. Pedersen; Vejle/DK (malene.roland.vils.pedersen@rady.dk)

New ultrasound technologies are becoming more and more used in clinical practice. 3D ultrasound scan, ultrasound contrast enhancement, elastography, and 2D Shear Wave elastography are some of the new techniques. 3D ultrasound is being used in different organs and can help diagnose. And this technology is becoming more and more used. An overview of the two main elastography technologies will be reviewed. Elastography - both Strain and Shear Wave elastography are being more and more used in the daily clinical practice. But is this elastography technology reproducible? Is elastography hype or real? What affect the elastography measurements? Are the measured values valid? How many measurements are sufficient? Which organs can be examined with elastography? Measurements reported in meter per second versus kPa - what to choose. Elastography is very often used to distinguish benign from malignant lesions. But can elastography differ between malignant and benign lesions? Studies comparing elastography in tumours have shown good reproducibility. Some of the future advances in ultrasound are 2D Shear Wave elastography, but also ultrasound in combination with other modalities such as MRI have been published recently.

Learning Objectives:
1. To review the technological advances underpinning 3D ultrasound scanning.
2. To understand the technical basis and clinical applications of elastography.
3. To become familiar with the future advances in ultrasound scanning.

A-1006 09:00
B. Early pregnancy guidelines
S. Niaz; Manchester/UK (s.niaz@salford.ac.uk)

Early pregnancy patients typically present with clinical symptoms including, previous ectopic, pain, bleeding, hyperemesis and trauma. The scan aims to exclude ectopic pregnancy, missed, threatened, or incomplete miscarriage and to determine the presence/absence of fetal heart pulsations and the presence of a fetal pole and yolk sac. The gestational sac is the first sign of early pregnancy on ultrasound and can be seen with a transvaginal ultrasound scan at approximately 3-5 weeks gestation. Transvaginal scanning is the gold standard in early pregnancy, however, as it is an internal procedure it can be declined, this along with early gestational age and a high BMI can lead to misdiagnosis. Machine quality and user competence can also limit the quality of the finding, and this should be taken into account when scanning early pregnancy. Taking all these factors into consideration optimal scanning and current guidelines are needed to make an accurate diagnosis.

Learning Objectives:
1. To review current guidelines and indications for early pregnancy scanning.
2. To understand essential requirements for optimal imaging.
3. To become familiar with pitfalls in imaging in early pregnancy.

A-1007 09:30
C. Role of ultrasound in biomechanics and sports science
R. Santos; Coimbra/PT (rutemartinssantos@gmail.com)

In the last years, the use of ultrasound (US) for the study of muscle-skeletal function has grown considerably. The reasons for such growth include the ability to study muscle morphology and its mechanical properties at relatively low cost and accessibility. The continuous improvement of US equipment, including the use of multifrequency probes and the development of new US techniques, such as elastography have contributed to make US an important method in muscle function research. Numerous studies have proven the feasibility of US for studying muscle function in non-pathological conditions. The assessment of parameters such as muscle thickness and echo-intensity allows studying muscle function and muscle morphological responses and adaptations to a variety of stimuli, in particular to muscle disease and rehabilitation training. Recent developments in US have enhanced our ability for studying muscle tissue mechanical properties in vivo, including changes in muscle stiffness associated with stretching and contraction. Measuring muscle stiffness allows a better understanding of muscle function as a monitor of muscle status, and it can be an indicator of the length of the muscle, as well as of its contraction status. The potential of this technique is enormous and has enabled researchers in many fields, including biomechanics and muscle physiology to probe the function of complex multicellular muscle groups in passive and active conditions. Nevertheless, it's important to have a good knowledge of anatomy, physiology and be familiar with US technique in order to produce images of high quality and with a higher viability.

Learning Objectives:
1. To review the current role of ultrasound in elite sport.
2. To understand the challenges when using ultrasound for evaluating human performance.
3. To become familiar with best practice guidelines imaging in sport / biomechanics.

08:30 - 10:00 Room X

Joint Session of the ESR and ESMRMB

ESR/ESMRMB

A new era of gadolinium-less MR

Moderators:
D. Sappey-Marinier; Lyon/FR
M.J.P. van Osch; Leiden/NL

A-1008 08:30
Radiomics and multiparametric MRI approaches for a better contrast in cardiac and prostate applications
B. Baessler; Mannheim/DE (bettina.baessler@uk-koeln.de)

Over the past decades, the technical developments in MRI have enabled the clinical application of multiparametric imaging approaches, which allow for a combined assessment of different morphological and functional tissue characteristics. For multiparametric prostate MRI as well as for cardiac MRI, debates are ongoing whether this allows us to fully replace gadolinium-based examinations by native multiparametric approaches. In addition, the emerging field of radiomics, which means the extraction of a large number of mathematically or statistically derived quantitative features from medical images, thus delivering mineable datasets, delivers additional potential novel imaging biomarkers for non-invasive assessment of prostate cancer and myocardial diseases. The talk will focus on basic concepts, current debates as well as potential hurdles hindering the translation of multiparametric imaging approaches and radiomics into routine clinical practice.

Learning Objectives:
1. To learn which gadolinium-free quantitative techniques exist for cardiac and prostate MR imaging.
2. To understand the potential and limitations of quantitative, gadolinium-free multiparametric imaging and radiomics.
3. To appreciate the link between parametric MR imaging and radiomics and to show potential clinical applications of gadolinium-free techniques in cardiac and prostate MRI.
This talk will give an overview of quantitative T1 mapping techniques used in cardiovascular MR. It discusses challenges with absolute T1 quantification related to the methods and to the heart itself. Because the blood signal is for some methods among the contributors to the measured absolute T1 value, there is a link between observed T1 and myocardial perfusion. Arterial spin labelling (ASL) as a non-contrast perfusion MRI method for the heart will be introduced, and several past and present approaches will be presented showing their advantages and drawbacks. The challenges of cardiac ASL compared with ASL in other organs will be outlined. It should also become clear in this talk why cardiac ASL has been frequently used in small animals, whereas human cardiac applications are still scarce.

Learning Objectives:
1. To learn how T1 is quantified and mapped in the heart and how T1 quantification is linked to perfusion.
2. To understand how arterial spin labelling acquisition is performed in the heart and why it is more challenging than in the brain.
3. To appreciate what these techniques may do better than those based on contrast agents and what they probably won’t do.

A-1010 09:20

Brain perfusion and angiography using ASL in comparison with gadolinium based techniques

H.R. Jäger; London/UK

“no abstract submitted”

Learning Objectives:
1. To learn about the different non-enhanced MR angiography techniques used for imaging the extra- and intra-cranial vessels and about the principles of brain perfusion imaging with arterial spin labelling (ASL).
2. To appreciate the differences between static and time-resolved MR angiography of the extra-cranial vessels and the importance of post-labelling delay in ASL perfusion imaging.
3. To understand the clinical applications of TOF MR angiography, ASL angiography and ASL perfusion imaging techniques and their advantages and limitations.

09:45 Panel discussion: Is it feasible to apply gadolinium-free techniques in clinical practice?

A-1012 08:33

Chairpersons’ introduction (part 2)

H. Frija; Paris/FR (guy.frija@aphp.fr)

Using artificial intelligence in medical imaging for radiation protection purposes has three main pillars. The first pillar is that artificial intelligence can be used for investigating parameters of medical imaging procedures based on ionising radiation like image quality evaluation, exposure description and prediction of optimal imaging parameters in such sense depending on patient characteristics and diagnostic task. The second pillar is that artificial intelligence can be used to optimise image quality per dose based on advanced methods for image reconstruction, scatter reduction and thus noise and artefact reduction. The third pillar is the characterisation of patient radiation sensitivity and susceptibility for choosing the right radiation therapy or the optimal imaging procedure on individual patient base. Such radiation protection related aspects will be described in the session, and the difference will be explained in the introduction by the chairs.

Session Objectives:
1. To understand the mechanisms of how artificial intelligence (AI) can help to reduce necessary doses for imaging procedures relying on ionising radiation.
2. To appreciate which AI methods in medical imaging might be helpful for reducing dose for especially sensitive body regions or highly susceptible patients in general.
3. To learn how results from AI evaluation of radiographic images might help to influence decisions on the most appropriate methods or radiation protection measures on an individual patient basis in an early phase of patient diagnosis and therapy.

A-1013 08:35

Artificial intelligence: a tool for quality and safety improvement in radiation protection

G. Frijia; Paris/FR (guy.frija@aphp.fr)

The use of artificial intelligence (AI) in medicine has attracted enormous attention, and there is a lot of research going on to implement AI in imaging. Current applications include, for example, the detection of breast cancer on mammography images, the detection of lung nodules in CT scans, and detecting pneumonia in chest x-rays. In addition, applications beyond image interpretation are on the rise. The development of AI tools in medical imaging will certainly also have an input on medical radiation protection. However, currently, there is hardly any research work on the use of AI as a tool for quality and safety improvement in imaging, although there are a number of potential applications that could help reduce doses for imaging procedures relying on ionising radiation, especially for sensitive body regions or highly susceptible patients in general. Algorithms can be used to improve image quality and dose optimisation in CT. AI-based organ recognition combined with dose estimation algorithms can provide patient-specific organ doses. This talk will present current trends of AI in radiology and provide examples how these AI systems could contribute to strengthening medical radiation protection for the benefit of patients.

Learning Objectives:
1. To learn about current trends of AI in imaging.
2. To understand how these trends could improve quality and safety.
3. To appreciate how AI could affect radiation protection.

A-1014 08:55

Artificial intelligence for scatter reduction and optimising imaging procedures

C. Hoessen; Magdeburg/DE (christoph.hoessen@ovgu.de)

Medical imaging based on ionising radiation is strongly suffering from two major drawbacks which result in the need for exposure levels mainly to patients but also to staff in interventional procedures higher than it might be necessary from the physical imaging process. This is the case since noise and artefacts are two of the most relevant factors deteriorating sufficient image quality for diagnostic or interventional purposes. Noise and artefacts both are strongly related to scatter that is generated in the patient body during the interaction of the X-rays with the material. Therefore ways will be discussed how the scatter contribution of the X-rays caused by patients can be estimated and thus be reduced by methods based on artificial intelligence as they have been shown by various groups and its advantages and disadvantages will be highlighted. By such scatter reduction better image quality can be gained and thus exposure levels can be reduced. In addition, this talk will briefly introduce another concept to use X-rays as efficient as possible based on optimising the imaging geometry based on artificial intelligence approaches.

Learning Objectives:
1. To learn about actual scatter reduction techniques in imaging based on ionising radiation, their advantages and drawbacks as well as the potential of optimising imaging trajectories.
2. To understand how AI-based procedures can provide a fast solution for...
scattering and reduction as well as for image trajectory determination. 3. To appreciate how AI can help to reduce patient dose in medical imaging with easy to implement applications.

A-1015 09:15
Artificial intelligence for intelligent reconstruction methods for radiation protection measures
C.T. Whitlow; Winston-Salem, NC/US
"no abstract submitted"

Learning Objectives:
1. To discuss radiation exposure due to computed tomography associated with common diagnostic tests and in the setting of screening exams.
2. To describe efforts aimed at reducing radiation dose and improving image quality via conventional approaches (e.g. iterative reconstruction).
3. To introduce methods for improving image quality via novel artificial intelligence (AI)-based approaches, with quantitative results characterising noise reduction and example cases from clinical application.

A-1016 09:40
Using artificial intelligence for optimising procedures reflecting radiosusceptibility of patients
C. Hoeschen; Magdeburg/DE (christoph.hoeschen@ovgu.de)

Radiation protection of patients is an important task in general. It has been found out that it might be even more relevant to certain patients than to others since, obviously, not all patients are prone to negative effects of ionizing radiation in the same way. Such differences are described as individual radiation sensitivity if one refers to short-term effects, especially so-called tissue reactions and as individual radiation susceptibility if one refers to long-term effects like especially cancer induction. Obviously, it is even more important to protect especially the healthy tissue of those patients who are more radiation sensitive or susceptible than those who are not. Some of the potential reasons for individual radiation sensitivity or susceptibility will be described as well as indications that and how specific analysis of imaging data could provide insights into such individual patient configuration and why this might be helpful for radiation protection. Methods based on artificial intelligence would be most promising for this task. There are also medical imaging applications with pretty high doses and especially pretty localized high doses like in interventional procedures. Thus, it would be feasible to optimize not only radiation therapy for individuals that are very sensitive but also for example interventional procedures. For planned CT examinations, it might be better to think about low-dose procedures or even of a replacement of the procedure by means of MRI if feasible in patients with extremely high risk. However, there are some ethical aspects of such approaches.

Learning Objectives:
1. To learn about radiosusceptibility and why it is important to look for it in images.
2. To understand what role AI could play in the future for optimising procedures, especially interventional procedures, from the point of view of radiation protection.
3. To appreciate the potential for new research topics bridging the gap between AI and radiation protection with respect to the individual patient.

09:50
Discussion

08:30 - 10:00 Room O

Cardiac

RC 1703
Dead or alive: imaging of myocardial viability

A-1017 08:30
Chairperson's introduction
C. Peebles; Southampton/UK (Charles.Peebles@suht.swest.nhs.uk)

Myocardial viability is central to the investigation and management of ischaemic heart disease (IHD). The viable myocardium is defined as “dysfunctional myocardium that maintains the potential to return to normal function” e.g. it is alive and not dead. Dysfunctional, but viable myocardium is the end result of an ischemic myocardial injury that can either be acute (stunning) or chronic (hibernating). In the former, a single acute ischaemic injury causes temporary dysfunction that will recover after the restoration of myocardial blood flow, but there may be a delay of weeks or months for this to occur. Hibernation is the end result of chronic or repetitive ischaemia causing down-regulation of myocyte metabolism and function, which will again recover the following revascularisation. Accurate identification of viable myocardium is critical, as revascularisation of non-viable myocardium confers the risks of revascularisation without benefits of functional recovery. Conversely, failure to revascularise viable myocardium that is ischaemically injured at the patient at increased risk. Two general approaches to identifying viable myocardium are the functional improvement of a regional wall motion abnormality during low dose stress or identification of myocardial scar that involves less than the full thickness of a myocardial segment. The first approach is adopted by stress echo and dobutamine stress CMR. The second approach requires the use of extracelluar contrast agent and is usually performed by CMR with late gadolinium enhancement or CT with iodinated contrast and delayed imaging. This session will compare the standard techniques, and discuss their pros and cons.

Session Objectives:
1. To understand the concept of myocardial viability.
2. To understand the current state-of-the-art to image myocardial viability.
3. To outline the role of echocardiography, SPECT, CT and MRI.

A-1018 08:35
A. MRI
T. Leiner; Utrecht/NL (t.leiner@umcutrecht.nl)

Ischemic cardiomyopathy (iCMP) is defined by the presence of flow-limiting stenoses in at least two coronary arteries and a left ventricular ejection fraction of 40% or less. In patients with iCMP, the amount of viable myocardium directly affects the short- and long-term outcome. Myocardial viability refers to those cardiomyocytes that remain structurally and functionally intact but are defined by cellular and metabolic function. These myocytes can potentially regain full functionality, resulting in improved cardiac systolic function with a combination of revascularisation and pharmacotherapy. Cardiac magnetic resonance imaging (CMR) is well-suited for the identification of both viable myocardium as well as ‘dead’ scar tissue and can be used to assign patients to the appropriate therapeutic strategy with high confidence. Because of its high spatial and temporal resolution, CMR can identify the presence, extent and transmurality of left ventricular scar tissue as well the resulting functional impairment. In current clinical practice, two strategies are used, late-gadolinium enhancement (LGE) to detect the presence and extent of scar tissue; and low-dose dobutamine stress imaging (DS) to detect the extent of functional impairment. Both methods are complementary, but LGE is often used alone because transmurality of scar expressed as a percentage of LV wall thickness has been shown to strongly correlate with the possibility of functional recovery. Promising alternative methods for detection of presence and extent of myocardial scar are T1-mapping and algorithmic analysis of myocardial signal intensity on standard cine images.

Learning Objectives:
1. To learn about how MRI should be performed to assess viability.
2. To understand the strengths and weaknesses of MR compared to other techniques.
3. To learn how to report MRI for viability assessment.

Author Disclosure:

A-1019 08:58
B. Hybrid imaging
F. Caobelli; Basel/CH (federico.caobelli@usb.ch)

The concept of myocardial viability in coronary artery disease (CAD) is derived from diverse studies, wherein an irreversible left ventricular contractile dysfunction was demonstrated even if revascularisation occurred. Many controversies still exist on the most appropriate method to assess the presence and extent of viable myocardium. Stand-alone modalities provide important data about myocardial viability, but all these techniques suffer from several limitations. As such, new methods combining different information from different modalities for the investigation of myocardial viability are highly warranted. This constitutes the fundamental basis for the development of hybrid imaging, consisting in the association of different imaging techniques, where both modalities equally contribute to image information, allowing for a comprehensive evaluation. An example of such an approach is the combination of computed tomography coronary angiography (CTCA) and myocardial perfusion imaging either with single photon emission computed tomography (SPECT) or with positron emission tomography (PET). Other possible applications include a combination of CTCA and cardiac magnetic resonance imaging (CMR). These approaches are expected to have several potential applications in the next future. Concurrently, new molecular Imaging probes may provide invaluable tools for the guidance and monitoring of therapies. This lecture will discuss the actual state of the art of cardiac hybrid Imaging as well as potential future applications.

Learning Objectives:
1. To learn about how hybrid imaging should be performed to assess viability.
2. To understand the strengths and weaknesses of hybrid imaging compared to other techniques.
3. To understand how hybrid imaging could be developed in clinical practice.
Author Disclosure:
F. Caobel: Grant Recipient; Mallinckrodt (2014); Speaker; Siemens (2015 - 2017).
A-1020 09:21
C. CT
F. Bamberg; Tübingen/DE (fabian.bamberg@uni-tuebingen.de)
In the field of cardiac CT, substantial research efforts have recently been focused on the development of different approaches to obtain information on myocardial viability. Despite a relatively low level of scientific evidence, these approaches are currently entering the clinical arena given its high relevance for therapeutic decision-making. Analogous to the presence of late gadolinium enhancement on MRI, cardiac CT allows for the detection of delayed iodinated contrast enhancement on delayed CT acquisitions. However, from a clinical perspective, CT imaging protocols are generally combined with myocardial perfusion imaging at rest and stress. In general, such a protocol includes as a first step perfusion imaging followed by a second step that includes a low-radiation scan for the detection of delayed imaging. Further, perfusion imaging by CT can be conducted as a “single-shot” acquisition with or without dual energy or as a dynamic acquisition during rest or stress conditions. The talk will provide an overview of currently available approaches and protocols, highlighting limitations, and review the level of evidence pertaining to the role of CT for assessment of myocardial viability.
Learning Objectives:
1. To learn about the potential of CT to assess viability.
2. To understand the strengths and weaknesses of CT imaging compared to other techniques.
3. To understand how to report CT for viability assessment.

Author Disclosure:
F. Bamberg: Research/Grant Support; Siemens Healthineers, Bayer Healthcare. Speaker; Siemens Healthcare, Bayer Healthcare.
09:44 Panel discussion: What imaging test in which patient?
08:30 - 10:00 Studio 2019
Special Focus Session
SF 17
Late effects in survivors of childhood cancer
A-1021 08:30
Chairperson's introduction
C. Owens; London/UK (owensc@gosh.nhs.uk)
This session will focus on the optimistic advances in cancer treatment which has resulted in much better survival rates. However, there is considerable morbidity with the more aggressive treatments used which result in late effects within many organ systems. This session will focus on the important role we have as radiologists in identifying, diagnosing and following up the complications of previous cancer treatments in childhood. We will focus on an organ-based approach to diagnosing the sequelae of childhood cancer treatments.
Session Objectives:
1. To learn about the cost of survival in long term survivors of childhood cancer.
2. To understand therapy related pathologies which are sequelae of cancer treatment in childhood.
3. To appreciate these disorders and to help to make early diagnoses in order to minimise long term sequelae.
4. To become familiar with the human cost of cancer survival and the effects on the daily lives from survivors of childhood cancer.
A-1022 08:37
Cardiothoracic complications
A. Secinaro; Rome/IT (aurelio.secinaro@opbg.net)
New advances in cancer diagnosis and treatment have increased survival rates in patients with cancer. The growing number of cancer survivors’ results in a higher prevalence of cardiothoracic complications from cancer treatment. There is evidence of a significant incidence of cardiovascular complications among adult survivors of a variety of childhood and adolescent cancers years after treatment. Survivors are significantly more likely than siblings to report congestive heart failure, myocardial infarction, pericardial disease or valvular abnormalities. Chemotherapy-induced cardiac dysfunction is a major contributor to adverse morbidity and mortality rates in cancer patients. Both clinical symptoms and the traditional left ventricular ejection fraction may lack sensitivity as measures of cardiotoxicity. Radiation-induced coronary artery disease has to be considered a possible cause of myocardial infarction. Novel cardio-thoracic imaging techniques such as Cardiac Magnetic Resonance and Cardiac CT can identify a high prevalence of cardiac disease among adult survivors previously undiagnosed with cardiac disease, as 2D echocardiography demonstrated limited screening performance; in particular, detailed and accurate assessment of vascular anatomy (including coronaries), myocardial tissue characterisation and biventricular volumes and global systolic function is now non-invasively achievable. In addition, chest CT is more sensitive than chest radiographs in detecting post-irradiation changes in the lungs as it is able to early detect linear or reticular “structured” opacities related to lung fibrosis.
Learning Objectives:
1. To outline chemotheraphy related pathology which are sequela of cancer treatment in childhood.
2. To illustrate with state-of-the-art imaging.
3. To summarise what the radiologist needs to know and how to find it.
A-1023 08:55
MSK
I-M. Noebauer-Huhmann; Vienna/AT (iris.noebauer@meduniwien.ac.at)
Adult patients who had suffered from cancer during childhood may develop various late sequelae during their lifetime. Cancer- or treatment-related developmental abnormalities may occur in the growing skeleton and can cause deformities and preterm degeneration. A thorough assessment of the present clinical condition, the past medical history, and the altered post-surgical anatomy are essential for the evaluation of follow-up imaging. Also, radiation and chemotherapy lead to the typical time-dependent bone marrow and soft-tissue alterations. Those changes must be distinguished from the current or metastatic disease. Hormone-related skeletal alterations and complications indicative of altered bone stability or decreased osseous blood supply must be detected early. To date, amputation can often be avoided when limb salvage is feasible, through wide tumour resection and reconstruction with modular endoprostheses. While adequate local and systemic tumour control rates can be achieved with those megaprostheses, various complications may still occur. Detailed knowledge of the imaging appearance of such complications, which have been categorised according to the ISOLS classification system, is indispensable. Clear imaging strategies and systematic evaluation algorithms can help radiologists to reliably assess the late post-therapeutic sequelae and to detect potential complications in survivors of childhood cancer.
Learning Objectives:
1. To discuss clinical manifestation of late effects to the MSK system following chemotherapy.
2. To illustrate and suggest best methods of radiological follow-up with case studies.
3. To suggest an algorithm to help radiologists to recognise these findings.
A-1024 09:13
Neuro
R. Gunny; London/UK
"no abstract submitted"
Learning Objectives:
1. To describe how brain development may be affected by CNS malignancies and therapies used to treat them.
2. To categorise the types of abnormalities.
3. To illustrate these complications.
A-1025 09:22
Fertility issues: male and female (Part 1)
L. Rocher; Le Kremlin-Bicêtre/FR (laurence.rocher@bct.aphp.fr)
The survival rate for children with cancer is about 80%. Infertility remains one of the most common complications. However, infantile patients with previous cancer treatment require the same complete biological and imaging screening compared to other patients: the infertility status may have other and curative explanations. In women, decreased fecundity is a late effect that arises after chemotherapy or radiotherapy, as it has been shown that pregnancy is less likely to occur in survivors who have received hypothalamic/plutitary radiation, ovarian/uterine radiation, or treatment with high doses of alkylating agents. Furthermore, the number of eggs in their ovaries may be reduced to such an extent that they will reach menopause much earlier than the average age of 51 years. Follicle counts represent ovarian reserves and can be evaluated with echography. Oocytes make an anti-Mullerian hormone (AMH), which can be measured in blood. In males, these treatments may damage spermatogenesis leading to impaired fertility. Semen analysis and hormonal status are non-invasive methods for estimation of male fecundity. Low levels of Inhibin B and high levels of FSH reflect the impaired spermatogenesis. Testicular hypotrophy with coarse/striated echogenicity reflects those damages. Leydig cell hyperplasia with a multinodular pattern may rarely occur. Methods for fertility preservation need to be suggested before treatment. Concerning pre-pubertal
children, testicular tissue or ovarian cryopreservation may be performed with efficient results much advanced in girls compared to boys. Concerning post-pubertal children, oocyte cryopreservation is privileged in girls and sperm conservation is the simplest method in boys.

Learning Objectives:
1. To describe the potential effects that chemotherapy has on fertility in males and females.
2. To illustrate with case studies.
3. To discuss how we can help to overcome these issues using radiology.

A-1026 09:31
Fertility issues: male and female (Part 2)
C. Berger; Saint-Etienne/FR (claire.berger@chu-st-etienne.fr)

In Europe, 300 000 individuals had cancer during childhood and survived. Infertility remains one of the most common complications. However, infertile patients with previous cancer treatment require the same complete biological and imaging screening compared to other patients: the infertility status may have other and curative explanations. In women, decreased fecundity is a late effect that arises after chemo- or radiotherapy, as it has been shown that pregnancy is less likely to occur in survivors who have received hypothalamic/pituitary radiation, ovarian/uterine radiation, or treatment with both doses of alkylating agents. Furthermore, the number of eggs in their ovaries may be reduced to such an extent that they will reach menopause much earlier than the average age of 51 years. Follicle counts represent ovarian reserves and can be evaluated with echography. Oocytes in follicles make an anti-Mullerian hormone (AMH), which can be measured in blood. In males, these treatments may damage spermatogenesis leading to impaired fertility. Sperm analysis and hormonal status are non-invasive methods for estimation of male fecundity. Low levels of Inhibin B and high levels of FSH reflect the impaired spermatogenesis. Testicular hypotrophy with a multinodular pattern may rarely occur. Methods for fertility preservation need to be suggested before treatment. Concerning pre-pubertal children, testicular tissue or ovarian cryopreservation may be performed with efficient results much advanced in girls compared to boys. Concerning post-pubertal children, oocyte cryopreservation is privileged in girls and sperm conservation is the simplest method in boys.

Learning Objectives:
1. To describe the potential effects that chemotherapy has on fertility in males and females.
2. To illustrate with case studies.
3. To discuss how we can help to overcome these issues using radiology.

A-1028 09:00
B. Imaging DCIS
J. Camps Herrero; Valencia/ES (juliacamps@gmail.com)

In this presentation, common radiologic manifestations of DCIS in mammography and ultrasound will be reviewed, taking into account that microcalcifications are the most common mammographic manifestation of DCIS. Types of microcalcifications with the highest PPV will be reviewed, as well as uncommon radiological findings (distortion, asymmetry or spiculated lesions without associated microcalcifications). The importance of the anatomical lobule and macroscopic anatomy (large-format histology) cannot be overstressed as it is, together with the sick lobe theory, the best way to understand the distribution of DCIS lesions in all radiological modalities, especially in MRI. Breast MRI is the most sensitive technique for DCIS, MRI can detect up to 48% of cases not detected by mammography, especially in non-calculifying lesions (around 25% of DCIS). The most common MRI appearance of DCIS will be discussed (non-mass lesion in 60-80% of the cases, nodular mass in 14-41%) emphasising that morphological signs are more important than kinetics in DCIS, as well as the non-specific value of DWI. Overlap of imaging features with benign disease or high-risk or B3 lesions is an important issue because it is the cause of false positive findings, potential signs to differentiate between all entities will be reviewed.

Learning Objectives:
1. To become familiar with the imaging appearances of DCIS on mammography, ultrasound and MRI.
2. To understand the evidence on MRI for evaluating DCIS.
3. To appreciate the overlap of imaging features of DCIS and benign disease.

Author Disclosure:
J. Camps Herrero: Consultant; BD BARD.

A-1029 09:30
C. Diagnosing DCIS with biopsy
M.G. Walis; Cambridge/UK (matthew.wallis@addenbrookes.nhs.uk)

Although a proportion of DCIS (particularly low grade) is found in association with other a benign lesions, the majority present with either micro-calciﬁcation on mammography or non-mass like enhancement on MRI. Currently, we have no imaging tests that can reliably determine benign from atypia from cancer, so tissue diagnosis is mandated. Surgical biopsy has been replaced by image guided needle biopsy. The challenge for the operator is accurate targeting and obtaining adequate volume to give the pathologist the best chance of making a correct diagnosis. Given accurate targeting then the of the volume of tissue taken becomes a balance of cost vs benefit. Relatively small volumes of tissue are needed to confirm the benign disease, but the accurate exclusion of an invasive component is better with a larger size. It is clear from long-term follow-up of DCIS that conventional treatment fails the 15 to 20 % who develop invasive disease, a few of whom then die from breast cancer. There is a larger group that never progress is within their lifetime which means that we have either cured them or just overtreated them. Traditional pathology and genetics suggest that there is a low-risk group that either never progresses or if they do they develop low-risk invasive disease. To date, the majority of studies trying to determine which high-grade DCIS will progress have been underpowered and lack validation in independent cohorts, so none are in clinical practice. Three international trials are investigating operative management vs active monitoring for low-risk DCIS.

Learning Objectives:
1. To learn about the indications for biopsy when DCIS is suspected based on imaging.
2. To become familiar with the advantages and disadvantages of different biopsy techniques.
3. To appreciate the risk of overdagnosis and overtreatment with DCIS.

Author Disclosure:
M.G. Walis: Investigator; Chief investigator LORIS trial Grant for UK HTA.
Neuro

A-1030 08:30

RC 1711 Diffuse low-grade gliomas: new things you should know

V.C. Kell; Bonn/DE (Vera.Kell@ukbonn.de)

Diffuse low-grade gliomas (LGG) are glial tumours with a high degree of diversity on a histological and genetic level. Their histopathology and genetics determine indeed the course of the disease. Will the lesion remain stable for decades or will it progress dynamically both regarding volume and malignancy? The individual answer to this question determines therapeutic decisions, follow-up planning and therapy monitoring. Neuropathologists define the exact diagnosis of a tumour. But neuroradiologists can make use of multiple MRI and PET imaging tools to non-invasively approximate the histology of a lesion and in consequence its potential for dedifferentiation. While “conventional” MR imaging techniques are still the basis of glioma assessment, more recent quantitative methods expand our insights about a lesion and can provide greater certainty about a presumed diagnosis. DSC-MRI, DCE MRI, ASL, MR spectroscopy and many more imaging techniques of the quantitative and molecular imaging spectrum have become essential diagnostic pillars in glioma assessment. Molecular imaging is however not yet at a point that unequivocal scientific results rendered insightful imaging biomarkers to rely on in LGG assessment. There are conflicts about the additive value of multiple imaging techniques, the reproducibility of results, histopathological correlation and also feasibility in clinical practice. This opening presentation provides an overview of the most widely used techniques in molecular imaging and their current benefits and limitations for a noninvasive LGG assessment in contrast to standard, non-quantitative MRI.

Learning Objectives:
1. To learn about the role of imaging in the context of histopathology regarding the prediction of outcome.
2. To understand the role of conventional and quantitative beyond diagnosis.
3. To appreciate the translational approach of diagnosis and monitoring of glial tumour based on the histopathological background.

A-1031 09:00

B. Imaging patterns suggestive of different (molecular) subtypes of low-grade gliomas

M. Smits; Rotterdam/NL (marion.smits@erasmusmc.nl)

Primary brain tumours are histopathologically subtyped into World Health Organisation (WHO) grades I to IV, according to - increasing - degrees of malignancy. These grades provide prognostic information and guidance on management, such as radiotherapy and chemotherapy after surgery. Despite the confirmed value of the WHO grading system, a multitude of studies and prospective interventional trials indicate that tumours with identical morphological criteria, i.e. of the same WHO grade, can have highly different outcomes. To personalise brain tumour management, we need additional diagnostic markers that can differentiate tumours beyond the current diagnostic WHO grading system. Molecular markers can distinguish subtypes of tumours within the same morphological type and WHO grade, and are therefore of great interest for personalised medicine. Recent genomic-wide studies have resulted in a far more comprehensive understanding of the genomic alterations in gliomas, and the suggestions of a new molecularly based classification. MR imaging phenotypes can serve as non-invasive surrogates for tumour genotypes and as such provide important information on diagnosis, prognosis, and, eventually, personalised treatment. The newly emerged field of radiogenomics links specific MR imaging phenotypes with gene expression profiles. In this presentation I will discuss the three best known tumoural genotypes with prognostic and - potential - therapeutic consequences: 1. isocitrate dehydrogenase (IDH) mutation, 2. 1p19q deletion, and 3. methylguanine methyltransferase (MGMT) promoter methylation. I will give an overview of the known and potential MR imaging features of these genotypes, and their value and validity in a clinical context.

Learning Objectives:
1. To learn about whether there is a change of pattern recognition based on conventional and quantitative imaging approaches.
2. To understand the heterogeneity of low-grade gliomas based on histopathology and imaging.

E³ - European Diploma Prep Session

E³ 1723 Musculoskeletal

A-1033 08:30

Chairperson’s introduction

F. Saiez; Barakaldo/ES (f.saeze@yahoo.com)

The musculoskeletal system is one of the important areas which form part of the European diploma in radiology. All radiologists should understand and become familiar with the imaging appearances of the different pathologies that may involve the MSK system. This session will be very valuable in this regard, as the speakers will deal with most of the MSK topics which are part of the European training curriculum, levels I and II.

Session Objectives:
1. To understand typical and atypical imaging features of traumatic disorders of the musculoskeletal system.
2. To learn typical imaging features of benign and malignant bone tumours.
3. To become familiar with the imaging appearance of degenerative and inflammatory disorders of the musculoskeletal system.

A-1034 08:36

A. Traumatic disorders of the musculoskeletal system

L. Meacock; London/UK (lisameacock@nhs.net)

Musculoskeletal trauma is regularly encountered in the Emergency Department. Certain injuries have challenging imaging appearances or may have associated soft tissue injuries the Radiologist should be alert to. Failure to recognise or misinterpretation of these conveys significant risks. This case-based lecture will focus on imaging characteristics of common and the more challenging appendicular musculoskeletal injuries, with an emphasis on appropriate imaging and understanding of the underlying mechanism of injury.

Learning Objectives:
1. To gain appreciation of typical fracture patterns and their accompanying soft tissue injuries.
2. To develop an understanding of the underlying mechanisms of injury in appendicular trauma and correlate with imaging findings.
3. To understand the benefits and disadvantages of different imaging modalities in assessing trauma involving the skeleton and soft tissue in differing age groups.

A-1035 09:04
B. Bone tumours
M.A. Weber; Rostock/DE (marc-andre.weber@med.uni-rostock.de)

Primary bone tumours are categorised according to their tissue of origin into cartilaginous, osteogenic, fibrogenic, fibrohistiocyte, haemato poetic, vascular, lipogenic tumours and several other tumours like Ewing sarcoma and giant cell tumour. Also, they are classified into benign, malignant and semi-malignant, as well as tumour-like lesions. They are rare, but found on radiographs during an investigation of a painful skeletal region or incidentally. The radiograph is the first method to distinguish benign from malignant lesions: at first by analysing the aggressiveness of a lesion according to the classification of Lodwick and second by analysing the mineralisation of the tumour matrix. The matrix may be osteolytic, osteoblastic, or mixed: osteolytic with matrix mineralisation. Based on the Lodwick classification an overview of the three main types of bone destruction patterns visible on radiographs will be given with many examples: type 1: geographic (with a: well-defined border with sclerotic rim; b: well-defined border without sclerotic rim; c: ill-defined border); type 2: geographic with moth-eaten or permeated pattern; type 3: small, patchy, ill-defined areas of lytic bone destruction with moth-eaten or permeated pattern. Periosteal reactions are also indicators of lesion aggressiveness and will be demonstrated. MRI is the most additional imaging modality for local staging, as it allows for accurate assessment of the extent of the disease and the effect of the tumour on the surrounding structures including the joint, neurovascular structures, muscle compartments and skin. MRI also gives details of the extent of the compartmental involvement to help complete excision of the tumour.

Learning Objectives:
1. To learn the typical imaging features of common bone tumours.
2. To understand the typical imaging features of "don't touch" ("leave-me-alone") lesions.
3. To become familiar with the imaging manifestations of haematological disorders.

A-1036 09:32
C. Degenerative and inflammatory disorders of the musculoskeletal system
J.-B. Pialat; Lyon/FR (jean-baptiste.pialat@chu-lyon.fr)

Imaging findings of degenerative disorders of the joints are often found, but the correlation to clinical symptoms is not straightforward. After a descriptive approach of radiographic, computed tomography (CT) and magnetic resonance imaging (MRI) semiology, the clinical relevance of these findings will be discussed in the light of actual evidence. Considering the spine, degenerative disorders of lumbosacral and cervical levels are the most clinically relevant. All structures are affected with a variable association of ageing disk degeneration and bulging, bony spurs of vertebral bodies, and osteoarthritides of the facial joints (zygarthrosis). These lead to extensive range of local and radiacular pain, or less frequently, to a progressive compression of the spinal cord or of the cauda equina roots resulting in specific neurologic deficits. The thoracic spine is usually considered less often in the spectrum of symptomatic degenerative disorders, but imaging findings are common. These degenerative disorders have to be considered as potential factors in the genesis of pain in patients with ageing static impairments focussing on destabilisation due to vertebral compressive fractures. A comprehensive approach to imaging manifestations of infection, inflammation and metabolic diseases of the musculoskeletal system will end the lecture. Particular focus will be made on the role of radiography, CT, MRI and nuclear medicine techniques to explore these pathologies. An emphasis will also be given to specific findings, which will guide the radiologist in his diagnosis, and will help him rule out some erroneous aetiologies.

Learning Objectives:
1. To understand the imaging presentation of degenerative disorders of the joints and to appreciate their clinical relevance.
2. To learn the imaging features and clinical features of degenerative disease of the spine, disc and facet joints.
3. To become familiar with the typical imaging manifestations of infection, inflammation and metabolic diseases of the musculoskeletal system.

A-1037 08:30
Chairperson's introduction
S. Romano; Naples/IT (stefromano@libero.it)

The small bowel obstruction represents one of the most common causes of the acute abdomen in patients arriving in the Emergency Departments. The introduction to the session presentations will be focused on a brief excursion on definitions and significance of the various imaging modalities involved in reporting the exams in giving essential and important information to the clinicians and surgeons requested for a correct therapeutic planning on the patient. The role of the MDCT and of the DECT will be also shortly noted and considered.

Session Objectives:
1. To learn how to confidently diagnose small bowel obstruction.
2. To understand how to identify the transition point rapidly.
3. To become familiar with the signs of ischaemia.

A-1038 08:35
A. Step 1: confirm the mechanical small bowel obstruction (SBO)
I. Millet; Montpellier/FR (milletgrid@wanadoo.fr)

Small bowel obstruction is defined by an intestine transverse diameter greater than 25mm. It can be due either to a focal obstacle on the bowel that prevents the normal alimentary bolus flow or to a global stop of the bowel peristalsis. It is then very important to differentiate those two types of SBO, respectively a mechanical SBO from a functional ileus because they don't have the same management nor prognosis. We used the term "mechanical" SBO when there is a transition zone between dilated upstream loops and collapsed downstream ones. To localise precisely the transition zone, multiplanar reconstructions and particularly the coronal view can be very helpful. The faeces-sign, defined as gas bubbles mixed with particulate matter in dilated segments of small bowel, when present (about 40% of cases) can help to identify the transition zone. However, the faeces-sign should not be used to guide treatment decisions.

Learning Objectives:
1. To learn how to confidently diagnose small bowel obstruction.
2. To know the diagnostic value of the feces-sign for depicting the transition zone.
3. To become familiar with multiplanar reconstructions for finding the transition zone.

A-1039 09:02
B. Step 2: identity the SBO cause
J.R. Olalla Muñoz; Murcia/ES (olallajos@gmail.com)

Small bowel obstruction (SBO) is a common clinical syndrome accounting for 12-20% of hospital admissions of acute abdominal pain and supposes a leading cause of surgical emergencies. Adhesions, together with hernias and malignancies, entail more than 80% of SBO aetiologies and remain the major cause of post-operative SBO. Current evidence-based guidelines establish CT the preferred imaging technique for the diagnosis of adhesive SBO (ASBO), especially in doubtful cases to exclude other cause of obstruction. The diagnosis of ASBO is primarily one of exclusion because adhesive bands are not generally seen at conventional CT; only an abrupt change or beak at the site of obstruction combined with kinking and tethering of adjacent bowel suggests the diagnosis. Recently, CT has been proved to be accurate as a patient-selection tool into operative versus nonoperative treatment groups. Several CT findings like the location of the transition zone, the presence of faeces sign, beak sign, whirl sign, a closed-loop configuration, and a high-grade SBO must be assessed because they are related to the success or failure of nonsurgical treatment. Other causes of localised mural thickening in the transition zone are Crohn disease, neoplasia, intussusception, radiation, hematomas, endomietriosis. Finally, gallstone ileus, foreign bodies, or bezorra constitute rare causes of SBO but with an easier radiological diagnosis.

Learning Objectives:
1. To know the CT findings allowing adhesive bands to be diagnosed.
2. To know the list of SBO causes with bowel wall thickening at the transition zone.
3. To become familiar with some rare causes of SBO.
The most common cause of small bowel obstruction is an adhesion. An adhesion can obstruct the bowel in two ways. The most common is when the adhesion crosses the bowel leading to a simple obstruction. Ischemia will be an uncommon finding since the bowel proximal to the obstruction has a normal vascularisation. Things are quite different when a loop of small bowel crawls under an adhesion. Due to peristalsis more bowel may pass under the adhesion until it gets stuck resulting in a closed-loop obstruction. This always leads to venous obstruction and strangulation with ischemia. In any small bowel obstruction, it is the job of the radiologist to determine on CT whether it is a simple obstruction for which conservative treatment is the best option or a closed loop obstruction which needs immediate surgery. Closed loop obstruction can be diagnosed by looking for a cluster of bowel loops with mesenteric oedema and two points of obstruction. CT-scanning is done in the late arterial phase after delivery of intravenous contrast at a rate of 5 ml/sec for optimal bowel wall enhancement. Do not give oral contrast.

Learning Objectives:
1. To optimise the CT protocol for assessing bowel wall enhancement.
2. To learn how to diagnose a closed-loop mechanism.
3. To know the CT findings for diagnosing ischaemic complication.

Panel discussion: How important is the role of CT in deciding on operative or non-operative patient management?

E3 - Rising Stars Programme: EFRS Radiographers’ Basic Session

BR 17

The future of radiology: what it could mean for new radiography graduates

A-1041 08:30

Chairperson's introduction: What will radiology departments look like in the future?

G. Paulo - Coimbra/PT (graciano@estescoimbra.pt)

It's well known that the technological evolution and new scientific progress have increased the organisational complexity of healthcare. One of the major contributors to this complexity increase is the influence of medical imaging technology development. There is no doubt that modern healthcare is everyday more and more dependent of medical imaging diagnostic and therapeutic procedures, which dramatically contributes to the increase of hospital efficiency, providing more effective and less invasive patient care. The development of medical technology, together with the several pressures on health systems are the potential drivers for the exponential increase of the number of imaging procedures (but not always followed with the necessary frequency of press releases and publications is a testament to the growth and importance of this technology. Disseminating of diagnostic imaging information is also a challenge and an area of continuing research and development. There is a tendency to use software that is traditionally intended for social media use however this brings into question ethics, regulatory compliance and governance. Software platforms are evolving to provide credible and secure repositories for the storage, control and tracking of the way we disseminate information rather and we must be cognizant of the issues, and acceptable practice of the management of this data in this new age of evolved data protection regulation as accountability has never been higher.

Learning Objectives:
1. To be aware of impending developments with regards to imaging equipment.
2. To consider the potential role for artificial intelligence (AI) within imaging.
3. To appreciate the future role of social media and computing within radiology departments.

A-1044 08:59

Changing the delivery of radiology, responding to the needs of our patients

K.G. Vikestad - Oslo/NO (karvit@oslomet.no)

The continuous emergence of new technologies; together with increasing age of patients and number of examinations being performed represents a big challenge within radiology. This has led to delays in the interpreting and reporting of x-rays, meaning that it takes a long time from examinations being performed until reports with the results of the patients’ x-rays are ready for the referring doctor. Congestion of unreported x-rays represents one of the biggest challenges within the delivery of radiology services today. This could result in delays in patients receiving important treatment, thus putting patients at risk. Shortage of radiologists is also contributing to delays in the delivery of radiology services. Further, with the advanced technology within radiology may lead to radiologists prioritise the more advanced examinations, meaning that the skeletal x-rays are given less priority. Educating and training radiographers to perform reporting, particularly skeletal reporting, is one way to reduce the congestion of unreported x-rays. Radiographers are experts in viewing x-rays, and with proper education and training, they could perform reporting at a comparable level to the radiologists. Reporting radiographers could thus solve the bottleneck of radiology service delivery, resulting in effective and correct reporting of x-rays and shorter response time for patients.

Learning Objectives:
1. To be aware of the current challenges facing radiology service delivery.
2. To consider the opportunities available for developing and improving the delivery of radiology services.
3. To appreciate the needs of patients when developing a radiology service.

A-1043 08:53

Evolving imaging technologies

J.G. Stowe - Dublin/IE (john.stowe@ucd.ie)

With the explosion of Artificial Intelligence (AI) a review of what AI is and is not is highly appropriate at this time. We sometimes assign too much value and trust to that ‘intelligence’ and a reminder that computers are essentially counting machines should be first and foremost. Computer-aided detection (CAD) is not new but with advances in the use of neural networks and machine learning we can produce creative and successful advances in this area. In the newest generation AI offerings, what we are talking about is advanced pattern recognition, and we must be careful that bias in the training of the ‘machine learning’ does not result in flaws in what could otherwise be pattern recognition that is equivalent to if not superior to humans. A review of the number and frequency of press releases and publications is a testament to the growth and importance of this technology. Disseminating of diagnostic imaging information is also a challenge and an area of continuing research and development. There is a tendency to use software that is traditionally intended for social media use however this brings into question ethics, regulatory compliance and governance. Software platforms are evolving to provide credible and secure repositories for the storage, control and tracking of the way we disseminate information rather and we must be cognizant of the issues, and acceptable practice of the management of this data in this new age of evolved data protection regulation as accountability has never been higher.

Learning Objectives:
1. To understand the current status of role extension for radiographers.
2. To be aware of the international drivers for role extension within radiographic practice.
3. To appreciate the possible development options for radiographer role extension.

A-1042 09:29

Future role extension for radiographers

H.H. Hjemly - Oslo/NO (Hakon@radiograf.no)

The provision of high quality efficient personalised services for patients is the priority of imaging and diagnostics services, with services focused around the patient; this will continue to be our goal. A team working utilising all the available proven technologies will be essential, much of the technical aspects of the role will be automated; radiographer practitioners will need to offer flexibility, creativity and continually adapt their role as robotics capability becomes available proven technologies will be essential, much of the technical aspects of the role will be automated; radiographer practitioners will need to offer flexibility, creativity and continually adapt their role as robotics capability becomes available.
radiographer’s professional role in order to ensure that the rapidly changing innovations/robotics can be researched and translated into practice efficiently, where there is evidence to demonstrate a benefit for patients. The development of the radiography profession must, therefore, adapt to the changing context of this environment but ensure that research skills remain embedded within the professional education and training in order to ensure that the patients receive personalised care including the changing technological capabilities of equipment including Artificial intelligence and precision medicine. Robotics and increasing availability of vast amounts of data will enable ongoing change. The radiographers’ role will change, but the radiographer must remain the patient facing carer across the service supporting patients during their diagnosis and onto their next steps along their personalised pathway of care. Their role needs to be considered within the context of the entire imaging team to ensure that the development of their skills and competencies effectively enable delivery of excellent patient care.

Learning Objectives:
1. To understand the key drivers for change within radiology.
2. To understand the possible areas for development over the next 30 years.
3. To appreciate how radiology may look in 2049.

Panel discussion: Development needs for the future radiographer

Musculoskeletal

RC 1710

Elbow imaging: from detailed anatomy to pathology

Moderator:
I. Sudoł-Szopiński; Warsaw/PL

A-1046 09:30

A. The medial and lateral epicondyle

M.O. De Maeseneer; Brussels/BE (michel.demaeseneer@uzbrussel.be)

Bony landmarks at the lateral epicondyle include the tubercles, intertubercular sulcus, supracondylar ridge, and epicondylar ridge. Tendons include the brachioradialis, ECR, ECRB, EDC, EDM, ECU, and anconeus. Ligaments include the radial collateral ligament, annular ligament and LCL. Pathological conditions include ligament tears, tendinosis, tendon tears, and postero-lateral instability. Bony landmarks at the medial epicondyle include the tubercles, intertubercular sulcus, epicondylar face and supracondylar ridge. Tendons include the pronator teres, FCR, Palmorius longus, FCU, FDS. Ligaments include the different components of the UCL. Pathological conditions include ligament tears, tendinosis, tendon tears, and VEO. Understanding bony landmarks at the epicondyles help understand tendon and ligament changes. Pathological conditions are then more easily assessed including tendinosis, tendon tears, ligament tears, VEO and postero-lateral instability.

Learning Objectives:
1. To explain the anatomic considerations and pathophysiology of abnormalities that involve the medial and lateral epicondyles of the humerus.
2. To describe the imaging findings of abnormalities that involve the medial and lateral epicondyles of the humerus.

A-1047 09:00

B. Biceps and triceps

A. Tagliafico; Genova/IT (atagliafico@sirm.org)

The biceps brachii muscle consists of two heads, the short head and the long head. The two muscle bellies can have some degree of interdigitation proximal to the distal tendon, but they have two separate tendons, one for each muscle at the radial tuberosity insertion. The tendon of the short head attaches distally and slightly anteriorly at the radial tuberosity, whereas the tendon of the long head attaches more proximally. Distal biceps insertion is reinforced by a thin fibrous structure called lacertus fibrosus. Common lesions of the biceps tendons at the elbow include complete ruptures with retraction of the muscle belly or partial tears with different imaging appearance. Partial tears can involve the short or the long head of the biceps brachii tendon. Imaging can shift the therapeutic management from surgical to conservative especially in patients with partial tears. Other disorders related to the distal biceps brachii muscle include impingement and bicapito-radial bursitis. Brachialis muscles injuries are extremely rare. Triceps tendon ruptures can be acute traumatic or more commonly chronic overuse causing degenerative changes to the insertion. Rupture of the distal triceps tendon is uncommon and it may be unrecongnised on clinical examination. The most common disruption is an avulsion of the osseous tendon insertion. MRI and US are useful in preoperative planning because it shows whether the rupture is complete or partial. Sometimes, triceps muscle may be a factor contributing to ulnar nerve luxation at the elbow.

Learning Objectives:
1. To explain the anatomic considerations and pathophysiology of abnormalities that involve the biceps and triceps brachii.
2. To describe the imaging findings of abnormalities that involves the biceps and triceps brachii.

Physics in Medical Imaging

RC 1713

Dose reduction and image quality implications of iterative image reconstruction in CT

A-1049 08:30

Chairperson’s introduction
K.N. Bolstad; Bergen/NO (kirsten.bolstad@helse-bergen.no)

Ever since the development of the first CT, the quest has been to get as much information as possible, in the shortest amount of time as possible. In the early days of CT, the reconstruction time per image was limited by computer power and effective reconstruction algorithms. The filtered back projection algorithms (FBP) were a compromise between reconstruction speed and image noise. Iterative reconstruction algorithms (IR) takes into account a mathematical assumption of the system which results in less image noise but with a longer reconstruction time compared to FBP. Today, with more powerful and faster computers IR is a part of the daily routine. The noise reduction can either be used to improve image quality at the same dose or maintain similar image quality at a lower dose, typically 25-40% dose reduction compared to FBP.

Recently, more advanced model-based iterative reconstruction algorithms have become commercially available with a reconstruction time suitable for the clinical routine. These algorithms take into account a mathematical model of the entire system, from the focal spot size and x-ray spectrum to the detector system, resulting in a nearly “noise-free” image. The dose saving potential for these newer algorithms is up to 80-90% compared to FBP. However, the application of IR does not come without a cost. Even though the image noise is reduced, the appearance of the image may change. Each vendors IR has a different appearance and different dose saving potential. Radiologists need time to get used to the new appearance.

Session Objectives:
1. To learn about the origins of dose reduction using iterative image reconstruction in CT.
2. To understand dose reduction using iterative image reconstruction in CT.
3. To learn about solutions and workarounds.
A-1050 08:35
A. Basics of iterative image reconstruction in CT
M. Kortesniemi; Helsinki/FI (mika.kortesniemi@helsinki.fi)

Computed tomography image reconstruction is a mathematical process where the raw data projections (sinogram data) acquired during rotational CT scan exposure are transformed into volumetric (3D) image data. As such, reconstruction is an inverse problem, with no direct analytical solution. Traditional algorithms (filtered back-projection) approximate the true acquisition method and are prone to artefacts and noise. Iterative reconstruction methods approach the real solution gradually in steps and may take quantum statistics, physical properties and limitations of image acquisition more faithfully into account. Thus, a more accurate and correct outcome may be achieved. However, more detailed modelling of the actual CT acquisition system, physics, optics and object also increase the calculation time and related CPU requirements. Especially, the forward projection phase (calculation of simulated raw-data) on each iteration step is computationally intensive. More optimised reconstruction techniques with clinically acceptable reconstruction times are under active research. As the main diagnostic benefit, higher image quality in terms of lower noise and artefacts can be achieved by using iterative methods, and/or a lower radiation dose. However, users should be aware that current iterative reconstructions potentially alter the image texture in different clinically relevant contrast and detail levels. Therefore, sufficient clinical image quality should be verified when applying iterative techniques on new exam indications and protocol optimisation.

Learning Objectives:
1. To understand the basic aspects of iterative reconstruction.
2. To learn about potential dose reduction via iterative reconstruction.
3. To compare iterative reconstruction with other techniques.

A-1051 08:58
B. Iterative image reconstruction in clinical practice: dos and don'ts
H. Alkadhi; Zurich/CH (hatem.alkadhi@usz.ch)

The application of Computed Tomography (CT) imaging is paralleled by concerns regarding its potential risks. These concerns have led to the development of a set of strategies for optimising and lowering the radiation dose of CT. Of these techniques, iterative reconstruction algorithms represent a powerful tool, because they allow lowering the dose at a constant noise level and image quality. However, caution must be taken when iterative reconstruction algorithms are being used, and radiation dose can be lowered only to a level where information in the CT images are not lost. This presentation reviews the clinical challenges of using iterative reconstruction techniques in CT imaging, with a focus on low radiation dose examinations. The benefits and potential pitfalls of iterative reconstruction techniques are discussed in this presentation.

Learning Objectives:
1. To understand the radiologist's requirements for image reconstruction.
2. To learn about current best practice in image reconstruction for clinical CT.
3. To learn about the potential benefits and pitfalls of using iterative reconstruction in clinical CT.

A-1052 09:21
C. Image quality assessment of iterative reconstruction: pitfalls and future directions
C. Walsh; Dublin/IE (cwalsh@stjames.ie)

Iterative reconstruction (IR) algorithms offer the potential to provide diagnostic quality scans at a lower dose. IR is significantly different to the previously used Filter Back Projection technique, both in the way images are reconstructed, and in how the software is implemented on CT systems. Manufacturers have different versions of IR software, new IR products appear on the market at a relatively fast rate, and some versions have a high degree of user configurability. To exploit the potential dose savings, centres need confidence that diagnostic image quality is maintained as dose decreases. While dose measurements are comparatively straightforward, the standard physical image quality tests have limitations when assessing clinical image quality, particularly for IR images. For example, non-anthropomorphic test objects have limited clinical relevance or may interact sub-optimally with software designed to produce anatomical images. Some image quality metrics have a technical requirement that systems are linear shift invariant, which is not met by non-linear IR algorithms. This presentation reviews the pitfalls of using existing image quality tests and overviews some of the developments which provide improved utility for assessing and optimising iteratively reconstructed images. These include developments to standard image quality measurements, and task-based approaches using model observers. The practical aspects of implementing image quality controls in an increasingly sophisticated technology and clinical environment are considered. The role of clinical assessments, image quality, and whether the analysis of ‘big data’ can contribute to IQ assessment in the future, is also discussed.

A-1053 08:30
A. Chest trauma
M. Brink; Nijmegen/NL (M.Brink@rad.umcn.nl)

Chest injuries are important contributors to mortality in major trauma patients. Although chest X-ray can be used as a screening tool in patients with life-threatening airway-breathing or circulatory problems, MDCT is the modality of choice to detect and characterise thoracic injury. MDCT with intravenous contrast has a very high diagnostic accuracy for predominantly pulmonary and vascular injuries. In this session, we will discuss three entities with high impact on patient morbidity and mortality. Pulmonary contusion is a commonly reported entity in high-energy trauma patients but is frequently confused with other causes of pulmonary opacification in trauma patients. Diaphragmatic ruptures need immediate operative intervention, but these injuries are rare and can be missed at MDCT. Finally, major aortic injury has very high mortality if left untreated, and should immediately be recognised. However, accurate diagnosis and adequate treatment depend on appropriate patient selection for MDCT, type and aspect of aortic injuries, scanning technique, and knowledge of mimickers of aortic injury.

Learning Objectives:
1. To describe CT features of pulmonary contusion.
2. To learn about signs of diaphragmatic rupture.
3. To know when to suspect and how to confirm aortic injury.

Author Disclosure:
M. Brink: Grant Recipient; Canon Medical Systems. Speaker; Canon Medical Systems Europe.

A-1054 08:53
B. Haemoptysis
M.-P. Revel; Paris/FR (marie-pierre.revel@aphp.fr)

Haemoptysis represents a potentially life-threatening condition which requires urgent management and care. It is defined by the expectoration of blood during coughing, originating from the lower respiratory tract. The immediate risk is airway compromise in case of severe haemoptysis, whereas small haemoptysis can be less urgently managed. There are various definitions of severity, from 100 mL to 1 L of blood expectorated in 24 hours. The severity also depends on the underlying cause and cardiopulmonary status of the patient. For severe haemoptysis, it is essential first to localise the bleeding side, which can be shown by chest x-ray, demonstrating alveolar opacities of the right or left lung. If not, CT scan will help to localise the bleeding side by showing ground-glass opacities in non-dependent lung areas. Most bleedings are of systemic origin, involving the bronchial arteries or other enlarged systemic arteries, which can be treated by embolisation. Contrast-enhanced CT is recommended in stable patients, to help to depict the normal or ectopic origin of the bronchial arteries. More rarely, bleeding is due to damaged pulmonary arteries, showing false aneurysms of mycotic or traumatic origin or tumoral invasion. In exceptional cases, bleeding can be due to the bronchial fistulization of an aortic aneurysm, with a very poor prognosis.

Learning Objectives:
1. To learn about the main causes and mechanisms of massive haemoptysis.
2. To review the role of CT in the assessment of site and cause of bleeding.
3. To learn about the bronchial artery anatomy assessment on CT.

A-1055 09:16
C. Diagnosing PE
G. Aviram; Tel Aviv/IL (aviramgalit@hotmail.com)

Pulmonary embolism (PE) is a life-threatening diagnosis, which has an increased incidence with ageing. Since it has a non-specific clinical presentation, the initial approach when acute PE is suspected should be clinical pre-test probability assessment, using validated clinical decision rules.
If PE is "unlikely", negative D-dimer excludes PE. Recently the D-dimer cutoff level was adjusted to age. When PE is "likely" or if D-dimer levels are elevated above the new threshold, the patient should be referred for CT pulmonary angiography (CTPA). Technological advancements to improve CTPA quality with reduced radiation doses and contrast volume include lowering the kVp, noise reduction strategies, and spectral CT. Though CTPA is highly accurate, diagnosing isolated subsegmental embolism often poses diagnostic and therapeutic dilemmas. Acute PE patient's management can vary between admission to intensive care unit to immediate discharge for home treatment. It should be based on clinical, laboratory and imaging evaluation. The diagnostic CTPA data can contribute to immediate decision making. There are various CT parameters for PE severity assessment, among them, increased right to left ventricular diameter ratio, reflux of contrast to the IVC, and reduced left atrial volume, which will be discussed.

Learning Objectives:
1. To learn about optimising CT angiography indications.
2. To be aware of the causes of imaging inconclusiveness.
3. To learn how to identify signs of acute right ventricular dysfunction.

Author Disclosure:
G. Aviram: Research/Grant Support; My institution received a research grant from Philips Health Care.

A-1056 09:39
D. Vascular intervention in thoracic emergencies
I. Bargellini; PisatIT (irenebargellini@hotmail.com)

Over the past years, interventional radiological procedures have become essential for the prompt management of life-threatening thoracic vascular emergencies, thanks to their low invasiveness and increased availability. According to the European guidelines for the treatment of aortic diseases, Thoracic Endovascular Aortic Repair (TEVAR) represents the first-line treatment modality for the management of several thoracic aortic emergencies, including traumatic and spontaneous ruptures, complicated type B dissections, intramural hematomas and penetrating ulcers. In fact, the high technical success rate and the low morbidity and mortality rates enable prompt management in the emergency setting and do not preclude future surgical procedures, if needed. Likewise, bronchial and non-branchial arteries embolization has become the treatment of choice for severe hemoptysis, after failure of medical and endoscopic treatment, with an immediate success rate > 70%. Safety of embolisation is guaranteed by superselective catheterisation of the bleeding vessels and by correct choice of the most adequate embolic agent. Finally, over the past years, catheter-directed thrombolysis and/or thrombus debulking have been proposed as safe and effective treatment options in high- and intermediate-high risk patients with pulmonary embolism. Specifically, the 2014 European guidelines consider catheter-direct revascularization as an alternative to surgical embolectomy for high-risk patients in whom full-dose systemic thrombolysis is contraindicated or has failed. For the success of all these procedures, however, it is essential for interventional radiologists to be adequately trained and skilled and to work within dedicated multidisciplinary teams, to share decisions and manage possible complications.

Learning Objectives:
1. To learn about bronchial embolisation for life-threatening haemoptysis.
2. To review endovascular procedures for management of severe PE.
3. To understand the role of the interventional radiologist in aortic trauma management.

E³ - ECR Master Class (Hybrid, Molecular and Translational Imaging)
E³ 1726a
Quantitative imaging in oncology
A-1057 08:30
Chairperson's introduction
J. O'Connor; Manchester/UK (james.o'connor@manchester.ac.uk)

Images are inherently heterogeneous. In oncology, there is much current interest in quantifying this spatial variation and using this information to derive 'heterogeneity biomarkers'. At the within tumour level, these biomarkers tend to either identify sub-regions of a tumour that are markedly abnormal or characterise how heterogeneous each individual tumour is. Current research studies are establishing whether or not such biomarkers have value in monitoring tumour response to therapy, or in determining prognosis and prediction of outcome. In addition, alternate approaches compare the variation between multiple lesions in one individual and how this may inform personalised medicine. In this session, various quantitative imaging approaches are discussed that give rise to heterogeneity biomarkers, with emphasis on their current uses, pitfalls and future directions.

Session Objectives:
1. To understand the impact of tumour heterogeneity on diagnosis and treatment.
2. To learn the basics of quantifying heterogeneity in tumours.
3. To review the future impact of imaging heterogeneity in tumours.

A-1058 08:53
B. Quantitative image biomarkers for targeted tumour therapies
R. García Figueiras; Santiago de Compostela/ES (roberto.garcia.figueiras@sergas.es)

Clinical imaging systems are a significant source of non-invasive imaging biomarkers (IBMs) that may reflect important biological properties of cancers. IBMs can provide quantitative information on tumour hallmarks and can be used to evaluate tumour heterogeneity. They may also help us to understand the mechanism of action of therapies and their effects on tumour microenvironment, offering objective measures of change in response to therapy. This presentation will explain the biologic basis for a number of commonly available IBMs obtainable clinically. Beside this, we'll illustrate how quantification of IBMs is undertaken and provide the validation of such measurements. Finally, the role of IBMs for the assessment of therapy response will be reviewed.

Learning Objectives:
1. To learn how heterogeneity can be quantified from images.
2. To understand the main classes of heterogeneity on imaging.
3. To review limits and pitfalls of features extraction.

A-1060 09:11
C. From quantitative imaging to radiomics and deep learning
H.-H. Hahn; Bremen/DE

"no abstract submitted"

Learning Objectives:
1. To learn how to optimise the acquisition of images for quantitative imaging.
2. To understand image processing which may impact quantification.
3. To become familiar with the concepts behind quantification including machine learning approaches.

A-1061 09:29
D. Imaging heterogeneity and genomic variability in ovarian cancer
E. Sala; Cambridge/UK (es220@cam.ac.uk)

Cancer is caused by genetic (DNA) and epigenetic alterations and frequently arises as a clonal growth from a founder cell. The subclonal heterogeneity provides the basis for inter-metastatic heterogeneity which is of utmost clinical importance. New tumour sampling techniques and circulating tumour DNA methods may allow for more comprehensive evaluation of clonal composition.
Multidisciplinary Session

MS 17 Multidisciplinary approach to the diabetic foot

A-1062 08:30
Chairperson’s introduction
E.N. Brountzos; Athens/GR (ebrountzf@med.uoa.gr)

Diabetes mellitus (DM) has become a global epidemic. According to the World Health Organization, the number of people with diabetes increased from 108 million in 1980 to 422 million in 2014, while the worldwide prevalence of diabetes in 2013 was 8.3%. Moreover, 1.6 million deaths were directly caused by diabetes in 2016, as DM is a major cause of cardiovascular events and advanced peripheral arterial disease leading to limb amputations due to diabetic foot ulceration (DFU). The management of DFU requires a comprehensive multidisciplinary approach which should include radiologists, diabetologists, vascular surgeons, interventional radiologists. Prompt differential diagnosis between pure neuropathic or mixed neuro-ischemic DFU is essential for limb salvage, as major amputation rates are particularly high without rapid revascularisation. Following the clinical assessment, imaging is vital in order to verify the presence and assess the magnitude of arterial disease but also to evaluate soft tissue and bone infections. Once the diagnosis of vascular involvement is set, and the appropriate drug therapy has been administered, revascularisation by open surgical bypass or peripheral endovascular procedures should be offered immediately, to enable fast wound healing and avoid infection that would compromise the limb. Both surgical and endovascular treatment options result in high limb salvage rates at long-term follow-up, and the decision between the two methods should be case-sensitive. Recent advancements in endovascular procedures have significantly broadened the indications and increased their efficacy. Following successful reperfusion, proper wound care, drug therapy and strict clinical and imaging follow-up are fundamental for limb salvage.

Session Objectives:
1. To appreciate the magnitude of the diabetic foot as a societal problem.
2. To understand the role of radiological imaging and interventional radiology in the diagnosis and treatment of the diabetic foot.
3. To learn the role of surgical treatment of the diabetic foot.

A-1063 08:35
Diabetic foot: a societal problem
V. Lambadaris; Athens/GR

“no abstract submitted”

Learning Objectives:
1. To appreciate the scope of the problem.
2. To learn the prevalence of the arterial ulcers and the amputation risk.
3. To learn the prevention and care of foot ulcerations.

A-1064 08:50
Imaging evaluation of the diabetic foot
O. Papakonstantinou; Athens/GR (sogofanol@gmail.com)

Soft tissue and bone infections are common complications in diabetic foot that can be underdiagnosed leading to delay of treatment and, finally, amputation. Imaging findings and techniques, potential and limitations of plain radiographies, CT, US, scintigraphy, and, with a special focus, MRI will be discussed, aiming at the differential diagnosis between soft tissue and bone infection, between neuropathic osteoarthropathy and osteomyelitis as well as identification of complications such as abscesses, fractures and infarcts. Subsequently, we will touch upon the capabilities of high-resolution MR imaging techniques to provide an accurate mapping of the run-off vessels, which will eventually determine which patients further need DSA and therapeutic interventions.

Learning Objectives:
1. To learn how to image soft tissue and bone infections.
2. To learn how to image arterial perfusion: CTA and MRA.
3. To learn when to use DSA.

A-1065 09:05
Interventional radiological treatment (IR)
S.C. Spiliopoulos; Athens/GR (stavaspiliop@med.uoa.gr)

Endovascular treatment is today an established option for both critical limb ischemia (CLI) and lifestyle limiting intermittent claudication in subjects with diabetes mellitus (DM). Particularly in patients with tissue loss, prompt revascularisation is highly important to improve limb perfusion, facilitate wound healing and attain limb salvage avoiding major amputation-associated morbidity and mortality. The technological advancements in the field of endovascular devices, as well as the continually increasing experience in endovascular techniques, have broadened the indications of endovascular therapies and have made possible the successful treatment of even small-vessel infrapopliteal and inframalleolar arterial disease (PAD), typical in subjects with diabetic foot disease. Angioplasty and stenting are the main tools for the management of the peripheral arterial disease. Limb salvage rates reported in the literature reach up to 90% at ten years follow up highlight the long-term efficacy of endovascular treatment. However, mid-term loss of patency resulting in clinical relapse and frequent re-interventions is the most significant drawback of endovascular treatment. Drug-eluting technologies- mainly drug-eluting stents and drug-coated balloons- significantly improve patency rates and clinical outcomes according to data from multiple multicenter randomised trials, while new technologies such as percutaneous atherectomy and shock-wave lithoplasty are currently under investigation. Tissue perfusion modalities in order to evaluate and monitor the outcomes of endovascular procedures are currently under development, while the impact of angiogenesis- guided revascularisation and pedicle arch reconstruction on wound healing requires further investigation. Well-designed, multicenter, prospective trials are necessary to investigate the impact of novel endovascular technologies in PAD patients with DM.

Learning Objectives:
1. To learn when interventional treatment is indicated.
2. To learn the tool kit.
3. To learn the results of IR treatment.

A-1066 09:20
Surgical management of the diabetic foot
G. Geroulakos; Athens/GR (geroulakos@med.uoa.gr)

Limb loss is a significant risk in patients with diabetic foot ulcers. It is estimated that 15% to 20% of patients with diabetes will develop foot tissue lesions ranging from simple ulcers to simple ulcers and abscesses to osteomyelitis and gangrene. About 15% to 20% of patients with foot ulcers will need an amputation. The surgical strategy has several aims. The first step is to control the infection by a combination of appropriate antibiotic therapy with drainage of pus, removal of necrotic tissue and minor amputation if needed. The second step involves assessment of the limb ischemia. Lack of arterial blood flow reduces the supply of oxygen and nutrients, the delivery of antibiotic agents and impedes wound healing. Although arterial disease in diabetic patients typically affects the distal vessels, preoperative imaging often reveals multi-level occlusions and diffuse disease, which necessitates challenging distal revascularisation either endovascularly or by surgery. Endovascular
revascularisation is more appropriate in patients with relatively focal disease in arteries above and below the knee. Bypass to the tibial or pedal vessels with autogenous vein is the gold standard for patients with diabetes and complex tibial disease and has greater durability than endovascular procedures. Primary amputation is indicated in case of overwhelming infection that threatens the patient’s life, when tissue necrosis secondary to arterial disease has destroyed the foot or when a prolonged course of treatment is associated with a poor prognosis for a successful outcome.

Learning Objectives:
1. To learn what the goal of surgery is in treating the diabetic foot infections.
2. To learn how to prevent osteomyelitis.
3. To learn when to amputate and to what extent.

A-1067 09:35
Multidisciplinary case presentation and discussion
E.N. Brountzos; Athens/GR (ebrountz@med.uoa.gr)

Diabetes mellitus (DM) has become a global epidemic. According to the World Health Organization, the number of people with diabetes increased from 108 million in 1980 to 422 million in 2014, while the worldwide prevalence of diabetes in 2013 was 8.3%. Moreover, 1.6 million deaths were directly caused by diabetes in 2016, as DM is a major cause of cardiovascular events and advanced peripheral arterial disease leading to limb amputations due to diabetic foot ulceration (DFU). The management of DFU requires a comprehensive multidisciplinary approach which should include radiologists, diabetologists, vascular surgeons, interventional radiologists. Prompt differential diagnosis between pure neuropathic or mixed neuro-ischemic DFU is essential for limb salvage, as major amputation rates are particularly high without rapid revascularisation. Following the clinical assessment, imaging is vital to verify the presence and assess the magnitude of arterial disease but also to evaluate soft tissue and bone infections. Once the diagnosis of vascular involvement is set, and the appropriate drug therapy has been administered, revascularisation by open surgical bypass or peripheral endovascular procedures should be offered immediately, in order to enable fast wound healing and avoid infection that would compromise the limb. Both surgical and endovascular treatment options result in high limb salvage rates at long-term follow-up, and the decision between the two methods should be case-sensitive. Recent advancements in endovascular procedures have significantly broadened the indications and increased their efficacy. Following successful reperfusion, proper wound care, drug therapy and strict clinical and imaging follow up are fundamental for limb salvage.

Learning Objectives:
1. To learn how to clinically diagnose the diabetic foot.
2. To appreciate the role of imaging.
3. To understand how to select the patients for medical, interventional radiological and surgical treatment.

08:30 - 10:00 Room M 5

Head and Neck

RC 1708

Imaging of eye and orbital pathologies

Moderator:
M.M. Lemmerling; Ghent/BE

A-1068 08:30

A. Traumatic lesions of the eye and orbit

A. Ailianou; Neuchâtel/CH

In this lecture, the commonest types of traumatic injuries of the eye and the orbit will be reviewed. The role of CT and MRI in the emergency setting will be emphasised when dealing with fractures and soft tissue injuries. The most common types of facial fractures involving the orbit (blow-out fractures, tripod fractures, Le Fort type II and III, latero-facial fractures, as well as pan-facial fractures) and their radiologic features will be mentioned. A systematic discussion will include associated injuries of the ocular muscles, globe, lacrimal sac, vascular structures, the base of the skull and dura, as well as cranial nerves. Emphasis will be given to what the clinicians need to know and how to report the radiologic findings in a structured way.

Learning Objectives:
1. To become familiar with imaging features of orbital fractures.
2. To learn about traumatic lesions of the eye and orbital soft tissues.
3. To review acute and chronic complications after orbital trauma.

A-1069 09:00

B. Infection and inflammation in the eye and orbit

K. Erb-Eigner; Berlin/DE (Katharina.Erb@charite.de)

Infectious and inflammatory diseases of the eye and orbit play a major role in ophthalmology. However, diseases manifesting posterior to the globe are not detectable by ophthalmoscopy, and cross-sectional imaging is often necessary for diagnostic work-up. Radiologists should be familiar both with the anatomy of the eye and orbit and with the imaging features of the most common infectious and inflammatory diseases. Magnetic resonance imaging (MRI) has excellent soft tissue contrast and is the first choice method in most cases. This Refresher Course will present typical MR examination protocols and outline the benefits of multiparametric imaging. Basic clinical features and typical imaging findings in infectious and inflammatory disorders of the orbits including optic neuritis, abscesses, sarcoidosis and idiopathic inflammatory disorders will be discussed. Other topics include emergency findings which require immediate communication and what to report to clinicians to achieve the best outcome for patients.

Learning Objectives:
1. To become familiar with infectious and inflammation in different orbital structures.
2. To discuss imaging features of infection and inflammation in the eye and orbit.
3. To learn how to reach the final diagnosis.

Author Disclosure:
K. Erb-Eigner: Consultant; Author of Atlas on Orbital MRI at Pantavision.

09:30

C. Benign and malignant masses of the eye and orbit

P. De Graaf; Amsterdam/NL (p.degraaf@vumc.nl)

Ocular and orbital masses in adults and children represent a spectrum of (rare) benign and malignant lesions that can be challenging to diagnose and treat. Most patients with intra-ocular masses are diagnosed on clinical grounds; however, means of extensive clinical investigation by the ophthalmologist. High-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e., confirmation of diagnosis and staging disease extent. The role of CT is limited. Orbital mass lesions, usually presenting with proptosis and/or visual decline, need to be analysed by MRI in order to characterise the type of lesion. The most important intra-ocular and orbital mass lesions will be shown, and specific signs on imaging will be reviewed.

Learning Objectives:
1. To discuss advanced imaging techniques in tumoural orbit lesions.
2. To review intraocular tumours.
3. To become familiar with intraorbital masses.

08:30 - 10:00 Tech Gate Auditorium

E³ - ECR Master Class (Genitourinary)

E³ 1726b

Prostate MRI: the accreditation issue

A-1071 08:30

Chairperson’s introduction
J. Richenberg; Brighton/UK (jonathan.richenberg@bsuh.nhs.uk)

It is widely accepted that multi-parametric MRI (mpMRI) is ‘good’ in prostate cancer. But what does ‘good’ mean? How do we measure ‘good’? And how do we make ‘good’ universal? This session considers a strategy to rapidly roll out mpMRI across Europe without sacrificing quality. Before acceding to the clamour for mpMRI, radiologists, urologists and oncologists need to acknowledge that mpMRI is complex: to acquire and to interpret pre-biopsy mpMRI means that radiologists become the praeatorian guard of prostates pre-biopsy implies a ‘yes’/’no’ approach and specialists are more prepared to make such decisions (less PIRADS 3) The first talk explores optimisation of images and proposes standards on acquisition, the second talk explores the benefits of a multidisciplinary approach to prostate cancer diagnosis, the place of specialist centres and the role of the radiologist within this setting; the third talk addresses some of the aspects that surround the accreditation of individuals and centres in the reporting of mpMRI including the concept of on-going performance assessment. In this new era of cardiac imaging, virtual colonoscopy and now radiologically driven prostate cancer diagnosis, accreditation and standard setting becomes crucially relevant, and controversial as doubtless the panel discussion at the session’s end will demonstrate!
Session Objectives:
1. To understand the emerging role of the multidisciplinary approach for prostate cancer.
2. To discuss the role of the radiologist in the multidisciplinary approach to prostate cancer.
3. To discuss the accreditation and certification issues for prostate imaging.

A-1072 08:35
A. Prostate MRI: minimum and optimal requirements
N.N.

Learning Objectives:
1. To understand the minimum requirements for multiparametric MR of prostate cancer.
2. To understand how to optimise MR imaging technique at 3T and 1.5T.
3. To review sequence parameters and scan optimisation for prostate imaging.

Author Disclosure:
- P. Puech: Consultant; GE ultrasound.

A-1073 08:58
B. Towards a European accreditation of prostate imaging centres
V. Logager; Copenhagen/DK (vibeke.logager@regionh.dk)

Imaging in itself is nothing. It is in the context of diagnosing and treating the patients that imaging becomes valuable and important. To ensure the best use of expensive equipment when finding the correct diagnose with the least delay, it is necessary to ensure high quality. The multidisciplinary team approach has the potential to ensure this. The expert panel discussions aim to give the optimal treatment to every patient at the right time. Also, an information feedback loop is arranged in this forum, when imaging, histology and patient outcome are held up against each other. Despite guidelines, quality in imaging is not guaranteed. It is necessary to ensure reproducibility and homogeneity in imaging of technical parameters, in scanning procedures, reading and reporting. Reference, specialist prostate centres could be a way to go. High-end centres that are involved in international research with a high volume of examinations, in co-operation with the clinicians, pathologists and oncologists, will gain substantial experience. This includes doing multidisciplinary team meetings. By having a reference centre, it could be possible to measure any institutions image quality and report validity against the international standards of care. To make this possible, it is necessary to agree upon suitable and measurable indicator parameters on quality. In order to know that, what you do, is in line with the standard of care level, we must decide how we most reliable can measure our contribution, from referral to examination and further to the finalised report.

Learning Objectives:
1. To learn about the role of the radiologist in the multidisciplinary approach for prostate cancer.
2. To discuss the requirements for a specialist prostate centre, with emphasis to the imaging issue.
3. To understand quality indicators for prostate MRI.

A-1074 09:21
C. Towards a certified radiologist
H.C. Thoeny; Fribourg/CH (Harriet.thoeny@ch-fr.ch)

MRI of the prostate is increasingly performed in many centres before a biopsy. On one hand, this allows performing targeted biopsies in case of detection of a suspicious lesion and on the other hand to avoid biopsy in case of a normal prostate MRI. The correct diagnosis is therefore of utmost importance. False positive results lead to unnecessary biopsies including side effects, unnecessary fear and increasing costs, whereas false negative results lead to underdiagnosis of significant prostate cancers. A correct diagnosis is crucial, and besides correct image interpretation, the radiologist needs an in-depth understanding of prostate pathologies and knowledge of the potential treatment options. Strong collaboration in the multidisciplinary tumour boards together with urologists, pathologists, oncologists and radiation therapists with regular feedback is the prerequisite for quality control of the radiologist. Furthermore, level III European Training Curriculum for prostate imaging defines the expected knowledge of the radiologist performing prostate MRI. In many European countries certified prostate cancer centres exist, however, the exact role of the radiologist has to be defined and is becoming increasingly important. The European Society of Urogenital Radiology (ESUR) provides yearly specific teaching courses on prostate imaging allowing continuous education. In line with breast units, the certified radiologists performing prostate MRI need a certain number of exams every year, the exact minimum number has to be defined based on future studies as well as an evaluation based on feedback from pathology.

Learning Objectives:
1. To understand the need for a certified radiologist in a prostate unit.
2. To illustrate the level III European Training Curriculum for prostate imaging.
3. To discuss how to certify radiologists for prostate imaging.

Panel discussion: Prostate units: is the radiologist in or outside the core team?
10:30 - 12:00
Room A

E³ - ECR Academies: Interactive Teaching Session for Young (and not so Young) Radiologists

E³ 1821
Imaging of the brain

A-1075 10:30
A. Stroke mimics
M.M. Thurnher; Vienna/AT (majda.thurnher@meduniwien.ac.at)

The correct and prompt diagnosis of ischemic stroke and/or stroke mimics is crucial to assist clinicians in proper triaging and therapy decisions. A stroke mimic represents a non-stroke disorder with a presentation suggestive of acute ischemic stroke. The list of possible stroke mimics consists of seizures and postictal phenomena, headaches, metabolic disturbances, toxicities, and space-occupying lesions. A variety of non-neurological conditions such as systemic infection, cardiovascular events, and psychiatric issues may also masquerade as acute ischemic strokes. In this lecture, key-imaging features of stroke mimics will be discussed in detail.

Learning Objectives:
1. To become familiar with the different entities that can mimic a stroke.
2. To know the usefulness of perfusion studies in the differential diagnosis.

A-1076 11:15
B. Acquired toxic-metabolic encephalopathies
K. Cagatay; Ankara/TR (karlioguz@yahoo.com)

Acquired toxic-metabolic encephalopathies encompass a wide range of causes including metabolic causes like hyper-/hyperglycemia, hepatic and uremic encephalopathy, or osmotic demyelination, hypertension, exposure to toxic substances, or drug abuse. Clinical history is extremely important in the evaluation of the patient. Best recognised on MRI, these disorders tend to show bilateral and symmetrical involvement of the deep grey matter and cerebral white matter. Some peculiar locations, DWI features and clues from proton MR spectroscopy will guide the radiologists on the way to the diagnosis. In this session, participants will review and practice the imaging features of the most common acquired toxic-metabolic encephalopathies with representative cases.

Learning Objectives:
1. To review the most common causes.
2. To learn the MRI and CT appearances of these lesions.

ESR meets Pakistan

EM 3
The role of radiology in major healthcare challenges faced by Pakistan

Presiding:
- M.H. Akram; Islamabad/PK
- L.E. Derchi; Genoa/IT

A-1077 10:30
Introduction
M.H. Akram; Islamabad/PK (dhramidakram@gmail.com)

Infections and malignancies are two major health challenges being faced by Pakistan. Amongst the infections, though gastroenteritis, pneumonia, typhoid and malaria are not uncommon, the major challenges are hepatitis and tuberculosis mainly due to their chronic nature, a variety of presentations, complications and lengthy management. Regarding malignancies; though in Pakistani women the incidence of breast cancer is one of the highest in Asia, the most common cancer which involves a reasonable proportion of both sexes is cancer of the lip and oral cavity. To deal with these three major diseases, radiology is playing a crucial role, not only in diagnosis and early detection of complications but also in the management.
Session Objectives:
1. To learn about oral cancer in Pakistan and the role that radiology plays in its management.
2. To appreciate the role of radiology in living donor liver transplant in advanced cases of chronic hepatitis.
3. To understand the variety of radiological findings in tuberculosis.

A-1078 10:35
Imaging of oral cancer
N. Ud Din: Lahore/PK (najam200@gmail.com)
The actual burden of head and neck cancer in Pakistan is 18.74% of all new cancers. The incidence of oral cancer was highest in males, averaging 11% in 2012. The social and cultural habits across different provinces of the country seem to determine the increasing variable incidence of head and neck cancer in Pakistan. The obvious high risk is associated with the use of betel, areca and chewable tobacco besides family history, smoking habits, occupation and socioeconomic status. In a cross-sectional study, up to 40% of the participants were chewing at least one of these items on a daily basis. The bulk of the oral cancers were along the alveolus. Economic losses related to head and neck cancer in Pakistan totalled US$16.9 billion in 2010, equivalent to 0.26% of the region's economic output. Estimated direct cost of treatment of disease caused by smoking was Rs.88 billion in the year 2000. The economic consequences of head and neck cancer in South Asia are significant. Multidisciplinary management is critical in addressing this burden. The bulk of our patients present with advanced, stages three and four diseases. Staging, treatment planning, follow up and surveillance rely on imaging with CT/MR and PET/CT routinely. Nutrition, speech, hearing, swallowing therapy, rehabilitation support and palliative care are all challenges. Advanced disease at presentation, poor performance status and suboptimum compliance besides limited financial support undermine the treatment outcomes. Approximately 40% of these patients with head and neck tumours die within one year in spite of definite curative treatment.

Learning Objectives:
1. To understand the peculiar causes of high incidence of oral cancer in different regions of Pakistan.
2. To become familiar with the spectrum and scale of advanced disease in Pakistan.
3. To appreciate the role of radiology in living donor liver transplant in advanced cases of chronic hepatitis.

A-1079 10:55
Interlude: Beautiful Pakistan: from sea to sky-high mountains
A. Majeed: Islamabad/PK
Pakistan has one of the highest prevalence rates for viral hepatitis in the world. In a country of approximately 200 million people and a 7% combined burden of hepatitis B virus (HBV) and hepatitis C virus (HCV), it was imperative to have indigenous liver transplantation (LT) program in Pakistan. Living donor liver transplant was initiated in 2012 in our centre, and so far, more than 650 transplants have been performed. Radiology has been at the forefront in this endeavour. Our contribution includes preoperative donor work up with a CT to calculate liver attenuation index, liver volumetric analysis as well as delineation of vascular anatomy for surgical planning. All patients undergo an MRCP as well for biliary anatomy. In the post-operative period, both recipient and donor may require imaging to look for complications such as post-operative collection, vascular complications, or biliary strictures. The most common recipient complication in our patients is a biliary stricture, occurring in about 22% of patients. Our interventional radiologists play an important part in treating these as well as other complications such as post-operative collections, portal vein stenosis or arterial complications.

Learning Objectives:
1. To learn about steps in setting up a successful living donor liver transplant program in Pakistan.
2. To understand requirements of preoperative imaging of potential donors.
3. To learn about various postoperative complications in transplant recipients and role of diagnostic as well interventional radiology in managing them.

A-1080 11:00
Role of radiology in developing a living donor liver transplant programme
A.I. Rana: Islamabad/PK (attrana1@gmail.com)

A-1081 11:20
Interlude: Philanthropic cyber-knife facility in Pakistan
T. Mahmood: Karachi/PK

A-1082 11:25
Many faces of tuberculosis
U. Siddique: Peshawar/PK (ummarra_81@hotmail.com)
Tuberculosis (TB) is one of the biggest health issues, and in Pakistan, around 430,000 people contract TB with about 70,000 deaths attributed to it, every year. Pakistan ranks 5th globally among the 22 high TB burden countries, contributes an estimated 43% of the disease in the Eastern Mediterranean region and has the fourth highest prevalence of multidrug-resistant TB globally. TB affects anyone, regardless of age, gender or occupation, and can involve any organ of the body, e.g. respiratory, cardiac, central nervous, musculoskeletal, gastrointestinal and genitourinary systems. Timely diagnosis is paramount since delayed treatment leads to severe morbidity. Therefore radiological workup is necessary for diagnosis. TB can present with a variety of radiological findings. In complicated TB, owing to delayed diagnosis, clinical and radiologic features of TB may mimic malignancy. Although in many cases biopsy or culture specimens are required to make a definitive diagnosis, it is imperative that radiologists understand the typical distribution patterns and imaging manifestations of TB in various organ systems. The goal of this talk would be to delineate the classical imaging findings in many presentations of TB like a stroke with tuberculomas, sciatica in cases spine, chronic diarrhoea in ileoectal TB, constrictive pericarditis causing congestive hepatopathy, caval adenitis mimicking metastasis and vague pelvic pain in TB related to pelvic inflammatory disease. It is important to define a novel checklist to confirm TB presenting with different faces on imaging. Improvements in TB management can be made by raising the index of suspicion, having better knowledge of specific radiological patterns of disease and extensive screening studies.

Learning Objectives:
1. To learn about the prevalence of tuberculosis in Pakistan.
2. To understand the variety of radiological findings in tuberculosis, its diagnosis and complications.

11:45
Panel discussion: Why are oral cancer, chronic hepatitis and tuberculosis more common in Pakistan, and in which scenarios is the role of radiology crucial in the management of these diseases?

E³ - European Diploma Prep Session

E³ 1823
Breast
A-1083 10:30
Chairperson’s introduction
M.H. Fuchsjaeger: Graz/AT (michael.fuchsjaeger@medunigraz.at)
The European Diploma Prep Session on Breast aims to provide a preparation for future European Diploma in Radiology (EDIR) candidates. Topics are defined by the European Training Curriculum (ETC), and sessions are held in close cooperation with the European Board of Radiology (EBR). A short briefing on the EDIR examination as well as 2 sample questions (1 MRQ and 1 Short Case) and 1 sample case of the CORE examination (Clinically Oriented Reasoning Evaluation) will be presented in order to get the audience acquainted with the format. These three cases will include lesion detection and characterisation with mammography, ultrasound of the breast and breast MRI. The content of the session which will provide an overview on mammography, breast cancer diagnosis and interventions as well as multimodality imaging of the breast reflects ETC Level I - ‘first three years of learning’ and ETC Level II - ‘Fourth and fifth years of training (general radiologist standard)’ learning objectives.

Session Objectives:
1. To understand the methodological principles of mammography.
2. To learn the mammographic appearance of benign and malignant lesions of the breast.
3. To become familiar with the imaging appearance of benign and malignant breast lesions.

A-1084 10:36
A. Fundamentals of mammography
F. Kilbun-Toppin: Cambridge/UK
Mammography is the gold standard for breast cancer detection both in the symptomatic and screening population. This talk will first review the anatomy of the breast in relation to mammographic appearances, allowing accurate interpretation of imaging findings. The importance of mammographic technique will be discussed, highlighting the importance of both compression and positioning of the breast for detection of malignancy. The use of additional mammographic views will be reviewed with case examples, and important artefacts will be covered. Finally, the use of mammography in screening will be covered, with European recommendations for high-quality screening and recommendations for screening of high-risk populations.

The controversy about the use of mammographic screening regarding reduction in mortality and overdiagnosis and overtreatment will also be discussed.
Learning Objectives:
1. To understand the anatomy, normal variants and abnormalities of the female breast.
2. To become familiar with the technical aspects of diagnostic mammography, breast ultrasound and MRI.
3. To recognise the major imaging issues for common indications of breast magnetic resonance imaging.

A-1085 11:04

B. Breast cancer diagnosis and interventions

C. Van Oeneveld: Leuven/BE (chantal.vanongeval@uz.kuleuven.ac.be)

The breast composition and appearance of benign diseases and breast cancer at mammography, ultrasound and MRI will be discussed by the presentation of a correctly structured report of the imaging and interventional procedures. Personal and family history impacts the decisions made during an exam and should be reported. Description of the density according to ACR BI-RADS® lexicon (a,b,c,d) indicates the mammographic (Mx) sensitivity. Description of all Mx abnormalities (asymmetry, mass lesion, architectural distortion and microcalcifications) includes position, size, distance to the nipple, relation to other lesions in the breast. Palpable mass and/or Mx abnormality are investigated with ultrasound (US) of the whole breast and axillary (level 1,2,3) region. The US report includes breast composition, position, location, description of shape, margins, size of the lesion and evaluation of the lymph nodes(LN), and comparison with previous exams. Depending on the suspiciousness and type of lesion, additional core-needle or vacuum-assisted (ultrasound, stereotactic, MRI guided) biopsies need to be done (assessment categories BI-RADS®lexicon). If needed the lesion(s) should be marked with a clip. The three main indications of the additional use of breast magnetic resonance imaging (MRI) are the postoperative extent of disease evaluation in the ipsilateral and contralateral breast (i.e. lobular carcinoma, dense breast, young women, discordant Mx/US information), neo-adjuvant therapy evaluation, screening of gene mutation carriers. An assessment report integrating the findings on MX, US, MRI and the second look US, is preferred. Communication with the referring physician and surgeon on the radio-pathological results and eventually use pre-operative localisation technique is advised.

Learning Objectives:
1. To learn the different presentation of normal breast patterns and the appearance of common benign diseases and of breast cancer at mammography, ultrasound and MRI.
2. To understand principles and basic application of standardised diagnostic categorisation systems such as the ACR breast imaging reporting and data system (BI-RADS®).
3. To become familiar with indications, contraindications and technical aspects of image-guided interventional breast procedures (fine needle aspiration, core needle biopsy, vacuum-assisted biopsy, presurgical localisation).

A-1086 11:32

C. Advanced imaging of the female breast

E.M. Fallenberg: Munich/DE

"no abstract submitted"

Learning Objectives:
1. To understand the role of advanced imaging techniques in evaluation of the breast.
2. To use the added value of new techniques for lesion classification in mammography, ultrasound and MRI.
3. To recognise the major imaging issues for common indications of breast imaging.

E³ 25E

Acute trauma: patterns in the peripheral skeleton

Moderator:

Room C

E³ - The Beauty of Basic Knowledge: Pancreas

E³ 24E

Pancreatic adenocarcinoma mimickers

Moderator:

A. Ba-Salaham; Vienna/AT

A-1087 12:30

Autoimmune pancreatitis

R. Pozzi Mucelli; Verona/IT

Autoimmune pancreatitis (AIP) represents a distinct form of chronic pancreatitis. Histologically, AIP is characterised by a dense lymphoplasmacytic infiltrate of mainly CD4+ T lymphocytes and immunoglobulin G4 plasma cells located around the pancreatic ducts with mass-forming regions of fibrosis. AIP has been classified into focal or diffuse forms. The differential diagnosis between focal AIP and pancreatic adenocarcinoma represents a medical need since AIP responds to steroid therapy and surgery should be avoided. CT and MRI findings of AIP are characterised by an enlargement of the gland, either focal or diffuse. At CT the affected areas are isodense before contrast enhancement, hypodense (due to hypervascularity) in the arterial phase with the progressive increase in density in the venous and late phases following contrast administration. The involved areas appear hypointense on T1-weighted MR images, mild hyperintense on T2-weighted images with reduced diffusion at DWI. The lesion appears hypovascular during the arterial phase, with progressive enhancement and delayed retention of contrast in the venous and late phases. MRCP is able to assess the involvement of the pancreatic ductal system and these features are important in the differential diagnosis with the pancreatic adenocarcinoma in which the main pancreatic duct is characterised by single short stenosis, with marked dilation of the upstream ductal system. In cases in which AIP involves the head of the pancreas, dilatation of the common bile duct and the intrapancreatic ducts can be seen.

Learning Objectives:
1. To learn about autoimmune pancreatitis.
2. To understand imaging findings of pancreatic adenocarcinoma mimickers.
3. To appreciate differential diagnosis criteria with pancreatic adenocarcinoma.

A-1088 13:00

Paraduodenal pancreatitis

G. Morana: Treviso/IT (gmorana61@gmail.com)

Paraduodenal pancreatitis is a form of chronic pancreatitis involving the duodenal wall in the region of the minor papilla and is considered a distinct entity with peculiar pathological findings. The frequent presence of the so-called heterotopic pancreatic tissue in the duodenal wall may reflect the incomplete involution of the dorsal pancreas in this region and contribute to an obstructing lesion of the outflow in this area. Histologically there is thickening and scarring of the duodenal wall that extends to the adjacent pancreatic tissue and/or cystic changes in the duodenal wall. Occasionally some of the cysts may have a diameter of several centimetres. The clinical profile of PP is middle-aged men, heavy drinkers and smokers with painful pancreatitis, associated with vomiting and weight loss due to duodenal stenosis and impaired motility. The most characteristic imaging finding at CT and MRI is a sheet-like mass between the head of the pancreas and the C-loop of the duodenum (the so-called groove). The mass is hypodense/hypointense to the pancreatic parenchyma. Contrast-enhanced dynamic images show a delayed and progressive enhancement in the late phase that reflects the fibrous nature of the tissue. Cystic lesions are well depicted in the groove or the duodenal wall, especially in T2-weighted images. In early stage MPD is normal; in advanced cases, pancreatic head or entire gland are involved, showing findings of chronic obstructive pancreatitis, with ductal dilatation. There is an absence of vascular encasement, with a leftward displacement of the gastroduodenal artery without obstruction.

Learning Objectives:
1. To learn about autoimmune paraduodenal pancreatitis.
2. To understand imaging findings of paraduodenal pancreatitis.
3. To appreciate differential diagnosis criteria with pancreatic adenocarcinoma.
can allow the mechanism of injury to be deduced. This lecture will focus on classical patterns of acute trauma in the peripheral skeleton.

Learning Objectives:
1. To become familiar with the imaging manifestations of common important injuries in the upper and lower limb.
2. To understand the underlying mechanism that result in combination of injuries.
3. To learn how to best employ imaging modalities in their diagnosis.

14:00 - 15:30 Room A

E³ - ECR Academies: Interactive Teaching

Session for Young (and not so Young) Radiologists

E³ 1921

Paediatric brain imaging

A-1101 14:00

A. Head and neck emergencies in children

A. **Rossi; Genoa/IT** (andrearossi@gaslini.org)

Children presenting with acute disease involving the head and neck often display an aspecific clinical picture characterised by pain, fever, malaise, and local or generalised swelling. Regional involvement ranges from the orbits to the paranasal sinuses, temporal bone, skull base, cranio cervical junction, upper airway, and neck. Emergent presentations in the head and neck compartment can be grossly categorised into traumatic and non-traumatic, the latter comprising infectious, inflammatory, congenital, and neoplastic conditions. Imaging studies play a fundamental role in the diagnosis of these conditions and provide a basis for subsequent management, including the identification of situations that may dictate immediate surgical treatment. The choice of the most appropriate imaging method is significantly influenced by the patient’s clinical conditions and stability (or lack thereof). Although both ultrasound and X-rays often are used, this presentation will mostly focus on findings at CT and MRI.

Learning Objectives:
1. To become familiar with the different entities.
2. To identify the key imaging findings.

A-1102 14:45

B. Acute neurological child beyond trauma

A. **Sánchez-Montaño; Barcelona/ES** (anchelsanchezmed@gmail.com)

This presentation reviews the brain imaging findings of the most common acute neurological non-traumatic disorders in pediatric patients. From the clinical point of view, a wide differential diagnosis of diseases that can occur abruptly in the emergency room is discussed. The most frequent acute symptomatology and manifestations are seizures, headache, irritability, lethargy, paresis, fever, nausea and vomiting. Beyond trauma, there are other entities to consider when a pediatric patient has an acute neurological clinical presentation. Among them, vascular aetiology stands out, whether in the form of an arterial stroke, venous thrombosis or vascular malformation. Other important causes are infections, drugs and their side effects, tumours, metabolic and demyelinating diseases. Neuroimaging techniques include computed tomography (CT), magnetic resonance (MR) and, even cerebral ultrasound in neonates and infants. The combination of basic neuroimaging methods and other advanced techniques such as angiographic and perfusion studies, allow proper differential diagnosis, correct management of the acute neurological onset in children and its subsequent follow-up.

Learning Objectives:
1. To become familiar with the most common cause of acute neurological emergencies.
2. To learn the imaging criteria for differentiation.
Scientific Sessions (SS)
My Thesis in 3 Minutes (MY)
Clinical Trials in Radiology (CT)

Presentation numbers are prefixed by the letter B.

Sessions and abstracts are listed by days.

Wednesday, February 27 186
Thursday, February 28 281
Friday, March 1 367
Saturday, March 2 413
Sunday, March 3 489
Wednesday, February 27
Interventional Radiology

SS 109
Vascular interventions in visceral arteries and veins (part 1)

Moderators:
M. Tsitskari; Athens/GR
N.N.

B-0001 08:30
Quantification of perfusion reduction by using 2D parametric parenchymal blood flow following partial splenic embolisation in patients with hypersplenism
T. Meine1, S.K. Maschke1, M. Kirstein1, J. Rene1, T. Werncke1, C. Dewald1, F. Wacker1, B.C. Meyer1, J.B. Hinrichs1, Hannover/DE; 2Berlin/DE
(Meine.Timo@mhh-hannover.de)

Purpose: To analyze the feasibility of 2D Parametric Parenchymal Blood Flow (2D-PPBF) for the quantification of perfusion reduction following partial splenic embolization (PSE).

Methods and Materials: 15 PSE procedures in 14 patients with hypersplenism were included (2015-2018). Outcome was measured via platelet count before and after PSE. To quantify changes in splenic perfusion following PSE using 2D-PPBF, the acquired digital subtraction angiography (DSA) series were post-processed. A reference region-of-interest (ROI) in the splenic artery and a target ROI outlining the embolization territory of the splenic tissue were placed in corresponding areas on DSA pre- and post-PSE. The Wash-In-Rate (WIR), the 50%-to-Peak (Peak50s), the Arrival-To-Peak (PeakArr), the Mean-Transit-Time (MTT) and the Area-Under-the-Curve-per-ROI-Area (AUC) were assessed and the ratios to the reference ROI were calculated. Comparisons between pre- and post-embolisation data were made using a Wilcoxon signed-rank test.

Results: Platelet count increased significantly following PSE from 41.200 ± 19.468 to 103.066 ± 70.350 platelets/microliter (p<0.02). In the embolized splenic territory, the pre-post-embolisation 2D-PPBF parameter changed significantly: WIR 1.05 ± 2.18 / 0.09 ± 0.07 (p<0.03), Peak50s 3.30 ± 0.88 / 4.28 ± 1.18 (p<0.01), PeakArr 1.95 ± 0.77 / 1.30 ± 1.45 (p<0.027), MTT 4.82 ± 1.23/ 6.39 ± 1.79 (p<0.005) and AUC 0.81 ± 0.79 / 0.13 ± 0.08 (p<0.01).

Conclusion: 2D-PPBF is an objective approach to quantify the perfusion reduction of embolized splenic tissue following PSE. It may be used to assess angiographic outcome and set angiographic endpoints for PSE.

B-0002 08:38
Role of multidetector CE-CT before transcatheter endovascular embolisation in active arterial bleedings
A. Borzelli1, A. Paladini1, F. Amoedo1, E. Cavaglìa1, R. Niola1, 2Napoli/IT; 3Novara/IT; (antonio.borzelli@libero.it)

Purpose: Identify the role of CE-CT in active bleedings' detection according to clinical evidence and bioumoral parameters of patients.

Methods and Materials: 793 CE-CT cases were performed between June 2014 and June 2017 for suspected active bleeding (median patient age 45; 902 M, 578 F) in emergency setting, due to clinical and laboratory evidence of serum haemoglobin value lowering.

Results: In 793 CE-CT cases revealed active bleeding followed by angiography. In the last 687 cases, CT was negative, but due to clinical and laboratory values worsening, in 89 of them angiography was performed, revealing active bleeding in 65 patients; the latter owing to pseudoaneurysms, intracavitary bleedings or through percutaneous drainages. Among the 793 CT-positive patients, in 64, angiography did not reveal active bleedings and 28 of these were patients affected by DIC or wide small and diffuse bleedings, while in 36, CT revealed small active bleedings not detectable by the following angiography. In the last year (June 2017-February 2018) we considered CT-false-positive patients and in 31 of them angiography was not performed for wide small and diffuse bleedings or for small bleedings detected by CT, preferring clinical and laboratoryist follow-up. In 2 cases, owing to worsening of symptoms and laboratory parameters, angiography was performed, showing active bleeding followed by successful endovascular embolisation.

Conclusion: Multidetector CE-CT showed elevated accuracy in revealing active bleedings, but a correct assessment of clinical and laboratory conditions of patients is essential in the presence of mismatch between imaging findings and clinical conditions. In particular, in cases of wide small and diffuse bleedings and very small focal bleedings, only strict clinical and laboratory follow-up is appropriate, to evaluate later the necessity of diremnt angiography.
Methods and Materials: We performed a retrospective analysis of all patients, who underwent a stent implantation in the celiac trunk from 01/2010 to 12/2017. The data on the indication to the intervention, the access, the material used, the stent model and the follow-up were collected.

Results: In 34 patients was performed a stent implantation into the celiac trunk. The antegrade approach was successful in 30 patients (88%). An antegrade passage of the occlusion or stenosis was not possible in 4 (12%) patients. In these cases, a SF catheter was placed in the proximal superior mesenteric artery. Then the stenosis could be overcome with 2.4 F microcatheter and micro-wire. Subsequently, the tip of the micro-wire was captured in the aorta with a snare and pulled out in the femoral introducer sheath with a rendezvous technique and then used as a guide for the antegrade implantation of a balloon-expandable stent into the celiac trunk.

Conclusion: Retrograde access to the celiac trunk by pancreatocoduodenal arcade represents a valid alternative if antegrade access is not possible.

B-0006 09:10
High-flow priapism: colour Doppler findings and embolisation
G. De Magistris, F. Pane, F. Corvino, F. Giurazza, M. Coppola, F. Amodio, M. Silvestre, E. Cavaglia, R. Nola; Naples/IT (giuseppedemagistris74@gmail.com)

Purpose: To retrospectively evaluate the efficacy of colourDoppler detectability and the safety of transcatheter arterial Embolisation for High-flow Priapism

Methods and Materials: Over a 8-year period, 10 patients (mean age 32 years; range 13-65 years) admitted to our department with traumatic high-flow priapism, were reviewed. Patients were evaluated with clinical and imaging findings (colorDoppler ultrasonography and Angiography). Diagnostic Angiography demonstrated fistulas between the cavernosal artery and the corpora cavernosa, these communications were embolized with coils and gelatin sponge. A colorDoppler follow-up was performed at 2 weeks and 3-6 months after procedure.

Results: At the admittance, colorDoppler detected pseuodaneurysms/fistulas in 9 patients. In 8 of 10 patients a single embolization was sufficient for complete resolution, 2 patients had recurrence of Priapism (confirmed by colorDoppler imaging). In these patients, patients were reviewed immediately and embolization was performed with coils at 1-3 months after procedure. 9 patients were embolized with coils and one with sponge. At 3-6 months follow-up, colorDoppler US confirmed the absence of fistula and procedure. 9 patients were embolized with coils and 1 with sponge. Technical success was obtained in 92% of cases. In 8 of 10 patients a single embolization was sufficient for complete resolution, 2 patients had recurrence of Priapism (confirmed by colorDoppler imaging). In these patients, patients were reviewed immediately and embolization was performed with coils at 1-3 months after procedure.

Conclusion: ColorDoppler is useful to detect fistulas and to monitor the effectiveness of embolization. Superselective transcatheter embolization of the internal pudenda artery is efficacy, compared to other techniques, and has a high rate of preserving erectile function.

B-0007 09:18
Role of c-arm computed tomography-assisted adrenal vein sampling in the assessment of non-functioning hypersecretion syndromes
A. Pisano, M. Tipaldi, G. Orgera, F. Laurino, A. Laghi, M. Rossi; Rome/IT (andrea pisano21@gmail.com)

Purpose: Adrenal Vein Sampling (AVS) is a gold standard procedure in the diagnostic work up of adrenal hypersecretion syndromes. However, it is burdened by high failure rates due to technical issues and in particular for the right vein catheterization. Therefore, we investigated the impact of c-Arm Computed Tomography-Assisted AVS (C-AVS) in comparison to standard AVS.

Methods and Materials: From September 2010 to January 2018, a total of 40 procedures were retrospectively reviewed: 23 AVS (group A) and 17 C-AVS (group B). Overall, 36 patients (90%) had primary hyperaldosteronism clinical features, and 4(10%) suffered from ACTH-independent Cushing's Syndrome. Technical success was obtained in 52.2% of group A (12pt), while in 47.8% of the cases sampling did not prove diagnostic. On the other hand technical success was achieved in 82.4% of group B (14pt), whereas 11.7% of them did not meet SI criteria and 1 procedure was aborted due to contrast-media reaction. Technical success was significantly higher in group B than in group A (82.4% vs. 52.2%; p-value <0.05). There was no procedure-related complication.

Conclusion: Despite limited data, C-AVS improved the overall success rate of AVS, as it proves crucial for an optimal catheterization of adrenal veins.

B-0008 09:26
Long-term follow-up of giant visceral artery aneurysms endovascular treatment: a single centre experience
M. Tipaldi1, M. Pignatelli2, F. Laurino2, A. Laghi1, M. Rossi1; 1Rome/IT, 2Eboli/IT (tipaldd.andrea@gmail.com)

Purpose: Purpose of this study is to assess the immediate and long-term safety and effectiveness of Giant visceral artery aneurysms (visceral aneurysm> 5cm) endovascular treatment in a single center case series.

Methods and Materials: Eight cases of GVAAs (7M, 1F) have been treated in our unit from January 2006 to June 2017, and were retrospectively reviewed. Embolization was performed with coils and/or fragment of guidewires and/or embolic agents and/or stents. Technical success was defined as the correct exclusion of the sac at the last angiogram, while clinical success was defined as the complete relieve of clinical symptoms, if previously present. Follow-up was performed with CT angiography at 1.3, 12 and 24 months or phone survey if patients were referred to other centers.

Results: Technical and clinical success were obtained in 100% of the cases. One minor complication, consisting in an asymptomatic ischaemia of the spleen, and one major complication, consisting in a 4cm splenic abscess concurrently with a small infarctual area, occurred. The median time follow-up was 48 months (range 6 to 84 months) and demonstrated the correct exclusion of the sac in 100% of the cases. One patient died five years after the treatment for causes not related to the procedure.

Conclusion: The first line treatment of visceral artery aneurysms is, nowadays, the endovascular one rather than open surgery. Our series have shown that this indication, thanks to the low morbidity and mortality rates associated with, should be expanded even for GVAAs.

B-0009 09:34
Transjugular portal vein stenting: an original approach for palliative treatment of portal vein stenosis/occlusion in neoplastic patients
A. Mazzaro1, F.L. Gatti1, R. Bettini1, N. Mandruzzato2, A. Contro2, G. Mansueto; 1Verona/IT, 2Trieste/IT (andrea.mazzaro1558@gmail.com)

Purpose: To evaluate risks and benefits of portal vein stenting as a palliative procedure in a pool of oncologic patients.

Methods and Materials: Between April 2014 and August 2018 we treated 12 patients, with neoplastic portal vein stenosis/occlusion performing portal vein stenting. In 5 of them was used a transhepatic access and in 7 a transjugular access. Portal stenting has less than 200 cases reported in the literature, most of them with transhepatic access. Transjugular access is an original and unique variant. To evaluate the procedure we considered technical and anatomical success, procedural complications and mortality, 30 days mortality, modifications in clinical and laboratory parameters (haemoglobin, haematocrit, albumin, ALT, bilirubin and INR). Technical success was assessed with intra-procedural portography while complications and anatomical success with follow-up MCT.

Results: In all the procedures technical and anatomical success was achieved with no intra procedural or early mortality. Two patients treated with transhepatic access developed complications (hepatic abscess and hepatic haematoma). No patient with transjugular access developed complications. All patients showed improvement of clinical conditions and of laboratory parameters (four or more of the six parameters considered) in 30 days, even those who developed complications.

Conclusion: Portal vein stenting in oncologic patients was performed safely, it resolved portal vein's stenosis/occlusion leading to a relief of portal hypertension-related symptoms and an improvement in the quality of life. In our experience transjugular access is less invasive and reduces the risk of hepatic bleeding, however it has to be performed by TIPS procedure expert operators.

B-0010 09:42
Use of Onyx (ethylene vinyl alcohol copolymer) in haemorrhage embolisation procedures
R. Marcello, G. Assegnati, A. Di Blasi, F. Cortese, D. Konda, E. Pofi; Rome/IT (robermarcello@gmail.com)

Purpose: The purpose of our study was the evaluation of the effectiveness and reliability of the “Onyx” device (ethylene vinyl alcohol copolymer) in the treatment of bleeding by trans-catheter embolization technique.

Methods and Materials: 14 Patients in our retrospective analysis underwent transcatheter embolization for bleeding control. All patients underwent diagnostic angiography with trans-femoral access to confirm the findings obtained with US and CT-MPRV investigation work-up. The coaxial technique was always applied in performing all procedures with a 5 Fr diagnostic catheter (Schatz, Boston Scientific, USA) combined with a micro-catheter 2.7 Fr. (Progreat Terumo, JAP). In all cases “Onyx” (ethylene vinyl alcohol copolymer) was used as embolization material. The source of the bleeding was duodenal ulcer in 5 cases, 2 gluteal haematomas, 1 haemorrhoidal pseudoaneurysm, 2 intraparenchymal renal aneurysms in one case, 1 vascular malformation of the gastric fund, 1 haemorrhage after hip prosthetic replacement, 1 renal
angiomyolipoma, 1 abdominal wall haematoma and 1 retroperitoneal haematoma.

Results: Prompt cessation of bleeding was achieved in all patients. No immediate or late complications were observed with regards to all procedures carried out. No unwanted embolization of other vascular areas was observed.

Conclusion: According to our retrospective analysis, the reliability and effectiveness of "Onyx" (ethylene vinyl alcohol copolymer) as embolization material emerged during many bleeding trans-catheter embolization procedures in different anatomical sites.

B-0011 09:50
Tips and tricks of emergency TIPS in patients affected by severe portal hypertension
A. Borzelli¹, A. Paladin¹, F. Amodio¹, E. Cavaglia¹, R. Niola¹; ¹Naples/IT, ²Novara/IT (antonio.borzelli@libero.it)

Purpose: To evaluate the main causes of failure in TIPS performed in emergency setting in critical patients affected by severe portal hypertension.

Methods and Materials: Between Jan 2014 and Jan 2018, we retrospectively considered 72 TIPS performed in emergency setting in critical patients (median patient age 52; 45 M, 27 F) with severe portal hypertension and affected by variceal bleeding (42), refractory ascites with hepatorenal syndrome (15)and hepatic coma (15). In all cases, we used an e-PTFE-covered stent and in all cases we employed a US-assisted technique to reach the portal vein system once catheterised one of the hepatic veins.

Results: In 12 cases, TIPS was not possible. In 7 patients, we observed a marked distortion in liver anatomy due to chronic liver disease with loss of normal anatomical relationship between portal vein system and hepatic veins, which were too thin. In 3 cases, due to anatomic distortion, it was possible to reach only a small peripheral portal vessel, with subsequent impossibility to make the shunt; in 1 case, we noticed a iatrogenic lesion of portal vein during the procedure with subsequent thrombosis of the stent; in 1 case, malpositioning of the stent with early thrombosis not solved by proximal and distal extension of the shunt.

Conclusions: The main cause of technical success of emergency TIPS performed in critical patients with severe portal vein hypertension is the marked anatomical distortion of the liver, in particular, its vascular anatomy. It is necessary to reduce the failure rate, to employ a US-assisted approach and, if required, a percutaneous sentinel catheter into the main branch of portal vein, to guide the radiologist during the procedure.

Results:

10:30 - 12:00 Room B

SS 205
Intelligent dose and quality management

Artificial Intelligence and Machine Learning

Moderators:
M. Fatehi; Tehran/IR
V. Suomi; Turku/FI

B-0012 10:30
Application of artificial intelligence-based image optimisation algorithm in aorta CTA with low tube voltage and reduced contrast medium volume
M. Wang; Y. Wang, Y. Wang, M. Yu, M. Wang, Z. Jin; Beijing/CN (huywjm@163.com)

Purpose: To evaluate the impact of artificial intelligence (AI)-based image optimization algorithm on improving aorta computed tomography angiography (CTA) image quality (IQ) at 80 kVp tube voltage and 40 mL contrast medium (CM) compared with a conventional iterative reconstruction (IR) algorithm at 120 kVp. The CT dose of the IR algorithm was compared with the dose delivered by the DDE algorithm. The DDE algorithm was trained with a dedicated dose monitoring software (DoseWatch, GE Healthcare) to achieve a target DRL for the thorax-abdomen-pelvis.

Methods and Materials: Sixty patients referred for aorta CTA examination were assigned to one of two groups at random on NeuViz 128 CT. Group A underwent an 80 kVp protocol with 40 mL CM (320 mg I/mL) and divided into two subgroups according to reconstruction algorithm (IR for group A1 and DDE for group A2). Group B was scanned with a 120 kVp protocol with 100 mL CM (320 mg I/mL) and further AI-based image optimization for group A2. Group B was scanned with the standard 120 kVp, 80 mL CM and IR algorithm. The quantitative assessment of IQ included aorta attenuation, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). A five-point scale (5-excellent, 1-low) was used by two radiologists independently for qualitative image analysis.

Results: The image noise was significantly reduced while SNR and CNR were significantly increased in the order of group A1, B and A2 (all P < 0.001). Compared to group B, the subjective IQ score of group A1 was significantly lower (P = 0.03) while that of group A2 has no significant difference (P = 0.928). The effective dose and CM volume of group A were reduced by 79.18% and 50%, respectively than that of group B.

Conclusion: The AI-based image optimization for aorta CTA with low kV and reduced CM produced IQ comparable to conventional aortic CTA protocol.

B-0013 10:38
Real-time patient-specific CT dose estimation for single- and dual-source CT using a deep convolutional neural network
J. Maier, S. Dorn, E. Eulig, S. Sawall, M. Kachelrieß; Heidelberg/DE (joscha.maier@dkfz.de)

Purpose: Common dosimetric quantities in CT such as the CTDIvol or the DLP do not appropriately represent the actual patient dose. More sophisticated methods are not real-time capable. Therefore, we propose the deep dose estimation (DDE), a deep learning-based approach to estimate patient dose distributions in real time.

Methods and Materials: The gold standard to calculate patient-specific dose distributions is to perform a Monte Carlo (MC) simulation that models the physics of CT dose deposition. Being computationally expensive, MC cannot be applied in real time. To overcome this drawback without losing accuracy we developed DDE: a deep convolutional network for CT dose estimation. DDE uses a U-net architecture that takes a two-channel input consisting of a CT volume and a first-order dose estimate volume, which can be calculated analytically at the cost of a forward projection. Using this input, DDE is trained to reproduce MC dose distributions. Here, we generalized DDE to dual-source CT and demonstrate its potential to derive accurate dose distributions.

Results: Applied to test data, DDE yields dose estimates that differ by less than 3% on average from the ground truth MC simulation. Our experiments demonstrate that DDE applies similarly to single- and dual-source scans, different anatomical regions, different shaped filters, different tube voltages and tube currents.

Conclusion: This study demonstrates the potential of deep convolutional neural networks to derive accurate CT dose estimates. Once trained, a 256×256×48 voxel volume can be processed with DDE in 250 ms while achieving the same accuracy as MC simulations.

B-0014 10:46
Dose team: an estimate of radiation dose reference levels for CT exams
M. Montesano, M. Rengo, S. Badia, N. Panvini, S. Picchia, D. Bellini, I. Carbone, A. Laghi; Latina/IT (marta.mon@hotmail.it)

Purpose: The aim of the study was to identify radiation dose reference levels for CT exams in our institution.

Methods and Materials: A Dose team was established (two radiologists, a TSRM, a radiology resident, the risk manager, the medical director and the medical physicist) whose first objective was to evaluate the quality of the images on 1000 oncological follow-up and to assess the amount of dose delivered through dedicated dose monitoring software (DoseWatch, GE Healthcare). The Dose length product (DLP) has been evaluated for the different anatomical regions for head, neck, thorax, abdomen-pelvis and thorax-abdomen-pelvis. The quality of the images in the different anatomical districts was subsequently assessed.

Results: The quantitative analysis allowed to identify the average DLP for the different anatomical districts. The mean dose for the different anatomical districts was for the brain (570.35 mGy-cm ± 121.32), for the neck (211.58 mGy-cm ± 93.12), for the thorax (160.91 mGy-cm ± 41.81), for the abdomen-pelvis (425.93 mGy-cm ± 122.90) and for the thorax-abdomen-pelvis (685.89 mGy-cm ± 240.04). In all anatomical districts a good image quality was obtained.

Conclusion: The dose monitoring system and the establishment of a Dose team made it possible to identify radiation dose reference levels for CT for individual anatomical districts.

B-0015 10:54
Clinical indications for computer tomography (CT) diagnostic reference levels (DRLs)
S. Yu, P. Chu; S. Smith-Bindman; San Francisco, CA/US (bill.chu@ucsf.edu)

Purpose: To contribute to the creation of CT radiation dose benchmarks for specific clinical indications for adults (>15 years). We report the distribution of radiation dose metrics based on CT scans submitted in 2016-2017 to a large international dose registry comprised of 160 institutions from 7 countries. The registry was supported through the US National Institutes of Health (NIH) and Patient Centered Outcomes Research Institute (PCORI).

Methods and Materials: We describe median (target) and 75th percentile (benchmark) doses for CT dose index volume (CTDvold) and dose length product (DLP) by three clinical indications from the European Study on Clinical DRLs (EUCLID).

Results: Sample sizes: sinustitis N=28,946, cervical spine/trauma N=83,919, pulmonary embolism N=83,882. CTDvold target (50%) and benchmark (75%) values (in mGy), respectively: sinustitis (14 and 20), cervical spine/trauma (18 and 26), pulmonary embolism (10 and 15). Corresponding DLP values (in mGy-cm) were: sinustitis (235 and 339), cervical spine/trauma (878 and 1390).
pulmonary embolism (388 and 596). Sinusitis scans were 68% lower in both CTDiVol and DLP compared to routine head scans. Pulmonary embolism scans were 23% higher in CTDiVol and 8% higher in DLP compared to routine chest scans.

Conclusion: Dosimetry metrics from large multi-center studies can help create representative DRLs that can be used for dose optimization and institutional evaluation of CT radiation doses specifically for clinical indications to know if their doses routinely exceed these benchmarks. Having clinical indication DRLs at institutions can lead to indication-specific dose-optimized protocols.

Methods and Materials: We used 567 coronary CT scans from the randomized DISCHARGE trial across 26 sites. We initially applied the Canny edge detection and then used Hough transform to fit circles with pre-specified radii which should correspond to the aorta. Additional heuristics regarding the expected position along or aorta were also applied to eliminated obvious errors. Thereafter density and noise were measured within the circles.

Results: In evaluation of automated measurements that differ from the manual measurements up to a certain threshold, were marked as correct. As such, noise difference tolerances of 5, 10 and 15 HUs led to a noise accuracy of 47%, 67% and 78%, respectively. Similarly, density difference tolerances of 25, 50 and 75 HUs led to a density accuracy of 71%, 90% and 98%. Finally, the combined (noise,density) difference tolerances of (5,25), (10,50) and (15,75) led to accuracies of 37%, 61% and 75%.

Conclusion: An automatic method for quality assurance of noise and vessel density in coronary CT angiography was feasible and has the potential to reduce time and manual effort.

Author Disclosures:

M. Dewey: Author; editor of Cardiac CT, published by Springer, and offers hands-on workshops on CT imaging (www.ct-kurs.de). Research/Grant Support: FP7 Program of the European Commission for the randomized multicenter DISCHARGE trial (603268-2, HEALTH-2012.2.4.-2), grant support from the Heisenberg Program of the DFG (DE 1361/14-1), Digital Health Accelerator of the Berlin Institute of Health, Institutional master research agreements exist with Siemens Medical Solutions, General Electric, Philips Medical Systems, and Toshiba Medical Systems.. Speaker; lecture fees from Canon Medical Systems, Guerbet, Cardiac MR Academy Berlin, and Bayer.

B-0017 11:10

Impact of ESR iGuide in the diagnostic workflow of paediatric patients with abdominal pain

M. Gabelloni, C.A. D’Amore, R. Morganti, L. Faggioni, C. Spinelli, E. Neri; PsA IT (mga@mbelloni@srmb.org)

Purpose: To determine the impact of the ESR iGuide clinical decision support system in reducing the rate of inappropriate emergency paediatric diagnostic examinations.

Methods and Materials: 352 paediatric patients referred to Emergency Department of BLINDED Hospital between 2011 and 2016 were retrospectively evaluated. All patients had presented with abdominal pain. Clinical data were entered into the ESR iGuide system to compare appropriateness scores of suggested versus actually performed examinations, and the agreement between them was assessed using Cohen’s k coefficient.

Results: Out of all ultrasound examinations performed, only 70% (255/352) were considered appropriate by ESR iGuide. Computed tomography (CT) was suggested as appropriate in 70% (249/352) of patients, but only 2 of them went ahead with it. Two other patients underwent CT, although it would have been designated as inappropriate according to ESR iGuide. Abdominal X-ray was suggested as appropriate in 263 patients and performed in 18 of them. Four other patients underwent abdominal X-ray when suggested as inappropriate by ESR iGuide. Finally, 9 patients underwent chest X-ray, which was suggested as appropriate by ESR iGuide in 5 patients. Magnetic resonance imaging and scintigraphy were not assessed because unavailable in our emergency department. The agreement between imaging examinations suggested by ESR iGuide and those actually performed was poor (Cohen’s k less than 0.2).

Conclusion: Strict adherence to the ESR iGuide system would lead to a significant decrease in the number of emergency paediatric CT examinations performed instead of ultrasound studies, potentially resulting in higher patient radiation exposure and overall costs.

B-0018 11:18

Semi-supervised multi-to-one style transfer to improve the quality of CT images

B. Ren1, L. Lü2, S. Wang3, C. Xia1, Amherst, MA/US; 2Beijing/CHN (xchen@infervision.com)

Purpose: The quality of CT images depends on various factors, such as radiation dose, convolution kernel and resolution. CNN-based methods are sensitive to small variations of image quality, i.e., small perturbations in noise level, texture, contrast, brightness, etc.

Methods and Materials: To address this problem, we proposed an image standardisation method which is capable of transforming images from different domains to one target domain, without its domain information and without changing its content. The model first decomposes an input image into content and style latent codes, which are independent of one another. The codes are able to reconstruct the original image or standardize the image to the target domain by replacing the style code. For the target domain, we reduced its style code variance and took the mean of style codes for standardisation. A domain discriminator was also applied to determine whether two images belong to the same domain.

Results: To verify effectiveness of the proposed method, our model was trained in a semi-supervised manner. For training, each supervised step updated the model by minimizing the loss between 261 hospital followed by one unsupervised step which learns from unpaired data provided by Infervision. With the same experimental setting, the false positive (fp/n) was reduced to 2.17 from 2.62 after standardisation on 310 test cases, while recall only decreases slightly from 82.4% to 80.9%.

Conclusion: In our attempt to address the issue by a cycleGAN-inspired unsupervised model, results have shown a significant improvement of image quality and detection performance on the transformed images.

Author Disclosures:

L. Li: Employee; Employee of Infervision.

S. Wang: Founder; Co-founder of Infervision.

C. Xia: Board Member; Board Member of Infervision.

B-0019 11:26

Protocol repetition in whole-body MR imaging within a large population-based cohort study: behavior of radiologic technologists and potential of automated image quality assessment

C. Schupfen1, R. von Krüchten1, J.G. Hirsch1, D.C. Hoinikas1, S. Selder2, C. von Stackelberg1, H.-U. Kauczor3, F. Bamberg4, C.L. Schlitt5; 1Heidelberg/DE, 2Bremen/DE, 3Munich/DE, 4Freiburg/DE

Purpose: We aim to assess the frequency of protocol repetition in whole-body MR imaging within the multi-center German National Cohort (NAKO) in consideration of local, staff-dependent and technical influences. We further intend to determine its effect on scan time, and whether or not automated image quality assessment is able to predict protocol repetition.

Methods and Materials: All subjects enrolled in the NAKO study until December 31, 2016, were included in the analysis (n=11,347). Whole-body imaging was performed at five different sites, employing a uniform set of twelve protocols. All acquisitions were carried out by trained radiologic technologists (RT), whose decisions for protocol repetition were made without supervision or technological advice. Image quality parameters were derived automatically from the acquired images.

Results: RT acquired at least one repeat protocol in 12% (n=1,365) of subjects. The frequency of repetition differed across protocols (p<0.0001) as well as across sites (range: 5.28%-24.34%, p<0.0001), and varied over time (p<0.0001). The mean total scan time of 62.6min increased by 4.8min (95%CI: 4.5-5.2min) in subjects with protocol repetition(s). Several automatically derived image quality parameters were retrospectively predictive for protocol repetition, particularly image sharpness and signal-to-noise ratio, although their predictive value was not uniform for all protocols.

Conclusion: MR protocol repetitions are remarkably prevalent even in the highly standardized and static setting of a large cohort study. Automated image quality assessment shows predictive value for the RT’s decision to perform protocol repetitions and has potential to improve time- and cost-efficiency of MR imaging studies.

B-0020 11:34

Preliminary results of a neural network for the automatic detection of chest X-ray incorrect exposure

R. Cesare; Portogruaro/IT (robby_82@hotmail.it)

Purpose: To assess the accuracy of a convolutional neural network (CNN) for the automatic detection of incorrect underexposure in chest X-ray.

Methods and Materials: A dataset of n=260 chest X-rays was evaluated, n=128 X-rays with correct exposure and n=132 with incorrect x-ray exposure (underexposure). For the neural network training we used 203 X-rays (100 correctly exposed X-rays + 103 underexposed X-rays) using inception_v3 architecture. Subsequently, testing was performed with the remaining images (28 correctly exposed X-rays + 29 underexposed X-rays). Then sensitivity,
B-0021 11:42
Patient-centric initiative to reduce radiation dose to paediatric patients in computer tomography for improved patient safety in a tertiary care facility in Pakistan
M. Yusuf, Karachi/PA (mohammad.yusuf@aku.edu)

Purpose: An initiative to reduce radiation dose to pediatric patients during Computed Tomography’s chest and abdomen related procedures based on international best practices for improved safety.

Methods and Materials: An assessment was carried out to determine the level of radiation dose being employed for pediatric patients for CT chest and abdomen examinations and was also compared to the international recommendations. The Informatics team covered all domains from technical to educational to address the higher radiation dose. Internationally defined best practices and radiation dose reference levels were identified. CT modalities were configured for appropriate reduced dose protocols, technologists were educated, radiologists were consulted on the image quality and reduced radiation dosage, an in-house system was developed to extract, process and archive the radiation dose results of each procedure and finally produce meaningful reports.

Results: The initiative managed to reduce the pediatric Chest and Abdomen procedure’s average CT radiation doses by 43% and 62% respectively compared to the average radiation dose that was delivered in procedures prior to the initiative. This also resulted in bringing the dose levels within the reference levels defined by international bodies. For comparison, ICRP publication 87 reference levels were utilized.

Conclusion: Adopting a patient centric approach in a proactive manner, the team was able to assess and identify an area that had a direct bearing on patient care and was able to plan and implement an environment that provided significant reduction in the radiation dose being administered to pediatric patients during CT chest and abdomen examinations.

B-0022 11:50
Quality assessment of structured multi-parametric MRI reports of the prostate based on RADLEX mapping of urological key information content
M.E. Maros1, F. Siegel1, B. Kämpgen1, P. Sodmann2, W. Sommer2, S.O. Schenker1, T. Henzler1, C. Groden1, H. Wenz1,1, Mannheim/DE, 2Rimpal/DE, 3Munich/DE (matt.maros@gmail.com)

Purpose: The Prostate Imaging Reporting and Data System (PI-RADS v2) was developed to provide imaging and reporting standards of multi-parametric prostate MRI (mpMRI). Urologist rely heavily on radiological reports when planning prostate biopsies. We investigated whether 1) mapping urologically relevant key content to RADLEX terms might be feasible and 2) if radiological report quality with regard to clinical usability 2) and compared it to a fully-automated guideline-based quality assessment.

Methods and Materials: A single center retrospective cohort study of 1028 consecutive patients (01/2017-08/2018; mean age 67.2, range 22-89 yrs) with suspected prostate pathology and mpMRI were retrieved from local RIS archives. All reports were generated using a structured reporting tool (www.smart-radiology.com). Independent blinded radiologist reviewed 299 mpMRI reports and defined biopsy relevant key information content (KIC). An automatic, cross-lingual mapping of German reports, clinical KIC, and PI-RADSv2 guideline to RADLEX terms was performed using a proprietary information extraction software (www.empolis.com). Then these RADLEX converted texts were compared using free web-tool (radreport-query.com) generated cosine similarity index and Wilcoxon rank-sum test statistics.

Results: RADLEX mapping of urologist-defined key content identified 267 while PI-RADSv2 guideline revealed 248 terms. The identified terms showed a highly significant correlation (p<0.001). RADLEX similarity scores of the reports were significantly higher (p<0.001) when compared to urological KIC (mean = 0.24, 0.11-0.33) than with PI-RADS guideline content (mean = 0.18,0.06-0.28).

Conclusion: Biopsy-relevant key RADLEX content could serve as an important quality measure of mpMRI reports of the prostate to improve communication with urologists and to support their planning of invasive interventions.

B-0023 10:30
Moving beyond the bookshelf: an investigation into the use of social media journal clubs in radiography practice
S.N. Mullen1, M. O’Connor2, 1Galway/IE, 2Dublin/IE (sineademullen@gmail.com)

Purpose: The introduction of mandatory continuous professional development (CPD) by CORU in October 2015, has increased demand on Radiographers to participate in CPD activities. Social media and digital communications have become prominent features of society and popular methods of communication and information sharing. Therefore, it is important to assess whether such technologies can contribute to CPD in Radiography.

Methods and Materials: A Facebook journal club was established to investigate the opinions of Radiographers regarding the use of social media facilitated journal clubs in contributing to CPD. Four teaching hospitals were chosen at random to participate. Six Radiographers from each centre were invited to participate. Two peer reviewed articles were discussed throughout the study. An online survey was used to establish the opinions of Radiographers.

Results: A response rate of 79% was obtained. Radiographers felt positive towards the use of social media as a tool in contributing to CPD. There was a slight disparity in opinion between newly qualified Radiographers and more senior members of the team, with newly qualified radiographers afraid of appearing “unprofessional” if found using social media in the department, and senior members being more open towards the use of social media for CPD purposes.

Conclusion: Respondents felt positive towards the use of social media facilitated journal clubs. Advantages of social media facilitated journal clubs are convenience and increased interaction with others. Limitations of social media facilitated journal club use in Radiography are a perceived poor professional reflection and the encroachment into an already compromised personal life.

B-0024 10:38
Written patient information in radiology: an Irish perspective
S.S. Azman, E. McDermott, M.-L. Ryan, Dublin/IE (marieolouise.ryan@ucd.ie)

Purpose: Provision of information before patients attend their radiology examination is an important requirement in enhancing patient experience and ensuring consent. Patient information leaflets (PILs) are used to support the verbal consultation between the patient and radiology team. This project aimed to ascertain whether public and private radiology services across Ireland use PILs for general, CT and ultrasound examinations, at what point PILs are given to patients and also to analyse the information included.

Methods and Materials: All radiology departments in Ireland were contacted (n=52). The manager of each participating department (n=23) was interviewed to understand at what point PILs are given to patients, and PILs were then collected from the participating departments. Analysis on 34 PILs across the three modalities was conducted under the following sub-headings- general content; radiology-related content; PIL design.

Results: 65% of the 23 participating facilities distribute PILs, with 35% being in the form of a written letter in advance of the examination. 74% send PILs by post while the remaining 26% use mixed methods depending on the modality and patient type. Each PIL varied in terms of the amount, depth and categorization of information. The most common information included is the nature of the procedure, the experience during the procedure and result availability after the examination.

Conclusion: There is a need to standardise PILs used in Irish radiology departments as both the method and timing of distribution and the information is not consistent, thus potentially impacting the knowledge imparted on the patient.
Influences on radiographers’ choice of immobilisation methods in paediatric radiological examinations

S. Christie, C. Ng, C. Sá dos Reis; Perth/AU (claudia.sadores@curtin.edu.au)

Purpose: To identify the main influences on radiographers’ decisions about immobilisation methods in paediatric radiological examinations.

Methods and Materials: Australian and New Zealand radiographers were recruited to complete an online questionnaire identifying their use of different immobilisation methods and the influences on their choices. Follow-up interviews were conducted to further explore the findings. Institutional approval was obtained. Closed-end questions were analysed using frequency and non-parametric tests (Fisher’s exact and Mann-Whitney U), while content analysis was applied to open-end questions and interview data.

Results: 65 completed questionnaires were received; 7 respondents also participated in interviews. Parental holding was the most likely method to be used (96.9%), but psychological methods (87.7%) were considered preferable as using less force and causing less distress to children and parents. Mechanical and chemical methods were not often used. Participants sought to adapt their immobilisation practice to each situation, often using the child’s age as a guide. Existing informal workplace training was perceived as adequate but not optimal. Opinions were divided over whether introducing written guidance would limit radiographers’ ability to adapt to different situations.

Conclusion: Immobilisation is a case-by-case activity which requires radiographers to seek a balance between different factors, consistently constrained by examination type and resource availability. Patient age was the most commonly considered factor, although this was acknowledged to be an imperfect indicator. Short courses at paediatric institutions are recommended as a useful way of improving immobilisation education. Increased support from governing bodies is also required.

Informed consent in diagnostic imaging: an evaluation of current practice

A. Ramlani; Hatfield/UK (a.ramlani@herts.ac.uk)

Purpose: It is normally assumed that all attending patients have given their informed consent for imaging investigations, although variations may exist in the form in which this is provided. The purpose of this study was to conduct an audit of current practice regarding gaining informed consent within NHS diagnostic imaging departments throughout the United Kingdom.

Methods and Materials: A cross-sectional survey was conducted involving lead superintendent radiographers within NHS sites in Scotland, Wales, England and Northern Ireland. The survey explored methods in which information on radiological examinations and procedures was disseminated to patients; radiographer practices with regard to gaining informed consent; and staff knowledge of consent policies. Responses were analysed using descriptive statistics and outcomes were matched according to guidelines provided by the Health and Care Professions Council (HCPC) and College of Radiographers (CoR).

Results: The survey yielded a response rate of 46% (220/478). The findings demonstrated mixed awareness of policy documents, together with variations in the methods used for disseminating information to patients and gaining informed consent.

Conclusion: Some radiographers appear to have a cursory knowledge of consent policies. There is a lack of standardisation regarding practices for disseminating information to patients as well as for gaining informed consent from patients. The study highlights a possible need for more explicit guidance for gaining informed consent, to enhance patients’ clinical outcomes and reduce the likelihood of litigation.

Perceptions of the practice of seeking informed consent in paediatric imaging

J. Portelli, J. McNulty, P. Bezzina, L.A. Rainford; Sliema/MT, Dublin/IE (jonathan.portelli@um.edu.mt)

Purpose: To investigate health professionals’ and parents’ perceptions about the practice of seeking informed consent for paediatric imaging examinations.

Methods and Materials: This research is part of a larger multi-phase study performed at a large general hospital in Malta, which also serves as a primary paediatric referral centre. Following institutional board approval, a purposive sample of radiographers, radiologists, paediatricians, emergency physicians and parents were invited to attend for an audio-recorded and semi-structured interview with the primary author. Participants were asked questions about different aspects related to the imaging of paediatric patients, including their thoughts and opinion about the practice of seeking informed consent for such examinations.

Results: Nineteen health professionals and seven parents willingly took part in the study. Following thematic analysis of the transcribed interview data, one of the dominant themes that emerged highlighted a general misconception that informed consent was primarily sought in paediatric imaging so as to provide a legal safeguard to the respective health professionals against any possible future medical liability issues that could arise. Furthermore, parents generally expressed feelings of heightened anxiety and concern when referring physicians and/or radiographers asked them to provide their written consent, with many interpreting this to mean that the imaging examination would involve higher risks for their child.

Conclusion: The findings highlight a need for relevant authorities to address the noted misconceptions and raise awareness about the true purpose of informed consent, which is to ensure that patients and/or their representatives are provided with relevant information that empowers their health decisions.

The construction of care in CT

R.K. Forton, M. Hardy, A. Sargeant; *Norwich/UK, 1Bradford/UK (raechel.forton@nhs.nhs.uk)

Purpose: Patient-centred care and the ‘patient voice’ are core components of UK healthcare policy and practice guidance. This study explored how care is perceived and experienced within the high-technology environment of CT.

Methods and Materials: A grounded theory (GT) methodology using semi-structured interviews obtained primary data from CT radiographers and patients. Recruitment was performed at a 1200-bed teaching hospital over a 6-month period.

Results: The patient-radiographer relationship and the radiographer’s role in providing care within CT are complex and multifaceted. Both patients and radiographers perceive CT imaging as an integral part of the overall patient care and treatment pathway. As such, the act of being imaged is perceived as a care process. While image acquisition is recognised as a task-oriented and technical process, the human element of providing care is cognitive, dynamic and responsive to individual need. Importantly, patient confidence in the care received was influenced by the radiographer’s ability to build a trusting relationship and display technical competence. This in turn facilitated active compliance resulting in a technically accurate examination. Despite previous literature suggesting that technical environments create a barrier to care, patients within this study confirmed that radiographers provide care commensurate to the nursing ideals represented by the 6Cs (care; compassion; competence; communication; courage; commitment).

Conclusion: A new model of care encompassing both technical components and patient centeredness has been constructed and will be presented. This model promotes a new vision of patient-centred care based on care perceptions within high-technology environments.

Mobile radiography services can improve the utilisation of diagnostic imaging among nursing home residents

E. Kjelle, K.B. Lysdahl, H.M. Olerud; Kongsberg/NO (elin.kjelle@usn.no)

Purpose: To determine utilisation of diagnostic imaging among nursing home residents and the impact of mobile radiography services on utilisation rates.

Scientific Sessions
Methods and Materials: The number of examinations made on nursing home residents in 11 hospitals in Norway was collected for the year 2015, which involved five hospitals with mobile service facilities and six without. The data included anatomical region/organ/system, modality, and place of examination (hospital or nursing home). Using the 24,805 nursing home beds in the included areas as a proxy for residents, the utilization rates were compared in areas with and without mobile radiography services, using the chi-squared test.

Results: A total of 11,066 examinations, 0.45 per nursing home bed, was carried out. Of these, 87% were plain radiographs, 8% were CT scans and 4% were ultrasonography examinations. In areas with mobile radiography services, the proportion was 50% per bed, compared to 36% in areas without. The data included anatomical region/organ/system, modality, and place of examination (hospital or nursing home). Using the 24,805 nursing home beds in the included areas as a proxy for residents, the utilization rates were compared in areas with and without mobile radiography services, using the chi-squared test.

Conclusion: Mobile radiography services increase the overall utilization of examinations among nursing home residents significantly. Nonetheless, the rates of diagnostic imaging are still low compared to the rates for the Norwegian population in general, which is 0.9 examinations per person per year. This study clearly indicates an under-utilization of diagnostic imaging among nursing home residents and suggests extended use of mobile services to be one possible remedy. This study has been submitted to BMC Geriatrics in 2018.

B-0031 11:34
Burnout level of personnel working in radiology departments in Hungary
D. Sipos1, A. Pandur1, A. Kádor1, V. Varga1, M. Csima1, I. Répá1, Á. Kovács1;
Kaposvár/HU, 2 Pécs/HU

Purpose: Burnout phenomenon among healthcare professionals is the current problem. Burnout may have wide negative impact that can damage personal and professional life of the individual, also the quality and the effectiveness of the healthcare system.

Methods and Materials: Radiology department workers who were members of the Hungarian Society of Radiographers were invited to participate in our online survey during June to September 2018. Maslach Burnout Inventory (MBI) and SF 36 survey was used to determine demographic attributes. All data were analysed using SPSS V 24.0. Descriptive statistics, independent samples t test, ANOVA, Kruskal Wallis analysis were performed to examine the relationship between given demographic characteristics and the three dimensions of burnout at the significance level of p<0.05.

Results: Total of 404 radiology department workers participated in the survey with the average age of 40.08 years (SD12.18; 22-70). The sample had high mean burnout score for emotional exhaustion (34.28; SD 12.98) and depersonalisation (12.81; SD 6.52) compared to MBI norms. Personal achievement mean (41.03; SD 8.70) showed higher mean compared to MBI norms. Educational level, years spent in health care system, current financial situation had significant influence for all three dimensions of burnout (p<0.05). Type of workplace had significant impact on emotional exhaustion (p=0.001).

Conclusion: Our study indicates that a high number of radiology department workers are experiencing occupational burnout at emotional exhaustion and depersonalisation dimension. These results vary according to demographic and work-related factors.

B-0032 11:42
VERTIM: pilot study evaluating influence of adding nature images in imaging departments’ waiting rooms, according to different aesthetic approaches, on patients’ perceived anxiety
M.P. Liseau Audrèc, C. Bader, C. Castermans, I. Quintana; Bordeaux-FR

Purpose: Study about influence of physical environment of imaging departments’ waiting rooms on pre-examination patients’ perceived anxiety. The main objective is to estimate the difference in state anxiety, perceived by patients in 3 types of waiting room environment “Nature GREEN”, “Nature SEA”, “Nature ZEN” compared to a reference environment “Standard waiting room” and to evaluate emotional perception and satisfaction of patients for each environment.

Methods and Materials: 400 patients’ anxiety score was measured by STAI-Y trait and state scales after 12 minutes’ immersion time. Emotional perception for environment was evaluated by “Scale of the perceived attractiveness” of Sophie Rieunier and satisfaction of patient with digital analog scale.

Results: The “Nature ZEN” environment is the only one where it is observed a significant 10% decrease in state anxiety score compared to the reference group “Standard waiting room”. This is also where patients’ satisfaction score is the highest. Affective perception scores for environment are better in “Nature GREEN” and “Nature SEA”.

Conclusion: “Nature GREEN” environment has proven its effectiveness in reducing patients’ pre-examination anxiety in imaging department. A multi-centre study would be needed to establish evidence-based recommendations for care space design.
Results: Contrast-enhanced perfusion patterns in predicting stroke in vulnerable plaque: a cohort study of carotid stenosis in Chinese patients

H. Yunqian, J. Jiang, M. Chen, Shanghai/CN (18721619656@163.com)

Purpose: To investigate the correlation between contrast-enhanced ultrasound perfusion patterns of carotid artery vulnerable plaque and the degree of carotid stenosis, which provides the basis for early diagnosis of cerebral ischaemic stroke.

Methods and Materials: From March 2018 to June 2018, 202 patients with carotid plaque who underwent CEUS were enrolled in this study. The patients who did not undergo CTA or DSA examination within 1 week after CEUS examination were excluded. The stenosis of carotid artery was determined by CTA or DSA as gold standard. Finally, 80 patients were analysed (35 patients in the stenosis group and 45 patients in the non-stenosis group). The appearance of enhancement in plaques were observed and the enhancement level of the plaques was divided into I-IV grades according to enhanced ultrasound findings of carotid plaques. The patients were divided into plaque base entering mode and plaque surface entering mode by the CEUS perfusion pattern when the contrast agent enters the plaque. The correlation between the CEUS perfusion pattern and the degree of carotid stenosis was analysed.

Results: The enhanced level of carotid plaque between the stenosis group and the non-stenosis group showed statistically significant difference. The plaque of the stenosis group and the non-stenosis group entered the plaque with different patterns, and the difference was statistically significant.

Conclusion: There remains a significant correlation between the enhancement level of carotid plaque and the degree of carotid stenosis, and the different CEUS perfusion patterns are closely correlated with the degree of carotid stenosis.

B-0036 10:46
Is automatic plaque quantification reliable: an analysis of spectral multienergy CT

G. Corrias1, G. Micheletti2, J. Suri1, G.M. Argiolas2, P. Lucatelli1, L. Saba1, Cagliari/IT, Monserrato/IT, Denver, CO/US, Rome/IT (corigras@gmail.com)

Purpose: To compare semi-automatic plaque quantification on different energy levels of DECT to inform standardization efforts for single-energy protocols where differences are intended.

Methods and Materials: Retrospective study enrolling 36 patients who underwent DECT of the carotids. Seven energy levels were reconstructed (keV: 40, 66, 70, 76, 86, 100, 120). Plaque subcomponent analysis was performed for each energy separately, without modifying lumen and wall segmentations using commercially available software (vasuCAP, Elucid Bioimaging).

Results: Normality of each energy was tested using the Kolmogorov-Smirnov test. Since most were not distributed normally, a Wilcoxon test was performed to check differences with a p value <0.05. Differences of component volumes were in the order of the reproducibility coefficient (RDC) at the closest energy levels (calcium 66keV vs 70keV: Z value=-2.1, p=0.05; LRNC 66keV vs 70keV: Z value=-2.5, p=0.05; Matrix 66keV vs 70keV: p=0.05), and documented that differences increased with difference in energy.

Conclusion: Plaque component analysis has been known to provide important prognostic information on plaque progression and adverse acute cardiovascular events. We established that standards efforts should specify differences of no greater than ±2 keV for single-energy protocols, and have established base data on which exploiting intended differences might be of value were they to be processed by algorithms designed to exploit these differences beyond what single energy may reasonably be expected to do, such as speculated vs. dense calcium, or differing stages of IPH, for example.

B-0037 10:54
Carotid plaque instability and neovascularisation assessment using contrast-enhanced ultrasound and superb micro-vascular imaging

M. Radzina, A. Lioznov, A. Jukna; Riga/LV (lioznov1@gmail.com)

Purpose: There are several causes for cerebral ischaemia and if risk factors are diagnosed timely, the risk of stroke can be significantly reduced. One of the main risk factors for cerebral ischaemia is the unstable atherosclerotic plaque in the arteries. The purpose of the study was to analyse multi-parametric US techniques ability to confirm the plaque's instability more precisely than the baseline investigation of Duplex US.

Methods and Materials: In prospective research conducted in the period from 2017 to 2018, were included 22 patients with unstable plaque which were detected duplex, every patient was analyzed with CEUS, SMI and CTA methods. The results were histologically proven in 8 cases.
Comparative study of common carotid intima-media thickness in type 2 diabetics and non-diabetics in Port Harcourt, Nigeria

Objectives:
- To determine the cut-off value of carotid intima-media thickness (CIMT) for atherosclerotic disease in our environment.
- To assess the association of CIMT with cardiovascular risk factors: age, sex, body mass index (BMI), waist circumference, blood pressure, fasting glucose, and lipid profile.
- To compare CIMT between type 2 diabetics and non-diabetics in Port Harcourt, Nigeria.

Methods and Materials:
- A cross-sectional study of 350 Type 2 diabetics and 350 controls recruited by systematic sampling between February 2015 to June 2016 in Port-Harcourt, Nigeria.
- CIMT was measured by ultrasound 1cm proximal to the carotid bulb.
- Data was analyzed using statistical package for social sciences (SPSS) version 20, at significance level of p<0.05.

Results:
- Type 2 diabetics had significantly higher CIMT than non-diabetics (1.09±0.25mm vs 0.94±0.24mm, p=0.001).
- There was significant correlation between CIMT and age in both groups (r=0.53, p=0.001), controls (r=0.78, p=0.001), and with duration of DM (r=0.194, p=0.001).
- Negative correlation was observed between CIMT and BMI in the type 2 diabetic patients (r=-0.913, p=0.001).
- CIMT was significantly higher in male compared to female diabetics (p=0.001).

Conclusion:
- CIMT was greater in diabetics compared with controls, and correlated with age in both groups. CIMT may be used as a measure of atherosclerotic disease in our environment.
Musculoskeletal
SS 210a
Haematological, metabolic and endocrine diseases

Moderators:
G.K.O. Aström; Uppsala/SE
E.H.G. Oei, Rotterdam/NL

B-0045 10:30
Incidence of vertebral fractures in patients with β-thalassaemia major in treatment with oral bisphosphonate
F. Pellegrino, M. Pontrelli, R. Mungari, M. Fortini, M.R. Gamberini, M.C. Zatelli, M.R. Ambrosio, M. Giganti; Ferrara/IT (fabio@pellegrino07@gmail.com)

Purpose: To analyze the efficacy of oral bisphosphonate therapy (alendronate and risedronate) in patients with β-Thalassaemia evaluating incidence of vertebral fractures (VF) and bone mineral density (BMD) values.

Methods and Materials: 60 patients (31 M, 29 F) with β-thalassaemia major of average age 35.02 ± 6.32 at the center of Ferrara were selected retrospectively with age > 25 years, at least 1 between reduced BMD (Z-score ≤ -2.5) premenopausal women and men aged <50, osteoporosis (T-score ≤ -2.5), ≥ 1 fragility fracture. We analyzed BMD values, thoracolumbar radiographs for VFs evaluation (according Genant classification) and biochemical data at 2, 3 and 5 years.

Results: The mean duration of therapy was 6.23 ± 1.93 years. We observed an improvement from baseline of lumbar spine BMD of 4% to 2 yr of treatment, 2% to 3 yr and 3% to 5 yr. BMD is increased by 1% in the femur (F) and 2% at the neck of the femur (FN) at 2 yr of treatment, at 3 yr + 1% (F) and 0% (FN), at 5 a -3% (F) and -2% (FN). Incidence of new vertebral fractures was of 27%.

Conclusion: Therapy was useful in rising BMD at the lumbar level with an improvement of Z and T-score and in stabilizing BMD at the femoral level (F) and FN in the first 3 yr of therapy with a slight reduction at 5 yr, but VFs in these well-treated patients were still common and morphometry measurement remains a useful test in surveillance of these patients.

B-0046 10:38
Lumbar spine bone mineral density Z-score discrepancy by DXA and QCT in thalassaemic major patients
F. Pellegrino, L. Perrucci, M. Pontrelli, M.R. Gamberini, M. Fortini, I. Gagliardi, M.C. Zatelli, M.R. Ambrosio, M. Giganti; Ferrara/IT (fabio@pellegrino07@gmail.com)

Purpose: Dual X-ray absorptiometry (DXA) is the most common mode of bone mineral density (BMD) evaluation in young adults with β-thalassaemia major (TM). In addition to DXA that determines an areal BMD, Quantitative Computerised Tomography (QCT) also detects volumetric BMD which is independent of bone size. Our aim is to evaluate concordance of BMD values in thalassaemic patients obtained by QCT and DXA.

Methods and Materials: We enrolled 15 patients with TM from the Hospital of Ferrara who underwent both a DXA scan of lumbar spine in regular follow-up and an unenhanced CT, performed for other causes, within 4 months. CT images of lumbar spine were evaluated with a quantitative dedicated post-processing software calculating volumetric BMD for L1-L4 vertebrae. BMD values of both methods were expressed as Z-scores and T-scores and the results were correlated.

Results: Of 10 patients (6 males < 50 aged, 4 premenopausal woman), the overall prevalence of severely low bone density (Z-score ≤ -2) was 9/10 (90%) by DXA and 3/10 (30%) by QCT with concordance in 4/10 patients (40%). In all 10 patients of this group QCT Z-score was higher than DXA Z-score with significant difference(p-value<0.002), 5 patients(50 years old) showed T-score ≤ -2.5 correspondent to osteoporosis both on DXA and QCT with 100% of concordance.

Conclusion: Our data show a discrepancy in lumbar BMD Z-scores by DXA and QCT in thalassaemic patients suggesting that DXA BMD could be falsely low in young subjects with short bones and QCT could be more accurate to assess it.
Sarcopenia and osteoporosis in patients with cancer diagnosis: evaluation with CT
S. Ivanoski1, V. Vasiljevska Nikodinovska2, Ö. Thavos/MK, Ö. Skopje/MK
(slawcovolanovski@gmail.com)

Purpose: To evaluate the prevalence of sarcopenia in patients with and without diagnosis of malignant tumour. To assess the relationship between sarcopenia and osteoporosis in patients with malignancy.

Methods and Materials: 70 patients age ≥5 (mean age 71.5), 33 male and 37 female. Underwent abdominal CT were included in the study. Patients (N=35) had diagnosis of malignant tumour, majority colorectal cancer (37%). Trabecular bone mineral density at level of L1 vertebral body, in upper vertebral body part, using single slice technique, was measured for detecting osteoporosis. Density and cross-section area of psosas muscles at L3 vertebral body mid level were measured for diagnosing sarcopenia. Cut-off values for CT detection of sarcopenia and osteoporosis established by previous researches were used. Chi square test, Pearson correlation, and linear regression analysis were performed.

Results: 40% of patients with diagnosis of malignant tumour had muscle density diagnostic for sarcopenia, compared to 11.4% in patients without cancer. Differences for sarcopenia, assessed by psosas muscle density values, between patients with malignancy and non-malignant group were statistically significant (x²=5.06, p=0.016). Osteoporosis values were significantly different between groups (x²=0.06, p=0.811). There was moderate correlation between bone density and psosas muscle density in patients with malignancy (r=0.441, p<0.05). Regression analysis showed sarcopenia was positively correlated with age (odds ratio=1.169, p=0.036) and malignancy (odds ratio=0.117, p=0.08).

Conclusion: Sarcopenia is significantly higher in patients with diagnosis of cancer, compared to patients without malignancy diagnosis. Sarcopenia is associated with osteoporosis in malignancy and should be mentioned in abdominal CT report.

B-0051 11:18
Changes in bone marrow fat upon dietary induced weight loss
M. Spurný, Y. Jiang, R. Schübel, T. Nonnenmacher, C.L. Schlett, O. von Stackelberg, H.-U. Kauczor, T. Kuhn, J. Nattenmüller; Heidelberg/DE (manuela.spurny@med.uni-heidelberg.de)

Purpose: Bone marrow fat (BMF) is an ectopic fat storage depot connecting metabolism and bone health. Evidence on changes in BMF with weight loss is limited. Therefore we aimed to analyze changes in BMF content following dietary induced weight loss.

Methods and Materials: Magnetic resonance imaging data of the HELENA trial, an RCT among 143 non-smoking, obese participants (BMI at baseline between 25 and 40 kg/m², 50% female), were used to quantify BMF content before and after a 12 week dietary intervention phase. Regions of interest (2cm²) were evaluated manually on a post-processing software (OsinX, Pixmeo SARL, Bernex, Switzerland) using the proton density fat fraction map, based on mean counts from L1 and L2. The study cohort was divided into weight loss quartiles (Q1:32.1±4.1kg/m²; Q2: 31.5±3.7kg/m²; Q3: 30.9±3.4kg/m²; Q4: 30.3±3.3kg/m²). Diet induced weight loss varied between 0.0±0.2% for Q1 to -11.3±0.6% for Q4. Relative changes in BMF were 0.7±2.4%, -3.5±2.0%, -1.4±2.4%, and -12.7±3.3% for Q1 to Q4. Across all four weight loss quartiles and for the two group comparison Q1 vs. Q4 there was a significant difference (p<0.01) for changes in BMF. For the two group comparisons Q1 vs. Q2 and Q1 vs. Q3 there were no significant differences (p>0.05) observed.

Conclusion: Our data suggest that BMF levels decrease with weight loss. Further research will unravel the association between the amount of weight loss and BMF.

B-0052 11:26
Fat mass does not increase the precision error of trabecular bone score measurements
C. Buonononna1, C. Messina2, S. Gittos1, A. Biacca3, D. Albano3, L.M. Sconfienza2,3, Milan/IT, Novara/IT, Palermo/IT (buonononna.ciriaco@gmail.com)

Purpose: We investigated the in-vivo effect of increasing BMI and waist circumference on TBS precision error.

Methods and Materials: A population of postmenopausal Caucasian women was distributed in three different BMI (normal, overweight, class I obesity), plus two further groups based on waist circumference (WC) diameter (<88 cm and ≥88 cm respectively). In-vivo precision error was calculated on 30 consecutive subjects that were scanned two times, with patient repositioning. Coefficient of Variation, percent least significant change (LSC%) and reproducibility were calculated according to the International Society for Clinical Densitometry guidelines.

Results: Ninety-five women aged 66 ±10 (mean ± standard deviation) were included. No significant differences were found for BMD and TBS precision errors, respectively, when comparing BMI groups and WC groups. BMI reproducibility ranged from 95.9% (BMI >30 kg/m²) to 97.5% (BMI <25 kg/m²), TBS reproducibility ranged between 95.8% (BMI=25-29.9 kg/m², WC >88 cm) and 96.6% (BMI =<25 kg/m²). With the exception of obese group, a significant difference was found between BMD and TBS reproducibility, being that of TBS slightly lower than BMD. A significant decrease of TBS was found between normal and obese subjects, as well as between WC groups; BMD variations between groups were not statistically significant.

Conclusion: TBS precision error is not affected by BMI and WC differences. TBS reproducibility showed to be slightly lower than that of BMD, but this difference was mitigated in obese patients. A negative association was found between the amount of fat mass and TBS mean values.

B-0053 11:34
Dual-energy computed tomography in calcium pyrophosphate deposition: initial clinical experience
J. Legrand1,2, T. Pascart1, L. Norberciak1, F. Becce1, J.-F. Budzik1, Lille/FR
(Legrand.julie@gilch.net)

Purpose: To determine the dual-energy computed tomography (DECT) attenuation properties of meniscal calcifications in calcium pyrophosphate deposition (CPPD) in vivo, and assess whether DECT was able to discriminate meniscal CPP deposits from calcium hydroxyapatite (HA) in subchondral and trabecular bone.

Methods and Materials: Patients with clinical suspicion of crystal-related arthropathy and knee DECT scans were retrospectively assigned to CPPD (n=7, control (n=21) groups depending on the presence/absence of chondrocalcinosis on DECT. Regions of interest were drawn in meniscal calcifications, non-calcified menisci, as well as subchondral and trabecular bone. Five DECT parameters were obtained: CT numbers (HU) at 80 and 140 kV, dual-energy index (DEI), electron density (ρe), and effective atomic number (Ze). The four different knee structures were compared using mixed linear models.

Results: Meniscal calcifications (n=89) in CPPD patients had means SD CT numbers at 80 and 140 kV of 257±64 and 201±48 HU, respectively; with a DEI of 0.023±0.007, and ρe and Ze of 140±35 and 8.8±0.3, respectively. Meniscal CPP deposits were readily distinguished from calcium HA in subchondral and trabecular bone (p<0.01), except at 80 kV separately (p=0.28). Ze and ρe both significantly differed between CPP deposits and calcium HA in subchondral and trabecular bone (p<0.0001).

Conclusion: This proof-of-concept study shows that DECT can discriminate meniscal CPP deposits from calcium HA in subchondral and trabecular bone in vivo, paving the way for the clinical signature assessment of intra- and juxta-articular calcium crystal deposits.

B-0054 11:42
Prospective study of foot and ankle dual-energy CT in gouty arthritics patients without first metatarsophalangeal joint uric acid crystal deposition
H. Yang1, Y.-S. Hong1, J. Gong Yong1, Y.K. Lee2, S.K. Kim1, J.H. You1,E. Park1;1,2, Joonju/KR, 3GWangju/KR, 3Chonju/KR (jpjohn@naver.com)

Purpose: To evaluate the accuracy and which DECT findings are characteristics of diagnosing foot and ankle gout in patients without uric acid crystal deposition in first metatarsophalangeal joint (MTPJ).

Methods and Materials: Among 97 foot and ankle DECT obtained from January 2016 to September 2017, 27 foot and ankles without first MTPJ green pixelation were enrolled. Two blinded musculoskeletal radiologists evaluated the images and classified the examination findings as positive or negative for
the presence of uric acid crystals. Readers also assessed following results of green pixelation: volume, size, shape, vanishment after increase minimal HU from 130 to 150. Reference standard was the results of joint aspiration and over one year clinical follow up. Logistic regression analyses were conducted to identify which findings were significantly associated with gout.

Results: The sensitivity and specificity of DECT without first MTPJ green pixelation were 0.96 and 0.67. The mean volume of green pixelation was 1.7cm³. All false negative patients had submillimeter artifact. The DECT findings showed significant differences between artifact and gout with respect to shape, vanishment after increase minimal HU from 130 to 150, site (p<0.05). Multivariate logistic regression showed correlations between artifact and shape (non-oval, sharp, flat, odd ratio 27.4), and vanishment after increase minimal HU (odd ratio 19.2).

Conclusion: The specificity of DECT of foot and ankle without green pixelation in first MTPJ is unsatisfactory due submillimeter artifact. Green pixelation with non-oval, sharp, flat and which vanishes after increased minimal HU in post-processing may be associated with artifact.

B-0055 11:50
7T T2*relaxometry detects early tendon degeneration in patients with diabetes mellitus type 1 (DM1) and shows correlations with BMI and age
M. Zalaudek 1, W. Marik 1, V. Juras 1, M. Riedl 2, B. Hager 1, O. Bierl 1, X. Deligianni 1, M. Weber 1, S. Tratting 1, Vienna/AT; 2Basle/CH
(martin.zalaudek@meduniwien.ac.at)

Purpose: T2*mapping at 7T was used to investigate alterations in tendon composition and their relation to demographics of patients with DM1.

Methods and Materials: Eighteen DM1 patients (117/7m, 28.25±17.14y, BMI 22.3±2.28) were enrolled together with eighteen sex, age and BMI matched healthy controls (117/7m, 27.35±9.93y, BMI 21.61±2.67). MRI was performed on a 7T whole body scanner with a dedicated multichannel receive proton knee coil. FS-PDW images were acquired for morphological evaluation of patellar tendon. A variable TE sequence (10 TEs from 1.21-24.48ms) for mono-exponential T2*mapping. Differences in T2*values between diabetics and controls were compared. Sensitivity/speciﬁcity was evaluated. T2*values were correlated with BMI and age.

Results: On PDw images, tendons appeared unremarkable in all participants. Mean T2*values in patients and controls were 1.29±1.41ms and 0.73±1.42ms, respectively (p<0.001). AUC was 0.92 (95/CI 0.82-1), a cut-off set to 0.89ms showed a sensitivity of 88.9% and specificity of 99.44%. BMI and T2* values correlated strong/statistically significant in diabetics (r=0.62, p<0.01) and weak in controls (r=0.26, p=0.3). Age and T2*values correlated weak in diabetics (r=0.25, p=0.31) and strong/statistically significant in controls (r=0.6, p<0.01).

Conclusion: Although inconspicuous in routine MRI, tendons of DM1 patients exhibited altered T2*values with a high diagnostic sensitivity/speciﬁcity. Furthermore, T2*values of DM1 tendons appear to be inﬂuenced by BMI. Age did not inﬂuence T2*values in DM1 patients - however, it did in controls. This may reflect a stronger impact of higher body weight to the deteriorated tendon tissue and a partial abolition of age related tendon degeneration in DM1 patients.

Musculoskeletal

SS 210b
Musculoskeletal tumour imaging
Moderators: A. Isaac; London/UK N.N.

B-0056 10:30
Predictive value of MRI radiomic features in differentiating lipoma from atypical lipomatous tumour
F. Acquafredda 1, Y. Abdelhafez 1, M. Zhang 2, M. Guindani 3, S. Lee 1, D. Sarohia 1, R.D. Badawi 1, Y. Abdelhafez 2,1, S. Lee 3, C. Martin 1, R. Donners, D. Harder; Basle/CH (ricardo.donners@usb.ch)

Purpose: To explore the predictive role of shape and texture features extracted from MR images for differentiating lipoma from atypical lipomatous tumour (ALT).

Methods and Materials: With Institutional Review Board approval, the PACS databases of multiple institutions were searched for the terms “lipoma”, “liposarcoma” and “lipomatous”. 3251 subjects were found and screened for pathologically proven surgically resected lipoma or ALT and pre-operative MRI study with axial T1 sequence for lesion segmentation. LifeX software was used to extract 3 shape features (volume, sphericity and compacity) and 32 texture indices from 4 texture matrices: grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRLM), grey-level zone length matrix (GLZLM) and run-length non-uniformity matrix (NGLDM). Receiver-operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and 95% confidence interval (CI) for each feature.

Results: The study included 97 patients (median age 58 years [range: 32-92], 57 male, 40 ALTs and 27 lipomas. Non-cancerous features were significantly predictive of pathological diagnosis (p<0.001). AUC values were as follows: compacty 0.83 (0.75-0.91), sphericity 0.63 (0.51 - 0.76), NGLDM busyness 0.77 (0.66-0.88), GLZLM grey-level non-uniformity (GLNU) 0.77 (0.66-0.88), run-length non-uniformity (RLNU) 0.75 (0.63-0.86), GLZLM GLNLU 0.74 (0.63-0.85) and RLNU 0.74 (0.63-0.85). In multivariate analysis, compacty, busyness and GLZLM RLNU were independent predictors for pathology with odds ratio (95%CI) of 2.2 (1.5-3.2; p<0.001), 1.7 (1.1-2.7; p=0.018) and 1.9 (1.3-2.8; p<0.001), respectively.

Conclusion: Radiomic features extracted from MR images, specifically compacty and busyness, could help differentiating lipoma from ALT.

B-0055 11:50
7T T2*relaxometry detects early tendon degeneration in patients with diabetes mellitus type 1 (DM1) and shows correlations with BMI and age
M. Zalaudek 1, W. Marik 1, V. Juras 1, M. Riedl 2, B. Hager 1, O. Bierl 1, X. Deligianni 1, M. Weber 1, S. Tratting 1, Vienna/AT; 2Basle/CH
(martin.zalaudek@meduniwien.ac.at)

Purpose: T2*mapping at 7T was used to investigate alterations in tendon composition and their relation to demographics of patients with DM1.

Methods and Materials: Eighteen DM1 patients (117/7m, 28.25±17.14y, BMI 22.3±2.28) were enrolled together with eighteen sex, age and BMI matched healthy controls (117/7m, 27.35±9.93y, BMI 21.61±2.67). MRI was performed on a 7T whole body scanner with a dedicated multichannel receive proton knee coil. FS-PDW images were acquired for morphological evaluation of patellar tendon. A variable TE sequence (10 TEs from 1.21-24.48ms) for mono-exponential T2*mapping. Differences in T2*values between diabetics and controls were compared. Sensitivity/speciﬁcity was evaluated. T2*values were correlated with BMI and age.

Results: On PDw images, tendons appeared unremarkable in all participants. Mean T2*values in patients and controls were 1.29±1.41ms and 0.73±1.42ms, respectively (p<0.001). AUC was 0.92 (95/CI 0.82-1), a cut-off set to 0.89ms showed a sensitivity of 88.9% and specificity of 99.44%. BMI and T2* values correlated strong/statistically significant in diabetics (r=0.62, p<0.01) and weak in controls (r=0.26, p=0.3). Age and T2*values correlated weak in diabetics (r=0.25, p=0.31) and strong/statistically significant in controls (r=0.6, p<0.01).

Conclusion: Although inconspicuous in routine MRI, tendons of DM1 patients exhibited altered T2*values with a high diagnostic sensitivity/speciﬁcity. Furthermore, T2*values of DM1 tendons appear to be inﬂuenced by BMI. Age did not inﬂuence T2*values in DM1 patients - however, it did in controls. This may reﬂect a stronger impact of higher body weight to the deteriorated tendon tissue and a partial abolition of age related tendon degeneration in DM1 patients.
Conclusion: Analysis of ADC values and ADC tumor/muscle ratios was useful for the distinction between benign and malignant tumors. The qualitative and semi-quantitative analysis of perfusion parameters did not allow distinction between benign and malignant tumors.

Methods and Materials: Institutional ethics committee approval and informed consent from each participant were obtained for this prospective study. Fifty patients with soft tissue tumors (28 men and 22 women; mean age ± SD: 44.02 ± 19.13 years) were examined with SWE using virtual touch tissue imaging and quantification (VTIQ) method between May 2016 and June 2018. Five region of interest boxes were randomly placed on the lesion and tissue stiffness was measured as shear wave velocity (SWV) in meter per second (m/s). Mean SWV, maximum SWV, minimum SWV, and the difference between maximum and minimum SWV were used to compare the stiffness of the benign and malignant lesions. Results: Thirty-one benign and 19 malignant soft tissue tumors were diagnosed. Mean SWV, maximum SWV, minimum SWV and the difference between maximum and minimum SWV values for malignant lesions were 3.00 m/s, 3.54 m/s, 2.65 m/s and 0.89 m/s, respectively. Mean SWV, maximum SWV, minimum SWV and the difference between maximum and minimum SWV values for benign lesions were 3.29 m/s, 3.91 m/s, 2.85 m/s and 0.89 m/s, respectively. No statistically significant difference was found between benign and malignant lesions for the measured SWV values (p = 0.553, p = 0.418, p = 0.327, and p = 0.385, respectively).

Conclusion: Shear wave elastography did not contribute to the differentiation of benign and malignant soft tissue tumors.

B-0060 11:02
Do aggressive radiologic features of synovial sarcoma correlate with pathologic grading? A retrospective study
T.S. Al Kuhaimi, A. Aljeeri, M. Alshaink, S. Almalki, S. Bauones; Riyadh/SA (T.S.ALKUHAIMI@GMAIL.COM)
Purpose: To study the imaging characteristic signs of aggressive behaving synovial sarcoma (SS) in relation to the pathologic types and grading to look for statistical significance using a radiologic-pathologic correlation.
Methods and Materials: After institutional review board approval, a monocentric retrospective study was undertaken on 15 (9 Males & 6 Females; ovarian age of 35) histopathologically-proven SS with MRI images between January 2012 and December 2017 at King Fahad Medical City in Riyadh. Data was collected on patient’s demographics and the imaging features on multiple imaging modalities, in particular MRIs which were reviewed by 2 musculoskeletal radiologists. Pathology slides were reviewed by a musculoskeletal pathologist. Data were analysed descriptively and statistically.
Results: Among multiple aggressive imaging findings of SS studied (haemorrhagic pockets, peri-lesional oedema, muscle and bone invasion, neurovascular bundle invasion, triple sign, bowl of grapes sign), the only statistically significant imaging finding that correlates with the histopathological high grade (grade 3) of SS is the neurovascular bundle invasion (P <0.05). No statistically significant correlation (P value varies between 0.135 and 0.853) between other imaging characteristics and histopathologic types of SS was found. No statically significant correlation between tumour size and its probability to metastatize (P 0.516). However, large tumour size (>5cm), intralesional haemorrhage, bone invasion are frequently encountered imaging findings in high-grade and metastatic SS. Most common metastatic site is pleuro-pulmonary (81%).
Conclusion: Neuro-vascular bundle invasion could help predict patient histopathological grade and thus aid in disease prognostication.

B-0061 11:10
Performance of 3D texture analysis for tissue characterisation and differential diagnosis of osteosarcoma
C.S. Lisoni1, C.G.S. Lisoni,1 R. Mayer-Steinacker1, A. von Baer1, T.F.E. Barth1, M. Baumgart2, A.J. Bea3, M. Bea3, S.A. Schrödl3; Ulm/DE, Heidelberg/DE (catharinavonend@gmail.com)
Purpose: Differentiation between osteosarcomas and other common bone tumors such as chondrosarcoma, Ewing's sarcoma and chordoma can be a significant radiologic-histologic challenge because osteosarcomas represent a highly heterogeneous tumour group. The clinical relevance is that a distinction is important in oncology, depending on the diagnosis, there are different therapeutic approaches with regard to (neo-)adjuvant chemo-/radiotherapy. This study evaluates the performance of MRI-based 3D texture analysis (TA) in comparison to CT-based TA for the differentiation of osteosarcoma.
Methods and Materials: 132 patients were retrospectively evaluated: 64 with contrast-enhanced CT, 28 with non-contrast CT and 40 with contrast-enhanced MRI. All patients had a histopathological diagnosis based on the surgical specimen. TA was performed on CT/MR images obtained for routine purposes using a research software (MINT, a spinoff from the DKFZ, which allows and post-process 3D measurements. Kruskal-Wallis test and Dunn-Bonferroni post hoc test were performed to identify the most discriminative texture features (kurtosis, entropy, skewness, MPP, UPP, uniformity).
Results: In MRI, the TA skewness in the 2D-weighted sequences significantly differentiated osteosarcoma from chondrosarcoma (p = 0.002), Ewing's sarcoma (p = 0.037), and chordoma (p = 0.006). In contrast-enhanced CT, the TA entropy and MPP could significantly discriminate between osteosarcoma and chordoma (p = 0.002 and p = 0.001), Ewing's sarcoma (p <0.0005 and p <0.0005) and chordoma (p = 0.038 and p = 0.002). In non-contrast CT, osteosarcoma could not be differentiated.
Conclusion: Tumour heterogeneity quantified by MRI- and contrast-enhanced CT-based 3D texture analysis has the potential to differentiate osteosarcoma from chondrosarcoma, Ewing’s sarcoma and chordoma.

B-0062 11:18
Diagnostic value of MR imaging with metal artefact reduction sequences in local recurrence of malignant bone tumour after joint replacement
H. Wang, Y. Lu; Shanghai/CN (shinianxinger@shuj.edu.cn)
Purpose: To investigate the diagnostic value of MR imaging with metal artefact reduction sequences in local recurrence of malignant bone tumour after joint replacement.
Methods and Materials: 94 cases were who pathologically diagnosed with malignant bone tumour underwent clinical and imaging follow-up after joint replacement. All cases received MR scans with metal artefact reducing syngo WARP sequences and FSE sequences. The sensitivity, specificity, and consistency rate of syngo WARP sequences and FSE sequences were compared for diagnosing local recurrence of malignant bone tumours. The kappa test was used to assess the consistency of syno g WARP and FSE sequences with pathology in diagnosing recurrence respectively. ICC evaluated the consistency of MR images with pathology in measuring the volume of recurrent tumour.
Results: 35 of the cases were pathologically or clinically diagnosed as local recurrence after joint replacement. Local recurrence mainly presented as soft tissue masses and bone destruction on MR images. The sensitivity, specificity, coincidence rate and Kappa value of syngo WARP sequences in the diagnosis of local recurrence of malignant bone tumours were 94.3%, 94.9%, 94.7%, and 0.887, which were higher than FSE sequences. Compared with pathology, the ICC of MR images in measuring recurrent tumour volume was 0.961.
Conclusion: The syngo WARP sequences can significantly reduce metal artefact in MR imaging and the diagnostic localisation located in the knee joint has a good consistency with pathology in evaluating the lesion volume, thus it’s recommended for the standard evaluation of postoperative bone tumour.

B-0063 11:26
Denosumab response evaluation in primary osseous giant cell tumours with 18F-FDG PET/CT
A. Kesari1, S.S. Swamy1, S. Sampangi1, I. Desai2, M. Ashok Kumar2, P. Asokan2, K. Kailur2; Bangalore/IN, Bikaner/IN
Purpose: To assess the response of primary osseous giant cell tumor to denosumab with FDG PET-CT.
Methods and Materials: We present retrospectively evaluated 90 patients of giant cell tumor treated with denosumab in the setting of recurrence, high surgical risk, high grade lesions and monotherapy. Although most of the patients required surgery (extended curettage, en bloc resection and prothetic reconstruction, arthrodesis, etc.), in two patients with recurrent GCT of the metacarpal and two patients with GCT of pelvis, denosumab was used as monotherapy. Patients were followed with PET-CT with a mean of 2 years (Range: 1-5 years).
Results: PET-CT evaluation showed reduced activity in 81% of the patients and 63% of the Campanacci grade III patients on plain radiographs showed down grading to grade II following denosumab therapy, 77% of the patients showed histological evidence of interval reduction in grade of tumor.
Conclusion: Response to denosumab is noted in the form decrease in metabolic activity, ossification of the lesional soft tissue component and lytic bone. The reduction in metabolic activity was more prominent than regression in size of the primary lesion. Thus PET-CT adds to imaging response assessment in osseous GCT.

B-1054 10:54
The diagnostic value of shear wave elastography for the differentiation of benign and malignant soft tissue tumours
M. Ozturk, A.V. Polat, Y.S. Baris, M.B. Selcuk; Samsun/TR (dr.mesutozturk@gmail.com)
Purpose: Our aim was to assess the diagnostic value of shear wave elastography (SWE) for the differentiation of benign and malignant soft tissue tumours.
Methods and Materials: Institutional ethics committee approval and informed consent from each participant were obtained for this prospective study. Fifty patients with soft tissue tumours (28 men and 22 women; mean age ± SD: 44.02 ± 19.13 years) were examined with SWE using virtual touch tissue imaging and quantification (VTIQ) method between May 2016 and June 2018. Five region of interest boxes were randomly placed on the lesion and tissue stiffness was measured as shear wave velocity (SWV) in meter per second (m/s). Mean SWV, maximum SWV, minimum SWV, and the difference between maximum and minimum SWV were used to compare the stiffness of the benign and malignant lesions. Results: Thirty-one benign and 19 malignant soft tissue tumours were diagnosed. Mean SWV, maximum SWV, minimum SWV and the difference between maximum and minimum SWV values for malignant lesions were 3.00 m/s, 3.54 m/s, 2.65 m/s and 0.89 m/s, respectively. Mean SWV, maximum SWV, minimum SWV and the difference between maximum and minimum SWV values for benign lesions were 3.29 m/s, 3.91 m/s, 2.85 m/s and 0.89 m/s, respectively. No statistically significant difference was found between benign and malignant lesions for the measured SWV values (p = 0.553, p = 0.418, p = 0.327, and p = 0.385, respectively).
Conclusion: SWE did not contribute to the differentiation of benign and malignant soft tissue tumours.

B-0059 10:41
Conclusion: Analysis of ADC values and ADC tumor/muscle ratios was useful for the distinction between benign and malignant tumors. The qualitative and semi-quantitative analysis of perfusion parameters did not allow distinction between benign and malignant tumors.
Comparison of image quality and radiation dose between combined ATCM and FTC technique in whole-body low-dose multidetector CT in the diagnosis of multiple myeloma

M. Calvo Imirizaldu, A. Ezponda Casajús, I. Soriano, A. Paternain Nuin, M. Ebroz, J.D. Aquerreta Beola; Pamplona/ES (mcalvo@unav.es)

Purpose: This study aimed to compare image quality and radiation dose of a combined automatic tube current modulation (ATCM) technique with those of a fixed tube current technique (FTC) in whole-body low-dose multidetector CT (WBLDCT), in the diagnosis of Multiple Myeloma.

Methods and Materials: 28 consecutive patients (15 men, mean age 63.8±11.3 years) underwent unenhanced WBLDCT for evaluation of Multiple Myeloma using a third-generation dual-source CT scanner (192-slice) with dedicated tin filter, from August-2017 to September-2018. All acquisition parameters were identical in both techniques (100 kV, tin filtration) except for tube current: 18 patients were performed with ATCM and 10 patients with FTC (200 mAs). We recorded objective image noise in muscles at different anatomic levels and in the liver parenchyma, radiation dose (DLP, mSv) and body mass index (BMI, kg/m²). The Mann-Whitney U test was used for statistical analysis.

Results: No statistical differences were observed in the BMI estimated in both groups (p=0.94). Signal-to-noise ratio was higher in the ATCM group at scapular, pelvic girdles compared to FTC, with statistically significant differences (p=0.014; p=0.001 respectively). Objective image noise values at the upper neck and in the abdominal region found no significant differences between both techniques (p=0.191 and p=0.408). The effective radiation dose with the ATCM technique (2.91 ± 1.49) was lower in comparison with the FTC (p=0.011). The ATCM technique showed higher image quality with better signal-to-noise ratio in some compromised areas as the scapular and pelvic girdles, while maintaining acceptable low radiation dose levels.

Conclusion: WBLDCT with ATCM technique achieves diagnostic image quality with a lower radiation dose compared to FTC, especially in areas with similar BMI.

Collagen-bound and water-bound water longitudinal relaxation time by ZTE imaging as biomarker for radiation-induced bone changes in mouse model

V. Phi Vag, L. Grigic, A. Boss, M. Pruschy, M. Wurnig; Zurich/CH (valeriiedoan.phivan@usz.ch)

Purpose: Collagen-bound water (CBW) and pore water (PW) components of cortical bone reflect bone porosity and organic matrix density. Our study evaluates the longitudinal relaxation time of these two compartments as biomarkers for radiation-induced bone damage.

Methods and Materials: ZTE images of mouse femur were acquired at 4.7T with 14 different inversion times (0-2,600 ms) before and after radiation and 3 weeks post-radiation. Longitudinal relaxation time of both compartments was calculated as a function of time. The T1 relaxation time was significantly shorter in the CBW (T1cbw = 432 ± 89 ms, T1pw = 2076 ± 623 ms) compared to the PW (p = 0.014). The CBW fraction (cbwf) was calculated using a bi-exponential fitting. CBW fraction significantly decreased after radiation (p = 0.001). The effective radiation dose to the bone was 100 mGy.

Conclusion: ZTE imaging as biomarker for radiation-induced bone changes in mouse model.

Collagen-bound and water-bound water longitudinal relaxation time by ZTE imaging as biomarker for radiation-induced bone changes in mouse model

V. Phi Vag, L. Grigic, A. Boss, M. Pruschy, M. Wurnig; Zurich/CH (valeriiedoan.phivan@usz.ch)

Purpose: Collagen-bound water (CBW) and pore water (PW) components of cortical bone reflect bone porosity and organic matrix density. Our study evaluates the longitudinal relaxation time of these two compartments as biomarkers for radiation-induced bone damage.

Methods and Materials: ZTE images of mouse femur were acquired at 4.7T with 14 different inversion times (0-2,600 ms) before and after radiation and 3 weeks post-radiation. Longitudinal relaxation time of both compartments was calculated as a function of time. The T1 relaxation time was significantly shorter in the CBW (T1cbw = 432 ± 89 ms, T1pw = 2076 ± 623 ms) compared to the PW (p = 0.014). The CBW fraction (cbwf) was calculated using a bi-exponential fitting. CBW fraction significantly decreased after radiation (p = 0.001). The effective radiation dose to the bone was 100 mGy.

Conclusion: ZTE imaging as biomarker for radiation-induced bone changes in mouse model.

Radiologic predictors of survival in soft tissue sarcoma

J. Kavalaru, C. Wunder, P. Ferguson, R. Mohankumar; Toronto, ON/CA (jokavana@lctd.ca)

Purpose: To evaluate the MRI features associated with survival after preoperative radiotherapy in soft tissue sarcoma.

Methods and Materials: A review of a prospectively collected database was performed for patients treated for extremity STS. Pre- and post-radiotherapy MRI were reviewed by two fellowship-trained musculoskeletal radiologists. Tumour diameter and volumes were measured on T2-weighted sequences and the change in high T2 signal was estimated as a percentage. High T2 signal was defined as signal intensity similar to an adjacent vessel or fluid. Tumours were divided into partial response (PR), stable disease (SD) or progressive disease (PD). Local recurrence-free survival (LRFS), metastasis-free survival (MFS) and overall survival (OS) were examined using the Kaplan-Meier method and compared with log-rank test.

Results: 309 studies were available to review. There was an increase in tumour volume after RT with a mean volume increase of 1320cm³ (3190cm³).

Conclusion: PD after radiotherapy is associated with worse MFS and OS. Increase in percentage T2 signal is associated with increase MFS but no change in OS.

Scientific Sessions

Abdominal Viscera

SS 201a Focal liver lesions: characterisation

Moderators: R. Albabaz; Leeds/UK
M.A. Bali; Brussels/BE

K-01 10:30 Keynote lecture
D. Weiszmann; Zurich/CH

B-0067 10:39 Classification of malignant and benign liver tumours using a radiomics approach

M.P.A. Starmans, R.L. Mielea, S.R. van der Voort, W.J. Niessen, S. Klein, M.G. Thomeer; Rotterdam/NL (m.starmans@erasmusmc.nl)

Purpose: Primary solid liver lesions are in clinical practice manually scored by radiologists in benign or malignant based on MRIs. As the interpretation of these MRIs is challenging and observer dependent, we present a radiomics approach as an objective alternative.

Methods and Materials: T2-weighted MRIs and pathology were gathered from 119 non-cirrhotic patients with solid primary liver tumours. The malignant class consisted of HCCs, the benign class of FNHs and HCAs. The phenotype was obtained through pathology. The resulting dataset originated from 54 different hospitals, showing heterogeneity in the imaging protocols. Lesions were delineated by a radiologist. Within these regions, radiomics features quantifying shape, intensity, texture and orientation were extracted. Several patient characteristics were added as semantic features. Radiomics was performed using harmonised adaptive workflow optimisation including various feature selection, oversampling and machine learning approaches. Evaluation was implemented through a 100x random-split cross-validation, with 80% of the data for training and 20% for testing. Performance was given in 95% confidence intervals (CIs). For comparison, the tumours were manually scored by a radiologist.

Results: The AUC, specificity and sensitivity were, respectively (0.86, 0.99), (0.78, 0.89) and (0.85, 0.98) for radiomics and 0.93, 0.93 and 0.70 for the radiologist. The positive class consisted of the malignant tumours.

Conclusion: The AUC of the radiomics approach is comparable to the radiologist. However, the sensitivity is lower than the radiologist but the specificity higher. Hence, radiomics is a promising alternative or complementary approach in distinguishing malignant from benign primary liver tumours in non-cirrhotic patients.

B-0068 10:47 The histology of the right paraffassial liver parenchyma: collagen is the basis for a hypoattenuating pseudolesion on CT

W.M. Klein1, L. Sonnemans1, S. Franckenberg2, D. Gascho3, M. Prokop1, W.H. Lamers1, J.P.J.M. Hilkens2, M. Thal1, P. Flach1, M. Thomeer4; Rotterdam/NL (w.m.klein@erasmusmc.nl)

Purpose: CT images of a healthy liver may show a hypoattenuating area on the right side of the falciform ligament, often noticed in the portovenous enhanced phase, and interpreted as a pseudolesion or a malignancy. The purpose of this study was to evaluate the histology of the paraffassial liver parenchyma in healthy livers, and find clues for aetiology.

Methods and Materials: Biplanview of the right and left paraffassial liver parenchyma were performed either during unenhanced CT. Histology was examined for the amount of collagen and fat. Left and right side parenchymas were compared using t tests and correlated to CT attenuation.

Result: 52 cadavers were included. Mean CT attenuation at the right side of the ligament was 44.9 HU (SD16.7) and left side 46.4 HU (SD16.3) (p 0.32). Excluding the fibrotic (>2% collagen) and steatotic (>5% fat) livers (n=36), significantly more collagen content was present at the right side: mean (SD) 0.71% (SD 0.49), compared to left side 0.51% (SD 0.39) (p 0.024), with equal fat content.
content. CT attenuation was correlated to age (Pearson -0.412, p < 0.004), not to collagen or fat content.

Conclusion: The right parafissural liver parenchyma contains more collagen and an equal amount of fat compared to the left side in healthy livers. We suggest that the high collagen on the right side is a consequence of normal embryological development with disadvantageous supply to the side that is prone to becoming a pseudolesion.

B-0069 10:55
Focal peliosis hepatis: imaging features of magnetic resonance imaging with diffusion-weighted imaging
W. Mingliang, M. Zeng; Shanghai/China (wang.mingliang@zs-hospital.sh.cn)

Purpose: To investigate the MRI and DWI (diffusion-weighted imaging) features of focal peliosis hepatis (focal PH).

Methods and Materials: The clinical and MRI data of 19 cases diagnosed as focal peliosis hepatis by pathology were retrospectively analysed. The scan of the upper abdomen was performed preoperatively in all patients. The imaging features of the lesions were analysed, including number, location, size, shape, signal intensity, enhancement pattern, vessels within and around lesions, and perfusion disorders of hepatic parenchyma. The ADC values of the lesions and adjacent hepatic parenchyma were measured, and the differences were evaluated statistically.

Results: In all 24 lesions, 22 lesions were located in the right lobe and 2 lesions in the left lobe. The median size was 24.4±17.2mm (7.5-72.2 mm). On T1WI, 21 lesions showed slight hypointensity, 1 lesion showed slight hyperintensity, and 2 lesions were isointense; 24 lesions showed slight hyperintensity on T2WI, and isointensity or slight hyperintensity on DWI. The mean ADC value was (1.51±0.415)×10^{-3} mm^2/s in the lesions and (1.769±0.690)×10^{-3} mm^2/s in the adjacent hepatic parenchyma, which showed no difference between the two groups (P>0.05). On dynamic MR images, 20 lesions showed gradually filling enhancement. 4 lesions showed marked persistent enhancement. Punctiform or filiform vessels were found in 9 lesions. Adjacent hepatic perfusion disorders showed in 8 lesions.

Conclusion: MRI features of focal peliosis hepatis had a certain characteristic. MRI combined with diffusion-weighted imaging could help to make diagnoses.

B-0070 11:03
Focal biopsy of focal hepatic lesions: decision tree model for patient management
F. Verrucchio, M. Rosenberg, M. Meyer, R.C. Nelson, D. Marini; Durham, NC/US (federicaverrucchio@gmail.com)

Purpose: To investigate patient- and procedure-related variables affecting the false-negative rate of US-guided liver biopsy, and to develop a standardized patient-tailored predictive model for the management of negative biopsy results.

Methods and Materials: We retrospectively included 389 patients (mean age 62 years ± 12) undergoing US-guided liver biopsy of 405 liver lesions between January 1, 2013 and June 30, 2015. We collected multiple patient- and procedure-related variables. By comparing pathologic reports of biopsy and the reference standard (further histology or imaging follow-up), the biopsy results were categorized as true-positive, true-negative and false-negative. Diagnostic accuracy and diagnostic yield were measured. Univariate and multivariate analyses were performed to identify variables predicting false-negative results. A standardized patient-tailored predictive model of false-negative results based on a decision tree was fitted.

Results: Diagnostic accuracy and diagnostic yield were 93.8% (380 of 405) and 99.4% (392 of 405), respectively. The false-negative rate was 6.5% (25 of 387). Predictive variables of false-negative results at univariate analysis included body mass index, lesion size, sample acquisition techniques, and immediate specimen adequacy. The only independent predictors at multivariate analysis were patient age and Charlson Comorbidity Index. By combining lesion size and location with patient age and history of malignancy, we developed a decision tree model that predicts false-negative results with high confidence (up to 100%).

Conclusion: False-negative results are not negligible at US-guided liver biopsy. The combination of selected lesion- and patient-specific variables may help predicting patients with false-negative results where aggressive management may be warranted.

B-0071 11:11
Enhancement pattern of hepatocellular adenoma (HCA) on MR imaging performed with Gd-EOB-DTPA vs other Gd-based contrast agents (GBCAs): an intradividual comparison
R. Cannella1, G. Brancatelli2, B. Rangaswamy3, M.I. Minervini4, A.A. Borhani5, A. Furlan6,7; Palermo/Italy, 2Pittsburgh, PA/US (rob.cannella@libero.it)

Purpose: To conduct an intradividual comparison of the enhancement pattern of HCA on dynamic MRI study performed following the injection of Gd-EOB-DTPA and other GBCAs.

Methods and Materials: This is a retrospective, IRB-approved study conducted in a single institution. Between January 1, 2008 and January 1, 2017, 17 patients (11 females) with at least one pathologically proven HCA who underwent liver MRI with Gd-EOB-DTPA and another GBCA (Gd-BOPTA, n=14; Gd-DTPA, n=1) were included. Enhancements of each lesion on hepatocytic arterial (HAP), portal venous (PVP), 2-minute and 4- to 5-minute phases were qualitatively evaluated by two abdominal radiologists. Lesions were categorized as hyper-, iso- or hypointense compared to the surrounding liver parenchyma. The presence of a pseudocapsule was also recorded. The differences in lesion enhancement were assessed using the Wilcoxon signed rank test. A p value <0.05 was considered statistically significant.

Results: The final population included 35 HCA (83% inflammatory subtype). There was no significant difference in lesion size (P>0.70) and enhancement rates and lesion-parenchyma-contrast. MRI combined with diffusion-weighted imaging could help to make diagnoses.

B-0072 11:19
Multi-arterial phase EOB-MRI: different contrast enhancement pattern of focal nodular hyperplasia and hepatocellular carcinoma
S. Fiore, R. Faietti, G. Gentile, L. Pavan, F. Guarasci, M. Gerboni, M. Donaliso, M. Gatti, P. Fonio; Turin/Italy (torello@gmail.com)

Purpose: To characterise the enhancement pattern of FNH and HCC with triple-phase arterial MRI acquisition.

Methods and Materials: Study population included 52 patients who had arterial enhancing hepatic lesions (41 HCC and 11 FNH). All patients underwent triple-phase arterial enhanced MRI (13/35 vs 1/35, P=0.001) and 4- to 5-minute images were more frequent when using Gd-EOB-DTPA.

Results: Enhancement pattern of HCA differed significantly after the injection of Gd-EOB-DTPA compared to other GBCAs. Lesion hypointensity on PVP and 2-minute and 4- to 5-minute images are more frequent when using Gd-EOB-DTPA.

Conclusion: Enhancement pattern of HCA differs significantly after the injection of Gd-EOB-DTPA compared to other GBCAs. Lesion hypointensity on PVP and 2-minute and 4- to 5-minute images are more frequent when using Gd-EOB-DTPA.

B-0073 11:27
Intra-individual comparison of contrast enhancement rates of focal liver lesions in DCE-MRI with gadoxetic acid vs gadobutrol
N.A. Bünting, A. Barabasch, C.K. Kuhl; Aachen/DE (nbuenting@ukaachen.de)

Purpose: Gadoxetic acid is widely used not only for hepatobiliary phase imaging, but also as regular extracellular contrast agent for dynamic, contrast-enhanced (DCE) MR-imaging of focal liver lesions. We aimed to systematically investigate the utility of gadoxetic acid for this purpose, in comparison to gadobutrol-enhanced MRI obtained in the same patients.

Methods and Materials: 71 consecutive patients underwent DCE-MRI according to a standardized protocol on two different occasions, once with gadoxetic acid and once with gadobutrol.

Results: In 26/71 patients had enhancing focal liver lesions not receiving treatment in between MRI studies. A 1-weighted 3D dynamic contrast-enhanced sequence was obtained before and at defined intervals in the arterial, portal venous and equilibrium phase after i.v. application of gadoxetic acid or gadobutrol. ROIs were carefully placed in the identical enhancing position of each focal liver lesion in order to calculate and compare enhancement rates and lesion-parenchyma-contrast.
Results: Mean enhancement rates of focal liver lesions were significantly higher for gadobutrol compared to gadoxetic acid for all dynamic phases: Arterial phase 170% vs 61%, portal venous phase 250% vs 134% and equilibrium phase 216% vs 118% (each p<0.001). The lesion-parenchyma-contrast in the corresponding phase of DCE-MRI was also significantly higher for gadobutrol in each dynamic phase: arterial phase 1.5 versus 1.2, portal venous phase 1 versus 1.1 and equilibrium phase 1.2 versus 0.9 (each p<0.03).

Conclusion: Compared to gadobutrol, gadoxetic acid is associated with significantly lower enhancement of focal liver lesions. This will impair the detection and characterization of focal liver lesions, especially those with arterial enhancement.

B-0074 11:35
A predictive model for early recurrence of hepatocellular carcinoma after tumour resection based on whole lesion MR imaging radiomics features
Z. Zhang, H. Jiang, L. Cao, Z. Ye, J. Chen, B. Song; Chengdu/CN
(zhangzhen950708@163.com)

Purpose: To prospectively develop and validate a prediction model for early recurrence (<1 year) of hepatocellular carcinoma (HCC) using whole lesion radiomics features on preoperative gadoxetic acid-enhanced MR images.

Methods and Materials: 114 patients (79 in the training cohort and 35 in the validation cohort) with surgically confirmed HCC were enrolled in this IRB-approved study. Three-dimensional whole-lesion regions of interest were manually delineated along the tumor margins. Radiomics features were selected to build a radiomics signature using least absolute shrinkage and selection operator (LASSO) method in the training cohort. Qualitative radiological features were evaluated by two independent reviewers. Independent risk factors were identified and combined to establish a clinical-radiological model. Finally, a combined prediction model comprising the radiomics signature and all risk factors was constructed. All models were developed in the training cohort with multivariate regression analysis, and their diagnostic performances were measured by receiver operator characteristic (ROC) and decision curves and validated in an independent validation cohort.

Results: Early recurrences (49.1%) were confirmed by imaging follow-up. 14 radiomics features were selected to construct the radiomics signature. The radiomics signature showed comparable performance with the clinical-radiological model in the training cohort (AUC=0.842 vs 0.885, P=0.05) and the validation cohort (AUC=0.837 vs 0.880, P=0.05). The combined prediction model outperformed both the radiomics signature and the clinical-radiological model in predicting early recurrence in the training and validation cohorts (AUC=0.942 and 0.890, respectively) with incremental clinical usefulness.

Conclusion: Prediction model, based on multi-sequence whole lesion MRI radiomics features, demonstrated potential in the preoperative prediction of early recurrence for HCC.

B-0075 11:43
Using MRI or CT for preoperative evaluation of HCC makes the clinical outcome different
Y.-C. Chou; Tainan/TW (yichenchou@hotmail.com)

Purpose: The recurrent rate of hepatocellular carcinoma (HCC) after treatment is high, at least partly because detecting small HCCs can be challenging before treatment. We hypothesized that different imaging modalities or using different contrast agents may affect the clinical outcome.

Methods and Materials: We retrospectively analyzed 698 patients with HCC (BCLC 0, A, B) underwent curative treatments, i.e. the operation or and radiofrequency ablation between 2011 and 2017. There were 170 patients receiving MR with the liver-specific contrast agent (Gd-EOB-DTPA, Primovist), 111 patients having MR with non-specific contrast agents, 188 patients having contrast-enhanced CT. Biological markers were also analyzed. After curative treatment, patients received imaging follow-up annually. Multivariate analysis and propensity score matching were used. The overall survival and tumor-free survival were calculated using the Kaplan-Meier method and compared between groups using the log-rank test.

Results: There was no significant difference in AJCC stage, Child-Pugh score, albumin-bilirubin (ALBI) score between CT and MR groups. However, the overall survival and tumor-free survival were significantly higher in MR groups than the CT group, with p-value < 0.0001 and 0.0006, respectively. The overall median survival for CT and MR group were 3.3 and 4.0 years; and the median tumor-free survival for CT and MR groups were 1.8 and 2.4 years, respectively. The difference in clinical outcome between using liver-specific and non-specific MR contrast was not statistically significant.

Conclusion: Using contrast-enhanced MRI as the preoperative imaging modality for patients with HCC provides significantly better clinical outcomes than using dynamic CT.

B-0076 11:51
Outcomes of Yttrium-90 radioembolic treatment for large monofocal hepatocarcinoma in BCLC-A stage patients: a single-centre experience
T. Gorgatti; A. Vil, M. Sponza, V. Gavrilovic, A. Pellegrin, F. Rosella, P. Girometti; Udine/IT (tommaso.gorgatti@yahoo.it)

Purpose: There is no definitive treatment for Barcelona Clinic Liver Cancer (BCLC)-A stage patients with large (>5 cm) monofocal hepatocarcinoma (HCC). We evaluated the outcomes of transarterial radioembolization (TARE) in this setting.

Methods and Materials: We retrospectively reviewed the clinical history of thirty subjects with BCLC stage-A patients with large monofocal HCC in whom TARE was offered as initial treatment between 2005-2017. TARE was performed by a pool of four interventional radiologists. Post-procedural follow-up was performed with multidetector computed tomography (MDCT) or magnetic resonance imaging (MRI) according to the Response Evaluation Criteria In Solid Tumors (RECIST) version 1.1 and/or modified-RECIST. We used Kaplan-Meier and Cox regression analyses to determine overall survival (OS) and time-to-progression (TTP), entering baseline clinical and laboratory features.

Results: Patients showed age ≥70 years in 16/30 cases (53%), male gender in 25/30 cases (83%), and predominat alcoholic- or HCV-related cirrhosis (22/30;73%). Median OS was 28 months (range 10.7-45.3). Child-Pugh score B7 was the 70% independent predictor of shorter OS (p=0.05, HR: 67.00). There was a trend toward shorter survival in larger tumors (p=0.098, HR: 3.85) and increased Model for End-Stage Liver Disease (MELD) score (P=0.066, HR: 4.60). Median TTP was 18 months (range 0.0-37.2). Multivariable analysis showed no independent predictors, despite a trend towards shorter TTP for higher MELD score (P=0.075, HR: 5.80) and previous liver-directed therapy (P=0.059, HR: 13.16).

Conclusion: TARE is a valid therapeutic option in BCLC stage-A patients with large monofocal HCC, with less satisfying results in patients with higher Child-Pugh and MELD scores.

Scientific Sessions

Wednesday

Breast

SS 202
Mammography and screening
Moderators:
A.M.J. Bluekens; Breda/NL
V. Lehotská; Bratislava/SK

B-0077 10:30
Influence of annual reader volume on performance in a mammography screening program with independent double reading and consensus of digital mammograms
S.R. Hoff2; T. Myklebust3,2, S. Hofvind1,2, M. Trondheim1,2, N. Ålesund1,2, Oslo1/NO (solveig.roth.hoff@helse-mr.no)

Purpose: To study the influence of annual screen-reader volume on radiologists’ performance in a mammography screening program using independent double reading with consensus of digital mammograms.

Methods and Materials: We collected retrospective data from 2,373,433 digital mammograms read by 121 radiologists in BreastScreen Norway from 2006-2016. Logistic regressions with robust standard errors were used to explore how sensitivity, false-positive rate (FPR), accuracy (sensitivity/FPR) and screening-cancer detection rate (SDC) were related to annual reading volume.

Results: In the range from 100 to 10,000 annual screen readings, sensitivity increased from 87 to 89%. For higher volumes, there was a decline in sensitivity from 89% at 18,000 annual readings. The FPR declined from 6.7% at 100 annual readings to 4.5% at 4,000, to 4.0% at 10 000 and to 3.0% at 18 000 annual readings. Accuracy increased with 50% from 100 to 4000 annual readings, with 15% from 4000 to 10,000 and with 12% from 10,000 to 18,000 annual readings. The SDC was 4.8/1000 at 100 annual readings and 5.1/1000 at 10,000 annual readings. For higher volumes, the SDC rate declined to 3.2 per 1000 at 18,000 annual readings.

Conclusion: Our study indicated that increasing annual reader volume had only a minor effect on sensitivity or SDC rate, except for a decline in performance for readers with extremely high annual volumes. The FPR improved with increasing annual reader volume, most markedly up to an annual volume of 4000 readings.
B-0078 10:38
Conversion to digital mammography had no impact on invasive grade 3 cancer detection in the English NHS breast cancer screening programme: analysis of 1.3 million screening tests
R.G. Blanks1, M. Wallis1, R. Alison1, J. Jenkins2, O. Kearins3, J. Patrick4, R.M. Given-Wilson1,1, Oxford/UK, 2Cambridge/UK, 3London/UK, 4Birmingham/UK (rosalind.given-wilson@stgeorges.nhs.uk)

Purpose: To describe and model the impact of conversion from film screen mammography (FSM) with full-field digital mammography (FFDM) in the English NHS breast cancer screening programme.

Methods and Materials: Annual screening data (KC82 returns) for each of the 80 units over the seven years from 2009/10 to 2015/16 were used to examine the impact of changing from FSM to FFDM. Regression models were used to estimate percentage and absolute change in detection rates.

Results: The recall rate to assessment (approximately 3.9%) was almost unchanged by the introduction of FFDM. After conversion to FFDM the overall cancer detection rate rose from 6.95 to 7.95 per 1000 screens, 14% (11-17%) p<0.001. High-grade DCIS detection rate rose from 0.71 to 1.00 per 1000, 39% (28-50%) p=0.001. Invasive grade 1 and 2 detection rate rose from 4.30 to 4.93, per 1000: 14% (10-18%) p<0.001. Invasive grade 3 detection did not change from 1.20 to 1.22 per 1000: 2% (5-9%) p=0.53. The magnitude of the effect for high-grade DCIS and grade 1 and 2 invasive cancers was greater for first (prevalent) screen (age 45-52 years). Grade 3 detection rates were not affected by screen type.

Conclusion: Digital mammography has increased the overall sensitivity of screening by increasing the cancer detection rate at the same recall rate as film screening, thereby improving the effectiveness of the screening process. However, there has been no increase in the detection of potentially life-threatening grade 3 cancers.

B-0079 10:46
The mammographic features of 13,213 women with screen-detected non-invasive breast disease
M.G. Wallis1, K. Clements1, B. Hilton1, J. Litherland2, A.J. Maxwell3, N. Sharma5, A. Thompson1, Cambridge/UK, 2Birmingham/UK, 3Glasgow/UK, 4Manchester/UK, 5Leeds/UK, Phoenix/TUS (matthewwallis492@bibtinet.com)

Purpose: To describe the mammographic features of screen-detected carcinoma in situ and atypical hyperplasia in the United Kingdom (UK) Breast Screening Programme.

Methods and Materials: The Sloane project is a prospective audit of women with screen-detected non-invasive breast cancer and atypia. Screening units in the UK were encouraged to register patients and complete forms documenting imaging features, surgical management, pathology and radiology (if applicable). Data were collected from 1 April 2003 to 24 October 2018.

Results: 14,057 women are registered from 82 of the 90 UK screening units to date. 13,213 have a complete pathology record: 11,335 DCIS and 1,878 ‘atypia’. Overall, micro-calcification was the predominant radiological feature in 11,087 (83.9%) and was present in 11,638 (88.1%). The presence of micro-calcification and directly related to grade: FEA 80.6%, ADH 72.1%, low-grade DCIS 79.1%, intermediate 84% and high-grade DCIS 94.5% (trend for DCIS grade Chi2 522.9 df=2, p<0.0001). Of those women with calcification, casting/linear calcification increases with grade: FEA 8.8%, ADH 12.5%, low-grade DCIS 19.4%, intermediate 30.6%, and high-grade DCIS 50.6%. A mass was the predominant feature in 16.8%, 17.6%, 19.3%, 14.4%, and 4.1%, respectively. After calculation, parenchymal distortion was the predominant radiological feature in 14.2% (125 of 878) cases of LSIN compared to 3.3% of the other pathologies combined.

Conclusion: As the ‘aggressiveness’ of non-invasive screen detected cancer/atypia increases, the proportion of women presenting with calcification (and linear casting morphology) and the proportion with a mass as the predominant radiological feature decreases.

B-0080 10:54
Can we optimise the recall rate and reduce overdiagnosis? An analysis of 11.3 million screening tests from the English NHS breast cancer screening programme
R.G. Blanks1, R.M. Given-Wilson1, S. Cohen2, J. Jenkins2, J. Patrick3, R. Alison1, M.G. Wallis1, Oxford/UK, 2London/UK, 3Cambridge/UK (matthewwallis492@bibtinet.com)

Purpose: To model the association between cancer detection and recall rates to understand the optimal balance of harm and benefit.

Methods and Materials: Non-linear and linear regression models were used to examine the associations between recall rate and cancer detection rate using annual screening programme data for the 80 English breast screening units (11.3 million screening tests) supplemented by previously published data from the Dutch screening programme.

Results: Low recall rates are associated with low cancer detection. As recall rates rise, the model indicates that the cancer detection rate for invasive cancer and high-intermediate-grade DCIS reaches a near-plateau above which almost all recalls are false positive. The cancer grade predicts the point the recall rate reaches plateau. For incident screens the recall rate above which almost no additional cancers are found is 2.5% for both grade 3 and high-grade DCIS. 3.9% for grade 2 and 5.2% for grade 1. However, for low-intermediate-grade DCIS (LIG) detection rate has no discernible plateau with detection rate increasing linearly at a rate of 0.12 (prevalent) and 0.18 (incident) per 1000 for every 1% increase in recall rate.

Conclusion: Our model predicts that there is an optimum range for recall that maximises detection of life-threatening cancers, whilst minimising harm (in England this is between 4.6% and 7% at prevalent screen and between 2.6% and 4% at incident screens).

B-0081 11:02
Additional breast cancer detection at screening mammography through quality assurance sessions between screening radiologists and coordinating screening radiologists
A.M.P. Coelen1, B. Korte1, L.E.M. Duijm1, Tilburg/NL, 2Eindhoven/ NL, 3Nijmegen/ NL (a.coelen8@hotmaill.com)

Purpose: To determine the number and characteristics of cancers additionally detected through quality assurance sessions between screening radiographers and coordinating screening radiologists.

Methods and Materials: We included a consecutive series of 431666 biennial screening mammograms obtained at a Dutch breast screening region between January 1, 2009 and July 31, 2016. Each screen was double read by 2 certified screening radiologists and the radiographers were encouraged to classify each obtained mammogram according to BI-RADS. At regular 6 week intervals the group of screening radiographers discussed with a coordinating screening radiologist the mammograms of women that were not recalled by the screening radiologists but considered suspicious by the radiographers. The coordinating radiologist then decided for each case whether secondary recall was indicated. During 2-year follow-up, we obtained data on radiological and pathological outcome of all recalled women.

Results: Altogether, 13175 women were recalled (recall rate: 3.1%), of which 2940 were diagnosed with breast cancer (6.8 cancers detected per 1000 screens). A total of 62 women (0.5% of recalls) experienced a secondary recall after the quality assurance sessions, of which 26 (31.7%) proved malignant. These 26 cancers comprised 8 ductal carcinoma in-situ (low grade: 1; intermediate grade: 7: high grade: 2) and 18 invasive cancers (≤10 mm: 1; 11-20 mm: 13; >20 mm: 4). B & R I: 7; B & R II: 2; B & R III: 2; Conclusion: About 1% of the cancers are detected through the quality assurance sessions. A majority of these cancers is invasive and >10 mm and therefore probably not reflecting overdiagnosis.

B-0082 11:10
Two decades of biennial screening mammography: trend in the incidence of delayed breast cancer diagnosis after repeated recall for the same mammographic abnormality
B. Korte1, J.R.C. Lameijer1, L.E.M. Duijm1, 2Tilburg/ NL, 3Eindhoven/ NL, 4Nijmegen/ NL (ld.m.duijm@hotmail.com)

Purpose: Multidisciplinary meetings and dedicated radiological modalities (e.g., MRI, tomosynthesis) are increasingly used for the evaluation of recalled women. To determine the trend in the incidence of delayed breast cancer diagnosis after repeated recall for the same abnormality at screening mammography.

Methods and Materials: We included all women aged 50-75 years who underwent screening mammography in a Dutch breast cancer screening region between July 1, 1996 - June 30, 2006 (cohort I) and between July 1, 2006 and June 30, 2016 (cohort II). Data were collected on radiologic procedures and histopathology for all recalled women, with a follow-up period of at least 2 years. For each woman with a repeated recall and histological confirmation of breast cancer at the latest recall, two radiologists independently determined whether the woman had been recalled for this lesion at a previous screen.

Results: A total of 1411 recalled women were diagnosed with breast cancer among the 280184 screens of cohort I, resulting in a cancer detection rate (CDR) of 5.0 per 1000 screens. In 28 of these women (2.0%), a repeated recall for the same mammographic abnormality proved malignant. Among the 507828 screens of cohort II, 3504 recalled women had breast cancer, with a CDR of 6.9. In 71 (2.0%) women, a repeated recall for the same abnormality showed malignancy.

Conclusion: No decline in the proportion of women with a >2 year delay in breast cancer diagnosis was observed. The workup of recalled women in the Dutch breast cancer screening programme needs improvement.
B-0083 11:18

Frequency and outcome of bilateral recall at screening mammography

1Eindhoven/NL, 2Maastricht/NL, 3Nijmegen/NL (joostlamje@gmail.com)

Purpose: To determine the frequency of bilateral recall at screening mammography and compare outcome with that of unilateral recall.

Methods and Materials: We included a consecutive series of 197,566 screening mammograms obtained between January 1, 2014 and January 1, 2017. During 2-year follow-up, clinical data were collected of all recalls. Screening outcome parameters were determined for women with unilateral and bilateral recall.

Results: A total of 5,629 women were recalled (recall rate 3.0%), of which 153 (2.6% of recalls) comprised a bilateral recall. Biopsy was more frequently performed in women with bilateral recall compared to unilateral recall (P<0.001). The proportion of DCIS among screen detected index cancers (lesion with highest BI-RADS) was comparable for unilateral and bilateral recall (P=0.3). Invasive index cancers after bilateral recall showed a worse tumour grading than those after unilateral recall (P=0.04). The proportion of lymph node positive invasive cancers was comparable for both groups (P=0.7), as well as hormone receptor characteristics of bilateral breast cancer after unilateral and bilateral recall. There was no difference in the proportion of true positives after unilateral versus bilateral recall (P=0.8). Unilateral recall showed a better PPV for biopsy (P=0.01).

Conclusion: Bilateral recalls comprise a small proportion of all recalls. After bilateral recall, biopsy is more frequently performed compared to unilateral recall, with a better PPV of biopsy after unilateral recall. Tumour characteristics of index cancers and bilateral breast cancers are comparable for unilateral and bilateral recall, except for a worse tumour grading of invasive index cancers after bilateral recall.

B-0084 11:26

Solitary dilated duct visualised by mammography: are we correctly classifying according to BI-RADS lexicon 5th edition?

V.J. Ayres[1], E.F. Fleurys[2], L. Ramalho[3], L.d. Pompei[1], 1Santo André/BR, 2São Paulo/BR (ayresve@gmail.com)

Purpose: To determine the incidence, pathological significance and risk factors associated with the presence of solitary ductal dilated (SDD) visualised at mammography.

Methods and Materials: Prospectively evaluation of consecutive mammography was performed in a breast cancer control center, in accordance with local ethical approval. Patients with solitary duct (SDD) at mammography were referred to additional second-look ultrasonography (US). SDD with intraductal components were submitted to percutaneous biopsy, following anatopathological correlation. Exclusion criteria considered patients previously submitted to breast surgery.

Results: In the period from March 17, 2016 to March 10, 2017, 9,035 mammographic exams were included, 8,125 (90%) screening and 910 (10%) diagnostic exams. 135 SDD (1.49%) were identified at mammography and 94 (1.04%) second-look US were performed. Of these, 22 revealed intraductal components, and 13 papillary lesions were biopsied. No cancer was found at biopsy results. The most prevalent histological findings were: 8 papillomas and 8 fibrocystic changes. Risk factors for mammographic SDD with statistical significance (p<0.05), using T test were: breast density pattern “A” or “B”, breastfeeding, pregnancy, hormone replacement therapy and papillary discharge. Main mammographic and US findings associated with second-look US papilloma diagnostic with statistical significance (p<0.05), using Chi Quadrado test: suspicious calcification, duct diameter > 3.0mm at US, intraductal mass and hard lesion at elastography.

Conclusion: SDD at mammography benefits from second-look US for analysis of intraductual content, of which often brings benign findings. When intraductal mass was found, the main result was papilloma. We propose that SDD at mammography should be classified as BI-RADS category 0.

B-0085 11:34

Outcome of microlcalcifications classified as BI-RADS 3, 4a and 4b in patients with and without a history of breast cancer

V. Bertani[1], A. Presazzi[2], M. Cellina[1], A. Boss[1], T. Frauenfelder[3], M. Marcon[1], I. Udine/IT, 2Pordenone/IT, 3Aviano/IT, 1Zurich/CH, 2Malmö/SE (magda.marcon@usz.ch)

Purpose: To compare the false positive recall which at second level exam have been classified as BI-RADS 1 or 2. We evaluated two different groups according to agreement recall (AR) or disagreement recall (DR). We compared the differences among tumoral imaging features between the two groups and considering also the overall findings prevalence in screening recall.

Methods and Materials: We reviewed a retrospective cohort of 7230 patients involved in Mammogram Screening program between November 2015 and September 2018. We included the false positive recall which at second level exam have been classified as BI-RADS 1 or 2. We evaluated two different groups according to agreement recall (AR) or disagreement recall (DR). We compared the differences among tumoral imaging features between the two groups and considering also the overall findings prevalence in screening recall.

Results: We obtained a final cohort of 1157 suspicious findings whose 416(35.9%) have been in AR group and 741(64,1%) in DR group. In the AR group we found, as single or one of multiple features in suspicious lesion, 287(69%) mass, 26 (6,25%) calcifications, 78(18,75%) architectural distortion and 25(6%) asymmetric density; in the DR group we detected 578(78%) mass, 89(12%) architectural distortion, 43(6%) asymmetric density, 31(4%) calcifications. Differences in tumor imaging features between the two groups were statistically significant (p<0.5).

Conclusion: Our results show how mass is the most common feature in false positive recall with no changes between one or two readers. Calcification, when classified as BI-RADS 2, is a rare challenging feature, mostly due to the breast radiologist’s expert experience. Screening mammogram is a good tool to avoid false positive recall for architectural distortion and asymmetric density, considering the higher prevalence of these findings in recall group.
SS 211a

Neurooncology: glioma

Moderators:
N.N.
N.N.

K-02 10:30

Keynote lecture
J.-F. Meder; Paris/FR

B-0088 10:39

Wavelet parameter maps of perfusion-weighted MRI correlate to tumour vascularity and cell proliferation in glioblastoma

T. Huber, L. Rotkopf, S. Bette, C. Preibisch, J. Gempt, T. Pyka, K. Thierfelder, B. Wiester, Munich/DE, Rostock/DE (Thomas.Huber@med.uni-muenchen.de)

Purpose: Wavelet-based reconstructions of dynamic susceptibility contrast (DSC) perfusion-weighted imaging (wavelet-PWI) are a new and elegant way of vascular visualization. Wavelet-PWI yields maps with a clear depiction of hypervascular tumour, as recently shown. The aim of this study was to show if the wavelet-PWI power spectrum signal in tumour tissue is associated with tumour vascularity and cell proliferation in glioblastoma multiforme (GBM).

Methods and Materials: For this IRB-approved study 12 subjects (63.0±14.9y; 7m) with histologically confirmed GBM were included. Target regions for biopsies were prospectively marked on contrast-enhancing GBM regions as seen on preoperative 3T MRI T1-weighted images. During subsequent neurosurgical tumour resection 27 targeted biopsies were taken intraoperatively from these target regions. All specimens were analysed for the endothelial cell marker CD31 and the proliferation marker MIB-1 and correlated in a generalized linear model (p<.05) and a significant correlation to MIB-1 in a nonlinear generalized model (p<.05).

Conclusion: The wavelet-PWI power spectrum signal derived from existing DSC-MRI data might be a promising new surrogate for tumour vascularity and cell proliferation in GBM.

Author Disclaimers:
T. Huber: Consultant; Consultant for Smart Reporting GmbH.

B-0099 10:47

Noncontrast ASL perfusion in pre-surgical differential diagnosis of brain gliomas

A. Batalov, N. Zakharova, E. Pogosbekyan, L. Fadeeva, A. Baev, S. Goryaynov, A. Kosyr'kova, A. Potapov, I. Pronin; Moscow/RU (batalov89@gmail.com)

Purpose: To assess the tumour blood flow (TBF) in the supratentorial brain gliomas by ASL-perfusion in comparison with the histopathological characteristics and 5-ALA intraoperative fluorescence.

Methods and Materials: The study group included 186 patients (97 female, 89 male, avg. 45 ± 15 years) with primary supratentorial gliomas: 47 - low-grade (LGG) and 139 - high-grade (HGG: 50-grade III, 89-grade IV). Patients were examined on a 3T MR-scanner. The pseudo-continuous ASL (pCASL) technique was used to determine TBF. TBF was normalized regarding to intact white matter (nTBF). In 66 of 186 patients tumour resection was performed using fluorescence-guided technology. All diagnoses were confirmed histopathologically.

Results: TBF and nTBF in the groups of LGG and HGG were significantly different (p<0.001). TBF in the group of LGG was 31.55±15.75 ml/100g/min, nTBF was 4.39±3.90. The sensitivity and specificity of ASL in diagnosis of LGG and HGG were 82.7% and 95.7%, accordingly, AUC 0.946, cutoff-64 ml/100g/min. TBF and nTBF in groups of GIII and GIV didn’t show statistically significant difference (p=0.08). Nevertheless, we found a significant difference in TBF and nTBF between fluorescent and non-fluorescent gliomas (p<0.05). The sensitivity and specificity of pCASL in predicting fluorescence in gliomas was 77% and 71%, accordingly, AUC-0.722, cutoff-3.3.

Conclusion: pCASL is a reliable quantitative technique for the differential diagnosis between LGG and HGG. pCASL can be used in predicting intraoperative fluorescence in gliomas. The study was supported by RFBR No18-29-01018

Author Disclaimers:
A. Batalov: Research/Grant Support; Russian Foundation for Basic Research (grant No 18-29-01018). N. Zakharova: Research/Grant Support; Russian Foundation for Basic Research (grant No 18-29-01018). L. Fadeeva: Research/Grant Support; Russian Foundation for Basic Research (grant No 18-29-01018).

B-0099 10:55

Lesion and lesion habitat analysis on magnetic resonance imaging: an imaging biomarker for tumour grade and 1p19q deletion status

A. Alvi, F. Mubarak, S. Enam, M. Shahzad; Karachi/PK, Lahore/PK (smirnova_alina@bk.ru)

Purpose: The purpose of the study is to grade gliomas and predict 1p19q deletion status on the basis of MRI characteristics. Hypothesis: low-grade gliomas are more heterogeneous, less well circumscribed, have low mean ADC values, usually in frontal and parietal lobes and are 1p/19q co-deleted.

Methods and Materials: Retrospective analysis of 97 patients (53 male, 44 female; age: 20-70 years) with oligodendroglioma grade II and anaplastic oligodendroglioma grade III. Associations of 1p19q deletion status and grading with imaging characteristics were assessed. Multivariable logistic regression models were used to assess the association of grading and 1p19q deletion with imaging characteristics and results were significant with odds ratios and 95% confidence intervals. P values of .005 were considered statistically significant. Statistical analysis was done using SPSS® v. 19 (SPSS Inc., Chicago, IL).

Results: Thirty-one of 97 patients had 1p19q co-deleted tumours (21= Grade II, 10= Grade III). They were mostly in frontal and parietal lobes showing heterogeneity, ill-defined margins and low ADC values (mean/SD: 1185.3/283.4). 66 patients did not show 1p19q co-deletion. They had circumscribed borders, mostly in temporal lobe and insula showing homogeneity and relative high ADC values (mean/SD: 1784.2/648.7).

Conclusion: Heterogeneous signal characteristics and less well circumscribed borders on T1, T2 and SWI with lower mean ADC values are features of low-grade gliomas and these are usually 1p19q co-deleted tumours. Dealing with gliomas, MRI characteristics can predict tumour grade and 1p19q deletion status. In addition, this evaluation is recommended for better treatment planning and effective patient management and prognostication.

B-0091 11:03

Changes in high-grade gliomas after different kinds of radiation therapy depending on IDH status during chemotherapy in combination with bevacizumab

A. Smirnova, O.V. Lukina, A. Kuzmin, A. Tkachev, N. Plakhotina, M. Cherkashin, M. Anishkin; St. Petersburg/RU, Volgograd/RU (smirnova_alina@bk.ru)

Purpose: Identification of consistent patterns for accurate MRI-based assessment of recurrence in patients with high-grade gliomas (HGG) treated with radiotherapy, chemotherapy and bevacizumab, taking IDH1 status into account.

Methods and Materials: 31 patients with HGG (Group A included 18 patients with IDH1-mutant tumour, Group B included 13 patients with IDH1-wild-type) treated with radiotherapy, chemotherapy (temozolomide and subsequently irinotecan) in combination with bevacizumab were prospectively studied between 2016 and 2018. Changes in T1CE, T2, flair, PWI and 11C-methionine PET/CT before radiotherapy, and after 4, 8, 12 and 16 months were evaluated. Tumour volume estimation was performed with GammaPlan workstation 10.1.

Results: The earliest features of recurrence were registered at 8 months after radiotherapy for IDH1-wild-type and 12 months for IDH1-mutant tumours during continued systemic therapy, and in 96.8% of cases were in a form of an increase in T2/Flair anomaly with unconvincing methionine uptake (1.4 or less). At the same time, T1CE showed no signs of pathological contrasting and PWI with no increase in CBV also. Only subsequent observations of T2/Flair hyperintense volumes revealed higher methionine uptake values (1.8 to 4.0) and increase in CBV.

Conclusion: Wild-type gliomas are characterized by an earlier onset of progression as opposed to IDH-mutant gliomas. Well-timed identification of recurrence during bevacizumab-containing therapy is challenging due to decrease in contrasting, blood flow and moderate methionine uptake, and can be suspected by T2/Flair. To identify continued tumour growth, it is necessary to take into account all available data to start anti-relapse therapy as early as possible.
B-0092 11:11 Novel imaging signs in detecting the 1p 19q non-co-deleted IDH wild and 1p 19q non-co-deleted IDH mutant lower grade gliomas

A.N. Kambal1, A. Kambal2, New Delhi, IN; 1Mumbai, IN

(aakashyukumar.kamble58@gmail.com)

Purpose: Lower grade glioma is classified based on genetic markers into subgroups, one being 1p19q- co-deletion, this subgroup would include both IDH mutants, IDH wild type of gliomas.

Methods and Materials: Total 330 lower grade glioma cases from cancer imaging archive (TCIA) were analysed 171 from TCGA-LGG collection and 159 from LGG-1p19qDeletion collection. Two signs (Sign A and Sign B) were then applied to the whole collection. Confusion matrices and ROC curves were plotted for Sign A, Sign B and T2-FLAIR mismatch sign using 1p 19 q non-deletion, IDH wild and mutants from TCGA genetic database were taken as a gold standard. These novel signs were validated using LGG-1p19qDeletion collection (n=159 cases).

Results: With TCGA data Sign A had 88.19% sensitivity, 63.56% specificity, 87.5% precision, 81.87% accuracy (p value<0.0001) Sign B had 41.09% sensitivity, 91.11% specificity, 92.98% precision (p value<0.0001), T2-FLAIR mismatch sign had a poor 26.11% sensitivity and 96.77% specificity in detecting 1p 19q non-co-deleted gliomas (p value<0.0001). There was a good intra-observer variability with Sign A (k=0.689,) and Sign B (k=0.691) in TCGA-LGG collection. Validation cohort of TCGA-LGG collection showed Sign A had 87.72% sensitivity, 69.61% specificity, 91.03% NPV (p value<0.0001), while Sign B had sensitivity of 71.93%, specificity of 90.1%, 80.39% precision, 83.54% accuracy (p value<0.0001).

Conclusion: The sign A has good sensitivity and specificity; while sign B has good specificity to identify the 1p 19q non-co-deleted gliomas containing both IDH mutants and IDH wild types of tumour in lower grade gliomas.

B-0003 11:19 Diffusion kurtosis imaging parameters predicting survival in integrated molecular subtypes of diffuse glioma: an observational cohort study

(nils.christoph.nuessle@student.uni-tuebingen.de)

Purpose: To assess the predictive value of preoperatively assessed diffusion kurtosis imaging (DKI) metrics as prognostic factors in the 2016 World Health Organization Classification of Tumors of the Central Nervous System integrated glioma groups.

Methods and Materials: Seventy-seven patients with histopathologically confirmed treatment-naive glioma were retrospectively assessed between 08/2013 and 10/2017 using mean kurtosis (MK) and mean diffusivity (MD) histogram parameters from DKI, overall and progression-free survival, and relevant prognostic molecular data (isocitrate dehydrogenase [IDH]; alpha-thalassemia/mental retardation syndrome X-linked, [ATRX]; chromosome 1p19q loss of heterozygosity). The optimal cutoff-values of the metric variables were determined using receiver operating characteristic (ROC) analysis. Univariate survival data were assessed using the Kaplan-Meier method. A multivariate Cox proportional hazards model was performed on significant results from univariate analysis.

Results: There were significant differences in overall and progression-free survival between patient age (p<0.001), resection statuses (p=0.002), WHO glioma grades (p<0.0001), and integrated molecular profiles (p<0.0001). Survival was significantly better in patients with lower MK and higher MD values (p<0.009) in gliomas without chromosome 1p19q LOH (p=0.0001) and those with retained ATRX expression (p=0.008).

Conclusion: Patient age and MK from DKI are relevant factors for preoperatively predicting overall and progression-free survival. Regarding the molecular subgroups, they are unfavourable prognostic factors in gliomas without chromosome 1p19q LOH and those with ATRX retention.

Author Disclosures: J. Schittenhelm: Research/Grant Support; Else Übelmesser Foundation (grant no. 30.19845).

B-0094 11:27 Altered whole brain connectivity as a potential marker of disease burden in glioma patients

S. Stöcklein1, V. Stöcklein1, F. Schöppel1, N. Thon1, F.-W. Kreith2, B.B. Ertf-Wagner1, J.-C. Tonn1, H. Liu3, Munich/DE; 2Toronto, ON/CA; 3Boston, MA/US (sophia.stoecklein@med.uni-muenchen.de)

Purpose: In glioma patients tumour cells spread far beyond the lesion that is detected by conventional MRI. Assessing non-lesional brain in glioma patients could provide crucial information about disease burden. We developed an individual measure of altered functional connectivity based on resting-state functional MRI (rsfMRI) and related this marker to WHO grade, IDH mutation status, neurocognitive performance and overall survival.

Methods and Materials: 40 patients with suspected de novo glioma were prospectively included and rsfMRI data were obtained. We evaluated the abnormality of functional connectivity by comparing each patient's data to normative data obtained from 100 healthy individuals. Abnormality was quantified at each voxel, resulting in an individual measure for abnormality (abnormality index, ABI). Statistical analysis was conducted adjusting for tumour volume, age and SNR of rsfMRI data.

Results: ABI maps reflected the macroscopic tumor, but also displayed alternations in non-lesional brain tissue. On a quantitative level, ABI was associated with WHO grade, both when summarized in the lesional and non-lesional hemisphere (p<0.001, respectively). ABI was increased in patients with IDH-wildtype gliomas, with strongest effects in the non-lesional hemisphere (p<0.01). Association with neurocognitive performance was strongest in the lesional hemisphere (p<0.005). 8/38 patients died within the follow-up period, showing a trend towards association of overall survival with ABI (p=0.12).

Conclusion: ABI captures widespread connectivity changes in glioma patients on an individual level. ABI reflects tumour biology and correlates with neurocognitive performance and might be associated with overall survival. Individual ABI maps might therefore proof as a useful complement to conventional structural MRI.

B-0095 11:35 GLINT: GlucoCEST in neoplastic tumours at 3T - first-in-man studies of GlucoCEST in glioma patients

T. Lindig1, M. Zaises1, K. Herz2, A. Deshmahane1, B. Bender1, X. Golay2, K. Schelter1, T. Tübingen/DE; 2London/UK

(tobias.lindig@med.uni-tuebingen.de)

Purpose: Dynamic glucose enhanced (DGE) CEST imaging has almost only been shown at ultra-high field (UHF) due to low effect size. First results in brain tumour patients of a DGE CESTM method with fast 3D imaging developed for clinical field strength are shown herein.

Methods and Materials: CEST saturated images at different frequency offsets were acquired at 160 time points before, during and after a glucose injection (0.3 mg/kg) with 6.3s temporal resolution (Total: 16:45 min) to detect accumulation in the brain. Two glioblastoma (IDH wild-type, unmethylated MGMT promoter) patients (1: male, 70y, 2: female, 75y) and 3 healthy controls were scanned at a clinical 3T System. DGE contrast images were analysed by subtracting each image from a pre-injection baseline image: ∆DGE(=DGEmax−DGEpre).

Results: In the high-grade glioma (1), glucose uptake in the Gadolinium enhancing region could be detected approximately 4 minutes after injection with a maximum increase of ∆DGE=0.51±0.078, whereas a contralateral white matter ROI was barely affected (∆DGE=0.07±0.085) at the same time point. The second glioma (2), with the same histology and grading, showed very little gadolinium enhancement as well as no significant detectable DGE effect. Healthy controls did not show any significant DGE contrast.

Conclusion: We demonstrate that state-of-the-art glucose enhanced imaging can be accomplished at clinical field strength using optimized saturation and readout parameters. First results are promising, and indicate that glucoCEST corresponds more to the disruptions of the blood-brain-barrier with Gadolinium uptake than to the molecular tumour profile or tumour grading.
Radiomics feature-based classifiers may be useful to predict LGG grades. However, radiomics classifiers may have limited value when applied to the non-enhancing LGG subgroup in an external cohort.

Conclusions:

1. Radiomics feature-based classifiers may be useful to predict LGG grades. However, radiomics classifiers may have limited value when applied to the non-enhancing LGG subgroup in an external cohort.

2. Whether radiomics features derived from multiparametric MRI can predict the tumour grade of lower grade gliomas (LGGs; WHO grade II and grade III) and the non-enhancing LGG subgroup.

Methods and Materials:

1. Two-hundred and four patients with LGGs from our institutional cohort were allocated to training (n = 136) and test (n = 68) sets. Postcontrast T1-weighted images, T2-weighted images, and FLAIR images were analysed to extract 250 radiomics features. Various machine learning classifiers were trained using the radiomics features to predict the glioma grade. The trained classifiers were internally validated on the institutional test set, and externally validated on a separate cohort (n = 89) from The Cancer Genome Atlas (TCGA).

2. The performance was assessed by determining the area under the curve (AUC) from receiver operating characteristic analysis. An identical process was performed in the non-enhancing LGG subgroup (institutional training set; n = 72; institutional test set; n = 37; and TCGA cohort, n = 37) to predict the glioma grade.

Results:

1. The performance of the best classifier was good (AUC 0.82) in the internal validation, but poor in the external validation (AUC 0.68).

2. Of the total trauma radiology time, up to 83% consisted of non-radiation time. Scout acquisition times claim between 7% and 24% of the examination time. Acquisition times of scouts were close (range 70-93%) to total CT acquisition times. The fastest protocol was a non-enhanced one-stop WBCT protocol, costing in mean only 79 seconds to completion (p<0.001). For contrast-enhanced scans, a fixed delay split bolus protocol could present all axial images 159 seconds after start of imaging.

3. Conclusion: Scout acquisition and non-acquisition times are significant time-limiting factors in WBCT. Optimising examination times of WBCT protocols can contribute to faster trauma radiology workflow.

B-1001 10:46
Whole-body CT using biphasic injection protocol with adaptive statistical iterative reconstruction-V (ASiR-V) in multi-trauma patients: impact on dose reduction and image quality
A.H. Elmokadem1, E.A. Ibrahim1, W.A. Gouda3, A. Abdel Razek1;
1 Mansoura University, Mansoura/EG, 2 Kuwait Institute, Kuwait/KW, 3 Menoufia University, Menoufia/EG (walaagoda@yahoo.com)

Purpose: To evaluate dose savings and image quality after implementing adaptive statistical iterative reconstruction-V (ASiR-V) on a revised protocol for whole-body CT (WBCT) for trauma patients.

Methods and Materials: One hundred multi-trauma patients were scanned using a 256-section multidetector CT system (GE Healthcare Revolution system). They were randomized into two groups using two different scanning protocols. Group (A) (n=50, age 32.4±8.09) underwent conventional protocol including unenhanced scan for brain and cervical spines, then an contrast-enhanced arterial-phase of the thorax and abdomen followed by a venous and delayed scans of the abdomen and pelvis. Group (B) (n=50, age 35.9±13.57) underwent a biphasic injection protocol including unenhanced scan for brain and cervical spines, followed by a one-step acquisition of the thorax, abdomen, and pelvis following a biphasic injection, the examination was ended by delayed phase for the abdomen and pelvis. All examinations were done under 50 % ASiR-V. Image count, radiation dose, total acquisition time, mediastinal artifacts were compared between the groups. Two radiologists independently graded image quality from 1 to 5. In addition, contrast enhancement was measured in the pulmonary artery, aorta, inferior vena cava, portal vein, liver, spleen, and kidneys.

Results: The mean (±SD) dose length product for group (A) was 2202.3 ± 271.8 mGy*cm and markedly higher when compared to group (B) (p<0.001) which was 1485.8 ± 489.2 mGy*cm. Protocol B gave a dose reduction of 32.5% and 7.7% time reduction. The HU values of the aorta & liver were significantly higher in group (A) while kidneys values were higher in group (B). There was no significant difference between the image quality scores for both groups, however group (A) scored higher grades.

Conclusion: Implementation of ASiR-V algorithm into biphasic CT protocol markedly reduced radiation with maintenance of accuracy and image quality.

B-0099 10:38
Whole-body trauma CT for critical and mass casualty incident patients: how fast can we go
L.F.M. Beenen, M.J. Scheerder, D. Bekebrede-Kaufman, N.H.J. Lobe; Amsterdam/NL, (l.beenen@amc.uva.nl)

Purpose: In trauma, every second counts: time = life. Whole-body computed tomography (WBCT) for trauma patients can achieve both significant time and survival benefits. Faster radiological diagnosis could be lifesaving, particularly for haemodynamically critical or MCI patients. Hence, high efficacy of the scanning workflow is paramount. However, detailed time claims of different scan setups are not known. The aim of our study was to investigate the impact of different WBCT procedures on trauma CT times.

Methods and Materials: Adult anthropomorphic phantoms were used to evaluate 6 different scan protocols in a trauma exercise, with 5 simulation tests for each protocol. Tested workflow settings were: single vs double scout acquisitions, acquisition direction, non-enhanced vs contrast-enhanced, and fixed-delay or bolus triggering contrast administration. Several start and end time points were measured for the complete trauma radiology period: scout acquisitions, CT acquisition, and reconstruction times, respectively.

Results: Of the total trauma radiology time, up to 83% consisted of non-radiation time. Scout acquisition time claim between 7% and 24% of the examination time. Acquisition times of scouts were close (range 70-93%) to total CT acquisition times. The fastest protocol was a non-enhanced one-stop WBCT protocol, costing in mean only 79 seconds to completion (p<0.001). For contrast-enhanced scans, a fixed delay split bolus protocol could present all axial images 159 seconds after start of imaging.

Conclusion: Scout acquisition and non-acquisition times are significant time-limiting factors in WBCT. Optimising examination times of WBCT protocols can contribute to faster trauma radiology workflow.

B-0098 10:30
Mass casualty incidents: are you ready? An evidenced-based radiology MCI protocol template
J.W. Ryan, P.J. MacMahon, F. Bolster; Dublin/IE (jamesrynchd@gmail.com)

Purpose: Mass casualty incidents (MCIs) are increasing in frequency across Europe. Radiology plays a critical role in appropriate patient triage during an MCI. Major incident planning (MIP) can help optimize radiology’s response with the goal of improving patient outcomes. Historically, radiology is often underestimated or excluded from MIP. Our goal was to identify key topics that should be addressed by radiology during MIP, thus promoting MCI awareness and education amongst radiologists.

Methods and Materials: A review of the literature was performed. The advanced search builder on PubMed was utilized. Search terms “radiology”, “mass causality incidents to incidental trauma guidelines from the Royal College of Radiologists and NICE were also reviewed. Key topics include patient identification strategy, scan ordering, patient tracking, MCI scan protocols, result communication, PACS failure contingencies, scalability of response and individualized radiology staff action cards.

Conclusion: All radiology departments should partake in MIP and in MCI simulation to help maximize patient throughput and improve triage efficiency in the event of an MCI. We have provided an evidenced-based radiology MCI protocol template for use by radiologists during MIP.

B-0097 11:51
Radiomics MRI phenotyping with machine learning to predict the grade of lower grade gliomas: a study focused on non-enhancing tumours

Purpose: To assess whether radiomics features derived from multiparametric MRI can predict the tumour grade of lower grade gliomas (LGGs; WHO grade II and grade III) and the non-enhancing LGG subgroup.

Results: Of the total trauma radiology time, up to 83% consisted of non-radiation time. Scout acquisition time claim between 7% and 24% of the examination time. Acquisition times of scouts were close (range 70-93%) to total CT acquisition times. The fastest protocol was a non-enhanced one-stop WBCT protocol, costing in mean only 79 seconds to completion (p<0.001). For contrast-enhanced scans, a fixed delay split bolus protocol could present all axial images 159 seconds after start of imaging.

Conclusion: Scout acquisition and non-acquisition times are significant time-limiting factors in WBCT. Optimising examination times of WBCT protocols can contribute to faster trauma radiology workflow.
were imaged with CT on arrival. 128 (83%) were stab wounds and 21 (14%) gunshot wounds. 6 patients had miscellaneous trauma mechanisms. Thereof 47 (47/151) had undergone surgery after imaging. 49 patients were imaged using oral, rectal and i.v. contrast, 23 with rectal and i.v. contrast, and 22 with i.v. contrast only. Surgery revealed HVI in 26 patients. CT had an overall sensitivity of 69.2%, specificity 90.5%, PPV 90.0% and NPV 70.4%. CT with oral and rectal contrast (n = 25) had a sensitivity 66.7%, specificity 71.4%, PPV 85.4% and NPV 45.5%. CT with i.v. contrast only (n = 22) had sensitivity 75.0%, specificity 100%, PPV 100% and NPV 87.5%. Difference in sensitivity between the oral and/or rectal contrast group and i.v. contrast only was not statistically significant (p=1.00).

Conclusion: Stab wounds were the most common cause of penetrating abdominal trauma. The overall sensitivity and specificity of CT in detecting HVI were 69.2% and 90.5%, respectively. The use of oral and/or rectal contrast yielded similar sensitivity to the use of i.v. contrast only.

B-0102 11:02
Evaluation of a CT-based scoring system regarding the prognosis of blunt splenic and liver injuries: a single-centre analysis with 720 patients
D. Morell Hofler, M. Fodor, E. Braunwarth, M. Haselbacher, T. Schmid, M. Blauth, E.-M. Gassner, S. Stättner, F. Primavesi; (Dagmar.Morelli@i-med.ac.at)

Purpose: Non-operative management (NOM) of blunt splenic and hepatic injuries has been getting increasingly common. Next to clinical parameters, CT-based grading systems are habitually used as screening tools in early management decisions. Usually they provide up to 3CT scoring systems, each with defined criteria. Shortening this grading system, which contemplated contrast-media extravasation, was introduced for spleen injuries (CTSI). This study validates this system for spleen injuries and proposes/validates an adapted classification for liver injuries.

Methods and Materials: Retrospective analysis of patients with traumatic blunt liver/spleen lesions in the MUI from 2000 to 2016. CT imaging on admission was reevaluated by two radiologists, using the AAST and the CTSIs. Both classifications were examined regarding their capability to predict the necessity of operative treatment, the failing of NOM and the in-hospital-mortality.

Results: In total, 720 patients were analysed (median 32; 230 female), 276 with spleen, 364 with liver and 80 with combined injuries. The total mortality was 5.6%. 160 patients had severe (grade 4-5) lesions according to AAST, with a mortality of 6.0%/5.3% (severe/mild liver injuries, p=0.790) and 10.5%/3.2% (spleen injuries, p=0.008). When using CTSI, 33 patients with liver and 87 patients with spleen lesions had severe injuries (≥4a), associated with a higher in-hospital-mortality: 12.1%/4.9% for liver (p=0.095) and 10.3%/3.0% for spleen injuries (p=0.005). Both classifications showed a high-significant tendency (p < 0.001) of severe lesions more often requiring first-hand operative treatment and were equally good for predicting NOM failure.

Conclusion: The CTSI is able to predict in-hospital-mortality and proved efficient as a management-indication tool for predicting NOM failure. Therefore, it should substitute the AAST classification as the gold-standard.

B-0103 11:10
Characteristics and predictive factors of delayed events in patients of blunt splenic trauma designated for non-operative management
Y.-C. Wong, L.-J. Wang, C.-H. Wu; Taoyuan/TW (ycwong@cgmh.org.tw)

Purpose: We compared patients with delayed events and immediate events who received splenic angiobolisation (SAE) for salvaging failures of non-operative management (NOM) after blunt splenic trauma.

Methods and Materials: From 2012 to 2017, 161 patients of blunt splenic trauma who were designated for NOM and treated with SAE at our institution were identified. Delayed event occurred at least 4 days after trauma, whereas immediate event occurred within 24 hours. We excluded 11 patients whose events fell between 1 and 4 days. The final inclusion was 150 patients (38 women, 112 men) with median of 33.0 (IQR 21, 47) years. Records were retrospectively reviewed for clinical and CT characteristics. Comparisons between delayed and immediate events as well as predictive factors for delayed events were computed.

Results: Delayed events occurred in 23 (15.3%) patients and were significantly associated with less vascular injuries on CT (3.5% vs. 96.5%), smaller CT score (3.3 vs. 5.2) and smaller hemoperitoneum score (2.9 vs. 4.3). Significant predictive factors for delayed events were CT score, hemoperitoneum score and initial platelet count. Among 23 delayed events, paired T test showed a worse CT score (3.2 vs 4.8; p<0.001) and lower haemoglobin (11.9 to 10.1 g/dL; p=0.004) on follow-up CT examinations and haemograms. Patients with immediate events had a significantly longer length of stay after SAE than patients with delayed event, 12.7 days vs. 9.4 days.

Conclusion: Delayed events of blunt splenic trauma were associated with CT findings. The significant predictive factors were CT score, hemoperitoneum score and initial platelet count.

B-0104 11:18
Can MR be useful in the follow-up of blunt liver and spleen injuries: preliminary results
F. Iacobelli, M. Di Serafino, T. Cinque, C. Stavolo, L. Romano; Naples/IT (f.iacobelli@gmail.com)

Purpose: In haemodynamically stable patients, the standard of care for blunt liver and spleen injuries is the non-operative management. In our Institution, MR was introduced for the follow-up of haemodynamically stable patients with blunt liver and spleen injuries. The aim is to describe the imaging protocol, the main findings and the potentialities in the use of MR in these patients.

Methods and Materials: From May 2018, patients with blunt liver and spleen injuries without MR contraindications, after admission CT, were followed up by MR. The imaging protocol was tailored to each patient. Post-contrast sequences were acquired especially in the early follow-up and in high grade injuries. In suspected biliary complications, MR cholangiographic sequences were added, and hepatobiliary-specific contrast agent (gadobenate dimeglumine) administration with delayed acquisitions was used.

Results: Seventeen patients with spleen (6 pts.) and liver (11 pts.) injuries of low (10 pts.) and high (7 pts.) grade, were followed-up by MR. The signal behaviour of the healing lesions was documented and described. In 4 patients, liver intraparenchymal collections were detected, MR allowed to characterize them and to examine the biliary ducts communication. In 1 case was observed an intraparenchymal pseudoeoaneurism of the spleen that was subsequently embolized.

Conclusion: MR may constitute a useful alternative to CT to follow-up patients with blunt liver and spleen injuries considering the panaramicity, the high resolution and the lack of ionizing radiation. In this preliminary experience, MR allowed to identify and monitoring, in a less invasive way, vascular and parenchymal liver and spleen injuries.

B-0105 11:26
Repeated imaging work-up in revisiting emergency patients: analysis of clinical and radiological risk factors
Y. Ahn, G.-S. Hong, K. Park, C.W. Lee; Seoul/KR (toryourmiracle@gmail.com)

Purpose: To analysis risk factors to cause repeated imaging in revisiting emergency patients.

Methods and Materials: A retrospective review identified 12,357 patients requiring an emergency revisiting (ER) within 7 days after performed CT or MRI at the first visit and discharged from the ER between 2005 and 2013. Among them, 1,250 patients underwent repeated image workup for the same or different part of the body. The patients were divided into two groups according to the revisiting time after discharge: early revisiting group (< 72 hours) and late revisiting group (> 72 hours). The factors to cause re-performing the imaging are classified as follows through medical record and image review: 1) radiological factor (RF) (misdiagnosis vs. inappropriate reporting turn-around time [R-TAT]); 2) non-radiology clinician’s factor (CF) (mistrage); and 3) patient’s factors (PF) (discuss or symptom progressing).

Results: The repeated imaging was performed in 10.12% of revisiting patients. The ratios of RF and CF in early revisiting group were significantly higher from those in late revisiting group (13.50% vs. 8.29% and 12.29% vs. 6.76%, respectively) (P < 0.001). In the radiological factors, there was significant difference between early revisiting group (inappropriate R-TAT 64.04% and misdiagnosis 35.96%) and late revisiting groups (inappropriate R-TAT 30.61% and misdiagnosis 69.38%) (P < 0.001).

Conclusion: RC and CF are the major causes of repeating imaging in early revisiting group than late revisiting group. In radiological factors, inappropriate R-TAT is the main cause in the early revisiting group and misdiagnosis in the late revisiting group.

B-0106 11:34
Incidental findings in whole-body CT: a retrospective analysis in over 1000 resuscitation room patients
S. Sudarski, T. Henzler, D. Schäfer, T. Viergutz, T. Terboven, S.O. Schönberg, H. Haubenreisser; Mannheim/DE (sudarski@medma.uni-heidelberg.de)

Purpose: Whole-body computed tomography reveals beyond findings related to the suspected diagnosis often additional incidental findings. Aim of this investigation was the assessment of these findings in whole-body CT scans of patients admitted via the resuscitation room after suffering potential major trauma or life-threatening medical conditions.

Methods and Materials: Patients admitted via the resuscitation room were retrospectively reviewed if they had received a whole-body computed tomography scan at admission. The final cohort consisted of 1165 patients (1036 trauma and 127 internal-neurological patients). Whole-body computed tomography reports screened incidental findings. These findings were classified as either clinically relevant or not.

Results: 465 incidental findings were reported in a total of 293 patients (25.1%). Relevant incidental findings could be detected in 5.8% of the study patients (68/1165). The group of internal-neurological patients was older than...
the trauma patients (61.6 years vs. 45.5 years). The rate of relevant incidental findings in the internal-neurological group was more than twice as high as in the trauma group (11.0% vs. 5.2%). Yet, in the relatively young trauma group one in 20 patients showed an incidental finding classified as clinically relevant as well.

Conclusion: Incidental findings are reported in ¼ of whole-body CT scans of patients admitted to the resuscitation room. About 6% of all patients had incidental findings being rated as clinically relevant. In the internal-neurological older group of patients the rate of incidental findings was doubled compared to the younger trauma group.

B-0107 11:42

Diagnostic error in emergency studies: an analysis of explanatory variables

F. Facal de Castro1, R. Mirón Mombiela1, J. Vucetic1, J. Mota Martínez2, E. Arana Fernandez De Moya1, D. Duailde Beltran1,1 Valencia/ES, Barcelona/ES (facalrayos@hotmail.com)

Purpose: To determine the discrepancy rate between the first and second readings. To estimate the clinical significance of errors. To identify latent factors associated with a higher incidence of errors. To discover weak points in the radiological work that can be solved by training or quality control measures.

Methods and Materials: Retrospective observational analysis of diagnostic discrepancies in emergency studies of adult patients from 37 health centres detected after a second reading at the company Iberorad SL from 2014 to 2016.

Results: We found a diagnostic discrepancy rate of 1.4% in emergency studies. The average rate of emergency studies with clinically significant discrepancies is 27.4% of total discrepancies. A statistically significant association was noticed with the diagnostic discrepancy, in decreasing order of magnitude, of the following: availability of previous imaging studies; average level of correspondence between area of expertise of the radiologist and modality of the study; insufficient clinical information; non-use of speech recognition systems; low level of concordance between area of expertise of the radiologist and modality of the study; study of high complexity; body studies; use of a single monitor to visualise images; and MSK/spine studies.

Conclusion: The diagnostic discrepancy rate during the period analysed is similar to that reflected in the medical literature. Most discrepancies are not clinically significant. There are multiple factors associated with diagnostic error. The intensity in which each of these is associated with diagnostic error is different and variable determined by the rest of the characteristics present in the diagnostic process.

B-0108 11:50

Would it be safe to have a dog in the MRI scanner before your own examination?

A. Gutzeit1, J.M. Fröhlich2, F. Steffen1, D.-M. Koh3, C. Orasch1; 1Lucerne/CH, 2Zurich/CH, 3Sutton/UK (agutziel2000@gmail.com)

Purpose: To determine whether it would be hygienic to evaluate dogs and humans on the same MRI scanner.

Methods and Materials: We compared the bacterial load in colony-forming units (CFU) of human pathogenic microorganisms in specimens taken from 18 men and 30 dogs. In addition, we compared the extent of bacterial contamination of an MRI scanner shared by dogs and humans, with two other MRI scanners used exclusively by humans.

Results: Our study shows a significantly higher bacterial load in specimens taken from men’s beards compared with dogs’ fur (p = 0.036). All of the men (18/18) showed high microbial counts, whereas only 23/30 dogs had high microbial counts and 7 dogs moderate microbial counts. Furthermore, human pathogenic microorganisms were more frequently found in human beards (7/18) than in dog fur (4/30), although this difference did not reach statistical significance (p = 0.074). More microbes were found in human oral cavities than in dog oral cavities (p < 0.001). After MRI of dogs, routine scanner disinfection was undertaken and the CFU found in specimens isolated from the MRI scanning table and receiver coils showed significantly lower bacteria count compared with ‘human’ MRI scanners (p < 0.05).

Conclusion: Our study shows that bearded men harbour a higher burden of microbes and more human pathogenic strains than dogs. As the MRI scanner used for both dogs and humans was routinely cleaned after animal scanning, there was substantially lower bacterial load compared with scanners used exclusively for humans.
Methods and Materials: From November 2015 to September 2018, in 16 patients undergoing same-day workup angiography, cone-beam CT (CBCT), 99mTc-MAA SPECT-CT and 90YRE, accessory tumour arteries were embolised with microcoils. Perfusion of the lesions in the redistributed and non-redistributed segments was qualitatively compared by assessing the distribution of 99mTc-MAA. Within 18 hours following treatment, a PET/CT was performed.

Results: Sixteen patients were treated for primary (n=11) and secondary hepatic malignancies (n=5). Flow redistribution was achieved by embolisation of intrahepatic (n=12) and extrahepatic branches (n=4). In most cases, CBCT provided additional information of arterial tumour perfusion. In all patients, the 99mTc-MAA SPECT-CT showed uptake in the redistributed tumoral areas. The mean lung shunt fraction (LSF) ratio was 7.1%±0.056. Of the 16 patients, 8 received segmental injections to both lobes, 5 to the right lobe and 3 to the left lobe. The median doses administered to the tumour and the hepatic tissue were 141Gy (range 29-576Gy) and 40Gy (range 5-315Gy), respectively. The 90Y-PET/CT images showed accumulation of microspheres over the tumoral territory, both in the redistributed and non-redistributed tumoral segments, with a mean 90Y activity of 1.5±0.7 GBq. The mean total procedure time was 392 minutes (range 204-532).

Conclusion: Single-step embolisation of extra and intrahepatic branches (to redistribute intrahepatic flow patterns to the tumour) and 90YRE procedure is feasible and effective.

B-0111 10:54
Locoregional hepatectomy for patients with acute deep venous thrombosis of lower extremity: safety and efficacy evaluation
Y.-D. Xiao; Changsha/CN (xiaoyuding222@csu.edu.cn)

Purpose: To assess efficacy and safety of locoregional hepatectomy in patients with acute deep venous thrombosis (ADVT) of lower extremity.

Methods and Materials: A total of 10 patients with unilateral ADVT who were contraindicated for thrombolysis and systemic anticoagulation were enrolled in the study. The popliteal vein was punctured, and an 8 F sheath was inserted. After confirming the diagnosis and extent of the DVT, suction thrombectomy was performed, and then, a multiple infusion side-hole catheter was advanced to the iliac vein. Through the infusion catheter, 500 IU/h heparin mixed with normal saline was infused using a micropump. Blood samples were taken every 4 hours from both cubital vein and popliteal vein to measure the activated partial thromboplastin time (aPTT), which was to adjust the heparin dose. The symptoms and the complications of patients were evaluated.

Results: Our results revealed that for the blood sample from the cubital vein, the aPTT maintained at 30s-45s, while for the blood sample from the popliteal vein, the aPTT maintained at 60s. With the dissolution of thrombus, the aPTT from cubital vein and the popliteal vein tended to be converging. One month later, the symptoms related to ADVT were significantly improved in eight patients. Repeat venography showed that vascular completely recanalisation observed in two patients, partial recanalisation in seven patients. No severe complications such as intracranial bleeding occurred.

Conclusion: Locoregional hepatectomy is a safe and effective way for patients with ADVT who is contraindicated for thrombolysis and systemic anticoagulation.

B-0112 11:02
Response to SIRT (selective internal radiation therapy) in patients affected by unresectable multifocal intra-hepatic cholangiocarcinoma: results of a preliminary study
A. Paladini1, D. Beomonte Zobel2, G.E. Vallati2, G. Pizzì2, F. Cappelli2, A. Borzelli1, E.M. Amodeo2, Novara/IT, Trombe2, Novales/IT (andreapaladini1988@gmail.com)

Purpose: The aim of this study is to demonstrate the results in terms of overall survival (OS) and response to treatment in a cohort of 43 patients (pts) affected by unresectable multifocal intra-hepatic cholangiocarcinoma (ICC) and treated with SIRT.

Methods and Materials: Between 2011 and 2018, we treated 43 pts affected by multifocal ICC with SIRT. Response to treatment was evaluated after 2 TC performed at 3 and 6 months.

Results: The 3- and 6-month radiological evaluation was performed on 40 pts with the analysis of complete (CR) or partial (PR) response to treatment, stability (SD) or progression disease (PD). Response to treatment (CR + PR) was 70% according to mRECIST and 60% according to the EASL criteria. The median OS was 17.9 months (range: 14.3-21.4 months). A shorter OS was found in pts treated with medical or surgical therapies before SIRT: 16 versus 52 months of the pts treated only with SIRT. We reported a greater correlation between OS and to the mRECIST and EASL criteria compared to RECIST 1.1 criteria. Treatment was well tolerated and no mortality was seen in the first 30 days post-treatment. No peri-procedural complications were documented.

Conclusion: SIRT documented excellent results in terms of efficacy in pts affected by ICC and portal thrombosis also. It is a safe and repeatable treatment and, therefore, it is a valid loco-regional therapy in pts affected by unresectable ICC.
B-0116 11:26
Low pretreatment neutrophil to lymphocyte ratio predicts better survival in uveal melanoma liver metastases undergoing hepatic chemoperfusion
J.M. Ludwig, O. Drescher, J. Haubold, H. Richly, M. Forsting, Y. Li, A. Wetter, S. Bauer, J. Theysen; Essen/DE (johannes-maximilian.ludwig@uk-essen.de)

Purpose: To evaluate pretreatment neutrophil to lymphocyte ratio (NLR) as a pretreatment prognostic factor in patients with unrespectable uveal melanoma liver metastases and limited extrathoracic disease undergoing a structured transarterial hepatic chemoperfusion (THC) protocol.

Methods and Materials: 56 patients (44% male; median age: 61 years) first treated between 01/2014-10/2015 were assessed retrospectively. A median of 3 (range: 1-11) THC sessions were performed starting with melphanal which was replaced by Fomustine when progressing. Pretreatment factors were assessed within 1 month prior to start. Kaplan-Meier for median overall survival in months (OS; 95% CI) and cox proportional hazard model for univariable (UVA) and multivariate (MVA) analyses (hazard ratio; 95% CI) were performed.

Results: Median OS of the study cohort was 7.7 (6.3-10.9) months. Low pretreatment NLR (<3.5) was associated with prolonged OS (11.1-7.1-20.6) versus high NLR (>3.5) (6.5; 3.5-7.8; p=0.035). In addition to low NLR (0.4; 0.2-0.75, p=0.0045) UVA identified serum lactate dehydrogenase (LDH) ≤ upper level of normal (ULN) (0.26; 0.13-0.5, p<0.0001), gamma-glutamyl transferase (GGT) ≤ ULN (0.3; 0.15-0.65, p=0.0004), aspartate aminotransferase (0.27; 0.11-0.7, p=0.007), c-reactive protein ≤ ULN (0.31; 0.15-0.59, p=0.0006), and liver metastasis ≤ 6cm (0.29; 0.15-0.53, p=0.0002) as predictors for prolonged OS. MVA confirmed low NLR (0.36; 0.14-0.83, p=0.018), LDH (<0.4; 0.4-0.83, p=0.03), GGT ≤ 0.55ULN (0.2; 0.05-0.77, p=0.03), and liver metastasis ≤ 6cm (0.15; 0.06-0.37, p=0.0001) as independent predictors. Absolute NLR change ≤ 1.5-fold within 1 month prior to first THC was associated a lower hazard ratio (0.4; 0.17-0.85, p=0.018) in all patients but only proved significant in the low NLR subgroup (12-vs. 6.4-month median OS, p=0.019).

Conclusion: Low pretreatment NLR is an independent predictor for prolonged OS in patients with uveal melanoma liver metastases treated with THC.

B-0177 11:34
Transvenous pulmonary chemoembolisation (TPCE) for palliative and neoadjuvant treatment of primary lung malignancies
A.I.A. Meekawy, A.A. Hassan, M. El-Sharkawy, H.M. Kamel, D.B. Thabet, N.E.A. Nour-Eddin, N.N.N. Naguib, T.J. Vogl; Ayasut,EG, Frankfurt a. Main/DE (time_dr@yahoo.com)

Purpose: To assess the response, mean time to progression and mean survival time for patients with primary lung cancer treated with TPCE in palliative and neoadjuvant intent.

Methods and Materials: This study included 56 patients (mean age 61.6 ±9 years; 27 females, 29 males) with an unrespectable primary lung tumour, who failed or refused systemic chemotherapy, and underwent repetitive TPCE, between 2000 and 2017. Bilateral lung involvement was seen in 39.3% of patients and the median number of lung nodules/patient was 2.5. Regional delivery of the chemotherapeutic agents was performed after catheeterisation of the tumor-supplying pulmonary artery, followed by embolization with Lipiodol and microspheres. Patients underwent subsequent ablation representing the neoadjuvant group (n=18). The response according to the revised Response Evaluation Criteria in Solid Tumors (RECIST 1.1) was evaluated and survival parameters were statistically analyzed.

Results: After evaluation of the tumour response, partial response was achieved in 14.3% (n=8), stable disease in 58.9% (n=33) and progressive disease in 26.8% (n=15). The estimated mean survival time and mean time to progression were 15.8 ± 1.7 and 9 ± 1.3 months, respectively. The mean disease duration was 26.8% (n=15). The estimated mean survival time and mean time to disease progression in 14.3% (n=8), stable disease in 58.9% (n=33) and progressive disease in 26.8% (n=15). The estimated mean survival time and mean time to disease progression were 15.8 ± 1.7 and 9 ± 1.3 months, respectively.

Conclusion: TPCE could be a promising palliative treatment with acceptable survival for patients with primary lung cancer who failed or are not eligible for other treatment options. It, also, has a neoadjuvant potential when combined with ablation therapy.

B-0118 11:42
Predictors of refractoriness and survival after transarterial chemoembolisation among hepatocellular cancer patients: outcomes from a novel southeast Asian cohort
R. Kuhn, G. Ignacio, J. Jamias; Quezon City/PH (rudolfvkuhn@yahoo.com)

Purpose: Patients with hepatocellular carcinoma become refractory to repeated sessions of transarterial chemoembolisation. Predictors associated with refractoriness and survival are, however, poorly defined and lack consensus. The aim of this study was to identify predictors associated with overall survival and refractoriness of HCC patients undergoing repetitive TACE. The secondary aim was to validate the ART score, neutrophil-lymphocyte ratio and radiologic response using the mRECIST and HCVI criteria for the first time in a southeast Asian setting.

Methods and Materials: The clinical and laboratory characteristics and radiologic response of 39 patients treated with repetitive conventional TACE from January 2012 to June 2018 were analysed in a retrospective cohort.

Results: The median overall survival of patients was 23.2 months and overall mortality was 36%. Multivariate Cox regression analysis revealed that Child-Pugh score (hazard ratio=3.47, p=0.044), AST (HR=7.6, p=0.021), tumour size (HR=6.6, p=0.003), progressive disease using CHOI criteria (HR = 5.47, CI 1.15 - 25.99, p = 0.033), neutrophil-lymphocyte ratio (HR=1.25, p=0.049) and nodular enhancement on follow-up CT imaging (HR=1.98, p=0.034) were independent risk factors for poor survival. Multivariate analysis also showed that ALT (p=0.005), enhancement (p=0.003), and progressive disease using CHOI criteria (p=0.010), and progressive disease using CHOI criteria (p=0.002) were predictive of TACE refractoriness/failure.

Conclusion: Predictors for poorer survival and TACE failure/refractoriness were identified. A rational treatment strategy and the decision to switch therapy should be individualised considering the patient’s clinical condition and aforementioned clinical and laboratory parameters and response on radiologic follow-up.

B-0119 11:50
Radiation dose reduction during angiographic adrenal vein sampling using a new imaging technology
C. Spink, M. Avanesov, T. Schmidt, M. Grass, G. Schoen, G. Adam, H. Ittrich, P. Bannas; Hamburg/DE (c.spink@uke.de)

Purpose: To compare the patient radiation doses during angiographic adrenal vein sampling (AVS) before and after an imaging processing technology upgrade.

Methods and Materials: In this retrospective single-center-study, cumulative air kerma (AK), cumulative dose area product (DAP), fluoroscopy time and total contrast agent (179.5 vs. 198.1 ml, p=0.01) could be achieved. The number of exposure frames (143 vs. 132 frames, p=0.0045, γ=1.5-fold within 1 month prior to first THC was associated a lower hazard ratio (0.4; 0.17-0.85, p=0.018) in all patients but only proved significant in the low NLR subgroup (12-vs. 6.4-month median OS, p=0.019).

Conclusion: The new angiographic noise reduction technology significantly reduces radiation dose while maintaining adequate image quality in patients undergoing AVS.

Methods and Materials: In this retrospective single-center-study, cumulative air kerma (AK), cumulative dose area product (DAP), fluoroscopy time and total contrast agent volume were gathered from 70 patients during AVS. 35 procedures were performed before and 35 after an imaging processing technology upgrade from Philips Allura Xper to Philips AlluraClarity. Mean values were calculated and compared using two-tailed t-tests. DSA image quality was assessed independently by two blinded readers using a four-rank Likert scale (1=acceptable; 4=excellent) and compared using the Wilcoxon signed-rank test.

Results: Using the new imaging technology a significant reduction in DAP (235.1 vs. 170.1 Gycm, p=0.01) and a significant reduction in AK (1.7 vs. 1.1 Gy, p=0.01) could be achieved. The number of exposure frames (143 vs. 132 frames, p=0.045, γ=1.5-fold within 1 month prior to first THC was associated a lower hazard ratio (0.4; 0.17-0.85, p=0.018) in all patients but only proved significant in the low NLR subgroup (12-vs. 6.4-month median OS, p=0.019).

Conclusion: The new angiographic noise reduction technology significantly reduces radiation dose while maintaining adequate image quality in patients undergoing AVS.

Author Disclosures:

10:30 - 12:00 Coffee & Talk 3

Head and Neck

SS 208
Thyroid gland
Moderators:
E. Scapin; Monserrato/IT
A. Singhal; Gurgaon/IN
K-03 10:30
Keynote lecture
P.-Y. Marcy; Olloulles/FR
B-0120 10:39
Association of the four international guidelines for thyroid nodule management to surgical and treatment outcomes in patients with small papillary thyroid carcinoma
J. Lee, J. Kwak, E.-K. Kim, H. Moon, V.Y. Park, J. Yoon; Seoul/KR (easywg@yuhs.ac)

Purpose: To evaluate the role of four international guidelines for thyroid nodule management in predicting pathologic staging and treatment outcomes for patients with small papillary thyroid carcinoma (PTC).

Methods and Materials: From 2007 to 2015, 775 patients who had been surgically treated for conventional PTC measuring 1-2cm were included. Each nodule was categorized according to the FNA guidelines of the 2015 American Thyroid Association (ATA) guidelines, the Korean Society of Thyroid Radiology
Purpose: To compare the Thyroid Imaging Reporting and Data System (TIRADS) classification of thyroid nodules with the findings on fine-needle aspiration cytology (FNAC) reported using the Bethesda System.

Methods and Materials: A prospective analysis of 150 patients was performed comparing thyroid nodule ultrasound findings based on the TIRADS classification to the FNAC report based on the Bethesda Classification. TIRADS 1 and biopsy-proven malignancy were excluded. Benign-appearing nodules were reported as TIRADS 2 and 3. Indeterminate or suspected follicular lesions were reported as TIRADS 4, and malignant-appearing nodules were reported as TIRADS 5. All the nodules were performed FNAC, and TIRADS findings were compared to Bethesda Classification.

Results: Of the 150 patients, 77 were TIRADS 2, 28 were TIRADS 3, 18 were TIRADS 4 and 27 were TIRADS 5. The probability of a malignant FNAC (Bethesda V-VI) in TIRADS 2, 3, 4 and 5 classes was 0%, 71%, 16.6% and 81.4%, respectively. The benign FNAC (Bethesda II) in TIRADS 2 was 100%, while for TIRADS 3, 4 and 5 were 75%, 27.7% and 4.6%, respectively. Of the 27 patients that were TIRADS 5, 20 patients had biopsy-proven cancer (74% concordance), but 7 patients were benign (false-positive sonographic impression). Overall concordance rate with FNAC was 92%, and specificity, sensitivity and negative predictive value were 88%, 90.4% and 95%, respectively.

Conclusion: Our study shows a fairly good correlation of thyroid ultrasound reporting using the TIRADS classification to the Bethesda Classification of nodules.

Purpose: To evaluate the diagnostic performance of a new method of thyroid ultrasound-guided fine-needle aspiration biopsy (FNAC) on stained slides to assess adequacy of thyroid fine-needle aspiration cytology.

Methods and Materials: On-site evaluation microscopic evaluation of unstained slides to assess adequacy of thyroid fine-needle aspiration cytology (FNAC) on stained slides was a proven way to reduce inadequate samples. However, staining requires additional time, specialist staff and reduces clinic throughput. Our institution utilizes a unique approach to evaluating adequacy of FNAC by on-stained slides. This study aimed to evaluate our practice of assessing adequacy of ultrasound-guided fine-needle aspiration biopsy of thyroid lesions using contemporaneous microscopy on unstained, air-dried samples.

Results: Of the 139 consecutive patients who had undergone FNAC sampling between September 2015 and August 2016 at a regional clinic for suspected thyroid nodules, the combination of TIRADS with VTI + VTQ can significantly improve the diagnostic accuracy of small benign and malignant thyroid nodules. It may provide a new and reliable method for the clinical diagnosis of small thyroid nodules.
RESULTS:

Methods and Materials: We retrospectively reviewed exams of 190 patients. Thyroid ultrasound images of each patient and nodule were categorized based on TIRADS and ATA. Both classifications systems were initially compared with each other, and then matched with FNA histologic data classified with Bethesda system. Location and size of each nodule were also verified.

Results: Of the 190 evaluated patients (87.4% women), the mean age was 53.7 years (51.12-55.02), the mean size of nodules were 17.87mm (17.07-18.67). More nodules were solid and isoechic (49.5% and 36.8% respectively). There was a strong correlation between TIRADS and ATA classifications (r=0.860 p<0.0001). When compared with histological analysis, TIRADS AND ATA had a weak correlation. TIRADS r=0.179 p=0.023; ATA r=0.170 p=0.031.

Conclusion: Our study showed that TIRADS and ATA had similar diagnostic accuracy in the evaluation of thyroid nodules ultrasound, but both classifications were shown to overestimate the presence of malignant neoplasms.
B-0132 10:38
Evaluating the use of a noise index to identify outliers in CT examinations
A.S.L. Dedulle, S. Rahimzadeh, N. Fitousi, H. Bosmans, J. Jacobs; Leuven/BE
(niki.fitousi@qaelum.com)

Purpose: To evaluate which outliers would be identified if multi-parameter alerting would be implemented, such as the combined use of patient size, CTDIvol, and a noise index for clinical chest CT examinations.

Methods and Materials: Fifty thorax CT examinations (Siemens Somatom Force, Germany) with the same study protocol were used. The water equivalent diameter (WED) of the patients, the CTDIvol of each series and other important parameters (e.g., vertical offset) were extracted by the dose management system DOSE (Qaelum, Belgium). The global noise level (GNL) was calculated for expiration series with the lung (Br09d) kernel (Christianson et al. Medical Physics 2015).

Results: The WED range was 20cm to 32cm and the correlation between WED and CTDIvol was significant (p<0.01). Three outliers were observed. Two of them had a vertical offset of 3cm to 4cm closer to the tube. Literature indicates this leads to a higher CTDIvol by 10% to 30%. The third outlier had a wrong positioning (arms next to body). When the GNL was added as the third dimension, another exam with very high noise was found even though it was not initially identified as outlier. This case had a vertical offset of 4.4cm away from the tube, which caused a decrease of CTDIvol, thus high GNL. The correlation between the WED and GNL was significant (p<0.01), as well as between the CTDIvol and GNL (p<0.05).

Conclusion: Introducing an automated image quality index can detect extra and relevant outliers when compared to a simpler dose versus patient size analysis.

Author Disclosures:
A.S.L. Dedulle: Employee; Qaelum NV. Research/Grant Support; VLAIO grant No. HBC.2016.0233. N. Fitousi: Employee; Qaelum NV. H. Bosmans: Employee; Qaelum NV. J. Jacobs: Employee; Qaelum NV.

B-0133 10:46
Improved grey-white matter separation by amplitude/power coefficients derived from spectral analysis of dual-energy CT
I. Leichter, B. Flakoff, Y. Uziel, E. Ben-David, Z. Romman, J. Josna, J.M. Gomori; Jerusalem/IL (gomori@cc.huji.ac.il)

Purpose: In conventional CT there is an overlap in the HU levels of grey matter (GM) and white matter (WM). Our aim was to use dual-energy CT (DECT) to improve GM/WM separation.

Methods and Materials: DECT reconstructs virtual mono-energetic (VME) images, which allow for spectral analysis. Three pairs of regions-of-interest (ROI) in GM and WM were marked in VME images of 33 normal subjects, at different brain locations. Spectral-attenuation curves describing the mean HU versus energy, for series of VME images in the range 40-100keV, were generated for GM-ROIs and WM-ROIs and fitted to power curves. An algorithm was developed to generate for each pixel in the image a spectral-attenuation curve, and calculate the amplitude/power coefficients of the fitted power-curve. Based on these amplitude/power coefficients, the algorithm characterized each pixel as GM or WM and created a GM-WM map by superimposing them in different colors over the original image.

Results: The mean HU of GM-ROIs was higher than for WM-ROIs, but their ranges completely overlapped. In contrast, the resulting amplitude coefficient was negative for GM and positive for WM with a substantial separation between them. The significant GM/WM separation was also confirmed visually when comparing the DECT images with the PC images after detruncation across DECT dose levels.

Conclusion: Improved grey-white matter separation by amplitude/power coefficients derived from DECT all allow better GM/WM separation than conventional CT. The possible clinical applications of this technique need further study.

Author Disclosures:
Z. Romman: Employee; Employee.

B-0134 10:54
Changes in sound power spectrum by advanced CT image reconstruction techniques
T. Pan, R. Vikram; Houston, TX/US (tpan@mtdanderson.org)

Purpose: We use noise power spectrum (NPS) to evaluate noise reduction by ASir and ASir-V of GE, SaFire and Admire of Siemens, and PixelShine of AlgoMedica based on deep learning.

Methods and Materials: The homogeneous module of ACR CT phantom was scanned for NPS. The baseline filtered back-projections (FBP) were from the standard kernel on GE, HR44f on Force and J40f on AS+. For noise reduction, all ASir, ASir-V, SaFire, Admire, and PixelShine settings were compared. Centroid frequency ratios (CFR) between the NPS centroid frequencies of noise reduction and FBP were compared. A smaller CFR means more image blurring. Noise magnitude ratios (NMR) between the areas under the NPS curves of noise reduction and FBP were compared. A smaller NMR means more noise reduction. An ideal reconstruction shall maintain CFR of close to 1 and NMR of close to 0.

Results: For the same noise reduction NMR=0.6, PixelShine (0.97) has the least frequency shift (CFR closer to 1), followed by Safire (0.95), ASir-V (0.91), Admire (0.88) and ASir (0.86). For the same centroid frequency shift of CFR=0.95, PixelShine (0.44) has the most noise reduction, followed by Safire (0.60), ASir-V (0.74), Admire (0.78), and ASir (0.82).

Conclusion: PixelShine (noise reduction based on deep learning) has the least centroid frequency shift for the same amount of noise reduction or the most noise reduction for the same amount of centroid frequency shift. For the same centroid frequency shift, ASir-V reduces more noise than ASir; and SaFire reduces more noise than Admire.

Author Disclosures:
T. Pan: Consultant; Bracco Diagnostic Inc.

B-0135 11:02
Patient size-dependent ultralow-dose data completion scan in a whole-body photon-counting CT scanner
S. Dorn¹, S. Sawal¹, J. Maier², G. Polster³, S. Faby³, M. Uhrig¹, H.-P. Schlemmer¹; Forchheim/DE (sabrina.dorn@dfki.de)

Purpose: To find the minimum possible dose of a data completion scan (DCS) on a photon-counting (PC) CT prototype.

Methods and Materials: The SOMATOM Count (Siemens Healthineers, Germany) CT system features a PC detector with 27.5 cm field of measurement (FOM). To correct for truncation artefacts, the additionally available 50-cm FOM conventional detector subsystem can acquire a DCS. Two anthropomorphic phantoms (liver, thorax) of three sizes (small, medium, large) were scanned with 120 kV at 210 mAs with the PC subsystem. For each phantom eight DCS were acquired (120 kV) ranging from 200 to 7 mAsvol. Lower the further dose also 100 and 80 kV were used. CT value consistency in PC images after detruncation across DCS dose levels was quantitatively assessed.

Results: Minimum achievable DCS dose was 0.13 mGy (32cm CTDIvol), corresponding to about 0.06 mSv. No significant shift in CT values was observed between PC images with minimum dose DCS and PC images with high-dose DCS for small and medium phantom size. For the large phantom size, we observed a shift for the minimum dose DCS of about -3.1HU. Setting tube voltage to 100 kV resulted in a deviation of 0.1HU. We achieved an 8.7-fold dose reduction compared to previously proposed DCS protocols (JCAT 40(4):663-669, 2016).

Conclusion: DCS settings of 80 kV, 7 mAsvol, are sufficient to provide satisfactory data completion of PC images. With larger patients, the tube voltage needs to be increased. DCS dose is small compared to conventional CT scans.

Author Disclosures:
C. Polster: Employee; Siemens Healthineers, Germany. S. Faby: Employee; Siemens Healthineers, Germany.

B-0136 11:10
Optimising CT acquisition parameters for the quantification of lung emphysema
G. Van Gompel, S. Mahmoudi, C.C. Brussaard, J. De Mey, N. Bull, Brussels/BE (Gert.vangompel@uzbrussels.be)

Purpose: To optimise image reconstruction settings for improved and reproducible lung emphysema quantification.

Methods and Materials: A dedicated technical phantom was composed using lung tissue equivalent material (Leeds, LN330) in a water-filled cylindrical tank. CT scans of the phantom were acquired on a Philips Ict scanner at 100 kVp and CTDIvol from 0.4-17 mGy. Images were reconstructed with FBP, Dose and IMR with a selection filters, and the noise power spectrum (NPS) and task transfer function (TTF) were calculated. The emphysema quantification efficiency (EQE) is defined as the percentage of correctly identified pixels (emphysema versus no emphysema) in the images after applying a threshold at -950HU. The EQE dependence of hole size in noise-free conditions was investigated by applying the TTF-derived point spread function on a virtual phantom image with increasing hole size.

Results: Image resolution and noise in terms of TTF and NPS improve, and the EQE increases as the complexity of the iterative reconstruction and the hardness of the filter kernel increase, e.g. EQE=96% for IMR sharp plus versus 91% for FBP-B, at 2.2 mGy and 2mm diameter. For decreasing emphysema spot diameters, the EQE shows a decreasing trend: e.g. FBP-L EQE=99% at 10mm and EQE=91% at 1mm diameter.

Results: Image resolution and noise in terms of TTF and NPS improve, and the EQE increases as the complexity of the iterative reconstruction and the hardness of the filter kernel increase, e.g. EQE=96% for IMR sharp plus versus 91% for FBP-B, at 2.2 mGy and 2mm diameter. For decreasing emphysema spot diameters, the EQE shows a decreasing trend: e.g. FBP-L EQE=99% at 10mm and EQE=91% at 1mm diameter.
Conclusion: The quantification of lung emphysema is impacted by the spatial resolution and noise properties of the reconstruction methods; advanced iterative reconstruction methods in combination with harder filters are preferred. Moreover, lung emphysema consisting of numerous small spots tends to be underestimated in CT images.

B-0137 11:18
Automated image quality assessment in CT using a 3D printed lung vessel phantom and structural similarity index analysis

Purpose: Image quality is frequently assessed using geometric phantoms and simple image quality metrics such as contrast-to-noise ratio and noise power spectrum. Extrapolating these technical results to patient images is not straightforward. There is a need for metrics to analyze image quality in closer relation to clinical practice, including patient’s anatomy and radiologists’ clinical tasks. We used a 3D printed anthropomorphic lung vessel phantom combined with a structural similarity index metric to analyze, as proof of principle, the effect of dose on CT image quality.

Methods and Materials: A 3D printed anthropomorphic phantom, mimicking the human lung vessels distribution (8mm diameter±0.25mm), VisijetEX200 material, 10x10x2.5cm3, inserted in a PMMA thorax-shaped holder (300x200x29mm3) was scanned 10 times (high-resolution-thorax protocol, Aquilion-ONE-Genese (Canon Medical Systems)), varying dose [CTDivlum=0.2-0.4-0.8-1.2-1.6-2.0mGy]. Image quality was assessed with the structural similarity index (SSIM=0-1 range, 1 is best), based on the assumption that the human visual system extracts structural image information. Each acquired set was compared to two references: a high dose image volume (39.2mGy) and the phantom design file.

Results: When the high dose image set was the reference, image quality deteriorated as dose decreased [SSIM:0.986±0.2%] at 10.9mGy)-(0.951±0.9%2.6mGy)-(0.891±1.4%2.6mGy). SSIM values were slightly lower (0.986±0.2%)-(0.951±0.9%-2.6mGy)-(0.891±1.4%2.6mGy) when the phantom design file was used as reference, for all dose levels: (0.809±3.5%-0.4mGy)-(0.720±2.9%-0.2mGy). Image quality was assessed with the structural similarity index (SSSIM=0-1 range, 1 is best), based on the assumption that the human visual system extracts structural image information. Each acquired set was compared to two references: a high dose image volume (39.2mGy) and the phantom design file.

Results: When the high dose image set was the reference, image quality deteriorated as dose decreased [SSIM:0.986±0.2%] at 10.9mGy)-(0.951±0.9%2.6mGy)-(0.891±1.4%2.6mGy). SSIM values were slightly lower (0.986±0.2%)-(0.951±0.9%-2.6mGy)-(0.891±1.4%2.6mGy) when the phantom design file was used as reference, for all dose levels:

B-0139 11:34
Application of preset adaptive statistical iterative reconstruction-V in dual-enhanced abdominal CT
Y. Chai, Zhengzhou/CN (chayairuncy@163.com)

Purpose: To analyse the effect of preset ASIR-V on image quality and radiation dose in dual-enhanced abdominal CT and to investigate the optimal ASIR-V in clinic.

Methods and Materials: 180 patients were collected prospectively. All patients underwent two-phase enhanced abdominal CT (120 kVp, NI 10) and were randomly divided into 6 groups (A-F, n=30 each). In group A-F, 0%-50% preset ASIR-V (10% interval) was applied, respectively. Qualitative parameters (subjective image quality, diagnosis confidence and radiation dose) and quantitative parameters [image noise, CT number and contrast to noise ratio (CNR)] were measured and compared among the groups using ANOVA or Kruskal-Wallis H test.

Results: The CTDivlum decreased with the preset ASIR-V percent increasing. The effective radiation dose had significant difference among groups (P<0.001), and the ED of group B-F dropped by 10.8%, 21.7%, 31.2%, 44.9% and 61.9%, respectively, compared with group A. Group E showed the optimal image quality (all P<0.01) and diagnosis confidence (all P<0.01) in all phases. The image noise and CT number of liver, pancreas and muscle had no difference among groups. The CNRs had no significant difference except liver and portal CNR in PVP.

Conclusion: In abdominal CT, 40% preset ASIR-V can provide the best image quality and reduce radiation dose by 44.9%.

B-0140 11:42
Comparison of 90 and 180 micron resolution cone-beam CT scans in patients with artefact causing root canal filling material
A. Patney, M. Murugavel, V. Mahajan; New Delhi/IN (vidurmahajan@imaging.com)

Purpose: Many dental patients have root-canal filled teeth which cause artefacts on a Cone-beam CT (CBCT) scan. We studied the effect of voxel size on image quality of CBCT scans in presence and absence of root canal filling material.

Methods and Materials: CBCT scans of 30 patients, 15 with (group-1) and 15 without (group-2) root canal filling, having both 90u and 180u voxel size were obtained. In group-1, patient scans had root canal filling material and no other artefact causing material in field of view. In group-2, patient scans had no artefact causing material. In all scans, CNR (contrast-to-noise ratio) was calculated by determining the mean and standard deviation of grey values on the volumes in presence and absence of root canal filling material.

Results: Significant difference (paired t-test, p=0.018) was seen in CNR between the 90u and 180u scans of the same patient in group-1. Significant difference (p=0.135) was not seen in CNR between the 90u and 180u scans of the same patient in group-2. In presence of root canal filling material, the image quality of 90u scans is significantly better than that of 180u micron scans. However, in absence of artefact causing material, the image quality is not affected significantly by voxel size, even though it is better in 90u micron scans.

10:30 - 12:00 Room K
Chest

SS 204
Lung cancer: guidelines, screening and nodule management
Moderators:
F.B. Demirkazik; Ankara/TR
P. Franchi; Teramo/IT

B-0141 10:30
Outcomes of long-term interval rescreening with low-dose CT for lung cancer in different risk cohorts
A. Lam, R. Aggarwal, G. Liu, J. Kavanagh; Toronto, ON/CA (jkavanagh@cted.ca)

Purpose: We hypothesize that the incidence of screen-detected lung cancer (LC), in participants with previously negative scans, will be highest in the cohort with the highest baseline risk score.

Methods and Materials: Individuals with negative baseline screening results from the Princess Margaret International Early Lung Cancer Action Program prior to 2009 underwent low-dose CT rescreening from 2015 to 2018.
Individuals were contacted in order of decreasing risk, as determined by the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial's PLCO-2012 6-year LC risk-prediction model, and then randomised into three risk cohorts according to their baseline risks. The incidence of LC in each risk cohort was determined and compared. Chi-square testing was used for categorical variables and one-way ANOVA on ranks was used for continuous variables.

Results: Of the 1261 participants we attempted to recontact, 359 patients returned for a rescreening scan (mean of 7.6 years between scans). Participants were divided into low (-2%), moderate (-22%-3.5%), and high-baseline risk (≥3.5%) cohorts. On average, the higher-risk cohort was older (66 vs 62 and 59 years) and had a greater smoking history (54 vs 47 and 29 pack-years) when compared to the moderate and low-risk cohorts, respectively. The incidence of cancer in the high-risk cohort was significantly higher than in the moderate-risk cohort (11% vs 1.7%, p=0.002).

Conclusion: There was a significantly higher incidence of LC in the high-risk cohort than in the moderate-risk cohort. The cut-point between the high and moderate risk was determined to be ≥3.5% 6-year baseline risk.

B-0142 10:38

Applying British Thoracic Society 2015 compared to Fleischner Society 2017 recommendations for lung nodule management leads to different discharge and PET-CT referral rates

L. Royle, M. Anjari, S. Sasikumar, R. SinhaRay, S. Mak, M. Subesinghe, D. Murphy, R. Breen, R. Aair; London/UK (leanne.royle@nhs.net)

Purpose: To compare agreement, and rates of discharge and referral for PET-CT between the British Thoracic Society 2015 (BTS) and Fleischner Society 2017 recommendations (FS) for pulmonary nodule management.

Methods and Materials: In 138 patients (64.5% ever-smokers) with fully investigated CT-detected incidental pulmonary nodules [median average diameter 7mm, 8 (5.8%) malignant], we retrospectively modelled four management strategies: combined volume- and diameter-based BTS (BTSmvol), diameter only-based BTS (BTSdiam), diameter-based FS where ever-smokers were considered high risk (FSsmoking), and diameter-based FS where a Brock model score of ≥2% was considered high risk (FSBrock). We compared agreement using the weighted kappa statistic (κw) and rates of discharge and referral for PET-CT using McNemar’s test.

Results: Agreement between the BTS and FS strategies was good (κw 0.66-0.72). However, more patients were discharged using BTSmvol (35 [25.4%]) compared to BTSdiam (14 [10.1%], p<0.0001), and FSsmoking (18[13.0%], p=0.0015), but not compared to FSBrock [37(26.8%), p=0.81]. Conversely, significantly more patients were referred for immediate PET-CT using BTSmvol (21[15.2%]), compared to FSsmoking (7[5.1%], p=0.0028) and FSBrock (8[5.8%], p=0.0002). 4/21(19%) nodules referred for immediate PET-CT using BTSmvol were malignant, and none were referred for immediate PET-CT using FSsmoking or FSBrock.

Conclusion: Volume-based BTS management can (1) reduce nodule follow-up rates compared to diameter-based BTS and diameter-based, smoking-stratified FS management, and (2) result in higher referral for immediate PET-CT, allowing earlier detection of malignant nodules. However, using risk stratification in the FS Brock model, rather than smoking status alone, may yield similar discharge rates to BTS volume-based management.

Author Disclosures: A. Nair: Board Member; Medical advisory board member for Aidence BV.

Research/Grant Support: Proportion of funding for consultant post from the Department of Health NIHR Biomedical Research Centres Funding Scheme. Other; No conflicts relevant to this submitted work.

B-0143 10:46

Low-dose computed tomography (LDCT) screening reduces overall and lung cancer specific mortality beyond five years

U. Pastorino, M. Silva, F. Sabia, S. Sestini, M. Boen, G. Sozzi, N. Sverzellati, A.V. Marchand, Milan/IT, Parma/IT (alfonso.marcianglo@istitutoumor.it)

Purpose: To assess the long-term benefit of lung cancer screening (LCS) by low-dose computed tomography (LDCT), notably the overall and lung cancer (LC) specific mortality beyond 5 years and until 10 years.

Methods and Materials: The Multicenter Italian Lung Detection (MILD) trial prospectively enrolled 4,099 participants, randomised to either LDCT arm (n=2,576) or control arm (n=1,723); 39,293 person-years of follow-up were accumulated between 2005 and June 2018. The primary outcomes were 10-year overall and LC specific mortality. A landmark analysis was used to test the specific long-term effect of LCS beyond 5 years, notably by selective exclusion of events occurring within the first 5 years. Cumulative mortality was estimated using Kaplan-Meier estimator and differences among groups were tested using Log-rank test, adjusted for sex, age and pack-years. The prognostic value of assigned arm in predicting mortality was investigated by Cox’s proportional-hazard’s regression adjusted for the above variables.

Results: In the whole 10-year LCS, LDCT arm showed a protective non-statistically significant trend for reduction of overall mortality (HR: 0.80, 95% CI 0.62 to 1.03) and a statistically significant 39% reduced risk of LC mortality (HR: 0.61, 95% CI 0.39 to 0.95) compared to the control arm. The landmark analysis beyond the 5th year of screening showed significant reduction of mortality in the LDCT arm: 32% reduction of overall mortality (HR: 0.68, 95% CI 0.49 to 0.92) and 58% reduced risk of LC mortality (HR: 0.42, 95% CI 0.22 to 0.79).

Conclusion: LDCT screening reduces lung cancer mortality and overall mortality, especially in the long-term range between 5 and 10 years.

B-0144 10:54

Lung cancer CT screening performance at a large hospital system in the US: our 5-year experience showcases the need for better systems of care

E.J.M. Barbosa Jr., A. Kolansky, X. Su, J. Jiang; Philadelphia, PA/US, Beijing/CN (eduardo.mortani@gmail.com)

Purpose: Lung cancer low-dose CT screening (LCS) has been shown to decrease mortality in national trials in the United States and Europe. We present performance metrics of our LCS program and patient compliance to screening recommendations.

Methods and Materials: We retrospectively identified all patients who underwent LCS from 2014 to 2018, via our EMR. We recorded patient demographics, lung cancer related and incidental findings, lung-RADS category, outcomes, and compliance with screening recommendations.

Results: 1373 patients were screened during a 5-year interval, of which 260 (18.9%) returned for follow-up scans (87.7% had two, 2.3% had three, and 0.9% had four). Average smoking history was 43.1 years. Average smoking history was 51.4 pack-years (SD=19.8). 34/260 (13.1%) had positive scans, of which 22/260 (8.4%) were lung-RADS category 3, 3/260 (1.1%) were 4A, 5/260 (1.9%) were 4B, and 4/260 (1.5%) were 4C. 2/260 were diagnosed with lung cancer on follow-up. Among patients who had multiple scans, only 14.3% obtained follow-up within a month of the recommended time. Of those who also had positive screening scans, 34.4% followed up on time, 43.8% followed up late, and 21.9% were lost to follow-up.

Conclusion: Our rate of positive LCS exams is slightly higher than Lung-RADS prediction (13.1% vs 9%), however most were not confirmed as lung cancers, leading to an estimated false positive rate as high as 94%. Moreover, adherence to LCS recommendations is very low, but increases with positive exams (14.5% vs 34.4%). Healthcare systems should devise strategies to address these problems.

B-0145 11:02

Lesion measurement on a combined “all-in-one” computed tomography window on chest scans: effect on intra- and interobserver variability

A. Snoeckx, J. Cant, C. Franck, K. Carpentier, E. Luyckx, S. Nicolay, M.J. Spinhoven, A. Van Hoyweghen, P.M. Parizel; Edsegem/BE, Montsel/BE (annemie.snoeckx@uz.a.be)

Purpose: Historically, chest CTs are viewed in several window settings to evaluate specific anatomical structures and regions. A newly developed imaging processing technique fuses these conventional windows into a single “All-in-One” (AIO) window. Previous research has shown that lesion detection on this AIO-window is as good as on conventional window settings. This study aims to evaluate consistency of CT measurement of lesions on this novel AIO-window, compared to conventional window settings.

Methods and Materials: In this retrospective study, 368 measurable lesions of various size, origin and lesion sharpness were measured on CT images by 6 radiologists with 3 different levels of expertise. All lesions were measured twice on both the AIO-window and conventional window settings, with an interval between repeated measurements of at least one week. Intra-class correlation coefficients were used to assess intra- and interobserver variabilities.

Results: Overall intra-observer agreement for the AIO-window and conventional window settings was 0.986 (95% confidence interval (CI): 0.983-0.989 and 0.991 (95% CI 0.989-0.993), respectively. For interobserver agreement this was 0.982 (95% CI 0.979-0.985) (AIO) and 0.979 (95% CI 0.957-0.982) (conventional). Intra- and interobserver agreement differed by size, sharpness and reader experience for both AIO and conventional windows. Measurement variability decreased with increasing lesion size. Regarding sharpness, intra- and interobserver agreement ranged from 0.986-0.989 (AIO) and 0.985-0.992 (conventional) for well-defined lesions and from 0.978-0.983 (AIO) and 0.974-0.991 (conventional) for ill-defined lesions.

Conclusion: Overall intra- and interobserver variability rates were similar for the AIO-window and conventional windows; lesion measurement on the AIO-window seems to be reliable and reproducible.

Author Disclosures: J. Cant: Employee; AGFA Medical Imaging.
B-0146 11:10
Comparison of computer-aided semi-automated volumetry of part-solid pulmonary nodules
S. Werner1, R. Gast1, R. Grimm1, M. Horger1; 1Tübingen/DE; 2Forchheim/DE
(sebastian.werner@med.uni-tuebingen.de)

Purpose: To test whether computer-aided volumetry (CAV) can compete with manual volumetry performed in part-solid pulmonary nodules.

Methods and Materials: 66 part-solid pulmonary nodules were retrospectively identified in 34 thin-slice unenhanced Chest-CTs of 19 patients. CAV and manual volumetry was carried out for the solid and subsolid part. Smooth and sharp kernels were used for CAV. Manual volumetry was carried out by 2 experienced radiologists using the smooth kernel. Ground truth was determined by an experienced radiologist in consensus with one of the residents. Accuracy of CAV and manual volumetry was compared. Consistency of repeated CAV measurements was determined and compared between usage of the soft and hard tissue kernel.

Results: Accuracy of manual volumetry/CAV was 79%-80%/77% for the solid part and 73%-76%/77% for the subsolid part. Consistency of CAV was high for the solid part and low for the subsolid part with >90% and 19% of measurements lying in the correct ground truth range, respectively. Comparison of CAV consistency between soft and sharp tissue kernel showed slightly better results for the sharp kernel which for the solid part yielded volumetric deviations from the ground truth of <5% (<1% in 48/46 of 54 lesions compared to 46/43 of 54 lesions for the soft kernel).

Conclusion: CAV of part-solid lung nodules delivers comparable and reproducible accuracy for the solid and subsolid component compared to manual volumetry. Measurement consistency of CAV was high for the solid part and poor for the subsolid part showing slight improvements when using a sharp tissue kernel.

Author Disclosures: R. Grimm1: Employee; Siemens Healthineers.

B-0147 11:18
Pulmonary nodule size measuring difference: comparison between machine-learning based auto-measurement on CT images and gross specimens through surgery
X. Luo, M. Zhang, J. Ding, M. Chen; Beijing/CN (archaeopteryx@163.com)

Purpose: This study was aimed to evaluate the accuracy of machine-learning in measuring the size of pulmonary nodules by comparing between the auto-segmented size with those manually measured from gross specimen in surgery.

Methods and Materials: 73 patients (age: 59.5±9.9 years, F=52, M=21), who underwent preoperative CT-guided pulmonary nodule location, were enrolled. The slice thickness of CT images were 1.0 mm. All the images were analysed through machine-learning model for pulmonary nodules. With auto-segmentation, nodule sizes were measured automatically. Preoperative medical adhesive was injected adjacent to the targeted nodule. In surgery, gross specimen of nodules were measured manually. Paired t test was performed to compare the difference.

Results: (1) 102 nodules were studied, with 61 GGOs, 30 sub-solid and 11 solid nodules. 24 were confirmed benign, including hamartoma, organized pneumonia, fibrosis, granuloma and lymphoid hyperplasia; the rest were 12 AAs, 21 AIs, 4 MAs, 12 ICs and 29 nodules with other malignancy. (2) Among all nodules, the average auto-segmented maximum dimension was 10.8±6.2mm; in gross specimen, it was 9.4±5.7mm (p<0.0001). Measurement consistency of CAV was high for the solid part and poor for the subsolid part showing slight improvement when using a sharp tissue kernel.

Conclusion: The software was unable to process some cases due to unusual chest anatomy, confounded benign tracer activity adjacent to the tumour or small tumour size which left 74 studies for analysis. The CT texture kurtosis, extracted with a 3-mm filter, was a statisticallysignificant predictor of overall survival (p = 0.025) at an optimised cut-off level (≥4.7512) indicates poor prognosis, median survival of the poor prognostic group was 1.1yrs vs. good prognostic group at 3.0yrs.

Methods and Materials: In this retrospective, institutional review board-approved study, 20 patients (with ≥2cm and solitary SPN confirmed by pathology or clinical treatment) scanned on a 3.0-T magnetic resonance system (Skyra; Siemens) were divided into benign nodule group (n=9) and malignant nodule group (n=11). The CDT-VIBE (TR = 4.1ms, TE = 1.33ms, Flip angle = 9°,Field of view = 340mm X 255mm,Matrix = 298 X 162) was started 20 seconds after the injection of 0.1 mmol/kg Gd-DTPA. Within 26 seconds, 14 high spatial resolution (1.2 X 1.2 X 3 mm3) data sets were acquired. The CDT-VIBE series, were evaluated independently by 2 blinded, experienced radiologists with regard to image quality and measuring signal strength of different points in time.

Results: In all patients, CDT-VIBE measurements were successfully acquired and presented good image quality (Figure 1). As shown in Figure 2, in the multi-phase rapid scan of 20-46s, the signal intensity values of the malignant nodule group were greater than 250; while the signal intensity values of the benign nodule group were less than 230, the difference between the two groups was statistically significant (p<0.05).

Conclusion: Compared with the traditional DCE-MRI, CDT-VIBE sequence of the rapid multi-phase dynamic enhanced scan of 20-46s is of great significance in the differential diagnosis of benign and malignant solid pulmonary nodules.

B-0149 11:34
Application of dual-layer detector spectral CT in differentiating benign and malignant lung nodules
Q. Wen, Y. Hou, Y. Ma, Q. Ma, X. Lu; Shenyang/CN (2609579904@qq.com)

Purpose: To quantitatively observe the value of dual-layer detector spectral CT (DLCT) in differentiating malignancy and benignity of solitary pulmonary nodules.

Methods and Materials: Ninety-one patients with solitary pulmonary nodules proved by pathology underwent contrast-enhanced CT scan in artery phase (AP) and venous phase (VP) with DLCT. The patients were classified into two groups (malignant group, n=51; benign group, n=40). The slope of spectral HU curve (SHDC) was calculated from the spectral HU curve (DC=HU/keV). T test was performed to compare quantitative parameters among the two groups. Receiver operating characteristic (ROC) curve analysis was performed to assess the differential diagnosis performance.

Results: NIC, Hmax and NIC of malignant group are all higher than those of benign group (p<0.05). In the benign and malignant groups, the NIC were 0.90±0.04 and 0.15±0.05, respectively, in the AP, and 0.22±0.06 and 0.36±0.10, respectively, in the VP. The Hmax were 1.17±0.49 and 1.75±0.63, respectively, in the AP and 1.33±0.49 and 2.09±0.63, respectively, in the VP. The NICD were 3.74±0.126 and 3.74±0.126, respectively. ROC analysis showed that the area under the curve (AUC) of the NIC in VP was largest (AUC=0.90), and NICD of NICD was 0.90, among all parameters with sensitivity and specificity values were 84.7% and 90.8%, respectively.

Conclusion: DLCT imaging with quantitative parameter provides more promising value for distinguishing malignant nodules from benign ones.

B-0150 11:42
Automated CT texture analysis of lung cancer FDG PET-CT data using a novel software tool: preliminary results
G.M. McDermott1, M. Hayball2, B. Ganeshan2, Z. Riaz2, A. Scarsbrook2; 1Leeds/UK, 2Cambridge/UK, 2York/UK (gary.mcdermott@nhs.net)

Purpose: To explore the utility of automated software (TexRAD lung) for extracting texture features from routinely acquired fluorine-18 fluoro-deoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) datasets and lung cancer FDG PET-CT data using automated software may help predict overall survival of patients with lung cancer. Region extraction methodology warrants further assessment to account for certain patient-specific features.

Methods and Materials: In this retrospective, institutional review board-approved study, 20 patients (with ≥2cm and solitary SPN confirmed by pathology or clinical treatment) scanned on a 3.0-T magnetic resonance system (Skyra; Siemens) were divided into benign nodule group (n=9) and malignant nodule group (n=11). The CDT-VIBE (TR = 4.1ms, TE = 1.33ms, Flip angle = 9°,Field of view = 340mm X 255mm,Matrix = 298 X 162) was started 20 seconds after the injection of 0.1 mmol/kg Gd-DTPA. Within 26 seconds, 14 high spatial resolution (1.2 X 1.2 X 3 mm3) data sets were acquired. The CDT-VIBE series, were evaluated independently by 2 blinded, experienced radiologists with regard to image quality and measuring signal strength of different points in time.

Results: In all patients, CDT-VIBE measurements were successfully acquired and presented good image quality (Figure 1). As shown in Figure 2, in the multi-phase rapid scan of 20-46s, the signal intensity values of the malignant nodule group were greater than 250; while the signal intensity values of the benign nodule group were less than 230, the difference between the two groups was statistically significant (p<0.05).

Conclusion: Compared with the traditional DCE-MRI, CDT-VIBE sequence of the rapid multi-phase dynamic enhanced scan of 20-46s is of great significance in the differential diagnosis of benign and malignant solid pulmonary nodules.
SS 207
Prostate cancer

Purpose: To develop a scoring system for background signal intensity (BSI) changes on prostate MRI and assess these changes' influence on cancer detection.

Methods and Materials: This IRB-approved, HIPAA-compliant, retrospective study included 418 prostate MRI examinations in 385 men, who subsequently underwent MRI-guided biopsy. The Likert score for the suspicion of cancer assigned by the primary radiologist was extracted from the original report and histopathological workup of the biopsy cores served as the reference standard. Two readers assessed the amount of BSI changes on T2-weighted sequences and assigned the pre-defined BSI scores (BSI 1:2; BSIS 3; BSIS 4-5).

Results: Inter-reader agreement on BSIS was substantial (kappa: 0.783).

Conclusion: Background signal intensity changes on T2-weighted images significantly limit prostate cancer detection. The proposed scoring system could improve the standardization of prostate MRI reporting and provide guidance for applying prostate MRI results appropriately in clinical decision-making.
Conclusion: PSA density, prostate volume and the ratio of ADC of the PI-RADS 3 lesion on ADC of the contra lateral prostate have the potential to predict csPca in PI-RADS 3 lesions.

B-0158 11:27
Improved diffusion weighted imaging of the prostate: RESOLVE and ZOOMit in comparison to standard EPI sequences
M. Klimpel, 1 L. Schimmoller, T. Ullrich, M. Quentin, C. Arsov, G. Antoch, H.-J. Wittsack; Düsseldorf/DE

Purpose: This study retrospectively evaluates objective image quality (IQ), subjective IQ, and diagnostic performance of diffusion-weighted imaging (DWI) in prostate MRI at 3T comparing high resolution RESOLVE (Readout Segmentation Of Long Variable Echo trains), ZOOMit (selective field-of-view) and standard EPI DWI sequences within the same patients.

Methods and Materials: Thirty-six consecutive patients (70±8 years; median PSA 9.1 ng/ml; IQR 6.3-13 ng/ml) with multi-parametric MRI at 3T including RESOLVE, ZOOMit, and EPI DWI with b1500 and subsequently histopathologically proven prostate cancer (PCA). Both targeted and systematic MRUS-fusion biopsy were included from 03/2016 to 12/2017. Signal intensities (SI) of PCA and benign tissue (peripheral and transition zone; PZ, TZ) in ADC, b1000, and b1500 were analyzed for each respective DWI sequence. Endpoints were comparison of signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR), and subjective IQ (5-point scale).

Results: SI and CNR differed significantly for RESOLVE compared to ZOOMit and EPI DWI (p<0.01). CNR was significantly better for RESOLVE for high b values (>1500) (p<0.01) and was best in differentiation of PCA from normal tissue in the PZ. CNR of ADC is not significantly different for the three compared DWI sequences (PZ: p=0.34 and TZ: p=0.48). Subjective IQ was significantly better for RESOLVE compared to both ZOOMit and EPI (p<0.01).

Conclusion: RESOLVE was superior to ZOOMit and EPI DWI regarding subjective and objective image parameters in depiction of PCA. ZOOMit and EPI are more or less comparable to each other. Thus, RESOLVE improves DWI in mp-MRI and might facilitate PCA detection.

B-0159 11:35
Prostate cancer treated with irreversible electroporation: MRI-based volumetric analysis and oncological outcome
F. Giganti, 1 A. Stabile, 1 S. Giona, 1 C. Orzyczyk, 2 C. Moore, 4 C. Allen, 3 G. Barkhami, 3 M. Embelli, 3 S. Purwanji, 3 LondonUK; Milan/IT, Framlingham/Fr (giganti.fr@gmail.com)

Purpose: To assess multiparametric magnetic resonance imaging (mpMRI) characteristics in prostate cancer (PCa) before and after irreversible electroporation (IRE) to investigate their correlation with the presence of post-operative recurrence.

Methods and Materials: mpMRI was performed in 30 men with PCa prior to treatment, after 10 days and at 6 months. An additional scan at 1 year was available for 18 men. Two radiologists assessed retrospectively the following parameters by planimetry: tumour volume, necrotic volume (early post-treatment scan) and residual fibrosis. Residual tumour/recurrence were defined as suspicious areas with a maximum 3D diameter > 4 on T1- and T2-weighted images before and after treatment scan. Residual tumour volume and necrotic volume were assessed before and after the treatment.

Results: Median follow-up was 15.5 months. At early mpMRI, 6 men were understaged and showed mpMRI recurrence after 6 months. At 1-year, three additional men had recurrence. Overall, 4 men were retreated. Five men did not receive any further treatment. Median time to re-treatment was 15 months. Median pre-treatment lesion volume was 0.65cc, 0.66cc and 0.43cc on the different mpMRI sequences (T2, DWI and ZOE). Median necrotic volume was 10.77cc. Median overall residual fibrosis volumes were 0.94cc and 0.15cc at 6-month and 1-year mpMRI. Pre-treatment, necrotic and residual fibrosis volumes were significantly different (p <0.001). Pre-treatment tumour volumes on diffusion-weighted imaging and necrotic volumes were correlated (r=0.18; p =0.02).

Conclusion: mpMRI is a feasible imaging modality to visualise the IRE ablative effects in men with PCa. mpMRI parameters (tumour, necrotic and fibrosis volumes) are promising tools to assess the efficacy of IRE in PCa.

B-0160 11:43
Is DCE useless in early detection of prostate cancer? The analysis of quantitative parameters might help radiologists to decide if findings mostly restricted on ADC map should be sampled
M. Pecoraro, 1 R. Campa, 1 M. Orczyk, 2 C.M. Moore, 2 S. Giona, 2 G. Barkhami, 3 M. Embelli, 3 C. Valse, 1 C. Cadano, 1 V. Panebianco; Rome/IT (pecoraro.martina1@gmail.com)

Purpose: The aim is to evaluate whether the DCE can improve tumour detection, applying the quantitative analysis of pharmacokinetic parameters of lesions not having a clearly positive ADC map.

Methods and Materials: Among 1236 men who underwent mpMRI for PCA suspicion from 2015 to 2018, we retrospectively enrolled 86 patients treated with radical prostatectomy and 86 patients suspected of harbouring PCa with

Scientific Sessions
at least one negative systematic prostate biopsy, at least two negative mpMRI exams and a minimum follow-up of 48 months, as “control group” (Group C). Exams were performed at 9T with a PI-RADSv2-compliant protocol. Quantitative analysis was performed, computing both pharmacokinetic parameters (k-trans, k-ep and ve) and ADC values.

Results: Mean ADC value of 82.634mm²/s (95%CI=77.564 to 88.238), mean k-trans of 0.325mm⁻¹ (95%CI=0.278 to 0.372), mean k-ep of 0.568mm⁻¹ (95%CI=0.466 to 0.640) and mean ve of 0.77 (95%CI=0.65 to 0.89). Results were stratified into two groups: lesions with a normalised ADC>0.62 (Group A) 72% and lesions with a nADC>0.6 (Group B) 28%. The difference of kTrans values of the two groups was not signficant (p=0.08), however a statistical difference was found comparing the normalised kTrans (nKtrans) of healthy prostate tissue with the one of PCA lesions, both separately and together (p<0.05).

Conclusion: It seems reasonable to adopt the nKTrans in the decision-making process of performing a prostate biopsy, possibly for those radiologic findings having a nADC>0.6. The omission of DCE would decrease PCA detection, especially when the ADC map cannot be unequivocally interpreted.

Purpose: To detect the role of ultrasound and its accuracy in the detection of the endotracheal tube position in neonatal intensive care unit patients

Methods and Materials: Totally 100 intubated neonates were enrolled in the study over one year-period in the NICU. They all underwent high-resolution ultrasound using linear probe (5-8 MHz) on the neck and upper chest in LSB to determine the tip of the ET, point distance from the arch of the aorta was calculated. Plain radiography of chest and lower neck in AP position performed on the same day was collected. The head was kept in the sniffing position during both procedures.

Results: The ultrasound was able to identify the tip of the ET in 100% of patients. There was statistically significant relation between the ultrasound and the chest radiography to determine the position in the NICU (P value less than 0.001).

Conclusion: Visualization of the ET tip and its distance of 0.6 to 1.2 cm from the upper border of the arch of the aorta by ultrasound using linear high-frequency probe suggest correct position. So high-resolution ultrasound is helpful in identification of the level of the ETT tip, in neonates in the NICU.

Purpose: The diagnosis and management of respiratory diseases (RD) is of great importance in Neonatal Intensive Care Unit (NICU). Chest X-ray (CXR) and computed tomography are usually the appropriate tools for RD diagnosis (but with radiation and neonatal transportation). The safety of lung ultrasound (LUS) led to the increasing use of them in diagnosis and in every day follow-up of RD.

Methods and Materials: 104 consecutive neonates from Neonatal Intensive Care Unit (NICU) with a gestational age from 25 Weeks(Wk)+5 days(d) to 40Wk were included in this study. 29.80% were premature(<29 Wk), Preterm were 45.20%(30-34Wk) and 8.20%(35-37 Wk: +6d): 58.65% were reveal respiratory distress syndrome(RDS), 7.7%(from seventeen full-term) transient tachypnea of the newborn (TTN), 6.25% pneumothorax and 4.68% bronchopulmonary dysplasia. Used criteria were the presence of A-Lines, "sliding sign", "pleural line" sign, presence of subpleural opacities and the B-lines "density".

Results: According to these: 2 pleural fluids (3.12%), 3 pneumothorax (4.68%); 77 neonates with hyper-trabeculation was evaluated by B-Lines density(normal/infiltration/white lung), LUS follow-up showed improvement in 47(73.43%). With the use of LUS we had a decreased CXRs up to 32,1% in comparison with NICU-CXRs in the same period for the last three years.

Conclusion: CXR remains the method of choice in RD diagnosis with the disadvantage of radiation. LUS is convenient, noninvasive, free of radiation method with the potential to become a tool for bedside dynamic respiratory monitoring. LUS is a useful tool in NICU reliable, easy to use and reproduce for the follow-up of illness neonate.
global peak strain (PS) and peak displacement (PD) in three directions of longitudinal, circumferential and radial. The clinical symptoms and outcome were recorded.

Results: For the strain of GPS and GPD in three directions of longitudinal, circumferential and radial, children/adult with iLVNC had significantly lower strain compared with healthy subjects, respectively (all p < 0.0017); and adult with iLVNC were lower than children. Conversely, no significant difference in strain parameters were observed between adult iLVNC patients and DCM patients with hyper-trabeculation. LV strain parameters were associated with increased indexed LV EDV, ESV, diastolic-mass and decreased EF (absolute R: 0.396-0.908; all p < 0.05).

Conclusion: Left ventricular myocardial functional impairment and strain changes were detected in iLVNC patients, especially being already noticeable in the children. With the age growing, the strain of iLVNC patients were lower, but the hyper-trabeculation may have no obviously effect on strain in DCM patients contrast to iLVNC patients.

B-0167 11:19

Radiation exposure of thoracic computed tomography in paediatric patients: can we always achieve a sub-mSv scan in a clinical setting?

K. Bubel1, K. Altmyer2, J. Pfeifer1, H. Abdullah-Khalil1, T. Krenn1, A. Massmann1, A. Bücker1, P. Fries1, H.omburg/DE, S. saarloos/DE (katharina.bubel@gmx.de)

Purpose: To retrospectively analyze radiation exposure of thoracic CTs in pediatric patients in a clinical setting using a third generation dual source scanner (Siemens, Force) and to identify risk factors preventing sub-mSv examinations.

Methods and Materials: In 144 patients (age: mean+/SD: 6.1+/-5.9yrs; range: 0-18yrs) a total number of 197 examinations of the thorax were performed for different clinical purposes. We acquired a high-pitch protocol using automatic exposure control (CareDose4D, CareKV, Siemens) in the majority of cases. Scans were performed unenhanced, contrast-enhanced (with or without ECG-synchronization) or with filter-technique. We retrospectively evaluated dose length product (DLP) and calculated effective doses (E) thereof using age and kV specific conversion factors.

Results: Examinations were performed for cardiovascular (n=114), and non-cardiovascular (n=83) indications (inflammation, tumor and congenital lung disease). Mean +/- SD radiation exposure for all examinations was E(all)=0.76 +/-0.72mSv with a range of 0.03-3.85mSv. In 42/197 cases (21%) radiation exposure was above 1mSv. Here, patients were significantly older (11.23 +/-5.5yrs vs. 3.9 +/-4.9yrs, p<0.001) potentially resulting in higher kV-settings (n=33/42 with tube voltage >70 kV). 7 patients presented with metallic implants (pacemaker, stents, coils). 7 scans were performed with retrospective ECG-gating and 3 patients were obese. Radiation exposure was significantly lower in scans with filter-technique (0.17+/-0.14mSv; p<0.001) as compared to cardiovascular (0.82+/-0.68mSv) or non-cardiovascular CTs (0.95+/-0.4mSv).

Conclusion: Thoracic CTs in pediatrics can be acquired routinely with a radiation exposure below 1mSv using automated exposure control for a broad spectrum of clinical indications. Risk factors for higher doses include age, metallic implants, obesity and retrospective ECG-gating.

B-0168 11:27

Fontan-operated adolescents have increased hepatic fibrotic markers assessed by ultrasound shear wave elastography and MR T1 mapping C. Chen1, K. Thrane2, K. Hjelm1, K. Rydel Sutter, L.-S. Gräving Müller, O.M. Geier, G. Dahlen, R. Almass, T. Møller, Oslo/NO (charlotte.deelange@medisin.uio.no)

Purpose: To investigate magnetic resonance (MR) T1 mapping with extracellular volume fraction (ECV) and ultrasound shear wave elastography (SWE) in adolescents with Fontan circulation, as a surrogate measure of hepatic fibrosis.

Methods and Materials: Hepatic and splenic native T1 times and ECV were prospectively measured with a modified look-locker inversion recovery sequence and stiffness measured with SWE. Results were compared to a control group and correlated to clinical and haemodynamic information from cardiac catheterization.

Results: Thirty-nine Fontan patients aged 16.7±0.6 years and 15 controls aged 19.2±1.2 years were included. Hepatic native T1 times were increased in patients (n=31) 776±48 ms compared to controls 632±52 ms (p<0.001) as well as ECV 48.4±5.7% vs 38.8±3.7%, respectively (p<0.001). Splenic native T1/ECV was comparable between groups (p=0.17 and p=1.0, respectively). For SWE, liver stiffness/velocity was measured to 1.9±0.1 m/s in patients (n=38) vs 1.2±0.1 m/s in controls (p<0.001). SWE correlated only with ECV (R=0.6, p<0.001 in patients, but was without association with T1 and ECV in controls (R=0.3, p=0.3/R=0.2, p=0.4, respectively). There were no associations between hepatic T1/ECV and SWE with central venous or ventricular pressures or to slightly abnormal liver function.

Conclusion: Fontan patients have elevated MR and SWE biomarkers suggestive of diffuse hepatic fibrosis and/or congestion. However, no hepatic failure or correlation to central venous pressure was found. MR T1 mapping and SWE revealed only partial correlation thus opposing an interchangeable use of the two techniques in monitoring hepatic fibrosis. Longitudinal studies are required to test the significance of our findings.

B-0169 11:35

Diagnostic utility of 3 Tesla thoracic magnetic resonance imaging in HIV-positive children

P. Rana1, K.S. Soda2, A. Bhatia2, A.K. Saxena3, D. Sur3, S. Singh2, 1Dwarka/IN, 2Chandigarh/IN (pratyaksha_25@yahoo.com)

Purpose: To evaluate the role of 3T thorax MRI in HIV-positive children by keeping CT chest as the gold standard.

Methods and Materials: Twenty-five children with confirmed HIV-positive status having pulmonary complaints, and referred for CT chest were included in this prospective study. Thorax MRI was performed in all children using T2 TSE, BTTE, MVDX, mDIXON, STIR and DWI sequences. The images were evaluated for various pulmonary and mediastinal findings. The sensitivity, specificity, PPV, NPV of MRI were calculated. The kappa test of agreement was used to assess the agreement between MRI and CT findings.

Results: Sensitivity, specificity, PPV and NPV of MRI was 100% for detection of nodules >4mm, pleural effusion and lymphadenopathy. For consolidation/collapse, sensitivity and specificity was 92.8 and 88.9%, respectively. The sensitivity for detection of bronchiectasis and GGOs was 75%, while specificity was 100% and 94.1%, respectively. Nodules <4mm were not well detected on MRI with sensitivity and NPV of 35% and 23.5%, respectively. The kappa test showed perfect agreement (k=1) for detection of nodules >4mm, pleural effusion and lymphadenopathy, with almost perfect agreement (k=0.82) for the detection of consolidation/collapse.

Conclusion: Amongst the sequences used, T2 TSE sequence was the best sequence to detect parenchymal and mediastinal abnormalities out of all MR pulse sequences. Diagnostic yield was poor with DWI and STIR sequence as compared to T2 TSE sequence with no additional benefit. Common findings such as consolidation, pleural effusion, nodule >4mm and lymphadenopathy were well demonstrated on MRI.

B-0170 11:43

Assessment of lung volume and central airways dimension using MRI in children: a comparison with plethysmography, CT and PFT

Y. Wang1, C. Yong2, H. Wang1, G. Dai1, W. Zhou1, E. Hao1, H.A. Tiddens2, P. Ciet2, 1Yinchuan/CHN, 2Rotterdam/NL (p.ciet@erasmusmc.nl)

Purpose: To test whether MRI measurements of lung volume and central airways dimensions correlate to validated pulmonary function tests parameters in children with cystic fibrosis (CF), asthma and healthy controls, and to assess capacity to detect trapped air (TA).

Methods and Materials: Spirometer-controlled MRI was performed with a breath-hold 3D-SPGR sequence at-end-inspiration and expiration using a 3.0 T scanner in 37 subjects, including 12 CF patients (age 11.3 ±2.4), 12 asthma patients (12.9 ±2.8) and 13 healthy volunteers (12.3 ±1.7). We measured lung volume (in ml) and central airways dimensions (area and diameters in trachea and main bronchi every cm). We compared total lung capacity (TLC) and residual volume (RV) measured with MRI and with body pletysmography. We also correlated MRI airway dimensions to forced expiratory flow in 1 sec (FEV1) and TAmax with CT pletysmography and Forced expiratory flow (125-75%). Mixed model analysis was used as statistic.

Results: Lung volume and TA measured with MRI significantly correlated with pletysmography and CT measurements (in CF group) (p=0.0006). TA was significantly higher in CF group (p=0.01) than healthy control, and almost significantly higher in the asthma group (p=0.057). There were no differences in TLC between patients’ groups, while RV tended to be higher in CF (p=0.058). No difference in central airways dimensions was detected between the groups. MRI parameters had high correlation with FEV1.

Conclusion: Lung MRI is a feasible method to evaluate lung volume and central airways dimensions in children with respiratory disorders.

Author Disclosures: P. Ciet: Speaker; Vertex Pharmaceutical.

B-0171 11:51

Image quality and incidental findings of chest MRI in a large paediatric population-based study

A. Pittard1, L. Duijts2, A. Wielopolski1, M.W. Vernooij2, V. Jaddoe2, H. Abdul-Khaliq3, 1Rotterdam/NL (p.ciet@erasmusmc.nl), 2Rotterdam/NL (p.ciet@erasmusmc.nl), 3Padova/IT (p.ciet@erasmusmc.nl)

Purpose: To describe image quality (IQ) and incidental findings (IFs) of chest MRI in children participating in a population-based prospective cohort study.

Methods and Materials: Two end-inspiratory (INS) and -expiratory (EXP) phase breath-hold chest-MRI scans were performed in 2498 healthy children using a 3.0 T whole-body scanner (with 2mm isotropic) in a 3Tesla scanner. IQ was assessed visually using a 5-point scale from poor (score 1) to excellent
Oncologic Imaging

SS 216
Multiparametric imaging for pelvic cancers

Moderators:
M. Otero-García; Vigo/ES
B.M. Schaarschmidt; Düsseldorf/DE

B-0172 10:30
Classification of prostate cancer on multiparametric MR imaging using 3D convolutional neural network
N. Aldo; S. Lukas, M. Dewey, T. Penzköfer; Berlin/DE

Purpose:
To present a novel single-pipeline, fully automated approach for prostate cancer classification based on multiparametric magnetic resonance (MR) imaging using a 3D convolutional neural network (CNN).

Methods and Materials:
Two hundred patients (provided by PROSTATEx challenge) with a total of 318 lesions for which histological correlation was available were analysed. A novel CNN was designed, trained, and validated simultaneously using three MRI sequences as input (T2-weighted, apparent diffusion coefficient (ADC), and diffusion-weighted images). The network consists of 12 convolutional layers organized in seven blocks with intermittent skip connections of concatenated feature maps and two fully connected and one output layer at the end. The model was trained and validated using 8-fold cross-validation.

Results:
In terms of detection of significant prostate cancer defined by biopsy results as the reference standard, the 3D CNN achieved an average area under the curve (AUC) of the receiver operating characteristics of 0.82 with the best model having an AUC of 0.87, 68.9% sensitivity, and 88.8% specificity. This performance is comparable to that reported for experienced radiologists (AUC of 0.83) using the prostate imaging reporting and data system (PI-RADS). Lesion size had no effect on the network’s performance.

Conclusion:
The diagnostic performance of the 3D CNN in detecting clinically significant prostate cancer is characterized by a good AUC, moderate sensitivity, and high specificity.

B-0173 10:38
Ovarian cancer staging and resectability assessment: prospective comparison between diffusion-weighted MRI and MSCT
A.E. Solopova, A.M. Sdvizhkov, A.D. Makatsaria; Moscow/RU (dr.solopova@mail.ru)

Purpose:
To evaluate the diagnostic potential of diffusion-weighted MRI sequences (DW-MRI) compared with multiparamial computed tomography (MSCT) for ovarian cancer (OC) staging.

Methods and Materials:
78 patients with suspected OC underwent preoperative examination, including abdominal/pelvic MSCT and DW-MRI, using a 1.5T scanner with b-factors of 0, 1000 s/mm². Using the obtained data, the peritoneal cancer index (PCI) was calculated and ROC curves for DW-MRI vs MSCT were created. The imaging-based diagnoses were compared with surgical staging and histopathological examination.

Results:
The following stages of OC were determined: 6 (7.7%) IV; 37 (47.4%) IIIC; 25 (32%) IIIB; 10 (12.8%) IIIA. DW-MRI was markedly superior to MSCT in differentiating tumicularly implants in the large intestine mesentery (83.8% and 37.8%, respectively), into the small intestine serosa (79.7% and 31.8%), and the para-aortic lymph nodes (71.4% and 35.7%). The specificity were similar (80.4% - DW-MRI and 81.6% - MSCT). The peritoneal cancer index (PCI) calculated from the DW-MRI results correlated with the surgical staging data better than based on MSCT (r=0.814 for DW-MRI, r=0.625 for MSCT). Based on the obtained data, the ROC curves were plotted to show the AUC of 0.926 and 0.693 for DW-MRI and MSCT, respectively with overall sensitivity for correctly staged of 83.6% for DW-MRI and 76.4% for MSCT. The AUC values were found in secondary tumor foci (1.09±0.28 for primary tumor, 0.810±0.26 - omentum, 0.750±0.23 x 10⁻³ mm²/s - peritoneal implants).

Conclusion:
For the assessment of ovarian cancer spread, DW-MRI is significantly more sensitive than MSCT.

B-0174 10:46
Multiparametric MRI in prostate cancer: a radiomic study applied to different diffusion and perfusion models
D. Grimandi, S. Monti, C. Rinaldo, V. Brancato, M. Aiello, G. Di Costanzo, C. Cavalieri, A. Ragozzino, M. Salvadori; Naples/IT (carlocavalieri1983@yahoo.it)

Purpose:
To evaluate radiomics features extracted from 2D region and 3D volume of interests on diffusion weighted imaging (DWI), diffusion kurtosis imaging (DKI), and T2 weighting maps on both 2D and 3D segmentations. To compare their diagnostic potential and to identify features discriminating clinically significant tumours.

Methods and Materials:
318 lesions for which histological correlation was available were analysed. A novel CNN was designed, trained, and validated simultaneously using three MRI sequences as input (T2, b values of 0, 1000 s/mm², and a non-Gaussian diffusion coefficient (D), deviations from normal distribution (K), and classical apparent diffusion coefficient (ADC)) maps were generated. DCE-MRI parameters (Ktrans, ve, and kep) were also determined. First-order statistical features were extracted from T2, DWI, DKI, and DCE-MRI maps on both 2D and 3D segmentations. A logistic regression classifier was used to identify features discriminating clinically significant tumours (PI-RADS 4-5), and was evaluated by area under the receiver-operating characteristic curve (AUC).

Results:
Radiomic features that were identified as useful for PCa detection differentiated PCa from BPH or benign PZ, independently from the segmentation method employed (2D vs 3D). When comparing classification achieved with features extracted from different diffusion and perfusion parameters, a statistical difference was detected only among diffusion features in the best predictors for prostate tumour (AUC > 0.85).

Conclusion:
A classifier that includes features extracted by DKI significantly improves the accuracy of cancer detection.

B-0175 10:54
Association between whole tumour histogram analysis parameters derived from ADC maps and expression of EGFR, VEGF, Hif 1-alpha Her-2 and Histone 3 in uterine cervical cancer
H.-J. Meyer, P. Gundermann, A. Höhn, G. Hamerla, A. Surov; Leipzig/DE (johannes.meyer@medizin.uni-leipzig.de)

Purpose:
To evaluate diffusion-weighted imaging (DWI) is able to predict microstructure in tissues and can be quantified by apparent diffusion coefficient (ADC). The present study sought to correlate ADC histogram-based parameters with different histopathological parameters in uterine cervix squamous cell carcinoma.

Methods and Materials:
18 female patients (age range 32-79 years) with squamous cell cervical carcinoma were retrospectively enrolled. In all cases, pelvic MRI was performed with a DWI (b values 0 and 1000 s/mm²). Histogram analysis was performed as a whole lesion measurement, calculating several percentile, kurtosis, skewness and entropy. Histopathological parameters included expression of EGFR, VEGF, Hif-1alpha, Her-2 and Histone 3. Spearman’s correlation coefficient was used to analyse associations between investigated parameters.

Results:
The investigated ADC histogram showed a good interreader variability, ranging from 0.705 for entropy to 0.959 for ADmedian. EGFR expression correlated statistically significant with several histogram parameters. The highest correlation was observed for p75 (r=0.562, P=0.015). There were several correlations with histone 3, the highest with p25 (r=0.610, P=0.007).

Conclusion:
Histogram analysis showed a good interreader agreement. ADC histogram parameters can reflect expression of EGFR and histone 3 in squamous cell carcinomas of the cervix, but not expression of VEGF, Hif-1alpha and HER 2.
B-0176 11:02
IVM MRI: a better tool to assess myometrial invasion in endometrial cancer
R. Balaji; Chennai/IN (navikanthbalaji@gmail.com)

Purpose: Myometrial invasion is a major prognostic factor in endometrial malignancy. The aim of the current study was to investigate diagnostic value of IVM MRI in peritumoural zone for assessing infiltration of endometrial cancer and comparing with T2 weighted images.

Methods and Materials: 68 patients with biopsy proven endometrial cancer were included in the study. Patients underwent MRI imaging on a 1.5 Tesla scanner (Achieva, Philips Healthcare, Best, The Netherlands). Imaging sequences included T1, T2, regular diffusion and IVM performed with 11 b values (0 to 1200 mm²/s). Regions of Interest (ROI) were drawn in the peritumoural zone where the tumour was in proximity to the myometrium. IVM derived parameters f (perfusion fraction), D (true diffusion) and D* (pseudo diffusion) were obtained. The signal changes and values were compared with corresponding T2 weighted images.

Results: The primary tumour in the endometrial cavity had high f and low D values. Similar values were obtained in tumour peritumoural zone and points of infiltration. In 24 patients with only breach of junctional zone and no obvious myometrial invasion seen on T2WI, IVM parameters were altered with increased f values and low D values compared to normal myometrium.

Conclusion: f and D values obtained by IVM MRI in peritumoural zone could accurately predict depth of myometrial invasion.

B-0177 11:10
Multiparameter reproducibility of DCE-MRI enhancement curves for adnexal masses: quality assurance study for multicentre MROC trial
A.S. Mehdi; S. Islam, N. Bharwani, S. Sudderuddin, A.G. Rockall; London/UK (aia.s.mehdi@gmail.com)

Purpose: Dynamic Contrast Enhanced MRI (DCE-MRI) is a useful tool in characterising ovarian tumours; Semi-quantitative DCE-MRI metrics separate the relative enhancement curves of lesions into 3 types; benign (1), indeterminate (2) and malignant (3), using myometrium as internal reference. This technique is being used in the NIH-funded multicentre study in ovarian cancer (MROC). The purpose of the current study was to assess the agreement of categorisation of these enhancement curves between different platforms and readers.

Methods and Materials: 58 females (mean age 54 ±16) underwent pelvic DCE-MRI for characterisation of adnexal masses. The inclusion criteria were presence of solid tissue in lesion and a uterus in situ; yielding 26 lesions for evaluation in patients with advanced OC. Significan differences in the mean values. 11:10

Results: The inter-observer kappa score ranged from 0.65-0.70 demonstrating strong agreement. The intra-observer kappa score across different platforms ranged from 0.23-0.47 demonstrating fair to moderate agreement.

Conclusion: Semi-quantitative DCE-MRI enhancement curves for adnexal lesions demonstrate good reproducibility between readers for a given platform but are less reproducible across different platforms. This indicates a need to develop robust semi-quantitative parameters that may be validated across different platforms.

B-0178 11:18
Texture analysis of multiparametric MRI and association with tumour grading in cervical cancer
J.A.U. Perucho, E.Y.P. Lee, R. Du, V. Vardhanabhati, K.W.H. Chiu, E.M.F. Wong; Hong Kong/HK (jperucho@hku.hk)

Purpose: To explore efficacy and generalizability of texture analysis of multiparametric magnetic resonance imaging (mpMRI) in discriminating histopathological characteristics of cervical cancers in a two-centre setting.

Methods and Materials: 190 cervical cancer patients were retrospectively reviewed for pre-treatment diffusion-weighted (DWI) and standard T2-weighted (T2W) adiponelvic MRI in two centres (centre 1 n=100; centre 2 n=90). Biopsies of each patient were acquired to determine histological subtype and tumour grading. Volumetric regions of interest (VOI) were placed to encompass the entirety of primary tumours on T2W and DWI parametric maps. 144 texture features were calculated using pyrimidomics. Redundancy analysis was used for feature reduction while goodness-of-fit measures were used for feature selection. Logistic regression was used to build predictive models with centre 1 serving as the training set and centre 2 serving as an external testing set.

Results: In the first centre 80 patients had squamous cell carcinoma (SCC) while 20 had adenoscarcinoma (ACA), and 42 patients had well or moderately differentiated tumours (G1/G2) while 58 had poorly differentiated tumours (G3). In the second centre, 25 patients had SCC while 5 had ACA, and 14 had G1/G2 tumours while 16 had G3 tumours. Redundancy analysis demonstrated that only 15% of features were independent predictors. In discriminating histological grading, only one texture, T2W_humax, achieved reasonable goodness-of-fit and moderate discriminative performance (internal accuracy: 0.64, external accuracy: 0.71). In discriminating histological subtype. Texture features had poor discriminative performance for tumour grading.

Conclusion: T2W_humax was moderately discriminative in differentiating tumour grading in cervical cancer.

B-0179 11:26
The utility of histogram analysis of whole tumour apparent diffusion coefficient map and MRI volumetry in differentiating low and high grade endometrial cancer
W.M. Fathallah, M. Haebee, M.E. Ghanim, M.E. Bandar; Kuwait/KW (waeldr@hotmail.com)

Purpose: To test the diagnostic performance of histogram analysis of apparent diffusion coefficient (ADC) map and tumour volumetry for differentiating low from high grade endometrial cancer.

Methods and Materials: Fifty eight patients with histologically proven endometrial cancer who had preoperative MRI and surgery were retrospectively included in this institutional review board approved study with written informed consent. High-grade neoplasms were derived from regions of interest (ROIs) manually drawn on all slices of the ADC map including areas of necrosis. Histogram parameters (ADC mean, standard deviation, skewness, kurtosis and 95th percentile), tumor volume (TV), uterine volume (UV) and tumour-to-uterine ratio (T/U ratio) were correlated to tumour histological grade.

Results: High grade endometrial cancers demonstrated significantly higher ADC maximum and standard deviation (p<0.001) and 90th percentile ADC (p<0.01) values than low grade tumors. T/U ratio and TV were significantly higher for high-grade neoplasms (mean T/U of 0.31 for G3, 0.12 for G2 and 0.07 for G1; p<0.001 for G3 vs G2 and G3). Rest of parameters showed no significant correlation with tumor grade. Cutoff values of T/U of 0.11, TV of 12.9 mL, 95th percentile of 1.334x10^-3 mm²/s, 90th percentile of 1.299x10^-3 mm²/s, 75th percentile of 1.022x10^-3 mm²/s, ADC standard deviation of 0.206x10^-3 mm²/s and ADC maximum of 1.68x10^-3 mm²/s enabled to distinguish G1 from G2-G3 tumors with sensitivity 94.7%, 84.2%, 68.4%, 68.4%, 78.9% and 84.2%, specificity 82.1%, 74.4%, 82.1%, 89.7%, 66.7%, 74.4% and 71.8% and accuracy 86.2%, 77.6%, 76.8%, 82.7%, 67.2%, 75.9% and 75.9% respectively.

Conclusion: Histogram analysis of ADC map and MRI volumetry are useful in differentiating low from high grade endometrial cancer.

B-0180 11:34
Ovarian cancer neoadjuvant treatment response evaluation: value of diffusion-weighted MRI
A.E. Solopova, S.N. Gurov; Moscow/RU (dr.solopova@mail.ru)

Purpose: To evaluate the capability of diffusion MR-sequences (DW-MRI) in the assessment of neoadjuvant chemotherapy treatment (NACT) response of ovarian cancer (OC).

Methods and Materials: 72 zones of interest in 25 patients with disseminated OC, who underwent pelvic and abdominal MRI to clarify the tumor spread, the issue of NACT and after 1 and 3 courses in the evaluation of its effectiveness, were available for analysis after the 3-d course of NACT. MR-study was performed on 1.5 T MRI, using protocol T2-11, Dynamic 3D FS, DWI with b-factors 0, 200, 400, 600, 1000 mm²/m², with apparent diffusion coefficient (ADC) estimation. The basic treatment response evaluation was performed in accordance with RECIST 1.1 criteria.

Results: The average ADC values in the primary tumour before treatment were significantly higher than in omental and peritoneal implants (p=0.024 and p=0.029, respectively). A comparative assessment of ADC before and after treatment revealed significant increase after 3 courses of chemotherapy (p=0.012), while improvement after 1 course in the primary tumour and differences in ADC before and after treatment in the omental and the peritoneal implants are less pronounced and insignificant (p=0.84; 0.71; 0.59 respectively). Information on evaluation of residual tumour and the degree of therapeutic MRI pathomorphism were: sensitivity 89.6%, specificity - 81.3%, and accuracy - 87.1%.

Conclusion: MRI DWI is informative adjunct in NACT treatment response evaluation in patients with advanced OC. Significant differences in the mean ADC were obtained for the ADC component of the primary tumours, indicating their greater sensitivity to NACT.
B-0181 11:42
Pre- and post-MRI risk-stratification reduces prostate MRIs, biopsies and over-detection in prior negative biopsy men

Purpose: To assess the diagnostic performance of prostate cancer (PCa) detection by incorporating Rotterdam Prostate Cancer Risk Calculator (prostatecancer-riskcalculator.com) in pre- and post-MRI diagnostic setting.

Methods and Materials: In 146 consecutive men with prior negative biopsy, mpMRI with blinded standard biopsies (SBx) and MRI-targeted biopsies (MRI-TBx) to PI-RADS ≥3 lesions was performed “by default”. Various diagnostic strategies w/o MRI-TBx, SBx, and risk-calculation (pre-MRI and post-MRI) were evaluated to PCa outcomes (Grade Groups [GG]), quantified by detection rates between diagnostic strategies (McNemar-test, p<0.05=∗).

Results: MRI was negative in 63/146 (43%) men, potentially saving 43% biopsies in the MRI-TBx strategy. PI-RADS 3, 4 and 5 coincided with GG=1 ≥2 PCa. Pre-MRI risk-stratification identified 53/146 (36%) men at low-risk, potentially saving 36% MRIs and biopsies. Pre-MRI risk-based MRI-TBx+SBx versus default (MRI-TBx+SBx) reduced 7/40 (18%)∗ GG=1 men at low-risk, potentially saving 27% biopsies. Post-MRI risk-based MRI-TBx+SBx versus default (MRI-TBx+SBx) reduced 10/40 (25%)∗ GG=1 PCa but rates between diagnostic strategies (McNemar-test, p<0.05=∗).

Conclusion: In prior negative biopsy setting, pre-MRI risk-stratification indicating MRI-TBx and SBx, may potentially result in saving one-in-three biopsies w/o MRI(-TBx), SBx, and risk-calculation (pre-MRI and post-MRI) compromising any GG=1 PCa detection.

B-0182 11:50
DW-MRI can be used to predict complete cytoreduction and survival in colorectal peritoneal carcinomatosis patients using leading predictive models

Purpose: This study demonstrates the performance of diffusion-weighted MRI to predict complete cytoreductive surgery (CRS), disease-free survival and overall survival by using 5 different predictive models for HIPEC candidates with colorectal cancer.

Methods and Materials: Between February 2016 and October 2017, patients with colorectal peritoneal carcinomatosis considered for CRS/HIPEC who underwent DW-MRI for preoperative staging were included. DW-MRI images were evaluated, retrospectively, to determine the PCI. Relevant clinical parameters were obtained from patient files. Five predictive models were used; the Peritoneal Surface Disease Severity Score (PSDSS), Region Count, Simplified Peritoneal Cancer Index (SPCI), Peritoneal Cancer Index (PCI), and the Peritoneal Surface Disease Severity Score (PSDSS), region count, SPCI, PCI and COMPASS of 0.79, 0.81, 0.82, 0.83 and 0.86, respectively. PSDSS, region count, SPCI, PCI and COMPASS showed significant hazard ratios for overall survival of 1.19, 1.69, 1.22, 1.12 and 1.02. None were found for disease-free survival.

Conclusion: DW-MRI seems to be able to select patients with colorectal peritoneal carcinomatosis eligible for CRS/HIPEC. All five predictive models are predictive of complete cytoreduction and overall survival, not of disease-free survival.

10:30 - 12:00 Room M 5
Neuro
SS 211b
Vascular diseases and the brain
Moderators:
N.N.
M.M.A. Zaltoun; Zagazig/EG

B-0183 10:30
MRA vs DSA based models of cerebral aneurysms: how do the corresponding CFD derived flow fields compare?
M. Mantatzis, K. Thanosoulis, A. Theodoridis, J. Mokali, C. Gianniotis, I. Seimenis; Alexandroupoli/Greece (mmantatz@med.duth.gr)

Purpose: Computational fluid dynamics (CFD) simulations can be used to study the blood flow dynamics in cerebral aneurysms (CAs). This study aims at comparing the CFD derived flow fields in matching CA models determined by magnetic resonance angiography (MRA) and digital subtracted angiography (DSA).

Methods and Materials: Three-dimensional (3D) models of the same CAs were reconstructed from corresponding MRA and DSA data. Following similar meshing, the two models were used to calculate CA haemodynamic parameters, such as the wall shear stress (WSS) and the static pressure. The flow fields were analyzed computationally using the 3D Navier-Stokes equation for laminar flow of incompressible Newtonian fluid. Various inlet conditions were considered.

Results: The gross morphologies of the CA models reconstructed from DSA and MRA were comparable, although the two respective aspect ratios differed by about 12%. However, the intrinsically high spatial resolution of DSA seems to result in an elaborate and accurate morphological characterization of the CA that requires less user interference. The 3D model determined from DSA resulted in generally higher WSS and static pressure values compared to those obtained with the MRA based model. Minimum WSS values differed by up to 28% in the two models. Nevertheless, local minima were found at the same CA locations.

Conclusion: CFD-derived local values of WSS, a parameter which has been proposed as predictive of the risk for CA rupture, may be dependent on the imaging modality and protocol employed for the reconstruction of the 3D aneurysmal model.

B-0184 10:38
The mechanism of cerebral aneurysms and treatment effect on the genesis
B.-L. Gao; Zhengzhou/CN (browngao@163.com)

Purpose: To investigate the mechanisms of cerebral aneurysms and treatment effect on the mechanisms.

Methods and Materials: 724 patients with cerebral aneurysms were investigated. The angiographic data of 140 patients were processed for computational fluid dynamics (CFD). Different therapies were analysed for their effects on the mechanisms of aneurysms.

Results: 1018 cerebral aneurysms were detected. 717 aneurysms involved a branch (70.4%) and 301 aneurysms were located on a vascular curve (29.6%). On the wall where a cerebral aneurysm was generated, two peak values and one minimal value were demonstrated on the curve of wall shear stress while one peak value was revealed on the total pressure curve. Moreover, cerebral aneurysm occurred on one of the shear stress peaks. Stenting can straighten the arterial bends and change the vascular bifurcation angle, revising the profile of shear stress and total pressure and the distance between two peaks of shear stress and thus making the haemodynamic stresses focused more on the divider of vascular bifurcation. Coiling or surgical clipping alone did not alter the arterial shape and the profile of shear stress and total pressure, without affecting the haemodynamic stresses for aneurysm initiation.

Conclusion: Cerebral aneurysms are initiated at sites with both high wall shear stress and total pressure, and stenting especially Y-shaped stenting can decrease the haemodynamic stresses for aneurysm initiation while coiling alone or surgical clipping do not. Stenting with Y configuration is a better choice of treatment than coiling or surgical clipping in managing the genesis of cerebral aneurysms.
B-0185 10:46

Evaluation of haemodynamic and morphological biomarkers to assess the rupture risk of intracranial aneurysms using magnetic resonance fluid dynamics and computational fluid dynamics

Purpose: The purpose of this study was to evaluate in-vivo haemodynamic and morphological biomarkers using magnetic resonance fluid dynamics (MRFD) and computational fluid dynamics (CFD) in order to assess the rupture risk of intracranial aneurysms.

Methods and Materials: 41 intracranial aneurysms (33 unruptured, 8 ruptured) were analyzed using MRFD and patient specific MR-based CFD. Two morphological and ten haemodynamic biomarkers were calculated and evaluated for significance with respect to rupture. Mean values of biomarkers for the ruptured and unruptured groups were compared and the existing correlations between CFD based and MRFD based biomarkers were assessed.

Results: Four haemodynamic biomarkers, average oscillatory shear index (MRFD, p=0.012; CFD, p=0.041), maximum oscillatory shear index (MRFD, p=0.027; CFD, p=0.016), average relative residence time (MRFD, p=0.027; CFD, p=0.024), maximum relative residence time (MRFD, p=0.045; CFD, p=0.027) were statistically significantly different between the 2 groups with respect to both MRFD and CFD analyses. Inflow concentration index (p=0.024) achieved statistical significance in MRFD analysis whereas spatially and time averaged wall shear stress (p=0.024) was significantly different in CFD analysis. Receiver operating characteristic analysis revealed AUC values greater than 0.731 for all the significant biomarkers. None of the morphological biomarkers, namely aspect ratio and size ratio exhibited statistically significant differences. Moderate to very strong, positive monotonic correlations were observed between CFD and MRFD with respect to the significantly different biomarkers.

Conclusion: Oscillatory shear index, relative residence time, inflow concentration index and time averaged wall shear stress could be potential haemodynamic biomarkers for intracranial aneurysm rupture risk assessment.

B-0186 10:54

4D CT-angiography as a predictor of growth of intracranial aneurysm

E. Gröpinger, V. Krylov, V. Lukyanchikov, N. Polunina, F. Fuyazono/RU, Moscow/JP (iarast33@yahoo.com)

Purpose: The prevalence of unruptured aneurysms in population consist of 2.8%, about 30% among them are multiple, giant or partly thrombosed aneurysms, which need more accurate assessment because of high risk of neurological deficit and adverse outcome.

Methods and Materials: In 2012-2017, 4D CT angiography was performed on 16 patients with unruptured aneurysms from 3mm to 35mm, 2 patients with partially thrombosed aneurysms. 4D CT angiography was performed with ECG synchronization followed the reconstruction of the R-R interval resulting in a pulsed video sequence of the aneurysmal wall. We considered any asynchronous pulsation of the aneurysm wall to be haemodynamically significant. All patients were observed during 4 years using CT-angiography.

Results: 11 of 16 patients showed the uniform pulsation of the aneurysmal sack, with the stable size over time. In 3 patients (18.75%) the nonsynchronous pulsation of one wall was noted, with an increase in the size of aneurysms by 1-1.5 mm per year and the formation of diverticula at the level of maximum wall pulsation. In 2 patients with partially thrombosed aneurysms the wall pulsation was too weak to be analyzed.

Conclusion: 4D CT angiography may provide additional functional information not only about aneurysm wall pulsation but about the tendency of hasty growth that is one more factor of risk of aneurysmal rupture.

B-0187 11:02

Risk evaluation of malignant intracranial hypertension development in children with severe traumatic brain injury

I. Melinkov, M. Ublinsky, O. Lukovkina, M. A khlebchinina, T. Akhador, Moscow/RU (iliamed@inbox.ru)

Purpose: To determine the potential of DWI in assessing the risk of developing malignant intracranial hypertension in children with severe TBI.

Methods and Materials: We retrospectively evaluated clinical and MRI data of 36 pediatric patients with severe TBI. The severity of clinical condition of each patient was evaluated with the use of the Glasgow Coma Scale (GCS). Parenchymal ICP gauge placement was performed in all patients for adequate ICP monitoring. Patients were categorized into three groups: (1) high ICP managed conservatively; (2) malignant ICP managed with DWI guided ICP; Four pairs of symmetrical ROIs were manually drawn on ADC maps, that were grouped for analysis of deep white matter of frontal, temporal, parietal and occipital lobes. All ROIs excluded areas that appeared abnormal on T2WI.

Results: Average ADC values in the deep white matter of frontal lobes were significantly increased in children with severe TBI with following DC (851.5±/ 54.3X10^{-3} mm^2/sec) compare to those with severe TBI and conservatively controlled ICP (756.4±/40.5X10^{-3} mm^2/sec; p<0.05).

Conclusion: Assessment of DWI and ADC values in severe pediatric TBI is a potential tool for evaluating the risk of malignant ICP development. Early identification of children at high risk for this complication may assist in earlier aggressive (surgical) clinical management of pediatric TBI patients.

B-0188 11:10

Association of amygdala volume and markers of cardiovascular disease

Purpose: Recent publications suggest a link among amygdala activity measured by PET and cardiovascular disease. Data generated from animal models show that stress levels to large amygdala volumes. Therefore, we investigated the association between amygdala volume determined by magnetic resonance imaging (MRI) and MRI-based surrogate markers for cardiovascular disease.

Methods and Materials: 237 subjects of the KORA study cohort without prior cerebrovascular disease underwent comprehensive 3T MRI assessment to characterize amygdala volume and imaging-based markers of cardiovascular disease (carotid plaque, media wall thickening, myocardial mass, myocardial late gadolinium enhancement and left ventricular function). Amygdala volume was automatically segmented (based on FLAIR images) and corrected for total intracranial volume. Logistic regression analyses of amygdala volume and MR-derived cardiovascular parameters were conducted while controlling for age and sex as well as cardiovascular risk factors, including diabetes, blood cholesterol levels, hypertension, smoking and obesity.

Results: Among 237 subjects (mean age: 56.2±9.1; 57% males), the average amygdala volume was 3.04±0.24 ml. The prevalence of MR-based markers of cardiovascular disease was moderate (carotid plaque 20.8%, myocardial late gadolinium enhancement 2.9%). Mean media wall thickening was 0.75±0.11 mm, mean myocardial mass was 72.9±15.5 g/m2, mean ejection fraction was 69.2±8.1%. Logistic regression analyses showed no significant association of amygdala volume and any of the cardiovascular parameters (p >> 0.05, respectively).

Conclusion: In this reference population, MR-based amygdala volume was not associated with markers of cardiovascular disease, potentially indicating an independent role in risk prediction.

B-0189 11:18

Imaging requests, stroke incidence and contributing factors after open-heart surgery

L. Melazzini, M. Codari, O.D.E. Papini, C. Beretta, M. Ranucci, F. Secchi, F. Sardanelli, Milan/IT (lucamelazzini@yahoo.it)

Purpose: Stroke is a critical complication of cardiac surgery. In spite of the adoption of neuroprotective strategies, incidence for postoperative stroke remains around 5% for combined cardiac procedures. In this light, we conducted an internal investigation on brain imaging requests, stroke incidence and contributing factors after open-heart surgery at our institution.

Methods and Materials: 1014 adults who underwent open-heart surgery between January 2017 and December 2017 were retrieved from our institutional database. Among them, we identified those who underwent head CT or MRI within 7 days after surgery. Their radiological reports were examined to identify cases of stroke. Demographics, anaesthesiological statistics and clinical data were extracted from patients’ records and statistically processed to find contributing factors for stroke.

Results: 55 patients (5.42% of the study sample) had brain imaging performed within one week after cardiac surgery. Among them, 53 patients underwent head CT scans while two had brain MRI scans too. 18 patients (1.78% of the study sample; PPV of brain scans=32.73%) were found to be radiologically positive for stroke. Stroke was deemed as ischaemic in 17 patients, the one remaining being ischaemic with haemorrhagic transformation. Significant correlations were found between stroke occurrence and previous transient ischaemic attack (p=0.036), diabetes (p=0.001), combined cardiac procedure (p=0.039), use of circulatory arrest (p=0.001), creatinine (p=0.029), extracorporeal circulation time (p=0.003) and clamp time (p=0.007).

Conclusion: Our results slightly overcome those previously reported in the literature. Given this, stroke persists as a fearsome complication of cardiac surgery, where timely neuroimaging requests play a vital role.
After CEA. Compared to ASL with PLD of 1.5, ASL with PLD of 2.0 is a more

Conclusion:

ASL with PLD of 2.0s, ASL with PLD of 1.5s would underestimate the CBF

PLD=1.5s--with CTP was poor, and the consistency of the latter two groups

PLD=2.0s) and CTP were 0.139, 0.875 and 0.856 respectively. It indicates that

Purpose:

Effect of prolonged acquisition intervals on CTP brain perfusion analyses

B-0191

Accuracy of intracerebral haemorrhage volume calculation: comparison between manual volumetric segmentation, ABC/2 and sABC

A.V. Marinescu, R. Radu, E. Terecoasa, A.N. Marinescu, C. Tiu, A. Nicula;
Bucharest/RO (andrei.victor.marinescu@gmail.com)

Purpose: Accurate estimation of intracerebral haemorrhage (ICH) volume is essential for adequate management decisions. The aim of the study was to determine the accuracy of the ABC/2 and sABC/2 methods relative to manual volume segmentation (MVS) method for estimating ICH volumes.

Methods and Materials: Clinical and neuroimaging data were prospectively collected for 47 patients with ICH. Haematoxylum volume was measured separately by a single examiner using ABC/2, sABC/2 and Carestream MVS. Agreement between these methods was evaluated using Bland-Altman plots and MVS was considered the reference method.

Results: Mean patient age was 69.7 ± 11.3 years and 55.3% were males. Median ICH volumes assessed with the MVS, ABC/2 and sABC/2 methods were 12.2 mL, 6.9 mL and 10.7 mL respectively. ICH volumes were systematically underestimated by ABC/2 with a mean difference of -7.6 mL (95% CI -10.6 to -4.67 mL) and systematically overestimated by sABC/2 with a mean difference of 3.6 mL (95% CI 0.31 to 6.9 mL). The variability between the methods increased with larger ICH volumes and therefore, we created second Bland-Altman plots using the geometric means, which showed an ABC/2 to MVS ratio of 0.66 and a sABC/2 to MVS ratio of 1.05. In our cohort, ICH volume percentage difference using ABC/2 and sABC/2 is not expected to exceed 33.72% and respectively 16.9% of the MVS volumes.

Conclusion: Absolute haematoma volumes might vary depending on the technique. Further work is needed to identify the most suitable methods for ICH volume measurement and to estimate their clinical impact.

B-0192

Effect of prolonged acquisition intervals on CT brain perfusion analyses

F. van Ommen, F. Kauw, E. Bennink, J.W. Dankbaar, H.W.A.M. De Jong;
Utrecht/NL (Tvommen@umcutrecht.nl)

Purpose: Axial coverage in CT perfusion (CTP) imaging can be increased with toggling table techniques. This, however, prolongs the acquisition interval (AqI) up to 4 seconds. This study investigates the influence of prolonged AqI on quantitative perfusion maps and infarct volumes.

Methods and Materials: Quantitative perfusion values (CBF, CBV and MTT) of 25 CTP scans, with an AqI varying from 2-5 seconds, were compared to the 1-second AqI. A commercial method (ISP) (brain perfusion, singular value decomposition algorithm, Intellispace Portal® Philips Healthcare) and an academic method (NLR) were used for generation of perfusion maps. Infarct core volumes were determined using a CBV threshold and penumbra volumes using a CBV and relative MTT threshold. All AqI-imaging results were qualitatively compared by visual inspection.

Results: An AqI-dependent bias was observed although not significant for CBF values up to 4 seconds AqI. Regarding MTT and CBF, ISP provided significantly different values for all AqIs, whereas NLR did not. Infarct core volumes were significantly lower (<8%) for ISP and significantly higher (>28%) for NLR for AqIs of 33 seconds. Penumbra volumes were significantly larger (>33%) with ISP for AqIs of 23 seconds and for NLR significantly larger (>20%) at AqI of 3 and 4 seconds. Visually, summary maps for ISP and NLR showed minor differences in diagnostic quality up to 4-second interval.

Conclusion: An AqI-dependent bias was observed in the quantitative perfusion parameters. The summary maps with intervals up to 4 seconds are of diagnostic quality, suggesting that CTP imaging with a toggling table is feasible.

Author Disclosures:

Clinical Trials in Radiology 1

CT 2

Clinical Trials in Radiology 1

Moderators: M. Dewey; Berlin/DE
V.P. Jackson; Tucson, AZ/US

10:30
Primary stenting of superficial femoral artery in patients with intermittent claudication has durable effects on health-related quality of life at 24 months: results of a randomised controlled trial

H. Lindgren1, A. Gottsater2; Helsingborg/SE, 2Malmö/SE (zhanhsindgren@gmail.com)

Ethics committee approval: Written informed consent was obtained from all patients. The study was approved by the Medical Ethics Committee of Lund University (Dnr 2009/478).

Methods and materials: One hundred patients with stable IC due to SFA disease from seven Swedish hospitals treated with best medical treatment (BMT) were randomised to either the stent (n=48) or the control (n=52) group. Change in HRQoL 24 months after treatment was a primary outcome measure.

Results: Significantly better SF-36 Physical Component Summary (mean difference +5, 1; P = .024) and physical domain scores Physical Function (P = .012), Bodily Pain (P = .002), General Health (P = .037), and EQ5D (P = .010) were reported in intergroup and intragroup comparisons between the stent and the control group.

Limitations: The long inclusion period and large number of screening failures due to the strict inclusion and exclusion criteria might have created a bias in patient selection.

Conclusion: In patients with IC caused by lesions in the SFA, primary stenting compared to BMT alone was associated with significant durable improvements in HRQoL, ABI, and walking distance.
Methods and materials: This was a single-centre prospective randomised trial comparing US vs CT guidance for renal mass biopsy. Between June 2016 and May 2018, eligible patients with renal masses were randomly assigned in a 1:1 ratio to perform either US- or CT-guided biopsy using 18-gauge automated device. The primary outcome was to evaluate the diagnostic success rate in both groups. Secondary outcomes included total procedure time, total punctures, and complications.

Results: A total of 82 patients (men, 57%; mean age, 59.2 years) were included; 41 in each group. The diagnostic success rate was higher in the US group (90%) compared to the CT group (83%); (p <0.001). Four of the patients undergoing US-guided biopsy required re-biopsy compared to 7 patients in the CT group (90%) compared to the CT group (83%); (p <0.001). US significantly shortened the total procedure time (150 seconds vs. 330 seconds); (p <0.001). There were no procedure-related deaths in either group.

Limitations: Failed biopsy is not usually related to the image guidance procedure and it may be related to sampling error resulting from tumour haemorrhage or necrosis.

Conclusion: Ultrasound-guided renal mass biopsy has better diagnostic accuracy, less procedural time and lower complication rate than that of CT guidance.

Funding for this study: This was supported by grants from the Gorithons Foundation, the Emmoh Lundström Foundation, Research funds and grants at Skåne University Hospital, the Albrecht Pålsson Foundation, the Hilda Ahlmoth Foundation, Mediel AB, and from the Swedish state under the LUA/ALF agreement.

Author Disclosures:

11:09
Discussant:
A. otkay; Izmir/Tr (aysenur.oktay@ege.edu.tr)

11:15
Methods and mammography screening for high-risk women: an RCT - the influence of density and effectiveness

A. Geuzinge,1 S. Saadatmand,1 E. J. Rutgers,2 R.M. Mann,2 D. de roy van Zuidewijn,1 H. Jongerden,2 R. Tollenaar2, M.B.1 Lobbes,2 M. Ausems,3 M. van’t Rief4, M. Hooning1,1 M. A.-E. Engelberths,5 E. Lutten,5 M. ex-vondijk6, C. van Gierde,b, J. O. Barentsz5, 7, J.O. Barentsz
8, J.S. Taneja,9, S. Verma,9, J. B. starcevich6, T.J. Polascik7, R. Zagoria10, T.J. Kroencke; A. Abdelhamid, M. Zakaria, M. El-Ksas, A. El Mahdy, M. Abd El-Hameed, T. El-Diasty; Mansoura/EG (hashim2008_mf@yahoo.com)

Purpose: The purpose of this study was to compare ultrasound (US) vs computed tomography (CT) guidance for renal mass biopsy.

Methods and materials: This was a prospective randomised study of 82 patients (men, 57%; mean age, 59.2 years) undergoing US-guided biopsy compared to 7 patients in CT group; (p <0.001). US significantly shortened the total procedure time (150 seconds vs. 330 seconds); (p <0.001). There were no procedure-related deaths in either group.

Limitations: Failed biopsy is not usually related to the image guidance procedure and it may be related to sampling error resulting from tumour haemorrhage or necrosis.

Conclusion: Ultrasound-guided renal mass biopsy has better diagnostic accuracy, less procedural time and lower complication rate than that of CT guidance.

Funding for this study: This was supported by grants from the Gorithons Foundation, the Emmoh Lundström Foundation, Research funds and grants at Skåne University Hospital, the Albrecht Pålsson Foundation, the Hilda Ahlmoth Foundation, Mediel AB, and from the Swedish state under the LUA/ALF agreement.

Author Disclosures:
Results: Across all centres, the PPV for PI-RADS score ≥ 2 was 33.8% (range: 12.9%, 68.6%), for PI-RADS ≥ 3 was 37.5% (range: 14.7%, 70.6%), and for PI-RADS ≥ 4, 48.4% (26.4%, 75.9%). The PPV stratified by PI-RADS scores were as follow: score ≥ 2 = 6.9% (range: 4.2%, 50.0%); score ≥ 3 = 15.3% (3.2%, 54.0%); score ≥ 4 = 38.4% (17.7%, 70.0%), and score ≥ 5 = 71.9% (40.0%, 97.1%).

Limitations: Outcomes based on biopsy modalities that are different and not perfect.

Conclusion: Enormous variation in the PPV exists across expert centres, and the overall PPV among these centres was alarmingly low. Based on the results, a PPV > 50% for PI-RADS v2 score ≥ 4 is proposed as a performance standard, with centres below this benchmark warranting quality improvement efforts. Many of the participating centres did not achieve this threshold.

Funding for this study: University of California San Francisco, Department of Radiology and Biomedical Imaging Seed Grant # 16-43.

Author Disclosures:
A.C. Westphalen: Advisory Board; 3D Biopsy LLC. Research/Grant Support; GE Healthcare. A.B. Rosenkrantz: Other; Thieme Medical Publishers.

11:39

Discussant:
H.Y. Kressel; Boston, MA/US (hkressel@rsna.org)

11:45

Role of PI-RADS v2 in clinical models: a multi-institutional study conducted by the SAR Prostate Cancer Disease Focused Panel (aim 3)
A.C. Westphalen; A.B. Rosenkrantz; C. McCulloch; J. Aparajita; S. Ajora; N. Barashi; J.O. Barentsz; T.K. Bathala; L. Bittencourt; M.T. Booker; V.G. Braxton; D.D. Casalino; S.D. Chang; F.V. Coakley; R. Dhatt; S.C. Eberhardt; B.R. Foster; A. Froemming; J.J. Futterer; M.R. Gertner; L.M. Gettie; S. Ghai; R.T. Gupta; M.E. Hahn; R. Houshyar; C. Kim; C. Lall; D. Margolis; S.E. McAfee; A. Oto; R. Parsons; N.U. Pater; T.J. Polascik; J.B. Starcevich; B. Spilseth; V.S. Tammisetti; S.S. Tanjela; S. Verma; C.A. Warlick; A. Weinberger; J. Yu; R.J. Zagoria; S. San Francisco, CA/US; 2 New York City, NY/US; 3 Philadelphia, PA/US; 4 Nashville, TN/US; 5 Chicago, IL/US; 6 Nijmegen/NL; 7 Houston TX/US; 8 Rio de Janeiro/BR; 9 San Diego, CA/US; 10 Vancouver, BC/CA; 11 Portland OR/US; 12 Albuquerque, NM/US; 13 Rochester, MN/US; 14 Toronto, ON/CA; 15 Madison, WI/US; 16 Durham, NC/US; 17 Orange, CA/US; 18 Richmond, VA/US; 19 Seoul/KR; 20 Aurora, CO/US; 21 Minneapolis, MN/US; 22 Cincinnati, OH/US (antonio.westphalen@ucsf.edu)

Purpose: To determine if PI-RADS v2 improves the prediction of high Gleason prostate cancer beyond PSA, PSA density (PSAD), and clinical stage (T1C versus T2/T3).

Methods and materials: This retrospective study included 3,479 men who underwent prostate MRI at one of 26 institutions in the USA, Canada, Brazil, South Korea, and Netherlands. Up to 4 lesions/case were classified using PI-RADS. Cognitive, fusion, and in-bore MR-targeted biopsies were performed. Data was collected using REDCap. The impact of PI-RADS on clinical variables was determined using logistic regressions derived area under the ROC curves. Confidence intervals were calculated using cluster-corrected (to account for multiple lesions/person) bootstrapping.

Results: PI-RADS score, logPSA, logPSAD, and palpable nodule were predictors of GS3+4 on univariable and multivariable analyses (palpable nodule = 0.03, others P < 0.001). The PI-RADS AU-ROC was 73.9% (72.6%, 75.3%). Adding PI-RADS to the clinical model raised the AU-ROC from 69.7% (59.1%, 72.3%) to 80.8% (75.9%, 82.2%). The differences between the AU-ROC of the PI-RADS and combined model (6.8%; 7.8%, 7.9%) and the clinical and combined model (20.1%; 19.0%, 21.4%) were statistically significant (P < 0.001).

Limitations: All centres are expert sites, so results may not apply to all locales.

Conclusion: PI-RADS predicts GS3+4 prostate cancer better than clinical variables, but its performance may be enhanced by knowledge of PSA, PSAD, and/or presence of palpable nodule.

Funding for this study: UCSF Department of Radiology Seed Grant # 16-43.

Author Disclosures:
A.C. Westphalen: Advisory Board; 3D Biopsy LLC. Research/Grant Support; GE Healthcare. A.B. Rosenkrantz: Other; Thieme Medical Publishers.

11:54

Discussant:
E. Rud; Oslo/NO (enrikrud@yahoo.no)
Methods and Materials: Forty nonobese patients with severe aortic stenosis candidate to TAVI underwent thoraco-abdominal DE-CTA for preprocedural assessment of the vascular access routes on a high definition, 64-detector CT scanner. All patients received an average volume of 35mL (30-40mL) of an iso-osmolar, moderate concentration (320mgI/mL) iodinated contrast medium. Intra-arterial density was measured on 40kV, 50kV, 60kV, 70kV, and 80kV monochromatic images at the same levels inside the ascending thoracic and infra-renal abdominal aorta. The monochromatic dataset with the best overall visual image quality was generated, and the occurrence of extravascular incidental findings was recorded.

Results: Intra-arterial density and contrast-ratio noise ratio increased monotonically with decreasing energy levels, ranging from 150±38 HU and 6.10±1.78 at 80kV to 620±164 HU and 9.97±3.70 at 40kV, respectively. Image noise was highest at 40kV (66±16 HU) and lowest at 70kV (24±6 HU). Monochromatic datasets between 50kV and 60kV yielded an intra-arterial density consistently above 200HU (217-576 HU), along with the best balance among vascular enhancement, noise, and blooming artefacts from densely calcified plaques. Incidental findings occurred in 17/40 patients (42.5%), of which 4 (3 advanced cancers, 1 pulmonary embolism) significantly altered patient management.

Conclusion: Pre-TAVI thoraco-abdominal DE-CTA is feasible using a low iodine, fast kV switching approach. 50kV to 60kV reconstructed monochromatic images provide the best overall diagnostic quality.

B-0199 11:19
Psosas muscle cross-sectional areas and aortic valve calcification in patients enrolled for transcatheter aortic valve implantation (TAVI)
G. Spadafora, L. Bonomo, O. Monti, F. Gardanelli, F. Cecchi; Milano IT (gaila.spadafora@gmail.com)

Purpose: To evaluate the correlation between psosas muscle cross-sectional areas (PCSAs) as a marker of central sarcopenia and aortic valve calcification.

Methods and Materials: 77 patients from 2015 to 2017 were retrospectively collected from our pre TAVI registry. In the abdominopelvic CT scan, the right and left PCSA was calculated as well as the ratio between the mean cross-sectional area of the psosas muscles and the L4 vertebral body immediately below the origin of the posterior elements. In the thoracic ECG-trigger CT scan the aortic valve and anulus calcification (AC) were measured as calcium in mm² (ACmm) or as Agatson score (ACA). Spearman test was used to test the correlation between these two variables.

Results: Of the 77 patients the mean age was 81±8.2 years (82±7.5 in female and 79±8.61 in males). PCSA was 0.71±0.20 overall and 0.79±0.22 in males and 0.63±0.13 in females (p=0.01). ACmm was 1869±1419 overall and 1999±1171 in males and 1765±1640 in females (p=0.12). Similarly, AC was 2044±1777 overall and 2544±1935 in males and 2261±1019 in females (p=0.07). No significant correlation was found between PCSA and ACmm and ACA for all patients (r=-0.154 p=0.18; r=0.148 p=0.215 respectively). A significant negative correlation was found in 177 male patients between PCSA and ACmm and ACA (r=-0.341 p=0.04; r=-0.351 p=0.03). No correlation was observed in female patients for PCSA and ACmm and ACA (r=0.27 p=0.11; r=0.29 p=0.09).

Conclusion: PCSA proved to be a useful tool to evaluate cardiovascular risk in male patients undergoing TAVI procedures.
Conclusion: Due to the demonstrated some relationships between the radiation dose in the MDCT examination performed in the qualification for TAVI and the repeatability of aortic valve dimensions measurements, it is postulated that attempts to perform examination using lower radiation doses should be followed by a subsequent control of the repeatability of aortic valve dimensions measurements.

B-2001 11:35
Dysfunction and thrombosis of aortic valve prostheses in patients after TAVR in computed tomography

Purpose: Aim of the study was to determine the incidence of dysfunction and thrombosis of aortic valve prosthesis in patients after TAVR and to systematically evaluate the prosthesis position and deployment in CT.

Methods and Materials: A total of 60 consecutive patients after TAVR (33 Edwards, 20 Medtronic, 3 Sapien 3, 3 Sapien X3/Valve EvolutR and 5 ACURATEneo) were included. All patients received echocardiography and cardiac CT during the 30-day follow-up. The post-TAVR CT protocol included multiphasic cardiac CT (256 Slice GE Revolution, ECG triggering). For image analysis, MPRs were prepared parallel to the aortic valve prosthesis and LVOT axis in cine mode. The following parameters were assessed: Degree of prosthesis deployment (min./max. Diameter, ≥0.9 = circular deployment), prosthesis position in relation to aortic annulus and coronary ostia, motility of the cusps and cusp thrombosis.

Results: One third of the prostheses (20/60) were not circularly deployed, the mean degree of development was 0.91 ± 0.06 (0.75-0.99). In 18/60 cases (30%) there was a partial overlap of the left and right coronary ostium, of which both ostia were affected in 8/18 cases. Limited motility of the cusps as well as partial thrombosis could be observed in 6/60 cases, motility restrictions without thrombosis did not occur. The cusps thromboses had not previously been detected in echocardiography.

Conclusion: In addition to echocardiography, post-TAVR-CT detects a high incidence of motility restriction and partial thrombosis of the prosthesis. Moreover, prosthesis deployment and position deviates in a relevant percentage from the theoretically optimal implantation result.

B-2002 11:43
Biological versus mechanical aortic valve prostheses: an in vitro 4D flow MRI comparison of haemodynamics
T.H. Oechtering, A. Panagiotopoulos, M. Sieren, M. Scharfischer, B. Fujita, S. Emerick, H.-J. Sievers, C. Bankhausen, A. Frydrychowicz; Lübeck/DE (thekla.oechtering@uksh.de)

Purpose: In vitro 4D flow MRI evaluation of haemodynamics distal to mechanical and biological aortic valves.

Methods and Materials: Five valve prostheses with 21mm outer diameter (BV: biological valves: Perimount Magna Ease (Carpentier-Edwards), Trifecta (On-X Cryolife); MV: mechanical valves: trileaflet valve (prototype), On-X (Cryolife) were scanned at 3T in a flexible silicone aortic phantom. A home-built piston pump pumped blood mimicking fluid at (prototype), On-X (CryoLife) were scanned at 3T in a flexible silicone aortic phantom. A home-built piston pump pumped blood mimicking fluid at (prototype), On-X (CryoLife) were scanned at 3T in a flexible silicone aortic phantom.

Results: Absolute stroke volumes in MV and BV were within normal limits (VOL=105±25ml, MV=99±11ml, BV=111±3ml) confirming near-physiologic settings in the phantom setup. In contrast to VOL and MV, there was a pronounced central ejection jet distal to BV that hit the outer curvature of the ascending aorta where peak velocities were higher in BV-170±22cm/s compared to VOL-91±13cm/s and MV-90±24cm/s. MV had more pronounced sinus vortices while there were no sinus vortices distal to BV (median[25%/75%]: VOL=[1,2], MV=[3,3], BV=[0,0]). While VOL and MV developed few or no secondary flow patterns, respectively, there were large secondary helices and vortices distal to all BV.

Conclusion: Biological valves showed disturbed flow with the ejection jet colliding with the outer curvature. Whether this increases the risk of aneurysm formation through wall shear stress changes remains speculative. In contrast, mechanical valves’ haemodynamics resembled those of healthy volunteers.

Author Disclosures:

B-2003 11:51
Aortic valve bypass surgery in severe aortic valve stenosis: insights from cardiac and brain magnetic resonance imaging
C. Mantini, M. Caulo, D. Mastrodicasa, D. Marinelli, A. Tartaro, A.R. Cotroneo, G. Di Giammarco, C. Chiefi/IT, Stanford, CA/US (cesare.mantini@gmail.com)

Purpose: To investigate and describe the distribution of aortic and cerebral blood flow (CBF) in patients with severe valvular aortic stenosis (AS) before and after aortic valve bypass (AVB) surgery.

Methods and Materials: We enrolled 10 consecutive patients who underwent AVB surgery for severe AS. Cardiovascular magnetic resonance imaging (CMR) and brain magnetic resonance imaging were performed as baseline before surgery and twice after surgery. Quantitative flow measurements were obtained using 1.5-T magnetic resonance imaging (MRI) scanner phase-contrast images of the ascending aorta, descending thoracic aorta (3 cm proximally and distally from the conduit-to-aorta anastomosis), and ventricular outflow portion of the conduit. The evaluation of CBF was performed using 3.0-T MRI scanner arterial spin labelling (ASL) through sequences acquired at the gray matter, dorsal default-mode network, and sensorimotor levels.

Results: Conduit flow, expressed as the percentage of total antegrade flow through the conduit, was 63.5±8% and 67.8±7% on early and mid-term postoperative CMR, respectively (P<0.05). Retrograde perfusion from the level of the conduit insertion to the distal conduit was directed toward the aortic arch accounted for 6.9% of total cardiac output and 11% of total conduit flow. No differences were observed between preoperative and postoperative CBF at the gray matter, dorsal default-mode network, and sensorimotor levels (P<0.05).

Conclusion: After AVB surgery in patients with severe AS, cardiac output split between the native left ventricular outflow tract and the apico-aortic bypass, with two-thirds of the total antegrade flow passing through the latter and one-third passing through the former. In our experience, CBF assessment confirms that the flow redistribution does not jeopardize cerebral blood supply.

10:30 - 12:00
The Church

GI Tract

SS 201b
New developments in anorectal imaging
Moderators: F. Iacobellis; Naples/IT A. Maier; Vienna/AT

B-2004 10:30
Comparison between T2WI texture features of primary tumour and nodal metastasis in rectal cancer
L. Yang, B. Wu, Chengdu/CN (lqyang95@163.com)

Purpose: To explore the potential relationship between nodal metastasis state and the texture parameters of T2WI in primary rectal cancer.

Methods and Materials: 60 rectal cancers which directly received radical surgeries between July 2017 and June 2018 were enrolled retrospectively. Axial T2WI were loaded into the texture analysis software, and whole-tumour ROIs were manually drawn by two radiologists independently, then texture parameters were automatically generated. Pathological results of nodal stage were the reference standard. Interobserver agreement was evaluated. The difference of texture parameters between nodal positive (N+) and negative (N-) groups were compared, diagnostic performance and the correlation with nodal state were analysed.

Results: The interobserver agreement was moderate to excellent for texture parameters (ICC= 0.555-0.998). The kurtosis (P<0.002), skewness (P=0.001) and energy (P=0.009) of primary tumour were significantly higher in N+ group (N=17), and the entropy (P=0.041) was higher in the N+ group (N=22). The respective AUCs of kurtosis, skewness, energy and entropy in diagnosing nodal metastasis was 0.732, 0.78, 0.652 and 0.636. Both kurtosis and skewness showed better diagnostic performance than energy and entropy (all P<0.05). With a cut-off value of 1.97 and 1.148 of kurtosis and skewness, they revealed sensitivities of 68.2% and 95.5%, specificities of 76.6% and 51.1%, respectively. Both kurtosis and skewness had significant negative correlations with nodal state (rs=-0.375 and -0.453, respectively).

Conclusion: Kurtosis and skewness of primary tumour on T2WI correlated with nodal state in rectal cancer. Texture analysis of T2WI may give additional information on assessing the nodal metastasis in rectal cancer.
B-0206 10:38
Quantitative elastography of rectal lesions: the value of shear-wave elastography (SWE) in identifying benign and malignant rectal lesions
T. Li; Chengdu/CN (835598031@qq.com)

Purpose: We evaluated the diagnostic value of shear-wave elastography (SWE) in identifying benign and malignant rectal lesions.

Methods and Materials: Review of 96 lesions, endorectal ultrasound (ERUS) and SWE examinations were performed prior to operation. Elasticity parameters including mean elastic index (Emean), maximum and minimum elastic indices (Emax, Emin) were analysed. Correlation between elastographic parameters and histopathological results were studied. Interobserver and intraobserver agreements were analysed.

Results: Of the 96 rectal lesions, 72 were malignant and 24 were benign lesions. The optimal cut-off value was 61.3 kPa for Emean (sensitivity, specificity, positive and negative predictive values of 93.0%, 88.9%, 94.4%, 96.3% for Emean). The area under the ROC curve for Emean was 0.97 (SE 0.019). The intraobserver variability of Emean in malignant lesion, benign lesion, surrounding normal rectal wall in malignant and normal rectal wall in benign were 0.91 (0.86-0.94), 0.94 (0.88-0.97), 0.92 (0.88-0.95) and 0.89 (0.77-0.95), respectively.

Conclusion: SWE is a promising tool that yields additional valuable quantitative data and is non-invasive. The cut-off value of 61.3 kPa for Emean may serve as a complementary tool for diagnosis of rectal lesions.

Author Disclosures:
T. Li: Author; Man Lu.

B-0207 10:46
MRI texture analysis in predicting lymph nodal yield after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC)
M. Panzic; A. Di Chiara, A. Palmisano, A. Esposito, P. Passoni, A. Del Maschio, F. De Cobelli; Milan/IT (panzic.marta@hsr.it)

Purpose: Overall survival in patients treated with neoadjuvant chemoradiotherapy has been shown to be significantly influenced by nodal status, but all imaging techniques have low accuracy in prediction of the lymph node involvement. Aim of our study was to assess the value of MRI-derived lymph node texture features in the prediction of lymph nodal yield after chemoradiotherapy.

Methods and Materials: 58 pts with locally advanced rectal cancer underwent 1.5T MRI before the beginning of CRT (preMRI) and at the end of CRT (postMRI). Multiparametric high-resolution axial-T2W sequences and DCE MRI were acquired. A threshold of 80% of pattern-like lymph nodes (range 3-19) per patient was found at MRI and a total of 174 lymph nodes were identified. The intraclass correlation coefficient for the intraobserver variability of Emean in malignant lesion, benign lesion, surrounding normal rectal wall in malignant and normal rectal wall in benign were 0.91 (0.86-0.94), 0.94 (0.88-0.97), 0.92 (0.88-0.95) and 0.89 (0.77-0.95), respectively.

Conclusion: MRI-derivate lymph node texture has been proved to be significantly influenced by nodal status, but all imaging techniques have low accuracy in prediction of the lymph node involvement. The most common type of fistula encountered was the intersphincteric type, seen in 21 patients (66%); of those, 16 fistulas (50%) were grade I and 5 fistulas (16%) were grade II. Transsphincteric fistulas were seen in 9 patients (28%), 2 of them (6%) were grade III and 7 fistulas (22%) were grade IV. Two patients (6%) had extra-sphincteric type. T2 TSE, T2 TSE and T1 TSE post-contrast sequences were all performed. The type of fistula, location of internal opening, associated abscesses or sinus tracts were all evaluated. Significance and diagnostic accuracy of each sequence were documented in relation to surgical results.

Results: The most common type of fistula encountered was the intersphincteric type, seen in 21 patients (66%); of those, 16 fistulas (50%) were grade I and 5 fistulas (16%) were grade II. Transsphincteric fistulas were seen in 9 patients (28%), 2 of them (6%) were grade III and 7 fistulas (22%) were grade IV. Two patients (6%) had extra-sphincteric type. T2 TSE, T2 TSE and T1 TSE post-contrast sequences were all performed. The type of fistula, location of internal opening, associated abscesses or sinus tracts were all evaluated. Significance and diagnostic accuracy of each sequence were documented in relation to surgical results.

Conclusion: Axial and coronal enhanced fat-suppressed T2 provides the highest accuracy and significance with surgical data, therefore, decreasing the incidence of postoperative complications.

B-0210 11:10
Structured vs narrative reporting of pelvic MRI in perianal fistulising disease: impact on clarity, completeness, and surgical planning
O. Tuncyurek, A. Garces-Descovich, E.E. Duran, T.E. Cataldo, V.Y. Poylin, K.J. Morteole; Boston, MA/US (azum.tuncyurek@gmail.com)

Purpose: To evaluate clarity and usefulness of MRI reporting of perianal fistulising disease using a structured disease-specific template versus narrative reporting for planning of disease treatment by colorectal surgeons.

Methods and Materials: In this HIPAA-compliant, IRB-approved study with written informed consent, a structured reporting (SR) template for perianal fistulising disease MRIs was developed in collaboration between colorectal surgeons and abdominal radiologists. The study included 45 consecutive patients who underwent pelvic MRI for perianal fistulising disease prior to implementation of SR, and 60 consecutive patients who underwent pelvic MRI for perianal fistulising disease after implementation of SR. Objective evaluation of the reports for the presence of 12 key features was performed, as also subjective evaluation regarding the clarity and completeness of reports, and impact on treatment.

Results: More key features were absent in narrative reports [mean: 6.3±1.8 (range 3-11)] than in structured reports [mean: 6.0±0.9 (range 5-1)], (p<0.001). The use of SR also increased the percentage of completeness (72.5% to 88.9% for surgeon 1, and 61.2% to 81.3% for surgeon 2; p=0.03 and 0.03, respectively), helpfulness in surgical planning (7.1±1.5 to 7.6±1.5 for surgeon 1, and 5.8±1.4 to 7.1±1.1 for surgeon 2; p=0.05 and p<0.001, respectively), and clarity (7.6±1.3 to 8.3±1.1 for surgeon 1, and 5.2±1.4 to 7.1±1.3 for surgeon 2; p=0.06 and p<0.001, respectively) of the reports.

Conclusion: Structured MRI reports in patients with perianal fistulising disease miss fewer key features than narrative reports. Moreover, SRs were described as more complete and clear, and more helpful for treatment planning.
B-0211 11:18
MR fistulography with percutaneous instillation of ultrasound gel and its role in the preoperative mapping: our experience
G. Fontanelle; M. Mancinelli, S. De Luca, A. Festa, R. Villanacci, C. Manganello; Benevento1T (giovanni.fontanelle@hotmail.com)
Purpose: The aim of this study is to show the role of MR fistulography (MRF), performed after percutaneous instillation of ultrasound gel, in the preoperative mapping of perianal fistula, underlying its various advantages.
Methods and Materials: 68 patients were selected from September 2017 until September 2018 for preoperative fistular mapping among those with viable percutaneous orifices. After a basal scan (22 min), we installed 3-10 cc of ultrasound gel per orifice, then re-scanned using a T2w, Tst2w and DWI protocol. Each case was reviewed through standard reporting by experienced radiologists, comparing either standard MR or MRF reports with the surgical findings. Surgeons in our institution are currently operating on the basis of MRF reports.
Results: MRF has shown to be a well-tolerated, faster technique (mean scan time 16 mins), superior to standard MR, allowing the detection of 94 tracts (versus 82 of basal MR). MRF is highly congruous with surgical findings, with specificity and sensitivity in the definition of fistular grade close to 100%, thus resulting in a significant drop of fistular relapses in one year: 2.89% vs 22.43% (from Sept 2016 to Sept 2017). Specificity, sensitivity and accuracy of detection of internal openings range between 90 and 97.5%, data comparable to basal MR.
Conclusion: MRF with percutaneous instillation of ultrasound gel is a more accurate, well-tolerated, faster technique for pre-operative mapping, allowing better depiction of lesser tracts and, in our institution, significant drop in fistular relapses.

B-0212 11:26
Introducing 3D modelling of MRI in preoperative mapping of perianal fistula: how it could help the surgeon?
M.S. Roman, M.Y. Awadallah, A.F. Ahmed, F.S. Fawzi, H.A.S. Shawali, R.F. Elsayed; Cairo/EG (drmarysalah@yahoo.com)
Purpose: To study the merits of 3D modelling MRI in enhancing preoperative interpretation of perianal fistulous tracts by the surgeons.
Methods and Materials: Fifty patients underwent 2D MRI fistulography and reported back with surgery after 20 years to assure accuracy. Based on 2D report, 3D model was achieved by manual segmentation and 3D reconstruction. A second radiologist and a surgeon both were blinded to 2D MRI findings, were asked to report on internal opening, side branches, abscess collections and supralevator extensions. The data of the 2nd radiologist and the surgeon were compared individually to the 2D MRI findings by the expert radiologist to detect the degree of diagnostic agreement.
Results: Comparing 3D MRI findings by the surgeon to 2D findings, the highest and lowest sensitivities were the supralevator extension (100%) and abscess collection (50%), respectively. The highest specificity were internal opening, supralevator extension, abscess collection (100%), the lowest was side branches (88.57%). The highest diagnostic agreement was supralevator extension (100%), the least internal opening and side branches detection (80%). Comparing second radiologist report to the 2D findings, the highest sensitivity was supralevator extension, abscess collections (100%), the lowest was internal opening (73.32%). The highest specificity was internal opening, supralevator extension (100%). The lowest was side branches (91.43%). The highest and least diagnostic agreements were supralevator extension (100%) and internal opening (80%), respectively.
Conclusion: 3D model MRI yielded the highest detection rate for the supralevator extension, an important cause of postoperative recurrence, followed by abscess collection.

B-0214 11:42
Anal fistula: the role of MR imaging in preoperative evaluation
D.T.Vo, C.C. Phan, L.T.T. Nguyen, H.M.D. Le, T.T. Nguyen; Ho Chi Minh City/VN (duc.vt@ump.edu.vn)
Purpose: To describe the MRI imaging features of anal fistula and evaluate the role of T2W TSE and post-contrast T1W TSE gadolinium sequences in detecting the characteristics of the fistula tract.
Methods and Materials: 367 patients with anal fistulas, diagnosed and treated at HCMC-UMC between 1/1/2016 and 1/31/2018, were included in this study. This study was a retrospective analysis. We compared the imaging features with the surgical findings.
Results: The mean age was 39.3 years (range, 12 - 84 years); male/female=9/1. A total of 411 fistulas were found at surgery. Agreement between the surgical findings and MR imaging for the classification of the fistula tract, detecting 2D and 3D tracks was very good with k = 0.89 (0.84, 0.93), 0.94 (0.90, 0.97), respectively. The sensitivity and specificity of MR imaging in correctly detecting internal openings were found to be 99% and 85.2%, respectively; for abscess, it was 100% and 100%, respectively. Post-contrast FS T1W was very good in detecting abscess; differentiating between abscess and inflammation, active inflammatory components with scars.
Conclusion: MRI was highly accurate in the assessment of surgically important parameters of anal fistula. With the very good agreement between the surgical findings and MR imaging for characterisation of perianal fistulas, MR imaging was considered the reliable technique for establishing preoperative fistula map.
B-0216 14:08
High-resolution MR image of intracranial blood vessels wall using 3D VISTA sequence
L. Zheng, Q. Wang, Z. Wang; Shanghai/CN

Purpose: To introduce the technique of using high-resolution three-dimensional volumetric isotropic TSE acquisition (HR-3D-VISTA) for magnetic resonance (MR) imaging of intracranial blood vessel wall.

Methods and Materials: Institutional review board approved this study. From November 1, 2015 to December 31, 2016, 143 cases underwent 3D VISTA MR image of intracranial blood vessels wall using PHILIPS INGENIA 3Tesla MR Scanner. The scan parameters are as follows: TE 21ms, TR 425 ms, matrix 332x332, and voxel 0.6x0.6x0.8, and number of slices 120. Then image qualities of non-contrast and contrast-enhanced 3D VISTA (CE-3D-VISTA) images were evaluated and lesion type were analysed. Additionally, 3D-VISTA images were compared with conventional time of flight MR angiography (TOF MRA) and digital subtraction angiography (DSA).

Results: The techniques of HR-3D-VISTA finished intracranial blood vessels wall imaging in six minutes for one case. The images of HR-3D-VISTA can show normal and lesion features of vessels wall. The CE-3D-VISTA image has high image quality than those images of non-contrast 3D-VISTA. 3D VISTA image provide more information for either positive or negative cases with TOF MRA and DSA analysis.

Conclusion: 3D VISTA MR image of vascular wall technique is a suitable method for intracranial blood vessels, and can play an important role in intracranial cases with vascular diseases by combination with TOF MRA and DSA in clinical practice.

B-0217 14:16
Development and validation of prediction model based on hemodynamic derived from computed tomography angiography for rupture risk of small unruptured intracranial aneurysms
Z. Shi, G. Chen, C. Zhou, G. Lu, L. Zhang; Nanjing/CN (fmrishiz@126.com)

Purpose: The risk factors of small intracranial aneurysms (sIAs) (≤5mm) rupture remain unclear and this study aimed at determining the risk factors and developing a prediction model of rupture risk of unruptured sIAs.

Methods and Materials: The patients with sIA diagnosed by both computed tomography angiography and invasive cerebral angiography were included from January 2010 to December 2016 and were randomly separated into training and validation cohort. A model was developed based on patient characteristics, anatomical characteristics and hemodynamics information by multivariable analysis. The area under ROC curve (AUC) was used to present the diagnostic performance and the model was further assessed in the validation cohort which was randomly selected from the entire dataset and the procedure repeated for 4 times. Random forests were implemented for features selection.

Results: The ratio of training cohort to validation cohort was 3 and age, sex, location, HBP, cvWSS, cvOSI, inflowconcentration, flowwimpengement and flowstability (all p<0.05) were independently associated with rupture status in multivariate logistic regression in the four groups. The mean AUC of the models was 0.918 and application of the model in the validation cohorts still showed excellent performance with the mean AUC of 0.909. Ten variables passed the feature selection and comprised cvOSI, flowwimpengement, size and so on.

Conclusion: sIAs have distinct risk factors of rupture, and age, location, OSI, and inflowconcentration et al. were independently associated with sIAs rupture status. We demonstrated that our model can provide reliable quantitative individual risk assessments for sIAs and may help choose the optimum management.

B-0218 14:24
One-stop coronary CTA combined with carotid and cerebrovascular CTA using wide-detector CT: comparison with conventional protocol
P. Han, W. Li, Z.-G. Yang, K. Diao, R. Shi, Z. Li; Chengdu/CN (peilhan@foxmail.com)

Purpose: To determine the value of "one-stop" coronary CT angiography (CTA) combined with carotid and cerebrovascular CT angiography (CCCTA) in single contrast injection using 16 cm wide-detector CT.

Methods and Materials: Fifty-six patients with suspected coronary, carotid and cerebrovascular disease were prospectively and randomly divided into Group A (n=36, combined CTAs) and Group B (n=20, conventional protocol: CCA, followed by CCCTA after contrast re-injection). CTA examinations were performed using intravenous contrast at 0.7 ml/kg. We compared the contrast dose, CT examination time and contrast-to-noise ratio (CNR), as well as the CT values and standard deviations (SD) of atherosclerotic plaques and arteries between groups A and B.

Results: The contrast dose was significantly smaller in group A than in group B (44.6±5.9 ml vs. 91.9±11.8 ml, p<0.001), while examination time was significantly reduced in group A than in group B (6 min vs. 13 min). Both groups achieved satisfied image quality at all examined vessels (no significant difference in CT values in all regions between the two groups) and were available for diagnosis, despite the CNR of coronary arteries were higher in group B (28.3±6.2 vs. 35.9±5±8.5, p<0.001). Nevertheless, group B also demonstrated a prominently higher mean SD than group A.

Conclusion: Combined cerebral, carotid and coronary CTA could save scan time and reduce contrast dose, without impairing image quality. It provides a promising simplified work-flow in clinical practice.

B-0219 14:32
Curved surface reformations - diagnostic accuracy and time-efficiency of a new peripheral CTA reformation technique
D. Toth, J. Kittinger, K. Lampichler, C. Loewe, R. Schernthainer; Vienna/AT (daniel.toth@medunivien.ac.at)

Purpose: Peripheral CTA has evolved into an accurate modality for the assessment of peripheral arterial occlusive disease (PAOD). However, due to the limitations of available angiogram-like reformations such as Maximum Intensity Projections, the evaluation of axial and coronal multiplanar reformations (MPRs) is still required to reach sufficient accuracy. Recently, a centerline-based reformation technique called curved surface reformation (CSR) was developed in order to assess the diagnostic accuracy and time efficiency of CSRs compared to standard MPR for peripheral CTA, with intra-procedural DSA as the standard of reference.

Methods and Materials: 21 consecutive patients (7 females, mean age 67 years), who underwent peripheral CTA prior to endovascular treatment of PAOD, were retrospectively included. 21 arterial segments were defined in each leg; for each segment, the presence of haemodynamically relevant stenosis (≥70%) was assessed on CSRs and MPRs independently, with DSA as gold standard. Time for image analysis was recorded.

Results: 396 out of 882 arterial segments were depicted with DSA and available for analysis. Using MPRs, CTA yielded a sensitivity of 88%, a specificity of 94% and an accuracy of 93%. Using CSRs, sensitivity, specificity and accuracy increased to 95%, respectively (p<0.01, p=0.84 and p=0.09, respectively). The mean reading time decreased significantly from 8’44” to 3’15” (p<0.01).

Conclusion: CSR is a new centerline-based CTA reformation technique that seems to allow accurate and fast assessment of PAOD without the necessity to review MPRs. Further studies with larger cohorts and several readers are required to confirm this finding.

B-0220 14:40
TSH-suppressive therapy aggravates arterial inflammation: an 18F-FDG PET study in thyroid carcinoma patients
E. Boswijk, K.J.C. Sanders, E. Broaders, M. de Ligt, W.D. Vanmarkenlichtenbelt, F. Mottaghy, P. Schrauweng, J.E. Wildberger, J. Bucerius; Maastricht/NL (eboswijk@gmail.com)

Purpose: We aimed to investigate the influence of hypothyroidism and TSH-suppressive therapy on arterial inflammation in vivo, using 18F- fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT.

Methods and Materials: Ten well-differentiated thyroid carcinoma patients underwent an 18F-FDG PET/CT during post-thyroidectomy hypothyroidism and during TSH-suppressive therapy after (1) radioiodine ablation therapy. We analysed 18F-FDG uptake in the carotids, aortic arch, ascending, descending, and abdominal aorta. Target-to-background ratios (TBRs) corrected for blood pool activity were established for all arterial territories. Additionally, we measured 18F-FDG uptake in the spleen, bone marrow and multiple adipose tissues. The Wilcoxon sign rank test was used to compare TBRs between hypothyroidism and TSH-suppression. TBRs from both periods were further compared to that of historic control subjects without known thyroid disease with a Mann-Whitney U test.

Results: There was a trend towards higher arterial TBRs during TSH-suppressive therapy than during hypothyroidism (TBRmax all vessels = 1.8 and 1.6, respectively, p=0.058). In concurrence with this, we found increased CRP levels after levothyroxine treatment (CRP = 4.8 and 2.9 mg/L during TSH-suppressive therapy and hypothyroidism, respectively; p=0.005) and increased activity in the bone marrow (TBRmax all vessels = 1.8 and 1.6 for TSH suppressive therapy and euthyroidism, respectively; p=0.055).

Conclusion: Arterial inflammation is increased in patients during TSH-suppressive therapy. This could indicate that TSH-suppression renders patients at an increased risk of atherosclerotic disease.
B-0221 14:48
Comprehensive validation of two accelerated 4D-flow MR sequences at 3T: a phantom study
S. Ebel1, L. Hübel1, B. Köhler1, S. Kropp2, B. Preim2, B. Jung3, M. Grathoff1, M. Gubbels1, L. Reeves,1 Leipzig/DE, 2Magdeburg/DE, 3Bern/CH (sebastian.ebel@icloud.com)

Purpose: To assess for the first time 4D-flow measurement accuracy (flow volume and peak velocity) of different accelerated MR sequences using a constant and pulsatile flow phantom at 3T in comparison to a standard 2D-flow MR sequence.

Methods and Materials: The two accelerated 4D-flow MR sequences (GRAPPA2- and k-t-GRAPPA5) were evaluated regarding accuracy of calculated flow volumes, flow velocities, reproducibility, dependency on proper planning of the measuring plane and the encoded velocity (Venc). The calculated flow volumes and peak velocities of the phantom were used as the standard of reference. The MR-flow analysis was performed using the custom-made software “Bloodline”.

Results: No significant differences were found between the 2D- and both accelerated 4D-flow MR sequences and the pump reference regarding flow volumes and flow velocities in continuous and pulsatile flow. An excellent correlation (r=0.99-1.0) to the standard of reference and excellent reproducibility of measurements (r=0.99) could be achieved in all used sequences. An up to two-and-a-half times overestimated Vmax could be achieved in all used accelerated 4D-flow MR sequences and the pump reference regarding flow volumes.

Conclusion: Both accelerated 4D-flow MR sequences demonstrated equal accuracy compared to 2D-flow measurements and better accuracy in any case of plane misalignment. The highly accelerated, faster k-t-GRAPPA5-sequence led to dramatically reduced 2D-flow accuracy while both 4D-flow measurements were not affected by any misalignment.

Author Disclosures: S. Ebel: Grant Recipient; DFG GU 7774/1 – AOBJ 629068.

B-0222 14:56
Validation of CT imaging characteristics to differentiate intimal from medial calcifications in peripheral vessels and its application in a non-vascular cohort
L.C.D. Konijn1, F.A. de Jong2, H. van Overhagen1, W.P. Mali2;1The Hague/NL, 2Utrecht/NL (lk.konijn@hagaziekenhuis.nl)

Purpose: Recently, histologic studies showed that calcifications in the wall of peripheral vessels are not only caused by atherosclerosis in the intimal wall, but also by medial wall calcifications. This might play a role in the development of critical limb ischemia. The aim of this study was to validate a CT imaging score to differentiate intimal from medial wall calcifications in the peripheral vascular beds of this non-vascular cohort.

Methods and Materials: A recently developed histologically validated CT scoring system was used to assess calcifications in eight different vascular beds.

Results: 204 patients were included (age 61 (range 22-90; male 52%). A high overall prevalence was seen (abdominal aorta 69.1%, iliac 65.2%, femoro-politute 52.5%, crural 42.2%). However, calcifications in the upper extremity were scarce (brachial arteries 2.9%, radio-ulnar 1.5%).

Conclusion: This study shows that there is indeed a medial and intimal pattern that can be differentiated on CT scan, especially in the leg, with both a different pattern of development. Further studies are needed to explore the oncogenic process of calcification and how this plays a role in (peripheral) arterial disease.

B-0223 15:04
Virtual monochromatic images in low-tube current dual-energy spectral imaging combined with adaptive statistical iterative reconstruction V in head CT angiography
T. Song, Z. Li; Chengdu/CN (407145908@qq.com)

Purpose: To analyse the value of combining the VMS image and ASIR-V in low-tube current dual-energy spectral imaging in head CTA.

Methods and Materials: An anthropomorphic angiographic head phantom and 40 patients were examined on a revolution CT with spectral imaging mode at two different tube currents. Images of different energy levels in the low-tube current group were reconstructed with the combination of filtered back projection (FBP), 20%, 40%, 60% and 80% ASIR-V; VMS images at 70keV in the routine tube current group were reconstructed with FBP only.

Results: VMS images at 40-55keV yielded a higher CNR compared with 70keV and the subjective scores at 55keV and 60keV were higher than others. The SNR and CNR in the low-tube current group with ASIR-V60% and ASIR-V80% were higher than that of the FBP. ASIR-V20% and ASIR-V40% images in the same group (P<0.05). The SNR and CNR of the simulated cerebral vessels and subjective scores in the patients’ groups of 55keV VMS images in the low-tube current group with ASIR-V60% and ASIR-V80% were higher than that of the 70keV FBP images in the routine tube current group (P<0.05). The radiation dose in the low-tube current group was 39% lower than in the routine tube current group.

Conclusion: VMS images in low-tube current spectral imaging combined with ASIR-V can significantly reduce radiation dose and ensure image quality in head CTA. The 55 keV VMS images with ASIR-V60% and 80% provide higher image quality.

B-0224 15:12
Comparing the diagnostic accuracy of 18F-FDG-PET/CT, contrast-enhanced CT and combined imaging in patients with suspected vascular graft infections
L. Husmann, M.W. Huellner, B. Ledergerber, A. Anagnostopoulos, P. Stolzmann, B.-R. Sah, I.A. Burger, Z. Rancic, B. Hasse; Zurich/CH (lars.husmann@usz.ch)

Purpose: To evaluate the diagnostic accuracy of positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (PET/CT), contrast-enhanced CT (CE-CT), and a combined imaging approach (CE-PET/CT) in patients with suspected vascular graft infections.

Methods and Materials: PET/CT and CE-CT were performed prospectively in 23 patients with suspected VGI. Diagnostic accuracy for PET/CT was assessed using previously suggested cut-off points for maximum standardized uptake values (SUVmax). Using a new 4-point scale for visual grading, two readers independently assessed the diagnostic accuracy of CE-CT and combined CE-PET/CT.

Results: Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of PET/CT for the diagnosis of VGI were 100%, 50%, 72.2%, and 78.3%, respectively. Respective values for CE-CT were 100%, 50%, 72.2%, and 78.3% for reader 1 and 92.3%, 80%, 88.9%, 95.7%, and 86.9% for reader 2, while respective values for combined CE-PET/CT were 100%, 70%, 100%, 81.3%, and 86.9% for reader 1 and 100%, 80%, 86.7%, and 91.3% for reader 2.

Conclusion: The diagnostic accuracy of combined CE-PET/CT in patients with suspected VGI is very high. The combination of high sensitivity of PET/CT in detecting metabolically active foci in infection and the high specificity of CE-CT in detecting anatomic alterations appears to be the reason why combined imaging outperforms stand-alone imaging in diagnosing VGI and may be supportive in future decision-making of difficult cases of suspected VGI.

B-0225 15:20
Inter-scanner and inter-software comparison of quantitative 4D flow MRI
T. Oechtering1, A. Nowak1, S. Siegel1, J. van der Kruijs1,2, H. Kooijman-Kurfuerst1, J. Barkhausen2, A. Frydrychowicz2,2,1, Löbbecke/DE, 2Hamburg/DE (thekla.oechtering@uksh.de)

Purpose: To compare quantitative 4D flow MRI of healthy volunteers acquired on scanners of different vendors and evaluated with two commercially available software solutions to underline the technique’s applicability.

Methods and Materials: Thoracic aortic 4D flow MRI was conducted in five healthy volunteers (27±3 years, 1 female) on 3T MRI scanners (MRl-Ingenia, Philips; MRl=Skyra, Siemens) using identical scan parameters per guideline recommendations. The ten datasets were evaluated with software SW1=GTFlow (v3.1.13; Gyrotools, CH) and SW2=civi42 (v5.9.2, Circle Cardiovascular Imaging, CAN) for net stroke volume (SVnet), peak flow (Flowmax), maximum velocity (Velmax), and maximum area (Areamax) in six predefined contours. For these parameters, mean absolute and relative errors with SD and Bland-Altman plots were calculated. Inter-scanner comparison was calculated for SW1, and SW2 separately. Inter-software comparison was independent of scanner type.

Results: Inter-scanner comparison: acquisitions were performed in 14±2min (MRl) and 17±3min (MRl=Skyra). Average differences were small for SVnet (SW1: 0±10ml; SW2: ±1±10ml), MRl=Skyra underestimated Flowmax by 4±12% (SW1: 24±52ml/s, SW2: 27±55ml/s); Velmax by 18±20cm/s (SW1) and 8±20cm/s (SW2), and Areamax by 5±142mm² (SW1) and 41±320mm² (SW2). Inter-software comparison: SW1 was underestimating SVnet by 6±8ml, Flowmax by 37±28ml/s (SW2), and Velmax by 10±16cm/s (+7±11%) compared to SW2. In contrast, SW1 underestimated Areamax by 100±227mm² compared to SW2. Differences in Areamax were smaller when excluding the blurry aortic bulb contour.
Conclusion: Quantitative 4D flow MRI results, especially SV, seem comparable between different 3T scanners. However, it is important to focus on one software because inter-software variability was higher than inter-scanner variability.

Author Disclosures: J. Graessner; Employee; Siemens. H. Kooijman-Kurfuerst; Employee; Philips.

14:00 - 15:30 Room N

Hybrid Imaging

SS 306 Clinical applications of hybrid imaging

Moderators: A. Scarsbrook; Leeds/UK
R. Wolteck; Cambridge/UK

B-0226 14:00

Modulation of PSMA expression by androgen deprivation therapy (ADT): serial PSMA PET in men with hormone sensitive and castrate resistant prostate cancer commencing androgen blockade

C. Yin, A. Joshua, M. Crumbacker, L. Emmett, Darlinghurst/AU; Sydney/AU (charlotte.yin@gmail.com)

Purpose: Prostate specific membrane antigen (PSMA) can be effectively targeted for both PET and therapy purposes in the management of prostate cancer (PCa). We aim to evaluate the effect on PSMA PET of androgen blockade (AB) in men with measurable metastatic disease commencing ADT (hormone sensitive cohort) or a novel antiandrogen (enzalutamide or abiraterone) in the castrate resistant state.

Methods and Materials: 15 men underwent serial PSMA PET scans at baseline, Day 9, 18 and 28. COHORT 1: 8 men commencing ADT with LHRH agonists. COHORT 2: 7 men commencing novel antiandrogen. Visual and quantitative image analyses was performed using MIM® software.

Results: Cohort 1: A mean 25% reduction in SUVmax by Day 9 with an associated marked PSA response in 100% of men. Subsequent rise in PSMA intensity at some sites of metastatic disease at days 18 and 28 in subset of men. Cohort 2: All men demonstrated an increase in intensity of uptake by Day 9 unrelated to change in PSA. Relatively homogeneous responses at Day 9 in all men but subsequent heterogeneity in treatment response on Day 18 and 28 scans. This was most marked in Cohort 1, where there was an increase in SUVmax in individual lesions despite an overall reduction in tumour volume. This suggests PSMA-PET may be able to identify phenotypes of early castrate resistance prior to PSA, predictive biomarker potential.

Conclusion: PSMA-PET an important widely available with rapid dichotomous in vivo response to AB dependent on PCa phenotype.

B-0227 14:08

68 Ga PSMA vs whole body diffusion weighted MR imaging in staging of high risk prostate cancer

M. Logudoss, A. Chellathurai; Chennai/IN (drtkmrd@gmail.com)

Purpose: The purpose of the study is to compare the sensitivity and specificity of 68 Ga PSMA and whole body diffusion weighted MR imaging in staging of high risk prostate cancer.

Methods and Materials: 68 patients with high-risk prostate cancer were included in the study. Inclusion criteria included biopsy proven prostate cancer with PSA more than 20 ng/ml and Gleason score more than 7. All patients underwent 68 Ga PSMA and whole body diffusion weighted imaging within 1 week duration. Two radiologists read the modalities independently and the results were compared for staging of nodal and distant metastases.

Results: The mean age of the patients was 63 years and the mean PSA value was 15 ng/ml. The median Gleason score was 8. Regional nodal metastases were detected by 68 Ga PSMA in 48 patients and by DWI in 45 patients. Non-regional nodal metastases were detected in 18 patients by 68 Ga PSMA and in 17 patients in DWI. Skeletal metastases were detected in 24 patients by both modalities. Both detected hepatic metastasis in one patient. Additionally 68 Ga PSMA detected pulmonary metastasis in one patient, which was missed by DWI. Statistically it was found that the efficacy of whole body diffusion weighted Imaging was almost equal to that of 68 Ga PSMA (p<0.05).

Conclusion: Whole body diffusion weighted imaging has sensitivity and specificity almost equal to 68 Ga PSMA in the detection of nodal and distant metastases and can be used with Multiparametric imaging of the prostate for complete TNM staging of prostate cancers.

B-0228 14:16

Performance of 68Ga-PSMA-11-PET/MRI guided biopsy to detect significant prostate cancer

I.A. Burger, D.A. Ferraro, J. Müller, U. Mühlmatten, M. Messori, P. Stolzmann, N.J. Rupp, O.F. Donati, D. Eberli; Zurich/CH (irene.burger@usz.ch)

Purpose: MRI guided biopsy significantly improved the detection rate of prostate cancer (PCa) in patients with elevated PSA compared to transrectal biopsy. However, still around 22% of patients with significant PCa will not be detected with multiparametric MRI. We investigated if 68Ga-PSMA-11-PET/MRI could be used for targeted biopsy.

Methods and Materials: We performed an interim analysis of the first 25 patients from a prospective trial. Patients with an elevated PSA were referred to 68Ga-PSMA-11-PET/MRI before template and image targeted biopsy using the SipleeSee® system. All cancer lesions with a Gleason Score (GS) of 3+3 or more were assessed. 68Ga-PSMA-11 accumulation was quantified in the cancer area using SUVmax. Significant PCa was considered any GS 4+3 or more, or 3+4 with more than 6 mm core length. Correlation between GS and 68Ga-PSMA-11 uptake was evaluated using Pearson-Correlation.

Results: 17 of 25 (68%) patients had significant PCa on template biopsy. 68Ga-PSMA-11-PET scans were positive in 16 of them with a median SUVmax of 7.8 (range 5.2-19.3). The single PET negative lesion had a GS 3+4, with a core length of 6 mm. Two areas were considered suspicious for cancer on PET with mild Ga-PSMA-11 uptake (SUVmax 5.5 and 5.1). The patient based positive predictive value was 89%, with a sensitivity of 94%. There was a significant correlation between GS and SUVmax (C=0.64, p=0.001).

Conclusion: 68Ga-PSMA-11-PET/MRI has the potential to detect significant PCa and can be used for image fusion based biopsy guidance, with the potential to decrease the number of biopsies and associated complications.

Author Disclosures: I.A. Burger; Grant Recipient; Sick legat and Iten-Kohaut foundation. Research/Grant Support; GE Healthcare.

B-0229 14:24

PSMA expression heterogeneity of the primary tumour on IHC correlates with the detection rate of 68Ga-PSMA-11-PET in patients with biochemical recurrence

D.A. Ferraro, J.H. Rüsschoff, J. Müller, U. Mühlmatten, M. Messori, M. Hübner, D. Eberli, N.J. Rupp, I.A. Burger; Zurich/CH (daniela.ferraro@usz.ch)

Purpose: Around 10% of prostate cancers (PCA) have no increased PSMA expression, therefore a small fraction of patients have negative PSMA-PET scans, despite high PSA values. Currently it is not possible to discriminate those patients before the PET scan. We aimed to investigate if the PSMA expression of the primary tumour predicts PSMA-PET detection.

Methods and Materials: 36 patients underwent radical prostatectomy between 2007-2016 and were referred to 68Ga-PSMA-11-PET for biochemical recurrence, with up to two scans if the first was negative. Lesions suspicious for PCA recurrence were quantified using SUVmax. The dominant tumour on prostatectomy samples was stained for PSMA. PSMA expression on immunohistochemistry was quantified using a three-tiered system (1=weak, 2=moderate, 3=strong) and the percentage of PSMA negative tumour area. Differences between positive and negative scans were assessed with a t-test.

Results: 43 68Ga-PSMA-11-PET scans were available, median PSA value of 1.69 ng/ml (range 0.05-405.7ng/ml). 30 (69%) PET scans were positive with a median PSMA uptake of SUVmax 9.55 (range 2.6-128). Comparing the positive and negative 68Ga-PSMA-11-PET scans with immunohistochemistry results: the mean membranous PSMA expression was 2.5±0.5 for the positive and 2.2±0.7 for the negative scans (p=0.101), while the negative tumour area showed a significant difference with mean 9%±17% and 34%±38% (p=0.001) for positive and negative scans, respectively. All three cases with a PSA value above 2ng/ml and negative PET examinations had PSMA-negative tumour areas of 80%.

Conclusion: Tumour negative areas on PSMA immunohistochemistry of the prostate tumour could predict negative 68Ga-PSMA-11 PET scans.

Author Disclosures: I.A. Burger; Grant Recipient; Grant Recipient; Sick legat and Iten-Kohaut foundation. Research/Grant Support; GE Healthcare.

B-0230 14:32

Influence of segmentation techniques on volumetric and textural metabolic parameters of primary tumours on 18F-FDG PET-CT imaging

M. Novikov, T. Babkina; Kiev/UA (nicknovi@gmail.com)

Purpose: To evaluate the dependence of metabolic volumetric parameters and metabolic textural indices of primary malignant tumour on image segmentation techniques in 18F-FDG PET/CT imaging in order to select more stable or robust parameters.
Methods and Materials: Metabolic PET/CT images were retrospectively analyzed in 50 patients with head and neck and cervical carcinomas. Four different segmentation techniques (fixed SUV threshold, 45% threshold, 40% threshold, and ITK-SNAP algorithm) were utilized to segment primary tumour metabolic volumes with consequent computation of volumetric (SUVmean, MTV, and TLG) parameters and textural indices (GLCM Homogeneity, GLCM Entropy, GLRLM SRE, GLRLM SRE, GLZLM HOZE, GLZLM LGZE, Skewness, Kurtosis, Entropy, Energy, Sphericity and Compactness) inside generated volumes.

Results: Among computed parameters only two textural indices (GLCM Homogeneity and GLRLM SRE) showed an ability to differentiate high grade (Grade 3) poorly-differentiated tumours from Grade1+2 tumours with relatively high specificity (84.4%) but low sensitivity (44.4%) according to ROC analysis.

Conclusion: Metabolic image segmentation technique influence significantly volumetric metabolic indices, unlike selected textural indices, which also show an ability to represent tumour biologic characteristics, providing an opportunity to further investigate them as a potential prognostic biomarker, more stable or robust, compared to volumetric metabolic parameters.

B-0232 14:48
Is PET MRI valuable in inflammation or fever of unknown aetiology? T. Rohan, T. Andrasina, A. Litavcova, T. Juza, J. Zavadil, S. Richter, V. Valez; Brno/CZ (rohan.tomas@fhrmbno.cz)

Purpose: To evaluate the benefit of PET/MR imaging in diagnostic process of patients with inflammatory or fever of unknown aetiology.

Methods and Materials: 51 patients were selected for PET/MR imaging due to inflammation of unknown aetiology, these represent 2.5% of all PET/MR examinations (total of 2056 examinations, Signa, GE) acquired in tertiary referral hospital since 7/2016. All patients underwent intensive investigation lasting at least 20 days (screening x-rays, abdominal ultrasound, dedicated CT or MRI focused in clinical suspect). Clinical (fever, artralgia, weight loss, night sweating) and laboratory (CRP, leukocytes) were monitored and correlated with PET/MR findings. Based on suspected aetiology patients were divided into 3 groups - fever of unknown origin (26), unknown infection (13) and rheumatic disease (12). Patients were followed up until the aetiology was diagnosed or symptoms faded away.

Results: In 26 (51%) patients diagnosis was proved, in 22 (43%) patients symptoms disappeared, in 3 patients symptoms persisted without explanation. PET/MR strongly supported or changed the diagnosis in 42% of cases (70% in subgroup of rheumatoid infections). As most important marker of conclusive PET/MR was shown artralgia and elevated level of CRP at the time of examination, which were present in 54% of diagnosed cases. PET/MR proved diagnosis of rheumatoid disease in 18 patients (50% without any clinical suspicion), overall sensitivity was up to 89% and specificity 100%, negative predictive value was 85%.

Conclusion: PET-MRI is a useful tool in the evaluation of inflammatory disease of unknown aetiology especially in patients with suspected rheumatoid disease.
characterized morphologically (size) and metabolically (presence/absence of uptake, SUVmax, SUVmean, MTV and TGL) on both acquisitions.

Results: From the 22 reviewed studies, 11 nodules reported as highly suspicious in nine patients were included. The mean nodule size(mm), SUVmax(g/ml), SUVmean(g/ml), MTV(cm3) and TGL(g/cm3/ml) were 11±4.3, 4.5±3.4, 2.5±1.8, 0.7±1.1 and 2.6±4.9 in FB and 11.6±3.9, 7.7±5.7, 3.3±2, 1.1±2 and 4.7±3 in BH, respectively. Only 72% of the nodules were visible on FB-acquisition compared to 100% on BH, with a trend for a statistically significant difference (p=0.062). Concordance analysis showed a statistically significant increase of 68% of the SUVmax value in BH compared to FB.

Conclusion: PET/CT imaging with high-resolution, high-sensitivity PET/CT allowed to detect higher metabolic activity in lung nodules categorized as highly suspicious, in comparison to FB. This increased accuracy in activity detection may help to increase the sensitivity and specificity of malignant nodule characterization.

B-0236 15:20
X. Chen, J. Xin; Shenyang/CN (986107759@qq.com)

Purpose: In this study, we utilized amino glycerol as the precursor to synthesize a novel molecular probe [11]C]AR, which the preclinical performance of liver fibrosis diagnosis was evaluated with in vivo PET/CT imaging.

Methods and Materials: We developed a fully automatic synthesis procedure for the preparation of [11]C]AR with improved synthesis efficiency and radiochemical purity. The distribution of [11]C]AR was investigated on PET/CT scanner using a rat model. The dynamic PET/CT scans were performed on the control group (n=6) and model group (n=29), which the model group was divided into three stages (S1, S2+S3, S4) according to the stages of liver fibrosis. The images were reconstructed and the region of interest (ROI) in the liver area was selected within 20 mm3. One-way analysis of variance and independent sample t test were used to analyze the difference of SUVmax among the groups in a series of scanning time points.

Results: The fully automatic synthesis of [11]C]AR was successfully achieved with a radiochemical purity and a synthesis efficiency at least 98% and 50%, respectively. The uptake of [11]C]AR in the model group was significantly lower than that in the control group at all the time points (P<0.05). There were significant differences in the SUVmax between the S1 and S4 groups at 150s, 5min, 10min, 15min and 25min (P<0.01).

Conclusion: We demonstrated a new C-11 radioabeled amino glycerol PET/CT imaging probe [11]C]AR for diagnosing and determining liver fibrosis stages, which shows potential clinical implications for noninvasive diagnosis of liver fibrosis.

14:00 - 15:30 Room 0
Musculoskeletal
SS 310
Upper extremity imaging
Moderators:
I. Boric; Zakop/HR
L. Lassalle; Paris/FR

K-07 14:00
Keynote lecture
A. Blum; Nancy/FR

B-0237 14:09
Ultrahigh-field MR microscopy of the upper extremity of the chicken in vivo throughout the in ovo period
M. Jäschke, K. Thierfelder, B. Klaan, T. Stahnke, T. Lindner, A. Wree, M.-A. Weber, S. Langner; Rostock/DE (malte.jaeschke@med.uni-rostock.de)

Purpose: Ultrahigh-field MRI (UHF-MRI) with an in-plane spatial resolution of less than 100 µm is known as MR microscopy (MRM). This technique provides highly resolved non-invasive anatomical images and allows longitudinal assessment of embryonic avian development. The aim of the present study was to evaluate the feasibility of in vivo anatomical MRI assessment of the developing upper extremity of the chicken in ovo.

Methods and Materials: Thirty-eight fertilized chicken eggs were examined at 7 Tesla (ClinScan, Bruker Biospin, Germany) acquiring high-resolution T2-weighted anatomical images with an in-plane resolution of 78 x 78 µm. To reduce motion artefacts, the eggs were moderately cooled before and during MR imaging. Two eggs were imaged daily for the entire period, and 36 eggs were examined pairwise at only one time point of the embryonic period. Development of the upper extremity was anatomically and quantitatively assessed. Chondrification on MRI was correlated with histological examination.

Results: MRM allowed identification from embryonic stage D5 onwards. First chondrification of the upper extremity was visible at stage D7 and differentiation of the forelimb was possible from stage D9. A significant correlation to histology. Repeated cooling and MRM had no influence on the development of the chicken.

Conclusion: MRM allows in vivo assessment of embryonic development of the upper extremity of the chicken in ovo without affecting normal development. The method provides non-invasive anatomical information supplemented by quantitative evaluation. With increasing availability of ultrahigh-field MR systems, this technique may provide a noninvasive complementary tool in experimental musculoskeletal radiology.

B-0238 14:17
MR quantification of the fatty fraction from IDEAL IQ sequence in the assessment of muscle atrophy in rotator cuff tears
O. Seraydarsmanou, Z. Taher Rakei; Tehran/IR (mansour.omid@yahoo.com)

Purpose: To assess the degree of muscle atrophy and fatty infiltration within supraspinatus muscle in patients with full-thickness rotator cuff tears using a T2*-corrected IDEAL IQ sequence.

Methods and Materials: Among the patients who were referred to our imaging centre for shoulder MRI, 45 patients with full-thickness rotator cuff tears were included in group A and 21 normal patients were included in group B. The mean age of the patients was 63 years (age range, 82-41 years). Necessary information for our study including age, sex, weight, the time of trauma and the type of work and physical activity was identified through questionnaires. All MR images were performed with a 1.5 Tesla MRI unit (Explorer, GE Healthcare) using a four-channel coil. All subjects underwent the standard shoulder MRI protocol including proton density fat-saturated fast spin echo in the oblique coronal, axial and sagittal planes. T1-weighted fast spin echo in the oblique coronal and sagittal planes. We also performed T2* correction IDEAL IQ sequence in the oblique sagittal plane. Fat-signal fraction from the mapping images was measured by drawing a circular ROI on the cross section of supraspinatus muscle belly on the Y-view.

Results: Fat-signal fraction from the T2*-corrected IDEAL IQ sequence was significantly higher in group A than group B.

Conclusion: MRM quantification of fat fraction by using a T2* corrected IDEAL IQ sequence is a valuable method for detecting the fat infiltration in supraspinatus muscle after tearing the rotator cuff.

B-0239 14:25
Evaluation of glenoid labral tears: comparison between dual-energy CT arthrography and MR arthrography of the shoulder
G. Foti1, M. Catania1, A. Beltramello2, G. Carbognin3, 1Negar/IT, 2Verona/IT (gfoti81@yahoo.it)

Purpose: To compare the diagnostic accuracy of dual-energy computed tomography (DECT) arthrography and magnetic resonance arthrography (MRA) of the shoulder in depicting glenoid labral tears.

Methods and Materials: This prospective study included 26 consecutive patients studied with DECT (80 kV and tin filter 150 kV) and MR arthrography. DECT data were postprocessed on a dedicated offline workstation (SyngoVia®) using a three-material decomposition algorithm. Two experienced radiologists, blinded to surgical data, evaluated the presence of labral tears on DECT maps and on MRA. Surgical findings served as standard of reference. Diagnostic accuracy values of the DECT and of the MRA and inter-observer and intra-observer agreements were assessed. A value of p<0.05 was considered statistically significant.

Results: MRI revealed the presence of labral tear in 19/26 patients (73.1%), with 8 tears of antero-inferior labrum, 10 tears of superior labrum and 1 tear of posterior labrum. The sensitivity, specificity, PPV and NPV of accuracy between DECT arthrography and MRA was not significant (p=0.45). The Inter-observer and intra-observer agreements were near perfect (k=0.82 and k=0.66, respectively).

Conclusion: DECT represents a reliable imaging tool for demonstration of glenoid labrum tears.

B-0240 14:33
Value of 3D-multi-echo-data-image-combination (MEDI) for evaluation of SLAP lesions at 3T-MRI of the shoulder with arthroscopic correlation
F. Wuennemann, C. Rehnitz; Heidelberg/DE (felix.wuennemann@med.uni-heidelberg.de)

Purpose: To prospectively evaluate the ability of 3D-Multi-Echo-Data-Image-Combination (MEDI) compared to high resolution 2D-proton-density weighted fat-saturated (PDs) sequence at 3T-MRI in detecting superior labral anterior to posterior (SLAP) lesions using arthroscopy as gold standard.

Results: MEDI allowed identification from embryonic stage D5 onwards. First chondrification of the upper extremity was visible at stage D7 and differentiation of the forelimb was possible from stage D9. A significant correlation to histology. Repeated cooling and MRM had no influence on the development of the chicken.

Conclusion: MRM allows in vivo assessment of embryonic development of the upper extremity of the chicken in ovo without affecting normal development. The method provides non-invasive anatomical information supplemented by quantitative evaluation. With increasing availability of ultrahigh-field MR systems, this technique may provide a noninvasive complementary tool in experimental musculoskeletal radiology.
methods and materials: 17 consecutive patients (mean age 51.6±14.8 years, 11 men) with shoulder pain underwent 3T-MRI including 3D-MEDIC and 2D-PDs followed by arthroscopy. Presence or absence of SLAP lesions was classified according to Snyder by an orthopaedic shoulder surgeon. Sensitivity and specificity of 3D-MEDIC and 2D-PDs for detection of SLAP lesions were calculated using arthroscopy as gold standard.

results: Arthroscopy revealed SLAP lesions in 13/17 patients. Using 3D-MEDIC SLAP lesion were diagnosed in 14/17 patients by rater 1 and in 13/17 patients by rater 2. Using 2D-PDs SLAP lesions were present in 11/17 and 12/17 patients for rater 1 and 2, respectively. Sensitivity/ specificity of 3D-MEDIC was 100%/50% for rater 1 and 100%/67% for rater 2, respectively. Using 2D-PDs sensitivity/specificity was 91%/83% for rater 1 and 100%/83% for rater 2, respectively. The combination of 2D-PDs and 3D-MEDIC increased specificity from 50% to 83% for rater 1 and from 67% to 100% for rater 2.

Conclusion: Using arthroscopy as reference, 3D-MEDIC exhibits high sensitivities in detection of SLAP lesions with moderate specificity. The combination of 3D-MEDIC and 2D-PDs markedly increased specificity and may therefore be recommended for shoulder imaging with respect to SLAP lesions.

B-0241 14:41
Evaluation of bone loss in shoulder instability using on-track/off-track method: value of 3D MR arthrography in standard and ABER position
C. Gianneramo, F. Bruno, E. Cannizzaro, P. Palumbo, S. Iafrate, S. Mariani, F. Arrigoni, A. Barile, C. Masicciotti; L'Aquila/IT

Purpose: To evaluate the value of the 3D MR Arthrography (MRA) in standard and ABER position in identifying engaging lesions in patients with anterior shoulder instability.

Methods and Materials: We retrospectively evaluated 28 patients (17 men and 11 women mean ages 28.3 years range 19-43) with anterior shoulder instability and standard MRI evidence of glenoid bone loss and/or Hill Sacks lesion. All patients were submitted to 3D-CT of the shoulder and 3D-MR Arthrography using a three-dimensional (3D) isotropic PD sequence performed in standard and ABER position. Two double-blind radiologists calculated for each patient the glenoid track and Hill Sacks interval using the “on track/off track” method to identify “engaging” and “non engaging” lesions on CT and MRA exams. The intra and inter-observer agreement were calculated. Results were also compared to arthroscopic findings.

Results: Using the “on track/off track” method, 19 bone loss were identified as “non-engaging” lesion and 9 were classified as “engaging” lesions with an “almost perfect” inter-observer concordance both for glenoid track and Hill Sacks interval measured on CT and MRA. Intra-observer agreement was 0.906 for 3D-CT and 0.713 for MRA. ABER position showed weak positive predictive value but strong negative predicted value to detected engaging lesions.

Conclusion: MRA has an excellent diagnostic accuracy in identifying engaging lesions. The ABER position could represent an added value in the detection of engaging and non engaging lesions on patients with anterior shoulder instability.

B-0242 14:49
Ability of T2 mapping at 3T MRI for biochemical assessment of normal and damaged glenoid cartilage of the shoulder: an arthroscopy controlled prospective study
C. Rehnitz, F. Wuenemann; Heidelberg/DE

Purpose: To prospectively evaluate T2 mapping at 3T MRI of the shoulder regarding its ability to assess healthy glenoid cartilage and focal cartilage damage using arthroscopy as the gold standard.

Methods and Materials: 18 consecutive patients (mean age 52±14.7 years, 12 men) with shoulder pain underwent T2 mapping at 3T MRI with subsequent shoulder arthroscopy. Cartilage-sensitive morphologic sequences were used to detect normal cartilage and focal cartilage lesions. Then T2 values of normal and damaged cartilage were assessed using region-of-interest analyses by two independent raters. Interrater and intrarater correlation coefficients (ICC) were calculated. Cut-off values and their sensitivities/specificities including 95% confidence intervals (CI) for the detection of cartilage damage were assessed using arthroscopy as reference.

Results: Mean T2 value of arthroscopically proven healthy cartilage was 23.9±5.9 ms. In 5 patients, a focal cartilage damage was present exhibiting significantly higher (p<0.01) T2 values of 44.7±3.7 ms. A complete data separation was present as the maximum T2 value for normal cartilage (27.3) was lower than the minimum value in damaged cartilage (40.7). Therefore, all cut-off values between 27.3 and 40.7 ms resulted in a sensitivity and specificity of 100% (95%CI: 47.8%-100.0%). Interrater agreement was almost perfect (ICC 0.94-0.95) with moderate intrarater agreement (ICC 0.37-0.67).

Conclusion: Using arthroscopy as the gold standard, T2 mapping was able to distinguish normal healthy and damaged glenoid cartilage. The presented cut-off values allowed for a perfect discrimination. T2 mapping may be used as an additional tool to evaluate the biochemical cartilage integrity at the shoulder.

B-0243 14:57
Extremity cone-beam CT of forearm and hand: evaluation of image quality, metal artefacts and radiation dose
C. Polkowski, I. Yel, M.C. Langenbach, B. Kaltenbach, T.J. Vogl, K. Eichler; Frankfurt a. Main/DE

Purpose: To investigate the impact of different scan protocols in latest generation cone beam CT on image quality, metal artefacts and radiation dose.

Methods and Materials: In a prospective study scans of the same cadaver forearm and hand with a distal radius plate were performed to achieve highest intra-individual comparability. 55 consecutive scans were performed on a latest generation cone beam CT scanner for extremity imaging using different combination of standard and the current-exposure time product. Effective radiation dose was calculated on the basis of measurements of seven dosimeters in and on the arm. Image quality and metal artefacts were rated by five different readers independently in a blinded evaluation using a 5-point Likert scale (from 1 indicating non-diagnostic to 5 for excellent image quality).

Results: The calculated effective dose for various settings ranged from 0.011 mSv (manufacturer’s suggested protocol: 90 kV, 5.0 mA) with an average overall subjective rating of 4.3 and a subjective rating with focus on metal artefacts of 3.8 to 0.003 mSv (70 kV, 2.0 mA) with an average subjective rating of 3.5 and a rating of 3.2 focusing on metal artefacts.

Conclusion: Subjective image quality, especially focusing on metal artefacts, is maintained at a moderate to good level despite the use of protocols with significant dose reduction compared to manufacturer’s suggested standard protocol.

B-0244 15:05
Physeal changes in young gymnasts: a three-dimensional assessment of stress-related volume increase of the distal radial physeal physis using magnetic resonance imaging
R.J. Kranz, L. Kox, M. Mens, M. Maas; Amsterdam/NL

Purpose: Gymnasts are prone to injuries of the distal radial physis as a result of excessive stress applied to the wrist during gymnastics. This can cause damage to the metaphyseal vascularisation and absent or delayed endochondral calcification, with subsequent widening of the cartilaginous part of the physis. This study aims to evaluate stress-related volume changes of the distal radial physis in symptomatic gymnasts, asymptomatic gymnasts and non-gymnasts.

Methods and Materials: Symptomatic gymnasts with suspected distal radial physeal injury, asymptomatic gymnasts and non-gymnasts (all <18 years) were included. Volume measurements were performed by creating three-dimensional reconstructions of the distal radial physis on coronal three-dimensional water-selective MRI scans.

Results: Between June 2015 and August 2018, 27 symptomatic gymnasts, 18 asymptomatic gymnasts and 24 non-gymnasts were included. No significant difference in median skeletal-age was found (13.1, 11.9 and 13.3 years for symptomatic-, asymptomatic- and non-gymnasts). Median physeal volume was significantly increased in symptomatic (971 mm³, IQR 787-1237) and asymptomatic gymnasts (951 mm³, IQR 871-1004) compared to non-gymnasts (646 mm³, IQR 538-795). Inter- and intrarater reliability of volume measurements were excellent. Of the participants with the highest physeal volumes, nine were symptomatic gymnasts.

Conclusion: Increased volume of the distal radial physis is a sign of physeal stress and can be present in both symptomatic and asymptomatic gymnasts. Especially symptomatics with suspected physeal injury showed more extreme volume increases. Volume assessment of the distal radial physis may, therefore, be a valuable addition in the (early) diagnostic workup and follow-up of suspected physeal stress injuries.

B-0245 15:13
Dual-energy CT in the diagnosis of occult acute scaphoid injury: a direct comparison with MRI
C. Xue, S. Ather, R. Mansour, F. Gleeson, R. Chowdhury; Oxford/UK

Purpose: Suspected occult scaphoid injuries are a common clinical issue and they require further imaging (CT/MRI) for diagnosis. We investigate the use of dual-energy computed tomography (DECT) for the detection of acute bone marrow oedema/fracture of the scaphoid compared to MRI.

Methods and Materials: Prospective study of 17 adult patients who presented acute (without prior injury) to the emergency department with clinical signs of suspected occult scaphoid fracture and had MRI of the wrist were recruited to
have DECT (GE Revolution CT). Two experienced musculoskeletal radiologists independently reviewed the DECTs (blinded from MRI results) for acute bone oedema on the GE AW2.0 Analysis Station using the calcium/water filters. The statistical difference of MRI and reviewers’ detection of acute bone oedema (1+ present, 0− absent) was performed using Friedman test.

Results: MRI showed acute scaphoid fracture/oedema in 11/17 patients. Reviewer A identified acute oedema in 10/11 patients, and Reviewer B identified 7/11 patients that were positive on MRI. On DECT, both reviews did not identify the mild oedema seen on MRI. However, there was no statistically significant difference in oedema detection on MRI and the reviewers on DECT (p-value 0.79). In addition, the reviewers identified more cortical fractures (7 fractures associated with the acute scaphoid oedema) than the MRI.

Conclusion: DECT has the capability to detect acute scaphoid oedema and more cortical fractures compared to MRI. However DECT was less sensitive in the detection of mild acute scaphoid oedema, and this was the main limitation of the calcium/water filters.

B-0246 15:21
Trapezial ridge fractures: an underappreciated cause of post-traumatic wrist pain with normal initial radiographs
J. Etxano; Vitoria/ES

B-0247 14:00
Digital breast tomosynthesis (DBT)
M. Orsi, F. Leone, M. Cellina, G. Oliva; Milan/IT (m.orsi83@gmail.com)

Purpose: To evaluate the power of DBT in revealing false positive mammographic findings in a single centre 2D-mammography-based screening programme.

Methods and Materials: Between September 2015 and February 2018, 843 consecutive recalled cases diagnosed BI-RADS 1 or 2 after clinical examination, DBT and ultrasound at second level screening were retrospectively evaluated by a breast radiologist to assess whether the DBT taken alone was able to exclude with certainty the suspicious findings pointed out at first level screening mammography.

Results: We analyzed 843 cases: in 64% (537) DBT alone was enough for the diagnosis, without the need to perform ultrasound, in 30% (254) ultrasound was needed for the diagnosis; in 6% (52) DBT was considered not helpful or misleading.

Conclusion: Our results demonstrate that DBT is an effective tool for the correct interpretation of false positive mammographic findings at second level screening in 94% cases and DBT alone is enough for the diagnosis in more than a half cases; moreover, our results indirectly confirm that the implementation of DBT in the first level should reduce unnecessary recalls. DBT is a powerful tool to reveal false positive mammographic finding and should be increasingly used in the screening setting to reduce false positive recalls.

B-0248 14:08
Stratifying tomosynthesis screening results by age groups and by first or subsequent screening
G. Romanucci1, F. Caumo2, M. Zora3, P. Bricolo1, L. Cugola1, S. Brunelli1, P. Mariotto1, S.A. Montemezzi1, F. Formasa1, Verona/IT; Padua/IT; Peschiera/IT (giovitta@libero.it)

Purpose: To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography stratified by age groups.

Methods and Materials: From April 2017 to March 2018, 22906 women (50-74 years) underwent DBT + synth2D as a screening test. The results - stratified by age groups and by first or subsequent screening - were examined by calculating the proportions associated with each outcome.

Results: the detection rate (DR) was 9.17% (210/22906) for total screening, significantly lower at the subsequent screening (6.85% (110/16065)) than at the first screening (14.6% (100/6841)) (p<0.001). Regarding the results stratified by age groups, the DR was 6.1% (36/5901) in the 50-54 age group, 6.6% (25/3438) in the 55-59 age group, 9.3% (45/4838) in the 60-64 age group, 12.1% (56/4638) in the 65-69 age group, and 14.0% (44/3150) in the 70-74 age group. The decrement in cancer DR was highest in the 70-74 age group (from 14.6% at the first screening to 9.8% at subsequent screening). Furthermore, the positive predictive value at recall was significantly higher for the 70-74 age group (31.0%, 44/142) vs. all the other age groups (14.9%, 166/1113) (p<0.001).

Conclusion: the DR for cancer of DBT increases with increasing age; our results also highlight the effectiveness of DBT in terms of cancer detection for women older than 70 years.

B-0249 14:16
Stratifying tomosynthesis screening results by breast density
G. Romanucci1, S.A. Montemezzi1, S. Brunelli1, P. Bricolo1, L. Cugola1, F. Caumo3, Verona/IT; Peschiera/IT; Padua/IT (giovitta@libero.it)

Purpose: To assess the highest detection rate (DR) of tomosynthesis (DBT) compared to digital mammography (FFDM) in a screening population, with better performance in dense breasts.

Methods and Materials: From April 2015 to March 2017, 34071 women (50-69 years) underwent DBT + synth2D as a screening test. The results - stratified by breast density, age groups and radiological features - were compared with those of a historical court that in the previous two years (April 2013 - March 2015) performed the screening test with FFDM, through a retrospective analysis.

Results: DR was 9.2 / 1000 (315/34071) in the study group versus 5.2 / 1000 (152/29360) in the historical court (95% CI 4.4-6.1) with an incremental cancer detection rate (CDR), rate of DCIS, and rate of invasive cancers in the study group versus 5.1 / 1000 (122/23860) in the historical court; in high density breasts, DR was 12/1000 (66/5681) for the study group versus 5.6 / 1000 (31/5500) for the historical court. The incremental cancer DR was higher in high density breasts with a difference of 6.4 / 1000 (95% CI; 2.7 to 5.4) and improved detection of opacities (72.2% for DBT + synth2D versus 55.1% for FFDM).

Conclusion: DBT is more sensitive than FFDM in both adipose and dense breasts with more double detection in the latter group.

B-0250 14:24
Breast cancer detection rate, ductal carcinomas in situ and advanced breast cancers in the 2nd round of a population-based screening with tomosynthesis and synthetic mammography
F. Caumo1, G. Gennero1, G. Romanucci1, M. Zora1, C. Fedato2, S.A. Montemezzi1, Padua/IT; Verona/IT; Venice/IT (francesca.caumo@icv.veneto.it)

Purpose: To compare cancer detection rate and rates of ductal carcinomas in situ (DCIS) and advanced breast cancers (T2+) found in the first and second rounds of a population-based screening with tomosynthesis (DBT) and synthetic mammography (SM).

Methods and Materials: 16,666 women were recruited between Apr 2015 and Mar 2016 with screening with (DBT+SM) in the Verona screening program. 16,065 of them were rescreened two years later for a second round with the same screening test. Cancer detection rate (CDR), rate of DCIS, and rate of T2+ cancers were compared in the two groups. A P value below 0.05 was considered statistically significant.
DCIS could be predicted on multimodality image analysis. Screening with tomosynthesis in the second screening round confirmed that screening with tomosynthesis early on DM, TS and subtracted post-injection T1-MRI sequences for inter-rater agreement was 85% in the women, BCDR (invasive + in situ) was 9.3/1000 for both FFDM and FFDM+DBT. No additional cancers were found by adding DBT nor any of the detected cancers in FFDM were missed with FFDM+DBT. Moderate inter-reader agreement for BIRADS was found for both study arms (ICC FFDM: 0.43 and ICC FFDM+DBT: 0.45). Further analysis with recall majority vote of the 4 readers showed no significant differences in recall rate (McNemar’s p=1) when adding DBT. Additional US and MRI resulted in a higher BCDR (18.6/1000) with detection of occult invasive cancers.

Methods and Materials: Thirty-four DCIS patients, retrospectively included. Prevalence of disease was 32% (38/118). Readers showed 89.5%, 92.1%, 84.2%, 84.2% sensitivity for DBT, and 92.1%, 84.2%, 84.2% for RU-MRI; the specificity was 81.2%, 78.7%, 90%, 72.5% for DBT, and 92.1, 84.2, 92.1, 84.2% for RU-MRI. The differences between AUCs for two methods, for all readers, were not significant (p>0.05), despite a slight improvement in specificity with RU-MRI. Interreader agreement was good for RU-MRI (range 0.618-0.783), and moderate to good for DBT (range 0.452-0.718).

Conclusion: RU-MRI and DBT are comparably accurate in detecting cancer in screening-like scenario, with acceptable interobserver agreement. Both methods might be the subject for further research as a screening population.

B-0254 14:56

Synthesized mammography: is it as good as digital mammography to find microcalcification?

V.L.N. Omura; Sao Paulo/BR (vivnakamura@yahoo.com.br)

Purpose: To compare synthesized mammography (SM) plus digital breast tomosynthesis (DBT) versus conventional full-field digital mammography (DM) alone for detection of microcalcification.

Methods and Materials: This prospective multicenter study included 119 cases: 94 consecutive diagnostic mammography cases that were submitted to stereotaxic biopsies for suspicious microcalcifications, from July 2017 to January 2018, and 25 additional screening mammograms without microcalcifications (controls). All cases had DM, SM and DBT images. The images were randomly analyzed by two independent radiologists that reported the presence or absence of suspicious microcalcification, using the BI-RADS lexicon. Sensitivity, specificity, positive and negative predictive values were calculated for SM plus DBT and for DM alone. Interreader agreement was calculated with Cohen’s kappa values. Receiver operator curve analysis was performed.

Results: Agreement between SM plus DBT and DM was substantial (Cohen’s k-coefficient = 0.78 ± 0.09). When comparing DM versus SM plus DBT prevalence, sensitivity, specificity, positive (PPV) and negative predictive values (NPV) and area under receiver curve (AUC) were 74.9%, 93.8%, 85.5%, 94.8%, 82.8%, 0.896, respectively. When comparing SM plus DBT versus DM, prevalence, sensitivity, specificity, PPV, NPV and AUC was respectively, 73.0%, 94.8%, 82.8%, 93.8%, 85.5%, 0.888. And finally, when comparing radiologist A versus radiologist B, and radiologist B versus radiologist A, prevalence, sensitivity, specificity, PPV, NPV and AUC was, respectively, 75.0%, 94.9%, 95.0%, 98.3%, 86.4%, 0.950 and 72.0%, 98.3%, 86.4%, 94.9%, 95.0%, 0.923.

Conclusion: Synthesized mammography plus DBT showed similar performance to digital mammography for the detection of microcalcification, confirming its potential as an alternative to digital mammography.

B-0255 15:04

A new Fourier-based model observer for image quality evaluation in the central slice of simulated breast tomosynthesis images

C. Balta1, I. Sechopoulos1, R. Van Engen1, M. Broeders1, W.J.H. Veldkamp1, I. Reiser2, Nijmegen/NL, 1Leiden/NL, 2Chicago, IL/US (c.balta@lrcb.nl)

Purpose: To investigate the appropriateness of using a novel Fourier-based prewhitening 2D model observer (FPMO) to quantify image quality in a simulated small-scale breast-structure phantom.

Methods and Materials: An in silico breast tissue model based on mammographic power-law noise was used to generate 1000 virtual 3D volumes of 256× voxels representing breast-like structures. Soft-edged spherical masses with diameters of 4 mm and 16 mm were inserted at the center of the volumes, with different contrast levels. The central slice of each volume was analyzed using the Fourier-based model observer (FPMO). The observer was trained on 1000 training images, and validated on 1000 test images. The training images were generated using different breast tissue models, with different contrast levels and different breast masses. The test images were generated using the breast tissue model trained on the training images, with the same contrast levels and breast masses. The FPMO was used to quantify the image quality of the test images, and the results were compared to the results of the human observers.

Results: The FPMO showed good correlation with the human observers, with a correlation coefficient of 0.85 for the 4 mm mass and 0.88 for the 16 mm mass. The FPMO was able to detect the presence of the masses, and accurately quantify the image quality of the test images.
Digital breast tomosynthesis with photon-counting technology: preliminary data from a clinical comparison study

Methods and Materials: After informed consent, women older than 40 years with highly suspicious breast finding at clinical/imaging evaluation (BI-RADS 4c/s) underwent bilateral 2-view tomosynthesis with a conventional system and the PC prototype, before breast biopsy. Three readers with different experience in breast imaging independently compared the 3D and the synthesized 2D (s2D) images giving clinical (BI-RADS) and conspicuity scores. The density was evaluated according to the ACR classification. The AGDs of the 2 systems were compared.

Results: Between 12/2016 and 10/2017 17 women (mean age 71 years) were enrolled. The density score was A-B for 9 women, C-D for the other 8 women. In 15 exams, at least one suspicious finding was detectable by both systems: 11 masses, 1 focus of microcalcifications, 2 distortions. The density score was A-B in 12 exams C-D in 3 exams (decreased to 1 mass with C-D and 1 focus with B-C). The AGDs were comparable: 27.8 ± 21.3 vs. 28.9 ± 22.1 Gy.cm²/m² (p = 0.76) and the C-RADS scores were equal or better for PC respectively in 95% observations, while comparing the 2 systems were compared.

Conclusion: PC tomosynthesis performs as well as a conventional system with a drastic reduction of the AGD.

Author Disclosures: E. Venturini; Other; Hologic; Philips. P. Panizza; Speaker; Philips; Other; Hologic;

Digital breast tomosynthesis with photon-counting technology: preliminary data from a clinical comparison study

Methods and Materials: After informed consent, women older than 40 years with highly suspicious breast finding at clinical/imaging evaluation (BI-RADS 4c/s) underwent bilateral 2-view tomosynthesis with a conventional system and the PC prototype, before breast biopsy. Three readers with different experience in breast imaging independently compared the 3D and the synthesized 2D (s2D) images giving clinical (BI-RADS) and conspicuity scores. The density was evaluated according to the ACR classification. The AGDs of the 2 systems were compared.

Results: Between 12/2016 and 10/2017 17 women (mean age 71 years) were enrolled. The density score was A-B for 9 women, C-D for the other 8 women. In 15 exams, at least one suspicious finding was detectable by both systems: 11 masses, 1 focus of microcalcifications, 2 distortions. The density score was A-B in 12 exams C-D in 3 exams (decreased to 1 mass with C-D and 1 focus with B-C). The AGDs were comparable: 27.8 ± 21.3 vs. 28.9 ± 22.1 Gy.cm²/m² (p = 0.76) and the C-RADS scores were equal or better for PC respectively in 95% observations, while comparing the 2 systems were compared.

Conclusion: PC tomosynthesis performs as well as a conventional system with a drastic reduction of the AGD.

Author Disclosures: E. Venturini; Other; Hologic; Philips. P. Panizza; Speaker; Philips; Other; Hologic;

Digital breast tomosynthesis with photon-counting technology: preliminary data from a clinical comparison study

Methods and Materials: After informed consent, women older than 40 years with highly suspicious breast finding at clinical/imaging evaluation (BI-RADS 4c/s) underwent bilateral 2-view tomosynthesis with a conventional system and the PC prototype, before breast biopsy. Three readers with different experience in breast imaging independently compared the 3D and the synthesized 2D (s2D) images giving clinical (BI-RADS) and conspicuity scores. The density was evaluated according to the ACR classification. The AGDs of the 2 systems were compared.

Results: Between 12/2016 and 10/2017 17 women (mean age 71 years) were enrolled. The density score was A-B for 9 women, C-D for the other 8 women. In 15 exams, at least one suspicious finding was detectable by both systems: 11 masses, 1 focus of microcalcifications, 2 distortions. The density score was A-B in 12 exams C-D in 3 exams (decreased to 1 mass with C-D and 1 focus with B-C). The AGDs were comparable: 27.8 ± 21.3 vs. 28.9 ± 22.1 Gy.cm²/m² (p = 0.76) and the C-RADS scores were equal or better for PC respectively in 95% observations, while comparing the 2 systems were compared.

Conclusion: PC tomosynthesis performs as well as a conventional system with a drastic reduction of the AGD.

Author Disclosures: E. Venturini; Other; Hologic; Philips. P. Panizza; Speaker; Philips; Other; Hologic;

Digital breast tomosynthesis with photon-counting technology: preliminary data from a clinical comparison study

Methods and Materials: After informed consent, women older than 40 years with highly suspicious breast finding at clinical/imaging evaluation (BI-RADS 4c/s) underwent bilateral 2-view tomosynthesis with a conventional system and the PC prototype, before breast biopsy. Three readers with different experience in breast imaging independently compared the 3D and the synthesized 2D (s2D) images giving clinical (BI-RADS) and conspicuity scores. The density was evaluated according to the ACR classification. The AGDs of the 2 systems were compared.

Results: Between 12/2016 and 10/2017 17 women (mean age 71 years) were enrolled. The density score was A-B for 9 women, C-D for the other 8 women. In 15 exams, at least one suspicious finding was detectable by both systems: 11 masses, 1 focus of microcalcifications, 2 distortions. The density score was A-B in 12 exams C-D in 3 exams (decreased to 1 mass with C-D and 1 focus with B-C). The AGDs were comparable: 27.8 ± 21.3 vs. 28.9 ± 22.1 Gy.cm²/m² (p = 0.76) and the C-RADS scores were equal or better for PC respectively in 95% observations, while comparing the 2 systems were compared.

Conclusion: PC tomosynthesis performs as well as a conventional system with a drastic reduction of the AGD.
Results: Median visual ASPECTS on NCCT was 8 (interquartile range: 6-9). Automated density measurements were feasible in all 121 patients. NIH values yielded significant regional classification of final infarction in ROC analyses for all ASPECTS regions except M3 and M6. Best classifications were achieved for lentiform (AUC=0.810, p<0.001), caudate (AUC=0.777, p<0.001), and insula (AUC=0.764, p<0.001). The composite-rHU-score was independently associated with final infarction volume (β=0.353, p<0.001), outperforming visual ASPECTS assessment (β=0.190, p=0.062) in regression analysis. The regression coefficients indicating the effect size were most pronounced in patients that received no reperfusion therapy (β=0.582, p<0.001).

Conclusion: Automated NCCT density measurements identify ASPECTS regions that develop final infarction after stroke. The composite-rHU-score outperformed visual ASPECTS interpretation in the prediction of final infarction volumes.

B-0260 14:25
Accuracy of virtual monochromatic images for the detection of early brain ischaemia on dual-energy CT
D. Dodge, N. Bartolović, S. Kovac, D. Miletic, Z. Rumbold; Rijeka HR, Charleston, SC/US (doris_5nas@yahoo.com)

Purpose: Reconstructing virtual monochromatic images (VMI) on dual-energy CT (DECT) influences tissue contrast-to-noise ratio and artefacts. The sensitivity of standard head CT for acute brain infarct is in the range of 30-70%. We hypothesised that VMI would allow for a more sensitive and accurate detection of early brain ischaemia.

Methods and Materials: Consecutive patients presenting with acute stroke 1-4.5 hours after symptom onset were scanned with DECT. VMI ranging from 40 to 190 keV with a 10 keV increment were reconstructed on a dedicated workstation. Two readers jointly evaluated presence of ischaemic lesions on polychromatic images (representing standard CT) and all VMI reconstructions. The level of detectability between polychromatic and best VMI reconstruction was then compared for each lesion. Follow-up imaging served as the standard of reference. McNemar’s group of tests was used for statistical analysis.

Results: So far sixteen patients have been included in the study. VMI was more sensitive (63-94%) compared to polychromatic reconstruction (44-81%), however the observed difference was not statistically significant in this small sample. One brainstem infarct was seen on VMI only and one lesion was not detected at all. Eighty percent of the ischaemic lesions were better delineated on VMI reconstructions (p=0.0015). The study is ongoing and these preliminary results are currently being tested on a larger cohort.

Conclusion: Detection of early ischaemic stroke appears to be more accurate with VMI than with standard head CT.

B-0261 14:33
Added value of susceptibility-weighted imaging for the prediction of hemorrhagic transformation in patients with acute ischemic stroke treated by mechanical thrombectomy
N. Ben Daamer, A. Benaissa, J.P. Le Faucheur, F. Faugeras, S. Benadjoud, E. Kalisoum, T. Tuiller, H. Hosseini, J. Hodel; Paris/FR

Purpose: Using susceptibility-weighted imaging (SWI), we aimed at assessing the correlation between the prominence of cerebral veins (PCV) and the occurrence of hemorrhagic transformation (HT) in a cohort of consecutive patients with acute ischemic stroke (AIS) treated by mechanical thrombectomy (MT).

Methods and Materials: 75 patients with AIS treated by MT underwent MRI at 3T including SWI. The presence of HT was systematically assessed using a dual-energy CT (DECT) scan 48 hours after MT. Using SWI, two blinded neuroradiologists analyzed independently: (i) the number of microbleeds (MBs), (ii) the presence of PCV. The extent of PCV was evaluated using a three-point scale: “1”: 33% or less, “2”: 66% or “3”: the entire middle cerebral artery (MCA) territory. Modified Rankin scale (mRS) at 3 months was available for all patients.

Results: According to DECT, HT was observed in 22/75 patients. Inter-observer agreement for the presence and extent of PCV was good (respectively k=0.83 and k=0.79); excellent for the number of MBs (k=0.86). No correlation was found between the number of MBs and HT (p=0.85). The occurrence of HT was significantly associated with a small extent of PCV (rated1**: 33% or less of MCA territory) on SWI (p=0.019). There was no correlation between the SWI findings (i.e. PCV and MBs) and mRS (p=0.30).

Conclusion: Evaluation of PCV extent on SWI may potentially help to predict the occurrence of HT in patients with AIS treated by MT.

B-0262 14:41
Incremental value of CT perfusion for outcome prediction in acute cerebellar stroke
M.P. Fabritius, P. Reddier, K. Thieflereder, M.F. Froelich, L. Rotkopf, D. Puhu-Westerheide, W.G. Kunz; Munich/DE, Rostock/DE (matthias.fabritius@med.uni-muenchen.de)

Purpose: The clinical diagnosis of cerebellar stroke is challenging. Most frequently applied CT imaging lacks diagnostic sensitivity and fails to provide reliable prognostic information. We aimed to identify imaging parameters that predict outcome in cerebellar stroke patients using multiparametric CT including whole-brain CT perfusion (WB-CTP).

Methods and Materials: We selected all subjects with cerebellar WB-CTP perfusion deficits and follow-up-confirmed infarction from a cohort of 3,648 consecutive patients with suspected stroke who underwent WB-CTP. Posterior circulation Acute Stroke Prognosis Early-CT Score (pc-ASPECTS) was determined to assess ischaemic changes on non-contrast CT (NCCT), CT angiography source images (CTA-SI), and on parametric WB-CT maps. Cerebral blood flow (CBF) deficit volume on WB-CTP imaging as well as the final infarction volume (FIV) on follow-up imaging were quantified. Discharge modified Rankin Scale (mRS) scores were assessed. Regression analyses were performed.

Results: 60 patients fulfilled the inclusion criteria. NCCT parameters showed no significant association with FIV. CTA-SI imaging and CBF deficit volume was significantly associated with FIV in univariate linear regression analysis. Only the association of CBF deficit volume was confirmed in a multivariate model adjusted for age, sex, and admission National Institutes of Health Stroke Scale (NIHSS) score (β, 0.706; p<0.001). Univariate logistic regression showed an association between CBF deficit volume and discharge mRS2 (odds ratio [OR], 0.941; p=0.017). This association was not significant after multivariate adjustment, outperformed by NIHSS (OR, 0.776; p<0.009).

Conclusion: In contrast to traditional CT imaging parameters, WB-CTP contains prognostic information for morphologic outcome prediction in patients with acute ischaemic cerebellar stroke.

B-0263 14:49
Clinical outcome after thrombectomy in stroke patients with premortem modified Rankin scale scores of 3 and 4: a cohort study with 136 patients
F. Seker, J. Pfaff, S. Schönenberger, C. Herweh, S. Nagel, P.A. Ringleb, M. Bendszus, M.A. Möhlenbruch; Heidelberg/DE

Purpose: In this study, we aimed to analyse clinical outcome after mechanical thrombectomy (MT) in patients with premortem mRS 3 and 4, because there is currently no data on this patient group.

Methods and Materials: Between January 2009 and November 2017, all patients with premortem mRS 3 or 4 undergoing MT due to anterior circulation stroke were selected. Good outcome was defined as a clinical recovery to the status before stroke onset, i.e. equal premortem mRS and mRS at 90 days. Besides, mortality at discharge and at 90 days was analysed.

Results: 136 patients were included, of which 81.6% presented with premortem mRS 3 and 18.4% with premortem mRS 4. 24.0% of patients with premortem mRS 4 achieved clinical recovery compared to 20.7% of patients with premortem mRS 3 (P = .788). However, proportion of hospital mortality and mortality at 90 days was non-significantly, but markedly higher in patients with premortem mRS 4. Multivariate analysis identified low NIHSS (OR 0.92, 95% CI 0.85 - 0.99, P = .040), high ASPECTS (OR 1.45, 95% CI 1.02 - 2.16, P = .049) and TICI 2b-3 (OR 7.11, 95% CI 1.73 - 49.90, P = .017) as independent predictors of good outcome.

Conclusion: Good outcome in patients with premortem mRS 3 and 4 is less frequent compared to premortem mRS 0-2. Nevertheless, about 20% of the patients return to their premortem mRS, which may justify endovascular treatment. Most important predictor of good outcome is successful recanalization.

B-0264 14:57
Collateral blood supply role in acute stroke outcomes
M. Radzina; Riga/LV, mradzina@gmail.com

Purpose: Collateral blood supply status is an independent determinant of the clinical outcome, good collateral flow is a factor for favourable clinical outcome and its deficit is considered to be an adverse factor. Early multimodal computed tomography (CT) imaging gives us an insight in various patterns of this parameter and can provide correlation between CT brain perfusion and collateral flow.

Methods and Materials: All 105 patients underwent prospective multimodal imaging (CT, CTA, CT perfusion) with pretreatment imaging for evaluation of collaterals on CTA and brain perfusion by CT perfusion imaging in acute stroke patients within 6-4h after onset. 45 patients showed good collateral pattern while 40 patients showed poor collateral pattern and 10 patients showed absent collateral pattern. All patients were treated by mechanical thrombectomy.
B-0265 15:05

Drip, ship, retrieve and leave: a national experience in the management of patients within regional hospitals post endovascular thrombectomy for acute large vessel ischaemic stroke

E. Griffin, M. Sheehan, D. Brennan, S. Looby, S. Power, A. O’Hare, P. Brennan, J. Thornton; Dublin/IE (emma.griffin.2@ucdconnect.ie)

Purpose: To report the experiences, outcomes and complications post thrombectomy for patients transferred from and repatriated back to non-endovascular centres with acute large vessel ischaemic stroke. This protocol is known as Drip, Ship, Retrieve and Leave.

Methods and Materials: A retrospective review of a prospectively maintained database was performed to identify all patients who were transferred from an outside institution and followed this model from January 2016-December 2017. Key parameters recorded included the presenting National Institute of Health Stroke Score (NIHSS), the location of large vessel occlusion, the administration of intravenous thrombolysis, the degree of reperfusion achieved (Thrombolysis In Cerebral Infarction (TICI) score) and the 90 day modified Rankin Scale (mRS). We recorded any complications encountered.

Results: A total of 357 patients were deemed eligible for inclusion with a median age of 69 years (20-96). The median NIHSS at presentation was 15(1-43). All participants had an occlusion confirmed on CT angiography with 92.4% (n=330) in the anterior circulation and 7.6% (n=27) in the posterior circulation. 43). All participants had an occlusion confirmed on CT angiography with 92.4% (n=330) in the anterior circulation and 7.6% (n=27) in the posterior circulation.

Conclusion: This model is an effective means at managing patients within a national stroke service. It doesn’t negatively affect patient morbidity or mortality rates.

B-0266 15:13

Circle of Willis anatomy does not influence the results of mechanical thrombectomy with balloon guide catheter

A. Velasco Gonzalez, N. Männich, T. Rusche, B. Buerke, D. Görlich, C. Sauerland, H. Heindel; Münster/DE (Aglae.VelascoGonzalez@ukmuenster.de)

Purpose: It has been hypothesised that the suction power through the balloon guide catheter (BGC) might be influenced by the presence of communicant arteries. Our aim was to analyse their effect on the recanalisation rates and the duration of mechanical thrombectomy (MT) performed with a BGC.

Methods and Materials: A total of 200 consecutive patients treated with MT through a BGC for acute ischaemic stroke in the anterior circulation were included in this analysis. The anatomy of the ipsilateral circle of Willis (CoW) was determined from the ipsilateral angiographic images and correlated with the features in the CTA. The duration of the procedure, degree of recanalisation, number of passes, and type of SR used were recorded. In the same way, the assumption of clot migration during MT necessitated retrospective evaluation of the CTA.

Results: The most common anatomical variation of the CoW was the presence of an anterior communicating artery (ACoA, 76.5%, 153/200). An ipsilateral complete CoW was observed in 22.5% of cases (45/200). A MTCI3 was achieved in 64% of cases (128/200) and mTICI2b in 87.5% of cases (175/200). Communicant arteries did not have any effect on the angiographic results.

Conclusion: The effectiveness of the BGC for MT is not altered by the presence of communicant arteries. Inverted flow through the ACoA could be a factor to prevent migrations.

B-0267 15:21

External referrals for endovascular thrombectomy: our experience in a regional stroke centre and insights into service improvements

E. Griffin, N.C. Adams, R. Motyer, T. Farrell, A. O’Hare, S. Looby, S. Power, P. Brennan, J. Thornton; Dublin/IE (emma.griffin.2@ucdconnect.ie)

Purpose: To report experiences at a regional/acute centre of external referrals for endovascular thrombectomy (EVT) in patients with suspected large vessel occlusion (LVO).

Methods and Materials: We accept referrals from 24 external centres throughout the Republic of Ireland. Data was prospectively collected on consecutive referrals for EVT during two separate 4 month periods in 2017 and 2018. Several data points were collected at the time of referral including NIHSS scale, IV thrombolysis, imaging time, ASPECTS score and occlusion site. Reasons for not transferring patients and reasons for not performing EVT were recorded.

Results: 262 phone referrals were made during the study period. 159 patients (61%) were transferred to our institution and 136 patients had EVT (52%). Twenty-three patients were unsuitable for EVT on arrival due to vessel recanalisation (39%), poor ASPECTS score (30%), no intracranial occlusion (13%), clinical improvement (13%) or haemorrhage on repeat imaging (9%). 103 patients (39%) were deemed ineligible for EVT. Reasons for not accepting patients for EVT included lack of intracranial occlusion (59%), ASPECTS ≤23%, mild or improving symptoms (11%), distal occlusion (4%), and poor baseline (3%). Median NIHSS was significantly lower in the not transferred group (14±7). Median door to imaging times and on-set to arrival times were longer in the not transferred group.

Conclusion: These data provide valuable insights into the service provision of a comprehensive stroke network with low rates of futile transfer. Access to Neuroradiology and specialised stroke assessment is crucial to optimising patient selection and stroke services.

14:00 - 15:30 Room F2

Emergency Imaging

SS 317

Acute abdomen

Moderators: A. Blanco Barrio; Murcia/ES
D.D. Cokkinos; Athens/GR

K-09 14:00

Keynote lecture

M. Scapicchio; Castel Voltumo/IT

B-0268 14:09

A comparative study 2007-2015 on acute appendicitis: evolution in use by diagnostic imaging techniques

M.A. Depetris, L. Ibañez Sanz, E. Martinez Chamorro, S. Borruel Nacenta; Madrid/ES (marinadepetris1976@gmail.com)

Purpose: To analyse the evolution in the use by diagnostic imaging techniques in acute appendicitis and its impact in the quality of diagnosis process, as negative appendectomy rate is a health care quality indicator.

Methods and Materials: This is a retrospective study that included all patients in whom appendectomies had been performed in 2007 and 2015. The data were obtained from pathology reports, surgical protocols and radiology reports. They were compared between the two periods, by assessing imaging test that were performed and their diagnostic quality.

Results: The previous data of 2007 were assessed and compared with 2015. Both samples included 394 patients (2007) and 280 (2015). In 120 (30%) patients 2007 vs. 37 (15%) patients 2015, any imaging test was done. There was a drop in the negative appendectomy rate from (38.9%) to (11) 3.92%. Gangrenous appendicitis rate showed an increased from (46) 11% to 21% (61). There was an increase of abdominal ultrasonography performed (78.5%) vs. 54.8%, and also ultrasonography (US)+computer tomography (CT) performed (9%) vs. 4.8%. There was just one case in which only TC was done at 2015, whereas in 40 patients (10%) in 2007. Ultrasonography predictive positive value (PPV) showed a slight increase from 92 to 97% and ultrasonography and TC together showed a PPV of 100%. Average hospital stay decreases from 4.6 to 2.8 days.

Conclusion: The use of imaging techniques in acute appendicitis has increased, and there was an improvement in health care quality indicators. However, perforated appendicitis does not decrease.
B-0269 14:17
Acute appendicitis: appendiceal angle, morphological variations detected on CT imaging
S. Evnimier, H. Aydin; lsparta/TR (dsehnez@gmail.com)

Purpose: We aimed to investigate whether there was an association between appendiceal angle, localisation, length of the appendix and acute appendicitis. To the best of our knowledge, there has been no study investigating the relationship between appendiceal angle and appendicitis development.

Methods and Materials: 226 Abdomen CT scans, (n=116 normal, and n=110 histopathologically proven appendicitis) performed for predicting the diagnosis of acute appendicitis between 2016-2018, were evaluated retrospectively. Diameter-length-localisation of the appendix, appendiceal angle, contrast enhancement, mesenteric stranding, peritoneal thickening, lymphadenopathy, appendicolith, complication, primary/secondary classification were evaluated. Localisation of appendix was classified in 8 groups, as follows; 1: pre-ileoal, 2: post-ileoal, 3: promontoric, 4: pelvic, 5: subccecal, 6: preccecal/paracolic, 7: retrocecal, 8: subhepatic.

Results: Contrast enhancement (% 5100), and mesenteric stranding (%45.5%) were the most observed parameters. There was no significant relationship between appendicitis and the length (p=0.885) or the localisation of appendix. (p=0.231) Pelvic was the most common localisation. Mean of the appendiceal angle for appendicitis group, and normal group was 98.19±41.89, and 85.45±43.31, respectively. There was significant difference for appendiceal angle between appendicitis and normal group(p= 0.028). ROC analysis showed cut-off value of 104.5, AUC=0.585 (0.510-0.659); p=0.017) sensitivity 45.43%, specificity 89.82%, accuracy 57.96%). We didn’t observe a significant difference for appendiceal angle in complication development. Localisation showed significance only for pre-ileoal localisation (p=0.030). On the other hand, length was significantly shorter in complicated cases (p=0.034).

Conclusion: Appendiceal angle is the only significant factor amongst angle, length and localisation of the appendix, and can be an aetiological factor in appendicitis development.

B-0270 14:25
Conditional CT strategy effectiveness in diagnosing acute appendicitis
R. Luksaite, R. Kliokyte, A. Samuilis, T. Poskus; Vilnius/LT (rluksaite@gmail.com)

Purpose: To present the results of two retrospective studies done in University Hospital Santaros Klinikos analyzing diagnostic accuracy results before and after the application conditional CT strategy and to compare their diagnostic accuracy.

Methods and Materials: Two retrospective analyses of adult patients who were admitted in Emergency room at University Hospital Santaros Clinics with suspected acute appendicitis were done: first study analysed group of 554 patients who from 2008 to 2013 underwent operation for suspected acute appendicitis and the second study included group of 459 patients who underwent operation for suspected acute appendicitis from 2016 to 2018 after implementation of conditional CT algorithm. The results of both algorithms were compared and the positive and negative effects of new diagnostic algorithm were evaluated.

Results: In the first study negative appendectomy (NA) rate was as high as 22.9 %. Conditional CT strategy group the amount of NA was 0.8%. Increase in usage of imaging was noticed: ultrasound form 75 % up to 97 % and CT from 3.4% up to 25 %. Ultrasound detected infarred appendix in 67.5% of these cases, CT scan detected acute appendicitis in 30%. The sensitivity and specificity of ultrasound and CT scan was.

Conclusion: Although applying conditional CT strategy in acute appendicitis diagnostic protocol reduces the amount of negative appendectomies, it increases exposure to ionising radiation, and unnecessary CT scans rate. Taking in to account that potential patient population includes mostly young adults, some new alternatives could be a field for a further search.

B-0271 14:33
Accuracy of grey-scale ultrasonography in correctly identifying acute appendicitis in comparison with surgical outcome
K.M.B. Hassan, A.U. Shehata, T. Bajir Hassan;1 Rawalpindi/PK, 2 Okara/PK (baqar78@hotmail.com)

Purpose: To validate ultrasonographic diagnosis of acute appendicitis using surgical outcome as the gold standard.

Methods and Materials: Cross-sectional validations setting and duration: Radiology Department, AFIRI Rawalpindi from 1 March 2013 to 31 August 2013. All the patients were referred to the same emergency section of Emergency Radiology Department for suspected diagnosis of acute appendicitis. All patients of suspected appendicitis had ultrasound of abdomen. The sampling technique used was consecutive non-probability. Sonographically suspected cases of acute appendicitis resulted in appendicectomy of the patient. Patients were operated using conventional method of appendicectomy. Results regarding appendix by ultrasonography and surgical outcome were recorded on the record. Data entry and analysis was done using SPSS v21.

Results: A total of 160 patients were included in the study. Mean age of patients was 21.39±3.32 years. There were 77 (48.1%) male and 83 (51.9%) female patients. Clinically, there were 126 (79%) patients positive for appendicitis and on ultrasound findings 121 (76%) patients had appendicitis. Surgical outcome showed 125 (78%) patients as positive. Sensitivity and specificity of ultrasound for the diagnosis of appendicitis was 87.20% and 65.71%. While positive predictive value and negative predictive value of ultrasound was 90.80% and 58.97%, respectively. Overall diagnostic accuracy of ultrasound was 78.12%.

Conclusion: In patients who present with clinically suspected acute appendicitis, imaging is vital and ultrasound can be a good, cheap, readily available and preferred imaging technique to confirm or support the clinical diagnosis and avoid unnecessary and erroneous surgeries especially in females.

B-0272 14:41
Diagnostic performance of abdominal ultrasound in right-sided acute colonic diverticulitis
F. Pellegrino, G. Tralli, G. Di Stefano, C. Tartari, S. Tartari, M. Giganti; Ferrara/IT (fabiopelegrinog07@gmail.com)

Purpose: To assess value of abdominal ultrasound in patients with suspected right-sided acute symptomatic diverticulitis in comparison with supplementary CT.

Methods and Materials: We retrospectively analysed 124 patients from Emergency Department (mean age of 66 ± 18 years) with final diagnosis of acute diverticulitis at discharge. For each patient were registered diagnostic-therapeutic pathway, elective pain location and simple or complicated diverticulitis features with sonography and CT, assessing value of initial US through head-to-head comparison with CT results.

Results: Of the 124 patients with diverticulitis 30 underwent directly to CT and were excluded. Among 94 patients with initial sonography and subsequent CT examination within 24 hours, US was positive in 45/94 patients (true positive) and negative in 49/94 (false negative), with diagnostic accuracy of 48%. Sonography diagnosed correctly 15/32 cases of uncomplicated diverticulitis and 30/62 complicated diverticulitis with diagnostic accuracy respectively of 47% and 48%. Regarding location of pain, US was positive in 12/35 patients with right lower quadrant pain and in 33/69 with left lower quadrant pain showing diagnostic accuracy of 34% and 56%.

Conclusion: Our data show that US in emergency setting is less reliable for diagnosing right-sided colonic diverticulitis in patients with RLO pain.

B-0273 14:49
Clinical significance of bedside ultrasonography and second-look ultrasonography in pediatric ileocolic intussusception
M. Park, C. Lee, G.-S. Hong; Seoul/KR (lpk1102@gmail.com)

Purpose: The purpose of this study is to identify the performance characteristics of bedside ultrasonography which is performed by clinicians (B-USG), and the clinical significance of the second-look ultrasonography performed by radiologists (R-USG) for the diagnosis of pediatric ileocolic intussusception.

Methods and Materials: From October 2013 to December 2017, the patients who visited pediatric emergency department (PED) and underwent ultrasonography by radiologists for evaluating intussusception were included. The included patients were divided into two groups: group A, the patients in whom first-line B-USG were performed at PED, followed by second-look R-USG; and group B, the patients in whom R-USG were performed without B-USG. We compared the ratio of confirmed ileocolic intussusception between the two groups. The sensitivity and positive predictive value of B-USG were calculated using the result of R-USG as the gold standard.

Results: A total of 262 patients (mean age, 4.3 years old) were included: 108 patients in group A; and, 154 patients in group B. The ratios of the patients in whom ileocolic intussusception were confirmed were significantly different between group A (47.2 %, 51/108) and group B (28.6 %, 44/154) (p < 0.05). In group A, the sensitivity and positive predictive value were 98.0 % (50/51) and 58.8 % (50/85), respectively.

Conclusion: The B-USG is highly sensitive for the diagnosis of pediatric ileocolic intussusception. However, due to its low positive predictive value, the second-look ultrasonography by radiologists can improve the diagnostic accuracy, thus reduce unnecessary radiation exposure caused by fluoroscopic reduction.
B-0274 14:57
Is it possible to establish a clinical prediction rule for computed tomography assessment in suspected bowel obstruction at the emergency department?

Purpose: Bowel obstruction accounts for 5%-15% of hospital admissions for the evaluation of acute abdominal pain at the emergency department. Mortality rates can be significant without early surgical management. Computed tomography (CT) is currently the most sensitive imaging method for the diagnosis. The main objective of this study is to establish a clinical prediction rule to improve the adequacy of CT requests in suspected acute bowel obstruction.

Methods and Materials: Scientific evidence to better match the CT requests to the suspicion of acute bowel obstruction was evaluated in the previous multicentre trial MAPACFIS13/00896-FIS13/01183/ERDF (European Regional Development Fund), in which an algorithm-based radiological approach was developed for clinical use. We reviewed medical records of 422 patients with abdominal CT scan performed between September 2016 and March 2018 requested under suspected bowel obstruction using the previous algorithm. A prediction rule was developed by use of recursive partitioning based on significant factors after immediate analysis.

Results: Abdominal pain was the most reported symptom (91.9%), 50.1% of abdominal CT scans were positive for bowel obstruction and 23.1% revealed other acute diseases. Significant factors to predict bowel obstruction were constipation (p=0.018); increased bowel sounds (p=0.009) and personal history of cancer (p=0.046). The prediction rule could rule out bowel obstruction with a sensitivity of 80.1% (95% CI, 75.3-84.4 %) using the factors previously mentioned.

Conclusion: We developed a prediction rule for CT assessment in suspected bowel obstruction based on significant clinical and radiological features. Prospective validation is needed in other settings. To the best of our knowledge, no clinical prediction rule on this issue has been published.

B-0275 15:05
Fast track CT in patients that referred to emergency major abdominal surgery
C. Huang¹, C.A. Mardal², L.T. Tengberg², M. Bay-Nielsen², B.B. Bertelsen²;¹Stågelese/DK,²Hvidovre/DK (chenxiujiang@msn.com)

Purpose: Patients with abdominal pain that referred to emergency major abdominal surgery have a high risk of mortality. To improve the postoperative survival, a standardised, multidisciplinary consultant-led perioperative protocol was introduced at Hvidovre Hospital, including fast track CT diagnostics and surgery. The effort of this showed almost 30 % reduction of 30-day mortality. The present study reports the feasibility of fast track CT and its diagnostic accuracy compared to the intra-operative findings.

Methods and Materials: Single-centre intervention study in an unselected consecutive cohort. We included adult patients with the suspicion of (non-trauma) acute abdominal pathology requiring immediate surgery. All patients were included from Hvidovre Hospital (Denmark) from 2013 to 2015, by board surgeons at the emergency department. In this multidisciplinary effort, the radiological contribution consisted of a fast track abdominal CT scan (primarily with IV contrast) and rapid reporting within 2 hours of inclusion.

Clinical interventions include surgery within 4 hours and perioperative (predominantly with IV contrast) and rapid reporting within 2 hours of inclusion. The effort of this showed almost 30 % reduction of 30-day mortality.

Conclusion: The conversion of abdominal x-rays to abdominal tomogram for non-trauma emergency department indications did not significantly alter the emergency department length of stay, time to emergency department disposition or time to inpatient bed.

Interventional Radiology

SS 309
Vascular neurointerventions
Moderators: J. Carrott; Le Kremlin-Bicêtre/FR K. Zelenak; Martin/SK

B-0278 14:00
Initial results of management for acute ischaemic stroke due to large vessel occlusion by direct aspiration first-pass technique at Cho-ray hospital
T.H.N Nguyen, P.V. Le; Ho Chi Minh City/VN (druaninn@gmail.com)

Purpose: The development of new revascularization devices has improved recanalization rates, time to and clinical outcomes. A direct aspiration first-pass technique (ADAPT) has been introduced as a simple and fast method for achieving good recanalization and clinical outcomes using large bore aspiration catheter for the treatment of acute ischaemic stroke (AIS) due to large vessel occlusion.

Methods and Materials: Retrospective analysis of a database of patients undergoing stroke with ADAPT technique at Cho-ray Hospital, from January 2017 to June 2018. Variants evaluating the efficacy and safety evolved: recanalization rates (thrombolysis in cerebral infarction (TICI) score), time to recanalization, complications and clinical outcomes (modified Rankin scale (mRS) score) at the 90-day follow-up.

Results: Forty-three patients suffering an AIS treated with ADAPT had initial mean NIHSS score of 17.2 and improved to a mean NIHSS score of 8.7 at discharge. TICI 2b/3 recanalization was achieved in 36/43 (83.7%) patients. The average time to recanalization was 31.7 minutes. 55.8% patients (24/43) presented good clinical outcomes (mRS 0-2), and mRS 3-5 was reported in 18/43 (42.2%) patients. The mortality rate was 6/43 (14%) during follow-up.

Conclusion: The ADAPT technique is a fast, simple, safe and effective method with high recanalization rates and good clinical outcomes for management of acute ischaemic stroke with the latest generation of large bore aspiration catheters.

B-0279 14:08
Double aspiration thrombectomy in endovascular recanalisation of acute ischaemic stroke patients
M. Voormolen, T. van der Zijden, O. D’Archambeau, F. Van den Bergh, A. Mondaera, C. Loos, P. Vanacker, I. Baar, L. Yperzeele; Antwerp/BE (maurits.voormolen@uzal.be)

Purpose: Endovascular recanalisation by thrombectomy in patients with acute ischaemic stroke is effective and safe. To improve procedure and clinical outcomes, combination of stent-retriever thrombectomy and catheter thromb- aspiration might increase first-pass recanalisation rate with more complete recanalisation. Our goal was to assess efficacy of endovascular recanalisation by catheter thrombo-aspiration (TA) combined with stent-retriever thrombectomy with simultaneous aspiration on TA catheter and balloon guiding catheter (double aspiration thrombectomy (DAT)) in patients with acute intracranial thrombo-embolic occlusions.

Methods and Materials: Between January and August 2018, in our hospital 37 DAT endovascular recanalisation procedures as first-pass attempt were performed in patients with acute ischaemic stroke of anterior circulation, involving 16 female (43%) and 21 male patients. Mean patient age was 71 years (range 38-92). Mean NIHSS was 17 (6-25). Occluded arteries were distal internal carotid (27%), M1 (57%), M2/M3 (5%) and tandem lesion (11%).
Haemorrhagic transformation after stroke: interrater and intrarater agreement
A. Gueneq1, M. Piotin2, R. Blanc3, R. Faheh2; Toulouse/FR, 2Paris/FR

Purpose: Haemorrhagic transformation (HT) is a complication of stroke that can occur spontaneously or after treatment. We aimed to assess the interrater and intrarater reliability of HT diagnosis.

Methods and Materials: Studies assessing the reliability of the European Cooperative Acute Stroke Study (ECASS) classification of HT or of the presence (yes/no) of HT were systematically reviewed. Eighteen raters independently examined 30 post-thrombectomy computed tomography scans selected from the aspiration vs. stentriever (ASTER) trial. They were asked whether there was HT (yes/no), what the ECASS classification of the particular scan (0/H1/H2/H3/PH1/PH2) was and whether they would prescribe an antplatelet agent if it was otherwise indicated. Agreement was measured with Fleiss’ and Cohen’s kappa statistics.

Results: The systematic review yielded 4 studies involving few (≥3) raters with heterogeneous results. In our 16-rater study, agreement for the presence of HT was moderate (κ=0.55, 95%CI [0.41-0.68]). Agreement for ECASS classification was only fair for all 5 categories, but agreement improved to substantial (κ=0.72, 95%CI [0.69-0.75]) after dichotomising ECASS into 0/H1/H2/H3 versus PH2. The intrarater agreement for the decision to reintroduce antplatelet therapy was moderate for all raters, but substantial among vascular neurologists (κ=0.70 [0.57-0.84]).

Conclusion: The ECASS classification may involve too many categories and the diagnosis of HT may not be easily replicable, except in the presence of a large parenchymal haemorrhoma.

B-0281 14:24
Endovascular treatment of patients with acute ischaemic stroke in posterior circulation: single-centre experience
A. Klepanec, J. Hansany, M. Mako, M. Hoferica, J. Cisar, M. Cabukova, M. Rusina, G. Krastev; Tmava/SK (andrej.klepanec@gmail.com)

Purpose: To evaluate the safety and efficacy of endovascular treatment of patients with acute ischaemic stroke in posterior circulation.

Methods and Materials: During the study period from October 2015 till January 2018, 248 patients with acute ischaemic stroke and large vessel occlusion were treated with endovascular thrombectomy in comprehensive thrombectomy centre, of whom, 42 patients were endovascularly treated for acute ischaemic stroke in posterior vertebrobasilar circulation.

Results: Median age of patients was 72 years (44-86) and NIHSS 15 points (3-36). Median door to image was 16 minutes (0-63), door to needle 45 minutes (25-85), door to puncture 137 minutes (50-310), puncture to start of revascularisation 15 minutes (5-45), puncture to revascularisation 33 minutes (9-135) and onset to puncture 280 minutes (58-1130). After the procedure, successful revasculatisation TICI 2b/3 was achieved in 80% of patients. Symptomatic intracranial haemorrhage was present in 2 patients. At 3-month follow-up, favorable outcome with mRS 0-2 was in 37.5% patients, mRS 3-5 in 20% and mRS 6 in 42.5%.

Conclusion: Endovascular treatment of patients with acute ischaemic stroke in posterior vertebrobasilar circulation is a safe and effective treatment.

B-0282 14:32
Comparison of mechanical thrombectomy in single- vs. biplane angioplasty
A. Gueneq1, R. Faheh2, M. Piotin2, R. Blanc3, B. Bonneville1, P. Mosimann3, C. Cognard3; Toulouse/FR, 2Paris/FR, 3Essen/DE (adrienguenego@gmail.com)

Purpose: To assess differences in radiation, contrast exposures, procedure duration and outcomes between cerebrovascular mechanical thrombectomy (MT) procedures performed in single-plane (SP) or biplane (BP) angioplasties.

Methods and Materials: Consecutive patients treated by MT from four centres between January 2014 and May 2017 were included. Patients and MT characteristics (including type of the angioplast [SP/BP], recanalisation score, modified Rankin Scale at 3 months, complications, scopy duration, procedure duration, dose-area product (DAP), kyma and contrast load) were assessed.

Multivariate analysis were performed (with Bonferroni correction) to compare angioplasties regarding MT efficacy and safety, patient radiation and contrast exposure and fluoroscopy duration.

Results: Within four centres, 906 patients underwent a MT (576 on a bpline angioplast, 330 on a single plane). After multivariate analysis, BP angioplasties significantly decreased contrast load (100 vs 200mL, 50% lower, relative effect 0.52, 95%CI [0.37-0.72], p<0.0001) and fluoroscopy duration (22 vs 27min,15% lower, relative effect 0.83 [0.74-0.94], p<0.0001) compared with SP angioplasties. There was no difference regarding procedure duration, radiation doses, rate of successful recanalisation, outcome or procedural complications.

Conclusion: BP angioplasties significantly decreased iodine contrast exposition. Furthermore, decision to realise a pre-intervention diagnostic cerebral angiogram before MT should be clinically motivated to avoid any useless increase in radiation, contrast load and procedure duration.

B-0283 14:40
Impact of haemoglobin levels and anaemic state in the prognosis of patients at three months after mechanical thrombectomy for acute ischaemic stroke
J.N. Pinto Ramos1, J. Silva2, P. Calvão-Pires1, I. Gal1, J.P. Marto1, S. Calado1, C. Branco1, J.T.C. Baptista1, G. Branco1; Lisbon/PT, 2Covilha/PT (joaoenpramos@gmail.com)

Purpose: Those anemic and with lower levels of hemoglobin at admission seem to fare worse in the long-term when compared to non-anemic patients regarding acute ischemic stroke (AIS). We hypothesize hemoglobin and anemia play a lesser role in AIS patients treated with endovascular treatment, potentially reflecting a selection bias.

Methods and Materials: Electronic health records were used to collect clinical data as a retrospective analysis of consecutive cases of patients (n=72) that underwent mechanical thrombectomy as part of the acute phase treatment for AIS, in Centro Hospitalar Lisboa Ocidental from 01-01-2016 to 30-06-2018. Good prognosis at 3 months was defined as modified Rankin score (mRs) 0-2 (vs mRs 3-6). We performed 2 logistic regressions: one using the numerical value of hemoglobin at admission; another with anemia at admission as a covariate, as defined per the World Health Organization criteria. Dependent variable was defined as good prognosis at 3 months, with adjustment for age, sex, NIHSS at admission, thrombolysis, clinic-to-groin-puncture time and variable of interest.

Results: 44.4% of patients had good prognosis at 3 months. Mean value of hemoglobin was 13.34 ± 1.69 g/dL, and 22.2% of patients were anemic. Neither hemoglobin (OR 1.045 [0.747;1.472], p=0.796) nor anemic condition (OR 0.831 [0.227;3.921], p=0.774) seemed to have a significant impact in good prognosis at 3 months.

Conclusion: Contrary to most literature regarding AIS in general, hemoglobin levels and anemic condition do not seem to be independent predictors of good prognosis at 3 months in patients with AIS that have undergone mechanical thrombectomy.

B-0284 14:48
Direct puncture of the carotid artery for thrombectomy in acute stroke: patients’ and center’s experience
M. Baptista, C. Pinheiro, I. Ribeiro Fragata, R. Carvalho, J. Pamplona, A.P. Nunes, J. Reis; Lisbon/PT (marianabah@gmail.com)

Purpose: In the late twenties, Ega Moniz introduced cerebral angiography by injecting a radio-opaque medium directly in the cerebral carotid artery. The femoral Seldinger technique later replaced direct carotid access. We aimed to prove that in particularly difficult anatomical configurations of the aortic arch, percutaneous access through the carotid artery may be justified.

Methods and Materials: Retrospective review of clinical and imaging data of stroke patients, submitted to Digital Subtraction Angiography (DSA) at Hospital São José by direct carotid artery puncture, between January 2014 and September 2018.

Results: A total of 9 patients, referred to our hospital for large vessel occlusion stroke, were submitted to DSA by direct carotid artery puncture. Significant arterial tortuosity and difficult anatomy did not allow selective catheterization through femoral access. Mechanical thrombectomy with aspiration was performed in 6 of them, with successful recanalization (TICI 3). In one patient, by the time the vessel was reached, spontaneous recanalization had occurred. In one patient, by the time the vessel was reached, spontaneous recanalization had occurred. In two patients it was not possible to reach the occluded vessel. Four of these patients were also submitted to intravenous thrombolysis. No major complications occurred.
Conclusion: At a time when endovascular treatment is part of the guidelines for the treatment of large vessel occlusion strokes, direct carotid artery puncture may offer patients with no femoral access or difficult anatomy a safe alternative to achieve timely recanalization.

B-0285 14:56
Computational fluid dynamics in patients treated with flow-diverter devices
T. Baptista; Lisbon/PT (tbaptista@gmail.com)

Purpose: To simulate, using computational fluid dynamics (CFD), the haemodynamic conditions in pretreatment aneurysms and to identify if flow characteristics are of assistance in predicting whether a specific aneurysm is more prone to thrombosis after flow-diverter (FD) placement, and if there are any haemodynamic indices that correlate with the regions which thrombose first.

Methods and Materials: Seven internal carotid artery aneurysms were modelled from 3D pretreatment angiographic studies. Patients were treated using FD and were followed up by digital subtraction angiography and contrast-enhanced 3D time of flight magnetic resonance angiography during 2 to 12 months. Images were segmented using Amira 5.3.3 and @neFuse 7.3TS software and flow was simulated using ANSYS CFX 13.0 software.

Results: Follow-up showed that a smaller (pararaphthic) aneurysm was still patent at 6-month follow-up imaging whilst in the same vessel a giant cavernous lesion had already been excluded. CFD analysis demonstrated that the paraophthalmic aneurysm was under higher values of wall shear stress (WSS) and that a substantial portion of flow coming from the larger aneurysm was producing a flow impingement area with high values of WSS, low values of oscillatory shear index (OSI) and positive values of aneurysm formation indicator (AFI). Thrombus formation within the aneurysm sac initiated in regions of OSI and negative values of AFI.

Conclusion: In this study, we observe that CFD may be able to help distinguish between those aneurysms likely to occlude more rapidly and those that may undergo delayed occlusion. Initial regions of thrombosis may also be predicted.

B-0286 15:04
Endovascular treatment of intracranial carotid sidewall aneurysms by flow diversion: a single centre’s experience and comparison of Fred and Pipeline stents
C.A. Gundogmus, D. Tureli, R. Asadov, S. Sabet, N. Andac, F. Baltacioglu; Istanbul/FR (cagundogmus@gmail.com)

Purpose: To retrospectively evaluate feasibility and efficacy of FRED and Pipeline stents in endovascular treatment of challenging intracranial carotid sidewall aneurysms.

Methods and Materials: One hundred and seventeen patients with a total of 151 sidewall aneurysms were included. Patients received either dual anti-platelet therapy (Aspirin and Clopidogrel) or Prasugrel as monotherapy. Patient follow-up was done by DSA.

Results: Mean patient age was 50 (ranged 29-76). Eighty-three (54.9%) aneurysms were treated with FRED and 68(45.1%) were treated with Pipeline stents. 3 cases were bleeding aneurysms (2 FRED, 1 Pipeline). Stent deployment failure occurred with both Pipeline(n=2) and FRED(n=4) stents; 2 treated with Tirofiban and additional stenting, 2 treated with Tirofiban only; no long term sequelae were seen. One patient with giant aneurysm treated with FRED and fully packing with coils haemorrhaged post-intervention and died 10 days later. Follow-up periods ranged between 6 and 63 months (average 36 months). Four patients were lost to follow-up. Complete occlusion was observed in 89.4% of aneurysms (FRED n=68, 88.3%; and Pipeline n=58, 90.6%).

Conclusion: Treatment of challenging intracranial carotid sidewall aneurysms with flow diversion using FRED and Pipeline stents is feasible and effective with both stents showing comparable and promising results in short, mid and long-term follow-up.

B-0287 15:12
Flow diverters in the treatment of intracranial aneurysms: experience at our institution
I. Andres Cano; Cadiz/ES (ignacioanca@gmail.com)

Purpose: Endovascular treatment of intracranial aneurysms has become an alternative to surgical clip ligation. Flow diverters induce disruption of flow near the aneurysm neck, inducing thrombosis into the aneurysmal sac while preserving physiological flow in the parent vessel and adjacent branches.

Our goal is to study the demographics, indications of treatment and the outcomes of the patients who were under the procedure with the experience of our institution.

Methods and Materials: Retrospective study aiming to identify patients treated with flow diverters between 2007 and 2018 in our hospital.

Results: We identified 22 patients (17 females) and 24 aneurysms. The average age of the patients was 51 ± 13.4 years (range 11-71). Ten aneurysms were located on the left, four aneurysms were in the midline and the remaining 10 aneurysms were on the right. There were three complications, one of which led to death. Four of the aneurysms presented with mass effect symptoms and the remaining were incidental.

Conclusion: Flow diverters were placed in large and complex intracranial aneurysms. Flow diversion was a safe and highly effective technique for treatment of aneurysms of the anterior and posterior circulation. Only 1 of the 22 patients was discharged with poor outcomes and another one died. 90% of our patients (20 out of 22) were discharged asymptomatic. At follow-up, a high proportion of aneurysms treated with flow diverters achieved complete obliteration.

B-0288 15:20
Balloon-assisted coil embolisation and large stent delivery for cerebral aneurysms with a new generation of dual-lumen balloons
A. Guenego; J.-B. Zerlauth, R. Meulli, R. Chapot, P. Mosimann⁵; Toulouse/FR, Lausanne/CH, Essen/AD (adrienguenego@gmail.com)

Purpose: Dual-coaxial lumen balloon micro-catheters that can serve as a releasing device and through which small stents can be delivered. We report a series of a new dual-lumen balloon catheter with parallel lumens enabling enhanced inflation and deflation properties and through which larger stents may be deployed, including flow diverters (FD).

Methods and Materials: All aneurysms that were treated with a Copernic2L (COP2L) dual-lumen balloon catheter at a single centre between February 2014 and December 2016 were assessed. Patient, aneurysm, procedural characteristics, clinical and angiographic follow-up.

Results: A total of 18 aneurysms in sixteen patients (14 women) were treated with the COP2L. Mean aneurysm height x width and neck size were 1.1 (min 0.5; max 2.1) and 3.3 mm (min 1; max 6.3), respectively. The COP2L was used for balloon-remodeled coiling exclusively in two aneurysms; coiling and FD stenting in eight; coiling and brained stent delivery in three; coiling, braided and FD stenting in one and one FD stenting without coiling in four (stenting alone).

There were three technical complications (3/16, 18.7%), including a perforation and two thromboembolic asymptomatic events that were rapidly controlled with the COP2L. There was no immediate or delayed morbidity or mortality.

Conclusion: According to our initial experience, the COP2L is a new type of dual-lumen balloon catheter that appears to be safe and effective for balloon or stent-assisted coiling of cerebral aneurysms and may be used to optimise stent-wall apposition.
Results: Sensitivity and specificity, lesion visibility and subjective diagnostic confidence were significantly higher in HDWI. Presence of artefacts, not affecting the diagnosis, was comparable between HDWI and rsDWI. Slightly higher overall image quality was found in rsDWI.

Conclusion: MS-EPI sequences provide high overall image quality and low artefacts. However, non-EPI DWI sequences showed superior diagnostic accuracy for cholesteatomas.

B-0290 14:08
Value of four stage vestibular hydrops grading and asymmetric perilymphatic enhancement in the diagnosis of Menière’s disease on MRI
A. Bernaerts, R. Vanspaunwen, C. Blaive, J. van Dinther, A. Zarowski, F. Wuyts, F.E. Offeciers, J.W. Casselman, B. De Foer

Purpose: There is still a clinical-radiological discrepancy in patients with Menière’s disease (MD). Therefore, the purpose of this study was to investigate the reliability of current MRI endolymphatic hydrops (EH) criteria amongst neuroradiologists and to compare the effect of application of the grading system on the clinical utility of new imaging signs such as a supplementary fourth low-grade vestibular EH, the degree of perilymphatic enhancement (PE) and endolymphatic sac enhancement (ESE) in patients with Menière’s disease (MD).

Methods and Materials: This retrospective study included 148 patients with probable or definite MD according to the 2015 Barany criteria who underwent a 4-hour delayed intravenous Gd-enhanced 3D-FLAIR MRI between January 2015 and December 2016. Vestibular EH, vestibular PE, cochlear EH, cochlear PE, and ESE were reviewed twice by 3 independent readers. Cohen’s Kappa and a multivariate logistic regression were used for analysis.

Results: The intra- and inter-reader reliability for the grading of vestibular-cochlear EH and PE was excellent (0.7 < kappa < 0.9) except for the ESE (kappa 0.5). The 2 most distinctive characteristics to identify MD are cochlear PE and vestibular EH which combined gave a sensitivity and specificity of 79.5% and 93.6%. By addition of a lower grade vestibular EH, the sensitivity improved to 84.6% without losing specificity (92.3%). Neither, ESE, cochlear EH or vestibular PE showed added value.

Conclusion: MRI using vestibular-cochlear EH and PE grading system is a reliable technique. Cochlear PE assessment in combination with a 4-stage vestibular EH grading system gives the best diagnostic accuracy to detect MD.

B-0291 14:16
Teaching temporal bone anatomy CT scan as a psychomotor skill: a quasi-experimental study
S. Sefidbakhsh1, B. Bijani1, P. Keshavarz2, M. Amini1, R. Jafari1, F. Zarei1, H.R. Abbasl1, P. Irangouei1, S. H. Sharifi1, M. E. Shaghi2, R. Fakhr2, P. Iranpour1

Purpose: To present a teaching method for the radiology residents the cross-sectional anatomy of the temporal bone as a psychomotor skill using predetermined points of transition between orthogonal planes as a roadmap. Methods and Materials: 21 radiology residents entered the study. We provided a teaching scheme based on the Gagne’s theory which consisted of 6 steps: gaining attention, informing the learner of the objective, stimulating recall, presenting the stimulus material, providing learning guidance, eliciting performance, providing feedback, assessing performance, enhancing retention and transfer. For the main teaching session, the conceptualization, visualization, verbalization steps of teaching psychomotor skills was employed by guiding the residents systematically using the 3D cursor to move and transit between orthogonal planes for the predetermined anatomical points. The residents were evaluated before and after the training sessions using objective structured clinical examination (OSCE), resident satisfaction and educational goal achievement questionnaires.

Results: Mean age was 27.9 ± 8.6 (range from 26-38) years, 14 (66.6%) men and 7 (33.4%) women. We observed that the OSCE score improved significantly after the twenty-minute session (2.57 ± 1.62 vs. 8.02 ± 2.43; p<0.001). Mean resident satisfaction score measured by standardized questionnaires was 7.63 ± 2.86 /10. Subjectively the residents assessed their ability to identify the anatomical learning objectives after the mini-sessions to have significantly increased(4.33 ± 1.22 vs. 8.27 ± 2.46; p=0.021).

Conclusion: Interpretation of cross-sectional images as a psychomotor skill may be an effective teaching method. Using a standardized approach and defining predetermined transition points moving between orthogonal planes enhances learning.

B-0292 14:24
Ultra-high-resolution CT for temporal bone imaging: a comparison to cone-beam CT
T. Yamashiro1, M. Tsukabimototo, Y. Xu, Y. Morita, H. Tomita, S. Murayama2, OkinawaJP (clatsune@yahoo.co.jp)

Purpose: Ultra-high-resolution CT (U-HRCT) scanners, equipped with an advanced detector that receives X-ray signals at 0.25 mm resolution in all three directions can provide more detailed imaging findings than conventional CT scanners. The purpose of this study was to compare the image quality of U-HRCT and CBCT for small structures in the temporal bone imaging.

Methods and Materials: Fifteen subjects (age range, 18-70 years) underwent both U-HRCT and CBCT in different dates to assess various unilateral ear diseases. It was confirmed that no diseases existed in the contralateral (normal) ear. On the axial and coronal views of the U-HRCT scans (pixel size, 0.16 mm; slice thickness, 0.25 mm for axial and 0.16 mm for coronal views) and the CBCT scans (pixel size, 0.13 mm; thickness, 0.5 mm), the image quality of small structures in the normal ear, such as the tendons of the stapedius muscle and the crura of the stapes, were assessed by three radiologists using a 5-point scale. Comparisons of the scores between the U-HRCT and CBCT were made by Wilcoxon matched-pair test.

Results: For all 8 small structures, the scores of the U-HRCT were significantly higher than those of the CBCT (P<0.001). Particularly, the visibility of the crura of the stapes, the chorda tympani, and the tendon of the tensor tympani muscle was significantly better on the U-HRCT than the CBCT.

Conclusion: The U-HRCT can provide more precise anatomical information of small structures in the temporal bone than the CBCT.
any sequence and 3 of them signs of EH only in 3D-REAL-IR sequence. Vestibular EH detection rates were 58.6% in 3D-REAL-IR sequence and 40.7% in 3D-FLAIR sequence, and cochlear EH detection rates were 24% and 11% respectively. In 6 patients both sequences matched the same result, suggesting the 3D-REAL-IR sequence greater degree of severity.

Conclusion: Both sequences are suitable in the assessment of EH. However, 3D-REAL-IR has higher detection rates in both vestibular and cochlear EH. We suggest that 3D-REAL-IR might be superior in the diagnosis of MD.

B-0295 14:48

Measurement of the depth of facial nerve at the level of stylomastoid foramen using MR imaging in Bell's palsy

H. Karaca, L. Soydan², F. Baskak², A. Sever², Elazig/TR, İstanbul/TR (fulyabaskak@hotmail.com)

Purpose: To investigate whether the depth of the facial nerve from the skin surface as it exits the stylomastoid foramen differs between paralyzed and unaffected sides in patients with Bell's palsy.

Methods and Materials: Forty-three patients (23 females, 20 males; mean age 43.8±15.2 years) diagnosed with Bell’s palsy between January 2014 and June 2017 were retrospectively reviewed and those who had a cranial MR imaging performed within 10 days upon admission to hospital were included in the study. The axial postcontrast CUBE sequence was utilized for measurement of the facial nerve depth. Age, gender, and body mass index (BMI) as well as concomitant chronic diseases, were also noted. The severity of facial paralysis was graded using the House-Brackmann (HB) scoring system.

Results: The facial nerve depth was significantly lower on the paralytic side compared to the unaffected side (32.9±5.4 mm vs. 36.9±5.1 mm, respectively; p=0.001). The facial nerve depth on the paralytic side was also lower in female patients than the male patients (31.2±4.6 mm vs. 34.7±5.7 mm, respectively; p=0.03). However, the facial nerve depth on the paralytic side was not correlated with patients’ age (r=0.288; p=0.610), BMI (r=0.215, p=0.166), and HB scores (r=0.031; p=0.05).

Conclusion: In study cohort of patients with Bell’s palsy, the facial nerve in the paralytic side is located more superficially as it exits the stylomastoid foramen when compared to the contralateral side. Therefore, the depth of facial nerve may potentially play a key role in the etiology of Bell’s palsy, which should be further evaluated.

B-0296 14:56

Mastoid pneumatisation in children before CI: a risk factor for complications?

J. Burgos, A. Skoldenko, M.H. Albrecht, A. Lehn, T. Stöver, M. Harth, J.L. Wichmann, B. Kaltenbach, T.J. Vogl; Frankfurt a. Main/DE (iris.burck@kgu.de)

Purpose: To evaluate preoperative mastoid air cells (MAC) pneumatisation calculated by 3D-CT volumetry in correlation with complication rate after cochlear implantation (CI) in infants and children.

Methods and Materials: MAC volume of 105 patients (mean age 10.4±11.58 mos, 37 female, 68 male) was measured from 186 CI was evaluated by CT-based volumetry. Thresholds were defined to determine 3 different parts of MAC volume: osseous, aerated and soft tissue opacification. 8 groups were classified by varying patient age at CT evaluation; 0–3, 4–6, 7–9, 10–12, 13–24, 25–36, 37–48, 49–60mo. Postsurgical follow-up time was set for 2 years.

Results: 80 patients were evaluated after exclusion of 25 patients because follow-up time was exceeded. Randomized one implanted ear per patient was evaluated. No significant difference was found between right and left MAC volume (p=0.74), as well as between sexes (p=0.30). 12 patients had complications in follow-up. Group 2 (n=40) showed the highest absolute complication rate (n=7). Complications occurred in groups 1, 2 and 7. No significant correlation was seen between volume-impaired MAC and increased complication rate in total (p=0.79). There was no significant correlation between insufficient aerated MAC and complication rate. 17 patients showed opacified MAC, but without significant correlation with increased complication rate (p=0.27). Patient’s age at surgery showed significant impact on complication rate (p=0.048), more complications occurred in younger children.

Conclusion: Analysis of preoperative data to identify potential risk factors may reduce post-CI complications. But insufficient MAC pneumatisation seems not to be a potential risk factor for complications.

Author Disclosures:

M.H. Albrecht: Speaker; Received speaker fees from Siemens and Bracco. J.L. Wichmann: Employee; Employee of smart reporting. Speaker; Received speaker fees from Siemens and GE.

B-0297 15:04

Research software in cochlear duct length estimation, Greenwood frequency mapping and electrode array length selection

A. Dhanasingh; Innsbruck/AT (anandhan.dhanasingh@medel.com)

Purpose: Cochlear size varies among the population bringing the necessity for electrode arrays available in various lengths. This research software helps in the estimation of the patient's cochlear duct length (CDL) which is then used for the selection of the correct length electrode array matching the patient's cochlear size and as well in getting the patient-specific cochlear frequency map.

Methods and Materials: Visual Studio Express 2012 for Windows Desktop is used in the architecture of this research software. The basal turn diameter of the cochlea ("A" value) is retrieved from the pre-operative CT image of the temporal bone. "A" will be taken as the input for the CDL equations proposed by Alexiades et al. for estimating CDL for various insertion depths and Greenwood's frequency map. Users have the choice to select any electrode array of their choice and place it under the frequency map to see how good it fits to that particular patient's cochlea along with the possibility to drag and move electrode array mimicking post-operative actual electrode insertion depth.

Conclusion: This research software simplifies the overall process of CDL estimation and in getting the patient-specific cochlear frequency map.

B-0298 15:12

MRI in unilateral Meniere's disease: the value of post-contrast cochlear perilymph signal intensity

L.M.H. de Pont, J. van Şteekelenburg¹, A. van Weijen¹, O.D. Vijnbrier², H.M. Blom³, S. Hammer⁴, The Hague/NL, Almere/NL (l.de pont@hagaziekenhuis.nl)

Purpose: Meniere’s disease (MD) is characterized by endolympathic hydrops (EH), although the diagnosis relies on clinical criteria. MR imaging recently became available to detect EH in vivo. However, not all patients with definite MD show EH on MR imaging. The purpose of this study was to evaluate additional value of cochlear perilymph signal intensity ratio (SIR) in patients with suspected MD.

Methods and Materials: 3T MR imaging was performed in patients with definite MD, probable MD and patients with other vertigo-associated inner ear disorders. Delayed contrast-enhanced 3D high-resolution FLAIR images of the inner ear were obtained. SIR was calculated based on ROI measurements in the basal cochlear turn. Data were compared using paired t-tests.

Results: 420 ears of definite MD patients, 54 ears of probable MD patients, and 134 ears from patients with other inner ear disorders were included. EH was present in symptomatic ears in 94%, 45% and 6%, respectively. The affected ears in unilateral definite and probable MD showed higher SIR compared with their asymptomatic side (both P<0.001). No significant differences were detected in ears with other inner ear disorders. Six (5%) patients with unilateral definite MD showed no EH on MRI, whereas the SIR was higher in affected ears (P<0.05). In unilateral probable MD, 11 patients (41%) were classified as having no hydrops and showed no significant SIR asymmetry.

Conclusion: Cochlear SIR asymmetry can be used as an additional parameter in discriminating MD from non-MD, which is particularly of value in clinical probable MD.

B-0299 15:20

Double-center study on textural differences between cholesteatoma and middle ear inflammation in non-enhanced high-resolution computed tomography

C. Arendt¹, D. Leitner¹, M.E. Mayerhofer², L. Lena³, C. Czerny², I. Burck¹, T.J. Vogl³, R. Schermthanner³, Frankfurt a. Main/DE, Vienna/AT (crt.arendt@gmail.com)

Purpose: To investigate whether radiomic features extracted from unenhanced CT can be utilized for differentiation between cholesteatoma and middle ear inflammation (MEI), and to compare CT data from two different centers/scanner in that regard.

Methods and Materials: Ninety-five patients (45 with cholesteatoma and 50 with MEI) were included retrospectively. At center A, 45 patients (20 with cholesteatoma, and 25 with MEI) were examined using a 512x512 matrix; whereas at center B, 50 patients (25 with cholesteatoma, and 25 with MEI) were examined using a 3D-FLAIR matrix. Radiomic features (histogram, co-occurrence and run-length matrix, absolute gradient, autoregressive model, Haar wavelet transform) were extracted from axial CT sections using manually defined regions of interest. POE+ACC (probability of error and average correlation) coefficients were used to select subsets of the 10 best radiomic
features for differentiation between cholesteatoma and MEI. Linear discriminant analysis followed by k-nearest neighbor classification (using leave-one-out cross-validation) was used for classification, with histology obtained from surgery specimens serving as the reference standard.

Results: Using pooled data from both centers, only 59/95 cases were correctly classified (accuracy, 62.11%). Separately for data from center A, 31/45 cases (accuracy, 68.89%) were correctly classified, whereas separately for data from center B, 42/50 cases (accuracy, 84.0%) were correctly classified.

Conclusion: Radiomics features extracted from unenhanced CT may be useful for differentiation between cholesteatoma and middle ear inflammation when high-resolution CT data are utilized. Pooling of radiomics data extracted from CT datasets with different resolutions does not appear to be meaningful without further post-processing.

Artificial Intelligence and Machine Learning

SS 305

Machine learning: chest and cardiac

Moderators:
- C.L. Schlett, Freiburg/DE
- N.N.

B-0300 14:00

Deep learning reconstruction for calcium scoring reduces radiation dose while maintaining accuracy of Agatston scores

C. Stevens, J. Schuizer**2,** T. Acharya,**3** K. Bronson,**4** S. Rollison,**4** W. Bandettini,**5** S. Shanbhag,**6** M.Y. Chen,**7** K. Kanagawa,**8** J. Hill,**9** E. Bethesda, MD/US (chloe.stevenson@medical.canon)

Purpose: Assessing coronary artery calcium (CAC) is a valuable tool in individualizing cardiac risk assessment. Deep convolutional neural network image reconstruction can reduce image noise and enable radiation dose reductions. The aim of this study is to investigate whether the use of a deep learning reconstruction algorithm allows for reduced radiation dose CAC scanning.

Methods and Materials: With institutional ethics approval, 40 consecutive patients underwent EKG-gated coronary calcium score scans (120kV, 0.275s rotation speed) with 1) standard clinical dose with filtered back projection (FBP) and 2) reduced radiation dose levels with deep learning reconstruction. Agatston score was calculated on a per patient basis using standard techniques and 130 HU threshold and interpreted by 2 independent readers blinded to clinical data and reconstruction techniques. Signal-to-noise was calculated for each reconstruction. Data was analyzed using linear regression.

Results: Patients averaged 63 ± 15 years old, 45% were male, and the median Agatston score was 61.7 (interquartile range 0-315, entire range 0-4121). The median radiation exposure was 93% lower for the reduced (0.05 mSv, interquartile range 0.03-0.08) versus standard dose scans (0.88 mSv, interquartile range 0.63-1.22). There was excellent agreement (R=0.99) between deep learning reconstruction and FBP Agatston scores. Signal-to-noise for low dose deep learning images was comparable to standard dose FBP images (2.16 vs. 2.45, respectively).

Conclusion: Deep learning reconstruction in conjunction with 93% radiation reduction has an excellent correlation with standard conventional coronary artery calcium scoring.

Author Disclosures:
- C. Stevens: Employee; Canon Medical Systems Corporation. J. Schuizer: Employee; Canon Medical Systems Corporation. M.Y. Chen: Research/Grant Support; Canon Medical.

B-0301 14:08

Coronary CT angiography derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischaemia

P. von Knebel Doeberitz, T. Fannelli,** M. van Assen,** M.H. Albrecth,** C.N. De Cecco,** T. Dupuy,** R.R. Bayev,** C. Tesche,** U.J. Schoepf,** Charleston, SC/US. **2** Groningen/NL. **3** Frankfurt a. Main/DE. **4** Munich/DE (p_knebel@hotmail.de)

Purpose: We sought to investigate the diagnostic performance of coronary CT angiography (CTA)-derived plaque markers combined with deep machine learning-based fractional flow reserve (CT-FFR) to identify lesion-specific ischaemia using invasive FFR as the reference standard.

Methods and Materials: 84 patients (61±10 years, 65% male) who had undergone cCTA followed by invasive FFR were included in this single-center retrospective, HIPAA-compliant study. Various plaque markers were derived from cCTA using a semi-automatic software prototype and deep machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to identify lesion-specific ischaemia on a per-vessel basis was evaluated using invasive FFR as the reference standard.

Results: 103 lesion-containing vessels were investigated. 32 / 103 lesions were haemodynamically significant by invasive FFR. In a multivariate analysis (adjusted for Framingham risk score), the following markers showed predictive values for lesion-specific ischaemia (odds ratio [OR]): lesion length (OR 1.15, p=0.037), non-calculated plaque volume (OR 1.02, p=0.007), Napkin ring sign (OR 5.97, p=0.014), and CT-FFR (OR 0.81, p<0.0001). A receiver-operating characteristics analysis showed the benefit of identifying plaque markers over cCTA stenosis grading alone, with AUCs increasing from 0.91 with ±50% stenosis to 0.83 with addition of plaque markers to detect lesion-specific ischaemia. Further incremental benefit was realized with the addition of CT-FFR (AUC 0.93).

Conclusion: Coronary CTA-derived plaque markers portend predictive value to identify lesion-specific ischaemia when compared to cCTA stenosis grading alone. The addition of CT-FFR to plaque markers shows incremental discriminatory power.

Author Disclosures:
- C.N. De Cecco: Consultant; Bayer, Siemens Healthineers. U.J. Schoepf: Consultant; Bayer, Guerbet, HeartFlow Inc., Siemens Healthineers. Research/Grant Support; Astellas, Bayer, General Electric, Siemens Healthineers.

B-0302 14:16

DeformationNet: unsupervised deep learning co-registration for ventricular segmentation of MR images

B. Norman, M. Simonovsky,** F. Lau,** S. Stall,** D. Golden,** A. Hsiao,** San Francisco, CA/US. **2** Dobris/CZ. **3** San Diego, CA/US (ber.norman@arterys.com)

Purpose: We propose a deep learning framework, DeformationNet, which allows for unsupervised image co-registration of perfusion MR images and semi-supervised ventricular segmentation capable of transferring across multiple time points.

Methods and Materials: Using a previously trained ventricular segmentation network that was trained on cine SSFP images, inference is first run on all time points in a perfusion scan. A heuristic based on the inferred segmentation probability maps is then used to select the perfusion image with the "best" target segmentation mask. DeformationNet is trained to predict dense deformation fields (DDF) between two perfusion MR images in order to register the moving image onto a fixed image. The predicted DDFs are then used to warp the target best ventricular segmentation of the moving image onto all other timepoints (the fixed images).

Results: Median Dice values on the test set were 0.855 (IQR values: 0.698-0.899) for LV endo and 0.879 (IQR values: 0.715-0.925) for LV epi. Average computation for calculating the DDFs for an entire perfusion volume was approximately 7 seconds on a Nvidia P100 GPU (compared to traditional iterative co-registration methods which can take in excess of one hour).

Conclusion: We propose DeformationNet, an approach using unsupervised neural networks that can quickly produce deformation fields between new sets of images. These can be leveraged to perform image co-registration and transferring of segmentation masks or anatomical landmarks across multiple image frames. This approach may be faster and more accurate than iterative registration methods and can improve the workflow of perfusion analysis.

Author Disclosures:

B-0303 14:24

Radiomic analysis of coronary CT angiography images can identify invasive and radiouclide imaging markers of coronary plaque vulnerability

M. Kolossvary, J. Park,** J.-I. Bang,** J. Zhang,** J. Lee,** J. Paeng,** T. Kudo,** B.K. Koo,** P. Horvat-Mauro,** B.-K. Koo,** Seoul/KR. **2** Wakayama/JP. **3** (marton.kolossvary@gmail.com)

Purpose: Identification of invasive and radiouclide imaging markers of coronary plaque vulnerability by a single, widely available non-invasive technique may provide the opportunity to identify vulnerable plaques and vulnerable patients in broad populations. Radiomics extracts quantitative metrics from radiological images which describe the heterogeneity and spatial complexity of lesions to create big-data datasets. Our aim was to assess
whether radiomic analysis of coronary CT angiography images outperforms conventional clinical assessment to identify invasive and radionucleide imaging markers of plaque vulnerability.

Methods and Materials: We assessed seven conventional plaque features and 935 radiomic parameters from coronary CT angiography (CTA) images of stable angina patients who in addition underwent sodium fluoride positron emission tomography (NaF-PET), intravascular ultrasound (IVUS) and optical coherence tomography (OCT). For diagnostic accuracy, area under the receiver operating characteristics curve (AUC) was calculated using 5-fold cross-validation with 1000 repeats. We calculated the two-sided Wilcoxon signed-rank test to compare the distribution of AUC values resulting from the repeated cross-validations.

Results: In total, we analysed 44 plaques in 25 patients with all modalities. Radiomic analysis of coronary CTA images outperformed conventional qualitative and quantitative methods to identify attenuated plaque by IVUS, thin cap fibroatheroma by OCT and metabolically active plaques on NaF-PET (AUC: 0.72 v. 0.59, 0.80 v. 0.66, 0.87 v. 0.65; p<0.001 all, respectively).

Conclusion: Radiomic analysis of coronary CTA images may provide an inexpensive, widely available non-invasive solution to identify vulnerable plaques and, therefore, improve cardiovascular risk stratification.

Author Disclosures:

M. Kolossvary: CEO; Pictologics Ltd.

P. Rogalla: Research/Grant Support; Canon Medical. B.E. Hoppel: Employee; Canon Medical. M. Masakazu: Employee; Canon Medical. J. Zhou: Employee; Canon Medical. G. Farrell: Employee; Canon Medical.

B-0307 14:48

Unsupervised machine learning for the identification of CT imaging markers of progression in idiopathic pulmonary fibrosis

P. Catala, J. Hofmanninger, S. Röhrich, F. Prayer, M. Holzer, N. Sverzellati, M. Weber, H. Prosch, G. Langs, Vienna, AT, Parma, IT (jeanny.paran@medunivien.ac.at)

Purpose: To identify imaging markers of progression in chest CT scans of patients with idiopathic pulmonary fibrosis (IPF) and compare the performance of the algorithm to chest radiology experts.

Methods and Materials: A chest CT of 80 IPF patients were divided into 114 pairs consisting of two examinations of the same patient at different points in time (T1 baseline and T2 follow-up). Non-rigid registration was performed and lungs were segmented automatically. Unsupervised machine learning was used for textural feature extraction and generation of 20 stable lung pattern clusters. Each voxel was assigned to one cluster, volume differences between T1 and T2 were calculated for each cluster. Results were used to train a Random Forest Classifier to predict the sequence of scans. For evaluation leave-one-out cross-validation was performed and global volume fraction change of each cluster per scan was analysed, with a subsequent comparison of two radiologists’ performance.

Results: Six out of 20 clusters were identified as predictor of disease progression, used by the classifier to accurately determine the sequence of CT scans in 87 out of 114 pairs (76%). The performance of the classifier was comparable to the expert radiologists (E1: 83% and E2: 67%). The overlap of computational model errors with instances of expert errors were 25.92% (E1) and 66.67% (E2).

Conclusion: By applying an unsupervised machine learning approach, we were able to identify six stable CT-patterns predicting disease progression in patients with IPF. The resulting algorithm showed similar accuracy to two chest radiology experts.

Author Disclosures:

J. Pan: Research/Grant Support; Boehringer Ingelheim.

B-0308 14:56

Imaging biomarkers for the differentiation of benign and malignant small solitary pulmonary nodules smaller than 1 cm based on CT texture analysis

J. Li¹, M. Chen², X. Hu¹, W. Ye¹, C. Chen³, P. Pang², C. Lu³, Q. Weng³, H. Wang⁴; Lishui, CN, Hangzhou, CN (lschrjjs@163.com)

Purpose: To investigate the potential imaging biomarkers for predicting the benign and malignant small pulmonary nodules (PNs) (≤1cm) based on CT texture analysis.

Methods and Materials: 89 PNs (≤1cm) from 89 cases were included, 51 nodules were diagnosed with adenocarcinoma, and 38 had benign PNs diagnosed with inflammation or infections. The AK (Analysis Kit, GE Healthcare) software was used to manually delineate the volume of interest of the lesions and extract a total of 396 quantitative texture parameters. The statistical analysis was performed with R software. The PNs were randomly divided into training set (n=59) and validation set (n=30). All pre-normalized (Z-score) feature values were dimension reduction by LASSO algorithm and divided into training set (n=59) and validation set (n=30). All pre-normalized (Z-score) feature values were dimension reduction by LASSO algorithm and selected the most useful features in training set. The selected imaging features were then combined into Rad-score, which was further tested by the ROC curve in training set and validation set.

Results: Four characteristic parameters (ClusterShade, AllDirection, offset4, SD, ShortRunEmphasis, angle45, offset11, Maximum 3Diameter, SurfaceVolumeRatio) were further selected by LASSO (p<0.05). The above four parameters as a cluster of imaging biomarkers were used to form the Rad-score. The area under the ROC curve in the training set was 0.792 (95% CI: 0.671, 0.913), and the sensitivity and specificity were 86.10% and 65.20%. The area under the ROC curve in the validation set was 72.9% (95% CI: 0.545, 0.913), and the sensitivity and specificity were 86.70% and 60%.

Conclusion: The cluster of imaging biomarkers can reliably predict benign and malignant small solitary pulmonary nodules (PNs) (≤1cm).
B-0309 15:04
Multi-parametric radiomics in low-dose CT for discrimination between emphysematous and non-emphysematous lung tissue
Y. Nagaraj, M.D. Donnix, M. Rook, G. Li, J. Guo, R. Vliegenthart, M. Oudkerk, P.M.A. van Ooijen; Groningen/NL (y.nagaraj@umcg.nl)

Purpose: Emphysema is part of the Chronic Obstructive Pulmonary Disease (COPD) spectrum and known for its high prevalence and mortality rate worldwide. The appearing lung tissue destruction can be detected on Low-Dose Computed Tomography (LDCT) as decreased lung density and architectural changes. However, the latter is difficult to quantify so far. In this study, we evaluated radiomics features using Generalized Matrix Learning Vector Quantization (GMLVQ) to discriminate between emphysema and non-emphysematous lung tissue using a relevance feature ranking classifier.

Methods and Materials: 64 LDCT scans were randomly selected from a large lung cancer screening trial. Independently, three radiologists selected a total of 419 free form Regions of Interest (ROI) from these scans. Every ROI consisted of three consecutive non-overlapping 2D slices. 300 ROIs were classified as emphysematous. ROIs were used to extract radiomics features, which were ranked based on relevance factors from GMLVQ. We used feature selection techniques to decrease redundancy between features before classification.

Results: We extracted 1008 features including Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run-length Matrix (GLRL), first order histogram, and ±1.5mm (AA) and 0.0mm at both locations for AI-RA. Within-subject measurements (radiologists vs. AI-RA) at AS and AA was +2.2mm and -0.7mm, respectively. The AI-RA (Siemens Healthineers, Germany) applies aorta centerline-based measurements of maximum diameters twice at multiple levels according to current ESC guidelines (including aortic sinus (AS), ascending aorta (AA), and ±1.5mm (AA)).

Conclusion: The current version of the AI-RA finds plausible diameters comparable to the absolute value and variance range of manual measurements, with neither manual interaction nor introduction of user-based variance. The promising results of this initial study will be fortified in a larger scale study to evaluate solution stability.

Author Disclosures: S. Rapaka: Employee; Siemens Healthineers. R. Kärgel: Consultant; Siemens Healthineers.

14:00 - 15:30 Room G
Physics in Medical Imaging

SS 313
CT: cardiovascular, calcium, and iodine

Moderators:
S. Maguire; Dublin/IE
N.N.

B-0311 14:00
Detectability of small coronary calcifications: a comparison between dual-layer and spectral photon-counting CT
N.R. van der Werf,1 M. Vonder,2 R.W. van Hamersvelt,1 M. Greuter1, S.A. Si-Mohamed3, P. Douek4, L. Bousse1, T. Leiner1, M.J. Willemin3,1 Utrecht/NL,1 Groningen/NL,1 Bron/FR,1 Lyon/FR,2 Menlo Park/NL (rvndwrf@gmail.com)

Purpose: For spectral photon-counting computed tomography (SPCCT), small detector elements are necessary to reduce pile-up effects, which result in a substantial increase in spatial resolution. We hypothesize that SPCCT will, therefore, improve detectability of small structures, such as small calcifications in the coronary arteries. The objective of this study was to compare detectability of small calcifications between dual-layer computed tomography (DLCT) and SPCCT.

Methods and Materials: A cylindrical phantom containing 100 small cylindrical calcifications (0.5 - 2.0 mm; 90 - 540 mg HA/cm3) was scanned on a clinical DLCT and a prototype SPCCT system. Raw data were acquired at 120 kVp with 147 and 100 mAs for DLCT and SPCCT, respectively, with five repetitions. The smallest available slice thickness was 0.67 mm and 0.25 mm for DLCT and SPCCT, respectively. Pixel spacing was 0.49 mm for DLCT and 0.25 mm for SPCCT. Detectability was defined as voxels with ≥130 Hounsfield units (HU) in at least three acquisitions using ImageJ.

Results: For SPCCT, 85% of the calcifications were detectable, while only 31% of the calcifications were detected with DLCT. Calculations measuring 0.5 mm and with a density of ≥190 mg HA/cm3 were all visible with SPCCT while the calcifications smaller than 1.0 mm were not detectable with DLCT, independent of their density.

Conclusion: SPCCT is superior in the detection of small calcifications with an increase in detectability of 174% in comparison to DLCT, notably for the calcifications of 0.5 mm with a density of 190 mg HA/cm3 or more.

B-0312 14:08
Stack transition artefact removal (STAR) in cardiac CT with automatic parameter selection
S. Lebedev1, E. Fournie2, K. Stierstorfer2, M. Kachelrieß2,1 Heidelberg/DE,1 Forchheim/DE (marc.kachelriess@dktz.de)

Purpose: To remove stack transition artefacts, i.e. misalignments between sub-volumes (stacks), in cardiac CT reconstructions.

Methods and Materials: Phase-correlated reconstructions, e.g. from prospectively/retrospectively gated data, may be affected by stack transition artefacts if the heart is imaged in multiple steps while irregular motion (e.g. cardiac arrhythmia, breathing) is present. The stacks overlap longitudinally by a few mm. However, the consistency in the overlap region may suffer from stack-to-stack heart motion. The redundant information in the overlap region can be used to determine deformation vector fields (DVFs) between stacks. We developed a symmetric Demons algorithm that applies deformations symmetrically in both overlapping stacks. The DVF is expanded to non-redundant areas via interpolation. The DVF smoothness is controlled with one parameter. The registration is initially applied with minimal DVF smoothing to estimate the required deformation magnitudes. Based on the latter, a proper smoothing parameter is set, ensuring a realistic DVF that does not introduce distortions. Five retrospectively gated cardiac patient data sets acquired with a Somatom Definition AS+ (Siemens Healthineers, Forchheim, Germany) and standard partial scan reconstructions were used to evaluate STAR.

Results: STAR considerably improved image quality. Discontinuities, e.g. cuts/breaks in coronary arteries and cardiac valves, were removed or considerably reduced. The automatic parameter selection adjusted the DVF smoothing for individual registrations and overall yielded better results compared to selecting one constant parameter.

Conclusion: STAR is able to consistently remove stack transition artefacts. The adaptive parameter selection prevents the introduction of unnatural distortions, therefore improving the robustness of the new algorithm.

Author Disclosures: S. Lebedev1: Employee; Siemens Healthcare GmbH. E. Fournie2: Employee; Siemens Healthcare GmbH. K. Stierstorfer2: Employee; Siemens Healthcare GmbH.
B-0313 14:16
Accurate non-invasive assessment of carotid in-stent restenosis by dual-layer spectral CT
I. Leichter, E. Ben-David, J. Menat, A. Peretz, Z. Romman, J.M. Gomer, J. Sosna: Jerusalem/L (gomori@cc.huji.ac.il)

Purpose: Beam-hardening artefacts in CT imaging of metallic stents reduce visibility of plaque. Our aim was to accurately assess, non-invasively, in-stent stenosis, using iodine imaging by spectral-detector CT (SDCT).

Methods and Materials: Virtual mono-energetic images containing iodine solutions were reconstructed at 65kEV and 200kEV, using SDCT. A spectral map was generated reflecting the relationship between gray-level values of iodine solutions in the two mono-energetic images. An iodine imaging algorithm was developed to mark all pixels fulfilling the spectral map equation and to accurately highlight the contrast-enhanced lumen. The algorithm was tested on a water-equivalent phantom with plastic tubes containing an iodine solution and surrounded by metallic conichrome stents of 0.2 mm thickness. The tubes of 1.5 mm and 0.75 mm wall thickness mimicked moderate (61%) and mild (34%) in-stent stenosis. The algorithm was used, respectively, to quantify restenosis in 2 patients, one with facial numbness, and the other with symptoms of a left CVA.

Results: In conventional images of the phantom, due to beam hardening, mild restenosis could not be visualised, and the moderate restenosis was overestimated by 8%; iodine imaging demonstrated and quantified the mild and moderate restenosis more accurately with deviations of 5.9% and 0.6%, respectively. In the patient with facial numbness, the algorithm measured a restenosis of 79%. In the other patient, interpreted by a radiologist with moderate stenosis, the measured restenosis was 48%.

Conclusion: Carotid in-stent stenosis in high-attenuation metallic stents can be more accurately evaluated using iodine imaging produced by spectral dual-layer detector CT.

Author Disclosures: Z. Romman: Employee; Employee.

B-0314 14:24
Qualification of metal artefacts in CT imaging: methodological comparison of different techniques and correlation to visual perception
N. Grosse Hokamp1, B. Eck2, J. Holz2, F. Siedek1, D. Pinto Dos Santos2, D. Maintz2, S. Hanebedt2, Cologne/DE, Cleveland, OH/US (nils.grosse-hokamp@uk-koeln.de)

Purpose: Several techniques aiming to reduce metal artefacts in CT imaging (MAR) have been proposed. To quantify MAR, numerous qualification techniques have been suggested (MAR-QT). We compared available MAR-QT to visual perception of artefacts to establish a standard for artefact quantification in CT imaging.

Methods and Materials: 5- and 10-mm Titanium rods were examined in a rectangular water phantom with 25 different scanning and image reconstruction parameters to get a reference database of different types and extents of artefacts. MAR-QT have been identified in the literature, including HU measurements, computation of percent integrity uniformity (PIU) and techniques in the frequency domain (FFT). In total, 38 MAR-QT were implemented in the Matlab environment. To establish a reference ranking, 4 radiologists separately evaluated each image against each other twice using an in-house developed software (2400 comparisons = 2 x 4 readers x 300 comparisons). Rankings were combined to obtain a reference ranking reaching from best to worst image. Intra-class-correlation coefficients (ICC) indicated intra-/inter-reader agreement. The reference ranking was compared to MAR-QT results to identify suited and less suited approaches. Kappa-statistics were used to evaluate agreement between quantitative methods and visual perception.

Results: Intra-/inter-reader agreement of visual artefact perception were excellent (ICC 0.85-0.92). No quantitative method was able to depict the exact ranking of visually perceived artefacts. The methods that showed best correspondence were PIU and FFT based.

Conclusion: Artefact quantification in CT is challenging. We propose two methods that show best correlation with visual artefact perception and suggest using these to allow comparison between studies.

B-0315 14:32
Influence of iterative model reconstruction level for measurement accuracy of the coronary stenosis caused by non-calculated plaques using low-dose CCTA: a phantom study
L. Gao, Y. Hou, Y. Ma, L. Yang, X. Lu; Shenyang/CN (1242179174@qq.com)

Purpose: To evaluate the accuracy of low-dose CCTA with different iterative model reconstruction (IMR) levels in quantitative assessment of the coronary stenosis caused by non-calculated plaques using a pulsatile phantom of coronary arteries.

Methods and Materials: A pulsating cardiac phantom mounted with 4 different inter-diameter (2.5, 3.0, 3.5, 4.0 mm) artificial vessels were performed low-dose CCTA with 80 kV, automated tube current modulation (Dose Right Index 13) on 256-slice CT with prospective ECG-gated mode. For each diameter artificial vessels, there were three stenosis degrees (75%, 50% and 25%) with non-calculated plaques (CT value is 20 HU) scanned at heart rate of 60 bpm. For each vessel, the material was arranged ladder like in the iodine-enhanced lumen (350±5 HU in 100 kV) to simulate different stenosis severity. Images were reconstructed with IMR (cardiac-routine IMR-1, IMR-2, IMR-3). The stenosis degree was calculated [1-(luminal stenotic diameter/luminal normal diameter)] and compared with visual rank score.

Results: For the measured stenosis degrees of non-calculated plaques, there was statistical difference among different IMR levels and the actual value (P<0.05), and the measured values were smaller than the actual value. The stenosis degree with IMR-1 was closer to the actual value than those with IMR-2 and IMR-3. At the same IMR level, the measured stenosis degrees had no significant difference among different vessel diameters (P>0.05). For severe artery stenosis, the degree of underestimation was larger.

Conclusion: Different IMR levels with low-dose CCTA tend to underestimate stenosis despite of the diameters, IMR level 1 can better estimate the stenosis rate. The severity of the stenosis had a significant effect on the underestimation rate.

B-0316 14:40
Iodine quantification accuracy in dual-source dual-energy CT using default parameters and patient-specific calibrations
S. Dorn, S. Sawall, J. Maier, M. Kachelriess; Heidelberg/DE

Purpose: To evaluate the influence of the relative contrast media ratio (ReCM) on iodine quantification accuracy in dual-source dual-energy CT (DS-DECT).

Methods and Materials: The ratio of high and low iodine contrast is denoted as ReCM and is an input parameter to the standard iodine map algorithm. To evaluate the influence of default vs manual ReCM calibrations on iodine quantification accuracy, two anthropomorphic phantoms (liver, thorax) of three phantom sizes (small, medium, large) are equipped with vials of iodine concentrations between 2.5 and 30 mg/mL and measured with a DS-DECT (SONATOM Definition Flash, Siemens Healthineers, Germany). Acquisitions are performed using the tube voltage combination 80 kV/140 kV-Sn. A default value for ReCM has been used as preconfigured by the vendor. The patient-specific ReCM, is obtained by manually placing calibration ROIs inside the vials.

Results: The patient-specific ReCM is on average 5.9% (small), 5.0% (medium) and 11.5% (large) smaller compared to ReCM used for both phantoms. Using ReCM, the relative error of measured to true iodine concentrations is minimized from 16.9% to 7.4%, 16.8% to 9.9% and 13.7% to 7.6% for the liver phantom and from 7.0% to 2.4%, 6.7% to 4.5% and 8.3% to 2.4% for the thorax phantom. We achieve an accuracy improvement of 64.6%, 50.4% and 60.6% across all concentrations.

Conclusion: Manual calibrations result in a smaller ReCM and also in more accurate iodine concentrations. Therefore, a prior-based automatic calibration might be useful to increase iodine quantification accuracy while keeping manual user interactions at a minimum.

B-0317 14:48
Effect of dose and iterative reconstruction on coronary calcium scores at different heart rates for dual-layer CT
N.R. van der Werf1, M. Vonder2, R.W. van Hamersvelt3, M.J. Willemink3, M. Greuter1, T. Leiner1, Utrecht/NL, Groningen/NL, Mentio Park/NL (nrwvder@gmail.com)

Purpose: For a novel dual-layer CT (DLC) conventional data are acquired by combining the output of both detector layers. The purpose of the current study is to systematically assess the influence of hybrid and model-based IR in combination with radiation dose reduction on coronary calcium score (CCS) in DLC.

Methods and Materials: In the centre of an anthropomorphic thorax phantom an artificial coronary artery (39.5 mg mgHA -1 196±3 mgHA/cm) was translated (0 to 30 mm/s or 0 to 75 bpm). A routine clinical calcium scoring protocol was used, with three repetitions per HR. Radiation dose was reduced by decreasing mAs by 36% and 75% from the baseline value. Raw data were reconstructed with hybrid iDose (levels 0 to 7) and model-based IR (levels 1 to 3). CCS was quantified as mean and standard deviation Agatston score (AS).

Results: At reference dose with iDose level 0, AS was 113±9, 105±10, 101±13 and 100±10 for 0 to 75 bpm, respectively. AS increased at decreased radiation dose and decreased for increased HR. For all HR at reference dose, AS decreased up to -17% for iDose, while they increased up to 24% for IR. At 75%-reduced radiation dose, AS decreased for both iDose and IR levels.
Conclusion: Application of different types and levels of IR substantially influenced the CCS. Overall, AS decreased with increased IR levels and HR. A trend of increased CCS was found for IMR at reduced tube voltages, while reduced CCS at low dose, regardless of HR.

B-0318 14:56
Characterisation of iodine quantification for a fast-kVp switching dual energy CT system
F. Emiro, P. De Marco, D. Origg; Milan/IT (francesca.emiro@ieo.it)
Purpose: To assess the accuracy of iodine quantification in a GE Discovery 750HD CT.

Methods and Materials: A PMMA CTIVI oval phantom (inserts: 1-center-4periphery), and a homemade phantom with 6 inserts of different diameters (15- to 6-mm) placed in a NEMA IEC PET body phantom filled with water, were used. Phantoms with inserts filled at different iodine Ultravist® concentrations (3.7-7.4-11.1 mg/ml) were scanned at 3 different dose levels (12-21-32 mgY) and images were reconstructed as iodine density maps with FBP and 5 different iterative Reconstruction levels (ASIR 20-40-60 80-100%) with 2.5 mm slice thickness. For each reconstruction 10 slices were analyzed with ImageJ and statistical analysis was performed with ANOVA.

Results: Iodine concentration measured at the center was significantly lower (p<0.05) than at the periphery (differences ranged from 0.4 to 0.8 mg/ml). Passing from 12 to 21 mgY, iodine quantification was significantly higher: 35%-27%-22%, corresponding to an absolute variation in the range 1.3-2.4 mg/ml, for 3.7-7.4-11.1 mg/ml, respectively (p<0.05).

Conclusion: Iodine quantification shows dependence on position, dose and insert’s diameter, no impact for the reconstruction choice (iterative vs FBP) was observed.

B-0319 15:04
Does iodine CNR improve when switching from today’s energy integrating CT to tomorrow’s photon-counting CT?
S. Sawall1, S. Dorn1, J. Maier1; S. Faby1; M. Uhrig1, P. De Marco1, D. Origgi; Milan/IT (francesca.emiro@ieo.it)

Purpose: To evaluate the iodine CNR improvements obtained with whole body photon-counting (PC) CT compared to a conventional energy-integrating (EI) CT detector.

Methods and Materials: Images of two anthropomorphic phantoms (thorax, liver) of different sizes (small, medium, large) equipped with vials containing different iodine concentrations were acquired at the SOMATOM Count (Siemens Healthineers, Germany) CT system, a prototype DSCT scanner, housing an EI and a PC detector. mAs-matched acquisitions were performed at 120 kV with effective mAs-values ranging from 75 to 400 mAs using the EI detector, the PC detector with one bin [20, 120] keV, and the PC detector with two bins [20, 70] keV and [70, 120] keV with statistically optimal bin weighting.

Results: PC with one bin shows an increased CNR of up to 30% compared to EI (small 19%, medium 30%, large 17%). Comparing the optimally weighted two-bin PC images with EI shows an increased CNR of up to 37% (small 27%, medium 27%, large 26%), respectively. In comparison to EI acquisitions, this corresponds to a dose reduction of up to 41% for standard PC acquisitions (small 30%, medium 41%, large 26%) and 47% if an optimal bin weighting is used (small 38%, medium 47%, large 36%).

Conclusion: Iodine CNR using a PC detector is significantly higher compared to measurements acquired with an EI detector. If acquisitions with two energy bins are performed, CNR can be further increased.

Author Disclosures: S. Faby; Employee; Siemens Healthineers.

14:00 - 15:30 Room M 1

Genitourinary

SS 307
Prostate cancer and renal imaging

Moderators: P. De Visschere; Ghent/BE, T. El-Daisy; Mansoura/EG

B-0322 14:00
Multi-parametric MRI in patients with low-to-moderate risk of prostate cancer for the differentiation of adenocarcinoma and prostatitis
S. Ken, E. Lacroix, D. Portalez, R. Azizza, J. Gihodes, T. Brun; Toulouse/FR (lacroixenmanuel81@hotmail.fr)

Purpose: To distinguish between biopsy-confirmed prostatic adenocarcinoma (PCa) and prostatitis (PT) with imaging biomarkers derived from multi-parametric MRI.

Methods and Materials: Nineteen patients with low-to-moderate risk of prostate cancer underwent mpMRI on a 1.5T scan. Anatomical T2-weighted, diffusion (11b values 0-800s/mm²) and T1-weighted perfusion series were acquired. Regions of interest (ROIs) were contoured on computed b2000 maps and reported on Ktrans, D and ADC modalities. Distances of voxel values inside the ROIs were compared to contralateral normal-appearing tissue (NT). Volume repartitions according to quartiles were compared between the biopsy-confirmed groups of PCa (N=12) and PT (N=7).

Results: PCa group: median ADC and D parameters (10² values) were: Lobe-<10⁻², Lobe-<10⁻², Tissue-<10⁻², Tissue-<10⁻², respectively. In comparison to PCa acquisitions, this corresponds to a dose reduction of up to 41% for standard PC acquisitions (small 30%, medium 41%, large 26%) and 47% if an optimal bin weighting is used (small 38%, medium 47%, large 36%).

Conclusion: Iodine CNR using a PC detector is significantly higher compared to measurements acquired with an EI detector. If acquisitions with two energy bins are performed, CNR can be further increased.

Author Disclosures: S. Faby; Employee; Siemens Healthineers.

14.00 - 15.30 Room M 1

Scientific Sessions

Wednesday

Scientific Sessions
voxel intensity of computed b_{2000} (s/mm2) was significantly higher: 38.2[31.9-87.1] vs 27.6[18.9-77.8] (p=0.0037). K_p values were not significantly different between ROIs and NT. PT group: median ADC and D_0 were significantly lower: 1.3[1.0-1.5] vs 1.5[1.2-1.6] (p=0.0280) and 1.1[0.8-1.3] vs 1.3[0.9-1.5] (p=0.0180), respectively. Median b_{2000} and K_p values were significantly higher inside the ROIs: 46.5[27.3-83.8] vs 38.7[21.6-70.2] (p=0.0425) and 0.30[0.1-1.2] vs 0.20[0.1-1.0] (p=0.0280), respectively. Volume of ADC values in the 1st-3rd quartiles range was significantly lower in the PCA group compared to the PT group: 0.1%[0.0-0.4] vs 0.3%[0.1-1.0] (p=0.0312). Volume of low K_p (<1 st quartile) was significantly higher in the PCA group: 0.3%[0.1-0.5] vs 0.1%[0.0-0.2] (p=0.0075).

Conclusion: Percentage volume distribution of ADC and K_p values was able to distinguish between adenocarcinoma and prostatitis.

B-0323 14:08

Prostate cancer and benign tissue response to hypofractionated SBRT monitored by multi-parametric MRI

M.J. Zelefsky, K. Zakian, A.G. Wibmer, N. Tyagi, M. Kollmeier, M. Hunt, E. Sala, H. Meijas Vargas; New York, NY/US (zelefskm@mskcc.org)

Purpose: To explore the role of serial mp-MRI for evaluation of tumour response after stereotactic radiosurgery (SBRT) for localized prostate cancer (PC).

Methods and Materials: 30 patients with organ-confined PC with dominant lesions ≥ 0.5 cm on MRI were enrolled on a prospective IRB-approved study. All patients received 40 Gy in 5 fractions of SBRT. A baseline MRI was performed and post-treatment MRIs at 3, 6, 12, 18 and 24 months. On 12 months a repeat prostate biopsy was performed to assess local control and correlate with imaging response. A 3.0 Tesla Philips Ingenia was used with a MRI protocol using standard anatomical T2, T1 and T1-weighted imaging as well as DCE MRI multi-b-value diffusion-weighted imaging for additional quantitative imaging. Tumour Region of Interest (ROI) identification was obtained by two GU expert radiologists who contour ed tumour, peripheral zone, transition zone (TZ).

Results: In all cases perfusion and diffusion-related parameters changed with time and tended to converge with benign tissue values no later than at 12 months. On T2-weighted images the dominant nodule demonstrated significant tumour shrinkage by 3 months and disappearance in >90% of cases by 6 months. Diffusion coefficients significantly decreased post-SBRT providing earlier information than the post-treatment PSA status which continued to decline during the 2-year post-treatment period.

Conclusion: mp-MRI assessment after SBRT demonstrated significant tumour responses at 3 months after treatment far earlier than standard assessment tools such as PSA. Longer follow up will be needed to determine whether MRI initial responses could predict long-term local treatment failures.

B-0324 14:16

Evaluation of dynamic contrast enhancement in Pirads2v2: a report from the Gothenburg 2 screening study for prostate cancer

J. Wallström, K. Getered, K. Kohestani, R. Godman, A. Socratous, M. Hellström, J. Hugosson; Göteborg/SE (jonas@wallstromdiagnostik.se)

Purpose: In the prostate imaging reporting and data system (PIRADSv2) dynamic contrast enhancement (DCE) has the limited role of upgrading peripheral zone lesions from PIRADS 3 to PIRADS 4 in case of positive DCE. The effect of applying or omitting the upgrade is assessed for PIRADS 3-5 in the Gothenburg2 screening study for prostate cancer (PC).

Methods and Materials: The Gothenburg 2 is a long term study inviting 40,000 men to PSA-testing followed by multiparametric prostate MRI at 3T in case of elevated PSA. MRI’s from 1,010 men were prospectively classified according to PIRADS2v2. All men with PIRADS 3-5 had prostate biopsies. The detection rates of all tumors and Gleason score (GS) ≥7 tumors respectively were calculated for PIRADS 3-5 and PIRADS 4-5 with and without DCE-upgrading.

Results: A total of 371 MRI’s were scored PIRADS 3-5 with positive biopsies in 188 men (51%) including 85 GS ≥7 tumors (23%). With DCE-upgrading 262 men were scored PIRADS 4-5 and 162 of these had positive biopsies (62%) including 79 GS ≥7-tumors (30%). Omitting DCE-upgrading a total of 190 MRI’s were scored PIRADS 4-5 and out of these 128 men had positive biopsies (67%) including 73 GS≥7-tumors (38%).

Conclusion: Applying the PIRADS2v2 criteria for DCE resulted in a lesser proportion of GS≥7 PC in PIRADS 4-5 but a slightly higher total number of GS≥7 tumors. With DCE-upgrading and a biopsy indication cut off at PIRADS 4 the number of biopsies would be reduced by 29% however missing 7% of GS≥7 tumors.

B-0325 14:24

Predicting clinically significant prostate cancer of the transition zone using multiparametric MRI and quantitative radiomic analysis

M. Pecoraro, S. Cipollari, R. Campa, G. Barchetti, C. Catalanio, V. Panebianco; Rome/IT (pecoraro.martina1@gmail.com)

Purpose: To implement a quantitative radiomic approach to develop a machine learning classifier based on multiparametric MRI (mpMRI) images of the prostate, capable of distinguishing clinically significant and non-clinically significant prostate cancer (PCA) of the transition zone.

Methods and Materials: Ninety-two patients with elevated PSA who underwent mpMRI were included in the study. Inclusion criteria were: PI-RADS score assessment of 3 or higher for lesions within the transition zone, a subsequent TRUS-MRI targeted fusion biopsy and no prostate biopsies or interventions in the previous 6 months. Lesions within the transition zone were manually segmented by a trained urogenital radiologist on the T2-weighted images and on the ADC maps using 3D Slicer, yielding a Volume of Interest (VOI) for each lesion. A radiomic approach was implemented in Python to extract features from the VOIs that correlated with the presence of histologically-proven clinically significant PCa. Extracted features were then selected on univariate analysis and subsequently fed to a machine learning random forest classifier using the R statistical software package. Statistical analyses, including sensitivity, specificity, accuracy and ROC analysis, were performed on the trained classifier.

Results: Of the 92 patients 39 (42%) were positive for clinically significant PCa at histopathology. Radiomic analysis calculated 368 quantitative features for each VOI. A predictive model using the features selected on univariate analysis achieved a sensitivity of 0.74, specificity of 0.68 and overall accuracy of 0.71.

Conclusion: The machine learning classifier based on mpMRI radiomic analysis showed higher accuracy than radiologist assessment in detecting clinically significant PCa.

B-0326 14:32

Radiological prediction of the chance of post-RALP urinary continence on preoperative MR prostate imaging can substantially alter patients’ choice of treatment

S. Heimink, E. van Mullekoom, C. Tillier, N. Grivas, H. van der Poel; Amsterdam/NL (swheijmink@live.com)

Purpose: Prostate cancer patients are often presented with treatment choices that are equal in oncological outcome but different considerably in morbidity, such as the risk of post-treatment urinary incontinence. The purpose of the study was to examine the influence of the preoperative radiological assessment of the chance of urinary continence after robot-assisted laparoscopic radical prostatectomy (RARP) by means of MRI on the patients’ choice of treatment.

Methods and Materials: Prospectively, a total of 65 patients with prostate cancer that had preoperative MRI and were referred for RARP were included in the study. In all patients the membranous urethral length and interlevator distance were prospectively assessed. From this, the chance of urinary continence after RARP (continence prediction, Cpred) could be estimated by a previously published prediction model (Grivas et al. Neourology and Urodyne 2018). Patients were subsequently counselled about the surgery and the predicted chance of continence was presented to them. Their final treatment decision was recorded.

Results: Of the 65 patients, 14 (21%) decided to change their preferred choice of treatment from RARP and instead opted for radiation therapy. The average Cpred for the patients that kept RARP with their preferred treatment and those that changed their preferred treatment into radiation therapy was 63% and 42%, respectively (p=0.02).

Conclusion: The patients’ choice of whether or not to undergo RARP for prostate cancer appeared to be influenced by the predicted chance of urinary continence based on preoperative MRI. This tool may aid patients in better treatment decision making and avoid morbidity.

B-0327 14:40

Value of dynamic contrast enhanced (DCE) MR imaging in PI-RADS 4 patients

L. Schimmüller, F. Zayee, T. Ulrich, N. Laqua, G. Antoch, P. Albers, C. Arsov; Düsseldorf/DE

Purpose: To assess the impact of dynamic contrast-enhanced imaging (DCE) in mp-MRI on prostate cancer (PCa) detection in a large patient cohort assigned to PI-RADS category 4.

Methods and Materials: This prospective, single centre cohort study includes 112 consecutive patients with PI-RADS assessment category 4 after mp-MRI (T2WI, DWI, DCE) at 3T with targeted and systematic biopsy as reference standard. Prostate cancer detection rates were compared either in a multiparametric setting or without the effect of DCE in a biparametric setting.
Results: PCa detection rate was 62% (119/193) including 48% (92/193) clinically significant PCAs (csPCAs; Gleason score ≥3+4=7). 38 of these 193 patients (19.8%) had peripheral lesions upgraded from DWI PI-RADS category 3 to an overall PI-RADS category 4 due to positive DCE findings. Of these 38 patients 18 had PCa including 14 with a GS≥7. Thus 15% (18/119) of the patients with any cancer and 15% (14/92) of the patients with a GS≥7 PCa were detected only based on additional DCE Information.

Conclusion: DCE allows detection of a significant number of mostly csPCAs that would have been missed with a biparametric protocol. The current PI-RADS decision rules regarding upgrading PI-RADS-3-lesions to overall category 4 due to positive DCE imaging are useful for PCa detection.

Results: The number, fraction, anisotropy (FA) values and length of PNFs before and after RP were proven prostate cancer underwent 1.5T DTI before and after RP. The number, incontinence and erectile dysfunction.

Purpose: To evaluate if diffusion tensor imaging (DTI) is able to detect changes of periprostatic neurovascular fibres (PNFs) before and after radical prostatectomy (RP), and their relationship with post-surgical urinary incontinence and erectile dysfunction.

Methods and Materials: Patients (mean age 62.6 years) with biopsy-proven prostate cancer underwent 1.5T DTI before and after RP. The number, fractional anisotropy (FA) values and length of PNFs before and after RP were compared using Student’s t-test. Each patient filled out two questionnaires before and after RP, one for the evaluation of urinary continence (ICIQ-SF) and one for the evaluation of erectile function (IIEF-5). The number, ratios, FA values and length of PNFs before and after RP (DTI B-A RATIOS) and ratios between scores obtained before and after RP for both ICIQ-SF and IIEF-5 (ICIQ-SF B-A RATIOS and IIEF-2 B-A RATIOS) were calculated to perform Kendall’s t-test between the two scores.

Results: There was statistically significant decrease of the number of PNFs after RP at base, midgland, and apex (p < 0.01) and of FA values at midgland variability between the two operators.

Purpose: To validate a method for calculating single-kidney GFR based on ultra-low-dose CT perfusion and 99mTc-DTPA renal scan in healthy and tumour-bearing kidney.

Methods and Materials: The number, incontinence and erectile dysfunction.

Results: There was no statistically significant difference between the CT-GFR and 99mTc-DTPA-GFR (n=1.53, P=0.151, t=1.791, P=0.098; z=−0.33, P=0.741) in 13 tumour-bearing kidneys, 13 healthy and all 26 kidneys. Between two groups, a moderate correlation (r=0.402, P=0.324) in 13 healthy kidneys and strong correlation (r=0.790, P=0.062; z=0.814, P=0.019) in 13 tumour-bearing and healthy kidneys. A flow rate of >2.2ml/s was normal in 18 kidneys, of moderate impairment in 1 kidney, mild impairment in 14 kidneys, respectively, and 99mTc-DTPA-GFR was severe impairment in 1 kidney. A fair agreement was revealed between two groups (k=0.49). Effective radiation dose of CT-GFR was 0.09 ± 0.04 mSv.

Conclusion: CT-GFR bears the potential as a functional assessment tool in kidney, especially in tumour-bearing kidney.

Results: Three hundred and seventy-six CTUs were performed in 376 patients, including 117 patients with renal cancer and 6 with pyonephrosis. The mean age was 62 years (range 7-93). Pyonephrosis is a urological emergency necessitating prompt recognition and intervention. Often clinically nonspecific especially in elderly or immunocompromised patients, mimickers such as pyelonephritis with non-obstructive hydronephrosis also have overlapping features on computed tomography (CT) imaging. We aimed to develop a CT scoring system to diagnose pyonephrosis accurately.

Methods and Materials: This is a retrospective review of 63 patients (22 diseases, 41 controls) who underwent CT within 1 week prior to percutaneous nephrostomy (PCN) detected PCN from 2015. Image analysis of renal periphery (HU), pelvic wall, surrounding organs, renal perfusion parameters included attenuation of renal pelvic and parenchyma (HU), pelvic wall thickness, perinephric strands and renal fascia thicknesses, obstructing stone, fluid-debris levels and degree of hydronephrosis. Scores were validated with 42 patients (18 diseases, 24 control) requiring PCN from 2016-2018. Independent predictors defined using multivariate binary logistic regression for development of scoring system and Youden’s index (J) for cut-off.

Results: Pelvic wall thickness, renal fascia thickness, attenuation of pelvic content and parenchyma were significant independent predictors and selected for scoring system 0 to 13 (pelvic wall thickness: 4 points; parenchymal attenuation >30HU: 4 points; pelvic content attenuation >15HU: 2 points; renal fascia thickness >3mm: 3 points.) Receiver operating characteristic (ROC) analysis revealed area under curve (AUC) 0.97 (95% CI, 0.77-0.98). Scores 6 or lower had 82.6% (95% CI 66.2-92.0%) negative predictive value (NPV), and score 7 or higher had 73.7% (95% CI 55.27-86.4%) positive predictive value in diagnosing pyonephrosis.

Conclusion: Combined CT imaging parameters can be used to distinguish pyonephrosis from mimickers, facilitating patient triage for emergency intervention.

Results: One for the evaluation of erectile function (IIEF-5). The number, fraction, anisotropy (FA) values and length of PNFs before and after RP were proved prostate cancer underwent 1.5T DTI before and after RP. The number, incontinence and erectile dysfunction.

Purpose: To validate a method for calculating single-kidney GFR based on ultra-low-dose CT perfusion and 99mTc-DTPA renal scan in healthy and tumour-bearing kidney.

Methods and Materials: The number, incontinence and erectile dysfunction.

Results: There was no statistically significant difference between the CT-GFR and 99mTc-DTPA-GFR (n=1.53, P=0.151, t=1.791, P=0.098; z=−0.33, P=0.741) in 13 tumour-bearing kidneys, 13 healthy and all 26 kidneys. Between two groups, a moderate correlation (r=0.402, P=0.324) in 13 healthy kidneys and strong correlation (r=0.790, P=0.062; z=0.814, P=0.019) in 13 tumour-bearing and healthy kidneys. A flow rate of >2.2ml/s was normal in 18 kidneys, of moderate impairment in 1 kidney, mild impairment in 5 and 4 kidneys, respectively, and 99mTc-DTPA-GFR was severe impairment in 1 kidney. A fair agreement was revealed between two groups (k=0.49). Effective radiation dose of CT-GFR was 0.09 ± 0.04 mSv.

Conclusion: CT-GFR bears the potential as a functional assessment tool in kidney, especially in tumour-bearing kidney.
carcinomas were detected in four patients (1.1%). All cases of upper urinary tract cancer were visible on the nephrographic phase for both reviewers.

Conclusion: The prevalence of upper urinary tract cancer in patients with haematuria is low, and all cases were seen on the nephrographic phase. This suggests that the CTU protocol may be simplified without reducing the diagnostic accuracy.

Purpose: The purpose of this study was to assess the factors influencing technical failure of echo-planar imaging (EPI) MR elastography (MRE) in the paediatric liver.

Methods and Materials: In this retrospective study, 240 patients (±20 years old) who underwent EPI MRE at 3-T system from April 2015 to November 2017 were included. Failure group was defined as no pixel value on elastogram map with a confidence index higher than 95%. Fat fraction and T2* values obtained from 3D volumetric multi-echo gradient sequence MRI were compared between success and failure groups. Logistic regression test using unbiased odds ratio from Firth’s penalized maximum likelihood estimation method and ROC curves were obtained to analyse the potential predictive factors for EPI MRE failure.

Results: Technical failure rate of EPI MRE in paediatric liver was 2.5% (6 of 240). MR fat fraction and T2* value were significantly lower in the failure group (p < 0.05). In logistic regression analysis using unbiased odds ratio (OR), decreased T2* value was the only independent factor influencing MRE failure (adjusted OR 0.738, 95% confidence interval 0.650, 0.883). Using ROC curve analysis, T2* value equal to or less than 3.3 msec showed 100% sensitivity and specificity for predicting EPI MRE failure.

Conclusion: Technical failure rate of EPI MRE in paediatric liver was low (2.5%). T2* value (<3.8 msec) was the only independent factor associated with failure of MRE in paediatric liver. Increased body mass index or severe fatty liver was not associated with technical EPI MRE failure.
B-0338 14:40
Evaluation of the split-bolus single-pass contrast CT protocol in paediatric trauma
T. Melis1, B. Gottfriedova1, R. Bruna1, M.J. Willemin2, M. Koci2, 1Prague/CZ, 2Stanford, CA/US (tomas.melis@fnmolot.cz)

Purpose: The Royal College of Radiologists (RCR) recommends a split-bolus single-pass CT-protocol for evaluation of paediatric trauma. Due to the current lack of data, we assess the feasibility of our adaptation of so-called “Camp bastion” protocol.

Methods and Materials: We retrospectively included 102 paediatric trauma-patients who underwent a split-bolus single-pass trauma-CT between February 2016 and August 2018. Contrast-enhancement was measured in the aorta, portal vein, inferior vena cava and spleen. Attenuation of contrast (CNR) and subjective evaluation of spleen-enhancement homogeneity were compared among four weight groups with 20 kg increments (W1-W4, respectively).

Results: Median aortic attenuation was significantly higher (p<0.05) in low weight-groups (0-20kg) compared to the high-weight groups (125-247) HU and 61-80kg (191[153-229] HU). Similar results were found for portal vein (W1-W4: 285[238-316]; 236[208-263]; 203[163-225]; 196[175-230] HU), and pulmonary trunk (W1-W4: 388[356-572]; 250[229-330]; 190[158-225]; 173[153-210] HU, respectively. Significant aortic enhancement of 185HU was not achieved in 25% of the scans. Despite similar noise-levels (p=0.14), CNR was significantly higher (p<0.05) in low weight-groups (W1 15.0; W2 9.8) compared to high weight-groups (W3 6.7; W4 6.0). Spleen inhomogeneity and angiographic-enhancement were insufficient in a substantial number of cases. Our study indicates that further refining of the split-bolus single-pass CT protocol for children is essential.

B-0339 14:48
The effect of renal function on the intracranial gadolinium deposition in young rats
J. Kim1, J. Lee2, 1Cheon-An/KR, 2Seoul/KR (torannip@gmail.com)

Purpose: To assess the effect of renal function on gadolinium deposition in brain after gadolinium-based contrast agents (GBCAs) injections in young rats.

Methods and Materials: A total of 39 young rats were divided into 6 groups according to the renal function (normal or decreased) and injected GBCAs (linear or macrocyclic GBCA or saline). Ten GBCA injections were performed over 2 weeks at a dose of 0.9mmolGd/kg. T1-weighted magnetic resonance image and T1 mapping were performed on a 7 Tesla scanner. Qualitative and quantitative analyses of T1 signal intensity ratio of deep cerebellar nucleus(DCN) to cerebellar cortex or pons, and quantitative analysis of T1 value of DCN were performed.

Results: Decreased renal function group with linear GBCA injection was the only group showed statistically significant increase of T1 signal intensity ratio of DCN/cerebellum on week 2 (P = 0.043), T1 signal intensity ratio of DCN/pons on both weeks 2 and 4 (P = 0.043), decrease of T1 value of DCN on weeks 2 and 4 (P = 0.043) compared to baseline. In rats with decreased renal function with both linear and macrocyclic injections, T1 value of fourth ventricle was markedly decreased at week 2 and week 4 (P = 0.043).

Conclusion: Repeated administration of both linear and macrocyclic GBCAs to young rats with decreased renal function caused delayed excretion of contrast material from ventricles. Rats with decreased renal function with linear GBCA injections, not with macrocyclic GBCA, showed T1 hyperintensity and decreased T1 value in DCN, suggesting deposition of gadolinium.

B-0340 14:56
The difficulties of childhood hepatocellular carcinoma MRI diagnosis
M. Gonzalez Carballes1, L. Riaza Martin1, A. Coma1, A. Castellote Alonso1, G. Guillen Burrieza1, L. Riera1, J. Molina Gaete1, J. Piqueras Pardellans1, E. Vázquez1, 1Barcelona/M, 2Leida/ES (martagonzalo1991@gmail.com)

Purpose: Hepatocellular carcinoma (HCC) is an aggressive hepatic neoplasm that rarely affects pediatric population (<0.5%). The pathophysiology of HCC is not clearly understood; cirrhosis is a predisposing condition. Most pediatric HCC arise de-novo without underlying liver abnormalities, but it is also found, the coexistence of HCC with another hepatic tumors “nodule inside a nodule”. This study was performed to illustrate the characteristic MRI findings and patterns of HCC in the pediatric population and discuss the differences from the typical imaging features described in adults.

Methods and Materials: Between December 2001 and September 2016 a total of 10 children had been diagnosed as having HCC in our Hospital. We reviewed our imaging database and selected those patients with HCC pathologically proven that had an abdominal MRI done before treatment. The outcome could be analyzed retrospectively in 5 of those patients.

Results: The median age at diagnosis was 10.4 years and the male/female ratio was 4:1. Two patients had predisposing conditions (40%) one had tyrosinemia type 1 and hepatits C virus and the other Abernethy type II Syndrome. The typical MRI imaging pattern of HCC (T1WI hypointensity, T2WI hyperintensity, early arterial enhancement and venous phase washout) was only seen in one patient (20%). One patient had a coexistent hepatoblastoma (20%) and two of the patients had a malignant transformation of an adenoma (40%).

Conclusion: This study illustrated that most of pediatric HCC do not show the typical MRI patterns and coexist with other hepatic tumors, conditions that make its diagnose more difficult.

B-0341 15:04
Role of whole-body magnetic resonance imaging in identifying potential diagnostic clues in children with fever of unknown origin
F. Sertorio, S. Signa, M. De Cesari, M.B. Damasio, G.M. Magnano; Genoa/IT (كاممتا.سترنتو@gmail.com)

Purpose: To evaluate the ability of WMBRI to identify significant potential diagnostic clues (PDCs) in paediatric patients presenting with fever of unknown origin (FUO), recurrent fever, or with a non-specific clinical picture (IUO, Inflammation of unknown origin). To define if an evaluation of WMBRI using a predefined checklist increases the power of this diagnostic tool.

Methods and Materials: We retrospectively collected cases of paediatric patients who underwent WMBRI between January 2010 and December 2015 for these indications: i) FUO, ii) recurrent fever, iii) IUO. All studies have been evaluated twice, the second time according to a predefined checklist, considering the involvement of bone, bone marrow, subcutaneous tissue, muscle, tendons, fascia, spine, lung, parenchyma, lymph nodes, paranasal sinuses, nervous system, and vessels looking for PDCs.

Results: 102 patients were considered: 24 with FUO, 27 with recurrent fever, 51 with IUO. The mean age of WMBRI execution was 9 years. PDCs were identified at the first evaluation in 76/102 cases and in 29/102 cases the identified PDC was useful for the diagnosis. Blind re-evaluation of WMBRI allowed the identification of additional PDCs in 56 cases (12 of them previously negative). In 10 cases the PDC found contributed to the final diagnosis. After the whole diagnostic work-out a final diagnosis was achieved in 42 patients (41%).

Conclusion: WBMRI is a non-radiating accurate method to detect diseases through the body. It can be a powerful diagnostic tool in patients with FUO, recurrent fever and IUO. A predefined checklist increases its diagnostic power.

B-0342 15:12
MRU for diagnosis of obstructive pathology of the upper urinary tract
L. Delitto, M. Damasio, L.E. Derchi; Genoa/IT (delitto.lorenza@gmail.com)

Purpose: We report ureteral anomalies distal to the uretero-pelvic junction (UPJ) detected via MRU subjected to surgery. MRU sensitivity and specificity in presurgical diagnosis are explored. We also determine US-MRU agreement.

Methods and Materials: MRU performed between 2007 and 2017 have been retrospectively analysed. Children with megaureter, DDPU, retrocaval ureter, mid-ureteral stenosis, ureteroceles and ectopic ureter were identified. Patients' demographics, prior US, MRU data and surgical findings have been assessed. Patients with severe systemic malformation syndromes, UPJ obstruction or previous reflux treatments have been excluded.

Results: We analysed US, MRU and surgical findings of 46 patients (22 boys, 24 girls) with a median age of 10 years (range 0.5-16.5 years). The gap between US-MRU was 38 days (range 1-83) and between MRU surgery 3.2 months (0.8-5.9). The pathology was bilateral in 9 (19.6%), unilateral in 37 (80.4%); 13 (35.1%) on the right and 22 (64.9%) on the left side. On 63 urinary tracts examined, MRU compared to surgical data (gold
standard) showed a sensitivity of 98.0%, specificity of 78.6%, VPP of 94.1%, VPN of 91.7%, with a diagnostic odds ratio of 176.0 (CI 95%: 16.7-1856.8). On 82 urinary tracts examined, US between MRU showed a sensitivity of 61.2%, specificity of 54.5%, VPP of 66.7%, VPN of 48.6% with an unsatisfactory odds ratio of 1.9 (CI 95%: 0.8-4.6).

Conclusion: MR urography is highly accurate in the assessment of the ureteral anomalies distal to the UPJ with a sensitivity and specificity higher than US.

B-0343 15:20
Pancreas iron overload and fat infiltration in paediatric beta-thalassemia major patients
J. Huang1, Q. Yang1, Z. Cheng1, X. Chen1, T. Yu1, J. Zhong1, Y. Su2, H. Guo3, B. Liang1, Guangzhou/HU, Zhanjiang/CN, Beijing/CN (huangzi25@mail2.sysu.edu.cn)

Purpose: To determine the iron and fat content (FC) in the three different pancreas regions (head, body, and tail) in paediatric thalassemia major (TM) patients.

Methods and Materials: In 90 paediatric TM patients (10.7±3.1years), pancreatic iron (T2*) and FC were assessed in pancreas head, body and tail, respectively, and were compared with fasting glucose. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging was used to quantitatively measure FC.

Results: Positive linear correlations were found in both T2* and FC among pancreas head, body and tail (r=0.911, 0.932, 0.930, respectively, for T2*, r=0.916, 0.810, 0.913, respectively, for FC, all with p<0.001), no significant regional difference was found (F=0.253, 0.259, p=0.776, 0.772, respectively). Pancreas FC was negatively correlated with pancreas T2* (r=−0.895, p<0.01). The scatter plot showed that 63% patients with pancreas iron overload (PIO) had elevated FC, while all (100%) patients with elevated FC had PIO. Receiver operator characteristic analysis (area: 0.904, 0.897, respectively, both p<0.01) identified patients with elevated fasting glucose at a pancreatic R2* cut-off level of 268.1 s (sensitivity at 75%, specificity at 91.2%), at a pancreatic FC cut-off level of 0.18 (sensitivity at 75%, specificity at 88.2%).

Conclusion: In paediatric TM patients, fatty replacement is accompanied with pancreas iron overload, but lags behind the latter. Iron overloading and fat infiltration were homogeneously distributed in pancreas head, body and tail in children. Both pancreas iron overload and fat content were correlated with fasting glucose, and could be a predictor of the latter.

14:00 - 15:30 Room M 3

Oncologic Imaging

SS 316
Myeloma imaging: latest trends
Moderators:
N.N.
N.N.

B-0344 14:09
Quantifying the change of total tumour volume in whole-body MRI over time improves risk stratification of smouldering multiple myeloma patients
M. Wennmann1, L. Kintzel1, M. Piraud1, J. Hofmanninger1, B. Menez2, H.-U. Kauczor1, J. Hillengass2, G. Langs3, M.-A. Weber3, H. Heidelberger/DE, Munich/DE, Vienna/AU, Buffalo/NY/US, Rostock/DE (kintzel_l@hotmail.com)

Purpose: The purpose of this study was to improve risk stratification of smouldering multiple myeloma patients, introducing new 3D-volumetry-based imaging biomarkers from whole-body MRI.

Methods and Materials: Two hundred and twenty whole-body MRIs from 63 patients with smouldering multiple myeloma were retrospectively analysed and all focal lesions >5mm were manually segmented for volume quantification. The imaging biomarkers total tumour volume, speed of growth (development of the total tumour volume over time), number of focal lesions, development of the number of focal lesions over time and the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group were compared, taking 2-year progression rate, sensitivity and false-positive rate into account.

Results: Speed of growth, using a cutoff of 114 mm/month, was able to isolate a high-risk group with a 2-year progression rate of 82.5%. Additionally, it showed by far the highest sensitivity in this study and in comparison to other biomarkers in the literature, detecting 63.2% of patients who progress within 2 years. Furthermore, its false-positive rate (8.7%) was much lower compared to the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group.

Conclusion: Therefore, speed of growth is the preferable imaging biomarker for risk stratification of smouldering multiple myeloma patients.

Author Disclosures:
J. Hillengass: Advisory Board; Amgen, BMS, Celgene, Janssen, Novartis, Takeda. Consultant: Amgen, Celgene, Research/Grant Support; Celgene, Sanofi, Other; Amgen, BMS, Celgene, Janssen, Novartis, Takeda.

B-0345 14:17
Intravoxel incoherent motion imaging (IVIM) assessment of bone marrow infiltration in multiple myeloma
R. Balaji; Chennai/IN (ravikanthbalaji@gmail.com)

Purpose: To study the use of intravoxel incoherent motion (IVIM) diffusion imaging in assessing extent of marrow involvement in multiple myeloma by therapy and correlation with histology.

Methods and Materials: 75 patients with biopsy-proven myeloma were included in the study. All patients underwent whole body diffusion imaging using DWIBS (diffusion-weighted whole-body imaging with background signal suppression) sequence on 1.5 Tesla Philips Achieva scanner. The marrow lesions (> 1cm) in the iliac bones were identified for IVIM study. Images were acquired in an axial plane with 11 b values: 0, 20, 30, 50, 80, 100, 200, 400, 800, 1000 and 1200 s/mm². The IVIM parameters (perfusion fraction [f], molecular diffusion coefficient [D], and perfusion-related D [D¹]) and apparent diffusion coefficient (ADC) were obtained for marrow and focal lesions. The molecular diffusion coefficient and ADC values were correlated with degree of plasma cell infiltration.

Results: D and f values positively correlated with degree of bone marrow involvement. Multiple myeloma is classified into 3 stages, I < 20% plasma cells, II 20-50% and III ≥50% at both DW- and IVIM scans. The correlation was significant in stage III (p<0.05) (D (x 10⁻³ mm²/s) in stage III 0.5 8 ±0.21, in stage II 0.80±0.27, in stage I 1.1 ±0.22. f values were higher in stage III rather than stage I (p<0.08).

Conclusion: IVIM MR diffusion imaging may be used to predict degree of marrow infiltration by plasma cells in multiple myeloma and thereby provide pre-biopsy staging.

B-0346 14:25
Response assessment in multiple myeloma using intra-voxel incoherent motion (IVIM) diffusion MRI: a newer paradigm
R. Balaji; Chennai/IN (ravikanthbalaji@gmail.com)

Purpose: To evaluate the performance of intra-voxel incoherent motion (IVIM) model of diffusion imaging in assessing treatment response in multiple myeloma.

Methods and Materials: Hundred patients with biopsy-proven multiple myeloma on appropriate chemotherapy were imaged before start of treatment and at 2 points during treatment - 1 month and 3 months of therapy. Imaging was performed on Achieva 1.5 Tesla scanner (Philips Healthcare, Best, The Netherlands) using a 16-channel pelvic torso coil. Lesions in iliac bones or sacrum were analyzed. Images were acquired in an axial plane with 11 b values (0 to 1200 s/mm²). IVIM parameters (perfusion fraction [f]), molecular diffusion coefficient [D], and perfusion-related D [D¹] and apparent diffusion coefficient (ADC) were calculated. Receiver operator characteristic analysis (area: 0.904, 0.897, respectively, both p<0.01).

Results: D values (P 0.004) were the most sensitive indicator for response. D values increased in the first month of therapy and continued to rise at 3 months. f values (P 0.05) decreased after one month showing further decrease at 3 months. ADC values derived from mono-exponential equation also showed elevation after therapy.

Conclusion: IVIM-derived parameters may be useful in evaluating response of patients with multiple myeloma to appropriate therapy thereby obviating need for invasive marrow biopsies.

B-0347 14:33
Full-body 150-kV spectral-shaping low-dose CT in multiple myeloma follow-up: evaluation of image quality and radiation dose
A.M. Buchs1, A. Brendlin2, J.E. Scholtz2, M. Beere1, Frankfurt a. Main/DE, Tubingen/DE

Purpose: Spectral-shaping by tin-filtration allows for radiation dose savings in computed tomography. Our aim was to evaluate a low-dose protocol using spectral-shaping for multiple myeloma (MM) follow-up in comparison to a low-dose 120-kV protocol.

Methods and Materials: Forty CTs from twenty patients (64±12 years; female/male: 11/9) with clinically indicated follow-up of MM were included. All patients had a full-body CT using low-dose 120-kV/60-mAs protocol (CT₁₂₀) and on follow-up a tin-filtered low-dose 150-kV/60-mAs protocol (CT₁₅₀) for intra-individual comparison. Dose-length-product (DLP) was recorded. Signal-to-noise ratio (SNR) was calculated for the gluteus maximus muscle and non-ROI-subtracted images. The image quality for bone, and soft-tissue, and presence of artefacts were rated (5-point Likert-scale) by two independent investigators. We used paired...
Results: On average CTi50 had 49% less radiation exposure compared to CTi100 (323.5±79.2 mGy.cm vs. 661.4±78.2 mGy.cm; \(p=0.001 \)), SNRi50 (CTi50: 0.97±0.68; CTi100: 0.54±0.31; \(p=0.003 \)) and BHFr (CTi100: 2.4±2.1; CTi50: 3.5±1.2; \(p=0.001 \)) were significantly higher with spectral imaging. Subjective image quality was rated higher in CTi50 compared to CTi100 \([IQR\, 4-5]\) vs. \([IQR\, 3-4]\; \(p=0.016 \). Interobserver agreement was excellent \(k=0.886 \). Impairment of diagnostic confidence for bone through artefacts was lower in CTi50 \(p=0.014 \).

Conclusion: Spectral-shaping allows for full-body CT at 49% lower radiation dose compared to a 120kV low-dose protocol, while improving image quality. It may be an alternative for follow-up CT in MM.

B-0348 14:41
Spatial heterogeneity in growth dynamics and local volumetric biomarkers for risk stratification and dissemination behaviour in smouldering multiple myeloma

Purpose: To assess spatial heterogeneity in growth dynamics between different tumour sites, and to determine site-specific tumour characteristics for risk assessment and prediction of appearance of new focal lesions in smouldering multiple myeloma patients.

Methods and Materials: A cohort of 63 patients with overall 220 whole-body MRI examinations during follow up, local tumour volumes of 151 focal lesions in 29 patients and local growth dynamics of 146 focal lesions in 27 patients were determined using manual volumetry. Volume and speed of growth of the largest focal lesion and speed of growth of the fastest growing focal lesion were used as biomarkers for risk stratification and dissemination behaviour, and their performance was compared using Cox regression and Harrell’s C-Index.

Results: Seventy percent of patients with \(n=3 \) focal lesions show a difference of at least factor 5 in local speed of growth between different tumour sites. All local volumetric biomarkers allow significant risk stratifications \(p<0.001 \), with local speed of growth showing the best prognostic discrimination \((C\text{-index} 0.798) \). Local speed of growth correlates significantly with future appearance of new focal lesions \((HR=1.44; \, p=0.026) \).

Conclusion: Growth dynamics between tumour sites differ substantially in the majority of patients and indicate differences in local biology. Local volumetric tumour assessment performs excellent regarding prognosis assessment and can be used in upcoming Radiomics approaches or to choose biopsy sites. The correlation between local speed of growth and future appearance of new focal lesions supports the thesis that local growth dynamics correlates with advance of tumour biology.

Author Disclosures: J. Hillengass: Other; Regarding the submitted work: none; outside the submitted work: Amgen, BMS, Celgene, Janssen, Takeda, Novartis.

B-0349 14:49
Rapid study assessment in follow-up whole-body computed tomography in patients with multiple myeloma using a dedicated bone subtraction software

M. Sieren, F. Brenne, A. Hering, M. Schenk, T. H. Oechtering, J. Barkhausen, A. Frydrychowicz, Lübeck/DE (malte.sieren@uksh.de)

Purpose: Reading follow-up whole-body computed tomography (CT) examinations in patients with multiple myeloma is a lengthy and demanding process. In line with smart reporting approaches, the aim of this study was to evaluate the diagnostic accuracy and benefit of a software for motion-corrected assisted bone lesion change detection.

Methods and Materials: A cohort of 60 patients with overall 220 whole-body MRI examinations during follow up, local tumour volumes of 151 focal lesions in 29 patients and local growth dynamics of 146 focal lesions in 27 patients were determined using manual volumetry. Volume and speed of growth of the largest focal lesion and speed of growth of the fastest growing focal lesion were used as biomarkers for risk stratification and dissemination behaviour, and their performance was compared using Cox regression and Harrell’s C-Index.

Results: Seventy percent of patients with \(n=3 \) focal lesions show a difference of at least factor 5 in local speed of growth between different tumour sites. All local volumetric biomarkers allow significant risk stratifications \(p<0.001 \), with local speed of growth showing the best prognostic discrimination \((C\text{-index} 0.798) \). Local speed of growth correlates significantly with future appearance of new focal lesions \((HR=1.44; \, p=0.026) \).

Conclusion: Growth dynamics between tumour sites differ substantially in the majority of patients and indicate differences in local biology. Local volumetric tumour assessment performs excellent regarding prognosis assessment and can be used in upcoming Radiomics approaches or to choose biopsy sites. The correlation between local speed of growth and future appearance of new focal lesions supports the thesis that local growth dynamics correlates with advance of tumour biology.

Author Disclosures: J. Hillengass: Other; Regarding the submitted work: none; outside the submitted work: Amgen, BMS, Celgene, Janssen, Takeda, Novartis.

B-0351 15:05
Comparison of 18F-FDG PET/CT and whole-body MRI in assessing newly diagnosed myeloma

O.A. Westerland, A. Amlani, M. Siddique, M. Streetly, I. El-Najjar, G. Cook, V.J. Goh; London/UK (owenwesterland@gmail.com)

Purpose: Advanced imaging including whole-body (wb) MRI and 18F-FDG PET/CT are now recommended by the International Myeloma Working Group for assessing myeloma. It remains unclear which modality should be used first-line. We aimed to compare the diagnostic performance of 18F-FDG PET/CT and wbMRI.

Methods and Materials: Following IRB approval, 25 patients (12 male; mean±SD = 61±10 years) with newly diagnosed myeloma underwent 18F-FDG PET/CT and wbMRI. Following a 6 hr fast, 400 MBq “6”F-FDG was administered intravenously. At 60 +/-5 mins post injection, imaging was acquired from vertex to knees (1.5T Magnetom Aera, Siemens HealthCare), and the presence/absence of disease and number of focal lesions recorded. Diagnostic performance was compared to clinical parameters including bone marrow aspirate (reference standard).

Results: The sensitivity of wbMRI for diagnosing myeloma was 88%, compared with 84% for 18F-FDG PET/CT (84% for the CT component alone; 48% for PET component alone for detection of bone lesions). In 20/25 patients (80%) wbMRI detected a greater number of bone lesions compared with the CT component of 18F-FDG PET/CT whilst in 3/25 patients (12%) a greater number of lesions were detected on CT compared with wbMRI. 8% of cases were concordant.

Conclusion: wbMRI and 18F-FDG PET/CT have a comparable sensitivity for detection of myeloma, however wbMRI detects a greater proportion of focal bone lesions compared with 18F-FDG PET/CT.

B-0352 15:13
Distinct bone marrow pattern in MR imaging of advanced systemic mastocytosis is associated with poor prognosis

P. Rittel, M. Jawhar, K. Gawlik, H.J. Michaeli, W.-K. Hofmann, S.O. Schönberg, A. Reiter; Mannheim/DE (Philipp.Rittel@medma.uni-heidelberg.de)

Purpose: Systemic mastocytosis (SM) is a rare myeloproliferative neoplasm characterized by accumulation of mast cells (MCs) in various organ systems (e.g. bone marrow, BM). The aim of this study was to compare the BM pattern of indolent SM (ISM, normal life expectancy) and advanced SM (advSM,
MRI-based texture analysis has the potential to predict response to transarterial radioembolization at baseline. The results indicate higher tumor heterogeneity of the liver metastases at baseline in responders.

B-0355 14:04
Apparent diffusion coefficient percentage as an early predictor for evaluation of trans-catheter arterial chemoembolization efficacy in hepatocellular carcinoma

Purpose: To evaluate whether preoperative measurement of %ADC before and after TACE could predict residual tumor after TACE.

Methods and Materials: Thirty patients with 44 hepatocellular carcinoma (HCC) lesions which were all treated with TACE. All lesions were evaluated by conventional MRI, diffusion weighted imaging (DWI), and ADC value measurement before treatment for baseline characterization, then four weeks after TACE to evaluate its efficacy. Results were compared with triphasic study (CT or MRI) done at the same time as a standard of reference.

Results: Significantly higher ADC values were found in lesions that were completely embolized rather than the incompletely embolized ones with residual tumoral tissue. The mean ± standard deviation (SD) of lesions before treatment was 1.23±0.24×10^{-3} mm/s. One month after TACE, completely embolized HCC lesions had an increase in mean (±SD) ADC to 1.44±0.26×10^{-3} mm/s (P<0.004), while incompletely embolized HCC lesions increased to 1.33±0.24×10^{-3} mm/s (P=0.41). Completely embolized lesions also had significantly larger increase in %ADC than incompletely embolized ones (22.8% versus -21.2% respectively, p=0.001). On comparing %ADC before and after treatment with the standard of reference (trichiasic CT or MRI), %ADC had 96% sensitivity, 100% specificity, and 94.7% accuracy (%ADC threshold was set at 8.5% based on ROC curve analysis).

Conclusion: Percentage ADC represents a reliable early predictor of successful management of HCC by TACE and allows early detection of residual tumoral tissue.

B-0356 14:08
Can intravoxel incoherent motion diffusion-weighted imaging be use for preoperative assessment of microvascular invasion in hepatocellular carcinoma
Y. Wei, B. Song, H. Jiang, J. Chen; Chengdu/CN (drwei057@163.com)

Purpose: To prospectively evaluate the potential role of intravoxel incoherent motion diffusion-weighted imaging and conventional radiologic features for preoperative prediction of MVI of HCC.

Methods and Materials: 115 patients with 135 newly diagnosed were evaluated. For all examinations, studies were carried out by using a 3.0 T MR system. IVIM was performed by using an echo-planar imaging sequence with respiratory gating, twelve b values of 0, 10, 20, 40, 80, 100, 150, 200, 400, 600, 800 and 1000 sec/mm² were obtained. All the IVIM images were analysed by two radiologists independently. Freehand region of interest (ROI) was used to outline the tumour on the original IVIM image (b=400 sec/mm²), and try to avoid the necrosis and haemorrhage. The ADCc, ADCow, ADCfast and F values were automatically calculated. Univariate and multivariate logistic regression analyses were used to screen the independent risk factors of MVI, receiver operating characteristics (ROC) curves were drawn and to determine the optimal cut-off value.

Results: Features significantly related to MVI of HCC at univariate analysis were reduced ADC (odds ratio, 0.341, 95% CI: 0.211-0.552; P<0.001) and ADCslow (odds ratio, 0.141, 95% CI: 0.067-0.299; P<0.001). At multivariate analysis, only ADCslow was the independent risk factor for MVI of HCC. The mean ADClow value for MVI of HCC showed an area under ROC curve of 0.815 (95% CI: 0.740-0.877) with the optimal cutoff value of 0.868.

Conclusion: The results of the preliminary study have demonstrated that the decreased ADCslow value was independent risk factor for predicting MVI of HCC.
B-0357 14:12
Liver surface nodularity score as a new predictor of overall survival in patients with HCC treated by TACE
A. Abou Elkassem1, A.M.K. Abdal Aal1, K. Mahmoud2, A. Gunn3, S. Li4, A. Smith1
Purpose: To assess the accuracy of the CT-based liver surface nodularity (LSN) score for predicting overall survival (OS) in patients with hepatocellular carcinoma (HCC) treated with trans-arterial chemobiomobilisation (TACE).

Methods and Materials: For this prospective study, a search of the electronic medical records was performed to identify adult patients with HCC treated by TACE who underwent within 6 months of a contrast-enhanced abdominal CT. The LSN score was measured using post-processing workstation.
Results: A total of 165 patients were included with BCLC stage A (N=46), B (N=62), C (N=46), and D (N=11). The mean (standard deviation) of the LSN score was 3.10 (0.71). The median TTP and OS were 10.2 and 21.4 months. None of the variables were predictive of TTP (p<0.05). Predictors of OS included the LSN score (HR: 1.41; 95% CI: 1.06, 1.88; p=0.019) and age (HR: 1.03; 95% CI: 1.00, 1.05; p=0.029), but not the BCLC stage of HCC or any of the other variables (p>0.10). For each unit increase in the LSN score, the risk of death increases by 41%.

Conclusion: The CT-based LSN score was an accurate independent predictor of OS in patients with HCC treated by TACE.

Author Disclosures:
A. Smith: Owner; Liver Nodularity LLC. Patent Holder; Liver Nodularity LLC.

B-0358 14:16
Diffusion-weighted imaging of colorectal liver metastases: prospective evaluation of apparent diffusion coefficient in correlation with histologic findings
M.F.A. Almeida, R. Cruz, M.D.F.S. Begnami, P.N.V.P. Barbosa, A.G.V. Bifone, F.J.F. Coimbra, R. Chojniak, Sao Paulo/BR

Purpose: To prospectively correlate apparent diffusion coefficient (ADC) values of colorectal liver metastases with the degree of viable tumour, necrosis and fibrosis.

Methods and Materials: Thirty-seven patients with colorectal liver metastases were included. All patients had preoperative MRI scans at Signa HDx 1.5 Tesla GE Healthcare, including DWI sequences with b values of 0-200 and 600 sec/mm². All patients underwent surgical resection, with systematic mapping of the surgical specimen for radiopathological correlation. A total of 92 metastases detected in the DWI sequences were found to be adequately correlated with the macroscopic mapping and were submitted to standard histological analysis to evaluate the percentage of viable tumour, necrosis and fibrosis. ADC values were calculated using post-processing workstation. Spearman correlation, chi-square, Kruskal-Wallis and Mann-Whitney tests were performed.

Results: Twenty patients were male (54%) and the mean age was 56.4 years (age range, 32-78). Only 5 patients did not perform preoperative chemotherapy (13.5%). MRI lesions ranged from 0.7 to 9.0 cm (mean, 2.3 cm). Mean ADC values obtained with ROI in the entire lesion and ROI in 50% of the lesion area (13.5%). MRI lesions ranged from 0.7 to 9.0 cm (mean, 2.3 cm). Mean ADC values were calculated using post-processing workstation.

Conclusion: The lesions with the highest percentage of viable tumour had lower ADC values, indicating that DWI sequence can be used to evaluate cellularity and tumour viability of colorectal liver metastases.

B-0359 14:20
Comparison of intravoxel incoherent motion DWI, diffusion kurtosis imaging, and conventional DWI in predicting the chemotherapeutic response of colorectal liver metastases
H. Zhang, W. Li, T. Tong; Shanghai/CN

Purpose: The study aimed to compare the performance of pre-treatment intravoxel incoherent motion DWI (IVIM-DWI), diffusion kurtosis imaging (DKI), and conventional DWI for predicting the chemotherapeutic response in patients with colorectal liver metastases (CRLMs).

Methods and Materials: Forty consecutive patients with unresectable CRLMs who underwent the standard first-line chemotherapy regimens were prospectively collected. All the images were collected on a MAGNETOM Skrya 3T MR scanner. The response was assessed by response evaluation criteria in solid Tumours (RECIST Version 1.1) after receiving two cycles of chemotherapy. The parameters were compared between the responding group (complete and partial response, n=15) and non-responding group (stable and progressive disease, n=25).

Results: Lower baseline ADC, Dmax, D (P = 0.001, <0.001, and <0.003 respectively) and higher baseline K (P = 0.002) were independently associated with a good response to chemotherapy with area under the ROC curves (AUCs) of 0.845, 0.832, 0.819, and 0.787, respectively. The best predictive parameter was ADC (AUC = 0.845, sensitivity = 73.3 %, specificity = 84.0 % and cutoff value ≤ 1.1068.65 × 10⁻³ mm²/s). The statistically different factors were fitted by the logistic regression and a predictive factor (PRE1) was generated. The AUC of the PRE1 reached 0.867.

Conclusion: Our study showed that pre-treatment IVIM-DWI (Dmax, DKI (D and K), and conventional DWI (ADC) all demonstrate good diagnostic performance in predicting the chemotherapeutic response of patients with CRLMs, which indicates that the functional MRI parameters might provide additional information for predicting the response of CRLMs.

B-0360 14:24
Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS/NRAS/BRAF mutation in rectal adenocarcinoma
Y. Cui1, Z. Zhuo1, K. Yang1, R. Zhang1, T. Tianyu1, C. Beijing/CN

Purpose: To evaluate the potential role of DKI-derived parameters by using histogram analysis derived from whole-tumor volumes for prediction of KRAS/NRAS/BRAF mutations status in patients with rectal adenocarcinoma.

Methods and Materials: 152 consecutive patients who underwent MRI examination with rectal adenocarcinoma underwent retrospectively evaluated. The parameters D, K and conventional ADC were extracted using whole-tumor volume histogram analysis. Student’s t-test or Mann-Whitney U-test, receiver operating characteristic curves, and Spearman’s correlation were used for statistical analysis.

Results: All the percentiles metrics of ADC and D values were significantly lower in the mutated group than those in the wild-type group, except for the minimum value of D, while K-related percentiles metrics appeared higher in the mutated group compared with those in the wild-type group. Regarding the comparison of diagnostic performance of all the histogram metrics, Kmax showed the highest AUC value of 0.866, and the corresponding sensitivity, specificity, PPV and NPV were 67.57% and 92.31%, 89.29% and 75.0%, respectively.

Conclusion: DKI metrics with whole-tumor volume histogram analysis, especially the Kmax parameter, yield preferable AUC and specificity for predicting KRAS/NRAS/BRAF mutations than ADC and D, and thus may potentially serve as an optimal imaging biomarker for the prediction of KRAS/NRAS/BRAF mutations for guiding targeted therapy.

B-0361 14:28
Prediction of loco-regional treatment failure after chemoro-therapy in anal cancer using FDG PE/T-DT-derived feature analysis
P. Brown1, J. Zhong1, G.M. McDermott1, M. Fronza1, A. Gilbert1, A. Appelt1, D. Sebag-Montefiore1, S. Currie1, A. Scarsbrook2, S. Leeds/UK, York/UK (peter.brown30@nhls.net)

Purpose: Chemoradiotherapy (CRT) is the primary treatment of loco-regional disease in anal squamous cell carcinoma (ASCc). Loco-regional treatment failure (LRF) can occur due to sub-optimal therapy response. Tumour phenotyping using radiomic analysis may help identify tumours less likely to fully respond. The study purpose was to develop and validate a prognostic model in patients with ASCc incorporating pre-treatment FDG PET/CT-derived features.

Methods and Materials: Consecutive patients with ASCc (n = 292) treated with curative-intent CRT at a large tertiary referral centre were studied. After exclusions (small tumour size, incomplete follow-up data, tumour excision pre-PET/CT), 199 patients were analysed; separated into training (n = 145) and validation (n = 44) cohorts. Tumour segmentation and radiomic feature (RF) extraction was performed using specialised software (LIFEx, www.lifexsoft.org) on baseline PET/CT imaging. Cox regression modelling was performed. Primary outcome was LRF, (median follow-up 31.0 months, IQR 15.5-55.5 months).

Results: 37 (25.5%) and 12 (27.3%) patients in the training and validation cohorts had LRF within the treatment field. Univariate analysis demonstrated metabolic tumour volume (MTV), SUVmax, 7 CT-derived and 7 PET-derived RFs (first- and second-order parameters) were statistically significant (p < 0.05) for LRF prediction. Conventional discriminators (T, N, M stage, age, sex and histological grade) were not significant in predicting LRF.

Conclusion: PET/CT-derived RFs helped predict ASCc patients at higher risk of LRF and may offer additional benefits over conventional imaging and demographic factors. This shows promise for more effective risk stratification and personalisation of CRT regimens in the future.
B-0362 14:32

Increasing reader confidence in cancer imaging using an advanced DWI modification: a prospective evaluation

C. Dreher¹, T. Kudel¹*, S. Windhaber¹, F. König¹, D. Paech¹, R. Grins¹, T. Benkert², H.-P. Schlemmer², S. Bickelhaupt¹, ¹Heidelberg DE, ²Erlangen DE (cdreher@dktz-heidelberg.de)

Purpose: Oncological imaging commonly includes Diffusion Weighted Imaging (DWI) sequences to identify and characterize suspicious lesions. However, image quality can be challenged by the limited SNR of DWI, especially in abdominal examinations. This prospective study investigated an optimized DWI in oncological imaging for improved detection of malignant abdominal lesions.

Methods and Materials: This IRB-approved, prospective study included 59 patients (mean age: 57 years; male/female: 22/37). Oncological follow-up MRI examinations of the nodes were performed with a 1.5T MRI scanner (AER, Siemens Healthineers, Germany) with both a standard epi-DWI (“routine-DWI”) and an oncologically optimized prototype DWI (“oncoDWI”) with b=0.900s/mm². Diagnostic confidence for characterization/detection of suspicious lesions was evaluated by two independent readers using a 5-point Likert Scale. Statistics included Wilcoxon signed rank tests, interreader agreement was analyzed by kappa-statistic (p<0.05).

Results: Sixty-one lesions were detected (20 hepatic, 16 lymphatic, and 25 lesions of other origins). Reader confidence for characterization/detection of malignant lesions was significantly improved using the oncoDWI (4.6±0.5) as compared to the routine-DWI (3.7±0.7) (p<0.001). The increased confidence of lesion recognition in the optimized DWI remained significant in all subgroups of hepatic, lymphatic and lesions of other origins (p<0.002) with an overall good interreader agreement (kappa=0.744) (p<0.001).

Conclusion: An oncologically optimized DWI sequence increased the reader confidence for lesion characterization/detection in oncological abdominal MRI both with regard to screening and follow-up examinations while preserving a high interreader agreement.

Author Disclosures:

T. Benkert: Employee; Siemens Healthineers. S. Bickelhaupt: Speaker; Siemens Healthineers.

B-0363 14:36

Preoperative prediction of regional lymph node metastasis in thoracic oesophageal carcinoma with 18F-FDG PET/CT and contrast-enhanced CT: texture analysis: a nomogram model

Z. Xiaochun, W. Shuxia; Guangzhou/CN (zhangxiaochun79@163.com)

Purpose: To develop and validate a nomogram model for preoperative prediction of regional lymph node metastasis in thoracic oesophageal carcinoma.

Methods and Materials: The nomogram model was developed in a primary cohort which consisted of 391 regional lymph nodes from 95 patients with histologically confirmed thoracic oesophageal carcinoma from January 2015 to December 2016. All patients underwent preoperative 18F-FDG PET/CT and contrast-enhanced CT scans. SUVmax of regional lymph nodes was collected. The texture features of lymph nodes were extracted from enhanced CT images. Lasso regression was used for data dimension reduction, feature selection, and texture feature model building. Multiple logistic regression analysis was used to develop the predictive model. We integrated the SUVmax information with the texture information to develop a nomogram model. A internal validation cohort consisted of 252 lymph nodes from 60 patients in 2017. The calibration and discrimination of the model were assessed.

Results: SUVmax and 12 texture features were associated with lymph node metastasis (P <0.05 for both primary and validation cohorts). Predictors of the nomogram model was constructed. The model showed good discrimination(area under ROC curve: 0.87) and good calibration (P value of Hosmer-Lemeshow test: 0.41).

Conclusion: This study combined glucose metabolism information and texture features to develop a nomogram model, which could be used to predict regional lymph node metastasis in patients with thoracic oesophageal cancer.

B-0364 14:40

Prospective evaluation of modified DWI MRI for improved image quality and tissue differentiation in oncological follow-up examinations

C. Dreher¹, T. Kudel¹*, S. Windhaber¹, F. König¹, D. Paech¹, R. Grins¹, T. Benkert², H.-P. Schlemmer², S. Bickelhaupt¹, ¹Heidelberg DE, ²Erlangen DE (cdreher@dktz-heidelberg.de)

Purpose: Diffusion weighted imaging (DWI) is an important part of oncological magnetic resonance imaging (MRI) examinations. This study aims at prospectively evaluating an oncologically adapted DWI sequence for improved image quality and tissue differentiation in patients with abdominal malignancies.

Methods and Materials: This IRB-approved, prospective in-vivo and ex-vivo study included phantom measurements using a dedicated phantom (PVP-K30) and 43 prospectively acquired oncological abdominal MRI examinations (mean age: 57 years; male/female: 21/31) using a 1.5T MRI scanner (AER, Siemens Healthineers, Germany) including both a standard epi-DWI (“s-DWI”) (b-values 0.900s/mm²) and an oncologically adapted, prototype optimized DWI (“onco-DWI”) (b-values 0.900-1500s/mm²). Apparent-signal-to-noise-ratio (SNR) was quantitatively evaluated, image quality and tissue differentiation parameters were rated by two independent, blinded readers using a 5-point Likert-Scale. Statistics included Wilcoxon-signed-rank test and kappa statistic (p<0.05).

Results: The DWI-phantom demonstrated a significantly optimized contour sharpness and inlay differentiation for the opt-DWI. Apparent-SNR of b900-1500s/mm² of the rightleft hemiabdomen was significantly increased in opt-DWI (mean: 227±250/150±192) vs. s-DWI (mean: 37±17/40±23) (p<0.001). Image quality parameters (contour sharpness right liver, left liver and pancreas) were significantly increased in opt-DWI vs. s-DWI (p<0.001). Tissue differentiation for the upper abdominal organs and retroperitoneal structures was significantly improved in opt-DWI (p<0.001). Interreader reliability test showed good agreement (kappa=0.754) (p<0.001).

Conclusion: This prospective study demonstrates the superiority of an oncologically optimized DWI over standard DWI for abdominal oncological imaging. Assessment of anatomical structures including the retroperitoneum and liver was significantly improved using the novel approach in oncological follow-ups.

Author Disclosures:

T. Benkert: Employee; Siemens Healthineers. S. Bickelhaupt: Speaker; Siemens Healthineers.

B-0365 14:44

USPIO contrast agents for detecting cancer: which one works best?

L. Miller¹, U. Huber¹, A. Mahnken¹, R. Mandic¹, M.-L. Martini¹, P. Seyfer²; Marburg DE

Purpose: Differences regarding physical and chemical properties of ultrasmall superparamagnetic oxide (USPIO)-MRI contrast agents influence their uptake, biodistribution and clearance. These characteristics could affect their ability to distinguish between malignant and benign lesions. The purpose of our study was the comparison of four USPIOs to find a suitable agent for possible future clinical practice.

Methods and Materials: This study was performed on forty athymic nude mice and approved by the local animal care committee. Hela cells and intramuscular inflammation were implanted into the hind thighs. On a 7T-scanner imaging was performed precontrast and serially 2, 4 and 24 hours after injecting USPIOs. Following USPIOs were used: Feraheme (AMAG Pharmaceuticals Inc., Waltham, MA, USA), P 904 (Guerbet Group, Villepinte, France), FeraSpin XS-Type and FeraSpin M-Type (Millenyi Biotec GmbH, Bergisch Gladbach, Germany). Pre- and postcontrast differences of SI, SNR and CNR in tumour and inflammation were measured and analysed for significance using Wilcoxon-signed-rank tests and receiver-operating characteristic curves with Venkataramans’s tests. Correlation between MR images and histologic slices stained with hematoxylin-eosin, Prussian blue and MAC antibodies was performed.

Results: All four contrast agents tested were significantly able to distinguish between cancer and inflammation (p <0.05). No significant differences were noticed between the different contrast media regarding their ability to do so (p>0.05).

Conclusion: The four USPIOs tested show no significant difference regarding their ability in distinguishing between malignant lesions and inflammations. Therefore, USPIOs with suitable physical and chemical properties could be used for this purpose in future clinical practice.

B-0366 14:48

Beyond lymph nodes: 18F FDG PET CT in detection of usual and unusual and to extra nodal lymphoma

M. Abdel-Kawi, M. Nasr, A. Ibrahim; Cairo-EG (moustafa.kawi@gmail.com)

Purpose: To compare between PET/CT and contrast-enhanced computer tomography (CECT) in the detection of extra nodal involvement in lymphoma and to correlate between SUVmax of the extra nodal lesion and the hottest LN.

Methods and Materials: 100 patients with pathologically proven lymphoma underwent whole body 18F-FDG PET/CT and CECT scan. Images were compared regarding the ability of detection of extra nodal lymphomatous sites. Kappa agreement was used to find the degree of agreement between both modalities. Pearson’s correlation was used for correlating SUVmax of the extra nodal lesions and hottest LN. The degree of FDG uptake was correlated with histopathological type.

Results: There was a poor agreement between PET/CT and CECT in the detection of extra nodal sites (k=0.32). There was a significant positive moderate correlation between SUVmax of the extra nodal lesions and hottest LN(r=0.45). PET/CT study resulted in up staging of 10% and down staging of 2%.
5% of cases.

Conclusion: FDG PET/CT scan enables better detection of extra nodal lymphomatous sites that show normal morphology at CT. It may differentiate lymphomatous infiltration from benign causes of increased FDG avidity, which provide proper disease staging.

B-0367 14:52

Evaluating of STIR, T1 DIXON “in and out of phase” and DWI sequences, to propose a standardised protocol of the MRWB in patients affected by myeloma

A. Trisoglio, E. Soligo, S. Berardo, L. Sukhovei, S. Bor, G. Buoni, A. Stecco, A. Carriero; Novara/IT (berardo.sara@gmail.com)

Purpose: The International Guidelines include MRWB (MR-Whole Body) in the management of patients with plasma cell disorders, but there is no standardised protocol to follow. The aims of the study are: 1) to evaluate the effectiveness of STIR, T1 DIXON and DWI, 2) to understand if there is a different ability to diagnose lesions in the patient before and after therapy, 3) to propose a protocol as short as possible.

Methods and Materials: Two radiologists retrospectively reviewed MRWB belonging to 112 patients with myeloma. Inclusion criteria: qualitative suitability of the sequences and presence of an exam after to be used as “control”. Exclusion criterion: widespread infiltration. The statistical analysis (Friedman Test and the Sign test) was carried out by considering all patients and then before and after therapy. The "error" of the sequences and the correlation of the two readers with the IACC (Intraclass Coefficient Correlation) were calculated.

Results: There is no statistically significant difference in finding myelomatous lesions using only DWI (with ADC) compared to the simultaneous use of STIR or DIXON. No statistically significant differences were found even between patients before and after therapy despite the signal "change" of the lesions. The agreement is excellent for all sequences with average ICC of 0.90 (95%-1).

Conclusion: We propose the MRWB protocol: sagittal T1 and STIR on the column + coronal DIXON + DWI (ADC). If the DIXON sequences are not available: sagittal T1 and STIR on the column + coronal STIR + DWI (ADC). Both coronal sequences do not add diagnostic value.

B-0368 14:56

Optimisation of prostate cancer radiotherapy management with MR

F. Curro1, M.C. Ricciardi2, A. De Pascale1, P. Cavallaro1, P. Martignano2, M. Bertolotti2, F. Stacul2, M.A. Cova1, T. Trieste/TII, Padua/IT (francescacurro86@gmail.com)

Purpose: To evaluate the diagnostic accuracy of MR in local staging of prostate cancer and in risk category assessment; to demonstrate the role of MR in radiation therapy planning regarding target volume evaluation.

Methods and Materials: From January 2015 to June 2018, 109 patients with biopsy-proven prostate cancer addressed to radiotherapy were retrospectively identified; all patients underwent MR for local staging. The correlation between clinical stage and MR stage has been evaluated with Cohen's kappa weighted test; the McNemar test was used to analyze the differences in risk category assessment using T parameter as independent variable. The Wilcoxon test was used to determine the differences of radiation treatment volumes obtained on CT and on CT/MR fusion imaging.

Results: The agreement between MR and clinical staging was fair (0.38 . CI 95% 0.10-0.56); the different staging resulted in a statistically significant difference in risk category assessment (p < 0.003). Finally, the radiation treatment volumes obtained on CT/MR fusion imaging was significantly smaller than the corresponding value obtained on CT (p < 0.001).

Conclusion: MR has been proven accurate in the management of patients with prostate cancer candidate to radiotherapy. The use of CT/MR fusion imaging allowed a better evaluation of radiation treatment volumes improving therapy efficacy.

B-0369 15:00

US and CEUS in ovary assessment of a murine model: preliminary findings on protective role of gonadotropin releasing hormone analogue from chemotherapy-induced ovarian damage

A. Colarieti1, M. Venturini1, P. Perani, A. Esposti2, C. Del Maschio, F. De Cobelli, Milan/II (colariet.anna@hsr.it)

Purpose: The gonadotoxic effect of chemotherapy (CT) can lead to infertility in female cancer survivors. There is controversial evidence regarding the protective role of gonadotropin-releasing hormone analogue (GnRH-a) on CT-induced ovarian damage. First aim of this experimental study on a murine model was to characterize ovaries in normal conditions; second aim was to obtain preliminary findings on anatomical/vascular ovarian changes induced by GnRH-a.

Methods and Materials: US and CEUS (Vevo-2100-Visualsonics, 40-20-MHz probes) were performed (day 0, 10, 20) comparing two groups of female BALB/c mice (n=10/group) in prone position respectively treated with subcutaneous injection of GnRH-a, Decapeptyl (DECA-treated-mice) and of PBS (Control-untreated-mice). Main US (ovary-diameter, dominant-follicle-diameter) and CEUS (peak-enhancement, wash-in-area-under-the-curve) parameters were investigated.

Results: Ovaries were ultrasonically identified and CEUS analysis was successfully performed in all cases with 100% of technical success. At day 20, a statistically significant increase of the dominant-follicle-diameter and reduced vascularization in DECA-treated mice compared to Control-untreated mice was recorded.

Conclusion: Ovaries can be accurately studied in the murine model in prone position with US and CEUS. GnRH-a seems to exert a protective role on ovaries although further studies combining GnRH-a and chemotherapeutic agents will be needed to obtain more translational information useful for clinical practice.

B-0370 15:04

DWI predicts surgical outcome in advanced ovarian cancer

H. Az, E. Lee, J.A. Peruchó, K.W. Chiu, M. Chu, K.Y. Tse; Hong Kong/HK (610779446@qq.com)

Purpose: To evaluate the values of DWI-derived tumour burden of peritoneal carcinomatosis (PC) and its biology in determining the surgical outcome in advanced ovarian cancer.

Methods and Materials: Thirty-four AOC patients were prospectively recruited for pre-surgical DWI (b=0, 400, 800 s/mm²). Tumours with intermediate apparent diffusion coefficient (ADC) segmented by k-means clustering were used for further tumour volume (STV) calculation discarding fatty, fibrous and cystic tissues. A functional peritoneal cancer index (fPCI) was generated by adding up all STVs from 13 abdominopelvic regions with additional points if portal hepatitis, mesentry or bowel serosa were involved. Mean ADC was measured from 3 selected lesions with the largest STVs. At surgery, the surgical PCI (sPCI), surgical duration and surgical outcome (complete cytoreductive surgery or with residual disease) were recorded. Mann-Whitney U test, Pearson correlation (r) and logistic regressions were performed.

Results: Patients who achieved complete cytoreductive surgery had lower fPCI (4.30 vs 10.18) and sPCI (5.70 vs 12.00) but higher ADC (0.97 vs 0.73) than patients with residual disease (p < 0.005). fPCI was significantly correlated with sPCI (r=0.899, p<0.001) and surgical duration (r=0.528, p=0.001). fPCI, sPCI and ADC (r=0.507, 0.529, -0.562) were significantly correlated with residual disease (p<0.05). Both fPCI and ADC were significant in univariate and multivariate analyses (p<0.05; accuracy=82.4%, sensitivity=72.7%, specificity = 87.0%).

Conclusion: Pre-surgical PCI and ADC were significant predictors for complete cytoreductive surgery in AOC.
Purpose: To evaluate if baseline Apparent Diffusion Coefficient values (ADC) from Diffusion Weighted sequences could predict response to treatment in Patients with sacral chordoma not suitable for surgery treated with carbon ions radiotherapy alone.

Results: 60 lesions in 59 patients with sacral chordoma were studied (range follow-up 12-60 months). 6 lesions were categorized as PD, 40 RD and 14 SD. For each MRI, lesions volume were obtained and median, kurtosis and skewness ADC values were analyzed within the whole lesion volume. Lesions between those two limits were considered as stable disease (SD). For each group, not significantly different (p=0.2). Negative skewness values (-0.1 vs 0.2 vs -0.03) compared with both the other groups, not significantly different (p=0.2).

Conclusion: Preliminary results suggest that baseline ADC values could predict response to treatment with CIRT, in particular to detect potential non responder patients.
Myocardial characterisation using CT extracellular volume in swine acute myocardial infarction model: comparison with CMR T1 mapping and histology

H. Xu, Y. Guo, L. Xie, R. Xu, M. Yang, H. Li, H. Fu, C. Fu; Chengdu/CN

Purpose: This study sought to evaluate the myocardial damage in acute myocardial infarction (AMI) of swine model using the revolution computed tomography (CT) extracellular volume (ECV), and further comparing with the cardiac magnetic resonance(CMR)-T1 mapping and histology.

Methods and Materials: 10 AMI swine models were generated by left descending coronary artery occlusion with surgery. Pre-contrast plain and post-contrast-enhanced CT were scanned within 24 hours after surgery. And CMR pre-post-contrast T1 mapping using MOLLI sequence on 3T MR scanner (Sh.yra, Healthcare, Erlangen, Germany) were performed after CT examination (GE, Revolutions, 256 rows). CT-ECV (Ziostation, Version 2.9.2.2, Japan), CMR native T1 and ECV (cmr42, version 5.6.4; Canada) were computed and compared.

Results: A total of 160 AHA segments were analysed, in which, 36 segments were found infarcted. CT-ECV as well as native T1, CMR-ECV were all increased in infarct segments comparing with remote non-infarct segment (native T1:1476±50ms vs. 1170±48 ms; CMR-ECV:38.35±4.77% vs. 21.21±3.56%, p <0.05). However, post-T1 were decreased for the contrast short T1 time (p<0.05). CT and CMR-T1 mapping had strong correlation in measuring infarct size (r=0.78, p<0.001). Linear correlation showed that CT-ECV correlated well with CMR-ECV. In addition, Bland-Altman reveals good agreement for evaluating both infarct size and ECV values (bias: 1.6±11). Histology verified that the size of infarction well corresponded to CT and CMR.

Conclusion: CT-ECV was well related with and showed good agreement with CMR-ECV and histology. In AMI swine model, CT-ECV were usefully for measuring ECV fraction of myocardial damage in the infarction area.

Feasibility of T1-rho mapping as endogenous contrast agent to detect myocardial fibrosis

C. Celeng, M. Froeling, T. Leiner; Utrecht/NL (celengcsilla@gmail.com)

Purpose: The aim of this study was to assess the feasibility of native T1-rho mapping as a possible endogenous contrast agent to detect interstitial myocardial fibrosis.

Methods and Materials: In this prospective study we enrolled 219 patients (87 female, 132 male; mean age 48±2) referred for the evaluation of suspected or known non-ischemic cardiomyopathies. All patients underwent T1-rho mapping on a 1.5T clinical MR system. To evaluate the ability of T1-rho to detect myocardial fibrosis native and post contrast T1 maps were acquired and the extracellular volume (ECV) was calculated. After the acquisition was completed all images were transferred to a dedicated workstation for motion correction and standardized automatic processing. Spearman correlation coefficients were calculated to determine the correlation between ECV and whole heart T1-rho values, native T1-values and post-contrast T1-values.

Results: T1-rho and ECV maps were successfully obtained in 211 patients of which 189 datasets were of sufficient quality for automatic processing. Mean T1-rho relaxation time was 63.9±4.9 ms; mean native T1 was 1093.6±55.7 ms; mean post-T1 was 390.3±57.6 ms; ECV values ranged between 5-21.2% (25.2±8.0). A strong and significant correlation was found between T1-rho relaxation time and ECV fraction (Spearman coefficient: 0.63, p<0.001). Weak correlations were found between native T1 and ECV (0.31, p<0.001) and post-contrast T1 and ECV (-0.26, p<0.001).

Conclusion: T1-rho correlates well with ECV, which indicates that it has the ability to provide information on diffuse myocardial fibrosis without the need for injection of contrast agents.

Myocardial inflammation in DCM and mapping: an elusive connection

F. Hahn1, D. Fleischmann1, M.C. Hallmann1, H.-P. Schultheiss2, K.-F. Kreitner3, P. Wenzel1, T. Emrich1; 1Mainz/DE, 2Berlin/DE (fhahn@uni-mainz.de)

Purpose: The purpose of this study was to evaluate non-invasive detection of immunohistochemically established myocardial inflammation in non-ischaemic dilated cardiomyopathy (DCM) using T1 and T2 mapping.

Methods and Materials: The study population consisted of 59 retrospectively identified patients with DCM phenotypes who underwent endomyocardial biopsy (EMB) and cardiac magnetic resonance (CMR) imaging. EMB served as the gold standard in all patients. Inflammation in EMB was grouped according to the number of LFA1-positive lymphocytes, CD4-positive lymphocytes, and MAC1-positive macrophages. A control consisted of a matched group of healthy volunteers with CMR imaging (n=58). All imaging was acquired with a 3T Siemens Prisma® Scanner. T1 and T2 maps were created and analysed using dedicated cardiovascular software (Circle CVI®, Global). Segmental and small segmental mapping values as well as septal measurements and tissue heterogeneity parameters were recorded.

Results: Mean global T1 and T2 mapping values of DCM phenotype patients were significantly higher compared to healthy volunteers (both p<0.001). However, the presence of EMB-proven myocardial inflammation within the DCM group did not correlate with T1 and T2 mapping values when regarding global (p>0.4 and p>0.6 resp.), septal (both p>0.8) or maximum segmental values (p>0.1 and p>0.9 resp.).

Conclusion: T1 and T2 mapping parameters were not able to reliably detect myocardial inflammation in DCM phenotypes. The reasons for this behaviour are currently not fully understood. Possible explanations could be different aetiologies of inflammation, sample errors by EMB within the inflammation free-DCM group as well as high inter-individual differences in mapping values.
B-0381 14:56
Assessment of diagnostic performance of cardiac magnetic resonance (CMR) mapping parameters in acute myocarditis (AM) patients

D. Palmbo, A. Palmisano, R. Faletti, G. Benedetti, M. Gatti, A. Del Maschio, F. De Cobelli, A. Esposto, M. Milanit1, F. Turn1T (palmbo.diego@hsr.it)

Purpose: Our aim was to evaluate diagnostic accuracy of CMR mapping parameters in patients with acute myocarditis (AM).

Methods and Materials: Between October 2016 and June 2018 we enrolled 33 patients (39 ± 12.4yrs; 18M, 15F) with clinical suspicion and biophysical confirmation of AM who underwent CMR within three weeks from symptom onset and 40 healthy controls (37.6±11.8yrs; 22M, 18F). CMR protocol included evaluation of native T1 mapping, T2 mapping and Extra Cellular Volume (ECV), each one then analysed in order to assess mean global, basal, mid ventricular, apical and segmental (AHA) values.

Results: AM patients demonstrated mean global native T1 mapping, T2 mapping and ECV values significantly higher in comparison with healthy individuals (110.3±7.9ms [106.8 - 1202.88] vs. 103.2±4.8ms [96.39 - 1106], p<0.0001; 53.9±5.6ms [51.92 - 58.74] vs. 46.7±3.9ms [43.10 - 49.62], p<0.0001; 30.28% [27.12 - 32.31] vs. 25.88% [22.63 - 28.78], p<0.05). By means of ROC analysis we then identified as best diagnostic performance threshold for native T1 mapping a value of 1045.45ms (AUC: 0.89; Se: 90.6%; Sp: 85.7%), for T2 mapping a value of 49.51ms (AUC: 0.88; Se: 92.9%; Sp: 100%) and for ECV a value of 26.7% (AUC: 0.89; Se: 80%; Sp: 100%). Thus, above these threshold values, CMR mapping parameters were highly suggestive of active disease.

Conclusion: CMR mapping parameters demonstrate an optimal diagnostic performance, with high sensitivity and specificity, in predicting patients with AM.

B-0382 15:04
Evolution of myocardial oedema of acute and subacute myocardial infarction verified in swine model: assessed by native T1 mapping and T2 mapping

H. Liu, Y.-K. Guo, H. Xu, Z.-G. Yang; Chengdu/CN (liuhuiimage@qq.com)

Purpose: To dynamically investigate the evolution of myocardial oedema in acute and subacute myocardial infarction (MI) using CMR native T1 mapping and T2 mapping technique.

Methods and Materials: 10 acute MI swine model were generated by left descending coronary artery occlusion with surgery. All swine model were performed CMR scanning (MEGENETOM Skyra, Healthcare, Erlangen, Germany) including native T1 and T2 mapping in 24 hours and 7 days. Native T1 mapping were used Modified Look-Locker inversion recovery (MOLLI) sequences. The infarct sizes, native T1 value and T2 value were measured and compared in acute and subacute period in MI swine. Mann-Whitney U test and Pearson correlation coefficient were used for statistical analysis.

Results: For MI sizes, there is no difference in acute and subacute MI indicated by both native T1 mapping (p=0.421) and T2 mapping images (p=0.69). Although, the native T1 values of infarction area showed no significant (p=0.22) difference, the T2 values in subacute MI increased compared with native MI (p=0.032). In addition, the native T1 and T2 value of both MI had close correlation (r=0.718, p=0.05).

Conclusion: Compared with the acute phase, the degree of myocardial oedema was determined more serious in subacute stage. CMR T2 mapping technique can determine severity of myocardial oedema caused by acute and subacute myocardial infarction.

Author Disclosures:
H. Liu: Founder; National Natural Science Foundation of China (81471721, 81471722, 81641169, 8171887 and 81718879), Program for New Century Excellent Talents in University (no.NCET-13-0386), Program for Young Scholars and Innovative Research Team in Sichuan Province (2017TD0005) of China.

B-0383 15:12
Long-axis T1 and T2 mapping in Takotsubo cardiomyopathy: trash or treasure?

T. Emrich, R.M. Brumberg, P. Wenzel, S. Lyschik, F. Jungmann, S. Rueppel, C. Düber, K.-F. Kreitner; Mainz/DE (tilman.emrich@gmail.com)

Purpose: Takotsubo cardiomyopathy (TTCM) is a regional disease affecting either the apex, the mid and/or the base of the heart. Long-axis views allow the illustration of these regions in one view. For scientific purposes, short-axis slices are used typically to measure absolute relaxation times in cardiac diseases. The purpose of this retrospective study was to establish the role of long-axis imaging with T1 and T2 mapping in TTCM.

Methods and Materials: We compared CMR and ventriculography of 41 consecutive patients with TTCM. TTCM-involved segments and regions were defined as segments with wall motion disturbances and absence of ischaemia. With a dedicated cardiovascular software (Ciric CVB, Calgary, Canada), T1 and T2 maps were created, TTCM-involved and not-involved segments analysed and mean absolute relaxation times recorded.

Results: Mean relaxation times significantly distinguished involved from not-involved segments, e.g. TTCM involved: 1408 ± 151 ms (T1 map, 4-chamber view) vs TTCM not-involved: 1298 ± 105 ms; p < 0.001 for all. These results were also achieved in 2-chamber views. Furthermore, T1 and T2 mapping were equally useful for demonstrating myocardial oedema in long-axis views of TTCM patients.

Conclusion: Myocardial T1 and T2 mapping is a powerful tool for the detection of myocardial oedema. In segmental and/or regionally-dominated diseases such as TTCM, long-axis imaging is a valuable tool to demonstrate the extent of involved segments in one view.

B-0384 15:20
Performance of native T1 and T2 mapping cardiovascular magnetic resonance to detect myocardial oedema in patients with end stage renal disease

W. Peng, H. Xu, Z. Li, C. Xia, Y. Guo; Chengdu/CN (yimaerl@163.com)

Purpose: To evaluate the performance of quantitative native T1 and T2 mapping to identify myocardial oedema (ME) in patients with ESRD.

Methods and Materials: Seventy ESRD patients and 16 age-gender-matched healthy volunteers were prospectively enrolled and underwent CMR. All the parameters from CMR, including native T1,T2, T2 SI ratio and myocardial strain, were measured and compared. ROC analysis was performed to determine whether T2 values could be used in discriminating ME between ESRD patients and normal.

Results: The global T2 values of ESRD patients without diffused LGE and with diffused LGE were higher than normal controls (43.69±3.62, 41.82±3.43, 38.79±3.69ms, respectively, all P<0.05). The global T1 values of ESRD patients with diffused LGE was highest among three groups (1356.79±40.08ms, 1231.02±56.85, 1206.12±52.60, respectively, all P<0.05), but no statistical difference were found between normal patients and patients without LGE. The LVEF, GCS, GCS and GLS of patients with diffused LGE were significantly decreased (all p<0.05). No statistical difference were found T2 SI ratios among three groups (P=0.86). By ROC analysis, T2 values exhibited a higher diagnostic accuracy for detecting ME/AUC= 0.846; 95% CI: 0.715 to 0.932, C statistic=0.9448, SE 73.5% (55.8-81.7%) SP 87.5% (61.7-98.4%) than T1 values or T2 SI ratio(all p<0.05).

Conclusion: ME and MF were exist in ESRD patients and had a negative effect on cardiac function. T2 mapping seems to be superior comparing with native T1 and T2 values for assessing ME in ESRD patients. The threshold values of T2 values may be used as indicators for differentiating ME between ESRD patients and normal.

14:00 - 15:30 The Church

Abdominal Viscera

SS 301
Biliary imaging: what next?

Moderators: N.A. Courcoultsakis; Alexandroupolis/GR S.R. Marticorena Garcia; Berlin/DE

B-0385 14:00
Balanced steady-state free precession MRCP is a robust alternative to respiration-navigated 3D turbo-spin-echo MRCP

F.C. Haese, B. Selmi-Özer, C. Rupp, H.-U. Kauczor, T. Weber; Heidelberg/DE (felix.hasse@med.uni-heidelberg.de)

Purpose: Despite synchronization to respiration, respiration-navigated (RN) 3D turbo-spin-echo MRCP is limited by susceptibility to motion artefacts. Aim of this study was to assess quality of pancreatobiliary duct visualization of a non-RN MRCP alternative based on balanced steady-state free precession imaging (BSSFP) with overlapping slices compared with RN MRCP.

Methods and Materials: Prospective study on 50 consecutive patients receiving MRCP at 1.5T without final diagnosis of pancreaticobiliary duct disease. Intraindividual comparison of coronal RN MRCP (thickness, 1.5 mm; interval, 1.5 mm) with combined coronal (thickness, 4 mm; interval, 1.6 mm) and transverse (thickness, 6 mm, interval, 2.4 mm) BSSFP MRCP. Image quality was scored for 6 pancreatobiliary duct segments (3 pancreatic, 3 biliary) using a 6-point scale (0, not depicted, 5, entirely depicted with excellent details). A score of 2 or lower was defined to indicate insufficient duct visualization. ANOVA tests were used for statistical group comparison.

Results: Overall duct visualization was scored with 4.0±1.0 for RN MRCP (pancreatic, 3.6±1.3; biliary, 4.5±1.0) and 4.7±0.4 for combined coronal and transverse BSSFP MRCP (pancreatic, 4.5±0.7; biliary, 4.9±0.2), respectively (p<0.001). The number of segments visualized insufficiently was lower for BSSFP MRCP (n=6/300) than for RN MRCP (n=56/300, p<0.001). Segments were scored with 2 or lower in 71/300 RN MRCP segments versus 5/300 BSSFP MRCP segments (p<0.001). Duct visualization was better in BSSFP MRCP compared to RN MRCP (median score, 5 vs. 4, p<0.001).

Wednesday
visualized insufficiently in RN MRCP had a mean score of 4.0±1.0 in BSSFP MRCP. Mean acquisition time was 49% shorter for combined coronal and transverse BSSFP MRCP (100.2±4.4s) than for RN MRCP (198.0±7.6s).

Conclusion: Non-RN BSSFP MRCP with overlapping slices is a fast and robust alternative to RN MRCP for pancreaticobiliary duct visualization.

B-0356 14:08

Can two breath-hold 3D-MRPC replace the conventional 3D-MRPC?

M. He, H. Xue, Z. Jin; Beijing/CN (3771714431@qq.com)

Purpose: To prospectively evaluate and compare the image quality and diagnostic performance of three 3D MRCP protocols including Compressed-Sensing (CS), Gradient Spin Echo (GRASE) and navigator-triggered (NT) MRCP.

Methods and Materials: A total of 64 patients suspected with duct-related pathologies were prospectively enrolled and the three MRCP protocols were randomly acquired. The acquisition time was recorded and compared by paired t test. The imaging quality (IQ) was subjectively evaluated by 2 radiologists independently. The Wilcoxon signed rank test was used to compare IQ scores. The diagnosis performance was evaluated by a confidence level of agreement ranging from 0.623 to 0.945.

Results: Compared to NT-3D-MRPC, the acquisition time of CS-BH-3D-MRPC and GraSE-3D-BH-MRPC was significantly decreased (both P < 0.001), while the IQ of the former was significantly improved (4.53 ± 0.72 and 4.37±1.10 vs. 3.75 ± 1.18, both P < 0.05). There is no significant difference in both scan time and imaging quality (P > 0.05) between these two breath-hold (BH) MRCP. The AUC was 0.811 with NT-MRPC, 0.892 with CS-MRPC and 0.845 with GraSe-MRCP (all P < 0.05). The diagnostic performances of all the examinations were high for differentiation of malignancy with a sensitivity of 87.5% vs. 88.3% vs. 88.7% and specificity of 90.6% vs. 90.5% vs. 90.8% respectively. The accuracy of test was 93.2%, 93.3% and 93.2%, respectively. Early enhancement with subsequent wash out was more common in histologically malignant cases (79.8%) while early enhancement without subsequent washout was more common in histologically benign cases (71.4%). Statistically, the enhancement pattern differed significantly for the two diagnoses (p = 0.023). On evaluating the measure of agreement between MRI and histopathology it was found to have almost perfect agreement, which was also significant statistically (k=0.814; P < 0.001).

Conclusion: Dynamic contrast enhanced MRCP can provide comparable image quality and diagnostic performance with conventional MRCP, and can replace the TNC images. However, the overall diagnostic performances of CS, BH-CS-MRCP and GraSe-3D-BH-MRPC can provide better image quality, while decreasing the scan time significantly. When combine these two BH-3D-MRPC, the diagnosis performance was significantly better than that with the NT-MRPC.

B-0357 14:16

Role of dynamic contrast-enhanced MRI in early detection of gallbladder carcinoma

N. Yadu, S. Saxena; Lucknow/IN (n.yadu@yahoo.com)

Purpose: Gall bladder carcinoma is a rare disease with notoriously high mortality rates. Gall bladder wall morphology and enhancement pattern on dynamic contrast enhanced VIBE sequences of upper abdomen along with MRCP images were obtained from 30 patients. All dynamic contrast enhanced MR images were evaluated for the delineation of gallbladder wall morphology and enhancement pattern. Statistical analysis was done using Statistical Package for Social Sciences version 15.0 or above. Measure of agreement between imaging findings and histopathological/surgical staging were assessed in terms of measures of agreement (κ, kappa statistic).

Results: MRI diagnosis was made in 30 cases. The sensitivity, specificity, positive predictive and negative predictive values were 95.7%, 85.7%, 95.7% and 85.7% respectively. The accuracy of test was 93.3%. Early enhancement persisting into delayed phase was the predominant pattern in malignant pathology (78.3%) while early enhancement with subsequent wash out was more common in histologically benign cases (71.4%). Statistically, the enhancement pattern differed significantly for the two diagnoses (p = 0.023). On evaluating the measure of agreement between MRI and histopathology it was found to have almost perfect agreement, which was also significant statistically (k=0.814; P < 0.001).

Conclusion: Dynamic contrast enhanced MRI was found to be an accurate and reliable method for diagnosis of early Gall bladder carcinoma. It helped to justify wide resection and enhancement persisting into delayed phase as the diagnostic criteria for malignancy.

B-0389 14:32

Utilisation of virtual non-contrast images derived from dual-energy CT in the evaluation of biliary stone disease: should we obtain true non-contrast images?

J. Bae, D. Lee, I. Joo, S. Seon, J.K. Han; Seoul/KR (jaeseok.bae@gmail.com)

Purpose: To compare the virtual non-contrast (VNC) images acquired through dual-energy computed tomography (DECT) with the true non-contrast (TNC) images in the detection of biliary stones and assess whether VNC images can replace TNC images.

Methods and Materials: Between March 2017 and April 2018, we retrospectively enrolled 75 patients with suspicious biliary disease who underwent dual-source DECT and surgery and/or endoscopic intervention within 2 months from the CT. The sensitivity and specificity for detecting gallstone and common bile duct (CBD) stone were compared between the VNC and TNC using McNemar test. In addition, the image quality and agreement of VNC with TNC were assessed.

Results: In our study, 37 patients had gallstones, 2 had CBD stones, and 6 had both gallstone and CBD stones. For detection of gallstones, the sensitivity and specificity were 90.7% (39/43) and 87.5% (26/32), respectively, for TNC images and 88.4% (39/44) and 90.6% (22/22), respectively, for the VNC images. With respect to CBD stones, the sensitivity and specificity were 87.5% (7/8) and 98.5% (66/67), respectively, for the TNC images, and 75.0% (6/8) and 100% (6/6), respectively, for the VNC images. There was no significant difference in the sensitivity and specificity of the two images with each set (P>0.05). The VNC images were considered as complete replacements for the TNC images in 72 and 71 patients by the two reviewers.

Conclusion: The VNC images acquired through DECT were comparable to the TNC images for the detection of biliary stones and may replace the TNC images.

B-0390 14:40

Diagnosis of biliary stone disease: compressed-sensing-accelerated 3D-MRPC versus conventional MRCP

X. Zhao*, M. Huang1, J. Zhu1, J. Cheng1, J. Zhongzhou/CN; 2Beijing/CN (weibey@163.com)

Purpose: To evaluate the image quality and diagnostic performance of a prototype 3-dimensional magnetic resonance cholangiopancreatography (3D-MRPC) with compressed sensing (CS) in diagnosing biliary stone disease.

Methods and Materials: 37 patients with suspected biliary tract retroperitoneal masses (MF were:27-35; age, 56.9 ± 16.4 years) underwent 3D-MRPC on a 3T MAGNETOM Prisma (Siemens Healthcare, Erlangen, Germany). Biliary stone disease was confirmed for all patients by subsequent procedures within two weeks. 3D protocols included conventional MRCP (c-MRPC), navigator-triggered MRCP with CS acceleration (NT-CS-MRPC), and 3D breath-hold CS-MRPC (BH-CS-MRPC). 2 radiologists independently rated image quality and duct visibility. Presence of stones in extrahepatic duct (EHD), gallbladder (GB) and intrahepatic duct (IH) were evaluated based on coronal source images. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (Az value), sensitivity, and specificity of biliary stone disease diagnosis in each biliary duct location.

Results: Mean acquisition time of BH-CS-MRPC (17s) and NT-CS-MRPC (20s) were remarkably shorter than c-MRPC (45s), both P < 0.001. Overall image quality and duct visualization were not significantly different among the 3 protocols (all P>0.05), except that NT-CS-MRPC and c-MRPC depicted both pancreatic duct and bilobar second IH better than BH-CS-MRPC (all P<0.05). The diagnostic performances of all three examinations were high for differences (mean Az value: 0.84~0.99). Inter-observer agreement was fair to perfect.

Conclusion: NT-CS-MRPC and BH-CS-MRPC can provide comparable image quality and diagnostic performance to c-MRPC for biliary stone diseases, with significantly shorter acquisition time.

B-0391 14:48

Differencating and segmenting isoattenuating gallstones from bile with dual-layer spectral CT: an ex vivo phantom study

T.C. Soesbe, M.A. Lewis, Y. Xi, T. Browning, L. Ananthakrishnan, R.E. Lankinski, J.R. Leyendecker; Dallas, TX/US (rodd.soesbe@utsouthwestern.edu)

Purpose: Develop a dual-energy CT (DECT) method for visually segmenting isoattenuating gallstones from bile and compare it to other DECT methods using an ex vivo phantom reader study.

Methods and Materials: Gallstones from 105 cholecystectomy patients were placed inside 120mL vials containing 5% ox-bile. The vials were scanned in a water-filled phantom with dual-layer DECT. From conventional CT, 3D isoattenuating gallstone vials (gallstone diameters 4.3 to 24.7mm) and bile-only controls were selected. Six readers evaluated DECT images for the presence of isoattenuating gallstones on conventional, virtual-non-contrast, monoenergetic 200keV, monoenergetic 40keV, and segmented images. The segmented images were created using a 2D-histogram of Compton and photoelectric attenuations and custom ROI software.

Results: Segmented images gave the highest mean intrareader (88.1±7.6%) and inter-reader agreements (first reading 89.2%, second reading 93.6%), as well as the highest AUC (0.99, 95%CI (0.97, 1.00), all adjusted P values <0.02) for all 30 gallstones. No significant difference was found between the segmented and monoenergetic images for gallstones with mean diameters >9mm (both adjusted P values >0.05). For gallstones with mean diameters <9mm, the segmented images had the highest AUC (0.99, 95%CI (0.97, 1.00) all adjusted P values <0.007). The pathology versus segmented image gallstone size mean difference was -0.6mm (LOA 2.6 to -3.8mm).
Conclusion: Isosattenuating gallstones can be segmented from bile ex vivo with improved detection (especially those <5mm diameter) using dual-layer DECT and 2D-histograms of Compton and photoelectric attenuations. Detecting isosattenuating gallstones in vivo with this method could reduce the need for secondary imaging in symptomatic patients with suspected biliary calculi.

B-0392 14:56 Predicting difficulties on preoperative sonographic evaluation in scheduled laparoscopic cholecystectomy in patients with acute calculous cholecystitis
T.-K. Kim, H. Han, J. Park, H. Kim; Daejeon/KR (goodseven@naver.com)

Purpose: The aim of this study was to evaluate the role of preoperative sonography in predicting potential technical difficulties that can be encountered in scheduled laparoscopic cholecystectomy in patients with acute calculous cholecystitis.

Methods and Materials: After reviewing the medical records from January 2014 to December 2016, 759 patients meeting the inclusion criteria were enrolled in the final study. The number of the gallstones, the maximum diameter of the gallstones, presence of the sludge in the GB, the thickness of the GB wall, presence of the fluid at the GB fossa, the maximum diameter of the gallbladder (GB), presence of stone, and presence of residual GB polyp were estimated in preoperative sonography. The duration of operation, the grade of GB inflammation, the grade of adhesion to peritoneal cavity, and the presence of conversion to open cholecystectomy were estimated. The difficulty score was measured by parameters in surgery.

Results: Presence of the sludge in the GB, the thickness of the GB wall, presence of the fluid at the GB fossa, the maximum diameter of the GB, presence of stone, and presence of residual GB polyp were statistically significant in simple univariate analysis (p<0.05). Only presence of the fluid at the GB fossa and the thickness of GB wall were statistically significant in multiple regression analysis (p<0.01).

Conclusion: In scheduled laparoscopic cholecystectomy, the difficulty of surgery can be predicted by preoperative US findings. Presence of the fluid at the GB fossa and the thickness of the GB wall are most predictable factors of surgical difficulty.

B-0393 15:04 Portal vein and ligamentum teres variations in diverse gallbladder locations: is the left-sided gallbladder always a high-risk feature for pre-interventional assessment?
H.-Y. Lin, R.-C. Lee, H.-H. Yen, C.-A. Liu, J.-L. Chen; Taipei/TW (b101096132@tmu.edu.tw)

Purpose: To emphasise the rare condition of the presence of right-sided ligamentum teres (RSLT) with a normal gallbladder location and to determine if the left-sided gallbladder (LGB) is associated with portal vein variations despite the location of ligamentum teres (LT).

Methods and Materials: We reviewed CT studies between June 2005 and July 2018 and excluded data with cholecystectomy (n=10,276). For preventive missing data of rare conditions, the studies were divided into 2 groups first: gallbladder in typical right side location (RGB; n=10,248) and LGB (n=28) than divided into 2 subgroups: LT in typical side location and RSLT. Each patient with RGB and RSLT was matched with 5 patients with RGB and LT in typical location by sex and age. Outcome was the portal vein anomalies (PVA).

Results: The prevalence of RGB was 0.27%, consistent with previous studies. There were 20 patients (71.4%) with RSLT and 8 patients (26.6%) with typical LT location. The prevalence of PVA was 75% (15/20) and 25% (2/8), respectively, and was statistically significant (OR 9.00; 95% CI 1.36-59.78, P=0.034).

Conclusion: The LGB is not always accompanied with the high-risk feature of RSLT and vise versa.

B-0394 15:12 Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: qualitative and quantitative MRI combined with prognostic immunohistochemical marker
L. Zhao, X. Zhao, X. Ma; Beijing/CN (2zyzdhaoli@163.com)

Purpose: To investigate the predictive performance of qualitative, quantitative MRI features and prognostic immunohistochemical marker for early recurrence (ER) of intrahepatic mass-forming cholangiocarcinoma (IMCC).

Methods and Materials: Forty-seven patients with pathologically proven IMCC were enrolled in this retrospective study. Preoperative contrast-enhanced MRI and immunohistochemical stainings of EGFR, VEGFR, P53 and Ki67 were performed in each patient, respectively. The clinicoradiologic and pathological risk factors of ER were identified using univariate analysis. Texture analysis (TA) was performed based on four MR sequences including T2-weighted imaging (T2WI), arterial phase (AP), portal venous phase (PVP), and delayed phase (DP) imaging. A clinicoradiologic-pathological (CRP) model, a TA model, and a combined model were developed, and the receiver operating characteristics (ROC) curve was used to explore their predictive performance to stratify ER.

Results: Enhancement pattern and VEGFR showed significant differences between the ER group and non-ER group (P=0.001 and 0.034, respectively). And the TA model based on AP, PVP, and DP images presented superior area under curve (AUC) (0.889, 95%CI: 0.783-0.996) among seven TA models, with sensitivity and specificity of 0.938 and 0.839, respectively. And the combined model contained enhancement pattern, VEGFR and texture parameters showed preferable predictive performance of ER compared to TA model or CRP model alone, with an AUC, sensitivity and specificity of 0.949, 0.875 and 0.774, respectively.

Conclusion: Combined model was the superior predictive model of ER compared with TA or CRP model alone. Combining quantitative, qualitative MRI features and VEGFR may be useful for predicting ER and thus helpful to guide personalized treatment in patients with IMCC.

B-0395 15:20 Overrepresentation of uncommon biliary confluence types in hilar cholangiocarcinoma patients
M. Shorkey, O.N. Sergeeva, D. Frantsev, M. Lapteva, E. Virshke, B. Dolgushin; Moscow/RU (mshorikov@gmail.com)

Purpose: The purpose of the study is to compare distribution of biliary confluence types in hilar cholangiocarcinoma patients and those with unremarkable bile ducts.

Methods and Materials: Biliary confluence types were retrospectively evaluated in 203 hilar cholangiocarcinoma patients (‘study group’, male/female=108/95, age range 21-84) and 204 patients with unremarkable bile ducts (‘control group’, male/female=95/109, age range 17-81) at MRCP (all patients) and direct cholangiography (141 study group patients) by 2 radiologists (Cohen Kappa=0.7, differences were resolved by consensus). Nakamura classification was used for confluence typing: I-right biliary duct is present; II-independent drainage of right sectoral ducts to confluence, III-independent drainage of the right posterior duct into common hepatic duct, IV-drainage of the right posterior duct into left bile duct, V-other, right bile duct is absent. Group differences were evaluated with Chi-square and Pearson exact test criteria.

Results: While control group had confluence type distribution close to one described in literature patients in Klatskin tumour group had a significantly different distribution type(p<0.001). Type I was presented in 75% of the patients in control group and in 30% in Klatskin tumour group, other types respectively: II-9% and 24%, IV-14% and 40%, III-0.5% and 1.7%, IV-14% and 40%. Statistical and biophysical models showed: uncommon confluences have a larger area of bile ducts where the tumour may originate (10% of difference) and are under higher pressure that is described in animal models as an oncogenic factor for cholangiocarcinoma.

Conclusion: Uncommon hepatic ducts confluence types are significantly more often present in hilar cholangiocarcinoma patients.

Abdominal Viscera

SS 401 Liver and biliary MRI: protocols and technical frontiers
Moderators: C.S. Reiner; Zurich/CH
M. Ronot; Clichy/FR

K-11 16:00 Keynote lecture
M. Ronot; Clichy/FR

B-0396 16:00 T1 mapping for liver function evaluation in gadoxetic acid-enhanced MR imaging: comparison of look-locker inversion recovery and B1 inhomogeneity-corrected variable flip angle method
J.E. Kim, H. Kim, D. Cho, D. Nickel; Iju/KR, Erlangen/DE (widiptu880@yahoo.com)

Purpose: To compare look-locker inversion recovery (LLIR) and B1 inhomogeneity-corrected variable flip angle T1 mapping methods for estimation of liver function and prediction of hepatic insufficiency and descompensation on
gadoxetic acid-enhanced MR imaging.

Methods and Materials: In this retrospective study, 248 patients with normal liver function, chronic liver disease, or cirrhosis underwent gadoxetic acid-enhanced MRI, including T1 mapping at 10 and 20 min hepatobiliary phase (HBP) by using both methods. T1 relaxation times of liver (T1Liver-pre, T1Liver-post) and spleen (T1Spleen) were correlated between two methods. T1Liver (T1 Liver-pre - T1 Liver-post)/T1Liver-pre, adjusted T1Liver (T1 Spleen - T1 Liver-post)/T1 Spleen), and functional liver volume-to-weight ratio (liver volume on volumetric T1 map/T1Liver-post times patient's weight)) were calculated. The diagnostic performance of T1 parameters and predictive performance of models (serum marker, serum marker plus T1 parameter) were compared.

Results: T1-Liver-post showed a strong correlation (r = 0.93, p < 0.001) between two methods but were significantly different. For depicting cirrhosis, LLR-adj usted T1Liver at 10 min HBP showed the highest performance (p = 0.025). For predicting hepatic insufficiency and decompensation, LLR-adj usted T1Liver (Akaike information criterion [AIC], 58.37; C-index, 0.867) and LLR-T1Liver-post (AIC, 48.82; C-index, 0.885) at 10 min HBP showed the best performance, respectively, when added to serum albumin level.

Conclusion: T1Liver-post showed a strong correlation between two methods but with significant differences. T1 mapping using LLR at 10 min HBP with obtainment of adjusted T1Liver and T1Liver-post may be the best approach for estimation of liver function and prediction of hepatic insufficiency and decompensation.

B-0397 16:17
Dual-arterial phases and split-bolus intravenous contrast injection: reduction of transient respiratory motion artefact on gadoxetate disodium-enhanced MRI of the liver
E.-S. Cho, J.M. Choi, J.H. Kim, J.-S. Yu, J.-J. Chung; Seoul/KR (jjondo@yuhs.ac)

Purpose: To determine whether dual arterial phases and split-bolus contrast injection could reduce transient respiratory motion artefact during second arterial phase on gadoxetate disodium-enhanced MRI of the liver.

Methods and Materials: One hundred eighty patients underwent gadoxetate disodium-enhanced MRI of the liver with dual hepatic arterial phases. The first arterial phase was performed after injection of 5 mL gadoxetate disodium and the additional second arterial phase was performed after injection of 4 mL gadoxetate disodium after 3 minute-delayed transitional phase. Each arterial phase was acquired using a CAIRPINHA VIBE sequence. The enhancement of focal hepatic lesion on each arterial phase was assessed using subtraction images. The motion artefact on both arterial phases was assessed by two observers using a five-grade scale (1 (no motion artefact) to 5 (non-diagnostic))

Results: Nineteen out of 180 patients (10.6%) had severe motion artefact (mean score, 4.4) on the first arterial phase. Fifteen of them had no or mild motion artefact (mean score, 1.3) on the second arterial phase. In these 19 patients, respiratory motion artefact on the second arterial phase was significantly lower than that of the first arterial phase (p<0.05). The enhancement of focal hepatic lesions was not significantly different between both arterial phases (p=0.05).

Conclusion: Respiratory motion artefact was significantly reduced on the second arterial phase, compared to the first arterial phase. Dual arterial phases and split-bolus gadoxetate disodium injection technique could help evaluate the arterial enhancement of focal hepatic lesion in patients with transient respiratory motion artefact.

B-0398 16:25
Whole-body R2s mapping to quantify tissue in iron storage organs: associations with HFE-genotypes
J.-P. Kühn, T. Kacprowski1, A. Röhnert; A. Röhnert1, D. Fedders1, R.-T. Hoffmann; U.-L. Fahlenkamp1, J. Kahn1, A. Baur2, M. Pavel1, D. Geisel1, T. Denecke1; Berlin/DE, Erlangen/DE (ulk.fehrenbach@charite.de)

Purpose: To determine whether dual arterial phases and split-bolus contrast injection could reduce transient respiratory motion artefact during second arterial phase on gadoxetate disodium-enhanced MRI of the liver.

Methods and Materials: One hundred eighty patients underwent gadoxetate disodium-enhanced MRI of the liver with dual hepatic arterial phases. The first arterial phase was performed after injection of 5 mL gadoxetate disodium and the additional second arterial phase was performed after injection of 4 mL gadoxetate disodium after 3 minute-delayed transitional phase. Each arterial phase was acquired using a CAIRPINHA VIBE sequence. The enhancement of focal hepatic lesion on each arterial phase was assessed using subtraction images. The motion artefact on both arterial phases was assessed by two observers using a five-grade scale (1 (no motion artefact) to 5 (non-diagnostic))

Results: Nineteen out of 180 patients (10.6%) had severe motion artefact (mean score, 4.4) on the first arterial phase. Fifteen of them had no or mild motion artefact (mean score, 1.3) on the second arterial phase. In these 19 patients, respiratory motion artefact on the second arterial phase was significantly lower than that of the first arterial phase (p<0.05). The enhancement of focal hepatic lesions was not significantly different between both arterial phases (p=0.05).

Conclusion: Respiratory motion artefact was significantly reduced on the second arterial phase, compared to the first arterial phase. Dual arterial phases and split-bolus gadoxetate disodium injection technique could help evaluate the arterial enhancement of focal hepatic lesion in patients with transient respiratory motion artefact.

B-0398 16:25
Whole-body R2s mapping to quantify tissue in iron storage organs: associations with HFE-genotypes
J.-P. Kühn, T. Kacprowski1, A. Röhnert; A. Röhnert1, D. Fedders1, R.-T. Hoffmann; U.-L. Fahlenkamp1, J. Kahn1, A. Baur2, M. Pavel1, D. Geisel1, T. Denecke1; Berlin/DE, Erlangen/DE (ulk.fehrenbach@charite.de)

Purpose: To determine whether dual arterial phases and split-bolus contrast injection could reduce transient respiratory motion artefact during second arterial phase on gadoxetate disodium-enhanced MRI of the liver.

Methods and Materials: One hundred eighty patients underwent gadoxetate disodium-enhanced MRI of the liver with dual hepatic arterial phases. The first arterial phase was performed after injection of 5 mL gadoxetate disodium and the additional second arterial phase was performed after injection of 4 mL gadoxetate disodium after 3 minute-delayed transitional phase. Each arterial phase was acquired using a CAIRPINHA VIBE sequence. The enhancement of focal hepatic lesion on each arterial phase was assessed using subtraction images. The motion artefact on both arterial phases was assessed by two observers using a five-grade scale (1 (no motion artefact) to 5 (non-diagnostic))

Results: Nineteen out of 180 patients (10.6%) had severe motion artefact (mean score, 4.4) on the first arterial phase. Fifteen of them had no or mild motion artefact (mean score, 1.3) on the second arterial phase. In these 19 patients, respiratory motion artefact on the second arterial phase was significantly lower than that of the first arterial phase (p<0.05). The enhancement of focal hepatic lesions was not significantly different between both arterial phases (p=0.05).

Conclusion: Respiratory motion artefact was significantly reduced on the second arterial phase, compared to the first arterial phase. Dual arterial phases and split-bolus gadoxetate disodium injection technique could help evaluate the arterial enhancement of focal hepatic lesion in patients with transient respiratory motion artefact.
Methods and Materials: Four hundred sixty-seven volunteers aged 36 to 87 years (260 women) underwent a whole-body MRI including five-echo chemical shift encoding sequences acquired in 15 minutes. After confluently correcting whole-body proton-density fat fraction was acquired. Based on tissue fat content, we developed a post-processing algorithm for segmentation of fat compartments. Using this algorithm, total body fat volume (TAT), subcutaneous fat volume (SAT) and visceral fat volume (VAT) were assessed. Per-lesion parameters were calculated based on region of interest measurements. Per-lesion parameters were compared between the two sequences using Wilcoxon signed-rank test and paired t test, and per-lesion parameters were compared by linear mixed model.

Conclusion: There is discrepancy in the literature regarding the optimal dose of gadobenate dimeglumine for liver MRI. This retrospective intra-individual study was performed with ethics approval. Patients who underwent liver MRIs between Sept 2015-May 2017 (0.06 mmol/kg) and May 2017-Sept 2018 (0.10 mmol/kg) were included. Regions of interest were drawn over the aorta, portal veins and liver on unenhanced, arterial, portal venous and delayed phases; relative enhancement values were compared (paired t-tests). Two blinded radiologists graded the arterial and portal venous segments of each MRI from 1-4 (1=suboptimal, 2=adequate, 3=good, 4=excellent); grades were compared (Wilcoxon’s signed rank test). Blinded radiologists also graded each MRI pair from 1-5 (1=substantially inferior, 2=slightly inferior, 3=equivalent, 4=slightly improved, 5=substantially improved). Inter-reader agreement was assessed (kappa statistic).

Results: 60 patients were included. Relative enhancement increased significantly with the higher dose for all structures on all phases (p<0.05). Grades 1-4 were assigned to 18,72,65 and 81 low-dose sequences, and 17,57,68 and 94 high-dose sequences, respectively; for both radiologists and both post-contrast phases, grading was better for the high-dose MRIs (p<0.05). Inter-observer agreement was fair (κ range, 0.22-0.37). Compared to the low-dose MRIs, the number of high-dose MRIs graded 1-5 were 9,31,97,90 and 11; inter-observer agreement was moderate-fair (κ=0.48 and 0.36 for arterial and portal venous phases, respectively).

Conclusion: A higher dose of gadobenate dimeglumine results in increased relative enhancement and improved qualitative assessment of imaging quality for liver.

Author Disclosures:
S.E. Clarke: Research/Grant Support; Dr. Sharon Clarke has a research agreement with GE Healthcare, however this did not impact our study in any way.

B-0404 17:13
Clinical evaluation of 3D magnetic resonance cholangiopancreatography using three different methods: feasibility of compressed sensing and/or parallel imaging

Purpose: To evaluate the diagnostic quality of 3D MRCP acquired with respiratory triggering compared to breath-hold techniques using compressed sensing (CS) and parallel imaging (PI) in a clinical setting.

Methods and Materials: In 93 patients (45 men, mean age 69.7±9.3 years) 3 types of 3D MRCP were performed: breath-hold MRCP with CS and PI reconstruction (BH-CS-MRCP) and PI reconstruction only (BH-PI-MRCP) additionally to respiratory triggered MRCP with navigator echoes (Nav-MRCP) on a 3T scanner. Visualization of common bile duct (CBD), common hepatic duct (CHD), central right and left hepatic duct (CRHD, CLHD), peripheral right and left hepatic duct (pRHD, pLHD), cystic and pancreatic duct and overall image quality (IQ, scaled 1-4) were evaluated. For quantitative analysis, relative duct-to-portal duct contrast (RC) of three main biliary segments was calculated.

Results: Acquisition time was accelerated in breath-hold MRCP (23s each vs 1min 29s in Nav-MRCP). Mean grading (Nav/CS/PI) for CBD (2.74/2.82/2.93±0.00), CHD (2.75/2.82/2.93), pRHD (2.75/2.82/2.93) and pLHD (2.75/2.82/2.93) was similar in BH-CS- and BH-PI-MRCP, whereas Nav-MRCP showed higher grading in the peripheral segments (pRHD: 2.42/2.01/2.12; pLHD: 2.23/2.02/2.13). Overall image quality of Nav-MRCP (2.91±0.7) was not different from BH-PI-MRCP (2.92±0.6) (p=0.163), but higher than that of BH-CS-MRCP (2.80±0.7) (p=0.031). RC for CS-MRCP and PI-MRCP were lower than for Nav-MRCP.

Conclusion: Breath-hold 3D MRCP was feasible using PI and CS showing comparable overall image quality and visualization of the greater duct system to Nav-MRCP. The methods are suitable for revised MRI protocols notably in patients with irregular respiratory cycle.

B-0405 17:21
Histogram analysis of stretched-exponential model diffusion-weighted imaging for staging of liver fibrosis: a feasibility study
F. Hu, B. Song, R. Yang, M. Wang; Chengdu/CN

Purpose: To determine the feasibility of stretched-exponential model diffusion-weighted imaging based on histogram analysis for staging of liver fibrosis in patients with chronic liver diseases, with histopathologic findings as the reference standard.

Methods and Materials: 56 consecutive patients with chronic liver diseases underwent liver DWI using nine b values at 3.0T. Histogram metrics including mean, standard deviation, skewness, kurtosis, minimum, maximum, range, inter-quartile (IQ), and percentiles (10, 25, 50, 75, 90th) were extracted from apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) maps. Liver fibrosis and inflammation were evaluated using the METAVIR scoring system. The relationship between histogram metrics and histopathologic features was evaluated by Spearman correlation and multiple regression analysis. Receiver operating characteristic curve analyses were further performed for staging liver fibrosis.

Results: At multiple regression analysis, liver fibrosis independently influenced with histogram metrics of DDC (mean, 50th and 75th percentiles; all p<0.001) and α (50th percentile and skewness). Inflammation was not associated with histogram metrics. The mean, 50th and 75th percentiles of DDC and 50th percentile, skewness of a provided good to excellent diagnostic performance for identifying significant fibrosis (F2 or higher) and for diagnosing cirrhosis (F4), with AUCs ranging from 0.752 to 0.936 (all p <0.001). For identifying significant fibrosis, the highest AUC was 0.885 for skewness of α; for diagnosing cirrhosis, the highest AUC was 0.936 for 75th percentiles of DDC.

Conclusion: Stretched-exponential model DWI based on histogram analysis can be used to stage liver fibrosis and provides more quantitative imaging biomarkers.
SS 414
MRI advances

Moderators:
J.M. Björkman-Burtscher; Gothenburg/SE
C. Malamatienou; London/UK

B-0406 16:00
Quantitative tissue-tracking and T1 mapping cardiac magnetic resonance (CMR) in active acromegaly

P. Liu, Y. Wang, J. Cao, L. Lin; Beijing/CN (luipeijun_yu@163.com)

Purpose: To evaluate myocardial strain and extracellular volume of left ventricular (LV) in patients with active acromegaly by 3T Cardiac Magnetic Resonance.

Methods and Materials: In total, 23 patients (mean age 44±16 years, 9 males) with active acromegaly and 15 healthy controls (mean age 44±13 years, 7 males) were included. All participants underwent a 3-T (MAGNETOM Skyra, Erlangen, Germany) CMR examination including nax/ax, 5-2 post-contrast T1 mapping imaging in identical short axis 2-chamber slices of basal, middle, and apical LV level. Feature-tracking analysis included assessment of peak strain of the short-axis slice in longitudinal, circumferential and radial direction. Measurements of LV, LVotive, ECV and strain were obtained in basal and apex slice, left ventricular mass index (LVM) and left ventricular ejection fraction (LVEF) were measured via CVI42 software (Circle Cardiovascular Imaging, Canada).

Results: In acromegaly group, LVM (60±26.1 vs. 45.7±6.9 g/m2, P<0.05) and ECV in basal slice (0.3±0.2 vs. 0.24±0.27, P<0.05) increased significantly, while longitudinal strain of apex slice (-19.1±5.01 vs. -22.2±2.37, P<0.05) decreased compared to control group. Average per-slice Native T1 and ECV in mid and apex slice, circumferential and radial strain in basal, mid and apex slice showed no significant differences between acromegaly and healthy controls.

Conclusion: Compared to healthy controls, acromegaly patients had increased LVM, increased ECV in basal slice and decreased longitudinal strain of apex slice by CMR, which might indicate heart abnormalities in early periods with normal LV systolic function.

B-0407 16:08
The assessment of carotid plaque morphology using magnetic resonance imaging and computed tomography as biomarkers of carotid plaque vulnerability

N. Giannotti, P. Kelly, S. Foley, G. Horgan, E. Kavanagh, M.J. O’Connell, J. McNulty; Dublin/IE (nicola.giannotti@ucd.ie)

Purpose: Looking beyond the degree of carotid stenosis and exploring plaque morphology based on the lipid-rich necrotic core (LRNC), fibrous tissue, and calcification, is an emerging approach for the assessment of plaque vulnerability/risk of future ischaemic cerebrovascular events. Validation studies are necessary to establish the utility of different imaging techniques to support clinical decision making. This study explored the correlation between plaque morphology assessment from computed tomography angiography (CTA) and magnetic resonance imaging (MRI) datasets.

Methods and Materials: A sub-group of patients (n=22) from a larger cohort study were included. Inclusion criteria were speech/motor transient ischaemic attacks (TIA) or minor stroke (Rankin ≤3). All patients were scanned using CTA with 3-mm axial cuts to determine carotid plaque stenosis ≥50% and MRI with 3T (3 Tesla) MR system. A coronal 3D-continuous slice of the carotid arteries was acquired with a 300 mm field of view and a section thickness of 1 mm. The section images were transferred to TeraRecon iNtuition™ and MRI-Plaque View2.1. The Wilcoxon signed-rank test confirmed excellent differences between CT and MRI (p<0.001). Spearman’s test confirmed excellent agreement for calcified area between the two imaging modalities (p=0.001). The absence of proportional bias was confirmed with Bland-Altman plot for lipids and calcium, p=0.54 and p=0.33 respectively. No significant differences were found between CTA and HRMRI measurements of other morphological plaque features.

Conclusion: Results of this study found that CT and MRI plaque measurements demonstrate significant agreement for LRNC and calcification. Therefore, if confirmed in larger studies, either modality may be recommended for such analysis.

Author Disclosures:
N. Giannotti: Research/Grant Support; Health Research Board (IE)
CSA/201227T, IIRRT Student Research Grant 2015.
Methods and Materials: The aim of this study was to measure and compare the volume of hippocampus Left (HL) and Right (HR) in 100 elderly subjects (>65 years old). The images obtained retrospectively by MRI T1W, were followed by post-processing through FreeSurfer® (non-operator dependent) and through OsiriX® (operator dependent).

Results: The values obtained by FreeSurfer® are higher than OsiriX® (LH=3095.850 mm³ and RH=3501.850mm³) respectively. The lowest value obtained in this study is assessed through OsiriX® in the RH corresponding to a 3481.200mm³. The difference between the LH and RH is higher with any software, corresponding to 470.350mm³ and 308.100mm³ respectively, however, the Wilcoxon test these differences are not significant (p>0.05). In both systems, between genders, the males obtained a highest values (average=4000mm³) than the females(3500mm³).

Conclusion: The obtained values with manual procedures are in agreement to the other experimental studies concerning the volumes of hippocampus and software used. The results show that the software used can produce different results. Even having higher time consuming, the manual methods are yet considered the more reliable and preferred by the physicians.

B-0411 16:40
Prediction of type 2 diabetes mellitus using noninvasive MRI quantitation of visceral abdominal adiposity tissue volume
M. Wang, S.-T. Feng, Z.P. Li; Guangzhou/CN (king_6509@sina.com)

Purpose: To investigate the quantitation of visceral adipose tissue volume (VATV) in patients with type 2 diabetes mellitus (T2DM), impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) using MRI for assessing the role of non-invasive imaging in predicting the presence of T2DM.

Methods and Materials: Forty-eight patients were included and scanned with iterative decompensation of water and fat with echo symmetry and least square estimation-image quantification (IDEAL-IQ) sequence. VATV was obtained at the level of second and third lumbar vertebra (VATV L2, VATV L3) and the sum (total VATV) was computed. Proton-density fat fraction (PDFF) of pancreas and liver was measured. ROC curve and binary logistic regression model analysis were employed to evaluate their ability in predicting the presence of T2DM.

Results: The values of VATV L2, VATV L3 and total VATV of the T2MD were higher than those of the IGT and NGT. There was no difference in the values of VATV L2, VATV L3, and total VATV between IGT and NGT. The ROC curve analysis showed the areas under curve for VATV L2, VATV L3 and total VATV were 0.76, 0.80 and 0.80 in predicting the presence of T2DM, failed to predict the presence of IGT and NGT. Binary logistic regression model analysis revealed that only VATV L3 was independently associated with incident of T2DM and the sensitivity, specificity and accuracy were 90.00%, 88.20%, and 84.40%, respectively.

Conclusion: Compared to hepatic PDFF, pancreatic PDFF, VATV L2 and total VATV, VATV L3 was a better predictor for T2DM.

B-0412 16:48
Comparison of MRI acoustic noise levels in different types of sequences
V.M.F. Silva, I. Ramos, J. Moreira, M. Marques; Porto/PT (vitosort@gmail.com)

Purpose: This study aimed to evaluate acoustic noise levels (equivalent continuous sound level - dB(A) and peak sound pressure level - dB(C)) of different sequences used in 1.5T and 3T scanner.

Methods and Materials: This study was performed in MRI Department of Centro Hospitalar São João, Oporto, Portugal. A Bruel & Kaerje level meter, model 2250, was used. The sequences used on this study were: spin-echo (SE), gradient-echo (GE), inversion-recovery (IR) and echo planar (EPI), 2D and 3D sequences were used also. These sequences were performed in brain, spine, abdominal and knee MRI.

Results: In 1.5T scanner, values of all types of sequences reached to higher values when compared to 3T scanner. It was found statistically significant differences (p<0.05) in: a) the peak sound pressure level between SE and EPI sequences; b) the two acoustic noise parameters evaluated between IR and EPI sequences. Statistically significant differences were found also when comparing 2D and 3D sequences for both parameters evaluated.

Conclusion: This study showed that patients and sometimes workers are exposed to relatively high acoustic noise levels of acoustic during MRI procedures. However, those levels do not exceed exposure the limit values, but several of them are near the limits imposed in Portuguese legislation. Radiographers have to take into account safety decisions related to MRI acoustic noise, when it concerns to optimization of sequences acquisition time (acoustic noise exposure), specially those that almost reach the values imposed in legislation, such as EPI and 3D sequences.

B-0413 16:56
Investigating the impact of fragrance on patient anxiety during MRI scans
A. Formosa, C. Portanier Mifsud, J.L. Portelli, P. Demicoli; Msida/MT (altheafomosa3@gmail.com)

Purpose: Despite its benefits, magnetic resonance imaging (MRI) may induce anxiety in some patients. This study aimed to investigate whether patient anxiety can be reduced using lavender fragrance during brain/IAMs MRI scans.

Methods and Materials: This experimental study adopted a randomised control-group pretest-posttest design. Patients referred for a brain/IAMs MRI were randomly appointed into one of six scanning sessions forming part of this study. These sessions, consisting of 10 patients each, were then randomly assigned as being control or experimental. Convenience sampling was used to recruit the first 20 willing participants for each group of the study. All patients were scanned in accordance with routine MRI protocols; however, a lavender fragrance was additionally released during the ‘experimental’ sessions. Each participant was asked to complete the State-Trait Anxiety Inventory (STAI) before and after their MRI scan.

Results: The paired samples T test showed a statistically significant decrease between mean pre-test and post-test state anxiety scores in patients of both groups. The mean state anxiety score for control-group patients decreased from 49.9 to 45.1 (p=0.044), whereas that for experimental-group patients decreased from 38.4 to 31.4 (p=0.018). While sample size may have influenced findings, the greater reduction in mean anxiety score (7.0) observed for experimental-group patients was not found to be statistically significant when using the independent samples T test (p=0.534).

Conclusion: While fragrance-infused MRI sessions may help decrease anxiety levels in patients, the small sample size of this study necessitates further investigation into how fragrance-infused sessions may impact patients’ experience.

B-0414 17:04
Accessibility for patients with cardiac device implantable electronic to magnetic resonance exams: a national survey
D.M.L. Miranda, B. Mateus, C.A. da Silva, R.P. Almeida, A.P. Ribeiro, C.T. Brites, A.F. Abrantes, L. Ribiero; Faro/PT (miraliamiranda@gmail.com)

Purpose: Portuguese population with cardiovascular implantable electronic devices (CIEDs) increased in the last years. According to Portuguese national registry on cardiac electrophysiology, in 2014, were implanted 1256 (one hundred and ten per million) cardioverter-defibrillator in registered centers. The accessibility, for this patient’s, to any type of magnetic resonance (MR) study is an issue for MR major centres. This survey allows us to understand the difficulties from MR centres to satisfy this patient’s needs.

Methods and Materials: An online survey was sent to radiology or/and cardiology departments from national centres with MR, to determine the accessibility for patients with CIEDs (pacemakers and ICD). A twenty questions survey of closed response questions plus some limited free text answers was used.

Results: Departments are aware of MR conditional devices, but only a small percentage of MR centres refer patients with CIEDs. The major issue for all centres is the lack of support from cardiology/electrophysiology and safety evidence. The exams average in this centres is 1 to 10 scans with CIEDs per year and (90%) of them are performed in 1.5T equipment.

Conclusion: With the increase of CIEDs, the accessibility to a MR decrease drastically for this patient group. This survey shows that in some Portugal regions it is impossible to perform a MR. The patient needs to drive more than 200km to do it. However, the majority of MR centres mentioned that training with applied practice, guidelines and closer collaboration with local cardiologist might increase the confidence of the professionals to perform those exams.

B-0415 17:12
OLEA/NOVA+ SyntenticMRI application on workflow in pelvis MRI studies
A. Attanasio, G. Corrias, L. Saba; Amadora/PT (altheafomosa3@gmail.com)

Purpose: The MRI acquisition protocol in standard practice for rectal cancer has an approximate duration of 30 minutes. The purpose of this study is to define a radiographer workflow in order to substitute standard protocol with syntetic MRI (sMRI) and to see if there are any differences in terms of time savings.

Methods and Materials: We examined 20 patients with double bolus of Hyoscine-butylbromide injection using an MRI scan with a field of 3 Tesla. The sequences used for our purpose are [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D), the images obtained have been reconstructed on the dedicated workflow for post processing commercial software (Olea Sphere 3.0, Olea Medical, Paris) in order to obtain T1, T2 and fat saturated images.

Scientific Sessions

Wednesday
Results: Adding synthetic MRI sequences, would increase the duration of the protocol of 6:53 minutes. The post processing phase showed that 36 seconds are needed to view T1 & T2 maps and 60 seconds are needed to generate T1W, T2W, STIR images. All the images generated would be ready on PACS after 1:58 minutes. However, substituting standard T1, T2, STIR sequences with a synthetic MRI protocol would allow for a shortening of the total acquisition time down to 24 minutes of acquisition time.
Conclusion: sMRI reduces the acquisition time of pelvic region MRI of 6 minutes. Another study is currently in progress to understand if these sequences are clinically equivalent to their standard counterparts.

B-0416 17:20
MRI principles and technical issues: where do European radiographers study from?
M. Zanardo, F.M. Doniselli, G.B. Monti, S. Durante, L.M. Scornifanza, F. Sardanelli; Milan/IT, Bologna/IT (moreno.zanardo@unimi.it)
Purpose: To analyse where and how MRI principles and technical issues are investigated by radiographers and radiographers in training (RGI).
Methods and Materials: We proposed an online survey with 8 multiple-choice questions. We investigated how often radiographers have doubts about MRI principles or technical issues, where and what kind of information they search for, in which language and at which websites. For the latter, the frequency of consultation: radiographers and RGI frequently or often (64% vs 48%, p=0.485) have doubts about MRI principles. Post-processing details are equally searched for by radiographers and RGI (23% vs 13%, p=0.249) as well as advanced/new techniques (54% vs 50%, p=0.713). Clinical protocol settings are borderline significantly more searched by RGI than radiographers (64% vs 44%, p=0.054) as well as basic sequences details (36% vs 22%, p=0.088). Regarding source of information, radiographers and RGI mostly use internet (74% vs 81%, p=0.404) and books (46% vs 56%, p=0.343). Radiographers and RGI equally refer to mirquestions (43% vs 53%, p=0.303) for both technical and clinical issues, radiopaedia.org, (36% vs 47%, p=0.227), and mirmaster.com (25% and 14%, p=0.149).
Conclusion: Radiographers and RGI frequently search for information about MRI principles and technical issues with slight differences regarding web sources, clinical protocol settings and MRI sequences.

16:00 - 17:30 Sky High Stage
Chest

MY 4
Chest
Moderators: S. Toledano-Massiah; Paris/FR
M.O. Wielopolsz; Heidelberg/DE

B-0417 16:00
Comparison of therapeutic outcome prediction among dynamic perfusion area-detector CT, dynamic perfusion MRI and FDG-PET/CT in small cell lung cancer patients with limited disease
Y. Ohno, Y. Fujisawa, M. Yuji, Y. Kishida, S. Seki, T. Yoshikawa, T. Murakami; Kobe/JP, Otawa/JP (yosirad@kobe-u.ac.jp)
Purpose: To directly compare the capability for therapeutic prediction among dynamic contrast-enhanced (CE)-perfusion area-detector CT (ADCT) and CE-perfusion MR imaging (MRI) and FDG-PET/CT in small cell lung cancer (SCLC) patients evaluated as limited disease (LD).
Methods and Materials: Forty-three consecutive pathologically diagnosed SCLC patients assessed as LD underwent PET/CT, dynamic perfusion MR imaging (MRI) and CE-perfusion CT in small cell lung cancer (SCLC) patients evaluated as limited disease (LD). Correlation between pulmonary function tests, histogram-based analysis and PFTs values, and between HRCT indexes and PFTs values was investigated using Pearson correlation; multiple linear regression model was performed to investigate variance between HRCT indexes and PFTs values, and between the latter and HRCT visual scores.
Results: Fair correlation between HRCT fibrosis score and FVC was found (r=-0.2212); moderate negative correlation was observed between average HRCT fibrosis score and DLCO (r=-0.35). Correlation between HRCT indexes and PFTs was stronger than visual assessment: coefficient r were 0.57 vs 0.52 between kurtosis and FVC, 0.52 vs 0.57 between kurtosis and DLCO, -0.44 vs -0.54 between HA and DLCO, -0.53 vs -0.53 between FVC and FA, and -0.53 vs -0.53 between DLCO and FA. Multiple regression analysis for FVC, DLCO and hence the latter and HRCT visual scores revealed a coefficient of determination R² equal to 0.3456; R²-adjusted reported a value of 0.30.
Conclusion: Histogram-based indexes provided mild-to-moderate correlation with PFTs - whereas visual HRCT assessment reported lower and controversial relationships.

B-0419 16:08
Radiomics machine learning classifiers for predicting Ki-67 proliferation index in non-small cell lung cancer
P. Rong, Q. Gu, Z. Feng; Changsha/CN (729570216@qq.com)
Purpose: To develop radiomics classifiers for predicting the expression level of Ki-67 in non-small cell lung cancer (NSCLC) noninvasively and to evaluate the increment compared with the subjective imaging feature classifiers.
Methods and Materials: Non-enhanced CT images and tumour Ki-67 expression levels were acquired from 245 patients. A lesion volume of interest (VOI) was manually delineated and radiomics features were extracted by MaZda software from original CT images. A random forest feature selection algorithm (RFSS) was used to reduce features. Six kinds of machine learning methods were used to establish predictive classifiers including radiomics classifiers, subjective imaging feature classifiers and the combined classifiers. The performance of these classifiers was evaluated by the average area under the curve (AUC), and the performance between different classifiers was compared with the Delong test.
Results: Among the 245 patients, 117 had high Ki-67 expression, and 128 had low Ki-67 expression, respectively. The differences in gender, age and pathological type between the two groups were statistically significant (all P < 0.05). The radiomics random forest classifier achieved the best performance in predicting the Ki-67 expression level (AUC=0.776, SEN=0.726, SPE=0.681); this classifier performed better than the subjective imaging feature classifiers (AUC=0.625, SEN=0.780, SPE=0.417; P<0.05). The combined classifiers did not improve the predictive performance (AUC=0.780, SEN=0.752, SPE=0.633; P>0.05).
Conclusion: The radiomics machine learning classifier based on CT radiomics features is helpful to predict the expression level of Ki-67 in patients with NSCLC and can provide a non-invasive technique for assessing the proliferation of NSCLC.
B-0420 16:24
Quantitative perfusion MRI of the lung in COPD: the problem of short-term repeatability
A. Ter-Karapetyan1, M.O. Wielopolski2, H.U. Kauczor2, S. Triphan2; 1Yerevan AM; 2Heidelberg DE (alvardenkarapetyan@gmail.com)
Purpose: 4D perfusion magnetic resonance imaging (MRI) with intravenous injection of contrast material allows for a radiation-free assessment of regional lung function. It is, therefore, a valuable method to monitor response to treatment in patients with chronic obstructive pulmonary disease (COPD). This study was designed to evaluate its potential for monitoring short-term response to hyperoxia in COPD patients.
Methods and Materials: 19 prospectively enrolled COPD patients (median age 66 years) underwent paired dynamic-contrast-enhanced 4D perfusion MRI within 35min, first breathing 100% oxygen (O_2) and then room air (RA), which was repeated on two consecutive days. Post-processing software was employed to calculate mean transit time (MTT), pulmonary blood volume (PBV) and pulmonary blood flow (PBF), based on the indicator dilution theory, for the automatically segmented whole lung and 12 regions of equal volume.
Results: Comparing O_2 with RA conditions, PBV and PBF were found to be significantly lower at O_2, consistently on both days ($p<10^{-9}$). Comparing day 2 to day 1, MTT was shorter by (0.59±0.63)s ($p<10^{-1}$), PBF was higher by (22±60)m/min/100ml ($p=3-10^{-4}$), and PBV tended to lower by (0.2±7.2)m/ml/100ml ($p=0.159$) at both, RA and O_2 conditions.
Conclusion: The measurement setup did not reproduce the established hypothesis that hyperoxia increases lung perfusion, instead showing an opposite effect. This shows that the quantification of 4D perfusion MRI based on current mathematical approaches is limited by residual circulating contrast material in the short term and, for COPD patients, even the next day due to limited clearance.

B-0421 16:16
The role of 4D flow MRI in evaluating the outcome of balloon pulmonary angioplasty
W. Sun, H. Ota, S. Chibana, H. Sato, K. Sugimura, K. Takase; Sendai/JP (sunnyenyu910920@gmail.com)
Purpose: To access the value of haemodynamic features of patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after balloon pulmonary angioplasty (BPA) using 4D flow MRI.
Methods and Materials: Thirty consecutive patients (mean age, 68.4 ± 7.9-year-old, female, 25) with inoperable CTEPH underwent serial MRI scans before and after BPA. Haemodynamic features extracted from 4D flow MRI include maximum energy loss (max EL), maximum wall shear stress (max WSS) map and maximum backward flow ratio (BFR) in the systolic phase in the pulmonary trunk. The ratio of the pulmonary trunk to the ascending aorta (PA/AA ratio) and right ventricular (RV) volumetry were evaluated using cardiac cine MRI. Mean pulmonary arterial pressure (mPAP) was obtained by right heart catheterization. Pearson’s correlation coefficients were evaluated between mPAP and MRI-derived parameters before BPA and between their differences (∆mPAP and ∆MRI-derived parameters) before and after BPA.
Results: The mean of mPAP was significantly decreased after BPA (39.0 ± 9.3 mmHg vs 25.0 ± 6.8 mmHg, p<0.01). Significant correlations with pre-BPA mPAP were observed in BFR (r=0.42, p=0.02) and max-WSS (r=0.37, p=0.05). Significant correlations with ∆mPAP were observed in ∆PA/AA ratio (r=0.40, p=0.03), ∆BFR (r=0.57, p<0.01), ∆max EL (r=0.38, p=0.04), ∆max WSS (r=0.47, p<0.01). ∆RV end-systolic volume index was marginally correlated with ∆mPAP (r=0.36, p=0.052).
Conclusion: Haemodynamic parameters evaluated using 4D flow MRI can reflect the improvement of mPAP after effective BPA and can be used for the management of patients with CTEPH treated by BPA.

B-0422 16:20
Inspiratory/expiratory 3D pulmonary MRI with UTE: capability for clinical stage classification in smokers as compared with thin-section CT
Y. Ohno1, M. Yu1, Y. Kishida1, S. Seki2, T. Yoshikawa1, T. Murakami1; 1Kobe/JP, 2Otawa/JP (yosirad@kobe-u.ac.jp)
Purpose: To prospectively and directly compare the capability for pulmonary functional loss assessment and clinical stage classification between inspiratory and expiratory 3D MR imaging with ultra-short TE (IS/ES UTE-MRI) and thin-section CT in smokers.
Methods and Materials: Eighteen consecutive smokers underwent IS/ES UTE-MRI, thin-section CT and %FEV1. All smokers were classified into three stages (‘Without COPD’, ‘Mild COPD’, ‘Moderate COPD’) according to the GOLD guideline. From IS/ES UTE-MRI data in each smoker, signal intensity (SI) change ratio within the lung was computationally generated by pixel by pixel analyses. Then ROIs were placed over the lung on all slices, and averaged to determine mean SI change ratio in each subject. On quantitative CT in each subject, percentage of low attenuation area within entire lung (LAA%) was also measured. Then SI change ratio was correlated with LAA%.

Results: SI change ratio had significant correlation with LAA% ($r=0.86$, $p=0.003$). SI change ratio and LAA% were correlated with %FEV1 (SI change ratio: $r=0.91$, $p<0.001$; LAA%: $r=0.90$, $p<0.001$). SI change ratio had significant difference between ‘Without COPD’ group and others ($p<0.05$), although LAA% had significant difference between ‘Moderate COPD’ group and others ($p<0.05$).

Conclusion: Inspiratory/expiratory 3D MRI imaging with UTE has a potential for pulmonary functional loss assessment and clinical stage classification in smokers as well as thin-section CT.

B-0423 16:24
Diagnostic value of quantitative dual-source CT dual-energy iodine maps combined with morphological CT features in assessing histological subtypes of lung cancer
X. Xu, X. Sui, W. Song, L. Song, Y. Huang, Z. Jin; Beijing/CN (xu@positive@163.com)
Purpose: To investigate the clinical usefulness of quantitative dual-energy CT (DECT) iodine metrics combined with morphological CT features in distinguishing lung cancer subtypes.
Methods and Materials: Consecutive patients suspected with lung cancer were prospectively enrolled and underwent DECT prior to biopsy or surgery. Tumour histological subtypes were determined in 110 patients. Two radiologists interpreted CT morphologic features and measured DECT parameters in a consensual manner. Multinomial logistic regression models were applied to evaluate the accuracy of DECT parameters and CT features in discriminating lung cancer subtypes.
Results: Histology revealed adenocarcinoma in 48, squamous cell carcinoma (SCC) in 36 and small cell lung cancer (SCLC) in 26 patients. In analysis of CT features, tumour diameter, distribution, spiculation, pleural retraction, vascular invasion and confluent mediastinal lymphadenopathy, enhancement of mediastinal structures and enhancement heterogeneity showed statistical difference (all $p<0.05$). Iodine density and iodine ratio were different among three lung cancer subtypes (H=16.817, P<0.001; H=20.338, P<0.001). Iodine density of adenocarcinoma and SCC was (1.50±0.90) mg/ml and (1.40±0.40) mg/ml, respectively, higher than the (1.20±0.40) mg/ml for SCLC ($p<0.01$). Iodine ratio of adenocarcinoma and SCC was (16.10±7.02%) and (15.9±6.62%), higher than the (11.5±5.13) mg/ml for SCLC ($p<0.01$). No significant difference of DECT parameters was observed between adenocarcinoma and SCC. Accuracy of the model based on CT features was 69.1% and accuracy of the model based on CT features combined with DECT parameters was 80.9%.

Conclusion: Quantitative DECT metrics were different among adenocarcinoma, SCC and SCLC; when combined with morphological CT features, higher diagnostic performance can be achieved.

B-0424 16:28
Ultra-high-resolution CT vs state-of-the-art area-detector CT: can higher spatial resolution improve nodule detection capability at same radiation dose in chest nodule phantom study?
D. Takenaka1, K. Fujita1, N. Sugihara2, S. Seki3, T. Yoshikawa4, Y. Ohno4; 1Akashi/JP, 2Okayama/JP, 3Kobe/JP, 4Yosirad@kobe-u.ac.jp
Purpose: To determine the difference of higher spatial resolution for nodule detection capability on newly installed ultra-high-resolution CT (UHR-CT) as compared with state-of-the-art area-detector CT (ADCT) in chest nodule phantom study.
Methods and Materials: A commercially available chest phantom with simulated solid and solid nodules, whose diameters were 4, 6, 8, 10, 12 and 14mm at upper, middle and lower lung field levels, were scanned by standard-dose UHR-CT (Aquilion Precision, Canon Medical Systems) and ADCT (Aquilion ONE, Canon) three times. In this study, UHR-CT applied 0.25mm-160 detector collimation, and ADCT applied 0.5mm-80 detector collimation, and CT Divo's of UHR-CT and ADCT were 9.3mgY and 9.0mgY. Then UHR-CT data were reconstructed as 0.25mm, 0.5mm and 1mm thicknesses. On the other hand, ADCT data were reconstructed as 0.5mm and 1mm thicknesses. To assess image quality and probability of nodule presence, two chest radiologists were visually assessed, and each final score was determined by the consensus of two readers. To evaluate image quality difference and nodule detection capability among all protocols, Wilcoxon's signed rank tests and ROC analyses were performed. Finally, detection performance was compared among all protocols by McNemar's test.
Results: There were no significant differences of image quality and area under the curve among all protocols (p>0.05). Sensitivity of UHR-CT reconstructed as 0.25mm was significantly higher than that of ADCT reconstructed as 0.5mm thickness with 512 matrix (p=0.03).

Conclusion: Higher spatial resolution on UHR-CT has a potential to improve nodule detection capability as compared with ADCT in chest phantom study.

Author Disclosures:
K. Fujii: Employee; Canon Medical Systems Corporation. N. Sugihara: Employee; Canon Medical Systems Corporation. S. Seki: Research/Grant Support; Canon Medical Systems Corporation. T. Yoshihikawa: Research/Grant Support; Canon Medical Systems Corporation. Y. Ohno: Research/Grant Support; Canon Medical Systems Corporation.

B-0425 16:32
The utility of the ultra-high-resolution CT to evaluate the detailed bronchial tree for COPD
D. Takenaka, A. Higashida, Y. Kono, T. Hashimoto, H. Maeda, S. Sakamoto; Akashi/JP (daisuket@hp.pref.hyoogo.jp)

Purpose: The purpose of this study was to compare the availability to image peripheral bronchus as a tool of COPD evaluation on CT between conventional high-resolution CT (HRCT) and the ultra-high-resolution CT (UHRCT).

Methods and Materials: We retrospectively enrolled patients who underwent CT examination were enrolled retrospectively. All CT studies were performed by using ultra-high-resolution CT machine (Aquilion Precision; Canon Medical Systems, Otawara, Japan). All CT examinations were performed with 160-detector row CT scanner (Aquilion; Canon Medical Systems, Tokyo, Japan) and evaluated the percent of wall area (WA%), and luminal area (LA) through 3rd generation. The WA%s and LAs of the proximal bronchus (3rd and 4th generation) and the peripheral bronchus (5th and more) were statistically compared by using Wilcoxon rank sum test. P value less than 0.05 was considered to be significant in all statistical analyses.

Results: The p-values of WA% of proximal and peripheral bronchus were 0.08 and 0.03, respectively. The p-values of LA were 0.10 and 0.00, respectively. Thus, the UHRCT images revealed more detailed visualization of peripheral bronchus to evaluate WA% and LA for evaluation of regional COPD change.

Conclusion: The UHRCT image has improved the detailed measurement of peripheral bronchial tree compared to conventional HRCT image.

B-0426 16:36
Late phase lung perfusion by dual energy CT: image quality and clinical findings compared to arterial perfusion
M.S. May, I. Prael, R. Heiß, M. Kopp, M. Uder, W. Wuest; Erlangen/DE (matthias.may@uk-erlangen.de)

Purpose: Arterial Dual-Energy-CT (aDE) is an established technique for evaluation of pulmonary perfusion. The aim of this study was to assess the image quality and clinical findings in the portal-venous-phase (vDE). We compared the aDE and vDE findings with LDCT as the reference standard.

Methods and Materials: aDE-CT was performed in 94 patients using a dual source scanner (70/325 kVp, 640/400 mA). Pulmonary triggered aDE-CT from the chest served as reference ((n=95)). Iodine maps were calculated and attenuation values were measured in the pulmonary trunk and the aorta. The objective overall diagnostic image quality was assessed on a five point Likert scale. Image artefacts were classified into five groups and evaluated on a dichotomous scale. Pathological findings were correlated with the anatomical image datasets.

Results: No significant difference was found for iodine uptake of the lung parenchyma in both groups (vDE: 23±13HU and aDE: 22±14HU), but iodine attenuation in the aorta and the pulmonary trunk was lower in vDE. Overall perfusion image quality was comparable (p=0.394). Rotation and streak artefacts were found in most of the patients in at least one location. Dual source artefacts were found in only few patients in both groups (vDE 5%, aDE 7%). Recess artefacts were higher (vDE 61%, aDE 23%) and subpleural artefacts were only observed in vDE (17%). Pathological findings were found in 20% of all vDE patients and in 35% of all aDE patients including areas of hyper- and hypoattenuation (65/70%).

Conclusion: vDE provides robust image quality of lung perfusion. Relative iodine uptake is increased, suggesting a pooling effect. Different appearance of artefacts should be known for interpretation.

Author Disclosures:
Results: EGFR mutations were found in 28 (58%) patients. NIC_{volumetric} of EGFR mutant group was higher than that of wild-type group (t=2.869, P=0.006). NIC_{volumetric}, of the inner segment and peel in EGFR mutant group was higher than that in wild-type group (t=2.415-2.699, P=0.009-0.019). However, volumetric parameters of the total lesion and marginal part showed no significant difference between the two groups. ROC curve analysis revealed that diagnostic performance of NIC_{volumetric} (AUC=0.893) was similar to that of NIC_{areal}, of inner segments and peels (AUC=0.655-0.677). NIC_{areal} was strongly correlated with inner segmental NIC_{volumetric} (r=0.818-0.821).

Conclusion: Areal and volumetric iodine metrics were applicable in predicting EGFR mutation status, the maximum area iodine quantification was suggested in clinical use due to its convenient access.

B-0431 16:52
Systematic review and meta-analysis of randomized trials on the impact of lung cancer screening by low-dose computed tomography in populations highly exposed to tobacco
A. Sadate, B. Oceano, A. Larbi, P. Fabbro-Peray, J. Beregi; Nimis/FR (alexandre.sadate@gmail.com)

Purpose: Lung cancer (LC) has the highest cancer mortality worldwide with poor prognosis. Screening with low-dose computed tomography (LDCT) in populations highly exposed to tobacco has been proposed to improve LC prognosis. Our objective is to perform a systematic review and meta-analysis to evaluate the efficacy of screening by low-dose computed tomography (LDCT) compared to any other intervention in populations who reported tobacco consumption for more than 15 years on LC and overall mortality.

Methods and Materials: We searched randomized controlled trials (RCTs) studying screening by LDCT compared with any other intervention with data on LC-specific and all-cause mortality from inception until the 19th of February 2018 using Medline and Cochrane Library databases. Publication selection and data extraction were made independently by two double-blind radiology residents. Two groups of meta-analysis were created with either long or short follow-up.

Results: Six RCTs were included in the meta-analysis. In the short-follow-up group, a non-significant excess of overall mortality was observed in the screening group (RR= 1.26, 95% CI: 0.78-2.04). In the long-follow-up group, a significant relative reduction of overall mortality of 6% (RR= 0.94, 95% CI: 0.89-0.99) and a significant relative reduction of LC-specific mortality of 14% was observed in the screening group (RR= 0.86, 95% CI: 0.77-0.96) compared with the control group. The limitations were the heterogeneity of interventions and the over-representation of one study in the long-follow-up group.

Conclusion: In populations highly exposed to tobacco, screening by LDCT reduces LC and overall mortality over the long term.

B-0432 16:56
Application of LDCT and Lung-RADS classification in lung cancer screening of the urban population in China
Q. Meng; Zhengzhou/CN (mengke43@163.com)

Purpose: To evaluate the application of LDCT and Lung-RADS classification in lung cancer screening in healthy people.

Methods and Materials: 8500 volunteers were selected and screened by LDCT from November 2013 to December 2017. All volunteers were divided into high-risk group (n=1339), medium-risk group (n=6544) and low-risk group (n=1167). The mean age was 49.4±5.4 years. The incidence rate of lung cancer was statistically significant between the groups (χ²=776.35, P<0.001). The positive rate of pulmonary nodules gradually increased with age in each group, and the difference of nodules classification in each group was statistically significant. The positive rate of pulmonary nodules in 40-45-year-old group was significantly higher than that in other groups, and the difference was statistically significant. The incidence of nodule classification between the three groups was statistically significant at p < 0.05. The incidence rate of lung cancer in high-risk group was significantly more than 3 times higher than that of low-risk group. Among the four groups, the positive rate of pulmonary nodules gradually increased with age in each group, and the difference of nodules classification in each group was statistically significant. The positive rate of pulmonary nodules in 40-45-year-old group was significantly higher than that in other groups, and the difference was statistically significant. The incidence of nodule classification between the three groups was statistically significant at p < 0.05.

Conclusion: LDCT combined with Lung-RADS classification is suitable for lung cancer screening in healthy people, especially in the high-risk group of over 40 years old.

B-0434 17:04
Single- and dual-energy CT pulmonary angiography using second- and third-generation dual-source CT systems: comparison of radiation dose and image quality

Purpose: To evaluate radiation exposure and image quality in matched patient cohorts for CT pulmonary angiography (CTPA) acquired in single- and dual-energy mode using second- and third-generation dual-source CT (DSCT) systems.

Methods and Materials: Two-hundred patients (100 men and 100 women) with suspected pulmonary embolism who had undergone clinically indicated CTPA in pulmonary arterial contrast phase were retrospectively enrolled. Patients were equally assigned to one of the four study groups (each with n=50), and matched by gender and body-mass-index. CTPA was performed with vendor-preset second-generation DSCT (group A, 100-kV-SCT; group B, 80/3140-kV-DECT) or third-generation DSCT (group C, 100-kV-SCT; group D, 90/3150-kV-DECT) scanners. Radiation metrics were recorded using a normalized scan range of 27.5 cm. For objective image quality assessment dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNR) were calculated. Three blinded radiologists evaluated overall image quality, reader confidence, and image artefacts subjectively using five-point Likert-scales.

Results: Effective radiation dose calculations revealed no significant differences between SECT and DECT acquisition for each scanner generation (P>0.353). The mean effective radiation dose was lower for third-generation groups C (1.5±0.8 mSv) and D (1.5±0.7 mSv) compared to second-generation groups A (2.5±0.9 mSv) and B (2.3±0.6 mSv) (all with P=0.012). Highest FOM-CNR measurements were observed for third-generation DECT (P<0.032). Ratings for subjective image quality, reader confidence and image artefacts showed no significant differences among the four groups (P>0.158).

Conclusion: Dual-energy CTA can be performed with both second- and third-generation DSCT systems without detrimental effects on image quality or radiation dose in comparison with SECT.

Author Disclosures:

J. L. Wichmann: Other; Wichmann JL received speaker fees from GE and Siemens.
M. H. Albrecht: Other; Albrecht MH received speaker fees from Siemens and Bracco.

B-0435 17:08
Pericardial needle biopsy for lung lesions focused on needle angle and lesion depth: 14-year results
J. Lee; I. Lee, J. Kim; Anyang/KR (jeehyeon@hallym.or.kr)

Purpose: To evaluate the effects of needle angle and lesion depth on complications and technical success of percutaneous needle biopsy (PCNB) for intrapulmonary lesions.

Methods and Materials: From 2004 to 2017, total of 689 cases of PCNB were retrospectively reviewed. The angle and the depth were intensively calculated for each case. The angle was subdivided into three categories on the basis of 30-degree degrees (0-30, 31-60, 61-90). The depth was documented as a continuous variable. The pathologic results and complications were evaluated to assess relationship with the angle and the depth of PCNB by using univariate analysis. Complications were divided into minor and major complications according to severity and necessity for additional procedure.

Results: The overall success rate was 93.1% (642/689). Technical success showed no significant correlation with both needle angle (P=0.568) and lesion depth (P=0.144). The overall complications rate was 17.9% (123/689) with 15.7% for minor complications and 2.2% for major complications. No significant correlation was found between complications and the angle (P=0.101). However, complications was influenced by the depth (P<0.01); mean lesion depth ± SD for no complications, minor complications and major complications were 1.49 ± 1.65, 3.39 ± 1.71, and 4.72 ± 1.54, respectively.

Conclusion: Needle angle showed no significant relation with technical success and complications. Lesion depth also had no effect on technical success. However, the depth was strongly correlated with the severity of complications after PCNB.

B-0436 17:12
Mare Nostrum and tuberculosis: the role of chest x-ray and clinical-laboratory data among Mediterranean migrants on landing
G. Scavone; M.V. Raciti, M.C. Calcagno, D.C. Caltabiano, G. Galvano, A.M. Raciti, C. Catanisii; 1 Catania/IT, 2 pais/to (mariaivonoria.raciti@libero.it)

Purpose: To report the experience of the Italian centre most involved in clandestine landings, end point of arrival for Mediterranean migrants and bridge to Europe. To determine the still relevant importance of chest x-ray in diagnostic setting of migrants suspected for tuberculosis (TB) infection, comparing radiological findings with clinical-laboratory data.

Scientific Sessions
Methods and Materials: From 2010 to 2016, 15115 migrants, mainly from sub-Saharan Africa, have landed at the Catania port. They underwent an initial clinical evaluation on the dock looking for two conditions: fever<37°C and cough with or without sputum. 510 migrants had fever, of these 191 with cough were considered suspect for TB and were carried into the high bio-containment unit: 149 (cough without sputum) were studied with chest x-ray, 42 (cough with sputum) were subjected to GeneXpert (GX), a rapid laboratory test for TB. Results: 258 pulmonary infections were diagnosed (13.1% of TB suspected, 4.9% of feverish patients, 0.16% of migrants), 19 (76%) of these diagnosed by chest x-ray (16 military, 2 with consolidations, 1 with cavitations) and 6 (24%) by GX. 14 suspected patients presented non-TB-related pathology diagnosed by x-ray, 13 lobar and atypical pneumonia, and 1 pleurisy. Conclusion: Mediterranean migratory flows have re-introduced TB and timely diagnosis on landing is mandatory. In symptomatic migrants, chest radiography is the first line technique that allows a timely diagnosis of active or latent tuberculosis and a prompt treatment, preventing the infection spread in the country of landing and in Europe. GX can detect the TB infection but chest x-ray is still necessary to detect GX-negative pulmonary infections.

16:00 - 17:30 Tech Gate Auditorium

Genitourinary

SS 407

Prostate imaging: new diagnostic tools
Moderators:
N.N.
J.J. Fütterer; Nijmegen/NL

B-0437 16:00
Prostate imaging self-assessment and mentoring (PRISM): a prototype self-assessment scheme for radiologists
Y. Chen1, E. Michalopoulou1, A.G. Gale1, T. Barrett2, P. Haslam3, A. Patel4, H. Ahmed5, Loughborough/UK, Cambridge/UK, Newcastle Upon Tyne/UK, Stevenage/UK, London/UK (Y.Chen@boro.ac.uk)

Purpose: The PRISM scheme is a web-based self-assessment and continuous learning platform designed for radiologists across the UK to develop their expertise in interpreting prostate mpMRI images before biopsy, so that they build the confidence to recommend for some men to avoid an immediate biopsy.

Methods and Materials: The PRISM Expert Reference Group (ERG) facilitated by Prostate Cancer UK and consisting of expert radiologists, computer scientists and several members of a wider mpMRI clinical expert group was established. Qualitative data regarding software structure and application design were collected, while a focus group moderator generated interviews to capture deeper information on image examination and reporting processes. A collection of validated mpMRI cases acquired from the PROMIS Trial team was used to evaluate participants’ image interpretation performance. Different and individual variations of an initial interactive image assessment application were developed and circulated around the ERG. Further face-to-face meetings and interviews were conducted with consultant radiologists to gain their feedback and finalise the application. The final design was then generated and coded.

Results: To date, the system has been developed and tested. It is now being piloted in specific sites across the UK and the data resulting from these pilots will be analysed and presented at the conference. We understand at this time no meaningful data can be usefully presented in this abstract of work in progress.

Conclusion: This work is at the stage of data collection and will complete at the end of 2018. All data will be presented at ECR 2019.

B-0438 16:08
Use of k2 space for sub-mm through-plane resolution in T2-weighted 2D spin-echo prostate MRI
S. Kargar1, S. Riederer2, E. Borisch1, A. Froemming1, P. Asbach1, 2, age+/-standard-deviation, 62+/-8 years, PSA, 6.3+/-2.4 ng/ml, prostate-volume, 91+/-51 cm3, noERC, n=10, centre 1, ERC, n=11, centre 2) involved identical prostate-MRI-protocols. Two-tailed Wilcoxon-matched-paired signed-rank-tests were significant for p<0.05.

Results: SNR(noERC) in peripheral k2-echo tissue was higher posteriorly (median/minimum/maximum, 41/22.91) than anteriorly (40/21.87) in T2WI (0.010<p<0.025), but not in full-field-DWI, reduced-field-DWI, and mono-exponential ADC-maps (10/4.17-90/13.126 versus 11/8.20-38/137, 0.05<p<1.0). SNR(ERC) was higher posteriorly in T2WI, full-field-DWI and reduced-field-DWI (17/7.49-39/8.80 versus 6/2.72-15.64, p=0.001-0.05), but not in ADC-maps (28/17.47-61/8.104 versus 22/15.45-56/7.121, 0.03<p<1.0). Anterior-posterior contrast in k2-echo was higher for ERC than noERC in DWI-sequences (p=0.001-0.05). SNR was higher in reduced-field-DWI than in full-field-DWI for both noERC (median, 15-85 versus 10-37) and ERC (9-61 versus 6-39) in k2-echo and patients.

Conclusion: Study results in both k2-echo and patients imply that SNR is similar in noERC and ERC in a bi-parametric prostate-MRI-protocol, imageHomogeneity is higher for ERC, and SNR is higher in reduced-field-DWI than in full-field-DWI.

B-0441 16:24
T2-mapping with simulated T2-echo - a diagnostic alternative for 3-Tesla prostate MRI
J. Fett1, C. Lee1, M. Haas1, M. Taupitz2, B. Hamm1, P. Asbach1, 2, age+/-standard-deviation, 62+/-8 years, PSA, 6.3+/-2.4 ng/ml, prostate-volume, 91+/-51 cm3, noERC, n=10, centre 1, ERC, n=11, centre 2) involved identical prostate-MRI-protocols. Two-tailed Wilcoxon-matched-paired signed-rank-tests were significant for p<0.05.

Results: SNR(noERC) in peripheral k2-echo tissue was higher posteriorly (median/minimum/maximum, 41/22.91) than anteriorly (40/21.87) in T2WI (0.010<p<0.025), but not in full-field-DWI, reduced-field-DWI, and mono-exponential ADC-maps (10/4.17-90/13.126 versus 11/8.20-38/137, 0.05<p<1.0). SNR(ERC) was higher posteriorly in T2WI, full-field-DWI and reduced-field-DWI (17/7.49-39/8.80 versus 6/2.72-15.64, p=0.001-0.05), but not in ADC-maps (28/17.47-61/8.104 versus 22/15.45-56/7.121, 0.03<p<1.0). Anterior-posterior contrast in k2-echo was higher for ERC than noERC in DWI-sequences (p=0.001-0.05). SNR was higher in reduced-field-DWI than in full-field-DWI for both noERC (median, 15-85 versus 10-37) and ERC (9-61 versus 6-39) in k2-echo and patients.

Conclusion: Study results in both k2-echo and patients imply that SNR is similar in noERC and ERC in a bi-parametric prostate-MRI-protocol, imageHomogeneity is higher for ERC, and SNR is higher in reduced-field-DWI than in full-field-DWI.

1

Methods and Materials: In this IRB approved prospective study on 40 patients a multi-echo T2-mapping sequence was added to the routine 3-Tesla prostate MRI protocol. Three readers separately reviewed sets of images blinded to the sequence technique. Reader preference for either the standard T2-sequence or the simulated T2-sequence was compared using the Z-test and the intra-observer agreement for assigning PI-RADS scores was calculated for each reader using the Cohen kappa (k).

Results: All 3 readers preferred the standard T2-sequence over the simulated T2-sequence (p<0.05). All 3 readers showed moderate intra-observer agreement between the standard T2- and simulated T2-sequence regarding the assigned PI-RADS scores (R1 = 0.58, R2 = 0.44, R3 = 0.43).

Conclusion: T2-mapping with reconstruction of a simulated T2-sequence shows potential for including quantitative sequences into routine prostate MR protocols but image quality is not equivalent to standard T2 fast spin-echo Imaging.

Scientific Sessions

Wednesday

A B C D E F G S278
B-0442 16:32
Assessment of diagnostic yields of significant prostate cancer by altering the prostate-specific antigen density thresholds for biopsy according to MRI findings

L. Boesen1, V. Logaser2, N. Nargarda1, R. Blisberg1, I. Balslev1, K.-O.D. Thstrup1, H. Jakobsen1, H.S. Thomsen1, A.R. Padhano1, H. Herlev/DK, 2Northwood, Middlesex/UK, 3Copenhagen

Purpose: To assess the influence of prostate-specific antigen density (PSAd) on the diagnostic yields of a negative, equivocal- and positive biparametric (bp) MRI, to detect and rule out significant prostate cancer (sPCa). Methods and Materials: Prostate bpMRI (T2W and DWI) was performed in 808 biopsy-naive men with clinical suspicion of sPCA (PSA<20 ng/ml, cTstage< T3). BpMRI findings were stratified into negative/equivocal/positive for sPCa suspicion using modified PI-RADS. All men underwent standard- and targeted biopsies of bpMRI equivocal/positive lesions. PSAd thresholds were assessed in decision modeling to yield detection rates (Gleason grade group2) from combined biopsy yields as reference. Net benefits and decision curve analyses were compared to determine the optimal biopsy strategy.

Results: Overall, any and sPCa was detected in 460/808 (57%) and 283/808 (35%) men with median age and PSA [inter-quartile range] of 65 years [60-70] and 6.9 ng/ml [5.4-9.5], respectively. PSAd significantly influenced the diagnostic yield of sPCa stratified by bpMRI suspicion. For biopsy requiring risk-thresholds ranging from 10-30%, the best strategy was restricting biopsies to men with positive bpMRIs or PSAd ≥0.15 ng/ml/cc for equivocal and ≥0.20 ng/ml/cc for negative bpMRIs. This reduced the number of men requiring biopsy by 45% (363/808), over-diagnosis rate of insignificant cancers by 51% (90/177), while missing only 7% (20/233) of men with sPCas.

Conclusion: Altering the PSAd threshold according to bpMRI suspicion and restricting biopsies to men with positive bpMRIs or PSAd ≥0.15 ng/ml/cc for equivocal- and ≥0.20 ng/ml/cc for negative bpMRIs was the best biopsy strategy in biopsy-naive men, effectively balancing risks and benefits.

B-0443 16:40
Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort over 11 years

F. Giganti1, A. Stabile1, V. Stavrinides1, C. Orczyk1, S. Pumwani1, C. Allen1, A. Kirkham1, M. Emberton1, C. M. Moore1, London/UK, 2Milan/IT, 3(f.giganti@ucl.ac.uk)

Purpose: To compare the PRECISE score (a 1-5 Likert scale for the likelihood of radiological change of prostate cancer over time; 1: regression, 3: stability and 5: definite stage progression) with clinical progression in men on an MRI-led active surveillance (AS) protocol. Methods and Materials: Men on AS for low or intermediate risk prostate cancer who had had two or more MRI scans between April 2006 and September 2017 were included. A total of 150 men (535 scans) were reported by a dedicated radiologist to give a PI-RADS v2 score for each scan, measurement of all lesions and a PRECISE score. Clinical progression was defined by histological progression to ≥ Gleason Grade Group 3 and/or initiation of active treatment. Tumour growth rate between serial scans was calculated.

Results: Freedom from clinical progression at 12, 24 and 60 months for PRECISE 1-2 was 100% at all time points; for PRECISE 3 it was 98.4%, 97.4%, 97.3% and for PRECISE 4-5 it was 98.5%, 92.4%, 67.1%, respectively. There was a significant difference between PRECISE 1-2 vs 4-5 and PRECISE 3 vs 4-5 (p<0.001). Fifty-six men (37%) had a visible lesion on all scans, and their tumour growth rate (%) by planimetry was higher with higher PRECISE scores (all p<0.05). Limitations include the fact that serial biopsies were not routinely performed and that the biopsy approach varied (standard vs targeted).

Conclusion: Radiological stability (PRECISE 1-3) in men on AS is associated with a high rate of freedom from clinical progression.

B-0444 16:48
Orthopaedic metallic artefact reduction is indispensable for CT evaluation of the urinary tract after hip replacement

P.N. Kaposi1, T. Youn1, P. Borsos1, P. Magyar1, V. Bérczi1, Budapest/HU (kaposipal@gmail.com)

Purpose: The metallic hip prosthesis (TEP) causes extensive artefacts on CT scans. Orthopaedic metallic artefact reduction (O-MAR) may augment evaluation of the bladder and ureter after TEP.

Methods and Materials: 30 patients with 41 TEPs were retrospectively enrolled in the study. CT examinations were performed on an Ingenuity Core 64 scanner (Philips Healthcare, the Netherlands) with diagnostic protocols. Series were reconstructed both with a body kernel (NOM) and O-MAR from the same acquisitions. CT densities were measured in freehand regions of interest (ROIs) drawn around the ureters and in ROIs inside the bladder at both sides. Four visibility levels were used for semi-quantitative assessment of image quality.

Results: The average (μ) density of 41 prosthesis side ureters was significantly lower on NOM (μ=94.76 HU ± SD 150.48HU) than on O-MAR images (μ=13.40HU ± SD 36.37HU; p<0.0004). The TEP side of the bladder (μ=138.62 HU ± SD 182.64 HU vs. μ=35.55 HU ± SD 40.21 HU; p<0.0003) was also darker on NOM images. 53.7% of the TEP side ureters was obscured on NOM series compared to 4.9% on O-MAR. A linear-by-linear test found significant differences between PRECISE 1-2 vs 4-5 and PRECISE 3 it was 98.4%, R. Bisbjerg1, 1P. Asbach1, 1Northwood, Middlesex/UK, 2Copenhagen (lars.boesen@dadlnet.dk).

Purpose: To assess the influence of prostate-specific antigen density thresholds for biopsy according to MRI findings

L. Boesen1, V. Logaser2, N. Nargarda1, R. Blisberg1, I. Balslev1, K.-O.D. Thstrup1, H. Jakobsen1, H.S. Thomsen1, A.R. Padhano1, H. Herlev/DK, 2Northwood, Middlesex/UK, 3Copenhagen

Conclusion: Altering the PSAd threshold according to bpMRI suspicion and restricting biopsies to men with positive bpMRIs or PSAd ≥0.15 ng/ml/cc for equivocal- and ≥0.20 ng/ml/cc for negative bpMRIs was the best biopsy strategy in biopsy-naive men, effectively balancing risks and benefits.

B-0445 16:56
Wide-detector axial scan on revolution CT for combining application of ASIR-V and ASIR on unenhanced abdominal CT in vivo: the image quality and radiation dose evaluation

Z. Zhu1, X.-M. Zhao1, C. Zhou2, Beijing/CN

Purpose: To investigate the performance of combining adaptive statistical iterative reconstruction v technique (ASIR-V) and ASIR on non-contrast abdominal computed tomography (CT).

Methods and Materials: 141 patients (21-78 years; 78 male, 63 female) were enrolled. The scan protocol from group A to E were 0%, 20%, 40%, 60%, 80% ASIR-V respectively in 256 row wide-detector Revolution CT and F with no ASIR-V in 64-detector Discovery 750 HD CT. Each group was divided into 5 subgroups with 0%, 20%, 40%, 60%, 80% ASIR-V respectively. Image noise was measured in spleen, aorta and muscle. The CT attenuation and image noise were analysed using the student t-test.

Results: With increased ASIR-V (from group A to E), the image noise decrease except group B in aorta and muscle (NoiseA=NoiseB μ=0.233, P=0.796). With fixed ASIR-V (same group) in three organs, the image noise increase when ASIR-V increasing except subgroup ASIR-V 20%-80% in group D and E in aorta, subgroup ASIR-V 40% in group B and C in muscle. The CTdvol and DLP from group A to E decreased with significant difference when ASIR-V increased. The CTdvol and DLP in group F are higher than group A with significant difference.

Conclusion: Simply applying either ASIR-V or ASIR is good for the image quality of non-contrast abdominal CT scan. While applying both, the image quality deserved no further improvement but with some certain compromise.

B-0446 17:04
Comparison of a compressed-sensing accelerated high-resolution VIBE sequence for an improved morphologic and functional assessment (‘one-stop shop’ of the crown) of the prostate using ASIR-V

D. Hausmann1, S. Ignjatovic1, D. Kreul1, M. Klarhöfer1, M. Nickler2, B. Kiefer2, R.A. Kubik-Huch1, 1Baden/CH, 2Zurich/CH, 3Erlangen/DE (daniel.hausmann@hotmail.com)

Purpose: To compare a prototype compressed-sensing-accelerated VIBE (csVIBE) with variable temporal resolution (range: 4-12 seconds) with a conventional VIBE (convVIBE) and to explore the benefits of additional quantitative perfusion analysis.

Methods and Materials: So far, 30 datasets (15 csVIBE/15 convVIBE) were independently assessed by two experienced readers in this IRB-approved study. All patients were examined on state-of-the-art 1.5T clinical MRI scanners (SIEMAGETOM Avanto, Siemens Healthcare, Erlangen, Germany). Mann-Whitney U tests were performed to compare image quality (IQ), delineation of structures (DoS), artefacts (A) and diagnostic confidence (DC), which were rated on Likert-type scales (IQ/DoS/A/DC: 1 (non-diagnostic)-5 (perfect); A: 1 (no artefacts)-5 (severe artefacts)). For perfusion analysis a
Tofts model was used. Ktrans was measured in cervix (Cx), junctional zone (Jz) and myometrium (Mm). These values were compared between first (fp)/second phase (sp) of the menstrual cycle and between pre- and postmenopausal (post) women using t tests. Interobserver agreement was assessed.

Results: Ratings for IQ/DoS/DC of csVIBE (4.3±0.7/4.7±0.5/4.6±0.8; \(\kappa\):0.8/0.2/0.7) and convVIBE (4.1±0.6/4.3±0.7/4±0.7; \(\kappa\): 0.5/0.7/0.9) were generally high, while A was rated low (cs/convVIBE: 2±0.8/2.2±0.6; \(\kappa\): 0.6/0.3) (p<0.05). Ktrans in Jz was (not significantly) higher in fp than in sp and post (0.43 versus 0.19/0.24; (p=0.32)). Values were similar independent of cycle phase and menopausal status in Cx/Mm ((Cx fp/sp/pm): 0.16/0.12/0.11; Mm fp/sp/pm 0.26/0.24/0.15; p>0.05).

Conclusion: csVIBE is useful to morphologically and functionally assess the uterus in a single acquisition at a similar IQ compared to convVIBE. Perfusion analysis and multiple-phase imaging may have the potential to differentiate between various uterine pathologies.

Author Disclosures:
- D. Hausmann: Equipment Support Recipient; Siemens Healthcare.
- B. Kiefer: Employee; Siemens Healthcare.

B-0447 17:12
Dual-energy CT dose reduction for GU CT while preserving diagnostic performance
I. Duba1, A. Khandelwal1, J. Weaver2, S. Leng2, A. Ferrero2, M. Wells2, J.G. Fletcher2, C. McCollough2, A.F. Halaweish2; 1Malvern, PA/US, 2Rochester, MN/US (Khandelwal.ashish@mayo.edu)

Purpose: To investigate the diagnostic accuracy of low dose radiation protocols for urological dual-energy (DE) CT applications.

Methods and Materials: All data were acquired using a 3rd generation dual-source CT. Accuracy of reduced dose DECT renal stone classification was evaluated, as a function of phantom size and dose, by scanning 88 stones of known composition at 100%, 75%, 50% and 33% of routine dose. Findings were confirmed by measuring stone identification accuracy in reduced dose (via noise insertion) patient DECT’s. Dose reduced CT programs (CTU) were evaluated in 5 CTU cases at similar dose levels. Mixed-kV, virtual non-contrast, iodine map and 50 keV monoenergetic images were generated for the full and dose reduced CTUs. Mixed image & 50 keV CNR values were compared across doses and diagnostic quality assessed by a urologist.

Results: Phantom validation demonstrated up to 70% & 50% dose reduction for lateral widths <41cm and ≤45cm respectively, while maintaining 100% and 98% stone characterization accuracy respectively. Using this validation, clinical protocols were adjusted accordingly to account for new dose reductions. Iodine CNRs in 50keV low dose CTU images were an average of 82%, 101% and 126% of the full dose values for 33%, 50% and 75% of full dose, respectively. Radiologist review of CTU images found that all 75% dose exams and 2/5 of 50% dose exams were diagnostically acceptable.

Conclusion: Optimization of routine DECT acquisitions is achievable at lower dose levels. Continued optimization of CTU exams are ongoing using increased IR strengths and more reader validation.

Author Disclosures:
- I. Duba: Employee; Siemens Healthineers.
- C. McCollough: Research/Grant Support; Siemens Healthineers.
- A.F. Halaweish: Employee; Siemens Healthineers.
Scientific Sessions

Thursday, February 28
Abdominal Viscera

SS 501
Diffuse and focal pancreatic disease

Moderators:
E. Amosova; Moscow/RU
A. Taibbi; Palermo/IT

B-0448 08:30
Value of static first-pass dual-energy CT perfusion analysis in patients with acute pancreatitis
I. Ye1, L. Lenga1, J.L. Wichmann1, M.H. Albrecht1, T.J. Vogl1, S.S. Martin1
1Frankfurt a. Main/DE; 1Charleston, SC/US (Dr.IbrahimYel@gmail.com)

Purpose: The aim of this study was to investigate the correlation and discriminative diagnostic accuracy of dual-energy CT (DECT)-derived iodine uptake and fat fraction analysis in patients with acute pancreatitis of varying severity.

Methods and Materials: In this retrospective study, 53 patients with acute pancreatitis were included, who had undergone portal-venous-phase DECT examination of the abdomen. Three blinded readers independently evaluated all cases using the modified CT severity index (mCTSI) taking pancreatic inflammation, necrosis, and extrapancreatic complications into account. In addition, readers performed region-of-interest (ROI) measurements on DECT iodine perfusion images in the inflammatory pancreatic parenchyma. The correlation between disease severity and iodine uptake, as well as fat fraction values was investigated. The optimal discriminative cut-off iodine uptake value to diagnose severe acute pancreatitis was determined using receiver operator curve (ROC) statistics.

Results: Mean CTSI was 5.6 ± 3.2. A significant correlation was found between CTSI scores and mean iodine uptake (Pearson’s correlation coefficient \(r = 0.657, p<0.01 \)). An iodine uptake threshold of \(\geq 1.7\) mg/mL was found to indicate a severe acute pancreatitis with a sensitivity of 86.7% and specificity of 87.5%. Fat fraction analysis revealed no significant correlation in patients with CTSI scores \(\leq 2 \) (\(p=0.278 \)). In patients showing CTSI scores > 4, however, a moderate correlation was found between mean fat fraction values and disease severity (\(r = 0.482, p<0.05 \)).

Conclusion: First-pass perfusion analysis in contrast-enhanced DECT shows high diagnostic accuracy to diagnose severe acute pancreatitis. Furthermore, iodine uptake directly correlates with CTSI scores.

Author Disclosures:
1J.L. Wichmann: Speaker; Siemens, GE. 1M.H. Albrecht: Speaker; Siemens.

B-0449 08:38
Diagnostic efficacy of acute necrotising pancreatitis on early CT scan and correlation with laboratory exams
Y. Song, H. Park, M. Yu, Y. Kim, S. Jung, H. Jeon; Seoul/KR (thdgustj88@gmail.com)

Purpose: To investigate the diagnostic efficacy of early and short-term follow up (<2 weeks) CT scan in necrotizing pancreatitis based on revised Atlanta classifications and to correlate it with laboratory exams.

Methods and Materials: From Sep 2007 to Aug 2018, a total of 210 patients (147 men and 63 women, mean age 54.9 years) with acute pancreatitis who underwent initial contrast enhanced CT at admission and a short term(>within 2 weeks) follow up CT were included. Two abdominal radiologists performed a consensus review of two sets of CT in each patient, and determined the type of acute pancreatitis as interstitial oedematous pancreatitis (IEP) or necrotizing pancreatitis(NP) according to the revised Atlanta classifications. Values of laboratory exams including pancreatic enzymes and C-reactive protein were recorded and compared between the IEP and NP groups at each time point using t-test.

Results: The time interval between symptom onset and initial CT scan was 0-3 days (mean 1 day). The type of acute pancreatitis at admission was IEP (n=166) or NP (n=45). In IEP group, 53(31.9%) patients were diagnosed as NP at short term follow up CT(mean 6.6 days, range 1-13 days) (IEP-NP), while stationary or improved IEP was in remaining 113(68.1%) patients (IEP-IEP). At the time of initial CT, serum C-reactive protein was significantly higher in IEP-NP group (5.46±9.14mg/dl) than in IEP-IEP group (4.01±7.22 mg/dl) (\(P=0.042 \)).

Conclusion: The diagnosis of necrotizing pancreatitis can be overlooked on early CT scan(within 3 days after symptom onset). Serum C-reactive protein is useful in early tumor grading.

B-0450 08:46
Relapse of type 1 autoimmune pancreatitis after steroid therapy: imaging findings and risk factors
L. Zhi, T. Denekse2, P. Asbach3, B. Hamm2, H.-D. Xue1, Z.-Y. Jin1
1Beijing/CN; 2Berlin/DE; 3Kong/PUMC163.com

Purpose: To evaluate the imaging pattern of relapsed autoimmune pancreatitis (AIP) after corticosteroid therapy (CST), and to identify clinicoradiological risk factors for relapse.

Methods and Materials: Radiological and clinical database (2012-2018) of AIP patients treated and followed up for more than 18 months at our institution was retrospectively reviewed. Pattern of pancreatobiliary manifestations and other organ involvement (OOI) were recorded. Univariate and multivariate analyses were conducted to identify risk factors predicting relapse.

Results: Among 103 AIP patients, 44 (42.7%) experienced relapse. The median time interval between initial attack and relapse was 17 months (range 4-61 months). Pancreas involvement was less frequent at relapse compared to initial attack (81.8% vs 100%, \(p=0.003 \)) and pancreas size was smaller (mean size of pancreatic head, body and tail was 27.6, 17.3 and 20.2 mm at relapse, in contrast to 34.5, 25.0 and 27.3mm at initial attack, all \(p<0.01 \)). Patients who experienced relapse had higher frequency of extra-pancreatic bile duct (ExPBD) involvement at initial diagnosis compared to non-relapsed patients (52.3% vs. 25.4%, \(p=0.023 \)). During relapse, extra-pancreatic bile duct involvement became even more frequent (59.1% and more extensive. Univariate analysis identified male gender, initial serum IgG4 level, OOI, ExPBD involvement and kidney involvement as risk factors for relapse. Multivariate analysis revealed ExPBD involvement as a significant independent predictor of relapse (hazard ratio 1.976, 95% confidence interval 1.149-3.570, \(p=0.023 \)).

Conclusion: During AIP relapse pancreas was less involved and smaller, whereas bile duct and kidney were more involved. ExPBD involvement at initial diagnosis was a significant risk factor for relapse.

B-0451 08:54
Early prediction of the severity of acute pancreatitis using radiologic and clinical scoring systems with classification tree analysis

Purpose: This study was to develop a decision tree model for the early prediction of the severity of acute pancreatitis (AP) using clinical and radiologic scoring systems.

Methods and Materials: For this retrospective study, 192 patients with AP who underwent CT less than 72 hours after symptom onset were divided into two cohorts: a training cohort (n = 115) and a validation cohort (n = 77). The clinical scoring systems were the modiﬁed CT severity index (mCTSI), the modiﬁed non-operative criteria (mNOP), the bedside index for severity in acute pancreatitis (BISAP), and the acute physiology and chronic health evaluation (APACHE-II) score. The radiologic scoring systems were the contrast-enhanced ultrasound with quantitative analysis and the CT perfusion analysis. The training set was created and quantitative indexes of CEUS were analysed. CEUS quantitative analysis could effectively predict tumor grade of pancreatic neuroendocrine tumours (pNETs) before operation.

Results: The five clinical scoring systems showed the similar diagnostic performance to the training set with an AUC of 0.833. The diagnostic performance of the five radiologic scoring systems were compared using ROC curve (AUC) with each selected single parameter and their diagnostic performance in the validation set. AUC of 0.833 was higher than that of each single parameter (all, \(p<0.0125 \)). The CTA model achieved similar diagnostic performance to the training set with an AUC of 0.833.

Conclusion: Our CTA model consisted of clinical and radiologic scoring systems and may be useful for the early prediction of the severity of AP and identification of high-risk patients who require close surveillance.

B-0452 09:02
Preoperative prediction of pancreatic neuroendocrine tumours' grade: the added value of contrast-enhanced ultrasound with quantitative analysis
Y. Dong, X. Han, D. Yang, W. Lou, Q. Zhang, W.-P. Wang; Shanghai/CN (dr_mimi@163.com)

Purpose: To evaluate whether the contrast-enhanced ultrasound (CEUS) with quantitative analysis could effectively predict tumour grade of pancreatic neuroendocrine tumours (pNETs) before operation.

Methods and Materials: From January 2016 to October 2018, twenty cases of biopsyologically confirmed pNETs were included. All the patients were confirmed by histopathology after surgery (n=18) or endoscopic -guided fine-needle biopsy (n=2). CEUS were performed before operation or biopsy. An ACUSON S2000 OXANA US system (Siemens Medical Solutions, Mountain View, CA, USA), equipped with a C6-1 transducer was used. Time intensity curves were created and quantitative indexes of CEUS were analysed. CEUS quantitative analysis produced a decision tree model for the early prediction of the severity of AP using clinical and radiologic scoring systems.
indexes were compared to histopathological features using the Mann-Whitney U test. Diagnostic accuracy was assessed by ROC-AUC analysis, sensitivity and specificity were assessed for each quantitative index.

Results: After injection of ultrasound contrast agents, most pNET lesions displayed focal hyperenhancement (85%) in the arterial phase. During the late phase, most pNET lesions were hyper- (80%) or iso-enhancing (20%). Liver metastases were detected in 8 patients during the late phase scan of the whole liver. Among all CEUS quantitative indexes, area under curve (AUC) was significantly higher in G2 and G3 pNETs tumours with ROC-AUC 0.723, sensitivity 80.7% (95% CI: 61.3-90.5) and specificity 64.1% (95% CI: 40.9-81.7).

Conclusion: Preoperative CEUS with perfusion analysis might be helpful in predicting tumour grade and liver metastases of pNETs. AUC might be the potential accurate parameter for identification of pNETs with malignant behaviour.

B-0453 09:10 Diagnostic performance of computerised 3D CT texture analysis of pancreas for the assessment of patients with diabetes S. Jang, J. Kim, S.-Y. Choi, S. Park, J.Han, Seoul/KR; Gyeonggi-do/KR (junemiru@gmail.com)

Purpose: To evaluate the diagnostic performance of computerised 3D CT texture analysis of the pancreas for assessing diabetes.

Methods and Materials: Among 2,493 patients with diabetes, 39 patients with type 2 diabetes (T2D) and 12 patients with type 1 diabetes (T1D) who underwent CT using two-detector CT scanners were enrolled in this study. We compared these patients with age, body mass index (BMI), and CT scanner-matched normal subjects. Computerised texture analysis for the entire pancreas was performed by extracting 17 variable features. A multivariate logistic regression analysis was performed to identify the predictive factors for diabetes and its subtypes. A receiver operator characteristic (ROC) curve was constructed to determine the optimal cut-off values for significant variables.

Results: In diabetes, the mean attenuation, standard deviation, variance, entropy, homogeneity, surface area, sphericity, discrete compactness, grey-level co-occurrence matrix (GLCM) contrast, and GLCM entropy showed significant differences (P < .05). Multivariate analysis revealed that a higher variance (adjusted OR, 1.002), sphericity (adjusted OR, 1.649×10^4), GLCM entropy (adjusted OR, 1.057×10^6), and lower GLCM contrast (adjusted OR, 0.997) were statistically significant differentiators of diabetes (P < .05). The mean AUCs for each feature were 0.654, 0.689, 0.620, and 0.613, respectively (P < .05). In the subgroup analysis, a larger surface area (adjusted OR, 1.000; P = .026) was a significant predictor for T2D.

Conclusion: Computerised 3D CT texture analysis of the pancreas could be helpful for predicting diabetes. A higher variance, sphericity, GLCM entropy, and a lower GLCM contrast were the significant predictors of diabetes.

B-0455 09:18 DWI and dynamic MRI in the study of intraductal papillary mucinous neoplasms (IPMNs): pathological comparison with tumour grade correlation G. Giannotti, G. Tedesco, A. Beleù, G. Rizzo, M. Cardobi, R. De Robertis Lombardi, M. D’Onofrio, Verona/IT (gabriele20059@gmail.com)

Purpose: Evaluation of mural nodules (MNs) and septa of IPMNs through diffusion-weighted imaging (DWI) and contrast-enhanced magnetic resonance (CE-MR) for the characterization of tumour grade.

Methods and Materials: 96 patients with pancreatic IPMNs were included in the study. All patients had histological diagnosis after surgical resection (between 2012 and 2017) and a pre-operative MR exam. Histological grade of dysplasia for each lesion was available in all cases. There were 37 mild, 10 moderate, 24 high-grade dysplastic lesions and 25 ductal adenocarcinomas. MRI exams were retrospectively and separately reviewed by two radiologists, blinded to surgical and pathological results. A third experienced radiologist played the role of judge in case of doubtful findings or conflicting analyses. The enhancement after i.v. injection of Gd and DWI signal intensity of mural nodules and cystic septa of IPMNs were judged.

Results: The degree of dysplasia was divided into two groups: mild-moderate and high-ductal adenocarcinoma. The Pearson’s chi-squared test was used to verify the statistical correlation between imaging findings and IPMN histology. There was a statistically significant difference (p<0.05) between mural nodule enhancement and degree of dysplasia and DWI signal intensity of mural nodules and degree of dysplasia. Instead, there was no statistical significant difference (p>0.05) between septal enhancement and degree of dysplasia and DWI signal intensity of septa and degree of dysplasia.

Conclusion: Enhancement and DWI signal intensity of MNs can be used as parameters to predict the degree of dysplasia of IPMNs.

B-0456 09:26 Solid pseudopapillary tumour of the pancreas: correlation of MR imaging appearance with biological behaviour W. Mingliang, M. Zeng, Shanghai/CN (wang.mingliang@zs-hospital.sh.cn)

Purpose: To describe MR imaging features of pancreatic solid pseudopapillary tumours (SPTs) and to identify MR imaging features in predicting biological behaviour.

Methods and Materials: Clinical, pathological and MR imaging data of 47 patients (8 men and 39 women; age range 13-58 years) with pathologically proven SPTs were retrospectively reviewed. Image analysis included tumour location, diameter, shape, margin, signal intensity on precontrast images, enhancement pattern, pancreatic duct dilatation, secondary pancreas atrophy and extrapancreatic spread. According to pathological biological behaviour of the tumour, all cases were divided into two groups (invasiveness group and non-invasiveness group). For data analysis, the comparison between subgroups was performed with Student’s t test. Categorical variables were tested using χ² or Fisher’s exact test.

Results: 47 lesions were found by surgical specimen analysis in all patients. All lesions were correctly identified and located with MRI. The tumours originated from pancreatic head and neck (n=17), body and tail (n=28), and extrapancreatic area (n=2). 22 lesions were found in invasiveness group and 25 lesions in non-invasiveness group. The median maximum diameter of SPTs in invasiveness group was 39.3±8.9 cm, and 4.8±2.2 cm in non-invasiveness group. Significant differences in age, tumour shape and tumour margin were found between two groups (P<0.05). There were no significant difference found in gender, tumour location, cystic changes, intratumoral haemorrhage, enhancement pattern, pancreatic duct dilatation, secondary pancreas atrophy and extrapancreatic spread.

Conclusion: MR imaging features such as tumour shape and tumour margin may preoperatively suggest the biological behaviour of SPTs, assisting decisions about treatment.

B-0457 09:34 Solid pseudopapillary neoplasms of the pancreas: clinicopathological and radiological features according to size -20 year experience from a high-volume centre R. De Robertis Lombardi, G. Grechzi, R. Capitani, A. Beleù, G. Rizzo, M.C. Ambrosotto, M. D’Onofrio, Verona/IT (annamaria.grechzi88@gmail.com)

Purpose: To analyse and correlate clinicopathological and radiological features of resected solid pseudopapillary neoplasms of the pancreas according to their size.

Methods and Materials: Clinicopathological and radiological features of resected solid pseudopapillary neoplasms (SPN) of the pancreas over a 20-year period were retrospectively analysed. For the purpose of statistical analysis, tumours were divided into three groups according to their size (≤30 mm (54.7%), 30-50 mm (35.9%), >50 mm (15.3%)). Clinicopathological and radiological features were compared among groups using Kruskal-Wallis and Fisher’s exact tests.

Results: Between January 1997 and December 2017, the study population consisted of 106 patients, with a median age at diagnosis of 31 years (range 7-78 years). 85% of patients (8 men and 39 women) were under 50 years old. The rate of incorrect preoperative diagnosis was higher in patients with ≤30 mm tumours (p=0.029). No other significant differences were found between the clinicopathological features of the three groups of patients (all p>0.05). Most tumours presented a mixed solid and cystic appearance (54.7%), with well-defined margins (87.7%). Tumours ≤30 mm were significantly more frequently entirely solid (53.8%) compared with larger tumours (p=0.026). The rate of incorrect preoperative diagnosis was higher in tumours ≤30 mm compared with larger tumours, albeit without significant differences between groups (p=0.561).

Conclusion: Malignancy in solid pseudopapillary neoplasms is not correlated with tumour size; tumours ≤30 mm may present atypical imaging features, which may overlap with those of other solid tumours of the pancreas.

B-0458 09:42 Risk assessment for pancreatic fistula after pancreaticoduodenectomy with preoperative computed tomography R. Menghini, G. Zamboni, A. Cybulski, R. Valletta, G. Marchegiani, M. Mansuetto; Verona/IT (rossella.menghini@gmail.com)

Purpose: To evaluate the predictive value of preoperative CT features for the risk of postoperative pancreatic fistula.

Methods and Materials: We included 58 patients who underwent preoperative MRcT and pancreatectoduodenectomy in our institution. The Patients were divided in 2 groups in according to clinical data: 29 patients with postoperative pancreatic fistula (POPF) (group A), and 29 patients without POPF (group B). One reader reviewed the CTs and measured at the planned resection plane the main pancreatic duct (MPD) diameter, the density of the parenchyma in the...
different enhancement phases and the parenchymal thickness. The difference in attenuation between the venous and arterial phase was calculated as a surrogate of parenchymal fibrosis. Body composition was analysed by calculating visceral adipose tissue area (VAT), subcutaneous adipose tissue area (SAT), and skeletal muscle area at the L2-level using ImageJ software. Retropenial fat thickness and psosas density were also measured. Fisher’s exact test was used for categorical variables and Student’s t-test for continuous variables.

Results: MPD diameter was 3.2±0.3 mm in group A and 6.9±3.3 mm in group B (p<0.0001). The mean attenuation difference between venous and arterial phase was -15.86 HU in group B and 0.89 HU in group A (p=0.0034). No significant difference was observed between groups for all the other parameters.

Conclusion: Fibrosis, expressed by increasing enhancement of the normal parenchyma at the planned resection plane, and MPD diameter may predict the occurrence of pancreatic fistula after pancreaticoduodenectomy.

B-0454 09:50
Comparison of reduced field-of-view (rFOV) and full FOV (fFOV) diffusion-weighted imaging (DWI) in the assessment of insuloma: image quality and WHO grading
M. He, H. Xue, Z. Jin; Beijing/CN (377174431@qq.com)

Purpose: To prospectively compare the imaging quality (IQ) of reduced field-of-view (rFOV) and full FOV (fFOV) DWI in detecting the insuloma and correlate the ADC value with WHO classification.

Methods and Materials: 48 patients suspected insulomas underwent pancreas MRI with two DWI sequences. Two radiologists independently assessed the IQ with 4-point scale. The SNR and CNR were evaluated. The Wilcoxon signed rank test was used to compare IQ scores, CNR and SNR. The Bland-Altman method was used to evaluate the inter-observer agreement was evaluated by linearly weighted kappa coefficients for IQ and ICC for ADC values.

Results: Thirty-six patients with 36 tumours and 21 histological results (G1: n=11, G2: n=10) were enrolled. The IQ score (3.6±0.8 vs. 3.3±0.5, p<0.05), SNR (22.5±8.6 vs. 10.3±3.3, p<0.001) and CNR (3.4±2.6 vs. 2.7±0.8, p<0.001) were higher in rFOV DWI than in fFOV DWI (all p<0.05). There is no significant difference in the ADC values with rFOV and fFOV DWI of the tumour (1.04±0.181 vs. 1.00±0.171±10^3 mm^2/s) and the parenchyma (1.320±0.205 vs. 1.371±0.223±10^3 mm^2/s). There is no correlation between the WHO grading and the ADC values of rFOV (r=-0.024) or fFOV (r=-0.142). Inter-observer agreement was good to excellent for IQ (rFOV:0.733-0.882, fFOV: 0.611-0.889) and ADC values (rFOV:0.757-0.915, fFOV: 0.709-0.790).

Conclusion: Compared with fFOV DWI, rFOV DWI provides significant better IQ in detecting insuloma. No correlation between ADC value and WHO grading was found in this study.

08:30 - 10:00 Sky High Stage
Breast

MY 5
Breast
Moderators: E.M. Fellenberg; Munich/DE
R.M. Trimboli; Milan/IT

B-0459 08:30
How preoperative sentinel lymph node contrast-enhanced ultrasound helps intraoperative sentinel lymph node biopsy in breast cancer: initial experience
M. Lu; Chengdu/CN (grace@163.com)

Purpose: To evaluate the value of sentinel lymph node contrast-enhanced ultrasound (SLN-CEUS) and surface tracing for the biopsy of intraoperative sentinel lymph nodes (SLN).

Methods and Materials: Between June 2015 and December 2017, 473 patients with early invasive breast cancer were recruited. Patients received an intradural injection of microbubble contrast agent around areola the day before surgery. The locations and sizes of lymphatic channels (LCs) and SLNs were marked on the body surface using gentian violet. Then blue dye was performed half an hour before the operation. We compared the pathway of LCs and the location of SLNs obtained from SLN-CEUS and blue dye during an operation.

Results: Among the 473 patients, the mean number of LCs and SLNs detected by SLN-CEUS was 1.42 and 1.72, respectively, and the coincidence rate was 98.1% compared to blue dye during operation. The medium distance of SLN to skin measured by preoperative CEUS and blue dye was 1.95±0.69 cm and 2.03±0.87 cm, P<0.035. There were three enhancement patterns of SLN, including homogeneous enhancement, inhomogeneous enhancement, and no enhancement, with the sensitivity, specificity, negative predictive value, and positive predictive value of SLN-CEUS for the diagnosis of SLN being 96.75%, 91.80%, 88.17% and 97.82%, respectively.

Conclusion: SLN-CEUS with skin marking can identify the pathway of LCs and the location of SLN, measure the distance of SLN to skin, and determine if SLN is metastatic. SLN-CEUS can be used as an effective complement of the blue dye method.

B-0460 08:34
Contrast-enhanced spectral mammography: is it useful in predicting invasiveness in suspicious breast micro-calculations?
M. Gomaa, A.F.I. Moustafa; Cairo/EG (mohammedgoma555@yahoo.com)

Purpose: To assess the ability of contrast-enhanced spectral mammography for the prediction of invasiveness of suspicious malignant micro-calculations.

Methods and Materials: 150 cases were enrolled for analysis including suspicious malignant micro-calculations on mammogram with no related mass and with pathological proof. The micro-calculations morphology and associated enhancement were reviewed according to BI-RADS lexicon with results of pathology reviewed and classified into benign, atypical and malignant with evaluation of invasion of micro-calculations.

Results: Of the 250 with microcalculations 130/250 cases with associated mass were excluded. 30/120 cases were benign and 90/120 cases malignant. 17/90 cases were diagnosed as invasive carcinomas and 63/90 DCIS. Out of the 63 patients with DCIS 15/63 cases were low grade, 7/63 cases intermediate grade and 51 cases were high grade (28 with micro-invasion). Pathological enhancement was associated with all 17 cases with invasive cancers, 50/51 cases of the high-grade DCIS and 4/7 of the intermediate invasive cases. No pathological enhancement was elicited with benign micro-calculations. 88.1% of low-grade DCIS cases and 3/7 of the intermediate DCIS.

Conclusion: CSEM has a pivotal role in assessment of suspicious micro-calculations as a predictor of associated non-mass enhancement which are an indicator of invasive malignancy or high-grade DCIS. Lack of enhancement is favourable to diagnose non-malignant lesion or non-invasive DCIS.

B-0461 08:38
Residual fibroglandular tissue (RGT) following unilateral and bilateral prophylactic mastectomies in BRCA 1/2 germline-mutation carriers
B. Krup, O. Grinstein, W. Malter, B. Hanstein, F. Siedek, R. Schmutzler.
D. Maintz, K. Rhiem, M. Hellmich; Cologne/DE (Barbara.krup@uk-koeln.de)

Purpose: The oncologic risk resulting from residual fibroglandular tissue (RGT) has not been sufficiently investigated in women carrying pathogen BRCA 1/2-germline mutations. Therefore, the presence of RGT was retrospectively evaluated in a unicentre approach.

Methods and Materials: All women with PM between 2006 and 2016 and at least one postoperative breast MRI were extracted from the centre’s register. 2 radiologists evaluated the index breast MIIs independently using a structured questionnaire. Different assessments were assessed in consensus. The volume of RGT was quantified electronically.

Results: 169 women (338 breasts) were eligible. 67 patients had bilateral PM (41.2%) and 102 had unilateral PM and contralateral curative mastectomy (58.8%). RGT was found in 128 mastectomies (39.5%). 68 of the 128 breasts with RGT (53.1%) were related to bilateral PM, 37 (28.9%) to unilateral PM and 23 (18.0%) to curative mastectomy (p<0.0001). RGT was predominantly unilocular and retromamillary. The RGT volume was 6.7±11.9 ml in bilateral, 2.5±1.6 ml in unilateral PM and 3.2±1.9 ml in curative mastectomies. There was a positive correlation between preoperative breast volume and RGT in 75 cases with preoperative MRI (p<0.001) and a tendency towards a higher number of RGT in surgery units with <20 PM compared to those with >40 PM (p=0.033). The thickness of residual subcutaneous fat tissue correlated with RGT in non-retroareolar areas. 2 patients developed breast cancer 2 and 5 years after PM.

Conclusion: The radicalness of mastectomy may be influenced by the surgeon’s and the patient’s expectations regarding the aesthetic appearance of the breasts after PM.
Purpose: To investigate the influence of patient and lesion characteristics on the diagnostic performance of contrast-enhanced ultrasound (CEUS) model in breast lesions.

Methods and Materials: We conducted a multicenter study with eight participating medical centers in China, which compared 1,023 breast lesions that were categorized as breast imaging reporting and data system (BI-RADS) 4 or 5, to evaluate a newly established CEUS-based diagnostic model, and to compare its results with patients' pathological outcomes. Univariate and multivariate logistic regression analyses were conducted to determine the influence of clinicopathological characteristics on the performance of the CEUS model.

Results: Overall diagnostic results for CEUS model in diagnosis of breast lesions were sensitivity: 89.4%, specificity: 65.3%, positive predictive power: 88.9%. Logistic regression analysis showed that patients' age (odds ratio [OR]: 0.673; 95% CI: 0.541–0.840, p = 0.003), lesion maximum diameter (LMD; OR: 1.038; 95% CI: 1.002–1.076, p = 0.043), and distance from the lesion's deep edge to the pectoralis muscle (DtPM; OR: 1.263; 95% CI: 1.145–1.397, p < 0.001) were independent influencing factors. The model's diagnostic accuracy was greater for patients older than 35 years than younger patients (p = 0.005), for LMD > 20 mm than LMD < 10 mm (OR: 1.61), and for DtPM < 3.05 mm than DtPM > 3.05 mm (OR: 1.81).

Conclusion: The application of CEUS model for breast lesions is promising. However, its diagnostic performance is influenced by patients' age; LMD and DtPM. Consideration of influencing factors is required to optimize clinical use of the CEUS model.
Scientific Sessions

B-0467 09:02
Ultrasound-guided vacuum-assisted resection: could it be enough for the diagnosis and treatment of intraductal papilloma?
Z. Wang; Beijing/CN (wztg@ sina.com)

Purpose: To evaluate whether ultrasound-guided vacuum-assisted excisional biopsy (VAB) could be enough for the diagnosis and treatment of intraductal papilloma, and to evaluate the lesion characteristics and histologic features affecting the complete resection rate.

Methods and Materials: Between March 2008 and October 2016, 2816 patients underwent US-guided VAB. 101 (3.6%) were diagnosed with intraductal papilloma pathologically. The accurate rate and the complete resection rate of intraductal papilloma were evaluated by surgical biopsy or follow-up US. The follow-up period ranged between 14 months and 72 months; meanwhile, lesion characteristics were analysed.

Results: 83 (82.2%) were benign papilloma and the recurrence was observed in 8 cases. 2 were intraductal papilloma accompanied by invasive carcinoma. 16 (15.8%) were with signs of atypical hyperplasia by VAB. In them, one intraductal papilloma accompanied by severe atypical hyperplasia underwent surgery, and was diagnosed as invasive carcinoma. 4 cases accompanied by atypical hyperplasia demonstrated atypical intraductal hyperplasia by surgery. 3 cases demonstrated no atypical lesions by surgical pathology. The accurate rate of VAB was 99.0% (101/101). The complete excision rate of intraductal papillomas by VAB was 87.1% (88/101). Intraductal papilloma with largest diameter < 1 cm, with clear margin, without branch involvement or calcification had a significantly higher complete excision rate. Conclusion: VAB is an effective method for the diagnosis of intraductal papilloma. In benign characteristics demonstrated pathologically, surgery may be avoided but regular follow-up is recommended. If histopathological examination confirms a papilloma with moderate to severe hyperplasia, it was strongly recommended for surgical excision.

B-0468 09:06
Diffusion kurtosis imaging (DKI) in breast cancer: diagnostic accuracy of DKI-derived values in characterization of breast lesions and correlation with prognostic factors
H. Ahmad Ainuddin; S.K. Kirat Singh; K. Rahmat; M. Ramli Hamid; F. Fadzli; H. Ahmad Ainuddin; Kuala Lumpur/MY

Purpose: To evaluate the diagnostic performance of diffusion kurtosis imaging (DKI) in the characterization of breast lesions and study the correlation with cancer histological grade.

Methods and Materials: A total of 28 women with histologically proven breast lesions were evaluated in this study from April 2016 to September 2016. All patients were operated under General Anaesthesia for breast lesions excision. The clinical and histological data were collected during the follow-up period. Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) images were obtained with a b-value of 2000. The ADC and mean diffusivity (MD) values were significantly lower for malignant and 28 benign lesions had undergone MRI with DKI/DWI between April 2008 and September 2015. The clinicopathological and imaging findings were compared between subgroups divided by the presence of invasion and maximum standardized uptake value (SUVmax), respectively. The correlation of tumour characteristics with underestimation of invasive component was performed. The receiver operating characteristics (ROC) analyses were performed for each imaging modality to predict the invasion. Results: Final pathology was confirmed as pure DCIS in 120 and DCIS with invasion in 47 cases. The age, SUVmax, semiquantitative and visual analyses at 18F-FDG-PET/CT and pathologic tumour size were significantly different between DCIS with invasion group and pure DCIS group. High SUVmax was significantly associated with age, the primary tumour size on MRI, visual detection of primary tumour and axillary lymph node on 18F-FDG-PET/CT, the presence of invasion and pathologic tumour size. The underestimation of invasive cancer was significantly correlated with age (p=0.0138), semiquantitative and visual analyses on 18F-FDG-PET/CT (p=0.0001 and p=0.0028) and tumour size (p=0.0026). The area under the curve (AUC) on ROC analysis was 0.541 for mammography, 0.550 for US, 0.500 for MRI, 0.670 for semiquantitative analysis and 0.620 for visual analysis on 18F-FDG- PET/CT.

Conclusion: The 18F-FDG-PET/CT can be a useful imaging tool to predict the upgrade of DCIS to invasive cancer.

B-0470 09:14
Reliability of contrast-enhanced spectral mammography (CESM) in the pre-surgical evaluation of breast cancer: CESM vs histomorphological maximum diameter
P. Tonelli; C. Boeri; D. Cirone; S. Bianchi; V. Miele; J. Nori Cucchiari; Florence/IT (paolina.tonelli@gmail.com)

Purpose: The first aim is to assess the reliability of CESM in pre-surgical assessment of breast cancer. The second aim is to compare CESM with histological maximum diameter of breast cancer. The third aim is to analyse what factors influence the gap, between CESM and histological measurements.

Methods and Materials: We retrospectively evaluated 167 women with histologic proven (in situ or invasive) BC who underwent pre-operative CESM from from 1.1.2016 to 31.1.2017. Pearson correlation coefficient was calculated between CESM size and histological size. Further analyses to evaluate factors influencing the discrepancy between the CESM measurement and histological measurement were conducted.

Results: CESM measurement showed a strong, consistent correlation with the histological findings (correlation coefficient = 0.852). A slight CESM size overestimation was detected. A gap of 10 mm between CESM diameter and histological diameter was assumed as a critical cut-off. A prevalence of invasive ductal carcinoma associated with an in situ ductal carcinoma was found in cases with difference between CESM size and histological size out of the cut-off. This type of cancer has a mass±non-mass enhancement extension affects the greater discrepancy between the two measurements.

Conclusion: These results encourage the use of CESM in pre-surgical staging of BC. The ability to measure non-mass enhancement extension affects the greater discrepancy between the two measurements.

B-0471 09:18
Impact of 18F-FDG-PET/CT using time-of-flight in evaluating axillary lymph node metastases of breast cancer
M. Mori; T. Fujoka; J. Tsuchiya; K. Kubota; U. Tateishi; Bunkyo-City Tokyo/JP (m.mori.118@yahoo.co.jp)

Purpose: To evaluate the performance of preoperative N-staging assessment in breast cancer by 18F-FDG-PET/CT using three-dimensional time-of-flight (3D-TOF).

Methods and Materials: Sixty-three women with breast cancer (mean age 60 years; range 30-84 years) underwent PET/CT scan with 3D-TOF reconstruction system (Celesteion, Canon Medical Systems). For axillary lymph nodes, visual assessment, short axis diameter, and the maximum standardized uptake value (SUVmax) were compared with pathological diagnosis.

Results: There were 61 patients with invasive breast carcinoma (mean invasive diameter 18.9 mm; range 2-90 mm) and 2 patients with non-invasive carcinoma. Axillary lymph node metastases were histologically confirmed in 10 of 63 patients (16%). By visual assessment, there were 8 true positives, 10 false positives, 43 true negatives, and 2 false negatives, respectively. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 80%, 77%, 40%, 95%, and 78%, respectively. Histological lymph node metastases were significantly associated with short axis diameter of the lymph node (7.2 vs. 6.1 mm, p=0.03) and SUVmax of the lymph node (1.60 vs. 0.64, p=0.02). The area under ROC curve of SUVmax was larger than that of the short axis diameter, but there was no significant difference (0.885 vs. 0.742, p=0.0829).

Conclusion: Both visual assessment and SUVmax measurement showed good results in axillary lymph node evaluation. 18F-FDG-PET/CT using 3D-TOF achieved high accuracy in N-staging of breast cancer.

B-0469 09:10
Can 18 F-FDG PET/CT predict invasive components in DCIS of breast diagnosed by needle biopsy? Comparison with variable imaging modalities including mammography, USG and MRI
N. Ong1; Y. Kim1; N. Jung1; B. Kang2; J. Lee3; BucheonKR; DSeoulKR
(jooyje687@gmail.com)

Purpose: The purpose of this study was to determine whether the 18Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) predicts the underestimation of invasive cancer in patients with biopsy-proven DCIS.

Methods and Materials: This study retrospectively reviewed 167 cases in 162 patients who underwent ultrasound-guided 18F-FDG PET/CT between April 2008 and September 2015. The clinicopathological and imaging findings were compared between subgroups divided by the presence of invasion and maximum standardized uptake value (SUVmax), respectively. The correlation of tumour characteristics with underestimation of invasive component was performed. The receiver operating characteristics (ROC) analyses were performed for each imaging modality to predict the invasion. Results: Final pathology was confirmed as pure DCIS in 120 and DCIS with invasion in 47 cases. The age, SUVmax, semiquantitative and visual analyses at 18F-FDG-PET/CT and pathologic tumour size were significantly different between DCIS with invasion group and pure DCIS group. High SUVmax was significantly associated with age, the primary tumour size on MRI, visual detection of primary tumour and axillary lymph node on 18F-FDG-PET/CT, the presence of invasion and pathologic tumour size. The underestimation of invasive cancer was significantly correlated with age (p=0.0138), semiquantitative and visual analyses on 18F-FDG-PET/CT (p=0.0001 and p=0.0028) and tumour size (p=0.0026). The area under the curve (AUC) on ROC analysis was 0.541 for mammography, 0.550 for US, 0.500 for MRI, 0.670 for semiquantitative analysis and 0.620 for visual analysis on 18F-FDG-PET/CT.
Results: NP with/without photothermal therapy; PBS with/without photothermal therapy bearing same tumours were randomized into the following four groups: BMD (SNRpost/SNRpre) at the tumour ring was quantitatively calculated. Mice breast cancer cells for MR imaging. Images were acquired before injection and specific indications, according to the guidelines. Breast tomosynthesis is dopamine-polymerization-induced self-assembly in the presence of BSA, and which provided detailed imaging features for precise differentiation. The group treated with both nanoparticle and irradiation showed complete ablation without recurrence in 20 days, and the tumour-free period up to 60 days, exhibiting excellent therapeutic efficacy in comparison with the other three groups. Conclusion: The BMD NP having excellent MRI contrasting capability and PTT efficacy plus its facile synthesis was a very promising therapeutic agent for MRI-mediated photothermal anti-cancer therapy.

Purpose: To assess imaging surveillance among Belgian breast cancer (BC) centres for primary locoregional breast cancer in non-high-risk women, compared to the international practice guidelines. Methods and Materials: An anonymous email checkout survey was sent to the coordinating radiologists and clinicians of all Belgian BC centres, 01/2017-06/2017. All departments received telephone follow-up. For different treatment subgroups, respondents were asked their preferred imaging modalities, onset, frequency, intermediate frequency alteration and termination of imaging surveillance. Results: Survey was completed by 55/98 (56%) radiologists and clinicians from 37/49 centres (76%). After radiation therapy, 17 (31%) respondents commenced imaging follow-up after a 6-month and 18 (33%) after a 12-month imaging delay. If no adjuvant radiation therapy, 48 (87%) respondents started imaging follow-up 12 months after diagnosis. After sentinel breast-conserving surgery, 55 (100%) and 51 (93%) respondents performed annual radiographic and ultrasound screening, respectively, with 21 (38%) routinely implementing tomosynthesis. Imaging of the reconstructed ipsilateral mastectomy site was performed by 12 (22%) respondents. Annual MRI surveillance was not recommended by 52 (95%) respondents. For BI-RADS density C/D breasts, 15 (27%) respondents performed annual MRI. Intermediate alteration of annual imaging frequency was recommended by 17 (31%), with 13 (7%) respondents recommending consecutive biannual imaging. Imaging was not adjusted according to tumour subtype by 47 (85%) respondents.

Conclusion: Most Belgian BC centres perform routine ultrasound screening, although controversial among international guidelines. Use of MRI is limited to specific indications, according to the guidelines. Breast tomosynthesis is emerging as a routine surveillance tool despite performance remaining unclear.

Purpose: To develop an evaluation tool for classification of suspicious masses in breast MRI. Methods and Materials: 65 patients received breast MRI between 02/2014 and 04/2015, with 83 reported lesions (60 malignant, 23 benign). Inclusion criteria were: suspicious pre- or post-therapeutic staging. Patients with non-mass-enhancements only were excluded. The protocol consisted of our institute’s standard protocol complemented by ultrafast prototype TVD sequences. The apparent diffusion coefficient (ADC) and the peak enhancement of the TVD sequences were used to calculate a generalised linear model (GLM) for malignancy prediction. A second model was calculated using ADC and DCE curve types. Generalisability was ensured by applying leave-one-out cross validations. For easy application of the GLMs, nomograms were created. Results: The GLM based on ultrafast TVD sequences and ADC performed comparably accurate to the model based on conventional DCE and ADC (sensitivity 93.3% vs. 93.3%, specificity 91.3% vs. 87.0%, PPV 98.6% vs. 94.9%, NPV 94.0% vs. 83.3%, no significant differences). Conclusion: This study presents a method to reduce breast MRI examination time while maintaining diagnostic accuracy with ultrafast TVD sequences. The presented GLMs can easily be applied in clinical routine using the supplied nomograms.

Purpose: To retrospectively compare the accuracy of breast cancer detection based on the analysis of microcalcifications between full-field digital mammograms (FFDM) and synthetic 2D mammograms using a deep convolution neural network: BMD NP had a diameter of 60 nm and a high relaxation rate of 38.14 mM⁻¹ s⁻¹, which was incredibly 9 times higher than those of clinically used contrast agents (Gd-DTPA). In vivo, an obvious SNRpost/SNRpre at the tumour margin showed 1.54 times that of contralateral tissue at 30 min post-injection, which provided detailed imaging features for precise diagnosis differentiation. Methods and Materials: A polymer nanoparticle (BMD NP) was obtained via KMnO₄, which was incredibly 9 times higher than those of clinically used contrast agents (Gd-DTPA). In vivo, an obvious SNRpost/SNRpre at the tumour margin showed 1.54 times that of contralateral tissue at 30 min post-injection, which provided detailed imaging features for precise diagnosis differentiation. BMD NP with/without photothermal therapy; PBS with/without photothermal therapy as control groups. The tumour sizes were measured and calculated every other day. Results: BMD NP had a diameter of 60 nm and a high r₁ relaxivity of 38.14 mM⁻¹ s⁻¹, which was incredibly 9 times higher than those of clinically used contrast agent (Gd-DTPA). In vivo, an obvious SNRpost/SNRpre at the tumour margin showed 1.54 times that of contralateral tissue at 30 min post-injection, which provided detailed imaging features for precise diagnosis differentiation. The group treated with both nanoparticle and irradiation showed complete ablation without recurrence in 20 days, and the tumour-free period up to 60 days, exhibiting excellent therapeutic efficacy in comparison with the other three groups. Conclusion: The BMD NP having excellent MRI contrasting capability and PTT efficacy plus its facile synthesis was a very promising therapeutic agent for MRI-mediated photothermal anti-cancer therapy.
Conclusion: With the exception of few local courses with an included final test, no mammographic screening test has been available for Italian radiologists to challenge themselves so far. The SIRM mammographic online test was well accepted by radiologists and the initial results showed a balanced rate of tests passed.

B-0478 09:46
Imaging characterisation of breast desmoid tumours
M. Le Boulch1, A. Lusque1, C.S. Baileygur1, C. Drat2a, P. Cheret2a, M. Kind2a, C. Vaysse2, S. Le Guélec2, B. Boulet2; Toulouse/FR, Villejuif/FR, Paris/FR, SaintCloud/FR, Bordeaux/FR (morwenn.le.boulch@gmail.com)

Purpose: Breast desmoid tumours (BDT) are very rare myofibroblastic tumours, locally aggressive without metastatic potential, with high rate of recurrence. The diagnosis, based on core needle biopsy (CNB), could be very difficult, especially for sporadic tumours without CTNNB1 mutation. Their radiologic patterns have not been studied much and are closed from breast cancer radiologic patterns even though treatments differed. For BDT, watch and wait is the front line approach.

Methods and Materials: 34 patients with 36 pathologically confirmed BDT were included in this national French multicentric retrospective study. Radiological examinations were reviewed by an expert.

Results: Median patient age was 46 years (median range: 12-82), mostly women (91.2%), and 25.7% had prior history of breast surgery or biopsy. Mammography visualised the tumour in 14/14, tomosynthesis 1/1, ultrasound in 26/27, magnetic resonance imaging (MRI) in 26/26 BDT in whom it has been performed. In mammography, BDT were spiculated masses or architectural distortions. Ultrasonography, BDT were mostly hypoechogenic with a tendency to posterior acoustic enhancement in 68% of patients. MRI, BDT were masses, spiculated (92.3%), with spicules touching skin and/or major pectoralis muscle (87.5%), with a fascial tail sign (26.9%). They had early enhancement, persistent on later slides. Sporadic BDT without CTNNB1 mutation had demographic, mammographic and MRI-specific patterns.

Conclusion: It is the biggest BDT study ever published. Spiculated breast mass could be BDT, moreover, if some spicules touch skin and/or major pectoralis muscle, or if it owns a fascia tail sign. Persistent enhancement on MRI later slides permit to distinguish BDT from breast cancer.

B-0479 10:30
Application of low-radiation and low-contrast dose protocol combined with high-strength ASIR-V algorithm in 'one-stop' coronary and carotid and cerebrovascular CT angiography
W. Li1, Y. Zhigang1, P. Han1, Z. Li1; Chengdu/CN (452766554@QQ.com)

Purpose: To investigate the feasibility of using computer-aided software. Multivariate analysis compared renal and contrast media volumes, and effective radiation dose. For each patient, the arteriovenous contrast ratio (AVCR), corticomedullary contrast ratio (CMCR) and contrast-noise-ratio (CNR) were calculated and compared to each patient's test. Regression analyses were performed between each of the CMV groups: 1: contrast and renal artery and vein (r=0.946). Both VGC and ROC demonstrated increased grading, and image quality on a 5-point scale (stenot and plaque visualization) were assessed. Noise texture deviation (NTD) and noise power spectrum (NPS) were assessed using 5 images for all reconstructions.

Results: The mean overall image quality (stent-plaque score) for 100kV, 100 kV+HiRes, 120 kV, 120 kV+HiRes, and dual-energy scans were 5.50±0.7, 6.75±0.4, 6.25±1.1, 7.0±0.0 and 4.2±1.1, respectively. The mean underestimation of stent diameter with various filters was 27.6±0.1% for standard, 23.9±0.1% for detail, 17.5±0.0% for HD-standard, and 16.5±0.0% for HD detail. There was no difference in NTD between reconstructions (p=0.22). The HD detail filter had the highest NPS peak frequency, indicating finer image texture.

Conclusion: This phantom study indicated that high-resolution CT with HD-detail resulted in the best image quality for assessment of in-stent stenosis.

B-0480 10:46
Patient habitus and renal volume have no effect on a reduced patient-specific contrast media administration during renal CTA: impact on contrast media, radiation dose and image quality
C. Saade1, Beirut/LB (charbel.saade@aub.edu.lb)

Purpose: To investigate the effect of patient kidney volume, patient habitus and contrast media volume during renal CTA (rCTA).

Methods and Materials: IRB approval for this retrospective study was obtained. RCTA was performed on 101 patients with suspected renal disease. Patients were assigned to a patient-specific contrast formula protocol that is based on patient cardiovascular dynamics. Mean renal volume was quantified using computer-aided software. Multivariate analysis compared renal and contrast media volumes, and effective radiation dose. For each patient, the arteriovenous contrast ratio (AVCR), corticomedullary contrast ratio (CMCR) and contrast-noise-ratio (CNR) were calculated and compared to each patient's test. Regression analyses were performed between each of the CMV groups: 1: <37mL; 2: ≥37<50mL and 3: ≥50mL. Receiver operating (ROC) and visual grading characteristics (VGC) measured the confidence intervals and image quality, respectively.

Results: There were no significant difference in patient demographics and radiation dose between each CMV group (p=0.05). Increased mean opacification of the renal arterial vasculature (2223±44±18), parenchyma: anterior cortex (2101.5±33.62) and medulla (245.60±19.30), and posterior cortex (286.67±33.98) and medulla (247.59±21.01) were above these thresholds (p<0.05) for each between kidney with a strong correlation of opacification difference between the renal cortex and medulla in each kidney (r=0.993) and renal artery and vein (r=0.946). Both VGC and ROC demonstrated increased confidence in image quality (p<0.03) and pathology (p<0.0001) detection, respectively.

Conclusion: Patient habitus and kidney volume have no statistical significance in CMV reduction when employing a patient-specific contrast media formula during rCTA.

B-0482 10:54
The study of usefulness of blending injection method in dynamic liver CT scanning with reduced contrast medium
J. Kawashima1, W. Hashizuka1, H. Nakano1, Y. Shimada1, Tokyo/JP (junji.kawashima@med.toho-u.ac.jp)

Purpose: Currently, there are concerns about contrast CT examinations leading to CIN in patients with CKD (chronic kidney disease). Patient with CKD are required to reduce the injection amount. However, the injection time is fixed in dynamic CT scan. Therefore, reducing the amount of contrast medium causes a reduction in the injection pressure, which disrupts the bolus injection. In this study, we investigated effect of blending injection guaranteeing normal injection pressure.
B-0483 11:02

Post-mortem computed tomography angiography (PMCTA): optimising a targeted PMCTA protocol
C. Robinson, A. Deshpande, G. Rutty, B. Morgan; Leicester/UK (claire.robinson@uhl-tr.nhs.uk)

Purpose: Post-mortem computed tomography angiography (PMCTA) is essential to diagnose coronary artery disease as a cause of death. A technique was developed using negative contrast (air) and positive contrast (PC) (clinical contrast) to delineate soft plaques and calcified stenosis. The behaviour of the contrasts, together with the vitreous that may influence the efficacy of PMCTA, has been explored and an optimized protocol has been developed.

Methods and Materials: 200 cases were selected from our database of PMCTA cases that had successful PMCTA. Each scan was evaluated to determine the order in which the contrast was administered, the degree of vessel filling (classified as 0%, 1-25%, 25-50%, 50-75% and 75-100%) and factors that may have affected the PMCTA.

Results: 8 cases with pathologically occluded vessels were excluded. 192 cases were included in the analysis (111 male, mean age 71.1 years (range 19-99)). 102 had the negative contrast first protocol. Using PC first achieves filling of the left anterior descending and circumflex arteries in all cases and only 2% of right coronary arteries failed to fill; a greater percentage of cases achieve more than 50% filling and more clots are removed from the aorta. Multiple injections of contrast achieve better filling of all vessels and increases confidence in diagnosing pathologies. Rolling the deceased into the right decubitus position prior to the third run removes all but 0.5% of persistent clots.

Conclusion: A targeted PMCTA protocol of PC first with rolling prior to the third injection achieves the optimal imaging and highest diagnostic potential of PMCTA.

B-0484 11:10

Effect of the scan mode and focal spot size on airway measurement for ultra-high-resolution computed tomography
R. Mikayama, T. Shirassaka, H. Yabuchi, Y. Sakai, T. Kojima, M. Kondo, H. Yoshikawa, T. Kato; Fukuoka/JP (mt_mika_jan_5@yahoo.co.jp)

Purpose: The large inaccuracies were confirmed for small airway measurements in conventional computed tomography (CT). Ultra-high-resolution CT (UHRCT) might improve airway measurements accuracy using precise scan modes with small focal spot sizes. The purpose of our study was to assess the effects of the scan mode and focal spot size on airway measurements for UHRCT.

Methods and Materials: The COPD Gene phantom II containing a plastic tube simulating airway inner diameter of 3 mm and wall thickness of 0.6 mm with rotation at 30 degrees was scanned with super-high-resolution (SHR, beam collimation of 0.25 mm × 160 rows) or high-resolution (HR, beam collimation of 0.5 mm × 80 rows) modes for UHRCT. Each examination was performed with small (0.4 × 0.5 mm) and large (0.6 × 1.3 mm) focal spots five times. The area percentage (WA%) was calculated as the percentage of total airway area occupied by airway wall. Statistical analysis was performed to compare the measurement errors for WA% among each scan mode and focal spot size using Tukey-Kramer method.

Results: The measurement errors of WA% at SHR mode were 9.8 ± 1.5% with small focal spot and 18.8 ± 0.4% with large focal spot. The measurement errors of WA% at HR mode were 13.3 ± 0.6% with small focal spot and 21.4 ± 0.8% with large focal spot. There were significant differences in all pairings of the scan mode and focal spot size.

Conclusion: SHR mode with small focal spot could improve airway measurement accuracy at UHRCT.

B-0485 11:18

Organ-based tube current modulation in chest CT: effect on radiation dose and noise
B.R. Mussmann, S. Depp, P. Marshall Skov, S. Foley, H. Precht; Odense/DK, Kolding/DK, Dublin/IE, Middelfart/DK (peter.skov.madsen@gmail.com)

Purpose: Organ-based tube current modulation (OBTCM) is designed for anterior dose reduction in CT. This study assessed the dose reduction capability of using organ dose modulation from two vendors at a range of kVp settings in chest CT. The secondary purpose was to assess noise between dose-modulation systems.

Methods and Materials: A Lungman phantom with thermo-luminescent dosimeters circumferentially attached around the phantom surface was scanned with and without OBTCM at 80-135/140 kVp using a Toshiba Aquilion Prime and a GE Revolution CT scanner. Equivalent dose was measured. Noise was measured in ROIs in the vertebral body, pulmonary trunk and in free air anterior to the phantom at the level of the carina. Comparisons were performed using Wilcoxon's signed-rank test.

Results: Using GE, dose reductions between 1.1 mSv (12%) and 1.56 mSv (24%) (p<0.01) were found in the anterior segment and no differences were found posteriorly and laterally. Total dose reductions between 0.64 (8%) and 0.98 mSv (13%) were found across kVp levels (p<0.01). With Toshiba anterior dose reductions of 6 to 7% and total dose reduction of 0.34 to 0.76 mSv across kVp levels (p>0.02) were found. A dose difference of 60% between right and left lateral positions was found with and without OBTCM (p<0.0001). Between OBTCM and non-OBTCM mean noise change across scanners and ROI positions was not clinically relevant, ranging from -0.6 to 1.5 HU.

Conclusion: Both OBTCM systems are capable of anterior and total dose reduction with slightly altered noise at all kVp levels.

Author Disclosures:
P. Marshall Skov: Author; Bo R. Mussmann, Svea Deppe Morup, Shane Foley, Hele Precht.

B-0487 11:34

Computed tomography (CT) imaging in weight-bearing positions: the positives and challenges in an institutional trial
G. Bengo; Singapore/SG (gallestejbengo@yahoo.com)

Purpose: In orthopaedic practice, conventional (CT) studies are routinely performed for evaluation of lower limb injuries, bony deformity & evaluation of bony alignment for pre-operative planning. Cone-beam CT has allowed studies to be performed while patients weight-bear. The benefits and challenges of CBCT compared to conventional CT were reviewed in this study.

Methods and Materials: Weight-bearing extremity was performed with a Carestream OnSight 3D Extremity System in 6 months. The mean CTDIvol and mean DLP from every study was recorded for comparisons to similar studies performed at conventional CT for age and gender-matched patients. A prospective procedure patient satisfaction survey and technologist was administered to evaluate patients' qualitative and quantitative experiences in CBCT unit. Feedback on image quality and diagnostic value was obtained.

Results: A total of 20 patients were scanned in a weight-bearing position in the CBCT unit. Compared to conventional CT, there was reduction of mean CTDIvol (P<0.05) and mean DLP (P<0.05). The patient survey showed positive overall experience of scan performed and levels of comfort. There was no compromise in image quality in all studies despite of significant reduced doses. Ability to perform weight-bearing studies allows accurate detection of injuries, with surgeons citing Lisfranc fracture-dislocation injuries.

Conclusion: The ability to perform weight-bearing studies at reduced doses without compromising image quality was the main advantage of CBCT. Other benefits includes patient comfort, a positive patient experience and enhanced workflow among technologist. Overall, there is potential for CBCT to serve as a lower dose and lower cost alternative to conventional CT in imaging.

B-0488 11:42

Evaluation of usefulness of virtual calcium scoring in dual-energy cardiac CT
H. Han; Seoul/KR (gum790311@hanmail.net)

Purpose: This paper evaluates the reliability of virtual noncontrast (VNC) images and virtual mono-chromatic (VMC) images derived from dual-energy CT for coronary artery calcium scoring, in order to decrease patient exposure radiation dose and increase the efficiency of the procedure.

Methods and Materials: 60 patients. They were divided into two groups depending on whether calcium in the coronary artery visible in images viewed with the naked eye. Calcium Scoring of Lesions, Voxel, Volume and Agatston Scores were done on TNC, VNC and VMC images. An independent t-test of a parametric test was used for statistical analysis with SPSS.

Results: In the group showing no visible calcium in the coronary artery, there were significant differences between TNC and VNC images (p<0.001). On the other hand, there were no significant differences between TNC and VMC images.
images in Lesions (p>0.605), Voxel (p>0.406), Volume (p>0.521), and Agatston Score (p>0.072). In the group showing visible calcium in the coronary artery, there were no significant differences in Volume (p=0.136) and Agatston Score (p=0.716), but there were significant differences in Lesions (p<0.001) and Voxel (p=0.046). Significant differences between VNC and VMC images of were found in all aspects.

Conclusion: The results of this study to evaluate TNC, VNC, and VMC in dual-energy CT for coronary artery calcium scoring were unexpected. However, if software that can distinguish calcium is developed in the future, it is expected that it will contribute to increase the efficiency of the procedure and reducing the exposure dose of the patient.

B-0491 11:50
Patient perceptions of radiographer communication skills in CT examinations

L. Ribeiro, A.F. Abrantes1, K.B. Azevedo1, O. Lesyk2, S.I. Rodrigues3, R.P. Almeida1, A.C. Virrato4, M.V. Reis5; Faro/PT, São Brás de Alportel/PT, Lagos/PT (oksanaleysuk@gmail.com)

Purpose: The improvement of results in healthcare through the transmission of information to the patient within a relation of empathy and trust is already a verified hypothesis. Healthcare professionals should base themselves on interpersonal competence throughout their daily work routine, to promote quality in medical imaging, patient safety and technical excellence. The aim of this study was the exploration of patient’s perceptions regarding the performance of radiographer in terms of interpersonal communication skills during CT procedures.

Methods and Materials: The instrument used was the questionnaire “Communication Assessment Tool” (Makoul et al. 2007) adapted to the professional reality of the radiographers. A total of 98 valid questionnaires (including 15 questions with a five-point Likert scale) from patients aged 10 to 85 years old. The paper-based instrument was delivered and filled by the patients after the performance of CT procedures in two public hospitals.

Results: The internal consistency of the questionnaire was excellent (Cronbach’s alpha = 0.949). Highest ratings were for radiographer behavior items, such as “greet the patients” (4.48), “respect for the patients” (4.63) and “time available to patient-centered care” (4.41). Lowest ratings were “encouraged to make questions” (3.77), “involved patients in decision-making processes” (4.03) and “talk with patients about the next following steps” (3.70).

Conclusion: Radiographers communication skills were evaluated with good levels of patient confidence with the radiological examinations. Despite the overall positive results, this area of health service delivery must be accorded the attention it deserves to continually improve on patient satisfaction through improved communication.

B-0490 10:30

Using the lean body weight (LBW) instead of total body weight (TBW) to dose the iodinated contrast medium (ICM) for abdominal CT: a randomised controlled trial (RCT)

M. Zanardo, F. Doniselli, A. Esseridou, S. Tritella, C. Mattiuz, M. Zanardo, F. M. Doniselli, G. Di Leo, A. Esseridou, S. Tritella, C. Mattiuz (morozeniaardo@unimi.it)

Purpose: Due to low diffusion in fat and high in muscles, ICM could be more appropriately dosed on LBW instead of TBW, a hypothesis to be verified on liver contrast enhancement (LCE) in the portal venous phase.

Methods and Materials: Ethics Committee-approved RCT involved patients scheduled for contrast-enhanced abdominal CT. Patient LBW was estimated using a balance with bioelectrical impedance analysis. Patients were randomly assigned to the LBW-group, administered 0.65 g/kg of ICM, or to the TBW-group, administered 0.40 g/kg of TBW, as controls. Enrolled patients with liver disease or deemed to receive a too low or high ICM dose were excluded. Levene’s test for variances and χ² test were used.

Results: We enrolled 315 patients. After 57 exclusions for protocol violation, 258 were assigned to LBW-group (n=119) or TBW-group (n=139). Age was 65±12 years in LBW-group and 67±12 years in TBW-group (p=0.058), TBW 70±13 kg for both (p=0.635), LBW 51±11 kg and 51±10 kg (p=0.562), body mass index 25±4 kg/m² for both (p=0.866); injected ICM (ml) 85±18 and 83±16, respectively (p=0.437). LCE (HU) was 41±9 in LBW-group and 40±7 in TBW-group, with means not significantly different (p=0.659), but with different variances (p=0.004). Suboptimal LCE (<40HU) was found in 76 (55%) patients in the TBW-group and in 64 (54%) in LBW-group (p=0.886), but no repeat examination was needed.

Conclusion: ICM doses of 0.65 g/kg of LBW or 0.40 g/kg of TBW lead to a comparable diagnostic LCE with a slightly larger variation for the latter, thus negating the study hypothesis.

B-0492 10:46

Determining optimal scan delay in indirect CT venography: time to peak attenuation correlates with cardiac output and heart rate

T.T. Tran1, T. Haav1, M. Kristiansen1, F. Haal1, S. Roy1, J.C. Lindstrom1, H. Ashraf2, P. Lauritzen2, T.T. Tran1

Purpose: Determine whether scan delay 120s is optimal for indirect-CT venography (CTV).

Methods and Materials: Twenty-four patients with clinical suspicion of deep-vein thrombosis were prospectively included. CTV was performed with fixed scan delay 120s after injection. Single scans of popliteal vein were obtained at 30s intervals, from 30s to 210s to determine time-to-peak-attenuation (TPA). Cardiac output (CO) and heart rate (HR) were recorded continuously/non-invasively using a photoplethysmography-device (NexfinHD, BMYE, Amsterdam). Attenuation measured at specified sites in inferior vena cava, and each external iliac/common femoral/popliteal veins. Associations between CO and TPA and HR and TPA were estimated by Spearman’s rank correlation and linear regression.

Results: Median CO=7.8L/min (range: 4.1-11.5), median HR=72.4bpm (range: 58.4-102). Mean TPA=159s (95%CI: 141,179). TPA varied inversely with both CO and HR. Correlation-coefficients between TPA and CO, and between TPA and HR were 0.52 (p=0.009) and 0.41 (p=0.047), respectively. Regression-coefficients were 10.4 for CO and 2.1 for HR. This indicates 74s variation in optimal scan delay from highest to lowest CO. In 63% TPA exceeded scan delay of 120s. At 120s mean attenuation was appreciated higher than essential for diagnostic purposes in larger central veins: 140HU (95%CI, 128, 153) in inferior vena cava, 129HU (95%CI, 118, 139) in external iliac veins, 127HU (95%CI, 115, 139) in common femoral veins and 117HU (95%CI, 105, 129) in popliteal veins.

Conclusion: At 120s majority of patients had not reached peripheral venous peak attenuation, although attenuation was higher in larger central veins. Lengthening and individually tailoring scan delay to CO may be helpful.
B-0493 10:54

Real-time patient-specific scan initiation for CT of the abdominal aorta: impact on image quality

F.R. Schwartz1, J. Ramirez Giraldo1, R. Gutjahr1, D. Bolt2, D. Marin1, L. Hurwitz1. Durham, NC/US, 2Nürnberg/DE, 3Basle/CH
(fidesregina@ottheaann.schwartz@duke.edu)

Purpose: To assess the impact of real-time modulation of scan initiation based on patient-specific haemodynamics on contrast enhancement of the abdominal aorta on MDCT.

Methods and Materials: This is a HIPAA-compliant, IRB-approved QI project. Exams were performed on a DS-MDCT scanner (120 kVp, 65-75 ml of contrast, 4 ml/sec). Contrast administration was monitored in the descending aorta for the abdominal aortic (AA) and the thoracoabdominal (TAA) protocols. The delay prior to initiation of the diagnostic scan was modulated by a real-time patient-specific (RTPSM) software, incorporating time to threshold and the slope of the enhancement curve. 100 patients (cohort 1) were scanned using RTPSM triggering of scan delay for abdominal aortic protocols. A reference cohort of 30 patients (cohort 2) was identified with exams on the same scanner (preceding 12 months), using a fixed diagnostic delay (FD). Patient demographics, average aortic HU values and coefficients of variance (COV) at 1-mm increments from the diaphragm through the right common femoral artery were collected. Descriptive statistics and Student’s t tests were applied.

Results: Delay 1 and 2 had 73% TAA and 27% AA exams. The average scan delay was significantly longer for TAA (12.3 ± 11 s; p<0.01) and AAA protocols (11.5 ± 8 s; p<0.01) using RTPSM compared to FD. Average HU values were significantly higher in the RTPSM cohort (406.6 ± 37.9 vs 371.9 ± 38.4; p<0.01) and COV was significantly reduced using RTPSM (9.5 vs 11.6%; p<0.01).

Conclusion: RTPSM results in higher HU values and better contrast homogeneity throughout the abdominal aorta.

Author Disclosures:
F.R. Schwartz: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology. J. Ramirez Giraldo: Employee; Siemens Healthineers, Forchheim, Germany. R. Gutjahr: Employee; Siemens Healthineers, Forchheim, Germany. L. Hurwitz: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology.

B-0494 11:02

Patient-specific scan delay for optimised venous triggering in CT abdomen

W. Coudyzer1, L. Cockmartin2, D. Konings3, T. Busselot4, D. Bielen1, D. Vanbeckvoort1, H. Bosmans1, Leuven/BE, 2Brussels/BE (Walter.Coudyzer@uzleuven.be)

Purpose: While the start of arterial phase contrast-enhanced CT scans is personalised to the patient’s contrast bolus passage using automated triggering, this procedure is not available for venous phase scans. Fixed scan delays are used. To optimize the contrast injection scheme for venous phase abdominal CT scans, the parameters of impact on venous signal enhancement have been investigated using manually triggered acquisitions.

Methods and Materials: Venuo phase CT abdomen scans of 100 patients (61male/39female) were acquired on a Siemens Definition Flash CT using a Nemoto injector with iCalc option. The venous signal enhancement was observed in males and females was 0.51±0.44 s at a CyT of 1s, 0.53±0.66s at 0.92±0.5s at a CyT of 1.5s, and 0.71±1.13s at a CyT of 2s. Comparing the time to peak enhancement, the time to peak enhancement at the AA using low/min/high flow rates the deviations were 0.5±1.04.4 s at a CyT of 1s, 0.53±0.66s at a CyT of 1.5s, and 0.71±1.13s at a CyT of 2s. The suggested delay time ranged from 3.5 to 14.5 s. An overall average deviation of 1.2±1.05 was observed.

Conclusion: The calculated bolus delay times achieved very good accuracy in predicting the time of peak enhancement. This facilitates optimal usage of CM injections and eventual CM or radiation dose reduction.

Author Disclosures:

B-0495 11:10

To determine the image quality of non-linear blending (NLB) technique in aortic angiography acquired by novel injection protocol compared with linear blending (LB) technique

L. Xing: Zhengzhou/CH (z78943636@qq.com)

Purpose: To determine the image quality of non-linear-blending (NLB) technique in aortic angiography acquired by novel injection protocol compared with linear-blending (LB) technique.

Methods and Materials: 30 patients were prospectively enrolled in the study. Third-generation dual-source scanner (SOMATOM Force) were utilised with tube voltage 70/150 kVp. The dose of contrast medium was tailored to the patients’ body weight as 0.5 ml/kg with the injection duration defined as examining time (scanning time + time delay after achieving the trigger threshold value). LB image series with weighting factor of 0.5 were compared with non-linear-blended image series. The difference in the image enhancement, signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were evaluated using paired t-test and Mann-Whitney U test. Overall image quality was also rated for both groups. And the consistency of the scores was analysed by Kappa test.

Results: The average effective radiation dose was 4.83 mSv. Mean contrast volume was 34.12 ml(350mgI/ml). The average injection rate was 3.24 ml/s. The degree of the enhancement, SNR and CNR of the vessel in NLB group were significantly higher than that in LB group (p<0.05), while the enhancement of soft tissue was of no difference in both groups (p>0.05). The rated scores for the image quality of two groups achieved good consistency (kappa=0.708, p<0.05). And the scores of NLB group increased 0.55.

Conclusion: Low-dose dual-contrast enhanced CT aortic angiography with novel injection protocol of low-contrast medium and low-flow rate might be feasible when using NLB technique, as it improve the image quality compared to LB technique.

B-0496 11:18

Systematic accuracy assessment of a real-time automated patient specific bolus tracking delay calculation algorithm

Purpose: To evaluate a fully scanner-integrated automated patient specific bolus tracking delay calculation algorithm utilizing real time monitoring measurements on a realistic circulation phantom.

Methods and Materials: Dynamics of contrast media (CM) were mimicked using a circulation phantom with a heart rate of 80bpm and blood pressure of 120/80mmHg. Iodinated CM was injected with flow rates (FR) of 2, 4, 6ml/s while the amount of CM (40mL) was maintained. Measurements were acquired using a perfusion scan protocol (100kVp, 50mA, 0.1s/image). The mean enhancement was subsampled in three cycle times (CTY, 1, 1.5, 2s) until a threshold CT-values were exceeded (100 or 150HU). The time to peak enhancement was predicted and retrospectively compared for different FR and CTY.

Results: At a AT CT-value of 100HU the calculated delay in the ascending aorta (AA), descending aorta (DA), suprarenal aorta (SRA) and external iliac artery (EIA) showed a deviation to the time of peak 0.18±0.7s at a CTY of 1s, 0.92±0.5s at a CTY of 1.5s, and 0.5±0.5s at a CTY of 2s. Comparing the time to peak enhancement at the AA using low/min/high flow rates the deviations were 0.5±1.04.4 s at a CyT of 1s, 0.53±0.66s at a CyT of 1.5s, and 0.71±1.13s at a CyT of 2s. The suggested delay times ranged from 3.5 to 14.5 s. An overall average deviation of 1.2±1.05 was observed.

Conclusion: The calculated bolus delay times achieved very good accuracy in predicting the time of peak enhancement. This facilitates optimal usage of CM injections and eventual CM or radiation dose reduction.

Author Disclosures:

B-0497 11:26

3D quantitative analysis of the aorta and pulmonary artery on non-contrast CT

Z. Sedghi Gamechi1, A.M. Arias-Lorza1, J. Holst Pedersen2, K.F. Kofoed2, D. Bos3, M. De Bruinie1, 1Rotterdam/NL, 2Copenhagen/DK, 3Basle/CH (z.sedghiamechi@erasmusmc.nl)

Purpose: Accurate measurements of the size and shape of the aorta and pulmonary arteries are important as risk factors for cardiovascular diseases and Chronic Obstructive Pulmonary Disease (COPD). A fully automatic method is proposed to extract volumes and assess diameters.

Methods and Materials: Non-ECG gated, non-contrast chest CT scans were used from 365 participants (mean age 57.4, 49.9% female) of the Danish Lung Cancer Screening Trial. The aorta and pulmonary arteries were manually
segmented on 25 scans and the diameters of the ascending aorta (AA) and pulmonary artery (PA) at the pulmonary bifurcation level were measured in axial slices on 200 scans. Our automatic algorithm extracted the seed points and a landmark at the pulmonary bifurcation level by multi atlas registration and then traced the centerlines with a minimum cost path. Subsequently, an optimal surface was extracted around the centerline. Diameters were measured in axial slices to compare with manual measurements. Repeatability of diameter measurements was evaluated on 140 baseline-one-year follow-up scan pairs.

Results: Segmentation overlap between manual and automated segmentation was 0.95 ± 0.01 for aorta and 0.92±0.02 for pulmonary arteries. The intra-rater correlation between manual and automatic AA, PA, and PA:AA ratio were 94%, 87%, and 86% and repeatability was 96%, 92%, and 89%, respectively.

Conclusion: Our full automatic method can assess the diameters of the aorta and pulmonary arteries reliably in non-ECG gated, non-contrast CT. This method may replace time-consuming manual segmentations in large-scale studies and, eventually, in clinical practice.

B-0408 11:34
Magnetic particle imaging: artefact-free imaging of the in-stent lumen of coronary stents
F. Wegner, T. Friedrich, A. von Gladiss, T.M. Buzug, J. Barkhausen, J. Haegelie; Lübeck/DE (franz.wegner@uksh.de)

Purpose: Cardiovascular magnetic particle imaging (MPI) is a tracer-based method that visualizes the spatial distribution of superparamagnetic iron oxide nanoparticles with magnetic fields. In MPI and MRI artefacts induced artificial lumen narrowing limits the assessment of the in-stent lumen. This study aims to investigate the potential of MPI for imaging of the in-stent lumen.

Methods and Materials: We evaluated eight commercially available coronary stents of different dimensions (diameter, 3-4 mm) and materials (stainless steel, platinum-chromium) implanted in silicone vessel phantoms. Prior to imaging, signal-to-noise ratio (SNR) of the stents and the tracer (Resovist diluted 1:100) were calculated separately from the MPI signal. Imaging of eight stented phantoms and a non-stented reference phantom for each diameter (all filled with tracer solution) was performed in a preclinical MPI-Scanner (Bruker-Biospin, Ettingen, Germany). For comparison, the stents were also visualized by MRI (Ingenia 3T, Philips, Hamburg, Germany) and CT (Somatom Definition AS, Siemens, Erlangen, Germany).

Results: SNR values of the stents were in the range of background noise. SNR of the tracer-solution was 436 and thus suitable for image reconstruction. It was possible to visualize all of the stented vessel phantoms with MPI. The reconstructed MPI images did not show any stent artefacts, whereas MRI and CT images revealed multiform artefacts and significant artificial lumen narrowing in all devices.

Conclusion: MPI can visualize the in-stent lumen of coronary stents without any artefacts. Thus, MPI may overcome the disadvantages of MRI and CT concerning the visualization of the in-stent lumen.

B-0499 11:42
Magnetic particle imaging for pulmonary circulation time measurements
M.G. Kaul, J. Salamon, W. Jung, H. Ittrich, M. Graeser, G. Adam, K. Peldschus; Hamburg/DE (mkaul@uke.uni-hamburg.de)

Purpose: Magnetic particle imaging (MPI) is a new imaging modality providing a high temporal resolution scanning magnetic particle distributions in 3D. The purpose of our study was to determine the time of the passage of a bolus of superparamagnetic nanoparticles through the lungs of mice.

Methods and Materials: Nine mice were imaged by 7T MRI (ClnScan, Bruker) to localize heart and lungs. Mice were transferred on a MR/MPI-compatible couch to a MPI scanner (Philips/Bruker). An own-developed receiver coil for mice was used. During the measurement sequence, a bolus of 1 µL of a high concentration SPION (Permag, Micromod) was injected into the tail vein. The temporal resolution for a 3D dataset was 21 ms. MRI and MPI images were co-registered to identify the left and right ventricles. A model function was fitted to each pixel time series extracting the time of arrival. Next, regions of interest were drawn in the left and right ventricles and the time difference of the arrival times of left and right ventricle was determined.

Results: In all ten mice, the injection was successful generating short bolus profiles. The difference of the bolus arrival times were 0.9 +/- 0.1 s.

Conclusion: Due to its high temporal resolution, MPI is able to image the passage of a bolus from the right ventricle through the lungs to the left ventricle. The technique might be used to depict pathologic changes. In combination with the estimation of the cardiac output the blood volume of the lungs can be measured.

B-0500 11:50
Pre-TAVR scanning by a comprehensive contrast-free cardiovascular magnetic resonance protocol: comparison with contrast-enhanced computed tomography
M.J. Pamminger, G. Klug, S.J. Reinstadler, M. Reindl, C. Kremser, C. Kranewitter, B. Metzler, W.R. Jaschke, A. Mayr; Innsbruck/AT (Mathias.Pamminger@tirol-klinken.at)

Purpose: To compare an entirely non-enhanced cardiovascular magnetic resonance imaging (MRI) protocol with contrast-enhanced computed tomography angiography (CTA) for pre-treatment and access guidance in transcatheter aortic valve replacement (TAVR) evaluation.

Methods and Materials: 25 patients (mean age 82.6 ± 4.6 years, 14 female [56%]) with severe aortic stenosis referred for TAVR evaluation underwent non-contrast three-dimensional (3D) ‘whole heart’ MRI for aortic root measurements as well as non-enhanced quiescent-interval single-shot (QISS) MR angiography for evaluation of aortoiliac and access routes. CTA was performed in 20 (80%) patients.

Results: Aortic root geometry assessed by 3D ‘whole heart’ MRI showed strong to very strong correlations (r = 0.606 to 0.874, all p<0.005) compared to CTA. QISS and CTA based measurements of aortoiliac vessel diameters correlated moderately to very strong (r = 0.555 to 0.816, all p<0.011) with good to excellent inter-observer reliability (ICC = 0.81 to 0.999, all p<0.0001) regarding MRI measurements. Mean diameters of infrarenal aorta, common iliac arteries and common femoral arteries differed significantly (bias -0.44 to -0.96 mm, p = 0.026 to <0.0001) between the two modalities. However, inter-method agreement for the decision of transfemoral accessibility was strong (κ = 0.828, p = 0.004).

Conclusion: MRI 3D ‘whole heart’ and QISS angiography provide contrast-free evaluation of aortic root and access routes in TAVR patients with moderate to strong correlations compared to CTA measurements. Moreover, decision for transfemoral access strategy showed strong agreement between both modalities, highlighting this MRI protocol to might obviate the need for contrast administration in pre-TAVR scanning.
B-0502 10:38
Proton MR spectroscopy: a non-invasive tool for the detection of ovarian masses
P. N. S. Fahmy, A. Elkalawy, M. Gomaa, S. A. Mansour; Cairo/EG
(nashaat.peter.med@gmail.com)
Purpose: To assess the role of MR spectroscopy (MRS) - as it is a non-contrast-based MR sequence - in the screening of malignancy in ovarian masses.
Methods and Materials: This prospective work included 230 females who had 245 adnexal ovarian masses. Tumours were spotted by preliminary pelvic ultrasound examination. MRS was assessed by MRI, multi-voxel and single-voxel spectroscopy. Patients’ spectra were assessed for peaks of lactate (Lac, 1.31 ppm), lipid (Lip, 1.33 ppm), N-acetyl aspartate (NAA, 2.0 ppm), acetone (A, 2.05 ppm), choline (Cho, 3.23 ppm) and creatine (Cr, 3.4 ppm). The mean values of (Cho/Cr) ratios were performed by a semi-quantitative approach. The operative pathology served as the standard of reference.
Results: Cho peak twofold higher than the average noise level was detected in 72% of the malignant and only 5.4% of the benign masses with an accuracy of 83%. Adding lactate to the choline enhanced the accuracy to 93%. The mean Cho/Cr ratios of the malignant ovarian masses (2.8) were significantly higher than that of the benign ones (1.2). We used a ROC curve to determine the best cut-off value (1.7) for the mean Cho/Cr ratio to discriminate malignancy with 81.2% specificity: 93.3% PPV: 92.9% NPV: 82.4% and accuracy: 87.1%
Conclusion: The simultaneous presence of choline and lactate peaks in MR spectroscopy examination of the ovarian masses minimizes the overlap between benign and malignant categories. N-acetyl aspartate and acetone are the specific metabolites in diagnosing complex cystic masses.
Author Disclosures: P. N. S. Fahmy; Author; Sahar Mansour, Mohammed Gomaa, Abdelhamid Elkalawy.

B-0503 10:46
MR monitoring of cytolysis and inflammatory tumour microenvironment after oncolytic adenovirus injection in a novel transgenic pancreatic adenocarcinoma mouse model
F. M. Kubicka, B. Fleischmann-Mundt, P. M. Kazmierczak, M. J. Schneider, J. Brooks, M. Meier, J. Rieke, F. Kühnel, C. C. Cyran; Munich/DE
(Hannover/DE (felix.kubicka@gmx.de)
Purpose: To investigate if a novel pancreatic cancer model (EP-PDAC) is suitable for preclinical monitoring of virotherapy using MRI.
Methods and Materials: 3 weeks after pancreatic electroporation (EP) with oncogenes (KRasG12V, Akt2, Cre-p53/−/++) in mice (n=116), tumour growth was assessed by inspection and histology. Tumour-related complications (leukocytosis, peritonitis, bleeding, invasive growth) were investigated in relation to tumour size. Tumour growth and complications were additionally examined (n=30) by T2-weighted MSME sequence (TR/TE=1238/11, FOV=25.6x25.5 mm) on a 7T whole-body scanner. Tumour-relate -related complications (ileus, peritonitis, bleeding, invasive growth) were investigated in relation to tumour size. Tumour growth and complications were additionally examined (n=30) by T2-weighted MSME sequence (TR/TE=1238/11, FOV=25.6x25.5 mm) on a 7T whole-body scanner.
Results: Among evaluable mice (n=5), cytolysis was detectable by Sirius-red staining in all virus-treated, but not in saline-treated mice (p<0.05). Necrotic rim-fibrosis was only detectable in the saline-treated group (p=0.05, HE and CD45). Results were validated by immunohistochemistry. This prospective work included 230 females who had 245 adnexal ovarian masses. Tumours were spotted by preliminary pelvic ultrasound examination. MRS was assessed by MRI, multi-voxel and single-voxel spectroscopy. Patients’ spectra were assessed for peaks of lactate (Lac, 1.31 ppm), lipid (Lip, 1.33 ppm), N-acetyl aspartate (NAA, 2.0 ppm), acetone (A, 2.05 ppm), choline (Cho, 3.23 ppm) and creatine (Cr, 3.4 ppm). The mean values of (Cho/Cr) ratios were performed by a semi-quantitative approach. The operative pathology served as the standard of reference.
Results: Cho peak twofold higher than the average noise level was detected in 72% of the malignant and only 5.4% of the benign masses with an accuracy of 83%. Adding lactate to the choline enhanced the accuracy to 93%. The mean Cho/Cr ratios of the malignant ovarian masses (2.8) were significantly higher than that of the benign ones (1.2). We used a ROC curve to determine the best cut-off value (1.7) for the mean Cho/Cr ratio to discriminate malignancy with 81.2% specificity: 93.3% PPV: 92.9% NPV: 82.4% and accuracy: 87.1%
Conclusion: The simultaneous presence of choline and lactate peaks in MR spectroscopy examination of the ovarian masses minimizes the overlap between benign and malignant categories. N-acetyl aspartate and acetone are the specific metabolites in diagnosing complex cystic masses.
Author Disclosures: P. N. S. Fahmy; Author; Sahar Mansour, Mohammed Gomaa, Abdelhamid Elkalawy.

B-0504 10:54
Assessment of tumour hypoxia response to sorafenib in rabbit VX2 liver tumour xenografts by tissue-oxygen-level-dependent MR imaging
S. Guo, X. Li, Z. Qi, Y. Mei, X. Quan; Guangzhou/CN (qinhuping1256@163.com)
Purpose: To investigate the alteration in tumour oxygen inhalation and hypoxia levels of rabbit liver VX2 tumour before and after the application of sorafenib, using tissue-oxygen-level-dependent (TOLD) MR imaging.
Methods and Materials: 26 VX2 tumours were implanted in the livers of 13 New Zealand white rabbits, which were incubated for control and treated group (5 rabbits) were given a week of sorafenib (20mg/kg/d) at 2weeks after implantation. TOLD was performed on a 3.0T MR scanner before and after 30min of oxygen inhalation, using an animal coil. The longitudinal relaxation rate (R1) was calculated for each of the single-voxel R1diff=−1/R1−[1−e−T/τ]. Time (τ) was measured for whole lesion (AR1whole) and non-necrotic area (AR1non-necrotic), and the corresponding relative change ∆R1whole and ∆R1non-necrotic. Immunohistochemical analysis of hypoxia-inducible factor-1α expression of VX2 liver tumour was graded from 0 to 4.
Results: No significant differences were found between control and treated group at week 3 in different AR1. Significant differences (P<0.01) were found in ∆R1 between treated group and control group at week 4. Significant differences were also detected in treated group before and after application of sorafenib. There was no significant difference in the pathological grade of HIF-1α between the treated and the control group after a week of sorafenib (P>0.5), but the HIF-1α-positive cell expression rate of treated group was significantly higher (P<0.05) than control group (week 4).
Conclusion: Our results show the potential of TOLD as a non-invasive technique to detect early tumour hypoxia response in rabbit VX2 liver tumour receiving sorafenib.

B-0505 11:02
Amide proton transfer (APT) MRI is a predictor of survival and progression in high-grade glioma patients
D. Paech, C. Dreher, S. Regnery, S. Goerke, A. Unterberg, W. Wick, M. Benndüzis, M. Ladd, H.-P. Schlemmer; Heidelberg/DE (d.paech@dktz.de)
Purpose: The purpose of this study was to investigate the predictability of patient overall survival (OS) and progression-free survival (PFS) in newly diagnosed high-grade glioma (HGG) patients using relaxation-compensated chemical exchange saturation transfer (CEST) MRI at 7 Tesla (7T).
Methods and Materials: Twenty-six patients with newly diagnosed high-grade glioma (WHO grade III-IV) were included in this prospective ethical committee-approved study. CEST MRI was performed at a 7T whole-body scanner.
Predictability of patient OS and PFS were assessed employing relaxation-compensated CEST MRI contrasts by means of amide proton transfer APT (downfield rNOE-suppressed APT = dns-APT) and delayed nuclear Overhauser effect (NOE/NOE) imaging. Furthermore, OS and PFS predictability were assessed for clinical parameters (age, treatment, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status) and diffusion-weighted imaging (apparent diffusion coefficient). OS and PFS analyses were performed according to the Kaplan-Meier method with two-sided log-rank statistics.
Results: Relaxation-compensated APT imaging was a significant predictor for patient OS (p=0.009) and PFS (p=0.01). Median OS/PFS of patients with low tumour signal intensities ≤42.3% (median signal) was 41230 days compared to 292/112 days for patients with increased APT values. Strongest association with PFS was found for the dns-APT metric (p=0.009). Among the treated clinical parameters, patient age (older/younger 57 years=median, p=0.005) and treatment (surgery vs. radiotherapy vs. chemotherapy, p=0.016) were significant OS predictors.
Conclusion: Relaxation-compensated APT MRI serves as a predictor of overall survival and progression-free survival in newly diagnosed, previously untreated glioma patients and may, therefore, help to customize glioma patient treatment and response monitoring in the future.

B-0506 11:10
Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 Tesla
Purpose: Patients with newly diagnosed inoperable glioma receive chemoradiotherapy (CRT). Standard response assessment in neuro-oncology (RANO) takes a minimum of 4 weeks after the end of treatment. In this longitudinal study, we assessed whether chemical exchange saturation transfer (CEST) MRI enables earlier assessment of response to CRT in glioma patients.
Methods and Materials: Twelve glioma patients that underwent definitive CRT were included in this study. Three longitudinal CEST MRI measurements were performed for each patient at 7T - the first before, the second immediately after completion of CRT and the third as a 6 week follow-up. The relaxation-compensated delayed nuclear-overhauser-effect CEST signal (rNOE) and the downfield NOESY-suppressed amide proton transfer signal (dns-APT) CEST signal were investigated. Additional, choline-to-N-acetyl-aspartate ratios (Cho/NAA) were evaluated using single-voxel 1H-MRS in six of these patients. Performance of obtained contrasts was analysed in assessing treatment response as classified according to the updated RANO criteria.
Results: The rNOE signal significantly separated stable and progressive disease directly after therapy (post-treatment normalized to pre-treatment means±SD; rNOE response=1.09±0.11, rNOE Ctrl-response=0.87±0.09, p=0.015). In contrast, no significant difference was found between both groups when assessing the normalized dns-APT (dns-APT response=0.95±0.38, dns-APT Ctrl-response=0.95±0.38).
B-0507 11:18
A GPC3-specific aptamer-mediated MR probe for hepatocellular carcinoma
M. Zhao; Shanghai/CN

Purpose:To construct and test a HCC-targeted MR probe based on a GPC3-specific aptamer (AP613-1) with ultrasmall superparamagnetic iron oxide (USPIO).

Methods and Materials:Oligonucleotide-modified USPIO nanoparticles were synthesized, and gentamicin and doxorubicin were conjugated with USPIO nanoparticles to achieve both the specific recognition and killing of cancer cells. Huh-7 and HepG2 cells were cultured and harvested, and their GPC3 expression levels were measured by qRT-PCR. USPIO nanoparticles and aptamer-USPIO nanoparticles were incubated with Huh-7 and HepG2 cells, and their MR imaging performances were then observed in vitro.

Results:USPIO nanoparticles displayed a significant negative contrast-enhancement effect on T2-weighted images, while the complex of USPIO and the aptamer AP613-1 showed improved contrast in vitro. TEM imaging revealed the Apt-USPIO nanoparticles were spherical and well-dispersed.

Conclusion:USPIO nanoparticles in Huh-7 cells could be observed by Prussian blue staining test, but no uptake of USPIO could be found. In vitro phantom T2-weighted MR imaging showed a significant decrease in the signal intensity in the USPIO-incubated Huh-7 cells compared to USPIO-incubated Huh-7 cells. In vivo T2-weighted MR imaging showed significantly negative enhancement in the Huh-7 tumors enhanced with Apt-USPIO whereas no enhancement was found with USPIO alone. Hence, biocompatibility of Apt-USPIO and USPIO was also demonstrated.

Purpose:To determine the therapeutic effect of up-regulation IFNβ expression on T-cell and macrophage activities.

Methods and Materials:Rat MSCs were transduced with a lentiviral vector containing the IFNβ gene. The feasibility, efficacy and biological safety of the transplanted MSCs were evaluated.

Results:Rat MSCs overexpressing IFNβ showed high biocompatibility and showed no obvious toxicity in vivo. The transduction efficiency achieved 73.59 ± 0.28%. FTH-IFNβ-MSCs can overexpress FTH and IFNβ effectively and safely. The FTH-IFNβ-MSCs were tracked using in vivo MRI and confirmed by histology.

Conclusion:FTH-IFNβ-MSCs transplanted peritumorally can effectively inhibit intracranial orthotopic C6 gliomas in rats, providing a new idea for stem cell-based therapy for malignant gliomas.

B-0510 11:42
Detection of gut inflammation with MR and PET imaging in the insect Manduca sexta: A new screening system for effectors and inhibitors of gut inflammation

Purpose:This study aims to propose and validate MR and PET imaging features of gut-inflammation in the insect Manduca sexta. The Epithelial structure and intestinal innate immune response in M.sexta are functionally and mechanistically comparable to humans, making M.sexta a valuable model to study the innate part of gut inflammation. This, together with the cost-effective rearing and the large, cylindrical gut of M.sexta larvae will provide a quick and easy system to screen for new effectors and inhibitors of gut-inflammation for pharmaceutical and agricultural purposes.

Methods and Materials:We established Gd-BOPTA-MR and 18F-FDG-PET, as well as fusion MRI-PET imaging, methods firstly applied to insects, to detect gut-inflammation. Bacillus thuringiensis-infected (n=20) animals were used as a positive control and compared to healthy animals (n=20). We tested contrast-enhanced, T1-weighted (CHESS/Fat-Sat) gut wall thickness and area, gut wall signal-enhancement, as well as the contrast-enhanced gut diameter and SUVMax as MR and PET diagnostic features.

Results:Blinded animals showed significantly lower survival (Log-rank/Gehan-Breslow-Wilcoxon test, p=0.0001) compared to control animals. Control and Bt-infected animals differed significantly (p=0.0001) in each diagnostic finding. All diagnostic features were excellent or good with ROC-areas of 0.96-0.8 and strongly correlated to each other (r=0.5-0.75). We propose contrast-enhanced gut wall thickness with a threshold of 2.05mm and a sensitivity and specificity of 90% as a key diagnostic finding of gut-inflammation in M.sexta. Finally, we compared and validated the empirical MRI resolution using gut phantoms (SD=0.078mm).

Conclusion: The M.sexta screening system is a quick and easy tool that allows screening for new effectors and inhibitors of gut-inflammation.

B-0511 11:50
The experimental study of prostate cancer imaging using PSMA targeting ultrasound/MRI dual modality nanobubbles
Y. Zhu, Y. Chen, W. Guan; Shanghai/CN (tttmmax2004@126.com)

Purpose:The prostate specific membrane antigen (PSMA) is broadly overexpressed on prostate cancer (PCa) cell surfaces. The aim of this study is to develop dual modality contrast agents for PSMA targeted ultrasound/magnetic resonance imaging (US/MRI) dual modality imaging.

Methods and Materials:The nanobubbles, characterised by strong penetrating power and stable performance, were served as the US imaging components of the dual modality contrast agents. SPIONs were encapsulated in the polymer shell of the nanobubbles to produce T2-negative contrast enhancement. The polyol 1,2-propanediol was conjugated to the nanobubbles for targeting PSMA. The SPIONs loaded nanobubbles (SPIONs/Polypeptide-PLGA NBs) were prepared by a modified double emulsion method. Series of in vitro and in vivo experiments were employed to evaluate the characterisation, targeted dual modality imaging ability, biodistribution and toxicity of SPIONs/Polypeptide-PLGA NBs.

Results:The average size of SPIONs/Polypeptide-PLGA NBs was 415nm, spherical shaped, uniformly distributed with superparamagnetic characteristic. SPIONs/Polypeptide-PLGA NBs provided positive contrast enhancement on ultrasound images and negative contrast enhancement on T2 MRI images. In vivo dual modality imaging, the SPIONs/Polypeptide-PLGA NBs provided specific dual modality contrast on both US and MRI images by targeting PSMA. The NBs was biocompatible and metabolised mainly in the reticuloendothelial system and showed no obvious toxicity in vivo.

Conclusion:SPIONs/Polypeptide-PLGA NBs could specifically enhance both ultrasound and MRI images via binding with PSMA expressed on prostate cancer cells. Our work provides new strategy for PCa detection, and further broadens the application of nanobubble in cancer imaging.
Musculoskeletal

SS 610

Chronic inflammatory diseases

Moderators:
M. Boesen; Copenhagen/DK
M. Revelli; Reggio Emilia/IT

B-0512 10:30

Muscle involvement in juvenile localised scleroderma: do we need a volumetric approach?

S.K.J. Flores Quijada1, A. Cavaliere1, F. Zulian1, M. Weber2, M. Zulian1, R. Stramare1, E. Quaia1, C. Giraudo1,2, Padua/IT, Vienna/AT

Purpose: To perform a qualitative and quantitative MR-based muscle assessment in juvenile localised scleroderma patients (JLSp) including volumetric analyses.

Methods and Materials: JLSp referring to our pediatric unit who underwent to at least one MRI scan at diagnosis including axial T2w fat-sat and axial T1w of both extremities were examined. The last available follow-up MRI, satisfying the above-mentioned criteria, was also included. Fatty atrophy (Mercury Scale) and oedema (5 points scale) were assessed. Muscle area (MA) performing a ROI at the most affected level, a muscle volume (MV) were measured on the above-mentioned criteria, was also included. Fatty atrophy (Mercury Scale) and oedema (5 points scale) were measured on the injured (i) and healthy contralateral (hc) extremity (Student’s T-test,p<0.05). To assess the repeatability two radiologists performed all measurements independently (intraclass correlation coefficient, ICC).

Results: Fourteen JLSp (9 females; mean age 7.1±3.6yrs) met the inclusion criteria and 23 MR examinations (nine at follow-up) were evaluated. Muscle oedema was detected in 12 JLSp (mean 1.4±1.3) whereas fatty replacement was identified in one case (stage 2). At diagnosis MA and MV were significantly lower on the injured side (MAI 31.5±17.9 vs MAd 38.6±22.7, p<0.009; MVI 553±390 vs MVh 652±2432, p<0.035). At follow-up, muscle oedema decreased in 6 JLSp (mean 1.2±1.4), and no significant difference between the two extremities occurred for MA or MV (p>0.05, each). All measurements showed high ICC (>0.750, each).

Conclusion: MA and MV were lower at diagnosis in the injured JLSp and oedema decreased in 6 JLSp (mean 1.2±1.4), and no significant difference was identified in one case (stage 2). At diagnosis MA and MV were significantly lower on the injured side (MAI 31.5±17.9 vs MAd 38.6±22.7, p<0.009; MVI 553±390 vs MVh 652±2432, p<0.035). At follow-up, muscle oedema decreased in 6 JLSp (mean 1.2±1.4), and no significant difference between the two extremities occurred for MA or MV (p>0.05, each). All measurements showed high ICC (>0.750, each).

B-0513 10:38

MRI evaluation of ankle joint in juvenile idiopathic arthritis

P. Rampal1, N. Sachdev2, A. Taneja2, Delhi/IN, New Delhi/IN (pankha2933@gmail.com)

Purpose: To evaluate changes in ankle joint in patients of Juvenile Idiopathic Arthritis by MRI and to correlate these changes with the clinical scores which indicate disease severity.

Methods and Materials: Study design - Prospective observational study. Inclusion Criteria - 30 patients less than 16 years of age with a clinical diagnosis of Juvenile Idiopathic Arthritis as per the International League of Rheumatology definition with clinically involved ankle joint(pain/ swelling) shall be included in the study. Exclusion criteria - Any Patient with contraindication to MRI. They are subjected to contrast enhanced MRI to look for bone marrow edema, erosions, synovial thickening and enhancement and cartilage destruction and these findings are graded according to the Juvenile Arthritis MRI Score(JAMRIS). This score is compared with the Juvenile Arthritis Disease Activity Score (JADAS - 27) which is calculated using various clinical and biochemical parameters.

Results: The sensitivity of clinical diagnosis of ankle joint arthritis is 80% and specificity is 92% when compared with the MRI findings. Patients with higher JADAS tend to have more severe MRI findings in terms of synovial thickness, cartilage surface area involvement thereby making a higher JAMRIS.Bone marrow edema did not show a significant correlation with the disease severity of the patient.Patients on treatment may show clinical improvement early but their MRI findings take weeks to show any significant change.

Conclusion: Juvenile Arthritis MRI Score (JAMRIS) could be used to indicate the level of disease activity and thereby indicate prognosis in JIA patients.

B-0514 10:46

Ultra-low-dose CT detects synovitis in patients with suspected rheumatoid arthritis

Purpose: To prove feasibility and diagnostic accuracy of contrast-enhanced ultra-low-dose CT (ULD-CT) for inflammatory soft tissue changes (synovitis, tenosynovitis and peritendinitis) in patients with arthritis of the hand.

Methods and Materials: In this institutional review board-approved study, 36 consecutive patients over the age of 50 with suspected rheumatoid arthritis underwent ULD-CT (estimated radiation exposure <0.01 mSv) and MRI of the hand with weight-adapted intravenous contrast administration. ULD-CT subtraction and MR images were assessed for synovitis, tenosynovitis and peritendinitis by three readers using a modified rheumatoid arthritis MRI score (RAMRIS). Patients were asked which modality they would prefer for future examinations. Sensitivity and specificity of ULD-CT for detection of inflammatory changes were calculated using MRI as standard of reference. The sum scores were correlated using Pearson’s r.

Results: All 36 patients showed synovitis in MRI. ULD-CT had 69% sensitivity on the patient level and 65% on the joint level with 87% specificity. Sensitivity was higher in patients with more severe inflammation (80% for MRI RAMRIS >1). There was almost perfect correlation between the modified RAMRIS sum scores of ULD-CT and MRI (Pearson’s r=0.94). Regarding preferences for future examinations, 85% preferred ULD-CT over MRI. ULD-CT detected more differential diagnoses than MRI (8 vs. 12).

Conclusion: Contrast-enhanced ULD-CT of the hand allows for depiction of soft tissue inflammation at the hand and can be achieved using very low radiation exposure (<0.01 mSv). ULD-CT may evolve to a fast and comfortable alternative to MRI, although it is not as sensitive as MRI for detecting mild disease.

B-0515 10:54

Prevention of the progressive biochemical cartilage destruction under methotrexate therapy in early rheumatoid arthritis

M. Frenken, D. Abrar, A. Ljimani, P. Sewerin, M. Klingebiel, G. Antoch, C. Schleich, Düsseldorf/DE (miriam.frenken@med.uni-duesseldorf.de)

Purpose: Objective of the study was to investigate biochemical cartilage composition under methotrexate (MTX) therapy and to intra-individually assess the impact of inflammation severity on cartilage composition using dGEMRIC MRI in patients with early rheumatoid arthritis (eRA).

Methods and Materials: dGEMRIC of MCP joints of the index and middle finger of 28 patients from the AthroMark cohort were examined prior to MTX-therapy as well as after 3 and 6 months. OMERACT RA MRI score and clinical parameters (CRP and DAS28) were registered at any time point. Each patient’s second and third MCP joints were dichotomized into the joint with more severe synovitis versus the joint with less severe synovitis according to the RAMRIS synovitis subscore.

Results: MCP joints with more severe synovitis (‘bad joints’) demonstrated significantly lower dGEMRIC values compared to MCP joints with less severe synovitis (‘good joints’) at the index (p<0.002) and middle joint (p<0.019, respectively). After 6 months of MTX therapy no significant difference of dGEMRIC index was found between good and bad joint (p = 0.086).

Conclusion: Under MTX therapy, biochemical cartilage integrity remains stable; no further cartilage destruction occurred if patients are treated early in the course of the disease. This might be explainable through reduced inflammation on joint level. In addition, 6 months of MTX therapy triggered an alignment of dGEMRIC index of MCP joints with initially severe synovitis and less severe synovitis in an intra-individual assessment.

B-0516 11:02

Rheumatoid arthritis magnetic resonance imaging score predicts therapy response

D.B. Abrar, M. Frenken, Y. Klosterkemper, G. Antoch, C. Schleich; Düsseldorf/DE (danielbenjamin.abrar@med.uni-duesseldorf.de)

Purpose: The aim of the study was to assess the performance of the RA magnetic resonance imaging (MRI) scoring system (RAMRIS) in combination with serum biomarkers to predict response to methotrexate (MTX) treatment in therapy-naive patients with early RA using high-field MRI.

Methods and Materials: 28 patients with RA were prospectively assessed with baseline 3-T MRI of the clinical dominant hand, 3 and 6 months after MTX. The patients met the 2010 American College of Rheumatology/European League Against Rheumatism (EULAR) criteria. RAMRIS and serum biomarkers consisting of various proteins including receptor activator of nuclear factor-κB ligand (RANKL) were obtained. Remission or treatment response was defined according to EULAR. To adjust for intrapersonal correlation, generalised linear mixed models were used.
Results: Treatment response at 3 months was associated to low RAMRIS erosion subscores and low total RAMRIS scores (p = 0.019 and 0.03, respectively). Remission at 6 months was associated to low RANKL levels (p = 0.033). Response at 3 and 6 months was predicted more accurately with the inclusion of total RAMRIS score, RAMRIS synovitis subscore at the second metacarpophalangeal (MCP) joint, or a combination of the two (p value likelihood ratio test = 0.035, 0.035, and 0.041, respectively). Remission was more accurately predicted with inclusion of RANKL, with no significant predictive effect of MRI.

Conclusion: Baseline total RAMRIS can predict EULAR response. RAMRIS synovitis subscore at the second MCP joint and RANKL are associated with response and remission, respectively.

B-0517 11:10
The value of the simplified RAMRIS-5 in early-RA patients under methotrexate therapy using high-field MRI
M. Frenken, D. Abrar, A. Ljimani, P. Sewerin, G. Antoch, C. Schleich; Düsseldorf/DE

Purpose: The aim of the study was to evaluate a simplified version of the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) to five joints of the hand (RAMRIS-5) in patients with early rheumatoid arthritis (RA) before and after the initiation of a methotrexate (MTX) therapy using high-resolution, 3 Tesla (T), magnetic resonance imaging (MRI).

Methods and Materials: 28 RA patients according to 2010 ACR/EULAR criteria (≥ 58.8 years (range 39 - 74), seropositive, disease duration < 6 months (range 2 - 23 weeks) were prospectively assessed with baseline investigation including clinical assessment (DAS28 and CRP) and 3 MRI of the clinical dominant hand, as well as 3 and 6 months after starting MTX therapy. MRI scans were analysed according to RAMRIS and the simplified RAMRIS-5.

Results: DAS28, CRP, RAMRIS and RAMRIS-5 decreased significantly after initiation of a MTX therapy. There was a strong correlation between RAMRIS-5 and RAMRIS at baseline (r=0.838; p < 0.001) and after follow-up (3 months: r=0.876; p < 0.001, 6 months: r=0.897; p < 0.001).

Conclusion: 3 MRI-based RAMRIS-5, the simplified version of the well-established RAMRIS is a resource-saving, appropriate alternative not only for patients with established but also with early RA. Regarding its shorter expenditure of time, there may be a high potential for using RAMRIS-5 in daily clinical practice to detect and monitor RA.

B-0518 11:18
Silent progression in patients with rheumatoid arthritis: Is DAS28 remission an insufficient goal in RA?
D.B. Abrar, M. Frenken, Y. Klosterkemper, G. Antoch, C. Schleich; Düsseldorf/DE

Purpose: Remission is arguably the ultimate therapeutic goal in rheumatoid arthritis (RA). Applying modern strategies, clinical remission can be achieved in a substantial number of patients with early RA (ERA). We, therefore, investigated the value of MRI for the detection of radiological progression in patients with DAS28 improvement and clinical remission.

Methods and Materials: Data sets of 80 RA patients (according to 2010 ACR/EULAR criteria), who fulfilled the following criteria, were retrospectively analysed: availability of two consecutive MRI scans (low-field MRI, follow-up interval 1 year) of the clinically dominant hand and wrist, and the presence of DAS28 (CRP) scores at both time points, which was used to assess disease activity.

Results: 71 of the 80 investigated patients presented a numerical improvement of DAS28 (CRP) after 12 months (DAS28 (CRP) T0 average (SD) 4.96, SD 1.2; DAS28 T4 (12 months) Ø 2.6, SD 1.0), 73% of them also improved in the RAMRIS-Score, while 24% demonstrated an increase despite DAS28 improvement and 3% showed equal values. 48% of patients who improved in the DAS28 reached remission, 41% of these patients had an increase in the RAMRIS Erosion-subscore after 12 months. When considering EULAR response criteria (non-response (n = 7), moderate response (n = 19), good response (n = 45)), an increase of erosions was found in 71.4% of non-responders, 52.6% of moderate responders, and 31.1% of good responders after 12 months, all compared to baseline.

Conclusion: Up to 40% of patients in this study demonstrated a progressive erosive disease detected by MRI despite DAS28 improvement or EULAR remission.

B-0519 11:26
Is an abbreviated version of psoriatic arthritis magnetic resonance imaging score (PsAMRIS), PsAMRIS-6, applicable for detection and monitoring of disease-related joint changes?
D.B. Abrar, M. Frenken, P. Sewerin, G. Antoch, C. Schleich; Düsseldorf/DE (dba0501@gmail.com)

Purpose: Aim of this study was to evaluate a simplified version of the OMERACT psoriasis arthritis magnetic resonance imaging score (PsAMRIS) reduced to six joints of the clinically dominant hand in patients with psoriatic arthritis (PsA) before and after treatment escalation to a TNF-α inhibitor using high-resolution, 3-Tesla (T) MRI.

Methods and Materials: 17 patients with PsA according to the CASPAr classification criteria (mean age 53.2; ± 11.6, minimum/maximum 26/72 years) who qualified for TNF-α inhibitor due to inadequate csDMARD treatment response were prospectively assessed by both baseline investigation and 6 months after escalation using 3T MRI of the clinically dominant hand. Scans were analysed using the OMERACT PsAMRIS and the simplified PsAMRIS-6 (DIP 2-5 + PIP 2- MCP 2).

Results: We found a strong correlation between OMERACT PsAMRIS and the simplified PsAMRIS-6 at baseline (r = 0.871; p < 0.0001) and after six months (r = 0.894; p < 0.00001). Evaluation time was significantly (p < 0.001) reduced from 306.2 to 114.2 seconds at baseline and from 321.25 to 120.5 seconds at follow-up.

Conclusion: The simplified PsAMRIS-6 is a time- and resource-saving modification of the OMERACT PsAMRIS. The PsAMRIS-6 is a reliable diagnostic tool for detecting morphological changes and therapy monitoring in PsA.

B-0520 11:34
Diffusion-weighted magnetic resonance imaging in axial spondyloarthritis patients and healthy subjects: Inter-MRI reliability and relation to gender, age and inflammation
J.M. Möller, M. Østergaard, H.S. Thomsen, I.J. Sørensen, O.R. Madsen, S.J. Pedersen, H. Herlev/DK, G. Olofsson/DK, G. Gentzke/DK (jakob.moeller@regionh.dk)

Purpose: To examine test-retest reliability, age and gender influence on spinal D2W and correlation with presence/absence of bone marrow oedema (BME) in SpA patients and healthy subjects.

Methods and Materials: In a test-retest setup 25 SpA patients (12 males) and 24 healthy subjects (11 males) were MRI examined at 1.5T twice with a mean interval of 6.8 days (SD 0.9). A sagittal STIR and a single-shot echo-planar-imaging D2W sequence were performed on T2w-STIR. On the midsagittal STIR-image, the disco-vertebral unit (DVU) was divided into 4 quadrants by a vertical line through the midpoint of the vertebral bodies. BME was scored present/absent per quadrant (total score range 0-4). On D2W images, the respective diagnostic performance of dual-energy CT for the detection of bone marrow edema in SpA patients and healthy subjects.

Results: Inter-MRI ICCs ranged from 0.66 at T9/T10 to 0.94 at L2/L3. Mean ADC (SD) in females and males was 378(156) and 242(100), p<0.01. Mean ADC (SD) in females <60y was 412(149) and >60y 258(114), p<0.01. For BME scores 0, 1, and 4 and in the midsagittal slice, mean ADC (SD) was 298(136), 296(138), and 828(406), respectively.

Conclusion: The inter-MRI agreement was measured by intra-class correlation coefficient (ICC). Variation was also tested by unpaired t tests and ANOVA.

B-0521 11:42
Axial spondyloarthritis: dual-energy virtual noncalcium CT for detection of bone marrow oedema in the sacroiliac joints
H. Wu, G. Zhang; Guangzhou/CN (1387653087@163.com)

Purpose: To determine the diagnostic performance of dual-energy CT for the detection of bone marrow (BM) oedema in patients with sacroiliitis of axial spondyloarthritis (axSpA) using a virtual noncalcium (VNCa) technique.

Methods and Materials: Forty-seven consecutive patients with 55 sacroiliac joints were studied between April 2016 and December 2017. All patients underwent dual-energy CT and 3-T MRI. Two independent readers visually evaluated all sacroiliac joints for the presence of abnormal BM attenuation on VNCa images using a four-point classification system (0 = no oedema, 3 = severe oedema). MR images served as the reference standard. CT numbers on VNCa images were performed a quantitative analysis.

Results: In the visual analysis of dual-energy VNCa images, the respective sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for detecting BM oedema for reader 1 and reader 2 were 87.3% and 92.7%, 94.1% and 91.2%, 89.9% and 92.1%, 96.0% and 94.4%, 82.1% and 88.6%, respectively. The interobserver agreement was excellent.
Oncologic Imaging

SS 616a

Advances in imaging of liver malignancies

Moderators:
L. Grazziol, Brescia/IT
A. Luciani, Crétteil/FR

B-0523 10:30
Towards a new model for therapy monitoring of PRRT ¹⁷⁷Lu-DOTATATE treatment of liver metastases in PNET patients
O.J. Pettersson, K. Fröss-Baron, J. Crona, A. Sundin; Upplands/S/SE
(ojlof@gmail.com)

Purpose: Monitoring of cancer treatment by contrast-enhanced CT (CECT), applying RECIST 1.1 criteria, is less suitable for neuroendocrine tumours (NETs) which, when responding, tend to show stable disease and not response. Consequently, new methods are needed to classify those that show stable disease on RECIST. Changes in arterial tumour attenuation and contrast enhancement may earlier reflect therapy effect than decreased tumour diameter.

Methods and Materials: 47 patients with metastatic pancreatic NETs (PNETs) undergoing peptide receptor radiotherapy (PRRT) with ¹⁷⁷Lu-DOTATATE underwent CECT at baseline, mid-treatment (cycles 3-5) and at follow-up, 3 months after the last PRRT cycle. In each patient, the liver metastasis at baseline-CT with the highest arterial attenuation was identified and the fold changes in arterial tumour attenuation, contrast-enhancement and transversal tumour area between CT at baseline, mid-treatment and follow-up were calculated. Data were correlated to best response, time to best response and progression-free survival.

Results: As an internal control, it was first tested and established that the tumour attenuation was not related to the attenuation of the abdominal aorta. The mean arterial tumour attenuation decreased 19 HU from baseline to follow-up (p<0.05) and between mid-treatment and follow-up (p<0.05) as did the transversal tumour area between baseline and follow-up (p<0.05). A 17 HU increase (p<0.05) of the contrast enhancement from baseline to mid-treatment correlated with time to best response (R²=0.36, p=0.0003) and to progression-free survival (R²=0.27, p=0.0008).

Conclusion: Changes in arterial tumour attenuation and contrast enhancement, in addition to lesion size (RECIST 1.1), may add information on therapy response to PRRT.
Preoperative staging of colorectal liver metastases: is MRI of the liver needed for the surgical planning?

B-0526 10:54

Purpose: To evaluate the efficacy of multiparametric 3T MR imaging in the preoperative staging of colorectal liver metastases in patients previously undergone to neoadjuvant chemotherapy (nCT).

Methods and Materials: Fifty-eight patients affected by colorectal cancer and focal liver lesions who received preoperative nCT and underwent parenchymal-sparing liver surgery were retrospectively included. All patients underwent multiphasic contrast-enhanced CT (CE-CT) and multiparametric 3T MRI within one month before surgery. At MRI unenhanced (T1- and T2-weighted), DWI with multiple b-values (150, 500, 1000, 1500 sec/mm²) and Gd-EOB-DTPA-enhanced T1-weighted LAVA-flex sequences (including both dynamic and hepato-biliary phase) were obtained. All CT and MR examinations were reviewed by two observers in conference in order to identify and characterize focal liver lesions. CT and MRI findings were related with histopathology, which was our gold standard. Only benign lesions at intraoperative ultrasound remained un-resected and underwent imaging follow-up.

Results: A total of 370 hepatic lesions were detected: 292 metastases (79%) and 78 benign lesions. At MRI 359/370 (97.0%) lesions were detected, whereas at CT 245/370 (66.2%) were identified. The sensitivity, specificity, PPV, NPV of MRI and CT metastases characterization were 98.9%, 97.3%, 99.3%, 96.0%, and 87.6%, 41.3%, 82.7%, 51.0%, respectively. The higher yield of MRI could improve the surgical planning in 37 out of 58 patients (63.8%) compared to CT.

Conclusion: Multiparametric 3T MRI may provide better diagnostic performance than CE-CT for the identification and characterization of colorectal liver metastases before surgery. It can also potentially improve the surgical planning in over 60% of patients.

Volumetric vs bidimensional CT assessment of sarcinoma in patients candidate for liver transplantation

B-0529 11:18

Purpose: Sarcenoma is a crucial issue in clinical management. Our aim was to evaluate the prognostic value of a CT bidimensional measure (muscular area at inferior border of L3) and a new proposed volumetric evaluation to identify sarcenoma before transplantation, their correlation with post LT mortality and to identify optimal threshold for the tridimensional analysis.

Methods and Materials: We evaluated 50 pre-transplant CT scans (venous phase) of adult patients with cirrhosis who underwent LT between 2016 and 2018. We performed both standard bidimensional and volumetric analysis. Images were analyzed with Volume Viewer software (GE Medical Systems). We included a volume from iliac crests to the base of the heart, excluding the visceral content by segmentation. Tridimensional analysis was performed indexing total volume by height squared (cm³/m²).

Results: A Cox proportional regression-model was employed for post-LT survivability analysis. A significant difference (p<0.05) was found in population survivability by adopting the lower quartile as cut-off for L3-SMI values, showing thresholds of ≤ 37.9 cm²/m² for women and ≤ 39.4 cm²/m² for men (HR 4.3, 95% CI 1.4-13.2, p = 0.01). Furthermore, also tridimensional values reflected a difference in survivability above and below 25th percentile, thus identifying new potential thresholds of ≤58.7 cm³/m² for women and ≤629.9 cm³/m² for men (HR 9.25, 95% CI 2.21-41.8, p<0.001).

Conclusion: Volumetric measurements appeared to be a reliable predictor in identifying subjects with high post-LT mortality, and thus should be further investigated to evaluate a potential superior prognostic value compared to standard bidimensional analysis.

Prevalence and prognosis of intrahepatic cholangiocarcinoma (ICC) with radiological enhancement patterns that mimic hepatocellular carcinoma (HCC)

B-0530 11:26

Purpose: To analyse the radiological enhancement patterns of ICC and their association with prognosis, with particular interest to lesions mimicking HCC.

Methods and Materials: We retrospectively evaluated all consecutive patients affected by ICC undergoing surgery between 2007 and 2017, whereas those with mixed HCC-ICC were excluded. Two expert radiologists reviewed the arterial and portal/phase patterns of preoperative CT or MRI. Full-nodule hyper-enhancement in arterial phase and hypo-enhancement in portal/late phase was classified as “HCC-like pattern”. Imaging of ICCs with HCC-like pattern was reviewed by an additional radiologist blinded to clinical data.

Results: We reviewed imaging of 92 patients (mean age 68 yrs; males 49%, cirrhosis 20%), including multiphase CT in all and MRI in 87 (95%). Sixty-six (71%) tumours showed arterial hyper-enhancement, categorized as full-nodule (12/66, 18%), >25% of nodule (20/66, 30%) and peripheral (34/66, 52%). The remaining ICCs were either iso-enhancing (5%) or hypo-enhancing (24%). Among 12 ICCs with full-nodules hyper-enhancement, 6 were isoelectronic and enhancing in portal/late phase (HCC-like pattern), including 1 cirrhotic patient. Overall, 4/94 (4%) ICCs (1/18 cirrhosis, 6%) showed a HCC-like pattern, accounting for misclassification as HCC on imaging review. After a median follow-up of 29 months, 61% of patients were alive and free of disease. Peripheral rim enhancement was
associated with a worse prognosis (48% versus 70%; p=0.150).

Conclusion: ICC can be misdiagnosed as typical HCC in 4% of cases, showing a favourable survival. ICCs with peripheral rim enhancement are associated with the worst prognosis.

B-0531 11:42
The role of dynamic contrast-enhanced MRI analysis of perfusion changes in hepatocellular carcinoma
A.M. Elzeneini, 1 M.I. Yousef, 1 M.M. Refaat, 1 Cairo/EG, 2 Benha/EG (dr.elzeneini@gmail.com)

Purpose: To evaluate the functional role of DCE-MRI analysis of perfusion changes in multi-step hepatocarcinogenesis.

Methods and Materials: 53 patients with liver cirrhosis having 87 hepatic lesions (14 DNs, 52 de novo HCCs, 16 recurrent HCCs, 2 malignant PV thrombi, 3 peribladder hyperemic rings) and 42 patients without cirrhosis (30 positive for viral hepatitis, 12 negative) all underwent 3T multiphase DCE-MRI assessment. Maximum relative enhancement (MRE), area under curve (AUC), relative area under curve (rAUC), wash-in ratio (WIR), wash-out ratio (WOR), time-to-arrival (T0), and time-to-peak (TTP) semi-quantitative measurements were analysed across groups. Multiphase mean time%-relative enhancement curves were also portrayed.

Results: Comparing perfusion metrics across different pathologies of liver cirrhosis revealed the correlation of haemodynamics with multi-step hepatocarcinogenesis and grades of cirrhosis. Significant performances were highest between DNs and HCCs (MRE 0.88, WIR 0.84, WOR 0.78, TTP 0.74, AUC 0.73, T0 0.70) compared to those between cirrhotic liver and DNs (MRE 0.74, T0 0.62). Least performances were between de novo and recurrent HCCs (TTP 0.66, rAUC 0.66, MRE 0.63). Performances between non-cirrhotic and cirrhotic livers (WOR 0.81, TTP 0.80, rAUC 0.63) surpassed those among different grades of cirrhosis (highest was between non-tumoural and tumoural cirrhosis: TTP 0.74, MRE 0.68, WIR 0.65, WOR 0.65).

Conclusion: DCE-MRI haemodynamic metrics promise potential usefulness as non-invasive biomarkers in the assessment of liver cirrhosis, characterization of cirrhotic nodules, and evaluation of multi-step hepatocarcinogenesis.

B-0532 11:44
Is CT-texture analysis an useful instrument to predict aggressive behaviour of intrahepatic cholangiocarcinoma?
A. Fischera, G. Cardano, A. Mazzaro, G. Zamboni, A. Ruzzenente, M. Mansuelo; Verona/IT (alessandrofighera@gmail.com)

Purpose: To assess the value of CT-texture analysis in predicting disease aggressiveness of resected intrahepatic cholangiocarcinoma.

Methods and Materials: We analyzed the texture of the main lesion in the preoperative multiphasic CT of 28 patients with histologically confirmed intrahepatic cholangiocarcinoma. Texture analysis was performed using LIPI software on the largest slice of the lesion in each contrast-enhanced phase (baseline, arterial, portal and 8-minute delayed phase). First order texture histogram parameters (skewness, kurtosis, entropy) were related with tumour size, presence of macroscopic vascular invasion, satellite lesions, histologically confirmed metastatic lymphnodes, tumour recurrence and overall survival. Comparison was made with an unpaired t-test. For categorical variables, the median value was used to divide the patients into two groups (long axis: 56,5 mm; overall survival: 15.5 months).

Results: entropy values in the delayed phase were significantly different in lesions <56,5 mm or ≥ 56,5 mm (3,15±0,08 vs 3,44±0,1; p=0,037), and in single or multiple lesions (3,18±0,07 vs 3,50±0,12; p=0,042). Although differences for all the other indexes were not statistically significant, we noticed a trend to less uniformity in the portal and delayed phase for lesions with metastatic lymphnodes or overall survival <10.5 months after surgery.

Conclusion: delayed phase entropy is significantly higher in larger lesions and in tumours with macroscopic arterial invasion. Additionally, lesions with higher entropy show a trend to earlier recurrence/mortality. These could depend on the presence of higher cellularity and necrotic areas in more aggressive tumours, causing inhomogeneous enhancement.

B-0533 11:50
Imaging response assessment and outcomes in hepatocellular carcinoma after stereotactic body radiotherapy: iRECIST as a potential substitute for traditional criteria
F. Vercuvio, 1 D. Godfrey, 1 Durham, NC/US, 2 Palermo/IT, 3 Durham, NC/US, 4 Mannheim, NC/US (federicavercuvio@gmail.com)

Purpose: To investigate whether, compared to traditional criteria, modified RECIST 1.1 for immune-based therapeutics (iRECIST) improves prediction of local tumour control and survival in patients with hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT).

Methods and Materials: 56 HCC lesions (mean size 3.1 cm) treated with SBRT in 45 patients (mean age 67 years) were retrospectively included. Each patient underwent CT at exam prior to SBRT and at least once after SBRT. Best overall response was categorized using RECIST 1.1, iRECIST, WHO, mRECIST and EASL criteria. Lesions were then classified as local tumour control (i.e., stable disease, partial or complete response) or local treatment failure (i.e., progressive disease) by each tumour response criteria. Proportions of local tumour control were compared using McNemar's exact test. The 1-year overall survival by each tumour response criteria was estimated using the Kaplan-Meier method.

Results: The local tumour control rate was 85.7% by iRECIST, 80.4% by RECIST 1.1, 67.9% by WHO, 78.8% by mRECIST and 71.4% by EASL. The local tumour control rate by iRECIST was significantly higher compared to WHO, mRECIST, and EASL (p values: 0.0010, 0.0391, 0.0074, respectively). The 1-year survival rate for patients with local tumour control was higher (though not statistically significant) for the iRECIST (86.4% [90% CI, 73.7-93.3]) compared to the other tumour response criteria.

Conclusion: iRECIST may provide more robust interpretation of HCC response after SBRT, yielding improved prediction of local tumour control and 1-year survival rates compared to traditional criteria.

B-0534 10:30
Cranial nerve enhancement in multiple sclerosis (MS) is associated with younger age at onset and more severe disease
L. Haider, 1 E.G. Wei-Shin, 1 E. Obilb, 2 S. Mangesius, 3 A. Di-Bianco, 2 F. Leutmezer, 1 G. Cardano, 1 A. Ruzzenente, 1 A.M. Elzeneini (l.haider@live.at)

Purpose: To compare the efficiency of the diverse McDonald criteria and its relation to brainstem lesion formation on magnetic resonance imaging (MRI) in multiple sclerosis (MS) is uncertain. Our purpose was to determine the frequency of cranial nerve enhancement (CNE) on MRI scans and its association with structural imaging findings and clinical outcome measurements.

Methods and Materials: We retrospectively analysed 651 MRI scans from 183 randomly selected MS patients. Visually screened and signal intensity measurement-confirmed frequencies of CNE (CN III-XII) on post-contrast T1-weighted MRI images were compared to lesion counts and the MS severity score (MSSS).

Results: CNE was present in 8.2% of the analysed MS patients (oculomotor nerve: 1.1%, trigeminal nerve: 2.7%, abducens nerve: 2.2%, facial and vestibulocochlear nerve: 1.6%, vagal nerve: 0.5%). From these, 13% suffered from repeated episodes of CNE and 27% exhibited a CNE duration of >12 months. Median age at MS onset was lower in patients with CNE, 23 vs. 28, p=0.049, MSSS, 5.15 vs. 0.88 (p=0.019), median T2 brainstem, 1 vs. 0 (p=0.041) and total intracranial contrast enhancing lesion counts, 2 vs. 0 (p=0.000), were higher in patients with CNE, compared to age-, disease duration and gender-matched MS patients without CNE.

Conclusion: CNE, present in 8.2%, associates with younger age at MS onset, brainstem lesions and more severe disease course.

B-0535 10:38
Multiple sclerosis: evolution of magnetic resonance imaging diagnostic criteria from McDonald 2001 to McDonald 2017, including MAGNIMS 2016
J.J. Jover Sánchez, 1 D. Prayer, 1 J. Díaz Díaz, 1 C. Ferreiro Argüelles, 1 P. Núñez Valentín, 1 E. Rodríguez García; 2 Madrid/ES (jj.jover90@gmail.com)

Purpose: To compare the efficiency of the diverse McDonald criteria and MAGNIMS criteria after a clinically isolated syndrome (CIS) in patients diagnosed with multiple sclerosis (MS).

Methods and Materials: This is a retrospective, from 2009 to 2018, evaluation of clinical notes and 1.5 T MRI scans of 73 patients diagnosed with relapsing-remitting MS.

Results: Percentage of patients that did not fulfill the different McDonald criteria: 2001 and 2005 criteria-20%, 2010 criteria-11% and only 1% did not fulfill 2017 criteria (1 patient); 11%-MAGNIMS 2016. Diagnosis performing only one MRI study in 3% using McDonald 2001 or 2005 criteria, 32% using 2010 criteria, 47% using MAGNIMS 2016 and 90% using 2017 criteria (47% had dissemination in space demonstrated by MRI and cerebrospinal fluid...
B-0536 10:46
Evaluation of signal intensity in dentate nucleus and globus pallidus after repeated administrations of gadolinium in multiple sclerosis patients
I. Zorzenon, M. Ukmar, A. Gennari, A. Zdjelar, L. Bottaro, A. Sartori, A. Dinoto, M. A. Cova; Trieste/IT (irene.zorzenon@gmail.com)

Purpose: The recently described association between repeated administration of gadolinium based contrast agents (GBCAs) and increased signal intensity (SI) in the basal ganglia on T1-weighted unenhanced MR images is subject of debate. Aims of the study were to evaluate in multiple sclerosis (MS) patients, presenting with a CIS would need only 1 MRI to fulfill the criteria. Using these new criteria, most patients presenting with a CIS would need only 1 MRI to fulfill the criteria.

Methods and Materials: We retrospectively identified 52 MS patients (37 F, 15 M; age 46.2±11 years) who received repeated administrations of GBCAs compared to patients who received gadobutrol-only with patients who received gadobutrol plus other macrocyclic GBCAs. SI ratio changes in the dentate nucleus (DN) and globus pallidus (GP) on T1-weighted unenhanced MRI scans. B aseline and follow-up T1-15 M; age 46.2±11 years) who received repeated administrations of GBCAs compared patients who received gadobutrol-only with patients who received gadobutrol plus other macrocyclic GBCAs.

Methods and Materials: We retrospectively identified 52 MS patients (37 F, 15 M; age 46.2±11 years) who received repeated administrations of GBCAs (median 5, range 3-12) during follow-up MR scans. Baseline and follow-up T1-weighted image series obtained on the same 1.5T scanner were analysed by two readers; ROI measurements of mean SI were performed and SI ratios (DN-to-pons and GP-to-thalamus) differences were calculated for both groups. Paired samples T-test was used for the statistical analysis (p<0.05).

Results: 27 MS patients received gadobutrol only, 25 patients gadobutrol + other macrocyclic GBCAs (gadoteridol and/or gadoterate meglumine). No changes in DN-to-pons and GP-to-thalamus SI ratios have been observed in both groups (p=0.79, p=0.26). Differences between baseline and follow-up SI ratios did not differ between groups (p=0.06, p=0.37).

Conclusion: Repeated administrations of macrocyclic GBCAs were not associated to SI changes of DN and GP in MS patients, both in gadobutrol-only and gadobutrol plus other macrocyclic GBCAs group. Furthermore, SI ratio difference between last and first examinations did not differ between the two groups.

B-0537 10:54
Brain imaging in 43 serologically positive cases of Chikungunya virus infection with neurological complications at our institute during epidemic outbreak
A. Aryan, K. Sethi; New Delhi/IN (abhaykaryan@gmail.com)

Purpose: Brain imaging in 43 serologically positive cases of Chikungunya virus infection with neurological complications at our institute during epidemic outbreak.

Methods and Materials: Retrospective study of 43 seropositive (PCR positive) cases of Chikungunya virus infection who underwent magnetic resonance imaging (MRI) for neurological complications such as altered sensorium, seizure or stroke-like symptoms from July to November, 2016. The two neonates who were included in the study were maternal seropositive cases. MRI brain findings such as T2W-FLAIR signal and diffusion and gradient images were analysed for pattern of involvement.

Results: Patients aged between 5 days to 83 years were included in the study. There were 43 patients, 35 males and 8 females. MRI brain was normal in 13 patients (30%). There were predominantly discrete and confluent supratentorial T2W and FLAIR hyperintense white matter foci in 22 patients (51%) and restricted diffusion was seen in 14 patients (32%). Four patients had infratentorial cerebellar white matter or middle cerebellar peduncle lesions with restricted diffusion. In three paediatric patients including two neonates, pattern of involvement was diffuse white matter changes with restricted diffusion. Haemorrhage in supratentorial white matter was seen in one patient only.

Conclusion: Confluent white matter T2 and FLAIR hyperintensity with restricted diffusion were observed in all the paediatric patients of Chikungunya virus fever with neurological complications. Focal and confluent supratentorial white matter T2 and FLAIR hyperintense foci were seen in adult age group with some showing restricted diffusion.
were significantly lower in MS0 subjects compared to CG. No other statistically significant differences in ADC values between groups were found.

Conclusion: Measurements of ADC values within NAWM performed in baseline MRI before or during the first year of treatment may be useful in the prediction of treatment response in MS. Increased ADC values in the frontal and fronto-parietal WM regions can predict a poor response to INF-Beta therapy during the 4-year follow-up in the MS cohort populations. In the regions and decreased ADC values in both caudate nuclei may predict a good response to treatment.

B-0541 11:26
Quantitative brain lesion distributions in MOG-Ab-positive and AQP4-Ab-positive patients: overlaps and differences
L. Yang, H. Li, C. Quan, L. Zhou, D. Geng, Y. Li; Shanghai/CN (mozi001_ren@sina.com)

Purpose: The aim of this study is to quantitatively delineate and compare the brain lesions and their distributions in two subsets of patients with NMO spectrum disorder: myelin oligodendrocyte glycoprotein antibody positive (MOG-Ab-positive) and aquaporin-4 antibody positive (AQP4-Ab-positive).

Methods and Materials: Fifty-seven and thirty-three clinical MR examinations were performed on fifty-two AQP4-Ab-positive and twenty-eight MOG-Ab-positive patients, respectively. Hyper-intense T2 lesions were segmented manually on each axial FLAIR image and the lesion sizes were calculated. Probabilistic lesion distribution maps were created for each group by averaging the lesion images after normalization to standard space. Lobe-wise and voxel-wise quantitative comparisons of the two distributions were performed.

Results: We found infratentorial and supratentorial brain lesions in both AQP4-Ab-positive and MOG-Ab-positive patients, with high occurrence frequency and large inter-group overlap mainly in deep white matter (WM). In comparison with AQP4 group, the brain lesions of the MOG-Ab-positive patients had larger size, dispersed distribution, and significantly higher probabilities in grey matter (GM) and juxtacortical WM regions prominently in temporal, limbic and parietal lobes.

Conclusion: MOG-Ab-positive and AQP4-Ab-positive group showed similar but quantitatively different brain lesion distribution. These results provide valuable information for imaging-based initial diagnosis and understanding of pathogenesis in the two subsets of patients.

B-0542 11:34
Magnetic resonance imaging findings at optic neuritis of recurrent optic-axial spinal phenotype, multiple sclerosis in a cohort of Brazilian patients from Rio de Janeiro
A.C. Brandão, Nascimento, A.R. Araujo e Araujo, N.S. Meneguet
e, M. Papais Alvarenga, C.C.F. Vasconcelos, C.A.M. Bento, P.P. Rafful, L.A. Brandao, R.M. Papais Alvarenga; Rio de Janeiro/BR (annachrisbrandao@outlook.com)

Purpose: Optic neuritis may evolve into multiple sclerosis and MRI demonstrates lesions in optic nerves. Objective: to study MRI of optic nerves.

Methods and Materials: Patients with recurrent optic neuritis (ON) with a good recovery and transverse myelitis (TM) were followed from 2000 to 2015, 10 years of disease and EDSS<3, were classified as "benign"with a recurrent optic spinal phenotype multiple sclerosis (OSMS). A prospective population study was performed on 16 patients OSMS. All patients were negative (AQP4)-IgG and negative (MOG)-IgG. Most patients showed brain and spine lesions met MAGNIMS criteria (2016). For lesions on MRI in sequence, STIR with the lesion images after normalization to standard space. Lobe-wise and voxel-wise quantitative comparisons of the two distributions were performed.

Results: We found infratentorial and supratentorial brain lesions in both AQP4-Ab-positive and MOG-Ab-positive patients, with high occurrence frequency and large inter-group overlap mainly in deep white matter (WM). In comparison with AQP4 group, the brain lesions of the MOG-Ab-positive patients had larger size, dispersed distribution, and significantly higher probabilities in grey matter (GM) and juxtacortical WM regions prominently in temporal, limbic and parietal lobes.

Conclusion: MOG-Ab-positive and AQP4-Ab-positive group showed similar but quantitatively different brain lesion distribution. These results provide valuable information for imaging-based initial diagnosis and understanding of pathogenesis in the two subsets of patients.

B-0543 11:42
Voxel-based analysis of relaxation rates in multiple sclerosis: correlates of cognitive impairment and physical disability
M. Guarantelli, R. Lanzillo, M. Comerci, M. Cassiano, T. Costabile, A. Prinster, R. Negra, V. Brescia Morra, A. Brunetti; Naples/IT (guarante@unina.it)

Purpose: Brain tissue relaxation rates have shown significant correlations with clinical data in multiple sclerosis (MS). Aim of this retrospective study was to assess voxelwise the correlation between cortical relaxation rates, obtained by relaxometric segmentation of clinical MRI studies, and both physical and cognitive impairment in MS.

Methods and Materials: R1 and R2 relaxation rate maps and GM maps were calculated using a multiparametric relaxometric segmentation procedure, analysing clinical MRI studies in 241 patients with relapsing-remitting MS. Correlation with EDSS and with the percentage of failed tests at a cognitive test battery (Rao’s Brief Repeatable Battery and Stroop test, available in 186 patients) were assessed voxelwise, including age, sex, disease duration and voxel GM content as covariates, using the SPM-based “Biological Parameter Mapping” software package.

Results: Extensive clusters (p<0.05, corrected for familywise error at cluster level) of inverse correlation between both EDSS and cognitive scores and cortical R1, and to a lesser extent R2, values were present, mostly in the periradicone cortices for EDSS (p<0.001), and in the hippocampi (p<0.001), precuneus (p<0.001), dorsolateral prefrontal cortices (p<0.001) and cingulate (p<0.003) for cognitive scores.

Conclusion: Cortical R1 and R2 values significantly correlate with both physical and cognitive impairment in MS, independent of atrophy, with distinct regional patterns.

B-0544 11:50
Deep grey matter and multiple sclerosis: is there a correlation between MR imaging and disability?
S. Torlone, A. Corridore, M. Martino, M. Micelli, L. Panebianco, R.Totaro, A. Splendiani, C. Masciocchi, L’Aquila/IT, Rome/IT (torlone.silvia@gmail.com)

Purpose: To investigate the association between deep grey matter (DGM) lesions and clinical features in relapsing remitting multiple sclerosis (RR-MS) patients in a long-term follow-up.

Methods and Materials: We considered 228 patients with RR-MS, chosen among 460 MS patients of the MS Centre of L’Aquila, with clinical evaluation by EDSS at the onset and during clinical/MRI follow-up. In 45 patients DGM lesions appeared during MRI follow-up, 45 patients without DGM lesions were selected among the 228 RR-MS patients as a control group, according to sex, age, disease duration and EDSS at the onset. In both groups the first and the last MR examination were compared to assess the differences in White Matter (WM) lesion load, cortical lesions frequency and EDSS.

Results: WM lesion load and cortical lesions frequency were significantly higher in the group with DGM lesions compared to control group (p<0.005). Although EDSS scores at the onset were similar for both groups, it was increased in patients with DGM lesions (p<0.01). 7 Patients (15.5%) with DGM lesions developed Secondary Progressive MS (SP-MS) with statistically significant frequency compared to control group (p=0.01).

Conclusion: A strong correlation between the presence of DGM lesions and EDSS, WM lesion load, cortical lesions frequency and development of SP-MS was observed. EDSS increase was noted at the time of DGM lesions appearance and showed a persistent growth in the follow-up. Future research is needed to improve DGM lesions detection in order to confirm their prognostic value and to help the specialist in therapeutic choices.
B-0544 10:46
Association between background parenchymal enhancement in breast MR imaging and outcome of breast cancer patients treated with neoadjuvant chemotherapy
R. Rella, A.R. Scrofani, F. Petta, E. Bull, M. Conti, M. Giuliani, P. Belli, R. Manfredi; Rome/IT (annarita.scrofani90@gmail.com)

Purpose: To retrospectively investigate the association between background parenchymal enhancement (BPE) of the contralateral breast in magnetic resonance imaging (MRI) and long-term outcome in breast cancer patients treated with neoadjuvant chemotherapy (NAC).

Methods and Materials: Two hundred and twenty-two women with invasive breast cancer who underwent breast MRI before and after NAC between 2006 and 2012 were retrospectively analysed. All images were reviewed by two blinded readers who classified BPE into four categories (1=minimal, 2=mild, 3=moderate, 4=marked) before and after NAC.

Results: A higher pre-treatment BPE was related to pCR suggesting a possible role in prediction of response.

Conclusion: BPE was significantly higher in premenopausal patients (P=0.004 for reader 1; P=0.011 for reader 2) and in patients with high mammographic density (P=0.04 and P=0.03 reader 1 and reader 2, respectively). Triple negative tumours were more likely to show low BPE (78%, P=0.001).

The pre-treatment BPE was significantly higher in the pCR group than in the non-pCR group (P=0.0377) while there was no significant difference in BPE changes after NAC between the two groups (P>0.05).

B-0548 11:02
Breast MRI: potential use of unenhanced morpho-functional diagnostic protocols
M. Nadrijanski, Z. Milosevic; Belgrade/RS (dr.m.nadrijanski@gmail.com)

Purpose: To test different unenhanced (UE) breast MRI protocols in lesion detection with different b-parameters on diffusion-weighted imaging (DWI) added to unenhanced T2W and T1W series.

Methods and Materials: Sixty patients (N=60) were included in the retrospective analysis (1.5T) with histologically proven lesions: malignant (n=40) and benign (n=20) and the detection was evaluated with 4 different UE protocols (P1 - 4) with the blinded data: P1 (T2W-STIR, T2W-TSE, T1W-TSE), P2 (P1 + b50, 850), P3 (P2 + b100), P4 (P3 + b1200). Upon the completion of the study, the full diagnostic protocol (FDP) was unblinded and
the histologic diagnosis revealed. Performance assessment was performed for all protocols.

Results:
The average patient age and tumour size in n1 and n2 were similar (64.3±/-4.4 vs. 64.2±/-4.6; 1.39±/-0.46 cm vs. 1.49±/-0.56, p=0.57). In malignant lesion detection (n1), the following sensitivity (Se) was obtained [%]: P1 67.5, P2 80, P3 92.5, and P4 95. In benign lesions (n2), the following Se was obtained [%]: P1 76, P2 80, P3 90, P4 95, and P5 90. Se of the FDP was 100% in n1 and n2.

Conclusion: UE protocols with added DWI with high b values (b 1200, b 1000) contributed to high rate of either benign or malignant lesion detection (Se=>0%). Disseminated breast cancer on UE were smaller than 1cm. The difference in Se per protocol between benign and malignant lesion detection was not considered significant (p>0.05). Potential use of UE protocols with high b values may contribute to lesion detection.

B-0550 11:10
Non-enhanced breast MRI (DWIBS mammography) for screening women with dense breasts: a feasibility study
T. Uematsu, ShizuokaJP (t.uematsu@secchr.jp)

Purpose: To evaluate clinical feasibility of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) mammography for detecting mammographically occult breast cancer in women with dense breasts and develop assessment criteria.

Methods and Materials: 330 patients with 360 lesions including 34 mammographically occult breast cancers were examined with DWIBS and short T2 inversion recovery (STIR) with b values of 0, 50, 200, 400, 800, 1000 s/mm². The scanning time was 8 minutes and 20 seconds. Mammographically occult breast cancers were evaluated for visibility on DWIBS mammography. Each reading time including all 360 lesions was measured, then the signal and morphology on STIR were compared with breast cancers and benign lesions to make the diagnostic criteria. DWIBS mammography was displayed as an inverted grey-scale maximum intensity projection. A lesion detected on DWIBS mammography was considered positive if it showed low signal intensity relative to the background breast parenchyma.

Results: DWIBS mammography sensitivity for mammographically occult breast cancer was 91% and the average reading time was 11 seconds. Low/iso-intensity on STIR (p<0.0001), non-mass lesion type (p=0.026), and ill-defined margin (p<0.0001) were significantly associated with breast cancer.

Conclusion: Unenhanced DWIBS mammography with STIR has high sensitivity for mammographically occult breast cancer with the shorter scanning and faster reading time; this technique might be useful as a supplemental screening modality for women with dense breasts. A unique area of low signal intensity on DWIBS mammography with low/iso-intensity on STIR should be recalled, especially with ill-defined margin.

B-0551 11:18
Rethinking abbreviated breast MRI: potential to skip DCE scans by integrated semi-quantitative T2 and ADC analyses
M. Dietzel, R. Schulz-Wendtland, E. Wenkel, C. Bliedows, T. Bäuerle, M. Uder, S. Ellmann; Erlangen/DE

Purpose: To evaluate whether T2 signal-intensity mapping (T2-SIM) and apparent-diffusion-coefficient (ADC) analysis could allow skipping dynamic-contrast-enhanced scans (DCE) from an abbreviated breast MRI protocol.

Methods and Materials: T2-SIM consists of T2-weighted MR images with very-low breast lesions (B-RRADS IV/V) upon mammography and/or ultrasound received histopathological verification and standardized breast MRI. Protocols included DCE, T2-STIR and SPAIR-DWI sequences according to international standards (B values 50, 400, 800s/mm²). Lesions were defined by regions of interest (ROI) by two blinded observers independently (R1/R2: intermediate/no experience in breast MRI). ROIs were automatically copied between the different scans (DCE, T2, DWI). The following parameters were used for lesion characterization: DCE: enhancement characteristics normalized to baseline during the early and delayed phases, T2: signal intensity normalized to noise and background (pectoral muscle), and DWI: mean ADC. Univariate analysis (area under the ROC curve: AUC) was followed by multivariate regression analysis. This allowed to compare integrated assessment of ADC-DCE, ADC-T2 and ADC-DCE+T2 (AUC comparison; alpha=5%). Intraclass-correlation-coefficients/ICC were calculated to assess observer-related bias.

Results: There were 176 lesions (malignant: 107/60.8%). Inter-observer variability was “excellent” (ICC: 0.81-0.98). ADC and T2 performed similarly (AUC=0.657/0.669; P=0.9). Both were outperformed by ADC (AUC=0.817; P<0.003). Integration of ADC-DCE and ADC-T2 showed equal results (AUC=0.847/0.833; P=0.45). Use of all three parts of the protocol did not further increase diagnostic performance (ADC+T2+DCE: AUC=0.856; P=0.1).

Conclusion: T2 signal-intensity mapping and ADC analysis could allow skipping DCE scans, thus enabling a shorter, safer and cheaper breast MRI examination. This new aspect of abbreviated breast MRI did not sacrifice diagnostic accuracy and should, therefore, be validated in prospective clinical trials.

B-0552 11:26
Correlate of perfusion parameters on dynamic contrast-enhanced MRI with bimolecular factors and subtypes of breast cancer
L. Liu, B. Yin, W. Peng, Shanghai/CH (llbby@163.com)

Purpose: This study aimed to investigate the correlation between the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and the molecular biological expression of breast cancers.

Methods and Materials: This prospective study enrolled a total of 67 consecutive patients with breast carcinomas. DCE-MRI were performed in all patients before surgery. Correlations among perfusion parameters and pathological factors, including tumour size, oestrogen receptor (ER), progesterone receptor (PR), Ki67, human epidermal growth factor receptor 2 (HER-2), epidermal growth factor receptor (EGFR) expression, CK5/6 and subtypes of breast cancer were analysed.

Results: Among these 67 lesions, the mean diameter of tumour was 4.48±1.73cm. There was no correlation between perfusion parameters and tumour size; Ktrans and Kep were positively correlated with Ki67; the Vp values in negative and positive expression of CK5/6 were statistically different; the mean Ktrans value of HER-2 overexpression was higher than that of Luminal A and Luminal B; the mean Kep value of HER-2 overexpression lesions was higher than that of Luminal A. The mean Ve value of triple-negative lesions was higher than that of HER-2 overexpression, Luminal A and Luminal B; the Vp value of HER-2 overexpression lesions was lower than that of Luminal A and Luminal B; the mean Max Conc value of triple-negative lesions was higher than that of Luminal A and the mean MaxSlope of HER-2 overexpression was lower than that of Luminal A and Luminal B.

Conclusion: Perfusion parameters of DCE-MRI can non-invasively evaluate the molecular biological expression and molecular subtype of breast cancer.

B-0553 11:34
Can perilesional oedema detected in MRI be considered as a biomarker for breast cancer? The role of T2-weighted sequences
G. Panzironi, G. Moffa, M. Galati, F. Marzocca, E. Collalunga, F. Pediconi; Rome/IT (g.panzironi@hotmail.com)

Purpose: To evaluate whether the presence of perilesional oedema on T2-weighted sequences in magnetic resonance imaging (MRI) is correlated with worse breast cancer prognosis.

Methods and Materials: A retrospective study in August 2017 to March 2018, 68 patients with biopsy-proven breast cancer underwent breast MRI. All breast MR examinations were performed on 3T scanner using a dedicated protocol, including T2-weighted, DWI and T1-weighted sequences, before and after paramagnetic contrast agent administration (0.2 ml/kg Prohance®). 20 patients (mean age of 52 years) with perilesional oedema, detectable as T2-weighted hyperintensity, were enrolled in this study. The patients were divided into 3 groups characterized by different prognostic phenotypes: Luminal A, Luminal B and triple-negative/basal-like, according to molecular profiling (Ki-67 index, hormone receptor status and HER-2 overexpression). Lesion size measurements and histological examinations were also performed.

Results: On histological examination, 40 lesions were detected: 33 (82.5%) were invasive ductal carcinoma (IDC) and 7 (17.5%) were invasive lobular carcinoma (ILC). Tumour mean size was 25.8 mm. The prognostic phenotype of patients was: Luminal A in 6 (20%), Luminal B in 16 (53.3%) and triple negative in 8 (26.7%). Perilesional oedema was significantly correlated with breast cancer with worse prognosis (Luminal B and triple-negative) rather than with those with better prognosis (Luminal A) (p < 0.0001, Chi-squared test).

Conclusion: Perilesional oedema is significantly associated with more aggressive breast cancer. Therefore, surrounding oedema detected on T2-weighted sequences may be useful and could be considered an additional prognostic indicator in the evaluation of breast cancer.

B-0554 11:42
Diagnostic utility of breast DCE-MRI in patients with diagnosis of atypical ductal hyperplasia after inadequate breast biopsy
V. Bertani 1, M. La Grassa 1, L. Balestri 2, N. Berger 3, M. Urbani 4, T. Frauenfelder 5, A. Boss 1, M. Marcon 6, Udine/IT; 2Pordenone/IT; 3Aviano/IT; 4Zurich/CH (magda.marcon@uiz.ch)

Purpose: To evaluate the diagnostic utility of DCE-MRI in predicting upgrade to malignancy (UM) after a percutaneous biopsy (PB) diagnosis of ADH.

Methods and Materials: In this IRB approved study (January 2016-December 2017), 68 women (median age, 51 years; range 31-73 years) with a PB diagnosis of ADH and subsequently undergoing DCE-MRI at 1.5 T were retrospectively included. PB was performed under stereotactic guidance using 8-11 gauge vacuum-assisted biopsy (VAB) systems in case of mammographic-occult (34 lesions) or palpable (34 lesions) lesions. All patients were staged under ultrasound-guidance using 14 gauge core-needle-biopsy (CNB) (28 cases). All cases underwent surgical excision and final histologic diagnosis was recorded. Two radiologists in consensus evaluated: a) maximum diameter (MD) of the lesion in images prior to biopsy b) biopsy correlation to the lesion. MD and biopsy modality were
compared in cases with/without MRI-correlation as well as with/without UM. Comparison between cases with/without MRI-correlation and UM was also performed. Mann-Whitney U test was used to compare median values and X to compare proportions.

Results: Median MD was 18 mm (IQR 11-30, range 6-63 mm) and 12 mm (IQR 8-20 mm, 6-40 mm) for cases undergoing VAB and CNB, respectively (p=.054). A MRI-correlation was present in 17/40 (42.5%) and in 19/28 (67.9%) which underwent VAB and CNB, respectively (p=.081). 17/28 (75%) had UM: 13/17 (76.5%) low-and intermediate grade DCIS and 4/17 (23.5%) invasive carcinoma. 8/40 (20%) cases after VAB and 9/28 (32.1%) cases after CNB had UM (p=.027). All but two cases with UM had a MRI-correlation (88.2%) and both cases without were classified as low-grade DCIS (MD at surgical excision 3 mm).

Conclusion: DCE-MRI can be used to predict UM after a PB diagnosis of ADH and should be used in the lesion assessment to avoid unnecessary surgical procedures.

B-0555 11:50 Usefulness of CAD for diagnostic automated breast US in MRI detected lesions

Y. Kim1, N. Choi1, B. Kang1, J. Lee1, N. Jung1; 1Bucheon/KR, 2Seoul/KR (yumkim17@gmail.com)

Purpose: To evaluate the diagnostic performance using CAD for ABUS and to analyse the characteristics of CAD-detected lesions and the causes of false marks.

Methods and Materials: Totally 40 breast cancer patients who underwent diagnostic automated breast ultrasound (ABUS) for detecting multiple suspicious lesions found on MRI were included. We applied the CAD (QVCDAD)® to all of the ABUS examinations which were performed after breast MRI. We evaluated the diagnostic accuracy of CAD. Then we analysed the characteristics of CAD-detected lesions and the causes of false-positive, false-negative cases, and false marks.

Results: Of the total 122 suspicious lesions found on MRI of 40 patients, 52 daughter nodules near main breast cancer were excluded, and then 71 lesions were analysed. The sensitivity, specificity, PPV and NPV of CAD for ABUS were 75.5%, 90.9%, 94.9%, and 62.5%, respectively. 81.4% invasive ductal cancer was detected by CAD. 85.3% invasive ductal cancer showing mass which is more than 1-cm mass, was detected by CAD. The mean size of true-positive versus false-negative lesions was 75.5 ± 25.0 mm and 32.5 ± 24.1 mm, respectively (p<0.001). The mean size of impalpable masses was 9.5 ± 6.2 mm and 4.9 ± 3.9 mm, respectively, and the mean size of suspicious masses was 11.3 ± 10.2 mm and 5.7 ± 4.7 mm, respectively (p<0.001). The lesion detection rate was 95.0% for false-negative lesions, 77.5% for false-positive lesions, 95.0% for true-negative lesions, and 81.4% for true-positive lesions.

Conclusion: Promising detection sensitivity was obtained from the CAD for ABUS on invasive ductal cancer showing mass which is more than 1cm in size.

Interventional Radiology

SS 609 Vascular interventions in oncology (including radioembolisation)

Moderators:
- S. Puchner; Vienna/AT
- V. Vidiak; Zagreb/HR

K-12 10:30

Keynote lecture
- J.I. Bilbao; Pamplona/ES

B-0556 10:39 Multifunctional iron oxide nanoparticle-embedded PVP-HEC microparticles as a drug-eluding embolic material

F. Nurili1, G. Bekaroglu1, S. Icli2, A. Bas1, I. Caymaz2, I. Yurdaisik1, N. Jung1; 1Bucheon/KR, 2Seoul/KR (omtopcuoglu@gmail.com)

Purpose: To develop MRI-imageable novel HEC-PVP-magnetic embolic microparticles containing 16 mcg of DOX. In the chemo-TAE group, embolisation was performed after catheterisation of the renal artery with microcatheters. In the control group, a 4 mg DOX alone was injected through the renal artery. Imaging and magnetic ablation were performed after embolisation using a 1.5-T high-field MR scanner equipped with high-performance gradients and fast receiver hardware.

Methods: All synthesized microparticles were calibrated in the 40-500-micron range and were easily injectable through a microcatheter. The particles exhibited no cytotoxicity against HFOB cells (p>0.05). In vivo, the particles were capable of occluding the arteries, and imageable with MRI. In the chemo-TAE group, DOX leakage in kidney tissue detected after catheter ablation was significantly less than that in the control group (p<0.001). Infarction and necrosis in the renal cortex were observed in the chemo-TAE group and TAE group. The maximum temperature achieved within the rabbit kidney was 48±1°C after 20 min with radiofrequency exposures at 25 kW.

Conclusion: These novel microparticles can be loaded with an anticancer drug to be useful for embolisation therapies with traceability and magnetic ablation properties.

B-0557 10:47 Transarterial radioembolisation with Yttrium90 glass microspheres without temporary or permanent occlusion of the cystic artery appears to be safe in terms of adverse effects

O.M. Topcuoglu1, N. Selcuk, B. Sarkany; Istanbul/TR (omtopcuoglu@gmail.com)

Purpose: To present the results of transarterial radioembolization (TARE) treatment regarding radiation-induced cholecystitis when the cystic artery take off was noted within the vicinity of the treatment zone.

Methods and Materials: Patients with primary or secondary malignant liver tumours treated with TARE, in whom cystic artery was located in the vicinity of the treatment zone on 99-Technetium-MAA angiograms were included in this study. Whole liver dose, tumour dose and healthy injected liver dose, lung dose and if applicable the gallbladder dose were all calculated by using the Medical Internal Radiation Dose (MIRD) formula from SPECT-CT images. Qualitative and quantitative assessment of the gallbladder were performed on SPECT-CT. The observed adverse events were classified according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE v5.0).

Results: A total of 54 TARE procedures from 29 patients (18 men and 11 women) with a mean age of 65±13.3 years meeting the inclusion criteria, were involved in the current study. The mean tumour dose, healthy injected liver dose, healthy whole liver dose and gallbladder dose were 204±9±68 Gy, 70.5±15.7 Gy, 31.1±12.7 Gy and 96.4±53.4 Gy, respectively. The mean follow-up period was 14±5.2 months. Qualitative assessment revealed gallbladder radioactivity on SPECT-CT in 11 (32.3%) patients with 6 mild and 5 moderate-severe radioactivity. There was no detected grade 2 or 3 adverse events.

Conclusion: TARE treatment might be safely performed without cystic artery intervention when the cystic artery was located within the treatment zone by means of SPECT evaluation.

B-0558 10:55 Post-SIRT 90Y-PET/CT showing variable deposition of 90Y in various liver tumour types

S. Thoduka1, S.ERCcoglan1, V. Czmehorsky1, N. Sparh2, J.-H. Schierz1, A. Schenk1, N. Abolmaali1; 1Dresden/DE, 2Lübeck/DE, 3Bremen/DE (smrita.thoduka@gmail.com)

Purpose: Highly selective uptake of radioactive microspheres is central to effective SIRT. The purpose of our study was to compare the variable selectivity of resin particle deposition, with regard to type of tumour and catheter-position at infusion, in tumour vs. healthy liver tissue as recorded in the post-treatment 90Y-PET/CT.

Methods and Materials: All SIRT procedures between 01/2017 and 08/2018 in the treatment of hepatocellular carcinoma (HCC, n=37), cholangiocarcinoma (CCC, n=13) and metastatic colorectal carcinoma (CRC, n=14) with post-treatment 90Y-PET/CT were reviewed. Pre-treatment gadoxetate late-phase MRI including complete segmentations were registered to post-therapeutic 90Y-PET/CTs. The selectivity of 90Y-uptake by the hepatic tumours, as classified into low, moderate and high by an expert of nuclear medicine and radiology, was compared with regard to tumour type as well as catheter-position during infusion. Quantitative radioactivity-uptake in liver and malignant tissue was calculated.

Results: 33 out of 64 post-treatment PET/CTs showed highly selective tumour 90Y-uptake. A high percentage of HCC (54%) and CCC (69%) compared to CRC metastases (28%) showed highly selective deposition. Selective catheter-positioning employed in the treatment of HCC showed a significant (p = 0.012) impact on selective uptake in tumour tissue, whereas catheter-position during the treatment of CCC and CRC showed no significant effect on uptake selectivity.
Conclusion: Our study showed the significance of selective catheter-positioning on achieving highly selective uptake in HCC lesions. CCC lesions were well controlled without enhancing even with a selective catheter-position. *μ*-microspheres were comparatively less selective for CRC metastases in the liver. This has possible implications in planning catheter-position during SIRT.

B-0559 11:03
Intrahepatic mitomycin C infusion in liver-dominant metastatic breast cancer: factors influencing the outcome
B.M. Aarts¹, E.G. Kloopenhouwer¹, R.C. Dresen², A. Laenen², R.G.H. Beets-Tan¹, K. Punse¹, P. Neven³, H. Wildiers³, G. Maleux²; ¹Amsterdam/NL, ²Leuven/BE (b.aarts@rki.nl)

Purpose: The aim of this study was to determine the safety and efficacy of Mitomycin C (MMC) infusion in chemo resistant liver dominant metastatic breast cancer patients (LMBC) and to determine factors influencing overall survival.

Methods and Materials: We retrospectively analysed 176 LMBC patients treated with MMC infusion between 2000 and 2017. Local response was measured with CT follow-up by RECIST 1.1 criteria after 1-3 cycles. Toxicities were registered by the CTCae version 5.0. Overall survival (OS) and hepatic progression free survival (HPFS) were evaluated using Kaplan Meier methodology. After univariate analysis, a stepwise forward multivariate (MV) prediction analysis was performed to select independent pre-treatment factors associated with OS.

Results: RECIST evaluation (n=132) showed a partial response rate of 20%, stable disease of 57% and progressive disease in 23%. Toxicity grade 3 and 4 levels were reported in 17.5%. Median PFS was 5.5 months (CI:4.5-6.8) and median OS was 7.8 months (CI:6.1-9.8). Significant independent baseline predictors of worse OS on MV analysis included amount of prior systemic chemotherapy (HR=1.2 CI:1.1-1.3), prior liver ablation (HR=5.8 CI:1.8-19.4), higher liver tumour burden (HR=2.4 CI:1.5-3.7), elevated levels of bilirubin (HR=2.18 CI:1.3-3.8) and ALT (HR=1.5 CI:1.01-2.09).

Conclusion: MMC infusion was safe and effective in LMBC patients. MV analysis showed a worse OS in patients with increased amount of prior systemic chemotherapy, prior liver ablation, higher liver tumour burden and elevated levels of bilirubin and ALT.

B-0560 11:11
Bland embolisation as the sole endovascular treatment for unresectable hepatocellular carcinoma: survival analysis of 230 patients observed for seven years in a single centre
E. Lanza, I. Bolengo, D. Poretti, R. Muglia, R. Ceriani, V. Pedicini; Milan/IT (isabella.bolengo@humanitas.it)

Purpose: To assess the overall survival (OS) of patients with unresectable HCC treated with bland embolisation (BE) after a seven-year observation, comparing it with recent chemoembolisation (TACE) literature; to evaluate OS predictors and test whether a modified TAE (TAE-g) with n-butyl-cyanoacrylate changed the OS or procedural time.

Methods and Materials: This was a retrospective single-centre study of 230 patients (M/F = 189:41; mean age = 73) who underwent 543 treatments: 228 TAE-g (42%), 227 TAE (42%), and 88 TAEEL (TAE + Lipiodol) (16%). TAE and TAE-g were performed using 40µ or 100µ microparticles. We evaluated previous/concurrent percutaneous ablation (PA), Child-Pugh and BCLC scores and survival time from the first treatment. OS and predictors were assessed using log-rank tests and Cox regression analyses.

Results: Observation time ranged from 0.1 to 86.7 months; 116 (50%) patients died, 8 (3%) were lost to follow-up, 106 (46%) were still alive at the end of the observation. Median OS was 28 months (survival at 1, 2, 3 years = 85%, 59%, 38%). Significant predictors of OS were the total number of embolisations received (p = 0.035) and having a history of PA (p = 0.024). No differences were noted between TAE and TAE-g.

Conclusion: BE performed primarily using small microparticles or secondarily with Lipiodol provided high survival rates in patients with unresectable HCC, higher than that reported by recent TACE trials. The most reliable predictor of survival was PA, followed by the number of endovascular treatments. TAE and TAE-g provided similar results in OS and procedural time.

B-0561 11:19
Safety and efficacy of small versus large drug-eluting bead transarterial chemoembolisation for hepatocellular carcinoma
S.Y. Lee, H.-Y. Ou, C.-Y. Y., F.-Y. Cheng; Kaohsiung/TW (siehyyang48@hotmail.com)

Purpose: To compare the safety and efficacy of 100-300 µm versus 300-500-µm drug-eluting bead transarterial chemoembolization (DEB TACE) and to determine predictive factors associated with complete response (CR) in the treatment of hepatocellular carcinoma (HCC).

Methods and Materials: This retrospective cohort study enrolled 234 consecutive patients who underwent TACE using 100-300 µm DEB (Group A, n=130) and 300-500 µm DEB (Group B, n=104) at a group B center between August 2012 and March 2017. The treatment response using modified response evaluation criteria in solid tumours (mRECIST) criteria and adverse events were compared between groups.

Results: A total of 704 HCCs in 234 patients were evaluated and the average index tumour size was 3.8cm. The overall CR of all patients was 40.6%. Multivariate analysis demonstrated that CR was associated with tumour size (P<0.004), location in the liver (P<0.014), lobe involvement (P<0.022) and particle size (P<0.018). The overall CR rates in Groups A and B were 56.0% and 32.7% (P<0.001), respectively. Group A has higher CR than Group B in the subgroup of BCLC B with tumour <3cm (57.9% vs 21.1%; P= 0.020) and subgroup of feeding artery 20.9mm (55.2% vs 30.9%; P= 0.014). There were no differences in complication rates between two groups (44.0% vs 47.2%; P=0.531).

Conclusion: TACE with 100-300-µm-sized DEB is associated with better response and similar safety compared with 300-500µm, particularly in patients with BCLC B and tumour size <3cm and feeding artery size ≥20.9mm. These findings may help to select an optimal treatment strategy for HCC.

B-0562 11:27
Alternative routes of intraarterial chemoinfusion for intraocular retinoblastoma
L.S.P. Karanam, S.R. Baddam, S. Honavar, V.R. Palkonda; Hyderabad/IN (dkrlsp@gmail.com)

Purpose: Intraarterial chemotherapy (IAC) is a proven effective treatment for retinoblastoma. Direct catheterisation of ophthalmic artery (OA) is not always possible in cases of intraarterial chemotherapy for retinoblastoma. We intend to discuss our experience where we used alternative routes of drug delivery other than direct catheterisation of OA with emphasis on its safety and efficacy in globe salvage.

Methods and Materials: 96 eyes underwent 284 sessions of IAC in our institution. In 24 eyes we used alternative routes other than direct OA for drug delivery. We used balloon occlusion technique in 23 sessions. The technique of ophthalmic artery catheterisation is performed by our trained interventional radiologist team safely in all the sessions. The response of the tumour is graded as complete regression, partial regression and no response. In a follow-up period of 2 years, enucleation was done in 4 patients. Complications were all transient.

Conclusion: From our experience, it shows that when direct OA catheterisation is not possible, alternative techniques as described in our series can be safely and effectively used to salvage the eyes especially in cases of advanced retinoblastoma.

B-0563 11:35
Retrospective analysis of a cohort of patients affected by unresectable HCC treated with SIRT and liver transplant
A. Paladini¹, G.E. Vallati², L. Pizzili³, F. Cappelli³, D. Beomonte Zobel², E.M. Amodeo¹, A. Borzelli¹, ¹Novara/IT, ²Rome/IT, ³Naples/IT (andrea.paladini1988@gmail.com)

Purpose: The aim of our study is to evaluate the radiological and clinical results of SIRT and hepatic transplant on 22 patients (pts) affected by unresectable hepatocarcinoma (HCC). We analysed the role of SIRT as “bridge” or “downstaging” endovascular therapy for pts with intermediate/advanced HCC.

Methods and Materials: We evaluated 274 pts affected by unresectable HCC treated with Yttrium-90 resin microspheres between 2008 and 2016. Average delivery dose was 1.6 Gbq (1.5GBq-1.9Gbq). 22 pts of this cohort had such a good response to treatment (complete or partial) that they became eligible for hepatic transplant. We followed-up pts after SIRT with CT at 1 month, 3 months and 6 months after therapy, and analysed toxicity of SIRT, staging pts from radiological and clinical point of view.

Results: 8.02% of pts affected by intermediate/advanced HCC had a successful transplant after SIRT and they are still alive. In 4.4% of cases, SIRT had a downstaging effect on pathology. PR, SD and PD based on mRECIST criteria were evaluated in all pts. Moreover, we evaluated free-survival rate of pts transplanted, and we noticed that it was very similar to free survival rate of pts affected from a low-grade HCC which had an hepatic transplant.
Conclusion: SIRT is a very safe and effective loco-regional endovascular therapy. SIRT has a very important role as downstaging and/or bridge therapy in case of intermediate-advanced HCC. Furthermore, pts transplanted after SIRT have the same free survival rate of pts affected by low-grade HCC that had hepatic transplant.

B-0564 11:43
Yttrium-90 radioembolisation in advanced-stage HCC: does portal vein thrombosis affect survival?
F. Fiore, V. Stola, F. Somma; Naples/IT (doc.fiore1959@gmail.com)

Purpose: Portal vein thrombosis (PVT) is generally recognized as a prognostic factor in HCC. Our purpose is to assess and compare the survival of patients with and without PVT, after Y-90 trans-arterial radio-embolisation (TARE) of unresectable HCC, unresponsive to other loco-regional treatments.

Methods and Materials: Between November 2005 and November 2012, Y-90 resin-based TARE was performed in 89 patients with unresectable HCC in an IRB-approved prospective protocol. 33/89 patients had PVT, the remaining 56 were either elderly patients, resistant-to-cTACE HCC or underwent TARE as a downstaging therapy. All patients were studied with multi-detector computed tomography (MDCT), angiography, 99m Tc-MAA scintigraphy and liver biopsy. Gastro-duodenal artery was embolised in most cases. Proton-pump inhibitors were administered to prevent gastritis and ulcers. A 2x test with Yates correction and log rank test were used to compare the two proportions and Kaplan-Meier survival curves, respectively.

Results: The average activity administered was 1.7GBq. After the treatment, fever and abdominal pain were found in 25 and 16 patients, respectively. No major side effect was observed. According to mRECIST criteria, partial response or complete response was found in 70% of patient three months after the treatment, and in 90.5% nine months after the treatment. No significant difference Yttrium-90 radioembolisation in advanced-stage HCC: does portal vein thrombosis affect survival? found in survival of patients with PVT compared to those without PVT. A complete regression of PVT was observed in more than half patients.

Conclusion: Portal vein invasion does not affect survival in advanced stage HCC patients undergoing TARE using Y-90 resin-based microspheres. This procedure helps retraction the portal thrombus.

B-0565 11:51
Emboliolisation of rabbit renal arteries to test feasibility and effects of CT-visible doxorubicin-eluting montmorillonite microparticles
F. Nurli; New York, NY/US (luatnurli@gmail.com)

Purpose: To develop CT-visible doxorubicin (DOX)-eluting montmorillonite microparticles for transarterial embolisation.

Methods and Materials: DOX-loaded montmorillonite particles were synthesised by adsorption method and dispersed in diatrizoate to enable visualisation on CT and to achieve a sustained drug-release profile. Rabbits were used to determine CT imaging properties and DOX release kinetics. Sustained release of the particles into the kidney was accomplished with 1 mg of montmorillonite containing 39.2 ±0.14 mcg of DOX. In the transarterial DOX-loaded montmorillonite embolisation group, embolisation was performed following selection of the renal artery. Control groups were used of DOX and montmorillonite particles alone in separate groups. DOX levels in the blood were periodically measured. Kidney tissue was isolated 24 hours after injection and DOX levels in the tissue were measured.

Results: Particles were successfully visualised with CT. Manufactured microparticles were compatible with microcatheters. DOX blood levels in the chemo-embolisation group briefly increased 30 min after embolisation but remained low until 24 hours after embolisation. DOX blood levels in the TAI group rapidly reached a peak more than 30 minutes after injection and then was undetectable at further timepoints. DOX levels in the tissue was significantly higher in the chemo-embolisation group compared to the TAI group. Pathology revealed swelling of entire embolised kidney, infarction and necrosis in the renal cortex in the embolisation and chemo-embolisation groups. Vascular injury was observed in only the chemo-embolisation group.

Conclusion: CT-visible DOX-loaded montmorillonite maintained high local concentrations but low blood levels of the anticancer drug, showing promise for transarterial embolisation.

10:30 - 12:00 Room D

Artificial Intelligence and Machine Learning

SS 605
Machine learning: musculoskeletal and diverse

Moderators:
B. Baellier; Cologne/DE
R. Blanco Sequeiros; Turku/FI

B-0566 10:30
Deep learning for automatic detection of fractures on chest CT scans after blunt trauma
L. Yan, X. Chuan, C. Xia, S. Wang, K. Chen; Beijing/CN (xchen@infervision.com)

Purpose: To evaluate the performance of a deep learning algorithm for automatic detection of rib fractures, scapula fractures and clavicle fractures on chest CT scans after blunt trauma.

Methods and Materials: In this retrospective study, we first collected initial chest CT evaluations of 1675 patients (1122 males and 553 females) with blunt trauma (1434 rib fractures, 145 clavicle fractures, 177 scapula fractures) from three collaborating hospitals. Three board-certified radiologists helped to label the three types of fractures on each CT scan. We developed a modified multi-channel deep learning algorithm based on Single Shot Multi-Box Detector and trained the model on all 1675 cases. To evaluate model performance, a test set of 290 chest CT scans (244 rib fractures, 22 clavicle fractures, 35 scapula fractures) from another two hospitals was collected and labeled by the same three radiologists as for the training set.

Results: We utilized sensitivity [TPs/(TPs+FNs)] and precision [TPs/(TPs+FPs)] to evaluate the algorithm. For the detection of rib fractures, the algorithm’s sensitivity was 94.97% with a precision of 55.72%. For scapula fractures, the sensitivity was 88.89% with a precision of 72.73%. For clavicle fractures, the sensitivity was 91.67% with a precision of 84.62%.

Conclusion: Results showed that deep learning could help automatically detect different types of fractures on CT scans with high sensitivity and reasonable precision, especially rib fractures for which missed fractures were not uncommon. We expect such algorithms will improve fracture diagnosis in clinical settings by pre-screening trauma examinations and flagging suspicious cases.

Author Disclosures:
L. Yan: Employee; Employee, Infervision. X. Chuan: Employee; Employee, Infervision. C. Xia: Board Member; member of board. S. Wang: Founder; co-founder. K. Chen: Founder; co-founder.

B-0567 10:38
Whole-body MRI based lesion prediction in multiple myeloma
R. Licandro, J. Hofmanninger, M.-A. Weber, Rostock/DE (roxane.licandro@meduniwien.ac.at)

Whole-body MRI based lesion prediction in multiple myeloma (MM) patients is critical as a trigger for treatment and a prime marker of the disease’s progression. We use predictive machine learning, to identify a localized risk estimator for future lesion emergence based on pre-stage infiltration patterns observed in Magnetic Resonance Imaging data (MRI).

Methods and Materials: T1-weighted whole-body MRI were acquired from 63 patients over several examination points. We propose a lesion risk predictor to identify early signatures of emerging lesions before they reach thresholds for reporting. The method proposed is based on patch-wise training after patient specific accurate image alignment. A predictive random forest was trained to identify bone locations with high-risk of progression to osteolytic lesions.

Results: The prediction of emerging lesions (not reported in the observed scan, but in the subsequent), achieves a mean Area Under the Curve of 0.7425 (thorax), 0.769 (legs). Additionally, the predictor was able to identify progressing lesions (which are annotated over all examination scans but increase in size) yielding a mean of 0.7607 and 0.7221, respectively, when using a patch size of 10x4x10 voxels.

Conclusion: We propose a local lesion risk predictor for identifying regions in the bone marrow with high risk of disease progression. We showed that the predictor is able to predict future osteolytic lesions and at the same time is able to predict progression of already identified lesions. Our findings indicate hidden imaging markers beyond lesion size, currently used for categorization and risk stratification in MM.
Optimising the dataset for deep learning with x-ray images in musculoskeletal radiology

M.F. Russe, N. Kocher, E. Kellner, M. Reisert, F. Bamberg, E. Kotter; Freiburg/DE

Purpose: The datasets for classification tasks in x-ray imaging differ from non-medical tasks due to the standardization of image projections, the grey scale and the similarity in anatomy between the different patients. In this study, the effect of the data split between validation and training data was analyzed for deep learning.

Methods and Materials: A dataset of 1900 anterior-posterior images of the wrist was created. The images were classified for fracture or absence of fracture. A test sample with each 50 fracture/no fracture was separated. The remaining dataset contained 450 images with fractures and 1350 without fractures. The training to validation split changed in 6 steps from 50/50 to 90/10. An established convolutional neural network (CNN), GoogLeNet was used. Image distortion to 256*256 pixels was made, but no further data augmentation was performed. The training of the CNN for each split was performed. All datasets were tested on the separate test sample to avoid data leakage.

Results: The best overall accuracy is 92% with a Cohen’s kappa value of 0.84 at the 80/20 ratio. The overall accuracy and Cohen’s kappa for each split are 50/50: 81%, k0.62; 60/40: 89%, k0.78; 70/30: 90%, k0.8; 75/25: 91%, k0.82; 80/20: 92%, k0.94; 90/10: 92%, k0.74.

Conclusion: Datasets of x-ray images can be used for the creation of deep learning models with a very good agreement and high accuracy. The ratio of the dataset for training and validation deals a great impact to the result of the performance of the deep learning algorithm.

B-0569 10:54

Predicting the incidence of knee osteoarthritis using deep neural networks: data from the osteoarthritis initiative (OAI) and the multicenter osteoarthritis study (MOST)

Z. Bertalan1, T. Paixao1, R. Ljuhar1, D. Driehaus1, H.-P. Dimai2, S. Nehrer3; Vienna/AT, 1Graz/AT, 2Krems/AT (z.bertalan@imagebiopsy.com)

Purpose: To evaluate the performance of a deep neural network to predict OA incidence.

Methods and Materials: We screened conventional posterior-anterior (PA) knee radiographs of men and women from the Osteoarthritis Initiatives Study (OAI) and Multicenter Osteoarthritis Study (MOST) database for modality- and digitalization artifacts, resulting in a total of 2904 images. These were classified as incident or non-incident over the observation period, based on Kellgren & Lawrence scoring (KL=1). This dataset was split into train- (1451), validation- (581) and test- (872) datasets. Class imbalance between incident/non-incident images was approximately 1:4 and was controlled by oversampling the minority class. We trained an 8-layer convolutional neural network to predict OA incidence on these images, with or without clinical data (such as JSW and Kellgren & Lawrence score). As a comparison, we trained a simple dense neural network that utilizes only this clinical data.

Results: A classifier based on radiographs alone achieved an accuracy of 78% on the classification task, with a sensitivity of 67% and a specificity of 81%. In contrast, the CNN trained on the clinical data alone achieved an accuracy of 63%, with a sensitivity of 47% and a specificity of 67%.

Conclusion: This study provides strong evidence that applying deep convolutional neural networks has the potential to predict incidence knee-OA based solely on the information contained in a conventional 2D radiograph before any radiographic signs of the disease. Adding additional clinical data could potentially further increase the prediction of OA.

Author Disclosures:
Z. Bertalan: Employee; IB Lab GmbH.
T. Paixao: Employee; IB Lab GmbH.
R. Ljuhar: CEO; IB Lab GmbH.

B-0571 11:18

Combined traditional image processing and deep learning approach for automated detection of tears of the anterior cruciate ligament: is it the game changer for AI in musculoskeletal MRI?

V. Venugopal, Y. Mallya, V. Jagannatha, V. Mahajan, H. Mahajan; New Delhi/IN (vasanthdrv@gmail.com)

Purpose: We propose a novel ensemble approach of traditional image processing combined with deep learning to detect ACL tear on knee MRI.

Methods and Materials: FSPD knee MRI images of 66 patients (16 normal, 50 with full- or partial-thickness ACL tears) done on a 3.0 Tesla MRI were extracted, the intensity values of MRI images were standardized by histogram matching followed by intensity normalization image pre-processing techniques. Automatic delineation of tibia, femur and bounding box of the ACL bundle was achieved by a three-dimensional CNN implemented in the research version of HealthSuite Insights (Philips HealthTech). A total of 88 features comprising the first-order statistics and texture measures were computed from Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) of the image volume within the ACL bounding box. Feature subset selection was performed by two-sample t test with statistical significance (p < 0.05).

Results: The performance of the deep learning approach for segmentation of femur and tibia is evaluated on 20 randomly selected MRI datasets. The ground truth was created by manual segmentation of femur and tibia by a MSK radiologist. The dice score was 0.91 +/- 0.084. The performance of the proposed model for discrimination of ACL tear was assessed by k-fold cross-validation and the accuracy, sensitivity, and specificity were 89.5%, 93.3%, and 81%, respectively.

Conclusion: The proposed machine learning technique gave good performance in the delineation of knee anatomical structures and detection of ACL tears in the knee MRI.

Author Disclosures:
Y. Mallya: Employee; Koninklijke Philips NV. V. Jagannatha: Employee; Koninklijke Philips NV.

B-0573 11:26

Ante-mortem chest radiograph retrieval for forensic human identification by deep learning

Y. Li1, X. Yang2, J. Wang1, H. Xue1, W.B. Liang1, Z.H. Deng1, J. McNulty1, J.C. Lv1, L. Zhang1; 1Chengdu/CN, 2Dublin/IE (291846740@qq.com)

Purpose: Chest radiographs hold potentially high value for forensic comparative radiological identification because of the remarkable number of skeletal features offered by this area and the wide availability of chest radiographs across the population. The purpose of this study was to develop a deep learning retrieval model based on chest radiographs and multi-slice computer tomography (MSCT) chest scans for forensic human identification.

Methods and Materials: Data were retrospectively collected from 1052 clinical patients (aged 20-89 years) who had both posterior-anterior (PA) chest radiographs and MSCT scans to develop the model. Before training, the MSCT scans were pre-processed by three-dimensional volume-rendering technique (VRT) to produce the corresponding two-dimensional PA image of the skeletal elements of the chest; the scapulae and claviciles were removed for each case to avoid the potential positional variations. We use a ranking based criterion for evaluation on a test dataset of 263 clinical patients. Mean reciprocal ranking
B-0574 11:34

Automatic segmentation of the mandible from CT for 3D virtual surgical planning using a convolutional neural network

Purpose: To compare nodule detection ability of repeated chest PA from same patient acquired within one week between expert radiologists and deep learning model.

Methods and Materials: Totally 260 pairs of repeated chest PAs (116 chest PAs with nodules, which were confirmed by their chest CT) within 7 days were enrolled in this study. A deep learning model (DLM) using the YOLO v2, fine-tuned with a pre-trained model (DenseNet201), and two board-certificated chest radiologists (R1, R2 with 14 and 13 years of experience) reviewed the chest PAs. The sensitivity, specificity and accuracy were calculated and compared with a nodule-based analysis. Reading time was recorded. The intra- and inter-reader consistencies were evaluated by Cohen’s kappa.

Results: The sensitivities, specificities, and accuracy of R1 are 0.926, 0.798, and 0.854. While for R2, they are 0.875, 0.831, and 0.850. For the DLM, they are 0.779, 0.866, and 0.827. The Cohen’s kappa coefficient of R1, R2 and DLM between repeated chest PAs is 0.578, 0.629, and 0.600. The inter-reader consistencies of R1 vs R2, R1 vs DLM and R2 vs DLM is 0.640, 0.501, and 0.488. The average reading time of each case is 18.14 seconds for R1 and 11.66 seconds for R2. While the detection time of DLM is about 0.03 seconds per case.

Conclusion: Our DLM has the comparable detection ability with expect radiologists with higher specificity, lower sensitivity. Consistency of nodule detection in repeated chest PAs should be improved for application in routine clinical practice.

10:30 - 12:00 Room K

Chest

SS 604

COPD, emphysema and airways diseases: novel approaches

Moderators: N.N. J.D. Dodd; Dublin/IE

B-0577 10:30

Dynamic magnetic resonance imaging as an outcome predictor for lung-volume reduction surgery in patients with severe emphysema

K. Martin1, C. Caviezel2, D. Schneiter1, G. Milanesi1, I. Schmitt-Opitz1, W. Weder1, T. Frauenfelder1, Z. Chunch/CH, P. Parma1TF (katharina.martini@usz.ch)

Purpose: We hypothesize a significant correlation between preoperative dynamic MRI and postoperative outcomes measured by pulmonary function tests.

Methods and Materials: Dynamic MRI was performed 1 day before and 3 months after lung volume reduction surgery (LVRS). Quantitative measurements were performed on sagittal planes: lung height, anteroposterior diameter, hemidiaphragm height and area as well as perimeter. Additionally, dynamic changes in hemidiaphragmatic area and height were measured. Parameters were normalized by patients’ height. Pulmonary function test pre-LVRS and post-LVRS was performed. The cut-off value for treatment benefit was defined as a 30% increase in forced expiratory volume in 1s.

Results: Thirty-nine consecutive patients were included. On expiration, lung area on both sides (P(right)<0.001 and P(left)=0.016) and anteroposterior diameter of the right lung (P(right)<0.003) improved post-LVRS. Dynamic magnetic resonance imaging showed differences pre- and post-LVRS on the right lung but not on the left lung (P(right)<0.001 and P(left)=0.090). There were no significant changes in lung height for both sides, in hemidiaphragmatic height on the right as well as diaphragmatic area pre- and post-LVRS (P(0.05). Except for hemidiaphragmatic height on the left lung (P=0.039), no significant differences were found on inspiration. Considering the 30% cut-off for treatment benefit, the receiver operating curve analysis indicated a height-normalized expiratory lung area ≥35.793mm² as the most sensitive preoperative outcome predictor (sensitivity=86%; specificity=61%).

Conclusion: Preoperative dynamic MRI can be used as an additional outcome predictor for patient selection in LVRS. A height-normalized total lung area in expiration ≥35.793mm² correlates with a 30% increase in forced expiratory volume in 1s.

B-0578 10:38

Quantitative assessment of the relationship between spatial distribution of emphysema and pulmonary function in COPD patients by an automatic analysis software

Q. Yu1, X. Quan1, X. Lu2, Guangzhou/CN, S. Shenyan/CN (fudehuayingq@163.com)

Purpose: To investigate the relationship between spatial distribution of emphysema and pulmonary function in patients with COPD by an automatic analysis software.

Methods and Materials: Chest MSCT (end-inspiration) was performed in 119 cases COPD patients (> 40 years old). For the quantitative assessment, the percentage of low attenuation areas(≤-950HU) were automatically calculated for...
Each lobe by COPD analysis software (Philips Healthcare). According to the pulmonary emphysema heterogeneity index, the patients were divided into no-emphysema group (LA%≥14%) and emphysema group (LA%<14%) and the latter was divided into predominantly upper-lobe subgroup and predominantly lower-lobe subgroup by the formula [HI=(%LAA_upper+%LAA_lower) / (%LAA_upper+%LAA_lower)]. The differences of pulmonary function parameters which included PFT (FVC% ,FEV1% ,FEV1/FVC) , DLco (DLco%) between the 2 groups and the 2 subgroups were compared.

Results: Compared with no-emphysema group, PFT and DLco% of emphysema group were higher, while IOS values were lower, and the differences between which were statistically significant (z=-0.53 to -2.086, P<0.05). Comparing the two subgroups of emphysema group, FEV1% , FEV1/FVC of the predominantly lower-lobe subgroup were slightly lower, while FVC% , IOS, DLco% were slightly higher, and the differences of all lung function indicators between the 2 subgroups were not statistically significant (z=-1.948 to -0.284, all P>0.05).

Conclusion: COPD software can be used to quantitative analysis of emphysema spatial distribution, which has an effect on pulmonary function. There is no significant difference in lung function between predominantly upper-lobe and predominantly lower-lobe in COPD patients.

B-0579 10:46
Inspiratory/expiratory xenon-enhanced CT with 3D motion analysis: utility for pulmonary functional loss assessment and clinical stage classification of COPD

Purpose: To evaluate the utility of 3D lung motion assessment on inspiratory/expiratory xenon-enhanced area-detector CT (Xe-ADCT) for pulmonary functional loss assessment and clinical stage evaluation of COPD.

Methods and Materials: 28 consecutive patients with and without COPD underwent inspiratory/expiratory Xe-ADCT examinations as well as pulmonary function tests. Then, all patients were classified by GOLD classification as follows: ‘Without COPD’, ‘Mild COPD’, ‘Moderate COPD’ and ‘Severe or Very Severe COPD’. In each subject, xenon ventilation maps such as wash-in (WI), wash-out (WO) and ventilation ratio (VR) maps as well as 3D motion magnitude maps at X-, Y- and Z-axes as well as expansion rate (ER) map were generated by pixel-by-pixel analyses. Then, each regional index was assessed by ROI measurements, and each final value was determined as averaged value.

To determine the relationship between Xe- and 3D motion-based indexes, Pearson’s correlations were performed. Then, step-wise regression analyses were performed between all indexes and combined method by McNemar’s test.

Results: WI had significant correlations with all motion magnitudes (r=0.53 to 0.59, p<0.05), although VR had significant correlations with all motion magnitudes and ER (0.37<r<0.49, p<0.05). FEV1% , FEV1/FVC of the predominantly lower-lobe subgroup were slightly lower, while FVC% , IOS, DLco% were slightly higher, and the differences of all lung function indicators between the 2 subgroups were not statistically significant (z=-0.53 to -0.39, P<0.05). Comparing the two subgroups of emphysema group, FEV1% , FEV1/FVC of the predominantly lower-lobe subgroup were slightly lower, while FVC% , IOS, DLco% were slightly higher, and the differences of all lung function indicators between the 2 subgroups were not statistically significant (z=-1.948 to -0.284, all P>0.05).

Conclusion: COPD software can be used to quantitative analysis of emphysema spatial distribution, which has an effect on pulmonary function. There is no significant difference in lung function between predominantly upper-lobe and predominantly lower-lobe in COPD patients.
B-0583 11:18

Purpose: Electrical impedance tomography (EIT) investigates regional lung function. We studied the suitability of EIT to assess the severity of cystic-fibrosis (CF) related lung disease when correlated with high-resolution-computed-tomography (HR-CT) scoring results.

Methods and Materials: With ethics-committee approval, 10 CF-patients (3 female, 7 male, age 35.2±8.4 years, weight 63.9±13.0 kg, height 177.0±10.0 cm, meanSD) were prospectively enrolled in EIT-measurements during both normal tidal breathing and a forced-vital-capacity (FVC)- manoeuvre, to determine regional impedance-changes within the lung relating to FVC and forced expiratory volume in one second (ΔFVC and ΔIFEV1). EIT data were collected both at the 3th and 5th intercostal space (ICS), with a frame rate of 30 Hz. Pulsatile EIT-signal-components were excluded with a low-pass Butterworth-filter. Lung-areas were defined by pixel-values >20% of the maximum regression coefficient within the functional EIT-image resulting from linear-regression-fitting. Within each thorax-section, median regional ΔIFEV1ΔFVC was calculated and correlated with the mean “Total Brody Score” (TBS) deriving from independent retrospective evaluations by two radiologists of available HR-CT-scans.

Results: Mean HR-CT TBS-values of CF-patients showed high linear correlation (r=0.99952), EIT-derived median regional ΔIFEV1ΔFVC obtained within the 5th ICS, and lower linear correlation (r=0.6872) with EIT-derived median regional ΔIFEV1ΔFVC obtained within the 3rd ICS, respectively.

Conclusion: Results imply that EIT is suitable to assess the severity of CF-related lung disease. Since HR-CT-based TBS comprises the whole lung, differences in correlations are most likely based on respective lung volumes captured by EIT at different thorax-sections.

B-0584 11:26
Predictive model of lung severity in children with cystic fibrosis using Brasfield and Chrispin-Norman scoring systems I. Vlasvıl, N. Rohovýk, O. Marushchak, M. Rohovýk; Lviiv/UA

Purpose: Considering the fact that chest radiography for lung disease is one of the methods used worldwide for the assessment of cystic fibrosis (CF), we propose a modified approach in retrospective analysis and comparison in dynamics of the most commonly used scale systems - Brasfield and Chrispin-Norman. The aim of this study was to build a regression model to predict the lung damage severity using Brasfield and Chrispin-Norman scoring systems by evaluation of chest radiographs in children with CF.

Methods and Materials: 156 chest radiographs from 51 CF children were taken for the retrospective analysis that consisted of a descriptive part and predicting models. We assigned a unique ID to every patient and also included such features as gender, age when the test was taken, number of tests, scores predicting models. We assigned a unique ID to every patient and also included such features as gender, age when the test was taken, number of tests, scores predicting models. We assigned a unique ID to every patient and also included such features as gender, age when the test was taken, number of tests, scores predicting models.

Results: Applying constructed chart to patients’ data we detected a correlation between two scoring systems, for example, 2.5 in Brasfield scoring system is to 3 in Chrispin-Norman system and 11-18 points in Brasfield system mostly relate to 8-10 points in Chrispin-Norman system. Taking scores of the patient with the ID 38 as an example, we can present a model of linear regression to predict the next possible index in different scale systems.

Conclusion: Analysing scores in both Chrispin-Norman and Brasfield scoring systems, we present a regression model to predict a lung severity in CF children (next possible score due to general tendency).

B-0585 11:34
MRI-derived regional flow-volume loop parameters detect early stage chronic lung allograft dysfunction T. Moher Alsayd, A. Voskrebzenz, M. Greer, L. Becker, T. Kairrett, T. Welte, F. Wacker, J. Gottlieb, J. Vogel-Claussen; Hannover/DE

Purpose: Chronic lung allograft dysfunction (CLAD) is a major cause for poor long-term survival rates after lung transplantation (LTx). The goal of this study is to examine whether early stages of CLAD could be detected using MRI-derived parameters of regional flow-volume dynamics.

Methods and Materials: Sixty-two lung transplantation recipients were included in the study, 29 of which had been diagnosed with CLAD at various stages based on pulmonary function testing. MRI datasets were acquired at 1.5T using a spoiled gradient echo sequence. The datasets were preprocessed and analyzed according to the phase resolved functional lung MRI technique (PREPUL-MRI), resulting in fractional ventilation (FV) maps and regional flow-volume loops (rFVL). Correlation coefficients between rFVL of each lung voxel and the mean rFVL of a healthy region of interest were estimated. The following parameters were calculated: 1) Median and interquartile range of rFVL correlation coefficients, rFVL-CC and rFVL-CC-IQR respectively. 2) FV-based and rFVL-based ventilation defect percent (FV-VD and rFVL-CC-VD).

Results: The following rFVL-based parameters discriminated between the presence or absence of early CLAD: rFVL-CC, rFVL-CC-IQR and rFVL-CC-VD (p<0.003). In accordance with a previous study, FV-VD could only discriminate between no CLAD and advanced CLAD (p<0.001).

Conclusion: Using the free-breathing, contrast media-free PREPUL-MRI technique, parameters of regional ventilation dynamics and heterogeneity have been shown to be sensitive for the detection of early CLAD.

Author Disclosures: joshua.gawlitz@medma.uni-heidelberg.de

B-0586 11:42
Dose reduction in CT emphysema densitometry enabled by iterative reconstruction and post-scan noise reduction: a phantom study H.J. Wisselink, G. Peligmin, M. Rook, M. Oudkerk, R. Vliegenthart; Groningen/NE

Purpose: The aim of this study is to determine the minimum radiation dose required for acceptable image quality for CT emphysema densitometry, using different reconstruction parameters and noise suppression techniques in third-generation dual-source CT.

Methods and Materials: The COPDGene phantom was scanned with 16 scan setups (CTDvol 0.035-10.68 mGy), using CT Force (Siemens Healthineers, Germany) with different kV and mAs settings. Images were reconstructed at 1.0/0.7 mm slice thickness/increment, with three kernels (one soft, two hard), filtered back-projection and three grades of third-generation iterative reconstruction (IR, ADMIRE). Additionally, stand-alone noise suppression software was applied (PixiShine, Algomedics, USA). Outcomes were the overlap in area of the normalized CT density histograms of the emphysema and air inserts, and the radiation dose required for maximum 4.3% overlap, which was defined as acceptable image quality according to QIBA criteria.

Results: In total, 384 scans were analyzed. The two hard kernel reconstructions showed more histogram overlap than the soft kernel reconstructions. Overlap was 62.8% for the lowest dose setting, IR and noise suppression reduced this overlap. The correlation between radiation dose and histogram overlap is an inverse exponential (R²=0.95). Intermediate grade IR combined with noise suppression software allowed for 85% radiation dose reduction (to a CTDvol 0.19 mGy).

Conclusion: Noise suppression software, IR, and soft reconstruction kernel allow radiation dose reduction by 85% while still allowing differentiation between emphysema and normal lung tissue in a phantom set-up.

B-0587 11:50

Purpose: Bronchoalveolar lavage (BAL) is an important diagnostic method. The percentage of fluid extracted after instillation (recovery rate) is crucial for following diagnostic tests. Currently, no preprocedural predictors for a good recovery rate are known. Therefore, we compared quantified airway parameters from preprocedural lung computed tomography (CT) with recovery rates to find possible predictive markers.

Methods and Materials: Recovery rates and patient characteristics were retrospectively acquired from 33 routine procedures. Parenchyma and airway parameters were quantified in preprocedural CT. The bronchial tree was measured in five generations, acquiring eight airway parameters. Recovery rates and patient characteristics were then analysed in context of quantified CT findings.

Results: Significant correlations between airway parameters and recovery rate were found for CT parameters of the 3rd or 4th generation bronchus with highest values for percentage wall area (WA%, r=0.56; p<0.01), lumen area (r=0.47; p=0.01) and mean inner diameter (r=-0.49; p<0.01). No correlations were found for recovery rates and CT parenchyma parameters. ROC analysis for 4th generation bronchus values yielded an AUC of 0.75 (p<0.01) for distal outer bronchoscope diameter to mean inner diameter ratio. For 3rd generation WA%, we found an AUC of 0.86 (p=0.001). A threshold of approximately 60% recovery rate had 89% sensitivity and 80% specificity to distinguish between patients with good (>50%) and poor (<50%) recovery.
Conclusion: Quantified CT parameters, most notably WA% and bronchus to central airways diameter to inner bronchus diameter, have the potential to identify the ideal location and branching size for optimal BAL recovery rates in advance, warranting prospective evaluation.

10:30 - 12:00 Room M 1

Cardiac

SS 603 Cardiac MR myocardial feature tracking

Moderators:
R. Heid; Erlangen/DE
R. Salgado; Antwerp/BE

B-0588 10:30
Phenotyping diabetic cardiomyopathy in South Asians and Europeans

Purpose: To characterize the impact of type 2 diabetes (T2D) on left ventricular (LV) function, myocardial tissue characteristics and aortic stiffness in South Asians and Europeans.

Methods and Materials: T2D patients and controls with comparable age and sex distribution, of South Asian and European descent, underwent 3 Tesla cardiovascular magnetic resonance imaging (CMRI) and proton-magnetic resonance spectroscopy (1H-MRS). Differences in cardiac parameters between T2D patients and controls were examined using ANCOVA with adjustment for age, sex, blood pressure and smoking and were reported as mean (95%CI).

Results: A total of 131 individuals were included (54 South Asians (50.1±8.7 years, 33% men, 33 patients vs. 21 controls) and 77 Europeans (58.8±7.0 years, 56% men, 48 patients vs. 29 controls)). The transmural early and late filling rate ratio was lower in T2D patients compared to controls, in South Asians (-0.20 (-0.36; -0.03) vs. P=0.021) and Europeans (-0.20 (-0.36; -0.04), P=0.017), whereas global longitudinal strain and aortic pulse wave velocity were comparable. South Asian T2D patients had a higher LV mass (22 g (15; 30), P=0.001) with a lower extracellular volume (-1.9% (-3.4; -0.4), P=0.013), whilst European T2D patients had a higher myocardial triglyceride content (+0.59% (0.35; 0.84), P<0.001) than their control group.

Conclusion: Diabetic cardiomyopathy was characterized by impaired LV diastolic function in South Asians and Europeans. Increased LV mass was solely observed among South Asian T2D patients, whereas differences in myocardial triglyceride content between T2D patients and controls were only present among Europeans. The diabetic cardiomyopathy phenotype may differ across ethnicities and tailored management may be required.

Author Disclosures:
E.H.M. Paiman: Research/Grant Support; ‘Cardiovascular Imaging Group’ (CVIG), Leiden University Medical Center (Leiden, the Netherlands).
H.J. van Eyk: Research/Grant Support; Roba Metals B.V, Ulstein (Lerwick, the Netherlands).
P. de Heer: Research/Grant Support; Dutch Kidney Foundation, Innovation grant P111.56.
J.W.A. Smit: Grant Recipient; Novo Nordisk A/S (Bagsvaerd, Denmark).
I.M. Jazet: Grant Recipient; Novo Nordisk A/S (Bagsvaerd, Denmark).
H.J. Lamb: Grant Recipient; Novo Nordisk A/S (Bagsvaerd, Denmark).

B-0589 10:38
Independent association of extracellular volume with myocardial strain assessed by CMR in subjects without history of cardiovascular disease from the general western population

Purpose: To determine the relationship of T1 mapping parameters and ECV in MINOCA patients with established cardiovascular disease.

Methods and Materials: The study comprised CMR examinations of 145 patients. These patients were followed over a median time of 4.2 years. Primary endpoints were defined as MACE including death, stroke, congestive heart failure, recurrent hospitalization or an interventional/surgical procedure. Regarding strain parameters, we compared these patients with a collective of 62 healthy volunteers. A dedicated software (CVI42, Circle) tracked the movement of endo-and epicardial contours and calculated strain parameters.

Results: Based on the strain analysis of both patient groups, we set a cut-off value for pathologic strain values at mean value (healthy volunteer) ±2*standard deviation. A significantly higher rate of primary endpoints occurred in patients with abnormal strain values (p<0.05 for all). Kaplan-Meier analyses in MINOCA patients were performed for normal and pathologic groups of strain in normal and abnormal ECV. After adjusting for ECV, only LV global radial strain and RV global longitudinal strain were of significant prognostic value.

Conclusion: Abnormal strain values are correlated with a higher risk of MACE in patients with MINOCA. After adjustment for normal LV volumes, only LV radial and RV longitudinal strains had a significant effect on the prognosis of MINOCA patients thus outperforming traditional risk factors.

B-0591 10:54
Prognostic role of feature tracking in suspected myocardial infarction with non-obstructed coronary arteries (MINOCA): sensitive or senseless?
T. Lemkebusch1, P. Wen2, P. de Heer1, M. G. Haring2, R.M. Brunberg3, C. Düber4, K.-F. Kreitner5, T. Emrich5, Mainz/DE (lemkebuscht@gmail.com)

Purpose: The term MINOCA was established for patients with acute chest pain, elevated troponins and non-obstructed coronary arteries. It is an umbrella term that includes coronary as well as non-coronary causes. The purpose of this study was to investigate prognostic implications of abnormal strain values in MINOCA-patients and its prognostic significance in relation to established risk parameters like EDVI.

Methods and Materials: The study comprised CMR examinations of 145 patients. These patients were followed over a median time of 4.2 years. Primary endpoints were defined as MACE including death, stroke, congestive heart failure, recurrent hospitalization or an interventional/surgical procedure. Regarding strain parameters, we compared these patients with a collective of 62 healthy volunteers. A dedicated software (CVI42, Circle) tracked the movement of endo- and epicardial contours and calculated strain parameters.

Results: Based on the strain analysis of both patient groups, we set a cut-off value for pathologic strain values at mean value (healthy volunteer) ±2*standard deviation. A significantly higher rate of primary endpoints occurred in patients with abnormal strain values (p<0.05 for all). Kaplan-Meier analyses in MINOCA patients were performed for normal and pathologic groups of strain in normal and abnormal EDVI. After adjusting for EDVI, only LV global radial strain and RV global longitudinal strain were of significant prognostic value.

Conclusion: Abnormal strain values are correlated with a higher risk of MACE in patients with MINOCA. After adjustment for normal LV volumes, only LV radial and RV longitudinal strains had a significant effect on the prognosis of MINOCA patients thus outperforming traditional risk factors.

B-0592 11:02
Evaluation of left ventricular strain assessment with feature-tracking CMR in STEMI at long term follow-up
F. Cilia1, C. Calvieri2, F. Catapano2, S. Coco2, R.M. Ammendola3, G. De Rubeis4, N. Galea5, M. Francione6, C. Catalano7, Rome/IT (focia18@hotmail.it)

Purpose: Left ventricular strain assessed by CMR feature-tracking has been recently used to evaluate the benefits of metoprolol administration before primary percutaneous intervention (PCI) at short term follow up (FU). Our aim was to evaluate LV strain assessment at long term FU in STEMI patients.
Methods and Materials: This is a pilot retrospective single-center study. Twelve acute STEMI patients (aged 55±12 yrs, 100% male) underwent CMR at 1.5 T, at 2-6 days after PCI and after a median follow-up of 10 years (9-11). Feature-tracking CMR analysis was performed on steady-state free precession cine images with a dedicated software (CVi42 v5.3, Circle Cardiovascular Imaging, Calgary, Canada) for both CMR exams.

Results: No significant changes in LVEF were observed between the first and the last CMR, while LGE extent significantly reduced (11.7±8.4 to 7.5±4.5, p=0.030) and global longitudinal strain (GLS) significantly improved (-14±3.3 to -17±3.6, p=0.016). At first CMR troponin release and heart rate before PCI correlated with acute GLS (r=-0.498, p=0.011, r=p=0.007, respectively) and ischemia duration before PCI correlated positively with global radial strain at long term FU CMR (r=0.729, p=0.017). Interestingly, STEMI who received i.v. nitrates before PCI had no difference in LVEF and LGE extent changes but a greater improvement in GLS at long term follow up (-16±0.8, -2±1.0, p=0.007).

Conclusion: LV strain assessment with feature-tracking CMR adds incremental prognostic information on LV remodeling beyond LVEF. Feature-tracking CMR strain could be a sensitive tool to evaluate long term effect of cardioprotective therapies.

B-0593 11:10
Early detection of left ventricular involvement assessed by 3D CMR feature-tracking improves risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy
X. Chen, L. Li, S. Zhao; Beijing/CN (cxy0202@126.com)

Purpose: To investigate the diagnostic value of three-dimensional feature-tracking cardiac magnetic resonance (3D CMR-FT) for early detection of left ventricular (LV) involvement in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients as well as its prognostic value of predicting adverse outcomes.

Methods and Materials: Fifty-eight ARVC patients and 20 healthy control subjects were prospectively enrolled. CMR with late gadolinium enhancement (LGE) and myocardial strain analysis using CMR-FT were performed in all subjects. Global and regional (basal, medial and apical) LV peak strains as well as global longitudinal strain of right ventricle were measured. All patients were followed for cardiovascular events.

Results: Of the 58 ARVC patients, 31 (53%) had preserved LV ejection fraction (LVEF ≥50%). In these patients, the LV global longitudinal as well as circumferential, radial and longitudinal strain at the basal level were all significantly reduced compared with the controls (all p < 0.05). During a mean follow-up period of 15±7±8 months, 13 (22%) patients experienced cardiovascular events. The extent of LGE and LV global radial strain (GRS) were significantly associated with adverse outcomes, and LV GRS was the only independent predictor according to multivariate analysis. In patients with preserved LVEF, a basal circumferential strain > -12.77% was significantly associated with outcomes.

Conclusion: LV involvement can be identified by 3D CMR-FT in the absence of LVEF reduction. LV GRS was the only independent predictor of adverse outcomes in ARVC patients. Reduced basal circumferential strain was associated with adverse events in patients with preserved LVEF.

B-0594 11:18
CMR tissue tacking assessment of myocardial strain in non-ischaemic dilated cardiomyopathy patients with and without left ventricular hyper-trabeculations
H. Fu, L. Wen, Y.-K. Guo, Z. Yang; Chengdu/CN (695688312@qq.com)

Purpose: Our study aimed to evaluate the difference of left ventricular strain function in non-ischaemic dilated cardiomyopathy (NIDCM) with or without hyper-trabeculations.

Methods and Materials: 157 patients of NIDCM were retrospectively enrolled. Patients were divided into two groups according to definition of prominent trabeculations. Cardiac function and myocardial strain were measured based on short-axis, two-chamber and four-chamber cine sequences. Left ventricular ejection (LVEF), peak ejection rate (PER), peak filling rate (PFR) and global peak strain in three directions of radial (GPRS), circumferential (GPCS), longitudinal (GPLS) were obtained.

Results: LVEF (Mean ± SD: 25.9±10.5%) was smaller than 50% of all 157 patients. Hyper-trabeculations were presented in 86 patients (54.8%). Although LVEF, PER, PFR and GPRS have no statistically significant between the NIDCM patients with or with hyper-trabeculations (p=0.05), for the myocardial strain, the GPCS and GPLS in patients with hyper-trabeculations lower than that of patients without hyper-trabeculations (p=0.040 and p=0.006, p=0.05). GPRS, GPCS and GPLS were mild to moderate correlated with LVEF (correlation coefficients were 0.44, -0.564, -0.321 respectively, p=0.05) in Group A. Despite GPCS was not related to LVEF in patients with hyper-trabeculations, GPRS and GPLS were moderate related to LVEF (correlation coefficients were 0.43 and -0.40, p=0.05).

Conclusion: CMR tissue tracking can early detect myocardial strain in NIDCM patients with or without hyper-trabeculations. And patients with hyper-trabeculations and after may have more severe myocardial deformation. But it's need to further research to explore whether hyper-trabeculations would affect the prognosis of NIDCM.

Author Disclosures:
Y. Zhang: Research/Grant Support; National Natural Science Foundation of China (81471721,81771887). Program for Young Scholars and Innovative Research Team in Sichuan Province (2017TD0005) of China.
Z. Yang: Founder; Research/Grant Support; National Science Foundation of China (81471722,81771887).

B-0595 11:26
Strain analysis in noncompaction morphology: usefulness in assessing an undefined cardiomyopathy
E. Cannizzaro, P. Palumbo, C. De Cataldo, A. Corridore, S. Torlone, F. Cobianchi Bellisari, A. Di Sibio, E. Di Cesare, C. Mascoliotti, L’Aquila/T (estercannizzaro@hotmail.it)

Purpose: To measure left ventricular (LV) myocardial strain with cine-magnetic resonance (MR) imaging to relate LV function to strain values in order to assess the prognostic value of strain analysis and to detect early impairment of the LV function in patients with left ventricular non-compaction (LVNC); to demonstrate that morphology (absence or presence of non-compaction) doesn’t influence LV contractility.

Methods and Materials: In this retrospective study, 65 patients with a validated diagnosis of LVNC were re-analyzed in order to avoid selection bias and consider only patients with an isolated LVNC (LVNC), obtaining a final population of 21 patients who underwent a post-processing strain analysis. Strain analysis effectiveness to detect impairment of LV function (<50%) was analyzed by ROC curves and morphology’s influence on LV contractility has been analyzed by Cohen’s kappa coefficient.

Results: In our analysis, we found that global circumferential strain was the most reliable value to detect LV function with a sensitivity of 100% and a specificity of 70.6%. (AUC=91.2%, p<0.001; best cut-off >13.06). Cohen’s kappa coefficient didn’t show a concordance between the segmental NC/C ratio and segmental circumferential strain values suggesting a non-significant influence of morphology on LV contractility (k=-0.02. 95% CI -0.07 to 0.12).

Conclusion: Strain analysis seems to be sensible and specific in assessing LV function and in detecting early patients with a poor or mild-impaired LV contractility. The lack of concordance between the segmental NC/C ratio and the segmental strain values conceivably arise the possibility that morphology doesn’t affect the contractility.

B-0596 11:34
Assessment of myocardial deformation in a rabbit model of diabetes mellitus by cardiac magnetic resonance tissue tracking
Y. Zhang, Z.-Y. Guo, Y.-K. Guo, K. Diao, M.-T. Shen, X. Li, K. Xu, H. Yu, C. Xia; Chengdu/CN (yizhang524@qq.com)

Purpose: To determine the characteristics of myocardial deformation in a diabetes mellitus (DM) rabbit model at different stages by using cardiac magnetic resonance (CMR) tissue tracking.

Methods and Materials: Twenty-eight New Zealand white rabbits, randomly divided into the control group, 4-week (n=9), 8-week (n=6) DM groups, induced by Alloxan (80 mg/kg), and the control group (n=8), underwent CMR tissue tracking. A series of SSFP cine sequence were used to calculate left ventricle ejection fraction (LVEF), 2D global peak radial strain (GSR) and global peak circumferential strain (GCS) were derived from the 4-chamber and long-axis slices. Speckman’s rank correlation analysis was performed to determine the correlation between myocardial strain parameters and the stages of DM.

Results: All groups had preserved and no statistically different LVEF. The GSR (19.01±3.92% vs. 27.28±9.04%) and GCS (-9.1±2.60% vs. -12.9±2.91%) of 8-week group were lower than those of controls (all P<0.05), whereas the difference of GSR and GCS between the 4-week group and the controls did not reach statistical significance (P=0.079 and 0.113, respectively). GSR showed numerical but no significant difference between either two groups. Additionally, GCS had a moderate correlation with the stages of DM (r=-0.534, P=0.01).

Conclusion: DM rabbits demonstrated GSR and GCS, reduction during the process of DM, even without change in LVEF. Myocardial strains could work as sensitive indices to assess LV myocardial deformation in DM.

Author Disclosures:
Y. Zhang: Research/Grant Support; National Natural Science Foundation of China (81471721,81471722,81641169,81771887 and 81771887).
B-0597 11:42
Cardiac computed tomography left ventricle myocardial strain analysis
T. Adja, V. Suchanek, M. Polovincak, L. Miksik, Z. Salagovicova, N. Markova, J. Biskup, M. Rosek; Prague/CZ (theodor.adja@gmail.com)

Purpose: Myocardial deformation strain analysis is possible from echocardiography and cardiac MRI with different methods. Feature tracking is a relatively new method used for MRI. Purpose of this study was to assess feasibility of using this method for left ventricle (LV) deformation in cardiac CT.

Methods and Materials: Ten patients (60 +/- 17 years old) were examined by cardiac CT (Somatom Force, Siemens), retrospective gating with dose modulation (full dose 30 - 70% of RR interval) protocol. Additionally to standard analysis, cine images (20 phases, 5 mm thickness) were reconstructed in 3 long and 3 short axes of LV. Software Segment (Medviso) was used for feature-tracking analysis. Automatic segmentation during heart cycle was assessed visually. Values of global strains were compared with LV ejection fraction.

Results: Inaccuracies of propagation of myocardial contour were visible in interventricular septum in cases with low or inhomogeneous right ventricle contrast filling. Global strain values were longitudinal -13 +/- 3%, circumferential -16 +/- 5%, radial from long-axis images 22 +/- 8%, and radial from short-axis images 23 +/- 9%. Significant correlations were found between LV ejection fraction and longitudinal strain (R = -0.69, p = 0.03), circumferential strain (R = -0.74, p = 0.01), and radial strain from long-axis images (R = 0.69, p = 0.03).

Conclusion: Strain analysis of LV from cine CT images is technically possible using Segment software and some of global strains values significantly correlate with LV ejection fraction. However, good enhancement of the right ventricle is needed.

B-0598 11:50
Two-dimensional and three-dimensional cardiac magnetic resonance feature-tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction
M. Gatti 1, R. Faletti 1, F. Blicicetto 1, A. Palmisano 2, G. Benedetti 2, A. Esposito 2, P. Fonio 1, T. Turin IT 1, M. Milano 2 (marcogatti17@gmail.com)

Purpose: To explore the potential role of two- (2D) and three-dimensional (3D) cardiac magnetic resonance (CMR) feature tracking (FT) myocardial strain analysis in identifying sub-clinical myocardial dysfunction in acute myocarditis patients with preserved ejection fraction (EF).

Methods and Materials: Prospective two centre-study control study. Thirty patients (9 female, 37.2 ±11.8 yrs.) with a CMR diagnosis of acute myocarditis according to the Lake Louise Criteria and preserved EF (>55%) were included in the analysis. CMR data from 24 healthy volunteers (11 female, 36.2±12.5 yrs.) served as control. 2D and 3D LV tissue tracking analysis were performed in a random fashion by two double-blinded operators. Variables were checked for normality and analysed with parametric test.

Results: The baseline characteristics of myocarditis patients with preserved EF and the healthy volunteers were perfectly comparable, except for the LV mass index (60±13% vs. 45±11%; p<0.001). The results of the interoperator variability showed good agreement with the 2D and 3D LVMR FT myocardial strain analysis in both readers for all strain parameters: ICC>0.80 and r2>0.98. There was no statistical difference in 2D and 3D global radial, circumferential and longitudinal strain peak (%) and both systolic and diastolic strain rate (1/s) between acute myocarditis with preserved EF and healthy volunteers (all p>0.05).

Conclusion: There were no difference in 2D and 3D global radial, circumferential and longitudinal strain peak and both systolic and diastolic strain rate of the LV between acute myocarditis patients with preserved ejection fraction and healthy volunteers.

B-0599 10:30
Feasibility of foetal MRI in the evaluation of foetal congenital heart disease
S.-Z. Dong, M. Zhu; Shanghai/CN (dongsuzhen12@163.com)

Purpose: To evaluate the feasibility of foetal cardiac magnetic resonance (CMR) in the assessment of foetal congenital heart disease.

Methods and Materials: This retrospective review included 616 pregnant women referred to a children’s hospital for a foetal cardiac MRI from January 2013 to June 2018 due to the finding of a congenital heart disease by echocardiogram (echo) and/or technically limited echo. Screening obstetric ultrasound (US), echo by cardiologists and CMR data of all cases were compared with postnatal findings (postnatal imaging, surgery and/or autopsy). Foetal CMR was performed at 1.5 T or 3.0 T (Discovery 750; GE Medical Systems). Sequences included steady-state free-precession (SSFP), non-gated SSFP cine, single-shot turbo spin echo (SSSTE) and non-gated phase contrast (PC) cine sequences. The CMR images were analysed using an anatomic segmental approach by two radiologists and compared with foetal echo and postnatal findings when available.

Results: All 616 cases with congenital heart disease were confirmed by postnatal imaging, surgery and/or autopsy. Obstetric US were correct in 45.8% (282/616), foetal echos were correct in 78.3% (481/616), CMR were correct in 77.9% (480/616) when compared to postnatal findings. Foetal echos had a higher specificity for evaluating ventricular size, septal defects and valve anomalies. CMR was more useful in evaluating extracardiac aortic arch, superior vena cava and malposition anomalies, heart diverticulum, and pericardial cyst.

Conclusion: Foetal CMR is a promising diagnostic tool for the assessment of congenital heart disease (especially extra-cardiac vascular anomalies) and can be a useful adjunct when foetal echocardiography is limited.

B-0600 10:38
Diffusion-weighted magnetic resonance imaging of the foetal brain in complex congenital heart disease
S.-Z. Dong, H. Ji; Shanghai/CN (dongsuzhen12@163.com)

Purpose: The aim of this study was to assess whether ADC values in the foetal brain were different in a group of foetuses with complex congenital heart disease (CHD), compared to normal controls.

Methods and Materials: Foetal brain diffusion MR imaging was performed in 50 foetuses with complex CHD, Foetal brain MRI examinations with single-shot DWI (b = 0 and b = 700 s/mm²) were performed. ADC values in frontal white matter (FWM), centrum semi-ovale (CSO), thalami (T), basal ganglia and pons were compared with 50 normal controls at the same gestational age.

Results: We found no significant differences between gestational age between our 2 groups (CHD 26.6 ± 3.2w and control 26 ±2.8w). All foetal brain morphology and signal were normal. Foetuses with complex CHD had higher ADC values in FWM (2.34 ± 0.18 vs 2.19 ±0.17 x10⁻³ mm²/sec; p<0.05), thalami (2.20 ±0.16 vs 2.06±0.19; p<0.001), centrum semi-ovale (2.34 ±0.19 vs 2.22 ±0.19 x 10⁻³ mm²/sec; p<0.05), basal ganglia (2.16 ±0.18 vs 2.03±0.16; p<0.001), and pons (2.14 ±0.19 vs 2.04±0.15 x10⁻³ mm²/sec; p<0.05).

Conclusion: Foetal diffusion MR imaging is a feasible modality of evaluating abnormal brain diffusivity in foetuses with complex CHD.

B-0601 10:46
Foetal dynamic phase-contrast (PC) MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements
B.P. Schoennagel 1, J. Yamamura, F. Kording, R. Fischer, G. Adam, H. Koosman, C. Ruprecht, K. Fehrs, M. Tavares de Sousa; Hamburg/DE (b.p.schoennagel@uke.de)

Purpose: To investigate the feasibility of foetal phase-contrast (PC)-MR angiography of the descending aorta (AoD) using an MR-compatible Doppler Ultrasound sensor (DUS) for foetal cardiac gating and to compare velocimetry with Doppler ultrasound measurements.

Methods and Materials: In this prospective study 2D PC-MR angiography was performed in ten human foetuses (gestational age 32±2.3 weeks) using an MR-compatible DUS for gating of the foetal heart at 1.5T. Peak flow velocities in the foetal AoD were compared with Doppler ultrasound measurements performed on the same day. Reproducibility of PC-MR measurements was tested by repeated PC-MR in five foetuses.

Results: Dynamic PC-MR angiography in the AoD was successfully performed in all foetuses using the DUS, with foetal heart rates of 131 - 163 bpm. Time-velocity curves revealed typical arterial blood flow patterns. PC-MR mean flow velocity and mean flux were 19.7±7.9 cm/s and 7.8±3.4 ml/sec, respectively. A positive association between PC-MR mean flux and flow velocity with gestational age was obtained (r=0.9, p<0.001 and r=0.65, p=0.06). PC-MR and Doppler ultrasound peak velocities revealed highly significant correlation (r=0.88, p<0.001). Peak velocities were lower for PC-MR compared with Doppler ultrasound (68±26 vs. 95±28 cm/s, p<0.001). Reproducibility of PC-MR was high with no statistical differences (p>0.05).

Conclusion: The MR-compatible DUS for foetal cardiac gating allows for PC-MR angiography in the foetal AoD. Comparison with Doppler ultrasound revealed highly significant correlation of peak velocities with underestimation of PC-MR velocities. This new technique for direct foetal cardiac gating indicates the potential of PC-MR angiography for assessing foetal haemodynamics.
Role of fetal MRI in diagnosis of genitourinary anomalies: is there an added value?

Methods and Materials: IRB approved study. Out of 771 fetal MRI's performed in our center, 65 were done either primarily to evaluate a GU anomaly seen in ultrasound or as a result of more accurate diagnosis.

Purpose: To assess foetal cardiac function (both systolic and diastolic) using modified myocardial performance index by Doppler in gestational diabetic mothers in early third trimester (28-32 weeks) and to assess role of this index in prediction of perinatal outcome.

Results: The cases had significantly higher median MPI compared to controls, p value=0.0001. 7 abnormal outcomes were recorded in the 30 foetuses in the study group, corresponding to an adverse outcome rate of 23.3% and these foetuses had significantly higher MPI measurements compared to GDM foetuses with normal outcome. The MPI served as an excellent predictor of adverse outcome in GDM foetuses with a total area under the ROC curve of 0.98. MPI z-score greater than 4.0 provided a 100% sensitivity and 80% specificity. No abnormal outcomes were recorded in the control group.

Conclusion: MPI has the potential to improve foetal surveillance in gestational diabetes.

What does perinatal autopsy add after antenatal ultrasound and post-mortem MRI investigations?

Purpose: To determine the value of perinatal autopsy where non-invasive imaging techniques (post-mortem MRI, PMMR) have been performed in foetuses terminated after antenatal detection of sonographic abnormalities.

Methods and Materials: Pre-autopsy PMMR was performed on consecutive foetuses over a 6-year period (2007-2013). Cases were categorised into three groups depending upon whether ultrasound and PMMR findings were concordant, partially concordant or discordant. The yield of new information from autopsy in each of these groups was assessed and diagnostic accuracies for each of five body systems (neurological, cardiac, thoracic, abdominal and musculoskeletal) were calculated using autopsy as the reference standard for
Conclusion: Overall PMMR had a significantly higher concordance rate with autopsy than specificity 97.9% (95.5%, 99.0%) and concordance of 93.8% (90.8%, 95.8%). For PMMR the sensitivity was 79.0% (68.9%, 86.5%), specificity of 92.5% (88.9%, 95.0%) and concordance of 89.0% at autopsy in 19/81 (23%) cases overall, 6/44 (13.6 %), 10/26 (38.5%), and cases, and discordant in 11/81 (13.6%) cases. New information was obtained were concordant in 44/81 (54.3%) cases, partially concordant in 26/81 (32.1%), second and third trimester, helping also the study of foetal CNS abnormalities.

Method and Materials: 30 normal pregnancies underwent foetal MRI at 1.5T, using DW-Spin Echo EPI with b-values 50,200-700 s/mm². Eight regions of interest (ROIs) were manually placed in Frontal White Matter (FWM), Occipital WM (OWM), Thalamus (TH), Basal Ganglia (BG), Cerebellum (CH), Pons, lateral ventricle Cerebral Spinal Fluid (CSF) and amniotic fluid. Raw data were denoised and DWI were segmented to eliminate CSF. Kruskal-Wallis test was used to calculate the differences of ADC values during second and third trimester, and without DWI pre-processing Signal-To-Noise Ratio (SNR) was obtained with and without denoising correction to evaluate the reliability of ADC values. Spearman’s test was used to calculate the correlation between ADC and Gestational Age (GA).

Conclusion: Denoising DWI is an important tool to obtain no-biased ADC values, in order to better characterize normal foetal brain development in second and third trimester, helping also the study of foetal CNS abnormalities.

Purpose: To evaluate changes of foetal brain metabolite concentrations using proton magnetic resonance spectroscopy (‘H-MRS) at various stages of pregnancy with point-resolved spectroscopy (PRESS) sequence.

Methods and Materials: Imaging of 70 foetuses’ brains (19-39 postmenstrual weeks, normal neurodevelopment) were acquired on 3.0T MRI. Pregnant women were examined in the supine position (feet first) and no contrast agents or sedatives were used. Methodology included obtaining T2 SSFSE (TE=70-90 ms, TR=1200) in 3 orthogonal planes to evaluate anatomic structures and planning the region of interest; slice thickness 3-4 mm. Then applied PRESS with TR=2000 ms and TE=70 ms. The zone of interest was projected posteriorly from the basal ganglia, capturing the thalamus and hypothalamus, its size was 20 mm².

Results: The concentration of metabolites (N-acetylaspartate - NAA, Creatine - Cr, Choline - Cho, Inositol - Ino) and graphic spectra were obtained. Using PRESS on TR=2000 ms and TE=70 ms has shown high reproducibility.

Conclusion: The foetal brain metabolites is changing during pregnancy and this corresponds to brain maturation. This reflects the status of myelination associated with increasing synaptic complexity, increased proliferation and differentiation of cells. Diagnosis of disorders of normal metabolic processes of the foetal brain can be useful in identifying future potential therapeutic strategies.

Oncologic Imaging

SS 616b Abdominal tumour imaging: raising the bar

Moderators: D. Caruso; Rome/IT
A. Cieszanowski; Warsaw/PL

Purpose: To assess the role of DCE-MRI radiomics nomogram in predicting response to neoadjuvant chemotherapy.

Methods and Materials: This study prospectively enrolled EC patients with stage cT1N+M0 or cT2-4aN0-M0. All patients received DCE-MRI within 7 days before the beginning of chemotherapy followed by surgery. nCT response assessment was graded from 1 to 5 according to the tumour regression grade (TRG). Patients were stratified into responders (TRG1+2) and non-responders (TRG3+4+5). According to 10-fold cross-validation, the half of this cohort was set as the training cohort, and the other half was set as the validation cohort. The Spearman, Lasso and PCA regression model was exploited for dimension reduction and selection of the feature space. The discriminating performance was assessed with AUC. Univariable association analysis was adopted for testing the correlation of radiomics signature and response, and DCA was used for comparing three models.

Results: All included 82 patients underwent surgery and TRG, and 72 tumour radiomics features were acquired from DCE-MRI. Three most significant radiomics features were identified by Spearman and LASSO, which included Ktransmedian, Vemean, Minintensity, 4 components were identified by PCA, and they were selected to create the radiomics signature significantly associated with response. AUC of radiomics signature performance in the training cohort was 0.885 (95%CI: 0.869-0.904) and in the validation cohort was 0.890 (95%CI: 0.869-0.917). This model showed good discrimination between responders and non-responders.

Conclusion: The study showed DCE-MRI radiomics features could potentially predict response to nCT in EC patients.
B-0611 10:38
Diffusion kurtosis imaging evaluation of histological differentiation and Lauren classification in advanced gastric cancer
J. Fu, L. Tang, Z. Li, Q. Shi, Z. Yan, X. Li, J. Ji; Beijing/CN
(184102925@163.com)

Purpose: To investigate the value of diffusion kurtosis imaging (DKI) in assessing different histological type and Lauren classification in advanced gastric cancer.

Methods and Materials: This study was approved by the local institutional review board. Fifty-two patients with biopsy-proven gastric cancer were enrolled in prospective study before resection. All DKI images (b=0, 200, 500, 800, 1000, 1500, 2000s/mm²) were blindly determined by radiologists, respectively, using software. The region of interest was manually drawn on the specific slice showing the largest area of tumour. Three parameters of DKI were calculated automatically: apparent diffusion coefficient (ADC), kurtosis (K), and diffusivity (D) value. One-way analysis of variance and receiver operating characteristic curves were used for statistical analysis.

Results: Kurtosis was significantly higher in diffuse type (0.74±0.03) than in mixed type (0.69±0.025) and intestinal type (0.57±0.015) of Lauren type (p<0.05). D and ADC were significantly lower in diffuse type than in mixed and intestine type (2.129±0.208 vs. 2.758±0.252 vs. 3.033±0.144; 0.974±0.042 vs. 1.167±0.049 vs. 1.235±0.302, respectively, p<0.05). The specificity for the assessment of diffuse type was greater using K (92.30%, cutoff value=0.88) compared with other parameters. There were also significant differences between different differentiation for ADC (p<0.000), MD (p<0.000), MK (p<0.007). AUC curve of ADC, K and D values in diagnosing low-grade gastric cancer were 0.77, 0.68 and 0.70, respectively. When the cutoff values of ADC,K D values were set to 1.148±0.000 mm²/s, 0.612, 2.769±0.100 mm²/s, sensitivity of 77.30%, 68.20%, 77.27% and specificity of 73.30%, 56.70%, 60.00% were achieved, respectively.

Conclusion: DKI parameters exhibit potential predicting the gastric cancer aggressiveness before treatment.

B-0612 10:46
The role of intravoxel incoherent motion and diffusion kurtosis imaging in evaluating pathological complete response to neoadjuvant chemotherapy in rectal cancer
I. Yang, B. Wu; Chengdu/CN (lqyang95@163.com)

Purpose: To explore the feasibility of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) parameters in assessing pathological complete response (pCR) to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC).

Methods and Materials: 32 LARC patients who received neoadjuvant CRT and subsequent surgery were enrolled prospectively. All of them had pre- and post-CRT rectal MRI examinations, including IVIM and DKI sequence with 11 b values. Pathological tumour regression grade (TRG) was defined as follows: TRG 1: complete response; TRG 2: near complete response; TRG 3: partial response; TRG 4: no response. IVIM and DKI parameters of each patient were calculated.

Results: pCR (n=6) patients had a significantly higher post-CRT f (P=0.003), MD (P=0.017), as well as higher percentage change of f (P=0.012) and D* (P=0.034) value after treatment than non-pCR (n=26). They showed comparable overall diagnostic performance in selecting pCR with AUCs of 0.808, 0.769, 0.827 and 0.795, respectively. The percentage change of f had a sensitivity of 80.8%, specificity of 83.3%, PPV of 95.5% and NPV of 50%, with the cut-off value of 10.1%. Post-CRT f, MD and percentage change of f and D* also had negative correlations with TRG (r=-0.416, -0.384, -0.442 and -0.399).

Conclusion: Post-CRT f and MD value, and percentage change of f and D* could help to assessing complete responders to neoadjuvant CRT in LARC.

B-0615 10:54
Quantitative magnetic resonance imaging can predict tumour subtype, therapy response and patient survival in pancreatic ductal adenocarcinoma

Purpose: To evaluate the ADC-map histogram-derived quantitative imaging parameter ADC entropy as a biomarker in pancreatic ductal adenocarcinoma (PDAC).

Methods and Materials: We retrospectively analysed 39 cases of resected and 21 cases of metastatic PDAC who underwent clinical 1ST-MRI assessment. Whole tumour volumes were segmented and quantitative imaging parameters were derived using LileX. Disease-free (DFS) and overall survival (OS) was compared between patients with ADC entropy above vs. below the median of 6.0. Histopathological heterogeneity and immunohistochemical subtype of tumour samples were determined. The effect of gemcitabine treatment on survival was compared between ADC entropy groups.

Results: ADC entropy led to worse median DFS (6.7 vs. 21.6 months) and OS (4.0 vs. 27.5 months) in patients with pathological SRM subtype compared to non-SRM. In patients with high ADC entropy who underwent gemcitabine treatment (N=25) had significantly improved DFS (5.5 to 9.5 months, p<0.04) and OS (5.5 to 14.6, p<0.01) while gemcitabine had no significant effect on DFS or OS in the low ADC entropy group (N=14). All metastatic PDAC cases belonged to the high ADC entropy group. Gemcitabine-based treatment provided a slight DFS benefit to these patients compared to FOLIRINOX (11.6 vs. 7.6 months, p<0.15).

Conclusion: High ADC entropy predicts worse survival, improved gemcitabine-based chemotherapy response and is associated with increased tumour heterogeneity and the quasi-mesenchymal molecular subtype in PDAC.

B-1663 11:02
Clinical impact of lateral lymph nodes at pelvic MRI in patients with rectal cancer
I. Blazic, S. Patil, T. Konishi, N.M. Campbell, J. Garcia-Aguilar, M.J. Gollub; New York, NY/US (ivanablaiz@yahoo.com)

Purpose: To determine the relationship between baseline lateral lymph nodes (LLN) size measured on pelvic MRI and clinical outcomes in patients with rectal carcinoma.

Methods and Materials: In this IRB-approved, HIPPA compliant retrospective study, we identified 245 patients (157 men, 88 women, median age 53 years) who received neoadjuvant treatment for clinical stage II or III rectal cancer and for whom baseline MRI scans were available. Patients underwent surgery (n=216) or nonoperative management (n=29). Lateral node dissection was performed selectively in patients with grossly enlarged pelvic lymph nodes. MRI exams were reviewed for LLN size, characteristics and location by two radiologists blinded to patient outcomes. In a patient-level analysis, LLN size, node roundedness (short-long-axis ratio ≥ 0.8), border irregularity and heterogeneity were correlated with disease-free-surgery (DFS) using the Kaplan-Meier method and log-rank test. LLN was analysed at a literature-based cutoff of 5 mm. The importance of posterior external iliac (PEI) nodes was examined using multivariable Cox regression.

Results: A total of 845 lateral lymph nodes were evaluated on baseline MRI images (median 6mm; range 3-17mm). DFS was worse among patients with LLN size 5 mm or greater (p<0.027). Rounded and heterogeneous (p=0.003, 0.035), but not irregularly bordered LLN at baseline was associated with worse DFS. No difference in DFS was observed in patients with PEI nodes.

Conclusion: Lateral lymph nodes of 5mm or greater on baseline MRI in patients with rectal cancer portends worse survival. Round and heterogeneous nodes were also poor prognosticators.

B-0616 11:10
Investigating blood oxygenation level dependent (BOLD) MRI in small renal masses (SRM), and its correlation with dynamic contrast enhanced (DCE) MRI
N. Bouveradze, D. Preuzzi, R. Neijl, C. Kelly-Morland, H. Verma, K. Lashkhi, V.J. Goh; London/UK (bogveradze.nino@gmail.com)

Purpose: To assess for: 1. Differences in BOLD & DCE MRI parameters between histological groups, including benign & malignant SRM. 2. Differences in BOLD & DCE MRI parameters between SRM & normal renal parenchyma. 3. Within-subject correlations between BOLD & DCE MRI parameters.

Methods and Materials: Following ethical approval and informed consent, 21 prospective adult sets with SRM planned for surgery underwent 3T MRI, including BOLD and DCE MRI in addition to anatomical sequences. Parametric maps (T2*, AUGOCO, K, Rk and vj) were analysed by two radiologists in consensus. Differences in imaging parameters were assessed by Kruskal-Wallis and Wilcoxon signed-rank tests. Correlations were assessed using Spearman’s rank test. Statistical significance was set at 5%.

Results: After technical exclusions (n=3), our cohort consisted of 18 patients with 19 SRM: 11 clear-cell carcinomas (ccRCC), 4 oncocytomas, 3 papillary carcinomas (pRCC) and 1 metanephrinic adenoma. Mean T2* did not differ significantly between histological groups (P=0.20), but showed consistent values in oncocytomas (median, 30.26 ms; range, 29.22-32.73). Conversely, T2* varied substantially among ccRCC (median, 20.44 ms; range, 9.20-53.08 ms) and pRCC (median, 23.85 ms; range, 5.64-26.62 ms). T2* was lower in SRM than in normal renal parenchyma (P = 0.02). Among DCE MRI parameters, vj differed significantly between groups (P = 0.03). BOLD and DCE MRI parameters did not differ between subject-related coordinates.

Conclusion: BOLD MRI provides potentially useful information for the diagnosis of renal oncocytoma, in the context of a multiparametric protocol. It captures information that is not directly correlated to DCE MRI.

Author Disclosures: V.J. Goh: Research/Grant Support; Siemens Healthcare.
B-0617 11:18
Does perfusion-metabolic tumour phenotype predict for neoadjuvant therapy response in primary oesophageal tumours undergoing DCE-MRI and 18F-FDG PET/CT?
S.J. Withey, K. Owczarczyk, C. Yip, M. Siddique, A. Green, J. Bell, G. Cook, V.J. Goh; London/UK (samuel.withey@nhs.net)
Purpose: Oesophageal cancer has poor survival rates despite curative treatment. We hypothesized that a low perfusion-high metabolism phenotype may be associated with poorer response to neoadjuvant therapy. We aimed to assess the relationship between tumour perfusion and metabolism with therapy response.
Methods and Materials: Following ethical approval and informed consent, DCE-MRI and 18F-FDG PET/CT were performed prior to neoadjuvant therapy in 24 oesophageal cancers (18 male; mean age 64 ± 10 years; 21 adenocarcinoma, 3 squamous cell carcinoma). DCE-MRI transfer constant (Ktrans) and 18F-FDG PET/CT maximum standardised uptake value (SUVmax) were calculated. Pathological response was defined by Mandaud tumour regression grade 1-2; non-response by grade 3-5. Ktrans & SUVmax were compared between pathological responders versus non-responders using Wilcoxon rank test. Ktrans/SUVmax was calculated for each patient and the proportion of responders was calculated for each Ktrans/SUVmax quartile using ChiSquare contingency test. Significance was at p< 0.05.
Results: There was no difference in Ktrans & SUVmax between pathological responders and non-responders (p=0.8, 1 and 0.6, respectively). There was no significant difference in pathological response rates between different Ktrans/SUVmax quartiles (50%, 0%, 17% and 33%, respectively; p=0.13), however perhaps below the median percentile (Ktrans > high SUVmax) it appeared to have a better response than patients >25% (3/5 versus 3/15, p=0.01).
Conclusion: No association was noted between a flow-metabolic phenotype and therapy response in patients. We have, however, highlighted significant variability in response in patients with different flow-metabolic phenotypes that will require characterisation in a larger patient cohort.

B-0618 11:26
Image texture features to predict neoadjuvant therapy response in locally advanced rectal cancer
G. Cappello, V. Dornonzo, V. Romano, A. Timpani, G. Desi, F. Cortese, V. Giannini, S. Mazzetti, D. Regge; Candioli/TI (giovanni.cappello@ircct.it)
Purpose: Patients with locally advanced rectal cancer (LARC) usually undergo neoadjuvant chemoradiotherapy (CRT) or radiotherapy (RT) alone, followed by surgical resection. In 15-30% of them pathological complete response is reached, therefore a wait-and-see approach could be a viable option. Aim of the study was to predict CRT response in LARC patients before treatment, using texture features derived from MRI and PET acquisitions.
Methods and Materials: 47 LARC patients with pre-treatment MRI and PET/CT underwent RT (46-55 Gy, 23-30 fractions) or CRT (RT plus 5-FU or Capetitabine) followed by total mesectomal excision. We considered responders (pR+) patients with complete (tumour regression grade, TRG=1) or near complete (TRG=2) regression; non-responders (pR-) patients with moderate (TRG=3) to no regression (TRG=5). Tumors were semi-automatically segmented on T2-w MRI, ADC maps and PET/CT. From each image first-order and 22 second-order parameters derived from Haralick texture analysis were extracted. Multivariate logistic regression was performed to identify features most correlated with TRG.
Results: In our early experience, ACC radiologic response evaluation to neoadjuvant therapy between October 2008 and July 2017 underwent baseline and follow-up contrast-enhanced CT. Response evaluation was based on modified CHOI-criteria and RECIST1.1, classified as partial response (PR), stable disease (SD), progressive disease (PD). For CT-texture analysis (CTA), mean, entropy and uniformity of intensity/skewness/entropy of co-occurrence matrix (COM) and contrast of neighboring-grey-level-dependence-matrix (NGLDM) were calculated.
Results: Following CHOI-criteria, 9 patients achieved PR, 10 SD and 12 PD. RECIST1.1, classified patients into 5 PR, 15 SD and 11 PD. A frequent (n=6/31; 19.3%) pattern of response was tumour liquefaction. In responders, differences in entropy of NGLDM (p=0.028) and uniformity of NGLDM (p=0.021), in non-responders entropy of average (p=0.039), deviation (p=0.04) and uniformity of deviation (p=0.013) occurred between baseline and follow-up. Mean intensity and average were higher when liquefaction occurred (p=0.03; p=0.02), whereas mean deviation was lower (p=0.02) at baseline compared to other response patterns. Differences in mean (p=0.023), entropy (p=0.049) and uniformity (p=0.023) of entropy of NGLDM were found between responders and non-responders at follow-up. For the mean of heterogeneity, a cut-off value was calculated for the prediction of response in baseline CT AUC (0.12; sensitivity 89%; specificity 77%).
Conclusion: A frequent pattern of response to trabetcept was tumour liquefaction being responsible for pseudoprogression; therefore, modified CHOI should be preferred. Single CTGA feature can be used complementarily for the prediction and monitoring response to trabetcept.

B-0619 11:34
CT response evaluation of adenocortical carcinoma (ACC) during and after chemotherapy: which criteria?
M. Bertuletti, D. Cosentini, S. Cieno, M. Di Terlizzi, S. Grisanti, B. Frittoli, A. Berruti, R. Ambrosini, L. Grazioli; Brescia/IT (bertuletti.med@gmail.com)
Purpose: The use of cytoreductive surgery in patients with locally advanced/metastatic adenocortical carcinoma (ACC), where chemotherapy is the standard approach, is conditioned by CT evaluation of resectability and response assessment. The purpose of our study was to assess the prognostic impact on progression-free survival (PFS) of three different response criteria (RECIST 1.1, CHOI and tumour volume).
Methods and Materials: We retrospectively evaluated MDCT scans of 30 patients with pathologically confirmed ACC. Each examination was performed with a MDCT scanner (either Toshiba Aquilion with 160 detectors array or Philips Brilliance with 64 arrays), before and after i.v. automatic injection of iodinated contrast agents (370 mgI/ml/3ml/s - 1.3 ml/Kg body weight), using a background tissue technique andquisitions during the arterial and venous phases. Two radiologists performed semiautomated segmentation of every lesion using a dedicated software (Portal intellesspace, Philips), to measure lesionsional longer axis (RECIST 1.1 criteria), attenuation changes (CHOI) and volume changes after the treatment.
Results: 18 patients underwent cytoreductive surgery, with a median PFS of 15.5 months (6.1 months in patients who did not have surgical approach). A statistically significant correlation was observed between CHOI criteria and PFS (p=0.019), whereas disease response assessed by RECIST 1.1 and volume variations failed to be associated with patient outcome.
Conclusion: In our early experience, ACC radiologic response evaluation to chemotherapy using CHOI criteria could represent an additional prognostic factor, especially in patients candidates to surgical approach.

B-0620 11:42
CT-response patterns and the role of CT-textural features in inoperable abdominal/retroperitoneal soft tissue sarcomas treated with trabectedin
M. Esse2, C. Klotz2, W. Thaiss1, C.P. Reinert, J. Fritz2, M. Horger2; 1Tübingen/DE, 2Ulm/DE, 3Baltimore, MD/US
Purpose: To evaluate CT patterns and textural features of soft tissue sarcomas following trabectedin therapy as well as their suitability for predicting therapeutic response.
Methods and Materials: A total of 31 patients (18 female, 13 male; mean age 55 years; range 38-79 years) with soft tissue sarcoma were treated with trabectedin as a third-line therapy between October 2008 and July 2017 underwent baseline and follow-up contrast-enhanced CT. Response evaluation was based on modified CHOI-criteria and RECIST1.1, classified as partial response (PR), stable disease (SD), progressive disease (PD). For CT-texture analysis (CTA), mean, entropy and uniformity of intensity/skewness/entropy of co-occurrence matrix (COM) and contrast of neighboring-grey-level-dependence-matrix (NGLDM) were calculated.
Results: Following CHOI-criteria, 9 patients achieved PR, 10 SD and 12 PD. RECIST1.1, classified patients into 5 PR, 15 SD and 11 PD. A frequent (n=6/31; 19.3%) pattern of response was tumour liquefaction. In responders, differences in entropy of entropy-NGLDM (p=0.028) and uniformity-NGLDM (p=0.021), in non-responders entropy of average (p=0.039), deviation (p=0.04) and uniformity of deviation (p=0.013) occurred between baseline and follow-up. Mean intensity and average were higher when liquefaction occurred (p=0.03; p=0.02), whereas mean deviation was lower (p=0.02) at baseline compared to other response patterns. Differences in mean (p=0.023), entropy (p=0.049) and uniformity (p=0.023) of entropy of NGLDM were found between responders and non-responders at follow-up. For the mean of heterogeneity, a cut-off value was calculated for the prediction of response in baseline CT AUC (0.12; sensitivity 89%; specificity 77%).
Conclusion: A frequent pattern of response to trabectedin was tumour liquefaction being responsible for pseudoprogression; therefore, modified CHOI should be preferred. Single CTGA feature can be used complementarily for the prediction and monitoring response to trabectedin.

B-0613 11:50
Differatiation of atypical non-functional pNET and PDAC using a CT radiomics-based nomogram
M. He, H. Xue, Z. Jin; Beijing/CN (377174431@qq.com)
Purpose: To develop and validate an effective model to differentiate NF-pNET from PDAC and present it in a nomogram.
Methods and Materials: Between July 2014 and December 2017, 147 patients (80 patients with PDAC and 67 patients with atypical NF-pNET) with pathology results and enhanced CT were consecutively enrolled and chronologically divided into primary and validation cohort. Three models were built to differentiate atypical NF-pNET from PDAC, including radiomics signature alone, clinico-radiological features alone and their integrated model. The diagnosis performance of the three models was estimated and compared with area under the receiver operating characteristic curve (AUC) in the validation cohort. Nomogram was used to present the model with best performance, and its calibration was also assessed.
Results: In the validation cohort, the AUC for the differential diagnosis was 0.884 with the integrated model, which was significantly improved compared with the model based on clinico-radiological features (AUC=0.775, p-value=0.004), and comparable with the model based on radiomics signature (AUC=0.873, p-value=0.512). The nomogram presenting the integrated model achieved good discrimination performances in both primary and validation cohorts with C-index of 0.960 and 0.894, respectively.
Conclusion: The integrated model outperformed the model based on the clinicoradiological features alone and comparable to the model based on the radiomics signature alone in the differential diagnosis atypical NF-pNET from PDAC. The nomogram incorporated radiomics signature, clinicoradiological features can serve as an easy-conduct tool for the differential diagnosis between atypical NF-pNET and PDAC.

Clinical Trials in Radiology

CT 6

Clinical Trials in Radiology 2

Moderators:
V.J. Goh; London/UK
U. Mahmood; Oak Brook, IL/US

10:30 Outcome of pneumatoasis intestinalis and porto-mesenteric venous gas: a multicentric study
T.A. Auer,1 R. Kocher2, D. Pinto Dos Santos3, M. della Seta4, D. Geisel1, B. Hamim1, Dominik Weishaupt1, A. Lollert5, Y. Mazaheri3, C. Düber1, Dominik Weishaupt1, A. Lollert5, Y. Mazaheri3, C. Düber1, T.A. Auer
Purpose: To evaluate outcome and mortality of the radiological finding pneumatoasis intestinalis (PI) and porto-mesenteric venous gas (PMVG). Ethics committee approval: Institutional review board approval of this retrospective study was obtained (EA2/238/17)*
Methods and materials: In this retrospective multicentric study design, the radiology information systems of three tertiary care university medical centres searched for CT reports associated with PI. A total amount of 322 patients (132 women, 190 men) with PI were identified. Additionally, presence of “benign PI”, PMVG, outcome and mortality (90d-Follow-up) were evaluated. “Benign PI” was defined as conservatively treated patients with radiologically confirmed PI who did not die within the 90d-follow-up.
Results: Overall mortality for patients with PI was 54.1% within 90d after diagnosis while 53.7% of all patients received surgical treatment. For patients with PI in association with PMVG mortality increased to 68.2% (p < 0.001), Ischemia, obstructive bowel dilation and/or infection were the most frequent causes of PI. Kaplan-Meier-curve showed a shortened survival for patients with PI and PMVG. Log-Rank-test: p < 0.001 (Median survival: PI: 59d (2.8± SD; 95% CI 54.2-65.3) / PI and PMVG: 40d (3.6± SD; 95% CI 33.2-47.2).
Limitations: The limitation of this study is the retrospective and unrandomised character.
Conclusion: PI is not strictly associated with ischemia and high rates of mortality. In fact, there are several benign causes or favourable harmless conditions PI is frequently associated with; thus, PI is not inherently connected with an infust prognosis. Nevertheless, the extension seems to matter as mortality increases significantly when PI comes in association with PMVG.
Funding for this study: none

10:39 Discussant: D. Weishaupt; Zurich/CH dominik.weishaupt@triemli.zuerich.ch

10:45 Diffusion-weighted MRI in the assessment of nephroblastoma: results of a multi-centre trial
A.M. Hötker1, Y. Mazaheri2, A. Lollert2, J.-P. Schenk3, C. Düber3, P. Mildenberger5, O. Akın3, N. Graf3, G. Staatz1, Dominik Weishaupt1, T.A. Auer
1University of New York, NY/US, 2Mainz/DE, 3Heidelberg/DE, 4Homburg (Saar)/DE, 5Zürich, CH
Purpose: To assess the value of diffusion-weighted MRI in the pre-therapeutic evaluation of paediatric renal tumours, including the identification of histological subtypes of nephroblastoma with known adverse outcomes. Ethics committee approval: The institutional review board approved this multicentric study and waived the requirement for informed consent.
Methods and materials: This retrospective multicentric study included 122 paediatric patients with 130 renal tumours, who underwent MRI including DWI and were assigned to either CTA or ICA at a single centre. Patients reported that they felt better prepared for CTA (P<0.001), and invasive coronary angiography (ICA).
Results: After exclusion, Qure25k dataset contained 21,095 scans(mean-age 43.43% female) while CQ500 dataset consisted of 491 (mean-age 48.36% female) scans. On Qure25k dataset, algorithms achieved an AUC of 0.92 for detecting intracranial haemorrhage (0.90-intraparenchymal, 0.96-intraventricular, 0.92-subdural, 0.93-extradural, and 0.90-subarachnoid haemorrhages). On CQ500 dataset, AUC was 0.94 for intracranial haemorrhage (0.95, 0.93, 0.95, 0.97, and 0.96 respectively). AUCs on Qure25k dataset were 0.92 for calvarial fractures, 0.93 for midline shift, and 0.86 for mass effect, while AUCs on CQ500 dataset were 0.96, 0.97 and 0.92 respectively.
Limitations: Inclusion of follow-up scans, low concordance between radiologists for fractures in CQ500.
Conclusion: This study demonstrates that deep learning algorithms can identify head-CT scan abnormalities requiring urgent attention with high AUCs. Funding for this study: Qure.ai

11:09 Discussant: M. de Bruin; Rotterdam/NL (marleen.debruine@erasmusmc.nl)

11:15 Patient preference for coronary CT angiography and invasive coronary angiography: results from a randomised controlled trial
G. Abdala Gehring1, S. Feger2, M. Rief2, M. Laule1, M. Dewey1, A. Schönenberger1, Dominik Weishaupt1, A. Lollert5, Y. Mazaheri3, C. Düber1, T.A. Auer
1New York, NY/US, 2Mainz/DE, 3Heidelberg/DE, 4Homburg (Saar)/DE, 5Zürich, CH
Purpose: To compare patient preference for coronary CT angiography (CTA) and invasive coronary angiography (ICA). Ethics committee approval: Institutional review board approval was obtained and all patients provided written informed consent.
Methods and materials: 329 patients with stable chest pain, suspected coronary artery disease, and a clinical indication for ICA were randomly assigned to either CTA or ICA at a single centre. Patient preference was assessed using a previously validated questionnaire completed after CTA or ICA. Assessment included preparation for the tests, concern, degree of helplessness, pain, overall satisfaction, and preference for future testing.
Results: Out of the patients randomised to CT and ICA, 91% (152 of 167 patients) and 81% (140 of 162 patients, P=0.19 NS) completed the assessment. Patients reported that they felt better prepared for CTA (P<0.001), less concerned (P<0.001) and had a lesser degree of helplessness (P<0.001) than during ICA. Subjective pain measurements were significantly lower for readers). As compared to all other subtypes, the blastic subtype demonstrated significantly higher skewness (p<0.022, both readers) and the diffuse anaplastic subtype demonstrated significantly higher 75th-percentile ADC values (p<0.042, both readers).
Limitations: Given the multicentric retrospective approach, technical differences between the MRI examinations could not be accounted for.
Conclusion: Diffusion-weighted MRI may be of value in identifying benign nephroblastomatosis and assessing nephroblastoma subtypes. Therefore, it could play an important role in risk stratification for paediatric patients with renal tumours in the future.
11:45
A multi-stage randomised clinical trial to reduce variation in computed tomography radiation dose.

Y. Wang, P. Chu, S. Yu, R. Smith-Bindman; San Francisco, CA/US

Purpose: Radiation doses for computed tomography examinations are variable and often higher than necessary for diagnosis, and an RCT was conducted to help sites lower and standardise doses.

Ethics committee approval: IRB approved and no informed consent data received was de-identified after scan was performed.

Methods and materials: A registry of 1,2 million abdomen, chest, head, and combined chest-abdomen (CAP). CT adult exams collected 11/2015-10/2017 from 101 hospitals. We administered two interventions through stepped-wedge design: simple audit, ranking hospital performance and suggesting improvements, and multicomponent intervention, combining another audit with an 8-week course. To assess dose variance, we fit – for effective dose and CTDIvol – a complex variance mixed linear regression model with the background time and intervention stage as fixed effects of interest and constituents of variance structure. Patient characteristics are added as confounding fixed effects and the machine as a random effect.

Results: The variance of effective dose decreased over time for all anatomic areas, though attributability to the intervention varies. Respectively, the multicomponent intervention contributed 6%, 10%, 12%, and 35% dose variance decrease to abdomen, chest, head, and CAP scans, in addition to background time trends. The intervention impact on CTDIvol variance is comparatively modest, with most decrease attributable to background trends.

Limitations: All institutions had one type of dose-monitoring software.

Conclusion: The dichotomy between strong impact on effective dose variance and comparatively weak impact on CTDIvol variance mirrors the study impact on dose mean, further insinuating that many dose reductions were achieved by reducing multi-phase scanning.

Funding for this study: Funded by PCORI & NIH.
Results: DCE was the dominant sequence of mpMRI for PCaR detection. Tumour tissue sizes in patients with clinical PCaR had statistically significant correlation with PSA level (r=0.74; p=0.0008). Macrocystic MRCA was significantly more effective in the detection of small (<8mm) clinical PCaR (p=0.018). Efficacy of PCaR detection (tumour tissue size >8mm) after 1.0 and 0.5 mmol/ml MRCA injection was equal.

Conclusion: Macrocystic MRCA with concentration 1.0 mmol/ml is more effective in the detection of more smaller clinical PCaR (<8mm) in comparison with linear MRCA. DCE is the dominant sequence of mpMRI in the detection of PCaR.

B-0622 10:47
Contrast-enhanced ultrasonography (CEUS) surveillance of native kidneys in renal transplant patients: a monocentric experience
E. Bertelli, S. Agostini, S. Verna, S. Lucarini, E. Savi, L. Mercatelli, P. Carta, S. Serti, V. Miele; Florence/IT (elena.bertelli3@gmail.com)

Purpose: Renal transplant recipients (RTR) are at higher risk of renal cell carcinoma (RCC) in native kidneys, especially if they are affected by acquired cystic kidney disease (ACKD), so a routine screening is recommended. To decrease the risk of contrast-enhanced CT (CECT) and thus avoid the risk of contrast-induced nephropathy in RTR with ACKD, we prospectively studied the usefulness of CEUS in detecting renal lesions.

Methods and Materials: 212 consecutive RTRs underwent routine post-transplant US. ACKD was diagnosed in 68. The patients with questionable US result were enrolled in our study. Native kidneys were studied by CEUS and, in instances of positive CEUS, by CECT. Follow-up (FU) was ≥ 2 years.

Results: US identified 38 suspicious or questionable lesions. According to the Bosniak scheme, CEUS classified these lesions as 19 BI, 4 BII, 4 BIII and 5 solid. The BII and solid lesions were further studied by CECT, which confirmed CEUS findings in all the solid lesions. In the 4 BI, CECT confirmed 2 malignancies, and 2 were degraded to BIIIF. No changes were observed in FU lesions. The statistical analysis has shown no difference between the two series. No patient suffered adverse reactions. CEUS decreased by 76% the use of CECT. The limits of our study are the sample size and perhaps the short FU.

Conclusion: CEUS is safe and it is a useful tool in screening for the selection of patients who need to be further evaluated by CECT.

B-0624 11:03
Iodine in common contrast-enhanced CT protocols does not affect renal functionin a high-risk population with chronic kidney disease
M. Koci, A. Graber-Naidich, X.S. Cheng, D. Fleischmann, M.J. Willemin; Stanford, CA/US (mkoci@stanford.edu)

Purpose: Administration of iodinated contrast is considered a risk factor for post-contrast acute kidney injury (PC-AKI) in patients with chronic kidney disease (CKD). We sought to evaluate the effect of clinically used doses of iodinated contrast administration on the kidney function of high-risk patients.

Methods and Materials: We retrospectively identified 362 patients who underwent a contrast-enhanced CT examination of the abdomen, at higher or lower extents between January 2017 and August 2018, with estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73m2 in the year before the CT. Contrast volumes (CV), serum creatinine (sCr) before and after CT, were available (at least 14 days before and 48-72 hours after CT). The primary endpoint was PC-AKI, defined as >50% or >0.3 mg/dL increase in sCr after administration of iodinated contrast. Iodine in common contrast-enhanced CT protocols does not affect renal function in a high-risk population with chronic kidney disease

Results: Median age (interquartiles) was 66.9 (58.0-75.9) years. Patients with eGFR 30-45 and eGFR 45-60 ml/min/1.73 m2 had similar PC-AKI incidence (10.8% versus 7.7%, respectively; p=0.34) and contrast volume (95 [80-121] ml versus 96 [85-123] ml, respectively; p=0.88). Pre-CT sCr was high in 38.4% (139/361). We observed sCr increase from normal to high in 8.6% (31/362), and sCr decrease from high to normal in 10.8% (40/362). In 8.6% (31/362) of patients sCr increased by 0.3 mg/dL. Conclusion: Our study showed that even in a high-risk population of patients with a substantially reduced kidney function (eGFR<45), the incidence of PC-AKI after contrast-enhanced CT was low and comparable to patients with eGFR≥45.

B-0625 11:11
Contrast-enhanced ultrasound (CEUS) efficiency in renal graft complications evaluation
C.G. García Roch1, F. García Garcia1, F.X. Aragon Tejada2, J. Ciampi Dopazo1, M. Muñoz Cepeda1, M. Bernabéu Rodríguez1, R. Giovannetti González1, A. Roca1, P.A. Baron Rodiz2, T Toledo/ES, Madrid/ES, Córdoba/ES (carmen.roch@gmail.com)

Purpose: To evaluate contrast-enhanced ultrasound (CEUS) efficiency in the diagnosis of renal graft parenchymal and vascular complications.

Methods and Materials: Retrospective, observational, descriptive study that includes all adult patients transplanted in our centre from January 2011 to January 2015. Patients underwent a first baseline US (8 mode and colour and pulsed Doppler US) examination within 24-72 hours post-surgery. In cases with abnormal findings, 2nd generation intravenous US contrast (Sonovue®) was administered as protocolled, to obtain qualitative evaluation of the parenchymal graft and vascular contrast uptake. No complications were observed in any examinations, all of which were performed by the same experienced radiologist.

Results: CEUS was performed in 27 patients (out of 131). 6 grafts presented pathological findings in CEUS showing significant alterations. These cases corresponded to exclusively parenchymal involvement: acute rejection in one patient, with histological confirmation, and 5 cases of acute tubular necrosis. A total of 25 complications were depicted in the remaining 21 patients, with infarction, artery stenosis and necrosis being the most frequent. Complementary imaging studies included 10 CT scans and 3 arteriographies, none of which provided additional information to CEUS.

Conclusion: Qualitative assessment of the parenchymal uptake of US contrast was insufficient for the diagnosis of ATN and rejection since CEUS in these patients was normal despite presenting anomalies in baseline US. On the contrary, CEUS offers rapid and reliable diagnosis of renal infarction, necrosis, and vascular stenosis or thrombosis with precise detail of location and extension.

B-0626 11:19
Comparison of computed tomography (CT) and contrast-enhanced ultrasound (CEUS) for the management of complex renal cysts: a single-centre experience
G. Piccoli; Coregiano/IT (piccoli.gianluca@gmail.com)

Purpose: To compare CT and CEUS Bosniak classification for the assessment of cystic renal masses and to gauge the correspondence between CEUS Bosniak classification and clinical/histological outcome.

Methods and Materials: Between March 2017 and February 2018, 35 patients underwent CT and CEUS; 37 complex renal cysts were evaluated.

Results: Bosniak score after CEUS was downgraded in 7 patients (6 to Bosniak I); in 18 it was maintained; in 10 upgraded. Eight complex renal cysts underwent surgery: 2 were a simple renal cyst and an oncocytoma (Bosniak IV and IV after CT, III and IV after CEUS); 6 were malignant: 1 multicellular cystic renal neoplasm of low malignant potential, 1 papillary renal carcinoma (RCC) type 1 and 4 clear cell RCC (2 Bosniak III, 3 Bosniak I, Bosniak IV after CT; after CEUS 1 Bosniak IIIF, 1 Bosniak III, 4 Bosniak IV). Three complex renal cysts were upgraded from Bosniak III to Bosniak IV, all were RCC. Two Bosniak IV cysts were confirmed after before CEUS and an RCC.

Conclusion: CEUS is safe and it is a useful tool in screening for the selection of patients who need to be further evaluated by CECT.

B-0627 11:27
Using contrast-enhanced ultrasound to assess diagnostically challenging and indeterminate lesions in native and transplant kidneys
P. Liu, A. Mehdi, A. Alsal, C. Harvey, A.K.P. Lim; London/UK (philippa.lee08@gmail.com)

Purpose: Ultrasound is often the initial modality in detection and assessment of renal lesions which are then commonly characterised further with CT/MR. The use of ultrasound contrast agents (UCAs) allows immediate accurate characterisation without the associated delay, anxiety, cost and potential exposure to nephrotoxic agents which CT/MR entails. This study aims to analyse the role of CEUS in the assessment of diagnostically challenging and indeterminate renal lesions and evaluate if CEUS adds diagnostic value to other imaging modalities.

Methods and Materials: We performed retrospective analysis of patients at a tertiary transplant and renal centre in London between 2004 and 2018. 262 patients who underwent CEUS for renal lesions were identified on PACS and their prior and subsequent imaging following CEUS was reviewed and analysed. The role of CEUS diagnostic value was then evaluated and categorised in “diagnosis provided,” “confirmed suspected diagnosis,” “added information only” or “no added value”.

Results: CEUS added value compared to the initial US in 82% of cases. 37% of the patients had an initial CT and/or MR. In this group, CEUS added value in 76. Diagnoses in this group included complex Bosniak cysts, differentiation of cystic and solid lesions, pseudotumours, complicated xanthelaeophris/
B-0628 11:35
Characterisation of CT-indeterminate renal masses by contrast-enhanced ultrasound and acoustic radiation forced impulse imaging
S. Kaufmann, W. Thaiss, M. Horger, K. Nikolajou, J. Bedke; Tübingen/DE
Purpose: To prospectively characterise CT-indeterminate renal masses (CTIRM) using acoustic radiation force impulse (ARFI) elastography and contrast-enhanced ultrasound (CEUS) and to correlate quantitative imaging findings with histopathology or interim follow-up (FU).
Methods and Materials: 123 patients with CTIRM (longest diameter <4cm) underwent CEUS and ARF imaging (if). The MRDs were reviewed by four expert radiologist and prolapse and demographic data was obtained from 56 patients in which MRDs was performed. The MRDs were reviewed by four expert radiologist and prolapse and demographic data was obtained.
Results: 77 out of 123 patients underwent surgical resection of a lesion due to suspect imaging findings, whereas 46 patients underwent FU, which did not show upgrading in Bosniak category. Histopathology revealed 58 renal cell carcinomas, 24 chromophobe (chRCC), 16 papillary (pRCC) and 15 clear cell (cRCC), 10 oncocytomas and 9 non-malignant renal lesions (1 minimal fat AML, 3 focal nephritis and 5 infected cysts). SWV and SWR differed significantly between ccRCC, pRCC, chRCC (p=0.0024, F=13.94) and in SWR also for oncocytoma (p<0.0001, F=14.35). In CEUS, oncocytoima and ccRCC showed significant higher PE values (p<0.0001, F=77.31) as well as higher WI and lower TTP compared to all other solid lesions.
Conclusion: Quantitative CEUS and ARFI imaging can provide relevant information to further characterise CT-indeterminate renal masses to guide urological decision-making and offers the possibility of differentiation between ccRCC from less malignant RCC subtypes and from oncocytoma.

B-0629 11:43
Correspondence analysis between different reference lines used in magnetic resonance defecography of pelvic organs prolapse or the measurement of prolapse of pelvic organs with POPQ
S. Yevenes Araveng, G. Cárdenas Loguercio, J. Casas Muñoz, F. Araya Campos, C. Garrido Inostroza, V. Manríquez Galán, R. Guzmán Rojas, criteria included all contraindications for CEUS and IF. Shear wave velocity (SWV), shear wave ratio (SWR), peak intensity (PE), time to peak (TTP) and wash-in rate (Wi) were quantified. In case of a cystic lesion classified as ≤ Bosniak 2F, follow-up imaging was performed.
Results: The mean operation time was 42.3±8.7min, ablation time 15.6±3.4min, energy deployed 11,540.0±3,680.5J, hospital stay 1.7±0.4days.
Conclusion: TPLA using continuous wave (CW) diode laser source at 1064nm (Echolaser SoracteLite, Elesta s.r.l., Calenzano (FI), Italy). Under transrectal US-g, one or two 21G introducer needles for each lobe, according to the prostate volume, were inserted with transperineal approach. Each ablation was performed at 3W power for 1800J energy. A pull back was done case by case according to the prostate volume. Major and minor complications were recorded. The efficacy was evaluated on the changes of means of International Prostate Symptoms Score (IPSS), Quality of Life(QoL), post-void residual (PVR), prostate volume and the ejaculatory function. The mean hospital stay was measured.
Results: At a mean follow-up time of 16 months (range 3-45), IPSS improved from 22.9 to 9.6 (P<0.001), QoL from 4.5 to 1.2 (P<0.001), PVR from 162.3 ml to 64.9 ml (P<0.001) and prostate volume from 73.47 ml to 50.8 ml (P<0.001). Of 34 patient evaluated for ejaculatory function, 92% (94%) maintained a satisfactory ejaculation. No major complications occurred. The mean operation time was 42.3±8.7min, ablation time 15.6±3.4min, energy deployed 11,540.0±3,680.5J, hospital stay 1.7±0.4days.
Conclusion: TPLA is a mini invasive treatment for BPH. This therapeutic approach was safe, efficacious and with a satisfactory outcome.

SS 608
Lymph nodes and parathyroids
Moderators:
N.N.
L.M. Lenghel; Olj-Napoca/RO
B-0631 10:30
Evaluation of acoustic radiation force impulse imaging in the diagnosis of malignant cervical lymphadenopathy
R. Kamal1, A. Ramesh2, K. Nagarajan2, Chandigarh/IN, 2Puducherry/IN (rohanrokmt@gmail.com)
Purpose: To evaluate diagnostic power of ARFI in differentiating benign and malignant cervical lymph nodes and to compare it with B-mode imaging; 2) to compare the shear wave velocities (SWV) between benign and malignant nodes.
Methods and Materials: A total of 166 cervical nodes from 166 patients were examined using B-mode, Doppler and ARFI, between October 2015 and April 2017. SWV, virtual touch imaging (VTI) and area ratio (AR) were calculated for each node and the results were compared with FNAC/biopsy.
Results: Median SWV of benign and malignant nodes were 1.9 (1.56-2.55) m/s and 6.7 (2.87-9.1) m/s, respectively. A SWV >2.68 m/s helped in identifying a malignant node with 81% specificity, 81.6% sensitivity and 81.3% accuracy. AR and predominantly dark elastograms were useful in identifying malignant nodes. ARFI was found to be inaccurate in tuberculous and lymphomatous nodes.
Conclusion: Malignant nodes had significantly higher SWV, AR and darker elastograms compared to benign nodes. SWV had the highest accuracy amongst all the parameters. ARFI imaging accurately identifies the malignant nodes, hence guiding the FNAC/biopsy.

B-0630 11:51
Outcome in 73 patients with benign prostatic hyperplasia treated by an ultrasound guided transperineal laser ablation by interventional radiologists
G. Patelli1, F. Besana1, E. Faietti1, G. Ori Belometti1, C. Costa1, A. D’Alessio2, G. Maur3, C.M. Pacella1, 1Seriate/IT, 2Zingonia/IT, 3Milan/IT, 4Rome/IT (patelli gig@yahoo.it)
Purpose: To report results of ultrasound-guided (US-g) Transperineal Laser Ablation (TPLA) in patients with Benign Prostatic Hyperplasia (BPH).
Methods and Materials: Seventy-three patients (mean age 72.6±10.4years, range 58-93) with obstructive syndrome secondary to BPH, were treated by TPLA using continuous wave (CW) diode laser source at 1064nm (Echolaser SoracteLite, Elesta s.r.l., Calenzano (FI), Italy). Under transrectal US-g, one or two 21G introducer needles for each lobe, according to the prostate volume, were inserted with transperineal approach. Each ablation was performed at 3W power for 1800J energy. A pull back was done case by case according to the prostate volume. Major and minor complications were recorded. The efficacy was evaluated on the changes of means of International Prostate Symptoms Score (IPSS), Quality of Life(QoL), post-void residual (PVR), prostate volume and the ejaculatory function. The mean hospital stay was measured.
Results: At a mean follow-up time of 16 months (range 3-45), IPSS improved from 22.9 to 9.6 (P<0.001), QoL from 4.5 to 1.2 (P<0.001), PVR from 162.3 ml to 64.9 ml (P<0.001) and prostate volume from 73.47 ml to 50.8 ml (P<0.001). Of 34 patient evaluated for ejaculatory function, 92% (94%) maintained a satisfactory ejaculation. No major complications occurred. The mean operation time was 42.3±8.7min, ablation time 15.6±3.4min, energy deployed 11,540.0±3,680.5J, hospital stay 1.7±0.4days.
Conclusion: TPLA is a mini invasive treatment for BPH. This therapeutic approach was safe, efficacious and with a satisfactory outcome.
B-0632 10:38
SUV-based lymph node selection for fine-needle aspiration guided by real-time fused ultrasound and FDG PET in head and neck cancer patients
P. De Koekoek-Doll, W. Vogel, M.W.M. van den Brekel, L. Smit, R.G.H. Beets-Tan, M. Maas; Amsterdam/NL (petra.dkd@gmail.com)
Purpose: FDG PET-CT can detect lymph node metastases in head and neck cancer with high sensitivity and ultrasound (US)-guided fine-needle aspiration (FNA) can provide histological proof with high specificity. We assume that real-time fused US+FDG PET-CT for FNA (Fused-FNA) will provide accurate nodal staging. Aim was to determine the optimal SUVmax to select nodes for Fused-FNA.
Methods and Materials: 128 patients (female 30%, male 70%, age mean 63 and range 32-88) were prospectively included. FDG PET-CT was acquired according to clinical diagnostic protocols. Live US was fused with PET-CT and Fused-FNA was performed using the electromagnetic navigation system Percuvan on a Philips EPIQ US machine. FNA took place on nodes with visually increased metabolic activity. The reference standard was cytology from FNA performed on all suspect nodes on US. ROC curves were constructed and area under the curve (AUC) was used to assess diagnostic performance.
Results: FDG PET detected a total of 269 suspect nodes in 117/128 (91%) of patients. Live fusion failed in 6 (3%) of these nodes, and Fused-FNA cytology results were inconclusive in 16 (6%) of nodes. In the remaining 247 (94%) FDG-positive nodes 135/247 (55%) Fused-FNA yielded malignant cytology. AUC was 0.887 (95% CI 0.845-0.929). The optimal cut-off for SUVmax was established at 4.87, yielding a sensitivity of 90% and specificity of 71%.
Conclusion: Selecting nodes with SUVmax ≥ 4.87 on FDG PET-CT for real-time fusion-guided US-FNA yields a high accuracy for the diagnosis of malignant nodes.

B-0633 10:46
Correlation between preoperative 4D CT parathyroid volumes and perioperative PTH levels
A. Yates, P. Cromwell, N.M. Hughes, S. Skehan, D. Evo, E. McDermott, R. Prichard; Dublin/IE (ayates@tcd.ie)
Purpose: The aim of this study is to examine if there is a correlation between estimated 4D CT volume of a parathyroid gland with perioperative parathyroid PTH level and serum ionised calcium (iCa) levels in patients with a solitary parathyroid adenoma. The secondary aim was to compare the estimated CT parathyroid gland volume against the post operative volume.
Methods and Materials: Data was collected from a prospectively maintained database of adult patients who were diagnosed with a solitary PT adenoma and had a pre-operative 4D CT who subsequently underwent parathyroectomy over a 5 year period (2012-2017).
Results: 58 patients were included in the study. The mean age was 59.84 years. There were 16 men (27.6%) and 42 women (72.4%). The median estimated parathyroid gland CT volume was 0.265cm3 (IQR: 0.150-0.522cm3) while the median post op volume was 0.724cm3 (IQR: 0.399-1.47cm3). The median drop in PTH was 97.9 (IQR: 63.7-158.1ng/L)Th e correlation between estimated parathyroid gland volume against the post operative volume.
Conclusion: Pre-operative parathyroid weight, as estimated by CT, positively correlates with the post-operative reduction in PTH. Estimating volume using 4D CT imaging is a useful tool in the preoperative workup of parathyroid adenomas.

B-0634 10:54
Evaluation of sensitivity and specificity of elastography for differentiating benign from malignant cervical lymphadenopathy and comparing with B-mode and colour Doppler findings
K. Mittal1, V. Bansal2,3, Delhi/N, New Delhi/N (kapishmittal1989@gmail.com)
Purpose: To evaluate the sensitivity and specificity of elastography for differentiating benign from malignant cervical lymphadenopathy and to compare its findings with B-mode and colour Doppler ultrasound.
Methods and Materials: The present study was conducted on 200 patients with cervical lymphadenopathy. This selection was based on size of the lymph node and other B-mode sonography characteristics. B-mode and colour Doppler findings were recorded. In addition to this, strain elastography was done and five elastography patterns were defined: high elasticity (soft); pattern I represented no or very small area while spectrum pattern V presented almost whole of lymph node showed hard pattern on strain elastography. Additionally, a cine loop of elastography was acquired for calculation of strain ratio using adjacent muscle as reference. A cut-off value of less than 2 (2) of strain ratio was used to define benign lymph nodes and more than or equal to two (2) was used to define malignant lymph nodes.
Results: Final diagnosis of benign versus malignant lymph node was based on other relevant investigations like FNAC/biopsy findings and clinical follow-up after three months.

B-0635 11:02
Diagnostic accuracy of image-guided core needle biopsy of lymphoma suspected patients
M. Kazemi, M. Mikalai, H. Shariffi, B. Moradi; Tehran/IR (Ma-kazemi@sina.tums.ac.ir)
Purpose: In this study we aimed to evaluate the efficacy of image-guided core needle biopsy (CNB) for the diagnosis of lymphoma.
Methods and Materials: This cross-sectional study during 2016-2018, included 247 patients with suspicious imaging and clinical findings of lymphoma. They underwent image-guided CNB by 16 gauge core biopsy needle at least 3 cores were obtained from each patient. All the patients were followed at least for 1 year.
Results: Pathologic results showed 3 main groups: 1-lymphoma with specific type (35%), 2-lymphoproliferative or lymphocytic and histocytic infiltration (22%), 3-other pathologies (as other malignancies, infection, reactive) (43%). All the group 2 patients went under surgical excisional biopsy (SEB) that 40% of them showed lymphoma. So in patients with lymphoma 80% were correctly diagnosed by CNB and treated directly. Another remaining 20% were categorized under group 2 and diagnosed by SEB. No patient with lymphoma was missed.
Conclusion: Image-guided CNB in patients with lymphadenopathy suspicious for lymphoma, is an effective and safe method as an initial diagnostic tool.

B-0636 11:10
Arterial spin labelling (ASL) MRI to assess nodal metastases in head and neck cancer
B. Balaji; Chennai/IN (ravikanthbalaji@gmail.com)
Purpose: To evaluate the feasibility of predicting nodal metastases in head and neck cancers using arterial spin labelling (ASL).
Methods and Materials: Twenty-eight patients with various types of locally advanced head and neck cancers (buccal mucosa 14, tongue 10, maxillary sinus 4) were evaluated using ASL on 1.5 T MR scanner (Achieva, Philips Healthcare, Best, The Netherlands) in addition to T2, diffusion and contrast sequences. The ASL maps were fused with fat suppressed T2 weighted images and compared with post contrast T1 weighted images. The primary tumour and suspected nodes were identified on T2 and contrast images and Regions of Interest (ROI) were marked. Necrosis within the nodes that had bright signal on T2WI were avoided. All patients underwent concurrent chemoradiotherapy after histological analysis.
Results: Tumour blood flow (TBF) within suspected nodes showed significant elevation and was comparable with values within the primary mass. The mean TBF in patients within involved nodes from buccal mucosa cancers was 110 +/- 15.8 mL/100g/min, nodes from primary tongue malignancies 124 +/- 22.4 mL/100g/min and nodes from primary malignancies of the maxillary sinus 117 +/- 19.8 mL/100g/min.
Conclusion: Quantitative assessment of TBF in cervical lymph nodes from primary head and neck cancers is possible with ASL. ASL may be useful for noninvasive assessment of tumour viability in head and neck cancer avoiding use of contrast agents and reducing the danger of allergy and nephrogenic systemic fibrosis (NSF). Fusion of T2WI-FS images would improve morphological description of tumour as ASL images are usually of low spatial resolution.

B-0637 11:18
Role of shearwave elastography in assessment of cervical lymph nodes
S.K. Suganchand Rikabchand, R. Mohammed Kashif; Jodhpur/IN (Sunilmed@gmail.com)
Purpose: The purpose of our study was to evaluate diagnostic accuracy of Virtual Touch Imaging Quantification (VTQ) shearwave elastography in differentiation of benign and malignant cervical lymph nodes with pathological results as reference.
Methods and Materials: 148 patients with 231 enlarged cervical lymph nodes were examined by elastography and B-mode ultrasonography in our study which was followed up by ultrasound guided core needle biopsy for pathological correlation. The results were compared and analyzed by appropriate statistical test to check the validity of elastography separately and in combination with B-mode characteristics in determining the nature of the lesion.
Results: Of 231 lymph nodes 161 were benign and 70 were malignant. The mean shear wave velocity (swv) of the benign nodes (2.5 ± 0.72 m/s) was lower than mean sw of malignant nodes (4.3 ± 1.2 m/s). With a sw cut-off value <3.12 m/s for benign lesion the sensitivity and specificity were 85% and 82% respectively, but when used in combination with b-mode characteristics the sensitivity and specificity increases to 92% and 96% respectively. Sww values >3.12 m/s showed 89% sensitivity and 84% specificity in determining malignant nodes and when used in combination with b-mode characteristics the sensitivity and specificity increases to 98% and 92% respectively.

Conclusion: VTQ is an excellent tool for analysis for cervical lymph nodes. There is clear difference in sw values between benign and malignant nodes. Thus when values are used in combination with B-mode characteristics of the cervical nodes they can provide results as good as histopathological findings.

B-0638 11:26
Diagnostic performance of computer-aided quantification of intranodal vascularity in differentiating common neck lymph node diseases
M.T.C. Ying, S.C.H. Cheng, A.T. Ahuja; Hong Kong/CN (htmying@polyu.edu.hk)

Purpose: Ultrasound is a common imaging modality for the assessment of neck lymph nodes. This study aimed to investigate the value of intranodal vascularity, as evaluated by computer-aided quantification method, in distinguishing common neck node diseases.

Methods and Materials: Power Doppler sonograms of 347 patients with palpable neck lymph node were acquired (155 metastases, 125 reactive, 23 lymphoma). Doppler ultrasound images were evaluated using our self-developed computer algorithm and the intranodal vascularity was quantified and expressed as vascularity index (VI). The diagnostic performance of using VI of lymph node in differentiating the four disease groups (metastases, reactive, tuberculous lymphadenitis and lymphoma) was evaluated and compared. The optimum cut-off of VI in distinguishing different groups of lymph nodes was determined using the receiver operating characteristic (ROC) curve.

Results: Metastatic and lymphomatous lymph nodes are more vascular and have higher VI than tuberculous and reactive nodes. Among the comparisons of the four lymph node groups, intranodal VI demonstrated the highest diagnostic accuracy in distinguishing metastatic and tuberculous nodes with a sensitivity of 80%, specificity of 73% and area under the ROC curve of 0.82 when using the optimum cut-off VI of 22%.

Conclusion: Computer-aided quantification provides objective assessment of intranodal vascularity. Intranodal VI is a useful parameter in distinguishing different groups of lymph nodes. In our cohort, F18-choline PET/CT has been shown to identify a significant number of parathyroid adenoma in patients with PHP with negative or equivocal conventional imaging.

R. Ramaesh, G. Browning, S. Wakelin, E. Ward, F. Gibbs, D. Patel; Edinburgh/UK (rishiramaesh@gmail.com)

Purpose: This retrospective study was performed to assess the accuracy of F18-choline PET/CT in localising parathyroid adenoma in patients with primary hyperparathyroidism (PHP).

Methods and Materials: Over a 15-month period, F18-choline PET/CT was performed in 83 patients with negative or equivocal conventional imaging. Of the 29 patients who had undergone surgery, surgical notes, pathology reports and post operative outcomes were reviewed and correlated with imaging and pathological findings.

Results: Of the 83 patients, 59 had a positive PET/CT result. Of these, 37 were not detected on ultrasound and 9 were equivocal. Tc-99m sestamibi scan did not locate 47 and was equivocal in 4. SPECT did not localise 47 with 4 equivocal studies. 4D CT failed to detect 39 of these, with 2 equivocal studies. Of the 29 surgical cases, PET/CT correctly localised the site of the adenoma in 26 patients. There were 2 false-positive cases and one false negative, which was correctly identified on sestamibi imaging. The sensitivity of PET/CT was 96.2%, with a precision of 93%. US detected 7 (24%), Tc-99m sestamibi 4 (14%) and 4D CT detected 6 (17%) cases that were apparent at surgery.

Conclusion: In our cohort, F18-choline PET/CT has been shown to identify a significant number of parathyroid adenoma in patients with PHP with negative or equivocal US,Tc-99m or 4D CT and should be performed for preoperative localisation in those patients being considered for surgery with negative or conventional imaging.
at an examination. The aim of this study is to measure the actual dose during clinical examinations.

Methods and Materials: The doses to assistants were measured with small-type optically stimulated luminescence dosimeters; the dosimeters were precisely calibrated so as to enable low dose measurement. First, to determine the dosimetric point, a phantom experiment was carried out; 170 dosimeters were attached to the surface of human dummies. Then doses to both hands of assistants during actual paediatric x-ray examinations were measured in 70 cases for 1-35-month-old patients. The typical irradiation conditions were 53 kV and 3.2 mA. We analysed the relationship between individual dose to assistants’ hands and age of patient.

Results: The surface dose distributions suggested that dose to hands shows the highest value; therefore, proper dosimetric position was determined to be both hands. From the result of actual dosimetry, the mean doses to right and the highest value; therefore, proper dosimetric position was determined to be the mean doses to right and left hands were 2.06 +/- 0.17 µGy and 3.2 mAs. We analysed the relationship between individual dose to assistants’ hands and age of patient.

Conclusion: The actual doses to assistants were measured. To reduce assistants’ hand attention, should be paid to the distance between irradiation area and the assistants’ hands.

Author Disclosures: T. Asahara: Employee; Okayama University Hospital, Japan. H. Hayashi: Employee; Kanazawa University, Japan. Grant Recipient; Nagase Landauer, Ltd., Japan. Y. Mihiara: Employee; Shimane University Hospital, Japan. Y. Kanazawa: Employee; Tokushima University, Japan. T. Okazaki: Employee; Nagase Landauer, Ltd., Japan. Research/Grant Support; Kanazawa University, Japan.

B-0643 14:08
Frontiers of periosteal changes: comparison between anthropological data, clinical records and readings of X-ray medical imaging technology

R.M.C.R. Gassó1, A.F. Abrantes2, V. Matos3, 1Coimbra/PT, 2Faro/PT, 3Torre de Palma/PT (rosa.cristina.ramos@gmail.com)

Purpose: To define protocols of study in radiology for palaeopathology; to improve palaeopathological diagnosis criteria; to identify other pathologies defined so far as “periostitis”; to evaluate the best protocol for the collection on periosteal changes; to develop a data system that gathers and articulates the anthropological evaluations and imagiological descriptions of the collections.

Methods and Materials: A protocol was defined for the study of periosteal lesions; an X-ray machine was used to generate a series of images, and TLD was used to determine the actual dose during the examination. The aim of this study is to measure the actual dose during upper limb examinations.

Results: The average DAP of SSS (209.2±123.8 mGy.cm²) was 42 % lower compared with CR (360.9±433.6 mGy.cm²) and 54 % lower compared with DR (449.3±471.7 mGy.cm²). When classified to weight groups the DAP of SSS was 47-63 % lower compared with CR and 0-65 % lower compared with DR. The DAP of SSS for 45 kg patient was 81-86 % lower compared with literature. Conclusion: SSS technique exposes to lower radiation doses and should therefore be the preferred method over CR and DR in the imaging of paediatric patients with scoliosis. Radiation doses using SSS in this study were distinctly lower compared to literature. This study indicates that there is a need to set an international diagnostic reference level for scoliosis imaging, as reported dose values vary substantially.

B-0646 14:32
Improvement of safety and image quality with a self-made airway management device for sedation and anaesthesia in paediatric heart CT

A.F. Abrantes; Author; Vitor Matos

B-0644 14:16
Radiation dose associated with patients undergoing upper limb radiographic examination in different patient orientation: a phantom study

M.M. Abuzaidz, W. Elshami, Z. Noorajan; Sharjah/AE (mabdelghafar@sharjah.ac.ae)

Purpose: The patient orientation during radiography is essential to perform accurate images and apply ALARA principle. There is a common practice observed by directing the radiation beam towards the patient eye lens and gonads. It was approved that these organs can be affected by relatively low radiation level. The purpose of this study was to investigate the association between the radiation dose received by eye lens and gonads and the patient orientation during upper limb examinations.

Methods and Materials: An adult phantom was used to simulate an adult patient and the patient positions during a hand, wrist, and elbow radiographic examination. The initial position was set as the patient facing away from the radiation beam, then placed in a position facing the radiation beam. A Philips X-ray machine was used to generate a series of images, and TLD was used to obtain radiation dose to the eye and gonads.

Results: The radiation dose was seen when the patient was not facing the radiation beam as well as reduction of the ESD to the eye and gonads area. Results showed significant reduction of ESD and effective dose when the patient is not facing the radiation beam.

Conclusion: The orientation does not affect the patient comfort as the patient requirements will be achieved either the patient is facing or sitting beside the table. This study confirmed the relation between dose reduction and patient orientation and it align with the ALARA principle to able all efforts to minimize unnecessary radiation exposure.

B-0645 14:24
Radiation dose comparison study between conventional methods and slot-scanning system (EOS® system) on paediatric patients with scoliosis

H. Latinen, E. Saukko, E. Svedström, O. Pajulo, H. Niinivitalt; Turku/FI (helenalatinen@hotmail.com)

Purpose: EOS® system is a slot-scanning system (SSS) for orthopaedic use, especially for observing scoliosis. The purpose of this study was to compare radiation doses of paediatric patients in the imaging of scoliosis with computed radiography (CR), digital radiography (DR) and Finland’s first, recently installed SSS technique in Turku University Hospital.

Methods and Materials: The retrospective study was performed with real patient data (n=244) aged 1-18 years with maximum bodyweight of 100 kg including posterior-anterior or anterior-posterior (PA/AP) and lateral (LAT) views. The data was analyzed with key statistics and presented by average DAP (Dose Area Product) of the whole population and classified to weight groups.

Results: The average DAP of SSS (209.2±123.8 mGy.cm²) was 42 % lower compared with CR (360.9±433.6 mGy.cm²) and 54 % lower compared with DR (449.3±471.7 mGy.cm²). When classified to weight groups the DAP of SSS was 47-63 % lower compared with CR and 0-65 % lower compared with DR. The DAP of SSS for 45 kg patient was 81-86 % lower compared with literature.

Conclusion: SSS technique exposes to lower radiation doses and should therefore be the preferred method over CR and DR in the imaging of paediatric patients with scoliosis. Radiation doses using SSS in this study were distinctly lower compared to literature. This study indicates that there is a need to set an international diagnostic reference level for scoliosis imaging, as reported dose values vary substantially.

B-0647 14:40
Dose optimisation of head CT examinations in paediatrics

M. Dziedatza; Riga/LV (madara.dziedatza@gmail.com)

Purpose: The head is the most commonly examined body part for children in all age groups. During the last years, the number of performed head examinations has increased. It is important to be careful when scanning settings to reduce the possible radiation dose as much as possible, without decreasing the quality of the examination.

Methods and Materials: A 64 slice Philips Ingenuity scanner was used to scan a head sized cylindrical PMMA dose phantom and a head phantom made from a beavers’ skull and gelatin for the purpose of this research. Each
phantom was scanned with a different protocol parameter setting of all pre-set age groups to see the difference in image quality, absorbed dose and how much they change by using the used settings. The aim of this study was to assess dignity in image quality in different age groups. All age-group protocols are calibrated by the same 16cm/diameter PMMA phantom. Inappropriate protocol settings can lead to poor quality images, that aren’t interpretable by radiologists. The bone structures give an insight into the difference made by changing scan settings.

B-0648 14:48
Evaluation of dose to risk organ during brachytherapy for cervical cancer using a novel passive rectum dosimeter

E. Tomita1, H. Hayashi2, T. Asahara2, Y. Shitakubo2, K. Sakuragawa2, H. Ikushima3, Y. Kanazawa4, T. Okazaki5, T. Hashizume5, Kanazawa6JP, Okayama7JP, Tokushima8JP, Tsukuba9JP, emitomita.15@gmail.com

Purpose: This study aims to confirm the availability of planned dose by measuring the actual dose of rectum during brachytherapy for cervical cancer.

Methods and Materials: We measured doses absorbed by patients’ rectum (n=18) using a novel dosimeter made from a piece of OSL sheet and a catheter. To obtain threedimensional images, cone beam CT (CBCT) examination was performed and image-based treatment planning based on TG-43 algorithm was applied. Measured dose was compared with the planned dose calculated by the therapeutic planning system. Then we investigated the correlation of differences between measured and planned doses, treatment planning times and body mass index (BMI).

Results: Measured doses were in good agreement with planned dose in most cases. We experienced a rare situation in which the patient urinated after CBCT was taken (n=2). In this situation, the patient’s organs will move due to the urine. Even if the original therapeutic plan was applied, the difference between actual and planned doses was found to be at most +/-1 Gy. Furthermore, we found that differences in doses do not have a correlation with treatment planning times (r=-0.26), but it has a strong positive correlation with BMI (r=0.84). This fact means that the higher the BMI is, the higher dose in 80% of cerebral volume.

Conclusion: Patient dignity issues arise mostly from the psychological effects of radiotherapy. In view of this, it is recommended that a psychological assessment of patients undergoing radiotherapy be undertaken to identify individuals who require additional psychological support, especially female patients.

B-0650 15:04
Glioblastoma: 3D-CRT or IMRT/VMAT?

M.J.V. Pereira1, B. Gregório1, A. Cavaco2, J.P. Figueiredo3, Coimbra/PT (mpvperreira@hotmail.com)

Purpose: The aim was to compare the dosimetric plans with 3D-CRT and VMAT or 3D-CRT and IMRT in patients with GBM submitted to Stupp Protocol.

Methods and Materials: The patients selected were submitted to Stupp Protocol and treated with 3D-CRT. 11 patients were planned in IMRT and the other 11 in VMAT, confirmed to the same target volume. The aim was to assess the best quality of the least organs at risk dose. The evaluation was made by homogeneity, conformity and organ at risk doses.

Results: Both special techniques showed a better conformity and homogeneity compared to 3-D-CRT. The doses to optical structures were higher in VMAT, except to the right optical nerve and chiasm. The doses to optical structures in IMRT were lower, except to the chiasm. Both special techniques showed a higher dose in 80% of cerebral volume.

Conclusion: Better homogeneity and conformity in VMAT and IMRT, keeping the organs at risk doses lower or slightly higher than in 3-D-CRT, complying with the internationally definedtolerance doses.
Results: The main motivations to choose the degree was "Healthcare related area, enabling greater interaction with patients" (38.6%). Most of students are not satisfied (53.0%) with the new MIR degree and 44.6 % reported that expectations after the frequency in the course slightly coincide with the beginning. Regarding the contribution of the university, 82% of the students answered that the greatest influence to the acquisition of competences is the "Teaching Methodology."

Conclusion: The students of the first-year degree have high expectations concerning the new degree and the students who are in transition phase have lower expectations due to less expertise and knowledge in the three different areas (Radiology, Nuclear Medicine and Radiotherapy). In the students perspective, the new undergraduate course will reduce the students professional capacity and competences after their graduation.

14:00 - 15:30 Room C

Radiographers

SS 714b

Radiation dose optimisation in CT and projection radiography

Moderators:
L. Bonomo; Rome/IT.
L.J.O.C. Langa; Lisbon/PT

B-0653 14:00

Impact of decentring patients for abdominal CT scan
S. Moerup1, H. Precht1, S. Foley1, A. Seeger2, B.R. Mussmann1; 1Odense/DK, 2Modelfast/DK, 3Dublin/IE, 4Kolding/DK (sdmo@um.dk)

Purpose: To evaluate the effect on skin dose and image quality when decentring in the y- and x-directions for abdominal CT scans.

Methods and Materials: Patient centring data in CT were collected retrospectively from dose management software (DoseWatch, GE Healthcare) from a single university hospital (n=4 scanners) in 2017. Deviations from the isocentre were categorized for both vertical (±1.5cm, ±3cm, ±4.5cm) and horizontal (±1.5cm, ±3cm) planes on 498 patients. An anthropomorphic phantom (PBU-60) was subsequently scanned using each deviation on two scanners (Toshiba Prime, GE HD750) to allow dose and image quality (noise and visual grading assessment) comparisons.

Results: Significant skin dose increases (4.3mSv, 50%) were detected anteriorly for both scanners when centred above the isocentre and reductions (2.0mSv, 24%) when scanned below the isocentre. For the HD750, dose decreased up to 8.3mSv in four locations at the -4.5 position. Increased dose were (2.0mSv) noted on the right side with horizontal deviation. With upward vertical deviation noise increased from 13HU (isocentre) to 15HU. No change was recorded with horizontal deviation.

Conclusion: Positioning above isocentre may increase noise and skin dose. Similarly, horizontal deviation may increase dose. Subjective image quality is negatively affected by extreme vertical isocentre deviation.

B-0654 14:08

Exploring academic and social factors’ effect on CT dose optimisation: a longitudinal study of radiographers from student to first post
V.T. Major1, S. Ryan2, D. O’Leary1; 1Northwood/UK, 2Hatfield/UK, 3Keеле/UK (vicki.major@stricklandscanner.org.uk)

Purpose: We aimed to identify training requirements for UK CT radiographers, and whether social/academic factors in the clinical environment have a bearing on the students’ approach toward CT dose optimisation, before and after qualification. The purpose of this study was to a) explore student radiographer’s knowledge and experience of dose optimisation within CT scanning; b) measure their emotional intelligence; and c) explore their educational experience.

Methods and Materials: A mixed methods approach using convergent parallel methods, integrating and connecting qualitative and quantitative data were acquired simultaneously on two separate occasions. Student radiographers were invited to participate in in-depth interviews at two discrete time points: as final year students and post-employment in their first post. Ethics approval was sought and granted. An emotional intelligence (EI) questionnaire (TEIQue-SF tool) and a pre-validated questionnaire on CT parameters and their influence on both patient dose and image quality were completed and scored.

Results: Results were analysed via descriptive statistics and thematic analysis. Six main educational themes were identified: on-the-job training, postgraduate courses, applications training, undergraduate courses, study days and competency assessment. EI did not change over time. Knowledge of CT exposure parameters increased, with a difference in mean scores pre- and post-qualification (P= 0.025).

Conclusion: In the two-year period from student radiographer to working in their first post, EI remained static although their knowledge of CT dose optimisation increased. The radiographers felt that education was best delivered on the job and supplemented with study days, application specialist talks, medical physics, radiographer and radiologist expert advice.

B-0655 14:16

Is the technology for patient placement in CT really that useful in reducing dose and improving SNR?
L. Lennon1, S. Tsui2, G. Dick3; 1North Hyde/AU, 2Box Hill/AU, 3Notting Hill/AU (L.Lennon@canberra.edu.au)

Purpose: Contemporary CT scanners employ various technologies to support the minimization of patient dose. Many of these technologies are applied in the background with little or no knowledge of being activated by the operator. Centring of the patient within the bore of the CT however represents an obvious input by the operator, but how much does it impact dose and SNR really? This project aimed to assess the practical utility of the lateral couch centering function on radiation dose and signal to noise ratio (SNR).

Methods and Materials: We scanned an anthropomorphic phantom using offset values (lateral and antero-posterior) established from the evaluation of chest and abdominal series performed at 6 sites not employing centering technology. We then assessed the CTDIVOL, DLP and SNR in the liver and mediastinum using a standard clinical scanning protocol. The chest and abdomen were investigated separately using automatic exposure settings.

Results: CTDIVOL reduced considerably more with a lowered couch height and lateral scout performed first than a higher position within the gantry. Lateral maladjustment serves to exacerbate the dose differential from the standard isocentre findings, though the actual spread of these values across lateral malalignments was larger for a higher couch gantry position for the CT unit tested. SNR results were in line with the dose delivered.

Conclusion: Accurate isocentre positioning is a simple yet highly effective means of achieving dose and image quality optimization.

Author Disclosures:
L. Lennon: Employee; Canon Medical.
J. Hislop-Jambrich: Employee; Canon Medical.

B-0656 14:24

The unjustified dose behind cropped radiographs
J. Guðjónsdóttir, G.A. Hannesdóttir; Reykjavík/IS (joninag@thi.is)

Purpose: In this study an attempt was made to evaluate how common image cropping, or electronic collimation, is in digital radiography, how large an area of the images is cropped and how high the radiation dose is that corresponds to the cropped area.

Methods and Materials: A sample of images was taken from three medical imaging departments. The images were reviewed and, if cropped, the extent was recorded.

Results: A total of 1270 images was reviewed. 10.6 % of them had been cropped, 19.5 %, 7 % and 6 % in sites A, B and C, respectively. 26 % of all chest images were cropped as well as 18 %, 13 %, 10 %, 10 %, 3 % and 2 % of lumbar spine, shoulder, hip, knee, hand and foot images, respectively. The proportion of cropped images was significantly different between sites and between examinations (p < 0.05). Considering only the cropped images, the average cropped fraction of each image was from 16.0 % to 36.3 % and the corresponding unjustified dose was estimated to be from 19.0 % to 56.9 % of the dose actually needed for the final image. Averaging the cropped area over all images in the same type of examination showed that up to 4.6 % of the dose in the examinations in the study was unjustified.

Conclusion: This study confirms that radiographs are cropped and that the corresponding unjustified dose may be significant. This needs to be considered in the optimization of radiographic imaging procedures.

B-0657 14:32

Scoliosis dose comparison using current clinical protocols
M. Shanahan1, M. Geso2, A. Potter1, G. Lemnie3, BlueC/UK, 2Melbourne/AU (madeleine.shanahan@canberra.edu.au)

Purpose: Radiography is a valuable diagnostic and monitoring tool for patients with adolescent scoliosis. Radiation dose is important as this patient group is statistically more likely to develop cancer during their lifetime. The purpose of this research was to compare entrance surface dose (ESD) and dose area product (DAP) measurements for scoliosis imaging using current clinical techniques for four image acquisition systems: EOS™-normal (EOS-N), EOS™microdose (EOS-M), DR-standard (DR-S) and DR-low (DR-L) dose.

Scientific Sessions
Methods and Materials: EOS™ and Shimadzu RADSpeed Auto X-ray coupled with Canon CXDI 70C wireless flat panel detector systems were used. PA and left lateral images were acquired of a RSD anthropomorphic phantom using four image acquisition techniques. Dosimeter measurements were obtained using Deschênes et al. (2010) 13 anatomical locations. Three independent image acquisitions were made for each technique and the resultant ESDs for each location, and DAP measurements were averaged to minimise random error.

Results: ESD measurements for EOS-M, EOS-N, DR-L, DR-N ranged from 0.09, 0.2-0.57, 0.01-1.48, 0.01-4.54 mGy, respectively, with the highest dose measured at the left lateral images for T10 level. Lower doses were recorded on the breasts (right: 0.01, 0.09, 0.15, 0.29; left: 0.00, 0.04, 0.05, 0.11 mGy). DAP showed similar dose trend across imaging systems (109, 767, 1206, 2380 mGym²).

Conclusion: Direct dosimetry (ESD) allows radiation dose to specific anatomic regions to be measured. DAP provides a general indication of dose. Reviewing ESD for clinical protocols allows identification of potential further dose reduction strategies.

Author Disclosures: M. Shanahan: Grant Recipient; Victorian Medical Radiation Practitioners Education Trust. M. Geso: Grant Recipient; Victorian Medical Radiation Practitioners Education Trust. A. Potter: Grant Recipient; Victorian Medical Radiation Practitioners Education Trust. G. Lennie: Grant Recipient; Victorian Medical Radiation Practitioners Education Trust.

B-0568 14:40

Establishment of national diagnostic reference levels for dental radiology

Purpose: Dental radiology is a field where effective dose per exposure is low; however, the frequency of these procedures is high, and professionals must be aware of the dose delivered to the patient. The main goal of this study was to establish the diagnostic reference levels (DRLs) for intraoral and extraoral dental radiology examinations nationwide.

Methods and Materials: Entrance surface air kerma (ESAK) and dose-area products (DAP) were determined for a total of 1001 intraoral and 268 extraoral dental equipment’s distributed throughout the national territory. The determined values were averaged and compared according to the type of image receptor system, installation duration, and the type and model of dental X-ray machine.

Results: For intraoral radiology, the National DRLs were established at the 75th percentile of ESAK values (1.55 mGy). For orthopantomography and cephalometry, DRLs were determined at the 75th percentile of DAP values, correspondent to 107 mGy.cm² and 80 mGy.cm², respectively. Most intraoral equipment’s have direct-digital receptor systems (81.8%), followed by analog film system (10%) and indirect-digital receptor systems (4.1%). In extraoral X-ray, a total of 28 different equipments was observed. Furthermore, the type and model of the equipment has influence in the radiation dose values.

Conclusion: The establishment of DRLs, as a tool for the optimisation of radiological procedures, is a requirement of national regulations. The proposed national DRLs in this study are in accordance with those established by other countries; however, a constant dose optimisation can reduce these values further.

B-0569 14:48

The impact of different exposure factors on radiation dose of lumbar spine in five different sizes phantoms: a factorial design study

S.J.M. Akhshani, J.R. Meakin, R.M. Palfrey, K. Knapp; Exeter/UK (salbehrn@hotmail.com)

Purpose: To investigate the impact of tube potential (kVp), source to image distance (SID) and Copper filtration on dose area product (DAP) on lumbar spine radiographs with different size bespoke phantoms (18, 29, 38, 42 and 46 BMI).

Methods and Materials: A factorial design study was conducted using a DR x-ray machine (Multi Fusion Max, Siemens, Germany), and three factors: kVp x SID x Cu filtration. The collimation was kept identical across all phantoms. The DAP reading was reported directly from the x-ray image. Analysis of variance was used to investigate the impact of each factor on the DAP.

Results: kVp has a significant negative impact on DAP for the 18, 29, 38 and 42 BMI phantoms (r² = 0.53, 0.57, 0.51 and 0.29) but is non-significant for the 46 BMI phantom. SID has no significant impact on the DAP but rather showed a proportional relationship with DAP in the 18 and 29 BMI phantom and inverse relationship with DAP in the remaining 38, 42 and 46 BMI phantoms. The filtration showed a significant negative impact on the DAP across all phantoms (r² = 0.40, 0.38, 0.48, 0.59).

Conclusion: The kVp has the biggest effect on DAP reduction across all phantoms followed by the Cu filtration. The SID can be used especially in the morbidly obese phantoms. These results need to be taken into account with consideration of image quality.

B-0660 14:56

Radiation dose reduction using copper filters

K. Yamagami1, M. Hirota1, H. Kato1, F. Okada2, S. Suzuki2; Gifu/JP, Toyko/JP (yamagami@gifu-u.ac.jp)

Purpose: To measure the patient dose and the scattered radiation dose, when copper filters are added.

Methods and Materials: Using a Shimadzu X-ray system, copper filters were added from 0.0mm to 0.5mm at 0.1-mm interval. For each additional copper filter, an anthropomorphic phantom (Alderson Rando Phantom) with thermo-luminescent dosimeters (BeO) positioned was placed at the PA position and exposure was performed under the conditions which had an equivalent transmitted radiation dose and the quality. The SID was set to 140cm, and the irradiation field was from the diaphragm to the symphysis pubis. For each additional copper filter, the entrance surface dose (ESD), the organ dose, the effective dose and the scattered radiation dose were measured.

Results: At the copper filter 0.0mm, the ESD was 1460µGy, the lung-absorbed dose was about 30µGy, the liver 190µGy, and the effective dose was about 130µSv. By adding 0.1-mm copper filter, the ESD was reduced by about 30%, but the organ dose and the effective dose were almost equal within 10%. By adding a 0.5-mm copper filter, the ESD was reduced by about 40%, the organ dose and the effective dose were reduced by about 10%. As for the copper filter addition, the scattered radiation dose fluctuated within about 10%.

Conclusion: By adding a copper filter, the dose reduction for ESD was observed as being up to 40%. However, a dose reduction in the organ dose, effective dose, and scattered dose was not much recognized.

B-0662 15:12

Styliised phantom used in PCXMC, the validation against hybrid phantom in obesity

S.J.M. Akhshani, J.R. Meakin, R.M. Palfrey, K. Knapp; Exeter/UK (salbehrn@hotmail.com)

Purpose: To investigate the behaviour of the PCXMC styliized phantom compared to a hybrid phantom in obesity.

Methods and Materials: Stylized and hybrid phantoms were modified to three different sizes (185.6 cm height with 73 kg, 87 kg and 108 kg weight). The three sizes stylized and hybrid phantoms were exposed to identical dose of area product (DAP) & Gy/cm² (AP) supervoltage 70 kV, 3 mm Al filtration, and source to skin distance (SSD) of 84.2, 83.3 and 79.4 cm. Correlation of the absorbed doses between determined by PCXMC and CALDose were conducted.

Results: CALDose software shows higher absorbed dose (51%) on average across the three different size phantoms compared to PCXMC. Both programs show a negative trend in absorbed dose as the phantom size increase, -24% and -19% on average for PCXMC and CALDose, respectively. The spearman correlations between the estimated absorbed dose by the two software are significant with P<0.01, with r= 0.83 in the normal phantom, r= 0.81 in the overweight phantom and r = 0.71 in the obese phantom.

Conclusion: PCXMC absorbed dose is lower than CALDose across the different size phantoms. Similar correlations of estimated absorbed dose between the two programs are demonstrated. Both PCXMC and CALDose demonstrated an inverse relationship between absorbed dose and size, which is expected due to the excessive fat acting as a protection layer for the internal organs. This indicates the possibility of using PCXMC in cases of obesity.

B-0663 15:20

Should DR and CR projection radiography have separate LDRLs at a local hospital level?

A.M. Burke, S.J. Foley; Dublin/IE (andrea.burke@ucdconnect.ie)

Purpose: DRLs are important optimisation tools for identifying atypical doses either locally (LDRL), regionally or nationally and are set at the 75 percentile of the dose distribution. This study aimed to investigate how CR and DR doses should be accounted in LDRL data for three common radiographic examinations: AP pelvis, AP and lateral lumbar spine, and to determine if DR and CR equipment should have separate LDRLs.

Methods and Materials: Two different DAP measurements of each projection were recorded for both DR and CR imaging systems in five Irish hospitals, which were sampled purposively. Dose distributions for CR and DR equipment in each of the hospitals were analysed and compared using parametric ANOVA and independent-samples T test analysis to determine if there is a need for separate LDRLs for CR and DR systems. LDRLs were analysed on a room by room basis and compared with current NDRDs.

Results: DR systems deliver on average 46-56% lower doses than CR systems (p<0.05) for AP pelvis (average DR LDRL: 1.66 Gycm², CR LDRL: 2.65 Gycm²) and lateral lumbar spine (average DR LDRL: 1.82 Gycm², CR LDRL: 1.92 Gycm²) projections across all sites. For the AP lumbar spine projection, there is an overall average 8% difference between DR (1.65 Gycm²) and CR (1.52 Gycm²) LDRLs, which was not deemed statistically significant.
14:00 - 15:30 Room N

Hybrid Imaging

SS 706

Hybrid imaging in oncology: head to toe

Moderators:
N.N.
P.M. Kazmierczak; Munich/DE

K-14 14:00

Keynote lecture
J. Feudt; Plzen/CZ

B-0664 14:09

Quantitative 3D analysis of hybrid 18F-FET PET/MR-neuroimaging for differentiation between treatment response and glioma recurrence

J. Lohmeier, B. Hann, A. Maksokowki; Berlin/DE (johannes.lohmeier@charite.de)

Purpose: This cohort study investigated quantitative PET/MR-imaging parameters for differentiation between glioma recurrence and post-treatment related effects (PTRE) using volumetric (3D-VOI) lesion analysis in hybrid contrast-enhanced and 18F-fluoromethyl-L-tyrosine (18F-FET) PET/MR-imaging.

Methods and Materials: 45 patients (female/male patients=18/27; age means±SD, 47±15) a) were retrospectively evaluated regarding glioma history. Histopathology (40%) and conclusive clinical follow-up serial imaging (60%) were used as reference standard (PTRE/recurrence=9/36). PET/MR-imaging was evaluated using semi-automated isocountour (85%) lesion segmentation based on 18F-FET tracer uptake. Standard parameters for differentiation between glioma recurrence and PTRE were p-value, target-to-background ratio (TBR) and relative apparent diffusion coefficient (ADC and rADC) were determined and assessed using receiver operating characteristic analysis (ROC).

Results: Cancer relapse showed lower rADCTotal/Vol values than treatment-related changes and presented satisfactory discriminative test performance (AUC±SE=0.74±0.01, p-value=0.016). Quantitative PET-FET parameters (TBRTotal/Vol, AUC=SE=0.79±0.08, p-value=0.0002, TBRMax, AUC=SE=0.87±0.08, p-value<0.0001, TBRMean, AUC=SE=0.87±0.08, p-value<0.0001) facilitated reliable differentiation between recurrence and PTRE.

Conclusion: Multimodal analysis with quantitative parameters from hybrid PET/MR-imaging demonstrated highest diagnostic accuracy (AUC±SE=0.92±0.04).

Thursday

Scientific Sessions

B-0665 14:14

Clinical impact of breast and whole body simultaneous PET/MRI for staging of breast cancer lesions >2 cm

V. Romeo, C. Cavaliere, M. Imbriaco, A. Stanzione, R. Cuocolo, A. Pignata, V. Picariello, E. Nicolai, M. Salvatore; Naples/IT (valeria.romeo@unina.it)

Purpose: To assess the clinical impact of breast and whole body simultaneous 2-(18)FFDG PET/MRI over conventional diagnostic imaging techniques in patients with breast cancer lesions (BCLs) >2 cm.

Methods and Materials: 40 patients with BCLs >2 cm were prospectively enrolled. 38 patients underwent contrast-enhanced breast and whole body simultaneous 2-(18)FDG PET/MRI; 2 patients prematurely interrupted MRI examinations due to claustrophobia and were therefore excluded. MRI and PET images were evaluated in consensus by a radiologist and a nuclear physician to perform TNM staging. PET/MRI staging was then compared to those obtained using conventional diagnostic imaging techniques (mammography, ultrasound, MRI, chest x-ray and bone scintigraphy) and the possible changes in treatment planning were finally assessed.

Results: In 18% (7/38) cases, PET/MRI had a significant clinical impact: 1) changing surgical strategies in two patients due to the exclusion of contralateral BCLs; 2) switching one patient candidate to surgical excision towards neoadjuvant chemotherapy (NAC) due to the detection supraclavicular pathologic lymph nodes; 3) contraindicating NAC in four patients due to the detection of additional bone and/or mediastinal lymph-node metastases. Finally, the finding of a contralateral BCL in one patient candidate to NAC, even without modifying the therapeutic approach, was crucial in view of the assessment of the response to treatment.

Conclusion: Breast and whole body simultaneous PET/MRI examination is useful for staging of patients with BCLs >2 cm, allowing to identify or exclude contralateral BCLs as well as to detect distant metastases that may be missed by conventional imaging techniques.
B-0669 14:49
Can we replace sentinel lymph node resection in breast cancer patients by breast MRI, axillary MRI or auxiliary
18F-FDG PET/MI?
J. Kirchner1, O. Martin2, L.M. Sawicki3, L. Umutlu3, P. Heusch3, C. Buchbender4,5, Düsseldorf/DE, Essen/DE

Purpose: To compare the diagnostic performance of Mamma-MRI, axillary MRI and auxiliary 18F-FDG PET/MI in the detection of lymph node metastases in patients suffering from breast cancer.

Methods and Materials: 27 female patients with breast cancer (mean age 54±10 years) with newly diagnosed, histopathologically proven breast cancer were prospectively enrolled in this trial. All patients underwent dedicated prone 18F-FDG breast PET/MI and supine whole-body 18F-FDG PET/MI. Sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection was performed in all patients and histopathology served as reference standard.

Results: According to the reference standard lymph node metastases were present in 13 patients with a total of 23 metastases. On a patient based analysis dedicated breast MRI identified 6/13 (46%), axillary MRI 5/13 (38%) and axillary PET/MI 8/13 (62%) of the patients with a positive nodal status. All modalities revealed on false positive finding (7%). On a lesion-based analysis specificity, PPV, NPV and accuracy regarding axillary lymph node assessment were calculated for dedicated breast MRI, axillary MRI and auxiliary 18F-FDG PET/MI.

Sensitivity, specificity, PPV, NPV and accuracy were 30%, 90%, 88%, 38% and 90%, 90%, 88%, 45% and 62% for axillary MRI and 90%, 91%, 45% and 62% for axillary PET/MI.

Conclusion: Breast MRI or 18F-FDG PET/MI do not reliably differentiate N-positive from N-negative breast cancer patients. Hence, sentinel lymph node biopsy cannot be replaced by imaging procedures.

B-0670 14:57
Evaluation of a fast protocol for staging patients with bronchial cancer using PET/MI
O. Martin1, L.M. Sawicki1, J. Kirchner2, G. Antoch2, K. Herrmann2, L. Umutlu3, P. Heusch3, Düsseldorf/DE, Essen/DE

Purpose: To evaluate the applicability of a fast MR-protocol for whole-body staging of bronchial carcinoma patients using PET/MI.

Methods and Materials: This prospective study on 52 patients (63±8.7 years) underwent clinically indicated 18F-FDG-PET/CT and subsequent PET/MI. For PET/MI imaging, a fast whole-body MR-protocol was implemented. MRI and PET/MI datasets were analyzed to identify malignant manifestations. The accuracy for the identification of malignant manifestations was calculated and the tumor stage for each examination was determined. In 26 patients, all available histopathological samples as well as results of prior examinations and follow-up imaging were used for the determination of the reference standard. In the other cases, the results of PET/CT imaging used for reference standard.

Results: Both MRI and PET/MI have a 100% accuracy to correctly identify the extent of the primary (T-stage). In nodal staging and identification of metastases PET/MI revealed higher values of diagnostic accuracy than MRI alone (both p<0.05). The values of correct stage did not differ significantly between PET/CT and PET/MI (93.5% for PET/CT vs. 86.9% for PET/MI).

Average scan duration of whole-body PET/CT and PET/MI examinations were 17.5±2.3 min and 14.9±3.9 min, respectively. Estimated mean effective dose for whole-body PET/CT scans were 61.3% higher than for PET/MI.

Conclusion: Using 18F-FDG PET data in addition to whole-body MRI leads to a more accurate evaluation of patients with bronchial cancer. With regard to patient comfort related to scan duration and reduced radiation exposure, fast PET/MI may serve as a powerful alternative to PET/CT for a diagnostic workup of bronchial cancer patients.

B-0671 15:05
Is there an association between immunohistochemical markers and grading of lung cancer with ADC and SUV of hybrid 18F-FDG PET/MI?
O. Martin1, P. Heusch1, J. Kirchner1, T. Ullrich1, C. Buchbender1, F. Nensä2, K. Herrmann3, L. Umutlu3, L.M. Sawicki1, Düsseldorf/DE, Essen/DE

Purpose: To correlate various prognostically relevant immunohistochemical parameters of primary lung cancer with simultaneously acquired standardized uptake values (SUV) and apparent diffusion coefficient (ADC) derived from hybrid PET/MI.

Methods and Materials: 55 consecutive patients with histologically proven lung cancer (62±9.2y) underwent 18FDG-PET/MI. Diffusion-weighted imaging (DWI), b values: 0, 500, 1000) was performed simultaneously with PET acquisition. A region of interest (ROI) encompassing the entire primary tumour was drawn into each patient's PET/MR images to determine the glucose metabolism represented by maximum and mean SUV and into ADC maps to assess tumour cellularity represented by mean and minimum ADC values.

Histopathological tumour grading was available in 43/55 patients. In 15 patients, additional prognostically relevant immunohistochemical markers, i.e. p53, PTEN, ERK, PAK1, PTEN and erb2 were available. Pearson's and Spearman's correlation were used.

Results: We found a significant inverse correlation between the ADCmin and SUVmax (r=-0.38, p<0.001) as well as between the ADCmin and SUVmean (r=-0.34, p<0.01). Tumour grading showed a significant positive correlation with SUVmax and SUVmean (r=0.34 and r=0.31, both p<0.05) and a significant inverse correlation with ADCmax and ADChmean (r=-0.30 and r=-0.40, both p<0.05). In addition, erb2 showed a significant inverse correlation with SUVmax and SUVmean (r=-0.30 and r=-0.40, both p<0.05). The other immunohistochemical markers did not show any significant correlations.

Conclusion: The present data show significant correlations between SUV, ADC, grading and erb2-expression of lung cancer. Hence, 18F-FDG-PET and Diffusion from PET/MI may offer complementary information to histopathology of lung cancer for the evaluation of tumour aggressiveness and treatment response.

B-0672 15:13
Prediction of overall survival using interim 18F-FDG PET-CT and CT for response assessment of patients with Hodgkin lymphoma treated with immune checkpoint inhibitors
F.-Z. Mokrane1, A. Chen1, B. Zhao1, S. Amman2, L. Schwartz3, R. Houot3, L. Dercle4, Toulouse/FR, Nanjing/China, New York, NY, USA, Villejuif/FR, Paris/FR, mokrane_fatimazohra@yahoo.fr

Purpose: Anti-programmed death 1 therapy triggers new patterns of response and progression in patients with Hodgkin lymphoma. We aimed to predict overall survival (OS) based on interim imaging.

Methods and Materials: We retrospectively analysed 61 patients treated by anti-PD1 from 2013 to 2017. Concomitant 18F-FDG PET/CT and CT scans were acquired at baseline and upon treatment. Three radiologists classified blindly and independently patients as immune-responding or immune-refractory based on the first evaluation, using the International Harmonisation Project Cheson 2014 criteria and the Lymphoma Response to Immunomodulatory Therapy Criteria (LYRIC) (2016 revised criteria). Results were compared imaging assessment to OS. Two interim time points were assessed: interim 1 and 2.

Results: After treatment initiation, imaging examinations were acquired at a median time of 3.0 months (IQR=61 pts) for interim 1 and 6.7 months (IQR=51pts) for interim 2 evaluations. At the time of analysis, 13 (21%) patients died due to lymphoma progression. Median OS was not reached. The best overall response rate (ORR) with CT1 was 46%, and 59%withPET1. After two years, the OS rates were 50% for progressive disease (PD), 84% for stable disease (SD), 84% for partial response (PR) and 100% for complete response (CR) at PET1. Moreover, PET reclassified patients from SD or PR using CT to CR at interim 1 (31%) and interim 2 (18%).

Conclusion: A complete response assessment using first interim PET exceeds highly that of good OS. 18F-FDG PET/CT shows a significant incremental value comparing to CT alone in the identification of these complete responders’ high survivors patients.

B-0673 15:21
Comparison evaluation of the diagnostic potential of PET/MI and PET/CT using mIBG-Iod-124 in neuroendocrine and neuroectodermal tumours
A. Örnek1, L. Umutlu1, J. Kirchner2, D. Heber2, K. Herrmann2, V. Ruhlmann3, E. Essen/DE, Düsseldorf/DE, ahmet.ornek@uk-essen.de

Purpose: To compare the diagnostic potential of PET/MI and PET/CT using mIBG-Iod-124 in neuroendocrine and neuroectodermal tumours.

Methods and Materials: 20 patients (12 m, 8 w, age 53±16 y) with histopathologically confirmed pheochromocytoma (n=15), paraganglioma (n=2) and ganglioneuroblastoma (n=3) underwent both a whole-body contrast-enhanced PET/CT and PET/MI approximately 1 day after injection of 48±8 MBq mIBG-Iod-124. Image analyses included the detection and delineation capacity of malignant lesions. Morphological components: transversal maximal tumor diameter and conspicuity (4-point scale (not visible=0 - high contrast=3)). PET images: tumor conspicuity (4-point scale), SUVmax and SUVmean using VOI technique.

Results: 58 malignant mIBG-positive lesions (peritoneal and mesenteric n=22, bone n=15, lymph node n= 8, liver n=8, lung n=2 pleural space n=2, adrenal n=1) were detected with both PET/CT and PET/MI with strongly positive correlated mean SUVmax (18.3±11.4 vs. 17.5±8.8, Pearson’s correlation r=0.84) and SUVmean (12.1±7.7 vs. 11.6±7.6, r=0.91). Comparable high lesion conspicuity in the PET component of PET/CT (2.9±0.4) and PET/MI (2.9±0.3; p=0.46) could be assessed with significant higher lesion conspicuity in PET (2.8±0.6) compared to CT (2.6±0.8; p=0.01). Two small lung lesions were not visible on MRI and five osseous metastases could not be assessed on CT, but showed an unequivocal hyperintensity on MRI.
Musculoskeletal

SS 710

Imaging techniques: trauma and cartilage

Moderators:
S. Choudhary; Birmingham/UK
U. Fahlenkamp; Berlin/DE

B-0674 14:30
Implementation of an ultra-low-dose CT-protocol for extremities: initial experience with 106 subjects
Z. Alagic1, R. Bujaša, S. Srivastavaa, S.K. Koskinen1,2, Solna/SE, Stockholm/SE, Huddinge/SE (zlatan.alagic@iti.se)

Purpose: To assess if ultra-low-dose Computed Tomography (ULD-CT) is a useful alternative to Digital Radiography (DR) in the evaluation of wrist and ankle fractures.

Methods and Materials: A ULD-CT protocol on a RevolutionTM CT was designed for wrist and ankle fractures. Patients admitted to the emergency department with suspected wrist or ankle fractures were evaluated prospectively. After DR obtained on a Discovery™XR650 radiography system, a ULD-CT was performed. Two readers independently analyzed DR and ULD-CT images, and the results were blinded to the readers. Also, the radiation dose (RD), examination time, and time to preliminary report was compared between DR and CT.

Results: In 106 subjects DR and ULD-CT detected 55 and 69 fractures, respectively, corresponding to an odds ratio of 1.7 for ULD-CT vs. DR. Furthermore, ULD-CT provided important additional information about soft tissue in 3 cases (2.8%), non-fracture related findings that explained the symptoms in 10 cases (7.4%), additional fracture-related findings in 22 cases (15.7%) and was able to confirm or rule out suspected fractures on DR in 8 cases (5.6%). The average examination time was shorter for ULD-CT than DR (3.5±1.4 vs. 6.7±3.8 min, p<0.001) as well as the average time to preliminary report (22±6 vs. 13±6 min vs. 35±6 vs. 33±2.2 min, p<0.05). The average estimated effective dose was comparable between ULD-CT and DR (0.66±0.45 μSv vs. 0.51±0.47 μSv).

Conclusion: ULD-CT is an excellent alternative to DR for imaging the peripheral skeleton as it provides additional clinically important information at a comparable RD as well as faster examination and reporting times.

B-0684 14:08
Tissue stiffness after self-myofascial release in athletes with different experience in foam rolling assessed by quantitative acoustic radiation force impulse elastography (ARFI)
R. Heiß1, I. Mayer, M. Huettel, M.S. May, W. Wuest, M. Kopp, C. Lutter, R. Forst, T. Hotfiel; Erlangen/DE (Rafael.Heiss@uk-erlangen.de)

Purpose: Self-myofascial release using foam rolling (FR) has been developed into a popular preventive and recovery intervention. However, its effects on target tissue with regard to changes in stiffness properties are still not understood. The aim was to investigate the role of foam rolling on muscle and ligament stiffness.

Methods and Materials: Acoustic radiation force impulse elastography (ARFI) was performed in 40 volunteers (20 with more than 6 months of experience in FR and 20 without any experience) before and several times (0, 30, 60, 120min, 12h and 24h) after a standardized foam rolling exercise of the lateral thigh. Tissue stiffness was assessed at different compartments of the lateral thigh including superficial and deep muscle tissue (vastus lateralis muscle, VL; vastus intermedius, VM) and connective tissue (distal insertion of the iliotibial band, ITB).

Results: Tissue stiffness of the ITB revealed a significant decrease of 13% in experienced athletes at 30 min post-intervention (p=0.0017). In non-experienced athletes a 6% increase of stiffness was found at 30 min post-intervention at ITB, which was not significantly different to baseline (p=0.16); no significant changes occurred at later time points at ITB. For VL and VM no significant changes were detected at any time point in both groups.

Conclusion: A significant short-term decrease of connective tissue stiffness in experienced athletes is detectable with ARFI.
B-0678 14:40
Model-based accelerated T2 mapping of sacroiliac joint with 3-T MRI: a preliminary study of Grappatini

X. Peng, S. Yang, P. Hu, J. Xiao, Y. Pei, W. Liao; Changsha/CN

Purpose: The objective of this study was to assess the feasibility of GRAPPATINI in the sacroiliac joints.

Methods and Materials: The sacroiliac joints of 10 healthy volunteers were imaged b. multi-slice multi-echo (MESE) T2-weighted sequence, model-based accelerated T2 mapping (GRAPPATINI). ROIs were drawn in sacral-side and iliac-side cartilage to get T2 values. Intra- and interobserver reproducibility of T2 values measured using GRAPPATINI by two radiologists independently were calculated. The consistency of T2 values measured by T2 mapping with MESE and GRAPPATINI was calculated using Bland-Altman. The image quality, SNR and CNR were compared between routine TSE T2W image and synthetic T2W image of GRAPPATINI.

Results: Compared to MESE sequence, GRAPPATINI gave a almost 40% reduction of scanning time. Mean (±SD) T2 values were 50.2 ± 5.3 ms and 48.2 ± 6.1 ms for observer 1 and 47.9 ± 5.6 ms for observer 2 measured by GRAPPATINI. The intraobserver intraclass correlation coefficient was 0.76, and the interobserver intraclass correlation coefficient was 0.78. Good agreement between T2 values measured with MESE and GRAPPATINI was identified by Bland-Altman plot. No significant difference for overall image quality, image quality, SNR and CNR was demonstrated between the routine TSE T2W image and synthetic T2W image of GRAPPATINI.

Conclusion: Our study shows the feasibility of GRAPPATINI in the sacroiliac joints. Model-based accelerated T2 mapping enable quantitative imaging techniques to proceed in clinical applications.

B-0679 14:48
Feasibility of sub-milllSiervet CT of the skeletal pelvis: a human cadaver study

J.M. Weinrich1, K.J. Maas1, J. Stáreková, L. Intert1, S. Sehner1, M. Regier2, G. Adam1, A. Quitzke1; 1Hanover/DE, 2Ballerup/DK

Purpose: To investigate the feasibility of sub-millSiervet (sub-mSV) CT of the skeletal pelvis in human cadavers using a standard-dose (SD) and four different reduced-dose (RD) protocols reconstructed with filtered back projection (FBP) and iterative reconstruction (IR).

Methods and Materials: The pelvis of 25 human cadavers was examined using different RDCT protocols with decreasing reference tube currents (RDCT-1: 80 mAs; RDCT-2: 60 mAs; RDCT-3: 40 mAs; RDCT-4: 10 mAs) at 120 kV. A clinical SDCT protocol (100 mAs, 120 kV) served as reference. Raw data were reconstructed using FBP and two increasing levels of IR (IRL486). The anterior pelvic ring, acetabulum and posterior pelvic ring including the iliosacral joints were evaluated for image quality and diagnostic acceptability according to a 5-point-scale.

Results: Image quality of all anatomical structures was rated as diagnostically acceptable for all protocols reconstructed with IR except for eleven cadavers in RDCT-4. Image quality of reconstructions with FBP was generally rated lower and only diagnostic acceptable for SDCT, RDCT-1 and RDCT-2. RDCT-3 with IR was the most reduced dose CT protocol allowing diagnostically acceptable image quality for all anatomical structures in all cadavers. Compared to SDCT, application of RDCT protocols resulted in significantly reduced effective radiation doses (SDCT: 2.0±0.7 mSv; RDCT-1:1.6±0.6 mSv; RDCT-2:1.2±0.4 mSv; RDCT-3:0.6±0.3 mSv; RDCT-4:0.3±0.1 mSv; p<0.001).

Conclusion: Diagnostic acceptable sub-mSV CT of the skeletal pelvis is feasible with a reference mAs of 40 at 120 kV using iterative reconstruction. We believe that the presented RDCT-protocol should be implemented in clinical routine as a first-line imaging method.

B-0680 14:56
Quantification and evaluation of pre-post exercise femoral cartilage thickness and T2 changes in ultramarathon athletes

F. Garcia-Castro1, J. Catala-March1, D. Brotons-Cuxart1, M. Liobet-Llambich2, E. Sánchez-Osorio2, A. Alberich-Bayarri3, 1Valencia/ES, 2Barcelona/ES, 3B-0680 (fabioarcia@quibim.com)

Purpose: Articular cartilage MRI allows the assessment of the integrity of the tissue matrix through the quantification of T2 and thickness. The purpose of this work is to evaluate the variation of these image biomarkers in ultramarathon athletes before and after exercising.

Methods and Materials: Thirty-six MRI studies were acquired from both knees of 9 healthy subjects before and after running an ultramarathon (80 km). The MR protocol included a T2 multi-echo sequence with 6 echo times and a high-resolution anatomical sequence (DESS). The multi-echo T2 sequence was registered to the anatomical sequence using an elastic algorithm to achieve spatial consistency. Thickness of the femoral cartilage was calculated using an in-house algorithm based on the distance transform. For the T2-mapping calculation, the voxelwise signal decay across echo times was modelled using a non-linear least-squares fit algorithm. Thickness and parametric maps were aligned to the same spatial reference. Thickness and T2 values were statistically compared before and after exercise, as well as with and without the administration of hyaluronic acid.

Results: Significant differences were obtained in the median (p=0.037) and 25th percentile (p=0.017) of the T2 values before and after exercising (higher post-ultramarathon values). In cases with hyaluronic acid, these differences disappeared (p=0.24 and 0.16). There were no significant differences in cartilage thickness.

Conclusion: T2-mapping provides information on post-ultramarathon alterations. The hyaluronic acid reduced differences in T2 values. Femoral cartilage thickness remained invariant during exercise.

B-0681 15:04
Presence of intravascular contrast material after intraarticular injection for CT arthrography

C. von Falck; J.B. Hinrichs, F. Wacker; Hanover/DE (c.v.falck@gmx.de)

Purpose: To analyze the appearance of intravascular contrast material after intraarticular injection for CT arthrography.

Methods and Materials: A total of 50 CT arthrography examinations were retrospectively reviewed (elbow: 6, wrist: 22, knee: 11, ankle: 8, shoulder: 3). All procedures were performed under sterile conditions and fluoroscopic guidance according to the institutes standard procedures. The examinations were independently evaluated by two readers for the presence and degree of intravascular contrast enhancement using a 4-point Likert scale.

Results: Intravascular contrast material was seen in 72% (36/50) of the examinations. Grade 1 was seen in 16% (8/50), grade 2 in 34% (17/50) and grade in 22% (11/50) of the scans. Only 28% (14/50) of the examinations did not show intravascular enhancement.

Conclusion: Intravascular contrast material is commonly seen after intraarticular injection of iodinated contrast agents. This should be considered during pre-interventional risk assessment in patients with allergy to contrast agents or hyphertorhizism.

Author Disclosures:

B-0682 15:12
Optimising dual-energy CT parameters for virtual non-calcium imaging: a phantom study

F.C. Müller1, H. Bergesen1, K.K. Goysig2, A. Rodeci, C. Boza3, B. Schmidt4, B. Krausa, M. Boesen5; Herlev/DK, 2Ballerup/DK, 3Frankfurt a. Main/DE, 4Forchheim/DE, 5Copenhagen/DK (felix.c.mueller@gmail.com)

Purpose: Virtual non-calcium (VNCa) images calculated from -energy CT (DECT) data can characterise bone marrow changes associated with fractures and rheumatoid arthritis. We investigated the relationship between dose, tube voltage combinations, pitch, rotation time and reconstruction kernel regarding accuracy and image noise of VNCa images using a bone marrow phantom.

Methods and Materials: A bone marrow phantom was developed in-house and imaged using a third-generation dual-source CT scanner with various dose and tube voltage combinations, rotation times, pitch and reconstruction kernel. Accuracy was determined by measuring the mean error between VNCa images in identical volumes of interest in free fluid and fluid in bone and spearman rank correlation coefficients calculated between mean error, image noise (standard deviation of VNCa images) and scan parameters.

Results: The mean error did not significantly correlate (p>0.05) with tube voltage, dose, rotation time or pitch. Increasing sharpness of the reconstruction kernel correlated with mean error (r=0.83, p=0.015, n(number of experiments)=8). Image noise correlated significantly with tube voltage difference (r=-0.96, p<0.001, n=29), dose (r=0.98, p<0.001, n=29) and kernel
Importance of minimal HU setting in the foot and ankle DECT: frequency of submillimeter artefact and its clinical impact

B-0685 15:20

Importance of minimal HU setting in the foot and ankle DECT: frequency and the common site of submillimeter artefact noted in patients in gout free patients

H. Yang, Y.-S. Hong, J. Qong Yong, Y. Lee, S. Kim, J. You, E. Park; †JeonjuKR, ‡GwangjuKR, §ChonjuKR (ypshot@naver.com)

Purpose: To evaluate the frequency of cluster of submillimeter artefact in normal foot and ankle DECT and to compare the difference between two different setting of minimal HU.

Methods and Materials: From July to September 2018, 12 normal foot and ankles obtained by DECT were enrolled. Two radiologists reviewed the images and checked if there is a cluster of green pixilation (submillimeter artefact).

When it existed, they assessed the volume, site, shape and the width to height ratio of the artefact. Student t-test was used to compared the frequency and volume of DECT with two different minimal HU setting.

Results: The cluster of submillimeter artefact was noted at 75% of normal foot and ankle DECT in setting of minimal HU as 130HU. The volume of artefact significantly increased from 2.03cm³ to 0.3 cm³. These frequency significantly decreased to 33.3% in setting of minimal HU to 150HU. These were most frequent in forefoot. In setting of minimal HU as 130HU, the most frequent anatomic site was FHL at hindfoot level (12/79) and forefoot level (11/79) and, followed by 2nd flexor tendon at forefoot level (9/78). Other additional sites was FDL at hindfoot level, 3rd flexor tendon at forefoot level.

Conclusion: Even though the submillimeter artefact decreases with the minimal HU setting from 130 to 150HU, it is not rare. This artefact is common in forefoot, and tends to be flat and wider than tall. Radiologist should be aware of the common site of the artefact including FHL, 2-3rd flexor tendon, and FDL.

Oncologic Imaging

SS 716

How to improve bone metastases and osteosarcoma assessment

Moderators:
A. Karpenko; St. Petersburg/RU
L. Kintzele; Heidelberg/DE

K-15 14:00

Keynote lecture
T. Bäuerle; Erlangen/DE

B-0685 14:09

Using radiomics to identify invisible bone metastases on CT in melanoma patients receiving immunotherapy

Z. Elkarhali; T. Nguyen-Kim, J. Spekereijse, S. Trebesch, J.B. Haanen, C.U. Blank, W. Vogel, R.G.H. Boets-Tan; †Amsterdam/NL, ‡Zurich/CH (z.elkarhali@nki.nl)

Purpose: Bone metastases are associated with advanced tumour progression and poor prognosis, however they are not considered measurable under Response Evaluation Criteria in Solid Tumours (RECIST 1.1, modified RECIST) and PET Response Criteria in Solid Tumours (PERCIST). While visible on PET scan, some metastatic bone lesions are indistinguishable on CT from surrounding healthy tissue. We hypothesize that non-invasive radiomic features extracted from baseline CTs could be used to discriminate between occult lesions and healthy tissue.

Methods and Materials: 236 patients with metastatic melanoma (receiving anti-PD1 immunotherapy) were retrospectively studied, of whom 61 had PET-confirmed bone metastases. A total of 153 PET-positive/CT-occult lesions were identified (using the PET scan as benchmark) and delineated on CT. The healthy contralateral bone within the same image examination was delineated symmetrically for each identified lesion and was defined as a control lesion.

Results: Of the seventeen non-redundant CT radiomic features, four were found to be predictive of PET-positive/CT-occult lesions. On a coarse scale, more morphological heterogeneity in bone metastases was observed (coeff.=−0.619, p<0.001). This difference in heterogeneity becomes less and less prominent at the medium (coeff.=−0.041, p=0.003) and fine scale (coeff.=−0.721, p=0.001) - suggesting more involvement of larger structures in the bone.

Conclusion: Our findings suggest that, with the use of radiomics, discernible morphological differences exist between PET-positive/CT-occult lesions and their healthy controls, specifically in heterogeneity.

B-0686 14:17

Prediction of immune-checkpoint-inhibitor therapy effectiveness by evaluation of bone marrow activity modifications: an FDG-PET/CT study

G. Ferrero, F. Fiz, J. Schwenck, C. La Fougerè, C. Campi, G. Sambucetti, E. Fabbro, B. Pickler, M. Knellinger, P. Ligure, T. Genoa

Purpose: Despite its efficiency, immune checkpoint inhibitor therapy (ICI) fails in 60-80% of metastatic melanoma patients. Increase in lymphocyte counts has been proposed as an early prognostic marker of ICI response, but data are inconsistent. Aim of our study was to uncover whether determination of bone marrow (BM) metabolic activity by 18F-FDG-PET/CT can predict efficient response to ICI.

Methods and Materials: 20 patients, with Stage IV melanoma (10 responders; 10 non-responders) were retrospectively enrolled. Every subject underwent a whole-body staging PET/CT (PET1) and a second PET/CT (PET2) days later. In the course of ICI, Response was evaluated with PERCIST criteria. A computer algorithm recognized trabecular bone (where BM is housed) in the CT images and extracted the mean SUV from the co-registered PET images; SUV was corrected for background (target-to-background ratio, TBR). Total axial and appendicular BM were analyzed separately. Bone metastases, previous radiotherapy, high-grade infections and use of BM-stimulating agents were exclusion criteria.

Results: After ICI, whole-body TBR values increased by 0.52±1.64 in responders (p=0.05) and remained stable in non-responders. In axial skeleton TBR increase was 0.50±0.03 in responders (p=0.01) and 0±0.16 in non-responders (p=ns). As a consequence, mean TBR increase was higher in responders than in non-responders both in total and in axial skeleton (p=0.05). Moreover, responders showed a higher baseline TBR in the axial skeleton when compared to non-responders (2.3±0.62 vs 1.61±0.27; p<0.05).

Conclusion: Analysis of glucose metabolism by 18F-FDG-PET/CT in surrounding lymphoid organs might be a new sensitive tool in predicting ICI response. In particular, a higher BM metabolic activity before therapy as well as a higher metabolic increase after therapy was identified in patients who had responded to the ICI.

B-0687 14:25

Imaging detection and characterisation of bone metastases from neuroendocrine neoplasms with simultaneously acquired Ga-68 DOTATATE PET-MRI

J. Bai, R. Matthews, L. Bangiyev, A.R. Chimirri, D. Franceschi; Stony Brook, NY, US (james.bai@stonybrookmedicine.edu)

Purpose: The purpose of the study is to evaluate imaging characteristics of bone metastases from neuroendocrine tumour (NET) with simultaneously acquired Ga-68 DOTATATE PET-MRI.

Methods and Materials: We retrospectively identified 35 patients with NET who underwent combined Ga-68 DOTATATE PET-MRI for tumour staging. Each PET-MRI was evaluated in consensus by a nuclear radiologist, a body radiologist, and a neuroradiologist. 61 lesions from 8 patients demonstrated abnormal osseous uptakes of DOTA consistent with bone metastases. 38 of 61 lesions were located in the spine. MRI sequences included axial T1 radial vibe vs, axial T2 haste, and sag T1 Dixon sequences.

Results: 32 of 61 osseous lesions with abnormal DOTA uptake demonstrated variable T1 and T2 signal abnormalities. Of the 32 lesions, 26 lesions showed mild hyperintensity on T1 vibe vs. 34 of 38 DOTA-positive spine lesions were detected on Dixon. Among the spine lesions, Dixon demonstrated consistent abnormal signal characteristics with hyperintensity on water sequence and hypointensity on fat sequence. 1 cervical spinal lesion from a patient with concurrent prostate cancer demonstrated mild DOTA uptake, but prominent MR abnormalities. 1 lumbar spinal lesion from a patient with rectal carcinoid cancer also demonstrated mild DOTA uptake, but suspicious MRI features.
Conclusion: In this study, Ga-68 DOTATATE was shown to be a highly sensitive molecular marker that can detect bone metastases from NET before signal abnormalities could be identified on simultaneously acquired MRI sequences. The multi-sequential MRI provides incremental diagnostic value to distinguish bone metastases from NET vs bone metastases from other neoplasms and to identify potential complication from bone metastases which would help in clinical management.

B-0688 14:33
Whole-body MRI vs bone scan in the follow-up of oncologic patients A. Malic, I. Papageorgiou, D. Wiech; Nordhausen/DE (ismini.e.papageorgiou@gmail.com)

Purpose: The 99mTc-bone scan (BS) is a standard of diagnosis for the skeletal staging in many oncologic diseases. However, the number of nuclear medicine departments in Germany is steadily decreasing while MRI devices become more available, fast, precise and affordable. Whole-body MRI (WB-MRI) is a promising radiation-free alternative to bone scan with growing popularity in the oncological practice. We compare the diagnostic efficacy of WB-MRI to BS in a large database from our hospital.

Methods and Materials: From a large database of 1797 WB-MRI, we included 285 eligible patients with WB-MRI and BS within a time interval of 12 months. WB-MRIs were evaluated by 2 radiologists blinded to the BS report. Change of the therapeutic decision, confirmation in less than 1 year from the diagnosis or biologic confirmation served as the gold standard.

Results: From the 285 eligible cases a decision agreement between WM-MRI and BS was observed in 222 cases (in 94 cases both methods were true positive and in 128 cases true negative). In 90 cases WB-MRI and BS showed deviating results and the inter-observer agreement was 71.15% with a Cohen's kappa of 0.42, which speaks for a moderate method agreement. The sensitivity, specificity, PPV and NPV of WB-MRI were 98.85/85/82/99% and were not significantly different compared to the general WB-MRI metrics in our department.

Conclusion: WB-MRI is a radiation-free, reliable and precise bone staging method with equal efficacy compared to the established BS.

B-0689 14:41
Activity concentration in prostate cancer bone metastases predicts the radioisotope therapy outcome: a SPECT/CT study G. Feronero#, F. Fisi, H. E, C. Le Fugues, P. Campi, G. Sambuceti, S. Sahbai, M. Weissinger, M. Piana, P. Pieta, G. Liguori, S. Genova, G. Ferrero (giulio.ferrero@gmail.com)

Purpose: 223RaCiz is the only bone-specific radioisotope that showed a benefit in metastatic castration-resistant prostate cancer (mCRPC) patients' survival. However, a variable percentage of patients progresses in course of 223RaCiz-Therapy. In this study, we applied a computational software analysis to SPECT/CT images from mCRPC patients to identify automatically the skeletal tumor burden and the activity concentration in bone metastases from prostate cancer and to see if these factors have an impact on the therapy outcome.

Methods and Materials: 76 mCRPC patients were retrospectively enrolled. Each patient underwent a whole-body bone SPECT/CT (99mTc-DPD) for staging. then was treated with 6 223RaCiz applications. A second SPECT/CT was carried out after this therapy. Patients with new visible bone lesions were classified as having a progressive disease (PD). Patients with clearly diminished uptake in known metastases as having a partial response (PR), the remaining a stable disease (SD). The staging SPECT/CT was analyzed with a segmentation analysis software, which identified the volume occupied by metastases (in mV), the one of normal trabecular bone (in V) and the mean activity concentration within these two volumes.

Results: PD, SD, PR were 21,35,20, respectively. Mean counts in mV of PD patients were significantly lower when compared to the other two groups (715±190, 1058±265 and 975±215 mean counts, for PD, SD, PR, respectively p<0.01). The same pattern (lower mean counts in PD patients) was observed in bVol (p<0.001). Moreover, PD patients had a lower total volume of metastases in comparison with SD and PR patients (p<0.05).

Conclusion: Patients with weaker uptake have a worse therapy response; it seems to be associated with a less extended metastatization. These patients may have in fact have less tracer-avid foci and their bone lesions could receive a smaller doses during 223RaCiz therapy.

B-0690 14:49
18F-FDG PET/MRI for therapy response assessment of isolated limb perfusion in patients with soft-tissue sarcomas J. Grueneisen, B.M. Schaarschmidt, M. Chodyla, O. Martin, Y. Li, W. Fendler, K. Herrmann, M. Forsting, L. Umululu, Essen/DE, Düsseldorf/DE (johannes.grueneisen@uk-essen.de)

Purpose: To assess the diagnostic potential of simultaneously acquired 18F-FDG PET- and MR-derived datasets for therapy response assessment of isolated limb perfusion with melphalan and alpha-TNF (TM-ILP) in patients with soft-tissue sarcomas.

Methods and Materials: A total of 45 patients with a histopathologically proven soft-tissue sarcoma manifestation were prospectively enrolled for an integrated 18F-FDG PET/MRI examination before (1st scan) and after (2nd scan) TM-ILP. Therapy response was assessed based on different MR- and PET-derived morphological (RECIST 1.1., MR-adapted Choi criteria) and metabolic (PERCIST) criteria. Histopathological results after subsequent tumour resection served as reference standard and patients were categorized as responders/non-responders based on the grading scale by Saltz and Kurshisk.

Results: Histopathological analysis categorized 27 patients as therapy responders (Grade I-III) and 18 patients as non-responders (Grade IV-VI). Calculated sensitivities, specificities, positive and negative predictive values and diagnostic accuracies were 95%, 95%, 94% and 49% for RECIST 1.1., 100%, 89%, 95% and 60% for MR-adapted Choi criteria and 85%, 85%, 85% and 82% for the PERCIST criteria. Furthermore, receiver operating characteristic analysis revealed an area under the curve of 0.56 (RECIST 1.1., 0.72 (MR-adapted Choi criteria) and 0.71 (PERCIST), respectively.

Conclusion: Our results demonstrate the discrepancy of morphological and metabolic response criteria and underline the superiority of 18F-FDG PET over MRI for response assessment of TM-ILP. Considering the essential role of MRI in preoperative diagnostics, integrated 18F-FDG PET/MRI may serve as a useful diagnostic tool for treatment planning and monitoring of initial treatment strategies of soft tissue sarcoma patients.
can be omitted without compromising the WB-MRI diagnostic accuracy.

Conclusion: CR shows excellent intra-reader agreement and good inter-reader agreement for assessment of the relationship between tumours and the adjacent major vessels. It has the potential to be used to evaluate vascular invasion in cases of deep STS of the extremities.

Methods and Materials: Study included 36 patients with soft tissue sarcoma, who received chemo-/radiotherapy. Tumour longest dimension according to RECIST 1.1, the longest dimension of the contrast-enhanced portion of the tumour according to (mRECIST), the tumour volume (VOL/cm³) and DWI with ADC values were recorded.

Results: ADC values in the non-progressive group were higher than those of the progressive group after neoadjuvant treatment (1.63±0.42 vs 1.24±0.35) with (P<0.005). ADC variations in the non-progressive group were higher than those of the progressive group (27.09±48.09 vs -3.08±23.5%) with (P<0.05). ADC values after neoadjuvant treatment were negatively related to tumour volume variations (VOL%) after neoadjuvant treatment. ADC variations (ADC%) were inversely correlated with morphologic changes, regardless of the effectiveness of anticancer therapy expressed as changes in tumour size based on (RECIST, mRECIST and three-dimensional volumetric assessment). Linear regression analysis revealed a Pearson correlation coefficient of r=(-0.424, -0.478 and -0.479), respectively, with (P<0.005). An increase in the ADC value was not always associated with a reduction of tumour volume. The disease control rate (defined as the percentage of CR+PR+SD patients) was 63.8% and 69.4% according to RECIST 1.1 and mRECIST.

Conclusion: Quantitative DW imaging after neoadjuvant therapy provides added value in determining treatment response in soft tissue sarcomas. Therapeutic response to neoadjuvant therapy can be underestimated using RECIST 1.1, therefore, the mRECIST should also be considered.

Purpose: Assessing the diagnostic merits of DWI with ADC mapping in evaluating tumour response to chemoradiotherapy.

Results: The sensitivity (Se) and specificity (Spe) for 1.5 T was 98/91% and the increased to 100/93% and a PPV/NPV of 83/100%, overall without statistically significant effect (all P > 0.05).

Conclusion: There is potential for decreased reader time, fewer recalls, and increased revenue with AI based software products. Based on an assumption of 100,000 mammograms per year, extrapolated data shows AI would yield a potential time saving of 64% or 375 hours of schedule rates. In addition, AI software can pre-sort the worklist based on suspiciousness which enhances reader’s efficiency and potentially their productivity.

Purpose: To evaluate the effect of using a deep-learning algorithm in mammography screening to identify normal exams.

Results: 5,085 (53.9%) exams, including 8 (11.3%) cancers and 52 (27.8%) false positives had low risk scores. If cases scored 1 were excluded, 1,004 (10.5%) normal exams could be removed, including 6 (3.2%) false positives but no cancers. If cases scored 1-2 were excluded, 1,830 (19.1%) exams could be included, including 10 (5.4%) false positives and one cancer, an 8 mm invasive ductal carcinoma. The 8 cancers with low risk scores were all invasive, including the ductal, tubular and lobular type. AI, except one, were clearly visible, and the majority (5/8) were spiculated masses.

Conclusion: An artificial intelligence system can reduce the screen-reading workload. With further improvement of the software an even greater exclusion of normal mammograms seems possible since the majority of the cancers with low risk scores were clearly visible.
B-0697 14:25
Artificial intelligence detecting breast cancer on mammography: does breast density play a role?
A. Rodriguez Ruiz, M. Kallenberg, A. Gubern-Merida, N. Karssemeijer, R.M. Mann, Nijmegen/NL
Purpose: To analyze the relationship between the breast cancer detection performance of an artificial intelligence (AI) system on mammography and breast density.

Methods and Materials: An independent multi-vendor cancer-enriched database of 1397 mammograms was collected across several institutions in Europe (179 with biopsy-verified cancer, 1218 normal with at least two years of negative follow-up). For each mammogram, an AI system computed a score representing the likelihood of presence of cancer (scale 1-10); while the breast density volume fraction (averaged across views) was computed with previously published and validated software. Linear regression analysis was performed for AI score and density. Subsequently, the population was divided into two groups based on the median density value of the population: high-density mammograms (73 cancers, 626 normals) and low-density mammograms (106 cancers, 592 normals). The area under the receiver operating characteristic curve (AUC) of the AI system was compared between the two groups.

Results: Median density volume fraction in the population was 0.12 (0.09-0.18). The AI score did not correlate with density (R² = 0.09), with low AI score categories harboring at same proportions high-density and low-density mammograms. The AUC of the AI system was similar for both groups (0.91 vs 0.89, difference = -0.02, 95% CI = -0.03,0.08).

Conclusion: The AI score may be considered as an independent tool to estimate the likelihood of the presence of cancer on mammograms, to stratify screening populations, and to potentially fasten the reading process by reassuring readers on mammograms that are likely normal, irrespective of breast density.

Author Disclosures: A. Rodriguez Ruiz: Employee; ScreenPoint Medical. M. Kallenberg: Employee; ScreenPoint Medical. A. Gubern-Merida: Employee; ScreenPoint Medical. N. Karssemeijer: CEO; ScreenPoint Medical.

B-0698 14:33
Improved cancer detection using artificial intelligence: a retrospective evaluation of missed cancers on mammography
A.T. Watanabe, V. Lim, E. Weise, H. Vu, J. Manhattan Beach, CA-US, 1La Jolla, CA-US, 2San Diego, CA-US (alyssa90266@gmail.com)
Purpose: To determine whether an artificial intelligence-based computer-aided detection (AI-CAD) algorithm can be used to improve radiologists’ sensitivity in breast cancer screening and detection.

Methods and Materials: A blinded retrospective study was performed with a panel of seven radiologists using a cancer-enriched data set from 122 patients that included 90 false negative mammograms obtained up to 5.8 years prior to diagnosis. The mammograms were performed between February 7, 2008 (earliest) and January 8, 2016 (latest) and evaluated using Students T Test statistical analysis.

Results: All radiologists showed a significant improvement in their cancer detection rate (CDR) with the use of AI-CAD (p-value=0.0069, Confidence interval = 95%), with the assistance of AI-CAD, the sensitivity of less experienced general radiologists improved to a level higher than a fellowship-trained academic breast imager. The readers detected between 25% and 71% (mean 51%) of the early cancers without assistance. With AI-CAD, the overall reader CDR was 41% to 76% (mean 62%). Overall, there was less than 1% increase in the readers’ false positive recalls with use of the AI-CAD.

Conclusion: There was a statistically significant improvement in radiologists’ sensitivity for cancer detection in this set of primarily false negative mammograms with the benefit of the AI-CAD. The percentage increase in CDR for the radiologists in the reader panel, ranged from 6% to 64% (mean 27%) with the use of AI-CAD, with negligible increase in false positive recalls.

Author Disclosures: A.T. Watanabe: Board Member; Chief Medical Officer, Curemetrix. V. Lim: Consultant; Curemetrix. E. Weise: Employee; Curemetrix. H. Vu: Board Member; CureMetrix.

B-0699 14:41
False negative on computer-aided detection application in preoperative automated breast ultrasound of breast cancer patients
Y. Kim1, J. Kim1, S.M. Kim1, B.L. Yun1, S.Y. Park1, H.S. Ahn1, B. Kim2, M.J. Jang1, Seongnam/KR, Daejeon/KR, Yongin/KR
Purpose: To analyze the characteristics of ultrasonographic, mammographic, and MRI findings of breast cancer patients that comprised of false positive computer-aided detection (CAD) application missed in automated breast ultrasound (ABUS).

Methods and Materials: Total 133 consecutive breast cancer patients (age in mean ± standard deviation, 52.2 ± 10.3 years) who underwent preoperative ABUS were included in our study. Imaging features of mammography, ABUS, and breast MRI as well as pathology results were assessed. Univariable analyses were performed to identify factors associated with missed breast cancers. Multivariable regression analysis was performed using variables which showed a statistical significance in the univariable analyses.

Results: The CAD application missed breast cancers in 27.1% (36/133) of our included patients. Missed breast cancers had higher frequency of ductal carcinoma in situ in pathology and the following imaging features in ultrasound: size <1 cm, distance to nipple <5 mm, indistinct margin, and heterogeneous background tissue echotexture. None of the variables assessed in mammography or MRI was associated with missed breast cancers. In the multivariable regression analysis, ductal carcinoma in situ in pathology, size <1 cm, indistinct margin, and heterogeneous background tissue composition were associated with missed breast cancers.

Conclusion: Breast cancers missed by ABUS CAD application tended to have size <1 cm, indistinct margin, and heterogeneous background tissue echotexture. In ABUS, understanding the imaging features of CAD application-missed breast cancers would help radiologists to diagnose breast cancer in ABUS more accurately.

B-0700 14:49
Automatic detection of breast lesions on ABUS using a novel transfer learning approach: comparison between three different networks
J. Santinha1, A. Vourtsis1, A. Uysal1, J. Moreira1, N. Papankolakou1, 2Lisbon/PT, 3Athens/Greece, 4Ankara/TR (joao.santinha@research.fc.tampere.fi)
Purpose: To compare three machine learning models that can automatically identify the presence of a lesion on Automated Breast Ultrasound System (ABUS) images.

Methods and Materials: Coronal ABUS reconstructions from 195 patients that underwent ABUS examination were randomly selected and utilised in the current study. 130 ABUS images containing lesions were used, while another 130 images were randomly selected from 85 patients with negative exams (2 images per consecutive slices per study). 50 of the patients were used for training, 20% for validation and 20% as a hold out test data set. 2048 deep features were extracted from each ABUS image using a pre-trained Google's Inception V3 network, the VGG-16 and VGG-19 networks that were trained on ImageNet. A logistic regression algorithm was used to classify ABUS images into normal or abnormal.

Results: Testing of the diagnostic performance of the three classifiers was done on 52 images that were kept away from the training-validation phase. Inception V3 network provided with the highest performance (sensitivity, specificity and accuracy were 96.15%, 92.31% and 94.23%, respectively), followed by VGG-16 (sensitivity, specificity and accuracy were 88.46%, 96.15% and 92.31%, respectively) and VGG-19 (sensitivity, specificity and accuracy were 92.31% and 94.23% respectively).

Conclusion: Transfer learning based on Inception V3 offers very high performance for automatic detection of breast lesions on ABUS images.

B-0701 14:57
Automated volumetric analysis of breast cancer vascularisation enables risk stratification in patients scheduled for neoadjuvant chemotherapy
M. Dietzel1, S. Ellmann1, P. Clauser1, E. Wenkel1, M. Uder1, R. Schüz-Wendtland1, P.A.T. Balzer2, Erlangen/DE, 3Vienna/AT
Purpose: Volumetric analysis of breast cancer vascularization (VAV) can be automatically performed on a standard pre-therapeutic breast-MRI examination. We investigated whether breast cancer vascularization (VAV) could be used for risk-stratification in patients scheduled for neoadjuvant-chemotherapy. We investigated whether breast cancer vascularization (VAV) could be used for risk-stratification in patients scheduled for neoadjuvant-chemotherapy using complete response (CR), distant metastasis (MTX) and disease-specific death (DSD) as study endpoints.

Methods and Materials: Within this retrospective, IRB-approved study, 77 consecutive patients with primary invasive breast cancer received standard breast-MRI before the initiation of neoadjuvant-chemotherapy according to international recommendations. Diagnostic workup, treatment, and follow-up were done at one tertiary care, academic breast center (CR: 13, MTX: 17, DSD: 14; mean follow-up: 56 months). Based on the MRI-scans, VAV was accomplished by commercially available, FDA-cleared software. DSD, CR, and MTX served as endpoints. Potential of VAV to predict all three endpoints was investigated; the potential of clinico-pathological factors (CPF) to predict DSD and MTX was identified and compared to VAV. Finally, we investigated whether integration of VAV into CPF increased prognostic accuracy (logistic/Cox regression, Kaplan-Meier statistics, ROC analysis, area under the curve/AUC; alpha=5%).
Results: VAV was able to predict DSD (AUC = 88.3, hazard-ratio/HR = 20.2), MTX (AUC = 80.3), and CR (AUC = 79, all P < 0.001). CPF enabled the prediction of DSD (AUC = 83.5, HR = 2.7, P < 0.01) and MTX (AUC = 74.4, P < 0.05, with a substantially lower accuracy (P > 0.04). Combination of VAV and CPF further increased the accuracy (P < 0.002) regarding the prognostication of DSD (AUC = 92.2, HR = 35.7) and MTX (AUC = 85.7%).

B-0702 15:05
The Kaiser score, a decision rule based on BI-RADS MRI descriptors: is there an impact of histopathology on the diagnostic accuracy?

Purpose: We investigated, whether the diagnostic accuracy of the Kaiser score is influenced by the underlying histopathology.

Methods and Materials: Consecutive patients with equivocal breast lesions scheduled for breast MRI (standardized protocols @ 1.5T; dynamicT1-GRE before/after Gd-DTPA [0.1 mmol/kg body weight (BW)]; T2-TSE), with subsequent pathological sampling, were investigated. The Kaiser score was assessed by two experienced radiologists in consensus (blinded to pathology). Diagnostic accuracy of the Kaiser score stratified by the underlying histopathology was investigated (ROC analysis, descriptive statistics, alpha=5%).

Results: There were 1080 lesions in 1080 breasts (malignant: benign: 643:437). Histopathology revealed all major subtypes of benign and malignant lesions. Overall accuracy for the differential diagnosis of malignant vs. benign lesions achieved reported values (AUC = 0.86). Performance of the Kaiser score regarding invasive cancers (AUC = 0.91) was superior to DCIS (AUC = 0.73; P > 0.001). The Kaiser score performed equally in the assessment of invasive cancers subtypes (AUC = 0.92-0.86; P = 0.13-0.97). Performance of the Kaiser score in the assessment of papillomas (AUC = 0.87) and fibrocystic changes (AUC = 0.88) was similar (P > 0.57). Yet, the Kaiser score performed better in fibroadenomas (AUC = 0.91; P < 0.05). The highest accuracy of the Kaiser score was observed within the differential diagnosis of benign phyllodes tumours vs. malignant lesions (n=10; AUC = 0.88; P > 0.001).

Conclusion: In general, the Kaiser score is independent of the underlying histopathology and reaches high accuracy. Even in the presence of challenging tumours (DCIS), the Kaiser score enabled a precise diagnosis, yet with a slightly lower level of accuracy.

B-0703 15:13
Combining artificial intelligence and MRI in the management of equivocal breast lesions: the perfect couple?
M. Dietzel, S. Elfmann, E. Wenkel, C. Bielowski, R. Schulz-Wendtland, M. Uder, T. Baeuerle, Erlangen/DE

Purpose: We evaluated whether combining artificial intelligence (AI) and MRI could be beneficial to the management of equivocal breast lesions.

Methods and Materials: 100 consecutive patients were enrolled. All showed equivocal breast lesions (BI-RADS IV) upon conventional assessment (clinical examination, mammography, and ultrasound) and received histopathological verification. Prior to biopsy we performed a standardized breast MRI in each patient. Agnostic semantic MRI parameters were extracted by two observers independently (R1/R2: intermediate/no experience in breast MRI). Six agnostic semantic MRI parameters were extracted by two observers independently (R1/R2: intermediate/no experience in breast MRI).

Results: 33 lesions were malignant and 67 benign. Agnostic parameters demonstrated excellent inter-observer variability (ICC > 0.9); every parameter showed significant potential to differentiate BI-RADS IV lesions (P < 0.001). AI identified typical fingerprints of certainly benign lesions in 31.3% (21/67).

Conclusion: Combining artificial intelligence (AI) and MRI could be beneficial to the management of equivocal findings: this perfect couple identified fingerprints of "certainly benign" findings in a substantial proportion of equivocal lesions (31.3%). As such, such fingerprints showed an extremely low false-negative rate (<1%), biopsy could have been safely avoided in these patients.

B-0704 15:21
Automatic cluster analysis of breast lesions assessed with diffusion-weighted imaging
J. Schaar, H. Dijkstra, M. Wielema, M. Dorrius, P. Sijens, Groningen/NL

Purpose: To optimize and validate an automatic method for cluster analysis of breast lesions to prevent unnecessary biopsies and compare this method with three already existing methods.

Methods and Materials: This retrospective consecutive study was approved by the hospital’s institutional review board and informed consent was obtained. 163 breast lesions with known pathology and BI-RADS classification (BI-RADS 2, 3, 4, 5, 6) were acquired. In total, 124 lesions were malignant and 39 benign. Agnostic parameters (AUC = 0.787 vs. 0.819, p < 0.01).

Conclusion: The cluster algorithm was optimized in a training set of 24 lesions (12 benign) to yield maximum true negatives and minimal false negatives. The cluster algorithm was validated in a subsequent consecutive set of 139 lesions (23 benign) to obtain sensitivity (Se) and specificity (Sp). The cluster algorithm was compared to three existing methods: the minimal and mean ADC of a lesion and histogram analysis using the 10% lowest ADC pixels. AUC = 0.787 vs. 0.819, p < 0.01.

Conclusion: Automatic cluster analysis of breast lesion diffusion yields a high accuracy and can potentially reduce unnecessary biopsies.
B-0706 14:08
Improved diagnostic performance of CT perfusion imaging in acute stroke using advanced noise suppression and Bayesian perfusion algorithms

E.J. Smit1, K. Murayama2, T. Galen3, S. Pegge1, L. Kluftmans2, V. Ikeda1, K. Katada3, F.J. Meijer1, M. Prokop1, Nijmegen/NL, T. Yooakei/JP, Malden/NL, Otawara/JP (ewoudsmit@gmail.com)

Purpose: Current CTP techniques have limited diagnostic performance because of moderate image quality resulting from low signal-to-noise ratios. We tested if advanced noise-suppression and Bayesian probabilistic perfusion techniques allow for more reliable diagnosis of ischemia in acute stroke.

Methods and Materials: We evaluated 37 consecutive patients with suspected acute stroke who underwent CTP and DWI within 6 hours after each other. Post-processing for CTP was performed with commercial software using a standard processing technique that uses smoothing filters and single value decomposition (SVD) algorithms and an advanced processing technique that uses a 4D-similarity filter for noise suppression followed by Bayesian perfusion algorithms. Three expert observers rated all images for the presence of a perfusion deficit, diagnostic confidence and image quality on a 5-point Likert scale. MR diffusion-weighted imaging (DWI) served as the reference test.

Results: Diagnostic performance was significantly better for the Bayesian-based method compared to the SVD-based method, with area under the ROC curves of 0.88 and 0.72, respectively. At similar sensitivity of 72-73% for detecting DWI infarcts, the Bayesian-based method resulted in a higher specificity with 93% compared to 52% for the SVD-based method. Observers were significantly more confident of their diagnosis using the Bayesian-based method and image quality was rated significantly higher for all perfusion maps.

Conclusion: Bayesian-based processing improves the reliability and diagnostic performance of CT perfusion imaging. Using these methods, CT perfusion imaging seems to allow for the reliable diagnosis of acute ischemic stroke. However, negative perfusion exams still cannot exclude cerebral ischemia.

Author Disclosures:
E.J. Smit: Research/Grant Support; Canon Medical. Speaker; Canon Medical. Y. Ikeda: Employee; Canon Medical. M. Prokop: Research/Grant Support; Canon Medical. Speaker; Canon Medical.

B-0707 14:16
Effect of report length on its clarity in the stroke setting: an AI study

A. Merreu, L. Saba; Cagliari/IT

Purpose: To assess whether a longer text report can hide its meaning when a clear message is critical, such in the case of head CT for stroke.

Methods and Materials: 300 urgent head CT without contrast free-text reports were retrospectively analysed. All clinical requests suspected acute stroke. Findings were categorized (presence or lack thereof) in acute, such as stroke and haemorrhage, and chronic ones, such as lacunae and leukoaraiosis. Reports word count was measured. An ensemble of 7 algorithms (based on bagging, boosting, classification trees, maximum entropy, neural networks, random forests and support vector machine) was employed by a supervised AI to predict the findings. Statistical analysis was performed with the multinomial logistic regression and receiver operating characteristic area under the curve was less than 0.05. All the main tasks involved were handled with the free and open source programming language R.

Results: Report length did not correlate significantly with the probability of a correct prediction of acute findings only (p = 0.5103), chronic ones only (p = 0.4258) or both at the same time (p = 0.5221). The whole model was not significant too (p = 0.4876).

Conclusion: Study results showed that wordy reports did not significantly impair AI predictions. Thus, neither an attentive human reader might be impaired by the amount of information provided.

B-0708 14:24
Evaluation of pial collaterals on multiphase CT angiography: impact on the prediction of infarct size and outcome in acute ischaemic stroke

E. Pueji, G. Manente, M. Assetta, P. Pulsoni, V. Di Mizio; Teramo/IT (edopug@hotmail.com)

Purpose: Pial collaterals may vary in CTA single phase (sCTA) depending on whether the CTA is arterial (A), arterio-venous (AV) or venous (V) weighted. We investigate the impact of sCTA weighting on the evaluation of collaterals using the classical MAAS, Tan and Menon methods and their ability to predict infarct size and outcome.

Methods and Materials: 162 consecutive patients (mean age of 45 years, April 2009-September 2018) with classical onset, underwent to endovascular therapy, in a single center. Basal CT, CTA and sCTA were used for imaging. The sCTA weighting was determined by comparing the AV ratios between torcula with those obtained from concomitant CTP temporal density curves at the attenuation of the arterial peak or of the venous contrast. Two readers studied infarct volume on imaging of the three collateral scores stratified by sCTA weighting with age, gender, aetiology, symptoms, NIHSS, clot burden score (CBS) and mRS. For primary analysis, we used ordinal regression.

Results: Median NIHSS score at presentation was 13 (range 3-36) and the onset to treatment time were 128 (66-181) minutes. sCTA scans were AV-weighted in 105/162 (64.8%) and A-weighted in 57 (35.1%). No association was demonstrated between sCTA weighting and sCTA technique. No association was shown between sCTA weighting, collateral grade and clinical outcome (p<0.05).

Conclusion: After recanalization the sCTA weighting did not significantly impact collateral grade analysis with the three common collateral scores and there is lack of evidence of their ability to predict final infarct size.

B-0709 14:32
Extracted computed tomography angiography measurements as a screening tool for obstructive sleep apnoea in acute stroke patients

T.J. Jeffery, D. Gibson; Perth/AU (tim.jeffery@biinet.net.au)

Purpose: Obstructive sleep apnoea (OSA) is reportedly a common co-existent disorder in stroke patients. The presence of OSA could significantly hinder neurological recovery. Radiological cumulative measurements on cross-sectional neck imaging correlates characterise both the presence and severity of OSA. There are limited published studies exploring the frequency of these adverse parameters in acute stroke patients. This case series explores the incidence of three robust radiological surrogate measures in routine contrast-enhanced CT imaging of acute stroke patients.

Methods and Materials: Time imaging for 50 sequential acute stroke presentations from a major tertiary hospital was reviewed. Three measurements were routinely performed on computed tomography extra- and intracranial angiogram (CTA) studies: mandibular plane to hyoid distance (MHP), oropharyngeal length (OPL) and minimal transverse dimension of the retropalatal airway (RPA).

Results: Of the 50 cases analysed, 74% had at least one measure exceeding defined thresholds. An inferiorly placed hyoid bone (MHP>18mm) was the most frequent adverse finding at 58%. An elevated OPL and a reduced RPA were less frequent at 45% and 28%, respectively. Only two of the fifty cases were documented as having diagnosed OSA upon discharge.

Conclusion: Radiological indicators of sleep apnoea are frequently present in our acute stroke population. The results of this case series suggest that these measurements should be performed routinely on admission CTA studies and be included in radiology reports. This can alert treating teams to consider in patient polysomnography studies for confirmation of OSA and early institution of continuous positive airway pressure support.

B-0710 14:40
Comparison of accuracy for the prediction of infarct tissue volumes between arrival-time insensitive and arrival-time sensitive CT perfusion algorithms

S. Pegge, K. Murayama, T. Galen, S. Nagata; NI, Malden/NL, Toyoake/JP

Purpose: Stroke-thrombectomy (ST) can be performed up to 24 hours after onset if a significant CT-perfusion (CTP) mismatch is present. CTP maps can be calculated by arrival-time-sensitive (TSP) and arrival-time-insensitive (TIP) algorithms. This study compared performances of TSP and TIP and investigated optimal parameters of TIP for the prediction of final-infarct-volume (FIV) and penumbra.

Methods and Materials: Retrospective study including 54 patients receiving Stroke-CT/CTP-imaging between 2010-2018 with follow-up-imaging as reference standard. CT scans were conducted at 4 different CT-scanners. FIV was obtained using CT and MRA. Patients were stratified as a) not-treated (mTICI 0, n= 25) and b) successful ST (mTICI 2b/3, n: 29). IntelliSpace Portal (Philips, NL) was used to calculate CTP-maps for both TSP and TIP. (default settings) and TIP (full-range of threshold settings for CTP parameters) results were coregistered in 3D with FIV using IntelliSpace Discovery (Philips, NL), and voxel-wise overlap was measured.

Results: Baseline characteristics; NIHSS=15.34 (SD±6.8), 67.02 years (SD±13.11), 37/17 m/f, average follow-up-imaging after 2.63 days (SD±2.67). Regarding TIP, penumbra (group A) was best predicted using Tmax (AUC 0.9), FIV (group B), was determined best using relative CBF (AUC 0.8). TIP’s prediction of penumbra and FIV was comparable to previous literature. There was a broad range of thresholds of optimal TIP-settings in both groups.

Conclusion: Both algorithms showed a comparable performance, with TIP yielding a slightly better, but statistically non-significant prediction of FIV. TIP showed a broad range of optimal thresholds. Thus, exact thresholds regarding TIP should be evaluated in further studies.

Author Disclosures:
F. Thiele: Employee; Philips, NL. M. Perkuhn: Employee; Philips, NL. J. Borggrefe: Speaker; Philips, NL.
B-0714 15:12
Pattern of leptomeningeal collateral circulation on perfusion computed tomography in patients with acute ischaemic stroke
A. Sinha1, L.B. George2, J.D. Pandian3, 1Delhi/IN, 2Ludhiana/IN, (appyasinh05@gmail.com)

Purpose: To correlate grade of leptomeningeal collateral circulation with clinical outcome in patients with acute ischaemic stroke.

Methods and Materials: Leptomeningeal collateral (LMC) scores were defined for 71 patients presenting within 24 hours of stroke onset on perfusion CT brain images: 0-absence; 1-at least 2 vessels; 2-3 more prominent; as compared with contralateral hemisphere. A score of 0/1 and 2/3 were distributed in poor and good collateral groups respectively. LMC scores were correlated with clinical outcome as early neurological recovery (drop of >4 NIHSS score points at 24 hours) and Modified Rankin score at 3 months (favourable <=2). A p value of <0.05 was taken as significant.

Results: 64.7% and 35.3% had good and poor collateral status. No significant difference in early neurological recovery by NIHSS scoring was noted in the two collateral groups; 39.4% and 36% in good and poor collateral group; p value 0.63. A favourable MRS of <=2 was higher in good (59.01%) than poor collateral group (44%), with p value 0.03. More number of patients had favourable MRS with good (59%) than with poor collaterals (44%). NIHSS score was significantly lower for thrombolysed patients (p value <0.005). However, there was no difference in clinical outcome in two collateral groups. (p value 0.92).

Conclusion: Early neurological recovery and long term recovery outcome was favourable in patients with good collaterals, however results were not statistically significant. This was not the case for long term outcome. A MRS score resulted in significantly lower NIHSS score, results were not significant between the two collateral groups.

B-0715 15:20
Ultra-low-dose cerebral CT perfusion for the diagnosis of acute ischaemic stroke using iterative model reconstruction combined with optimised temporal resolution
X. Fang1, R. Wang2, Y. Liu1, C. Yuan1, X. Chen2, Z. Wang1, 1Nanjing/CN, 2Shanghai/CN (fmrifangxk@163.com)

Purpose: To evaluate the diagnosis performance of ultra-low-dose cerebral CT perfusion (CTP) in patient with acute ischaemic stroke using iterative model reconstruction (IMR) combined with low tube voltage.

Methods and Materials: 80 consecutive patients with suspected ischaemia stroke were enrolled in this study and randomly divided into two groups (n=40 each); Regular dose GroupA, 80kVp, 100mA, 45 passes were performed with 2 varied intervals (1 second interval for the first 30 passes and 2 seconds for the following 15 passes), reconstructed with iDose(level-3); Ultra-low dose GroupB, 80kVp, 50mA, 18 passes were performed with 3 varied intervals (2 seconds for the first 3 passes, 1.7 seconds for the next 13 passes and 7.5 seconds for the left 2 passes), reconstructed with IMR(level-1). Perfusion maps of CBF, CBV, and MMTT were created for both groups and values were quantitively compared by using independent t-test. Perfusion maps were qualitatively rated on a 5-point scale (5-excellent, 1-not diagnostic) for both groups and compared by using Mann-Whitney test. Mean CTDIvol and DLP were recorded and compared. Mean effective dose (ED) was estimated and compared.

Results: For the overall image quality, no significant quantitative or qualitative differences were found between two groups (all P>0.05). Differences in mean CTDIvol, DLP, and ED between two groups were statistically significant (all P<0.01). There was an 81% ED reduction of Group B (0.66mSv) in comparison to Group A (3.93mSv).

Conclusion: Ultra-low-dose cerebral CTP can be achieved using IMR in combination with optimized temporal resolution while preserving image quality.
B-0716 14:00

Decrease in unnecessary biopsy recommendations by the application of quantitative multiparametric breast ultrasound: a prospective study

P. Kapetas, P. Clausier, R.A. Woltke, G.J. Wengert, M. Lazar, K. Pinker-Domenig, M. Bernathova, T.H. Helbich, P.A.T. Baltzer; Vienna/AT (panagiotis.kapetas@meduniewien.ac.at)

Purpose: To evaluate quantitative breast multiparametric ultrasound (mpUS) using B-mode, elastography (Virtual Touch IQ-VTIQ), Doppler and contrast-enhanced US (CEUS) in different combinations of 2, 3 or 4 parameters for the differentiation of benign and malignant lesions and investigate a possible variation according to the reader experience level.

Methods and Materials: 124 patients, each with one biopsy-proven breast lesion were included in this prospective, IRB-approved study. Each lesion was examined with B-mode, VTIQ, Doppler and CEUS. Different quantitative parameters were recorded for 4 readers (2 experienced breast radiologists and 2 residents) independently evaluated B-mode images of each lesion and assigned a BI-RADS score to it. Using ROC curve analysis, the quantitative parameter with the best diagnostic performance for each modality was chosen. The BI-RADS scores of all readers were then combined with the results of the quantitative parameters. Diagnostic performance of mpUS was evaluated with descriptive statistics. Histology was the reference standard.

Results: 65 lesions were malignant. MpUS with three parameters (B-mode, VTIQ and CEUS or Doppler) showed the highest diagnostic performance irrespective of the reader experience level (averaged AUC 0.812 vs. 0.789 vs. 0.683 for B-mode, p-value=0.0001). All other combinations showed a lower AUC. MpUS with three parameters was able to significantly reduce the number of false-positive biopsy recommendations up to 47% (p<0.0001).

Conclusion: Quantitative breast mpUS with 3 parameters (B-mode, VTIQ elastography and CEUS or Doppler) significantly improves the diagnostic performance of B-mode, irrespective of the reader experience level and can obviate unnecessary biopsies.

B-0717 14:08

Diagnostic performance of fifth BI-RADS edition ultrasound lexicon for prediction of malignancy in breast masses with histopathological corroboration

K. Gupta, T. Chandra1, B. Venkatesan2; 1Chennai/IN, 2Orlando, FL/US; 3Pondicherry/IN (hikanika@gmail.com)

Purpose: The fifth edition of Breast Imaging Reporting and Data System (BI-RADS) was released in 2013 with several changes in the descriptors for breast ultrasound. The purpose of this study was to compare the diagnostic performances of fifth BI-RADS edition ultrasound lexicon for prediction of malignancy in breast masses, in comparison with fourth BI-RADS edition.

Methods and Materials: Using a prospective study design, 256 solid breast masses were assessed by ultrasound, out of which 174 underwent core biopsy and 160 masses had definitive histopathological results. The ability of individual descriptor of ultrasound in fourth and fifth BI-RADS editions to differentiate between a benign and malignant lesion in the breast was assessed using statistical analysis.

Results: The descriptor ‘intraductal calcifications’ was very useful for prediction of malignancy and had the highest sensitivity (97%) among all ultrasound descriptors of fifth BI-RADS edition. The presence of spiculated and indistinct margins were predictive of malignancy- 94.4% of masses with spiculated margins and 100% masses with indistinct margins were found malignant. ‘In rim vascularity’ and ‘Internal vascularity’ were found useful in differentiating benign from malignant lesions. ‘Internal vascularity’ depicted a high PPV of 86% in predicting malignancy in a breast mass.

Conclusion: Some new descriptors used in fifth edition of BI-RADS, such as intraductal calcifications and internal vascularity, in addition to established descriptors of spiculated/indistinct margins and anti-parallel orientation of the mass result in improved diagnostic performance of ultrasound lexicon in predicting malignancy in breast masses.

B-0718 14:16

Does establishing preoperative nomogram including ultrasonographic findings help predict the likelihood of malignancy in patients with microcalcifications?

H. Wang, J. Li, J. L. U, R. Gu, F. Liu, Y. Hu, X. Jiang, J. Mei, F. Su; Guangzhou/CN (whongli@163.com)

Purpose: To investigate whether establishing preoperative nomogram including ultrasonographic findings helps predict the likelihood of malignancy in patients with microcalcifications.

Methods and Materials: Between May 2012 and January 2017, 475 patients with suspicious microcalcifications detected on mammography (MG) underwent ultrasound (US). The Y-test was used to screen risk factors amongst the variables. Then, a multivariate logistic regression analysis was performed to identify independent predictors of malignant microcalcifications. A mammographic nomogram (M nomogram) and mammographic-ultrasonographic nomogram (M-U nomogram) were established based on multivariate logistic regression models. The discriminatory ability and clinical utility of both nomograms were compared by the receiver operating characteristic curve decision analysis. The calibration ability was evaluated using a calibration curve.

Results: Among the cases, 68.2% (324/475) were pathologically diagnosed as breast cancer and 31.8% (151/475) were benign lesions. Based on multivariate logistic regression analysis, age, clinical manifestation, morphology and distribution of microcalcifications on MG and lesions associated with microcalcifications on US were confirmed as independent predictors of malignant microcalcifications. In terms of discrimination ability, the C-index of M-U nomogram was significantly higher than that of M nomogram (0.917 vs. 0.897, p=0.006). The bias-corrected curve was close to the ideal line in the calibration curve. Decision curve analysis suggested M-U nomogram were superior to M nomogram.

Conclusion: Combining mammographic parameters with ultrasonographic findings into a nomogram performed better than M nomogram alone, which highlighted the value of ultrasonographic findings for individualized risk prediction in patients with microcalcifications.

B-0719 14:24

How should we manage breast ultrasound masses that do not enhance on MRI?

D. Avendano1, E.J. Sutton2, E.A. Morris3, M.A. Marino4, P. Gibbs5, D. Martinez6; 1New York, NY/US, 2Messina/IT (dillahnh1@gmail.com)

Purpose: Assess incidence of malignant breast masses on ultrasound where magnetic resonance imaging (MRI) correlate does not enhance in women with a new diagnosis of breast cancer.

Methods and Materials: IRBA this HIPAA-compliant retrospective study and waived informed consent. Consecutive women identified between June 2017 and March 2018 who a) have new diagnosis of breast cancer b) underwent US where an additional mass (distinct from index cancer) was identified and categorized as either BI-RADS 3/4, and c) underwent bilateral breast MRI where the US correlate didn’t enhance. A benign mass was pathologically proven or defined as showing 2-year imaging stability. A malignant mass was pathologically proven. Sensitivity, Specificity and predictive values were calculated on a per-lesion level by using proportions. Descriptive statistics were also assessed.

Results: 230 women (mean age 52) with 309 additional lesions (mean size 9 mm) were identified. Of the 309 breast masses, 140 in 105 women (mean age 54) did not enhance on MRI. The mean size of these masses on US was 16 mm (range 3-74 mm). In 89/140 cases (64%) the patient underwent biopsy and in 51/140 (36%) had 2-year follow-up. None of the 140 masses were malignant, with a NPV of 100%.

Conclusion: All breast masses at US that did not enhance on MRI were benign. The results suggest that biopsy or follow-up is not required.

Author Disclosures:

D. Avendano: Grant Recipient; BCRF Breast Cancer Research Foundation.

B-0720 14:32

Contrast-enhanced ultrasound in breast cancer and its role in predicting immunohistochemical subtype: a novel prognostic approach

S.B. Grover1, H. Grover1, P. Jain1, A.K. Nair1, A. Katsan1, N. Antil1, S.K. Jain1, A.K. Mandal1; 1New Delhi/IN, 2Bridgeport, CT/US (shabanamgrover@yahoo.com)

Purpose: Breast cancer prognostication is based on biopsy evaluated receptor subtyping. This study in breast cancer patients aimed to correlate contrast enhanced ultrasound (CEUS) parameters with immunohistochemical (IHC) markers, as a non-invasive alternative for prognosis prediction.

Methods and Materials: Fifty consenting female patients with newly diagnosed, biopsy proven breast cancer were included in this prospective institutional review board approved study. CEUS was performed using a 4-9 MHz transducer and both qualitative and quantitative CEUS parameters were evaluated.
recorded. Qualitative parameters included enhancement order, type and margins, and presence of perfusion defects. Quantitative parameters documented were time to peak, mean transit time, peak intensity and area under time intensity curve (AUTIC). IHC parameters including oestrogen receptor (ER), progesterone receptor (PR) and HER2 status were assessed on histopathology. Diagnostic test, Independent t test and receiving operating characteristics (ROC) were used for statistical analyses. p value < 0.05 was considered as statistically significant.

Results: Presence of perfusion defects was significantly associated with negative ER and PR status, p<0.05. A higher AUTIC was the only quantitative parameter significantly related to ER and PR negativity, p=0.05, with a ROC cut-off of 556 predicting ER/PR negativity with a sensitivity and specificity of 84.21% and 51.51% respectively. None of the qualitative or quantitative parameters showed association with HER2 status.

Conclusion: CEUS has repressed the use of conventional sonography, providing additional tumour characterisation, even at the molecular level. Significant CEUS parametric and ER/PR status association can provide accurate non-invasive prognostic information and in future could guide treatment protocol decisions.

B-0721 14:40

Preliminary study of real-time three-dimensional contrast-enhanced ultrasound of sentinel lymph nodes in breast cancer

M. Lu; ChengduCN (grace@163.com)

Purpose: To investigate the clinical value of real-time three-dimensional contrast-enhanced ultrasound (3D-CEUS) in the detection of sentinel lymph nodes (SLNs) and lymphatic drainage in breast cancer patients.

Methods and Materials: The prospective study was performed in 187 women with pathologically confirmed T1/2 breast cancer between June 2016 and December 2017. 146 in 187 patients were randomly divided into two groups: 73 patients received two-dimensional contrast-enhanced ultrasound (2D-CEUS, 2D-CEUS group), the other 73 patients immediately received three-dimensional CEUS (3D-CEUS, 3D-CEUS group). The number, size, location, enhancement pattern of SLNs and the lymphatic drainage patterns were reviewed; the routes, location of SLNs and lymph channels (LCs) on the surface were marked. All patients underwent blue dye-guided sentinel lymph node biopsy (SNLB) finally.

Results: According to the postoperative pathology findings and the blue stained lymphatic drainage routes, the coincidence rates of the 2D-CEUS group and the 3D-CEUS group were 97.3% and 98.6%, respectively (p>0.05); the LN detection rates were 90.4% and 95.6% (p=0.05); the correct diagnosis rates were 88% and 90.8% (p=0.05); the times of operation was 15.42±1.10 and 13.49±0.94 min (p=0.05).

Conclusion: Compared to the 2D-CEUS, the 3D-CEUS can show the stereo direction of SLNs and lymph drainage routes including the angle, help the clinicians recognize the spatial location and depth of SLNs and reduce the time of finding the SLNs during operation.

B-0722 14:48

Role of ultrasound in the SOUND trial: can we move away from sentinel node biopsy?

F. Pesapane, M. Grimaldi, A. Rotili, D. Lepanto, E. Cassano; Milan/IT (filippopesapane@gmail.com)

Purpose: Our purpose is to evaluate the negative predictive value (NPV) of axillary ultrasound (AUS) in early breast cancer (BC) patients to propose this non-invasive examination as a credible substitute of sentinel lymph node biopsy (SLNB) in the axillary lymph node (ALN) staging.

Methods and Materials: We conducted preoperative AUS in 685 consecutive patients enrolled in the SOUND trial, in our institution, evaluating the frequently used signs of suspicious ALN on AUS. NPV of AUS was calculated first considering all false negatives, including micrometastases and isolated tumoural cells (ITC), and then considering macrometastases alone. We used 3 mm as a threshold to assess US-detectable metastases.

Results: Preoperative AUS resulted in 4.8% of false positives and 15.5% of false negatives, which is reduced to 8.1% excluding ITC and micrometastases and to 4.9% considering only metastases >3 mm, which are the only lesions that AUS can reliably detect. The NPV was estimated 92% (90-94%, 95% CI) including all cases of positivity to histopathological examination. Excluding ITC and micrometastases, the NPV was 95% (94-97%, 95% CI). Finally, including metastases that can be detected by AUS (namely metastases >3 mm) alone, the NPV was 97% (95-98%, 95% CI). Specificity of AUS in our population was 95% (93-97%, 95% CI).

Conclusion: Our results show that in early BC patients, the AUS may represent an effective, non-invasive diagnostic tool for axillary staging, and due to its high NPV, it allows to select women who can benefit from observation only as a treatment approach, replacing the SLNB.

B-0723 14:56

Predictive factors on ultrasound for the early tumour recurrence of breast cancer after breast-conserving treatment

S.G. You; Y.Y. An; Suwon/KR (agream88@gmail.com)

Purpose: To evaluate the clinicopathologic and imaging factors associated with early tumour recurrence in breast cancer patients who underwent breast-conserving treatment.

Methods and Materials: We retrospectively reviewed the clinicopathologic data and imaging features (MG, US, and DCE-MRI) of 529 breast cancer patients who underwent breast-conserving surgery and adjuvant therapy at our hospital between January 2009 and December 2014. A total of 36 patients recurred within 3 years after surgery (early tumour recurrence). Risk factors associated with the early tumour recurrence were analysed by univariate and multivariate logistic regression analyses.

Results: In univariate analysis, large tumour size (p=0.004), advanced stage (p=0.025), high histologic grade (p=0.002), high nuclear grade (p=0.001), presence of lymphovascular invasion (p=0.044), high Ki-67 proliferation index (p=0.023), HER2-enriched and triple-negative subtypes (p=0.005), ER positive (p<0.0001), and PR positive (p=0.021) were associated with early tumour recurrence. Among imaging characteristics, multifocality (p<0.0001) on US and presence of vessels in the rim on colour Doppler exam (p=0.017) were significantly related to early recurrence. Multivariate logistic regression analysis showed that the multifocality (odds ratio=3.2, 95% CI 0.547-3.803, p=0.003) on US and the vessels in the rim on colour Doppler exam (odds ratio=3.1, 95% CI 1.314-7.352, p=0.0098) were independently associated with early tumour recurrence.

Conclusion: The multifocality on US and vessels in the rim on colour Doppler exam are independent factors for predicting the early tumour recurrence of breast cancer after treatment.

B-0724 15:04

The value of automated breast ultrasound (ABUS) coronal view

S. Schiaffino, A. Tagliafico, L. Cristina, E. Massone, S. De Giorgis, A. Garlaschi, M. Calabrese; Genoa/IT (schiaffino.simone@gmail.com)

Purpose: To evaluate the value of automated breast ultrasound (ABUS) in women with dense breast, focusing on the potential assessment of corimonal images alone, compared to the complete multiplanar (MPR) views.

Methods and Materials: From August 2017 to October 2017, consecutive patients with dense breast that referred to our institute for post-mammography ultrasound assessment, pre-operative assessment or follow-up of known benign lesions were invited to perform an additional study with ABUS. Three radiologists, with different levels of experience in breast radiology (5, 15 and 25 years), reviewed the exams twice: the first with the assessment of reconstructed coronal plane alone and the second with complete MPR views. Reporting times, diagnostic performance and interobserver agreement were assessed.

Results: 188 women were included in the study, for a total of 67 breast lesions, 25 (37%) malignant and 42 (63%) benign lesions. Compared to MPR, coronal view was associated with lower reading times, respectively, for the three radiologists: 83±37, 44±3 and 76±30 versus 162±109, 131±57, 151±42 seconds (p<0.003); lower sensitivity: 44.8%, 62.1%, 55.2% vs. 69.0% (p=0.093), 65.5% (p=0.063), 72.4% (p=0.076), respectively; better specificity: 94.1%, 93.7%, 94.2% vs 89.5% (p=0.093), 87.4% (p=0.002), 91.6% (p=0.383), respectively. Agreement between the most and the least experienced rater was fair for categorical variables and significant for continuous.

Conclusion: The coronal view allows significantly lower reading times, a valuable feature in the screening setting. The assessment of this plane alone could be considered as “fly through” first assessment, completed with targeted analysis in all the available views.

Author Disclosures:

B-0725 15:12

Diagnostic performance of automated breast ultrasound (ABUS) compared to handheld ultrasound (HHUS) in terms of detection rate of local recurrences after breast-conserving surgery

C. Di Greggio, A. Primolevo, F. Cartia, C. Ferrari, G. Scaperrotta; Milan/IT (cathie.ep@gmail.com)

Purpose: To assess the non-inferiority of automated breast ultrasound (ABUS) compared to handheld ultrasound (HHUS) in terms of detection rate of local recurrences after breast-conserving surgery (BCS).

Methods and Materials: In our study, between April and June 2016, we invited 154 consecutive patients with dense breasts (ACR C or D) coming for scheduled imaging after BCS to undergo ABUS. Mean age was 62 years (range 34-90) and BCS had been performed on average 8 years prior (range 5-31). ABUS images were analysed by two independent radiologists blinded to conventional imaging.
Results: There was interreader agreement between ABUS and HHUS in terms of BI-RADS assessment in 134/154 cases (87%). In this subset, 68 exams were negative (BI-RADS 1), 64 showed benign findings (BI-RADS 2) and 4 cases were suspicious (BI-RADS ≥ 4), subsequently confirmed histologically as malignant. ABUS detection rate for recurrences was equal to HHUS. All the 20 cases of readers’ disagreement were small benign findings, not detected by ABUS. 2 further cases were parenchymal distortions detected only by HHUS (one of which resulted negative at biopsy and the other remained unchanged at follow-up after 6 months).

Conclusion: ABUS detected all cancers found by HHUS, which suggests its non-inferiority to HHUS in terms of detection rate.

B-0726 15:20
Targeted ultrasound as first-line examination in women with focal breast complaints
L. Appelman1, P. Appelman2, P. Bulf3, R. Mann4,1; Nijmegen/NL, Tienhoven/NL

Purpose: To determine the relative contribution of ultrasound and mammography for tumour detection in women with focal breast complaints.

Methods and Materials: We performed a retrospective evaluation of women who visited our radiology department in 2016. All 482 consecutive women undergoing targeted ultrasound for new focal breast complaints were included. Patients undergoing ultrasound for other reasons were excluded. The radiological assessment for mammography and ultrasound was obtained from the reports generated at the time of diagnosis. Ground truth was obtained from histopathological reports when available, or one year of negative follow-up when no biopsy was performed. We compared cancer yield and frequency of false-positive findings between mammography and ultrasound using chi-square and McNemar tests.

Results: Based on the targeted ultrasound assessment, 72 biopsies (15%) were performed, of which 47 yielded breast cancer. Forty-five of these cancers were also visible on the concurrent mammogram (p=0.47). Mammography led to the detection of only 1 additional breast cancer in women without cancer at the symptomatic site. In addition, mammography prompted 22 biopsies for additional benign findings. Sensitivity of targeted ultrasound was, therefore, 98% with NPV 99.7%, and for mammography 96% and 99.5% (p<1.0). Mammography also prompted 10 additional biopsies in women with cancer at the symptomatic site, of which 9 proved to be malignant.

Conclusion: For initial cancer detection in women with focal breast complaints the interpretation of targeted ultrasound alone by breast radiologists is highly sensitive. In women with cancer at the focal complaint mammography appears useful for staging purposes.

Emergency Imaging

SS 717
Chest emergencies

Moderators:
M. Brink; Nijmegen/NL
J.B. Dormagen; Oslo/NO

K-17 14:00
Keynote lecture
M. Rémy-Jardin; Lille/FR

B-0727 14:09
Patient lung volume is significantly related to contrast media volume during CT pulmonary angiography when employing a patient-specific contrast protocol
C. Saade, F. El-Merhi; Beirut/LB (charbel.saade@aub.edu.lb)

Purpose: To investigate the effect of patient lung volume and contrast volume on pulmonary artery opacification using a patient-specific contrast formula during pulmonary CTA.

Methods and Materials: IRB approved this retrospective study. CTA of the pulmonary arteries was performed on 200 patients with suspected PE using a 256-channel CT and a dual-barrel contrast injector. The contrast media volume was calculated by employing a patient-specific contrast formula. Both contrast media and saline were injected at a flow rate of 4.5 mL/s. The mean cross-sectional opacification profile of eight central and eleven peripheral pulmonary arteries and veins were measured for each patient and arteriovenous contrast ratio (AVCR) calculated for each lung segment. The mean body mass index (BMI) and lung volume were quantified. Receiver operating (ROC) and visual grading characteristics (VGC) measured the confidence intervals and image quality, respectively. Inter- and intra-observer variations were investigated employing Cohen’s kappa methodology.

Results: The mean pulmonary arterial opacification of the main pulmonary circulation was 343.88±73HU, right lung: upper (316.51±23HU), middle (324.33±12HU) and lower (320.23±11HU) lobes were upper (318.75±33HU) and lower (331.91±12HU) lobes. The mean venous opacification of all pulmonary veins was below 182±72HU. Subsequently, the AVCR was observed at all anatomic locations (p<0.0002) where this ratio was calculated. Mean contrast volume of 33±9 mL. Larger lung volumes were significantly correlated to larger volumes of contrast (r=0.89, p<0.05). Inter-observer variation was observed as excellent (k = 0.71).

Conclusion: Increased lung volume is significantly correlated with increased contrast media volume and radiation dose when employing a patient-specific contrast formula.

B-0728 14:17
Age-adjusted D-dimer and risk-stratification in acute pulmonary embolism for reduce the unnecessary CT imaging
A. Pandur, D. Sipos, B. Banfai, J. Betlehem, B. Radnai; Pécs/HU (attila.pandur@etk.tpe.hu)

Purpose: Pulmonary embolism is connected with high morbidity and mortality. Prognostic assessment is important for the management of patients with pulmonary embolism. To assess the percentage of CTPA which could have been avoided by use of risk-stratification scores with age-adjusted D-dimer testing in patients with suspected PE.

Methods and Materials: We conducted a retrospective study of ED patients undergoing CT for suspected PE. In our study we analyzed 659 patient- demographic records. Every patient was admitted to the ED and sent for pulmonary CTA. We calculated Wells-score and followed the European Guideline for PE.

Results: Our study included 659 patients (407 women, 252 men), admitted to three ED. In the 659 cases all over 105 D-dimer assays, 51 CT angiograms and 212 chest X-ray examinations were carried out rudely, which could have mean saved money to the hospitals and less radiation to patients. The age adjusted D-dimer threshold was more specific (70 % versus 60 %) but less sensitive (95% versus 98 %). The sensitivity of the combination (risk-stratification and age adjusted D-dimer test) was 100 %.

Conclusion: An age adjusted D-dimer limit has the potential to reduce diagnostic imaging. This is more accurate than a standard threshold of 500 ng/dl. The combination of the risk stratification and the age adjusted D-dimer we can safely diagnose the pulmonary embolism. Finally we can conclude that risk-evaluation in acute PE is indispensable and the appropriate use of guidelines results in lower costs.

B-0729 14:25
Real-time patient specific scan delay in CTA of pulmonary embolism: impact on image quality
F.R. Schwartz1, J.C. Ramirez Giraldo2, R. Gutjahr3, D. Marin1, D. Boll1, L. Hurwitz1,2; Durham, NC/US, 3Rochester, MN/US, 4Nürnberg/DE, 5Basle/CH (fidesreginadorotheaann.schwartz@duke.edu)

Purpose: To assess whether real-time modulation of scan initiation based on patient specific haemodynamics improves contrast enhancement in the pulmonary arteries when using fluoroscopic triggering in pulmonary embolism (PE) computed tomographic angiography (CTA) compared to fixed delay time.

Methods and Materials: HIPAA-compliant, IRB-approved QI project. Exams were performed on a 3rd generation dual-source MDCT scanner. Contrast administration was monitored in the main pulmonary artery (MPA). The delay prior to initiation of the diagnostic scan was adjusted by a real-time patient specific modulation (RTPSM) software, incorporating time to threshold and the slope of the enhancement curve. 150 patients (cohort 1) were scanned using RTPSM triggering of scan delay in pulmonary embolism CTAs. A BMI and age matched reference cohort of 150 patients (cohort 2) was identified with exams on the same scanner in the preceding 18 months, using a fixed diagnostic delay (FD). Patient demographics and HU values in the MPA, the bilateral posterior lobe segmental and sub-segmental arteries (750 segments per cohort) were collected. Descriptive statistics and student’s-t tests were applied.

Results: Percentage of females (58.7 vs 61.3%) was similar between cohorts. The average scan delay was statistically significantly longer (9.8 ± 2.4 vs 5 sec; p<0.01) using RTPSM. Average HU values were significantly higher in the RTPSM cohort (409.1 ± 22.2 vs 367.7 ± 20.8 HU; p<0.01) and the number of non-diagnostic segments was significantly reduced in segmental and sub-segmental arteries (-3.6%; p<0.05).

Conclusion: RTPSM results in higher HU values and fewer non-diagnostic segments in the pulmonary arteries.

Author Disclosures: F.R. Schwartz: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology. J.C. Ramirez Giraldo: Employee; Siemens Healthineers, Forchheim, Germany. R. Gutjahr: Employee; Siemens Healthineers, Forchheim, Germany. L. Hurwitz: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology.
B-0730 14:33
Contribution of CT lung perfusion in diagnosis of acute pulmonary embolism
A. Orzanayan, E. Menshina, V.E. Sinitsyn; Moscow/RU (talienn@mail.ru)

Purpose: To study the contribution of CTA iodine maps (IMPS) to the diagnosis of acute pulmonary thromboembolism (PE) and compare the pulmonary perfusion defects severity with other signs and biomarkers of PE.

Methods and Materials: 42 patients (f/m - 19/23; age 65 ±10) with suspected PE were performed pulmonary CTA. Single-tube dual-energy scan (DECT) and wide-detector scanner were used. Pulmonary IMPS were reconstructed using DECT (n=29) and lung subtraction (n=13) options. For CTA analysis the number and level of vessel occlusions were marked. Presence of lung perfusion defects on IMPS, signs of right heart failure were studied.

Results: CTA signs of PE were found in 42 patients. Defects of lung perfusion on IMPS were present in 83% cases. 6 patients had PE without perfusion defect and signs of right heart overload. The area of lung perfusion defects in IMPS correlated with the Quanadly index (r=0.8, p<0.05) and it had a weak correlation with severity of right heart failure (r=0.3, P<0.05). In 3 patients with segmental and subsegmental PE it was found due to the presence of a defect on IMPS and retrospective analysis of CTA.

Conclusion: Addition of IMPS to pulmonary CTA contributes to the improvement of acute PE diagnosis and assessment of its severity. The prognostic value of this biomarker needs to be further studied.

B-0731 14:41
Virtual non contrast imaging of aortic intramural hematoma for replacing traditional CTA
S.A. Si-Maghameh1, D.P. Lasmanis2, D.C. Rotzinger2, S. Boccalini2, Y. Yagil2, P. Coulon2, N. Shapira2, P. Douek1, L. Boussell1; 1Bron/Fr, 2Lausanne/CH, 3Genoa/IT, 4Halla/IL, 5Paris/FR (sara.boccalini@yahoo.com)

Purpose: The purpose was to assess in vitro and in vivo whether Virtual Non-Contrast (VNC) images could replace true non-contrast images (TNC) for intramural hematoma (IMH) diagnostic.

Methods and Materials: A phantom of IMH was placed in a semi-anthropomorphic phantom (QRM GmbH, Germany) and imaging on the DLCT (iOnCt, Philips, Israel) at different CT IDV ol, using TNCs 0.3 and an extension ring. Attenuation, iodine density, image noise, contrast-to-noise ratio (CNR) between the hematoma and lumen were measured. 22 patients with IMH were included. CNR values were compared using t-test. Diagnostic confidence on a 4-point Likert scale was done by two radiologists using a Kruskal-Wallis rank sum, then with inter-agreement analysis using Cohen kappa test.

Results: CNR were not significantly different for both phantom sizes (p = 0.78 and 0.65). CNR between blood and hematoma were not lower in VNC compared to TNC images (∆CNR 95% CI = -0.81; 0.85). For both images, higher CT IDV ol, ∆Dose 3 and smaller phantom were associated with better CNR. In vivo, CNR were found to be significantly different with a higher value for VNC images (∆CNR_{∆D} = 0.89 ± 0.73 and ∆CNR_{∆D} = 1.04 ± 0.83, p = 0.04).

Conclusion: DLCT offers similar performances with virtual non-contrast images for IMH diagnosis without any compromise in radiation dose or diagnostic image quality.

Author Disclosures: Y. Yagil: Employee; Philips Healthcare. P. Coulon: Employee; Philips Healthcare. N. Shapira: Employee; Philips Healthcare.

B-0732 14:49
Contrast-enhanced US (CEUS) of lung abscess: how it can help
C.L. Piccolo3, C. Andreoli1, B. Sessa2, V. Miele2, S. Ianniello2; 1Rome/IT, 2Chieti/IT (marialuisa.decicco@tiscalì.it)

Purpose: The aim of this prospective study is to evaluate the diagnostic accuracy of lung ultrasound in the diagnosis pneumothorax in polytrauma patients in Emergency room, to try to avoid chest X-ray. All patients underwent multislice computed tomography (MS-CT) exam that represented the gold standard.

Methods and Materials: From January 2017 to September 2018, 46 polytraumatized patients (mean age 41 y, range 18-70 y, 31 males, 15 females) with haemodynamically stable severe trauma (AP > 90 mmHg, injury severity score >15) underwent lung ultrasound. All the exams were performed with portable ultrasound machine in all three emergency rooms, with patients lying on the spinal board. Then all patients underwent a MS-CT immediately after lung ultrasound. No chest X-rays were performed.

Results: Among the enrolled patients (46 patients; 92 hemithorax compared), 11/12 pneumothoraces were found with lung ultrasound, while 12/12 were reported with MS-CT; the single false-negative exam reported with lung ultrasound consisted of a pneumothorax with a thickness <5 mm in anterior inferior para- mediastinal left region. Lung ultrasound did not report any false positive (PPV 100%, specificity 100%, sensitivity 91.5%, NPV 98.7%). Diagnostic accuracy was 98.9%.

Conclusion: Our data regarding accuracy of pneumothorax ultrasonographic diagnosis in severe polytrauma patients (within five minutes from arrival) highlighted its important role in the early identification of a potentially lethal pathology, which needs to be diagnosed as soon as possible. Instead of chest X-ray, lung ultrasound represents a promising scenario that could reduce radiation exposure in polytraumatized patients.

B-0734 15:05
Accuracy of a new system score based on lung ultrasound and clinical data in the decision of a drainage tube necessity in polytrauma patients pneumothorax
M.L. De Cicco1, C. Andreoli1, B. Sessa2, V. Miele2, S. Ianniello2; 1Rome/IT, 2Chieti/IT (marialuisa.decicco@tiscalì.it)

Purpose: The aim of this study is to evaluate the validity of a new score system and its utility in the ER to establish the necessity to drainage the pneumothorax diagnosed by ultrasound in adults polytrauma.

Methods and Materials: This is a retrospective observational study that included patients from January 2015 to June 2018, 315 patients with pneumothorax, evaluated by lung ultrasound lung during primary survey. All ultrasound were performed in ER. It was applied a system score which included the evaluation of the lung point site (parasternal: 1; emiclavare: 2; axillary: 3), the presence of pleural effusion (>30ml); 1/0), pericardial effusion (0/1), heart dislocation (1/0), contusion areas (1/0), F/T ratio (>200ml 1/0). Cut-off established was 6.

Results: Among the enrolled patients with pneumothorax 235/315 had a score >6 and the necessity of a drainage was indicated. Of these in 208/235 the necessity was confirmed by CT , while in 27 the patients were just observed and in only two patients during the follow-up the tube was placed. Among the 25 false positives, 12 had an high BMI, 5 had a subcutaneous emphysema, in 8 there was an overvaluation by the US.

Conclusion: Our data regarding the validity of a new system score showed its utility in deciding the necessity of a draining tube in polytrauma patients. This score would allow an early diagnosis and a promptly therapeutic choice, avoiding wasting time, essential in patients with many traumatic lesions and above all with serious pneumothorax.

B-0735 15:13
Iatrogenic injuries and misplaced foreign material found in whole-body CT: a retrospective analysis in over 1000 resuscitation room patients
S. Sudarski, D. Schäfer, T. Henzler, T. Berboven, V. Gievetz, S.O. Schönberg, H. Haubenreisser; Mannheim/DE (sonja.sudarski@medma.uni-heidelberg.de)

Purpose: Whole-body computed tomography reveals beyond findings related to the suspected diagnosis often additional incidental findings. Aim of this investigation was the systematic assessment of these findings in patients admitted via the emergency room after suffering potential major trauma or life-threatening medical conditions.
Methods and Materials: 1362 consecutive patients admitted via the resuscitation area were included retroactively if they had received a whole-body computed tomography scan at admission. 197 patients were excluded because of missing data, the final cohort consisted of 1165 patients (1038 trauma and 127 internal neurological patients). Reports from the whole-body computed tomography scans were screened for iatrogenic injuries and misplaced foreign material.

Results: In 43 (3.7%) patients a total of 46 iatrogenic injuries or misplaced foreign material were reported. The most common findings were too deeply placed endotracheal tubes. Five transurethral catheters placed in the urethra were found to be blocked within the urethra.

Conclusion: Whole-body CT in our retrospective consecutive cohort of around 1000 patients admitted via the resuscitation area diagnosed iatrogenic injuries and misplaced foreign material in around 4% of the study patients.

B-0736 15:21
Incidental findings in thoracic CTS performed in trauma patients: an underestimated problem
E.J.M. Barbosa Jr., O. Osuntokun; Philadelphia, PA/US (eduardo.mortani@gmail.com)

Purpose: Whole-body CT scans are commonly performed to assess trauma patients, and often reveal incidental findings (IF) the patient may be unaware of. We assessed the prevalence, associations and adequacy of follow-up of IF.

Methods and Materials: We retrospectively identified 1,113 patients who had a chest CT to assess for traumatic injuries (6-years interval). We coded the radiology reports for IF, and queried our EMR regarding clinical history and adherence to follow-up recommendations for IF mentioned in the reports.

Results: IF are much more likely (62.2%) to be found in a Chest CT scan than acute traumatic findings (ATF, 32.4%), in patients being evaluated for potential traumatic injuries. 86.4% of patients who had IF also had another relevant diagnosis (RD). Lung nodules were the most common IF (45.7%). A multivariate logistic regression model (MLR) demonstrated accuracy of 89% to predict IF; the 3 statistically significant predictors (p<0.05) were any RD (FDR corrected), age and smoking status.

Conclusion: IF are much more common than ATF, and can be accurately predicted based on MLR utilizing only 3 clinical variables. While radiologists often recommend follow-up for IF in trauma patients, most are never effectively followed up or addressed, leading to increased risk of poor outcomes. Clinicians should be aware of the high prevalence of IF and develop systems for appropriate, evidence-based recommendations and effective management.

B-0738 14:08
Prevention of post-partum haemorrhages in patients with morbidity adherent placenta: a monocentric experience
F. Capasso, M. Coppola, M. Caruso, S. Stilo, A. Stanzione, P. Venetucci; Naples/IT (francesco.capasso1@gmail.com)

Purpose: To evaluate the performance of various interventional radiology techniques in the prevention of post-partum haemorrhages in patients with MAP.

Methods and Materials: Between January and December 2017, 16 pregnant women were referred to our institution due to metrorrhagia and MAP. Among them, 7 underwent cesarean delivery assisted by occlusion balloon catheters located in both hypogastric artery (group 1); in 6 patients an embolisation procedure was leading uterine artery before delivery was performed (group 2); finally, in 3 patients an observational approach was adopted, positioning prevention catheters in both hypogastric artery (group 3). All procedures were performed by mobile C-arm angiograph in gynaecology surgery room. Primary endpoints were haemoglobin reduction and transfusion requirement whereas the secondary ones were hysterectomy rate and hospitalization time.

Results: Haemoglobin average reduction was of 0.7 g/dl for group 1 and 0.9 g/dl for group 3. No blood transfusions were need for patients of group 2 and 3, only one patient of group 1 need transfusion of 1000 mL of blood but her haemoglobin value before delivery was 9.0 g/dl. Hysterectomy was essential in 3 patients of group 1, in 3 patient of group 2 and in 1 patient of group 3. Mean hospitalization time was 7 days.

Conclusion: No significant differences were found in both primary and secondary endpoints when comparing the three groups, although our experience might suggest not to adopt an observational approach.

B-0739 14:16
Partial splenic artery embolisation using ethylene vinyl alcohol copolymer in patients with portosplenomesenteric thromboses and portal hypertension
W. Ullier1, W.A. Wohlgemuth2, H. Goessmann2, R. Müller-Wille3, G. Kirchner3; 1Regensburg/DE, 2Halle/DE (wibke.ullier@ukr.de)

Purpose: Partial splenic artery embolization (PSE) may be a therapy option in patients with symptomatic portal hypertension not eligible for TIPS. The purpose of this study was to evaluate the permanent liquid embolic agent ethylene vinyl alcohol copolymer (EVOH) for treatment of varices and thrombocytopenia in patients with chronic portomesenteric thrombosis and portal hypertension.

Methods and Materials: Data of 11 patients with portal hypertension who underwent PSE with EVOH between 2012 and 2017 were retrospectively analysed. 40%-70% of splenic infarction was induced by EVOH. Thrombocyte, leukocyte counts and haemoglobin were measured prior to and 6 months after PSE and follow-up upper gastrointestinal endoscopy was performed. P-values were calculated using the Wilcoxon matched-pairs signed rank test.

Results: Causes of portal hypertension included chronic thrombosis of the portal/mesenterial/splenic vein system (n=9) and liver cirrhosis with severe thrombocytopenia (n=2). All patients developed extensive, multiple varices (esophageal, gastric, duodenal). Eight patients suffered from additional hypersplenism. Thrombocytes, leukocytes counts and haemoglobin increased significantly 6 months after the procedure (p=0.0078, p=0.001, p=0.014, respectively). Absence of variceal bleeding and decrease of grade of varices was achieved in 10/11 patients during follow-up (24±7±17.7 months, median 18). All patients developed a mild post-embolization syndrome. Two patients experienced abscesses of the spleen.

Conclusion: PSE with EVOH is an efficient technique that decrease varices, variceal bleeding, improves sequels of hypersplenism significantly and prevents recanalization via extra- and intransplenic arterial anastomoses. The risk of splenic abscess seems to increase with embolization rates of more than 70% of the spleen parenchyma.
B-0740 14:24
Shattered spleen in blunt trauma: clinical results of trans-arterial embolisation, four years’ experiences in a single regional trauma centre

Purpose: To evaluate the benefits and risks of splenic artery embolisation (SAE) for patient with high-grade blunt spleen injury (BSI), especially “shattered spleen”.

Methods and Materials: A retrospective electronic medical record review of all patients undergoing SAE from April 2013 to March 2017 at a Korean regional trauma care centre was performed. Reviewed results included patient demographics, initial and follow-up CT scan results, angiographic findings, embolisation techniques, and clinical outcomes including splenic salvage rate and procedure-related complications.

Results: A total of 89 patients were reviewed. CT scan was used to give the American Association for the Surgery of Trauma (AAST) grade of BSI. A total of 31 patients with shattered spleen were identified with a median (SD) age of 42.0 (24.7), including 3 patients of age under 15 years. 28 (90.3%) patients were males and the major mechanism of injury was motor vehicle collision. These patients had mean (SD) Injury Severity Scores (ISS) of 27.0 (9.3); systolic blood pressure of 92.0 mmHg (18.1) and 11 patients were haemodynamically unstable. The rate of successful embolotherapy was 90.3% (n=28) and only 3 patients underwent post-embolisation splenectomy. The spleen salvage rate was 96.4% (n=27). Major complications included rebleeding in 3 embolotherapy patients; 1 splenic abscess. There was no patient with sepsis during follow-up duration (237.0±198.2 days).

Conclusion: SAE is a safe and feasible procedure in extremely high-grade BSI and effective for not only haemorrhage control but also spleen salvage.

B-0741 14:32
Preoperative transarterial embolisation using a gelatin sponge for benign prostatic hyperplasia: initial feasibility test
K.Y. Kim, M.G. Shin; Jeonju/KR

Purpose: To assess the safety and effectiveness of preoperative prostatic artery embolisation (PAE) in relation to the decrease in haemoglobin level, requirement of amount of blood transfusion, operating time, and hospital admission days after surgery.

Methods and Materials: From the database search, eight patients were identified from May 2017 to September 2018 (embolisation group). For statistical analysis, consecutive patients with large prostate volume (≥ 70 ml) were operated during the same period without preoperative PAE (non-embolisation group; n=8) were reviewed from hospital record. The outcomes of interest were technical success, complication related to embolisation, haemoglobin reduction, need of blood transfusion, operating time, and hospital admission days after surgery.

Results: PAE was technically successful in 87.5% (7/8) patients. Partial success was gained in 1 patient due to prolonged vasospasm of right prostatic artery. The mean haemoglobin reduction was lower in embolisation group compared to non-embolisation group (1.24±0.29 g/dl vs. 2.85±0.45 g/dl, respectively; p=0.001). Median hospital admission days after surgery was 6.5±0.7 days (range, 4-10 days) in embolisation group, and 9.5±1.4 days (range, 2-13 days; p=0.110) in non-embolisation group.

Conclusion: Preoperative PAE is safe and may have a preventive effect on blood loss during prostate surgery. It leads to decrease in haemoglobin without procedure-related complications.

B-0742 14:40
Gastric variceal recurrence after balloon-occluded retrograde transvenous obliteration

Purpose: Balloon-occluded retrograde transvenous obliteration (B-RTO) is an effective treatment for gastric varices (GV); however, reports on the GV recurrence were limited. Therefore, this study aimed to evaluate the recurrence factors of GV after B-RTO.

Methods and Materials: B-RTO was performed in 54 patients with GV between October 2007 and December 2017. GV recurrence was evaluated based on follow-up contrast-enhanced CT (CE-CT) and clinical course. GV recurrence was also compared according to the gastro-renal shunt patency, size of the spleen, and afferent gastric vein classification.

Results: The appropriate technique for B-RTO was successfully performed in 53 patients. Complete thrombosis of GV was achieved in 43 patients, partial thrombosis in 6, and non-thrombosis in 4. Among the 43 patients, who had complete thrombosed GV, follow-up CE-CT was performed in 34 patients during a mean observation period of 33.3 (range, 3-121) months, which revealed GV recurrence in six patients, and two of them had GV haemorrhage. Developed afferent veins on the recurrent GV were short gastric vein in four patients and left gastric veins in two. Gastro-renal shunt patency was statistically correlated with GV recurrence (p=0.05). However, the size of the spleen and afferent gastric vein classification were not correlated with GV recurrence.

Conclusion: Residual gastro-renal shunt seems to cause revascularization of the GV afferent veins, which can result in GV recurrence. Therefore, obliteration of the gastro-renal shunt and GV would support the long-term therapeutic effect of B-RTO.

B-0743 14:48
Trans-arterial embolisation of the prostate with biodegradable flutamide-loaded PLA/PLGA microspheres for benign prostate hyperplasia: a preliminary study in normal swine model
F. Nuriil, T. Acar, German1, A. Bas1, I. Caymaz2, I. Yardisik2, H. Cakiroglu2, S. Ozkani2, O. Arsl1, *New York, NY/US, 1Istanbul/TR

Purpose: To prospectively evaluate whether transarterial embolisation with biodegradable flutamide-loaded PLA/PLGA microspheres with sustained release properties in the prostate of swine can induce shrinkage in the volume of prostatic tissue. Flutamide is known as a non-steroidal antiandrogen that acts as selective, competitive and silent antagonist.

Methods and Materials: Sustained release flutamide-loaded polylactide/poly(lactic-co-glycolic acid) (PLA/PLGA) microspheres were successfully fabricated using the single emulsion (o/w) solvent evaporation method. In the experimental group, 200-700 micron-diameter flutamide-loaded microspheres were used for embolisation. 250 mg of total flutamide was used per procedure. 6 weeks later animals were euthanized for necropsy, the prostates were removed for size measurement and histopathologic examination. Paired Student’s t test was used for statistical analysis.

Results: All procedures were technically successful. The mean prostate volume after embolisation in the experimental group was significantly (P<0.001) diminished compared with the mean prostate volume for the control group. Microscopic examination showed that normal gland structure was partially replaced by fibrosis and atrophy in the residual gland tissue.

Conclusion: Embolisation of the prostatic arteries with flutamide-loaded PLA/PLGA microspheres can induce strong shrinkage of the prostate. This study shows that transarterial targeted embolisation of prostatic arteries with flutamide-loaded PLA/PLGA microspheres with sustained release properties may provide an effective alternative approach to the treatment for benign prostatic hyperplasia in humans.

B-0745 14:56
The application of hepatic artery-targeting guidewire technique combined with indirect portography to transjugular intrahepatic portosystemic shunt
S. Wang, N. Li, C. Yu; Tianjin/KR

Purpose: This study evaluated the value of combined hepatic artery-targeting guidewire technique with indirect portography to transjugular intrahepatic portosystemic shunt (TIPS) in the puncture step. Our hospital used the micro-guidewire was inserted into the hepatic arterial branch accompanying the portal venous branch through a microcatheter coaxially advanced from a 5-French catheter positioned in the coeliac or common hepatic artery. At the puncture step, the tip of the metallic cannula was aimed 1 cm posterior to the distal part of this micro-guidewire, after which the TIPS procedure was performed. Success rate, number of punctures and complications were evaluated.

Methods and Materials: We retrospectively reviewed 11 consecutive patients (5 men and 6 women, aged 46-76 years (mean 64 years)) with portal hypertension in whom the TIPS procedure was performed. As the first step in the TIPS procedure in all patients, a micro-guidewire was inserted into the hepatic arterial branch accompanying the portal venous branch through a microcatheter coaxially advanced from a 5-French catheter positioned in the coeliac or common hepatic artery. At the puncture step, the tip of the metallic cannula was aimed 1 cm posterior to the distal part of this micro-guidewire.

Results: The TIPS procedure was successfully performed in all 11 patients. The mean number of punctures until success in entering the targeted portal venous branch was 5 (range 1-14). In 3 patients (27%), the right portal venous branch was entered at the first puncture attempt. The hepatic artery was punctured once in one patient and the bile duct was punctured once in another patient. No serious procedure-induced complications occurred.

Conclusion: The TIPS procedure can be accomplished safely, precisely and relatively easily using the hepatic artery-targeting guidewire technique.

B-0746 15:04
What makes a difference between life and death in patients with NOMI? Analysis of clinical data and contrast-enhanced dynamic CT findings before angiography
R. Miyazawa, M. Kamo; Tokyo/JP

Purpose: The purpose of this study was to investigate prognostic factors of computed tomography (CT) findings and clinical data in patients with non-occlusive mesenteric ischemia (NOMI).
Methods and Materials: This was a retrospective, IRB-approved study, reviewing 21 consecutive patients diagnosed as NOMI on angiography. By chart review, patients were divided into either "survivor" group or "non-survivor" group. Clinical data such as laboratory data or time from taking CT to injecting papaverine were also obtained. Assessment on contrast-enhanced CT images was performed by consensus of two radiologists in following items: detection of mural enhancement, pneumatosis intestinals, hepatic portal venous gas, paralytic bowel dilatation, bowel wall thinning, and diameter of the vessels.

Results: 8 patients belonged to "survivor" group, 11 allocated to "non-survivor" group. Neither of CT findings showed significant difference between alive group and dead group (detect of mural enhancement: 75% and 100% (p=16), pneumatosis intestinals: 50% and 45.5% (p=1.00), hepatic portal venous gas: 37.5% and 45.5% (p=1.00) paralytic bowel dilatation: 12.5% and 63.6% (p=0.08), bowel wall thinning: 50% and 45.5% (p=1.00)). There was also no significant difference in the diameter of the vessels. Time from taking CT to angiography could expedite treatment initiation.

Conclusion: It may be difficult to estimate the prognoses of NOMI patients by preceding CT findings or laboratory data. Prompt action to angiography could save lives of the patients.

B-0747 15:12
Temporary balloon occlusion of the internal iliac arteries as a prevention of massive haemorrhage during cesarean delivery among patients with abnormal placentaion
M. Milnerowicz, J. Garcarek, M. Miś, M. Miś, A. Kacala; Wroclaw/PL (gosia.milnerowicz@gmail.com)

Purpose: To investigate the efficacy and safety of temporary balloon occlusion of the internal iliac arteries (IIAs) in the prevention of haemorrhage during cesarean delivery among patients with placenta previa and placentac accretion.

Methods and Materials: From 2013 to 2017, 16 patients diagnosed with placenta previa and coexisting placental accretion using ultrasound imaging underwent elective cesarean delivery preceded with temporary balloon occlusion of the IIAs. Depending on penetration of the placenta into the uterine wall, placental extraction with curettage or hysterecetomy was performed. Intraprooperative blood loss, amount of transfusions, haemoglobin level and procedure complications were analyzed.

Results: The mean age was 33.7 years with a mean of 2.9 previous gestations, 80.6% of them were delivered by cesarean. Abnormal placentaion was confirmed intraoperatively in all cases. All of the patients had placenta previa and all but one had coexisting placental accretion. 12 patients underwent hysterecetomy and the remaining 4 patients required only curettage. Blood loss was assessed by the surgeon in a 3-point scale (low, moderate, significant) and in 13/16 (81.2%) cases was estimated as low. The mean amount of transfused packed red blood cells was 1.1U and haemoglobin drop was 1.7g/dl in the first day postoperatively. One patient underwent nephroteryicy due to postoperative urinary stasis. There were no other procedure-related complications, neither maternal nor fetal mortality.

Conclusion: Temporary balloon occlusion of the IIAs during cesarean delivery is a safe method and appears to reduce blood loss and transfusion requirements in patients diagnosed with placenta previa and placental accretion.

B-0749 14:08
Extracranial determinants of white matter lesion volume: a machine learning-based top 10 list
S. Grosu1, S. Rospleszcz2, B.B. Ert-Wagner3, S. Blockien1, M. Milnerowicz, J. Garcarek, M. Miś, A. Kacala; Wroclaw/PL (gosia.milnerowicz@gmail.com)

Purpose: Numerous extracranial, potentially interrelated factors have an impact on the development of white matter lesions (WML). The aim of this study was to train a multifactorial composite score of extracranial parameters using machine learning algorithms to identify the variables that best predict WML volume.

Methods and Materials: 400 subjects of the KORA study cohort underwent comprehensive 3T-MRI. Cerebral WML were manually segmented on 3D-FLAIR-images. 90 extracranial parameters including measures of sociodemographics, anthropometrics, diabetes-related issues, behaviour, smoking, socioeconomic status, alcohol consumption, medical conditions as diabetes, hypertension, stroke, heart disease, depression/insomnia, physical activity, job status were collected and were used as input for the models. The EN model was evaluated based on 1000 data splits. The ten variables that were most often selected were age (N=224), controlled hypertension (N=169), HbA1c (N=145), diabetes medication (N=135), smoking habits (N=135), physical activity (N=135), BMI (N=135), job status (N=135), occupation (N=135), education (N=135). The EN model was compared to other models like LASSO, Ridge Regression and elastic Net (EN) regularization were calculated. The AUC was used to evaluate the models.

Results: The final study population consisted of 370 participants (58% male; age: 55.72 ± 9.11 years). WML were found in 236 (63.78%) participants (57% males). The EN model was evaluated based on 1000 data splits. The ten variables that were most often selected were age (N=224), controlled hypertension (N=169), HbA1c (N=148), widowed marital status (N=145), diabetes medication (N=135), smoking habits (N=135), physical activity (N=135), BMI (N=135), occupation (N=135), education (N=135).

Conclusion: In this reference population without prior cardiocerebrovascular disease, a systematic machine learning-based analysis of a wide range of extracranial parameters showed that the most powerful determinants for WML volume are age, hypertension, pre-/diabetes, widowed marital status, diabetes medication, low physical activity and moderate alcohol consumption.

B-0750 14:16
Deep learning for infant detection and localisation from head CT scans
R. Ghosh1, S. Chilamkurthy2, P. Rao3, S. Tanamala4, N. Campeau2
1Mumbai/IN, 2Rochester, MN/US (swetha.tanamala@qure.ai)

Purpose: The purpose of this study was to use a deep learning algorithm to detect and localize subacute and chronic ischemic infarcts on head CT scans for use in automated volumetric progression tracking.

Methods and Materials: We sampled 308 head CT scans (11840 slices) which were reported with chronic or subacute infarct. The infarcted regions in 11840-positivel slices were marked. We trained segmentation algorithm to predict a heatmap of infarct lesion. The heatmap was used to derive scan level features representative of lesion density and volume to train a random forest to predict scan-level probabilities of chronic infarct. Area under receiver operating characteristics curves (AUC) were used to evaluate scan level predictions.
Results: The algorithm was validated on an independent dataset of 1610 head CT scans containing 78 chronic & 9 subacute infarct, 45 chronic ICH, 6 glioblastomas. The distribution of infarct affected territories was: 52.9% MCA, 33.3% PCA, 9.3% ACA and 4.7% vertebrobasilar territories. The algorithm yielded AUC of 0.8474 (95% CI 0.7964 - 0.8984) for scan level predictions. It identified 8 of 9 subacute infarcts (88.89% recall) and 70 out of 78 chronic infarcts (89.74% recall). The eight missed chronic infarcts constituted of 3 lacunar and 2 hemorrhagic. The volumes of predicted infarct lesions ranged from 1 mL - 526 mL with mean prediction volume as 55.60mL.

Conclusion: The study demonstrates the capability of deep learning algorithms to accurately differentiate infarcts from infarct mimics.

Author Disclosures:

B-0751 14:24
Estimation of intracranial haemorrhage volume with the deep learning method
G. Gong, Y. Deng, C. Xia, R. Zhang, C. Wu, Z. Wang, Y. Zhang, J. Ma;
Beijing/CN (df.jurnma@foxmail.com)

Purpose: Brain haemorrhage is one main cause of stroke. The current standard to estimate bleeding volume is ABC/2, which is an approximation applied to the bleeding regions. We developed a deep learning approach to estimate brain haemorrhage volume by training CNN.

Methods and Materials: Our model automatically segments haematoma from brain CT images. It uses a U-Net from an AI system to identify and propagate the features through U-Net for the segmentation. The model was trained on a brain CT dataset that consisted of 3000 brain CT sequences, including 1000 intracerebral haemorrhage (ICH), 1000 extradural haemorrhage (EDH) and 1000 subdural haemorrhage (SDH) cases. The test dataset consisted of 217 brain CT sequences (67 ICH, 67 EDH, and 63 SDH). The gold standard was obtained from manual segmentation by 3 neuro-radiologists with more than 5 years of experience.

Results: The ABC/2 method resulted in inaccuracies up to 40 mL. The volume difference between DL model and the gold standard was 1.44±1.91, 1.06±2.04 and 1.44±2.34 ml for ICH, EDH and SDH. Another attending neuro-radiologist performed manual segmentation, and achieved similar performance compared to the DL model. The computation time for the DL model was 4 second per case, compared to 12 seconds for ABC’s method, and 1 minute by manual segmentation.

Conclusion: The results demonstrated that our DL model achieved high accuracy in ICH, EDH, and SDH volume estimation, which significantly outperformed the current standard ABC/2 method. The computational time of the DL model was 4 second, which was 15 times faster than human segmentation.

Author Disclosures:

B-0752 14:32
Brain disease classification based on routine MRI using a deep learning algorithm
Y. Liu, P. Gao, Y. Duan; Beijing/CN (asiarieurope80@gmail.com)

Purpose: To develop and evaluate the efficacy of a deep learning algorithm using clinical routine sequences to classify patients into one of four broad neurological disease classes: normal, tumor, ischemic cerebral vessel disease (ICVD), and multiple sclerosis (MS).

Methods and Materials: A deep learning algorithm was trained on MR images from 4507 randomly selected cases restricted to one of the four classes. Each subject’s diagnosis was validated by an experienced radiologist in Beijing TianTan Hospital. After training, the model performance was tested in 1167 cases that included the following diagnosis distribution: 212 normal, 739 tumor cases, 114 ICVD, and 105 MS. Sensitivity, specificity, accuracy for classifying each case into its respective disease categories, in a separate test set.

Results: Taking the predicted class with the highest probability for each case, the deep learning algorithm achieved an overall accuracy of 94.1%, with a sensitivity and specificity of 85.2% and 95.7%, respectively. Sensitivity for specific classes were: 91.5% (normal), 89.7% (tumor), 83.7% (ICVD), and 76.2% (MS). Specificity for specific classes were: 91.3% (Normal), 93.9% (Tumor), 98.4% (ICVD) and 99.0% (MS).

Conclusion: The algorithm achieved high sensitivity and specificity across normal cases and several broad classes of neurological disease classes, indicating its potential usefulness in automatic neurological disease detection and diagnosis. Optimization of the algorithm and the extension to other neurological diseases would have to be carried out to enable it to be used in clinical settings to aid radiologists and doctors in their diagnosis of patients.

B-0753 14:40
Detection of intracranial haemorrhage on CT of the brain using a deep learning algorithm
D. Desbuquoit, S. Dekeyser, J. Huysekins, S. Nicolay, E. De Smet, J. Van Goethem, L. Van den Haute, P.M. Parizel; Zedgem/BE (damien.desbuquoit@gmail.com)

Purpose: This prospective study aimed to evaluate the use of a commercially available deep learning algorithm for the detection of intracranial haemorrhage on non-contrast enhanced CT of the brain.

Methods and Materials: 500 non-contrast enhanced CT of the brain performed in June, July and August 2018 were independently analysed on the presence of pathological hyperdensities by a deep learning software package (Aidoc, Tel Aviv, Israel) and a 4th-year radiology resident. Their results were compared to a “gold standard analysis”, performed by a senior neuroradiologist with access to clinical information and, when available, previous or follow-up imaging studies.

Results: Pathological hyperdensities were present in 134/500 patients, the majority of which were haemorrhages (128/134; 95.5%). Pathological hyperdensities were correctly identified by Aidoc-software in 125/134 cases (93.3%), compared to 133/134 (99.3%) for the resident. Aidoc’s false-negative ratio was 9/134 (6.7%). When no pathological hyperdensities were present, the exam was rated negative by Aidoc-software in 345/366 cases (94.3%), compared to 362/366 (98.9%) for the resident. Aidoc’s false-positive ratio was 21/366 (5.7%).

Conclusion: The use of a deep learning algorithm for the detection of pathological intracranial hyperdensities helped to detect urgent cases more quickly. False positive results occur in a limited number of cases (5.7%) and are mainly due to beam hardening artefacts, hyperdense dural sinuses, or falci ne or basal ganglia calcifications. False negatives were slightly more frequent (6.7%) and mainly seen in small or subtle haemorrhages.

B-0754 14:48
Development and validation of a deep neural network-based computer-assisted detection system for cerebral aneurysms in CT angiography
Z. Shi1, C. Pan2, C. Zhou1, D. Fan3, X. Li, G. Lu1, L. Zhang1; Nanjing/CN.
1Beijing/CN (fmrishiz@126.com)

Purpose: To develop a CAD system for intracranial aneurysms on computed tomography angiography (CTA) images based on a deep convolutional neural network (CNN) and a volume rendering (VR) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset.

Methods and Materials: There are 209 cases (159 for training and 50 for the validation) with intracranial aneurysms that diagnosed by both computed tomography angiography (CTA) and invasive cerebral angiography in the dataset. The CNN was trained in advance using manually inputted labels in bone-removal images of CT angiography and the corresponding VR algorithm. 3D patches were randomly cropped with or without aneurysms, and kept the ratio between positive and negative about 1:0. The architecture contains an encoder to extract features and a decoder to output a volumetric segmentation. And we added a classification path to determine whether the patch contains aneurysm(s). The diagnostic performance of the system was assessed using Dice-coefficient and receiver operating characteristic (FROC) analysis.

Results: Our system showed a good performance in detection of intracranial aneurysms with a dice score of 0.65, 92.2% (47/51) of aneurysms with 1.36 false positives per case (FPs/case). At a sensitivity of 75.4%, the number of FPs/case was 0.40. The area under the ROC curve (AUC) is 0.974 for the detection of aneurysm in a voxel.

Conclusion: We demonstrated that the combination of a CNN and VR algorithm is useful for the detection of intracranial aneurysms based on the CT angiography images of head.

B-0755 14:56
Automated detection of midline shift and mass effect from head CT scans using deep learning
S. Chilamkurthy1, R. Ghosh1, S. Tanamala1, M. Biviji2, L. Zhang2, V. Venugopalan1, Mumbai/IN, 3Nagpur/IN, 2Rochester, MN/US, 4New Delhi/IN (sasank.chilamkurthy@qure.ai)

Purpose: Mass effect and midline shift are most critical and time sensitive abnormalities that can be readily detected on head-CT scan. We describe development and validation of deep learning algorithms to automatically detect mentioned abnormalities.

Methods and Materials: We labelled slices from 699 anonymized noncontrast head-CT scans for the presence or absence of mass effect and midline shift in that slice. Number of scans(slices) with mass effect were 320/366 and midline shift were 249/366 labels for these labels to train a modified ResNet18, a popular convolutional neural network to predict softmax based confidences for the presence of mass effect and midline shift in a slice. We modified network by using two parallel fully connected(FC) layers in place of a single FC layer. The confidences at slice-level were combined using random
B-0757 15:20

BRAIMS: an incoming open source MR imaging dataset for brain instance-aware metastases segmentation

Purpose: Depicting brain metastases (for number counting and size measuring) is challenging and critical for patient management. A novel dataset for automated instance segmentation of brain metastases and a benchmark model for feasibility evaluation of metastases detection are introduced.

Methods and Materials: Brain MR images of 1100 patients (at least, T1-weighted (pre- and post-gadolinium contrast, T1-Gd) and T2-weighted) were acquired for radiosurgery of brain metastasis between 1993 and 2017 in our institute. The current dataset enrolled 308 of them, who had naive brain metastases. Tumour detection done by an interdisciplinary team served as the ground truth. The BET of FMRIB Software Library was utilized for skull-stripping. Contrast limited adaptive histogram equalization was used for image enhancement for model training. Finally, the benchmark model was based on 2D Mask R-CNN, best known for instance segmentation. Only T1-Gd were used for feasibility evaluation by model.

Results: The dataset comprised 308 folders, with each containing three series images in NIFTI format and one segmentation mask volume in 3D TIFF format. Each tumour instance was annotated with an exclusive value. There were 100 tumours of 38 patients in testing set. By patient, the recall of model was 100%. By tumour, the recall was 86%, and the precision was 67.7%.

Conclusion: This is a groundbreaking work on dataset and model for instance segmentation and biometric measurements of MR Images. T1-Gd images of brain metastases present clear spatial information and typical texture for automatic tasks. A competition with release of the dataset is planned currently.

14:00 - 15:30 Room G

Physics in Medical Imaging

SS 713

MRI: safety, phantoms and quantification

Moderators:
N.N.
D.J. Lurie; Aberdeen/UK

K-18 14:00
Keynote lecture

A. Webb; Leiden/NL

B-0759 14:09

MRI principles and techniques: how and where do radiologists and radiology residents look for?

F.M. Doniselli, M. Zanardo, U.M. Sconifenza, F. Sardanelli; Milan/IT (fabio.doniselli@gmail.com)

Purpose: To investigate where and how MRI principles and technical issues are searched by radiologists and radiology residents (RR).

Methods and Materials: We proposed a European online survey with 8 multiple-choice questions. We investigated how often radiologists have doubts about MRI principles or technical issues, where and what kind of information they search, in which language and in which websites. Chi-squared test was used.

Results: We obtained 122 answers (40 radiologists, 82 RR, from 6 different European countries). Radiologists and RR search information in English rather than their native language (75% vs. 68%, respectively, p=0.761). RR recognises to have frequently (51%) or often (32%) doubts about MRI principles while radiologists sometimes (45%) or rarely (25%), with a statistically significant difference (p<0.002). Post-processing details are equally searched by RR and radiologists (30%, p=0.953) as well as advanced/new techniques (49% vs. 40%, p=0.518). Clinical protocol settings are more searched by RR than radiologists (68% vs 35%, p=0.014) as well as basic sequences details (66% vs 10%, p<0.001). Regarding source of information, RR uses more internet (90% vs 60% of radiologists, p=0.005), books (49% vs 20%, p=0.031) or directly ask to same-age colleagues (32% vs 10%, p=0.065) or to older colleagues (54% vs 40%, p=0.316); Website evaluation described a situation dominated by radiopaedia.org, both for technical and clinical issues (75% and 46%, respectively), mriquestions.com (49% and 30%) and mrmaster.com (16% and 15%).

Conclusion: Radiologists and RR search information about MRI principles and technical issues with different frequency. Differences were also found regarding the means, the kind of information searched and the web sources.
B-0760 14:17
Design and testing of a novel complex flow phantom for medical imaging
S. Ambrogio, A. Walker, P. Verma, A. Narracott, J. Fenner; Sheffield/UK;
Boroughbridge/UK (simonamb@gmail.com)

Purpose: Calibration and quality control of medical flow imaging scanners is essential and, to that end, a novel, portable, cost-effective, multimodal, complex flow phantom design is presented. This is relevant to recent medical imaging technologies, such as Doppler ultrasound vector imaging, which enable real-time quantitative and qualitative analyses of complex blood flow patterns. The phantom has the potential to establish a flow benchmark for comparative studies and for validation of advanced velocity estimation algorithms developed for medical imaging at research level.

Methods and Materials: The vortex ring is the reference flow upon which the design of the phantom is based, because it offers patterns that resemble physiological flows, and has been demonstrated to be stable, reproducible, predictable and controllable. The phantom is motor-driven and vortex rings with different features can be generated on demand. The design is validated, comparing results obtained from three independent measurements methods, namely optical/video, laser-PIV and pulsed-wave Spectral Doppler ultrasound.

Results: Vortex rings with travelling velocities from approximately 1cm/s to 80cm/s and different sizes were produced with a reproducibility typically better than +/-0.5%. At best, differences of +/-2% were found for peak velocity estimates with laser-Doppler and Spectral Doppler. Estimated standard deviation values calculated on 10 vortex ring acquisitions.

Conclusion: Construction and characterisation of an innovative flow phantom, able to produce stable complex flow patterns, was described. The design, currently compatible with Doppler ultrasound modalities, could be adapted for comparative studies with different medical imaging technologies, such as X-rays and magnetic resonance.

Author Disclosures:
- S. Ambrogio: Research/Grant Support; This work is funded by the European Commission through the H2020 Marie Sklodowska-Curie European VPH-CaSE Training Network (www.vph-case.eu), GA No. 642612. A. Walker: Owner; Leeds Test Objects Ltd. P. Verma: Research/Grant Support; This work is funded by the European Commission through the H2020 Marie Sklodowska-Curie European VPH-CaSE Training Network (www.vph-case.eu), GA No. 642612. A. Narracott: Research/Grant Support; This work is funded by the European Commission through the H2020 Marie Sklodowska-Curie European VPH-CaSE Training Network (www.vph-case.eu), GA No. 642612. J. Fenner: Research/Grant Support; This work is funded by the European Commission through the H2020 Marie Sklodowska-Curie European VPH-CaSE Training Network (www.vph-case.eu), GA No. 642612.

B-0761 14:25
Phantom for independent global head SAR assessment of MRI-induced temperature change
G. Oluniran, J. Blackwell, B. Tuohy, N. Colgan; Galway/IE (g.oluniran2@nuigalway.ie)

Purpose: Underestimation of SAR in MRI poses potential risks to patients and individuals with compromised thermoregulation. EU standardization imposes a head SAR limit of 3.2W/kg and SAR effects are negligible at up to 3W/kg. We developed a phantom and protocol where heating due to the RF pulse is measured and verified against scanner-displayed SAR.

Methods and Materials: The spherical 3-litre glass phantom comprised of agar (93 g/L), NaCl (10 g/L) and CuSO4 (1 g/L) dissolved in distilled hot water. The phantom was manufactured to achieve thermal equilibrium and T1 properties of the phantom were determined at room temperature using a STIR sequence. A baseline image was acquired using a 2D fast gradient echo. SAR loading is generated with a clinical 3D FLAIR sequence followed by a repeat 2D fast gradient echo. Our phantom is non-perfused, and the period of heating is generated with a clinical 3D FLAIR sequence followed by a repeat 2D fast gradient echo. Publicly available phantom data was used to evaluate bias, linearity and reproducibility of the method across manufacturers, field strengths and acquisition settings. Abdominal human acquisitions at 7T that generated artefacts in our implementation of IDEAL were used to evaluate the robustness of the new method to clinical practice.

Results: Rectal temperatures increased continuously by 2.1±0.9°C independently of the hotspot SAR which ranged from 40.5°C to 55.9°C. When a core body temperature of 39°C is reached, hotspot temperature may be already 40.5°C within 29 minutes in the low-, 41.6°C within 20 minutes in the moderate- and 41.4°C within 21 minutes in the high-exposure group. The hotspot temperature curves showed four characteristic patterns, sinusoid, parabola-like, plateau reaching, and linear.

Conclusion: SAR may not be sufficient to define safe temperatures and prevent burns. While the pig model is limited (anatomy), different thermoregulation, our results may improve the understanding of potential burns. Special care is needed for thermoregulatory impaired persons (anesthetized and pharmacologically treated patients, infants and children).

Author Disclosures:
- G. Brinker: Employee; Siemens Medical. J. Nadobny: Equipment Support Recipient; Siemens AG.

B-0762 14:33
Hotspot temperatures leading to burn in 3T MRI in pigs

Purpose: Magnetic Resonance Imaging (MRI) is based on radiofrequency which induces heat in tissue. Areas of overlapping radiofrequency leads to hotspots and elevated body temperature. The International Electrotechnical Commission (IEC), IEC 60601-2-33:2010 has defined limits of heat exposure, quantified as specific absorption rate (SAR). The aim of this project was to investigate temperature behavior in vivo online.

Methods and Materials: Invasive temperature measurements in pre-calculated hotspots and in the rectum of 20 pigs were performed prior, during, and post radiofrequency exposure in 5 exposure levels (sham, low-2.7W/kg, moderate, high-4.8W/kg, extreme 11.4W/kg) in a whole body resonator (80 cm diameter) of a 3T MRI system (123 MHz).

Results: Rectal temperatures increased continuously by 2.1±0.9°C independently of the hotspot temperatures which ranged from 40.5°C to 55.9°C. When a core body temperature of 39°C is reached, hotspot temperature may be already 40.5°C within 29 minutes in the low-, 41.6°C within 20 minutes in the moderate- and 41.4°C within 21 minutes in the high-exposure group. The hotspot temperature curves showed four characteristic patterns, sinusoid, parabola-like, plateau reaching, and linear.

Conclusion: SAR may not be sufficient to define safe temperatures and prevent burns. While the pig model is limited (anatomy), different thermoregulation, our results may improve the understanding of potential burns. Special care is needed for thermoregulatory impaired persons (anesthetized and pharmacologically treated patients, infants and children).

Author Disclosures:
- G. Brinker: Employee; Siemens Medical. J. Nadobny: Equipment Support Recipient; Siemens AG.
Quantification of abdominal subcutaneous adipose tissue in MRI of obese patients
N.P. Linde, K. Solty, A. Hartmann, M. Blüher, R. Stange, H. Busse; Leipzig/DE

Purpose: To evaluate a novel approach for segmentation of abdominal subcutaneous adipose tissue (ASAT) in obese patients. Gaity size often limits full imaging of obese patients. We hypothesized that the equal distribution of subcutaneous adipose tissue on both sides of the body enables ASAT prediction from one-sided segmentation.

Methods and Materials: Abdominal MRI was performed at 1.5T using a 2-point Dixon sequence and complete images were segmented within the DiComPlex framework (Stange et al. 2018). After segmentation, the total volumes were divided into half result in hermISAT-R and hemISAT-R. Results were plotted against the total volume of ASAT (vASAT) and corresponding conversion factors yielded estimated total volume of ASAT (eASAT). Statistical measures of agreement were the coefficient of determination R² of a linear regression through the origin as well as the standard deviations of the differences between measured and predicted volumes.

Results: A total of 26 patients (13 females, mean BMI was 34.0 kg/m²) was identified and all images could be included into the analysis. Mean vASAT was 12,466 (range 7,170 - 23,741) cm³. Standard deviations of the difference between vASAT and eASAT were 359 ± 359 cm³.

Conclusion: The observed, equal distribution of ASAT holds promise for the prospective analysis of half-side MRI of subcutaneous adipose tissue.
were applied to the validation cohort and ROC (receiver operating characteristic) curves were drawn according to each significant characteristic in the training cohort and the full model. The area under the ROC curve (AUC) with 95% confidence intervals (CI) was calculated and compared between different models.

Results: At univariate analysis, EGFR+ confirmed an association with an internal air bronchogram, pleural retraction, emphysema and smoking; KRAS+ with round shape, emphysema and smoking. The AUC (95% CI) for the validation cohort was confirmed to be high for EGFR+ prediction, resulting in 0.82 (0.69-0.95) vs. 0.82 in the training cohort, whereas it was smaller for KRAS+ prediction, resulting in 0.60 (0.42-0.78) vs. 0.67 in the training cohort. Looking at single features in the validation cohort, we found that the AUC for the models including only smoking was similar to that of the full model (including semantic and clinical features) for both gene alterations.

Conclusion: This study validated the significance of the different features of internal air bronchogram, pleural retraction, lack of emphysema and smoking with the EGFR+ mutation; round shape and smoking with KRAS rearrangement.

B-0770 14:08

Correlation between EGFR gene mutation and CT, clinical features and pathological subtypes in ground glass lung adenocarcinoma

L. Kang, X. Zhang, X. Chen, H. Li; Zhengzhou/CN (18558267@qq.com)

Purpose: To investigate the relationship between epidermal growth factor receptor (EGFR) and CT, clinical features and pathological subtypes in ground glass lung adenocarcinoma.

Methods and Materials: Ground Glass lung adenocarcinomas confirmed by pathology were included. All cases were divided into two groups: effective mutation group and null mutation group. The patient gender, age, history of smoking, lesion location, size and CT features (including border, shape, margin, bubble-like lucency, air-bronchogram, pleural retraction, GGO proportion) and histological subtype were assessed. The comparison of size between two groups was performed by rank sum test. Two independent sample T test was used for comparison of age, and the chi square test was used for other indicators. P-values <0.05 were considered significant.

Results: In 108 cases of glass lung adenocarcinoma, 93 cases of effective mutation group, 15 cases of null mutation group, the mutation rate was 86.1%. The average age of effective mutation group (93 cases) and null mutation group (15 cases) was 49 ± 10.62, 60.75 ± 8.18, respectively. There was significantly different between two groups (t=-4.945, P<0.05). Patient gender, CT features and histological subtype were not significantly different between the two groups (P>0.05).

Conclusion: The mutation rate of EGFR gene was higher in patients with ground glass lung adenocarcinoma, and the mutation rate was more likely to occur in patients with (49 ± 10.62) years old. There was no relationship between EGFR mutation and gender, history of smoking, CT features and histological subtype in ground glass lung adenocarcinoma.

B-0771 14:16

Evaluation of pre-treatment FDG PET-CT-based imaging parameters and texture features as prognostic indicators in non-small cell lung cancer (NSCLC)

G.M. McDermott, P. Brown, A. Scarsbrook; Leeds/UK, York/UK (ganny.mcdermott@nhs.net)

Purpose: To determine whether metabolic tumour parameters and radiomic features (RFs) derived from flurine-18 fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) are prognostic predictors in patients with non-small cell lung cancer (NSCLC).

Methods and Materials: Patients with NSCLC who underwent FDG PET-CT before lung biopsy and pre-treatment at a single cancer center were studied. Primary tumour segmentation using semi-automated thresholding based on mean liver standardised uptake value (SUVmean) and radiomic analysis (first- and second-order feature extraction) were performed using LIFEx software (University of Paris-Saclay, France). Lesions less than 64 pixels (Scm²) were excluded. Uni- and multi-variate analyses were performed to assess RF prediction of progression-free survival (PFS).

Results: 81 patients were included in analysis, mean age 69 (range 41-89), 40 (49%) were male. Tumours were staged T1-T4 (7%, 59%, 10% and 24%, respectively), N0-3 (37%, 15%, 31% and 14%, respectively) and M0-1 (81%, 14%, 31% and 14%, respectively). Patients were censored at time of recurrence, progression, death or loss-to-follow up, median 10.0 months (IQR: 4.0 - 38.5 months). Patients were censored at time of recurrence, progression, death or loss-to-follow up, median 10.0 months (IQR: 4.0 - 38.5 months). Patients were censored at time of recurrence, progression, death or loss-to-follow up, median 10.0 months (IQR: 4.0 - 38.5 months). Patients were censored at time of recurrence, progression, death or loss-to-follow up, median 10.0 months (IQR: 4.0 - 38.5 months).

Conclusion: Cancer features and radiomic features were significantly different between two groups (P<0.05). Those without BVB sign showed better PFS and OS, however they were statistically insignificant (mean, 838 vs 344 days, respectively; p=0.058; mean, 1898 vs 1258 days, respectively; p=0.120). For 21 patients with TNM stage IA, 16 patients (76%) without BVB sign showed better PFS and OS (mean, 1630 vs 483 days, respectively; p=0.032: mean, 2243 vs 1328 days, respectively; p=0.038). Multivariate Cox proportional hazard model showed that BVB sign and associated idiopathic pulmonary fibrosis are poor prognostic factors for PFS (p=0.045; HR=5.001; 95% CI, 1.036-24.131; p=0.025; HR=10.036; 95% CI, 1.288-86.176).

Conclusion: The absence of BVB sign was potentially associated with better PFS in stage IA peripherally located SCLC.

B-0774 14:40

Computerised texture analysis predicts histological invasiveness within lung adenocarcinoma manifesting as pure ground-glass nodules

Y. Yang, H. Liu; Shanghai/CN (yang_yang6@126.com)

Purpose: To investigate the value of computerised texture analysis for predicting histological invasiveness of pulmonary adenocarcinoma that manifests as pure ground-glass nodules (pGGNs).

Methods and Materials: The study consisted of 138 patients with 142 pathologic analysis-confirmed pGGNs who had undergone computed tomographic (CT) imaging. Each nodule was manually segmented and its computerised textual features were extracted. Seven best features were chosen using hierarchical cluster analysis and the ReliefF method. Multivariate logistic regression analysis was performed to distinguish adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the logistic regression was evaluated by receiver operating characteristic (ROC) curve analysis.
Results: Pathologic analysis confirmed 26 AISs, 71 MIAs and 45 IACs. Seven best features (10 percentile, maximum 3D diameter, surface volume ratio, elongation, maximum probability, large area low gray level emphasis and zone entropy) were chosen using hierarchical cluster and the ReliefF method. Multivariate logistic regression analysis revealed larger maximum 3D diameter, lower surface volume ratio and higher zone entropy as independent differentiators of IACs from AISs/MIs, with odd ratio [OR]=1.59, P=0.011; OR=–0.47, P=0.002; OR=6.78, P=0.001, respectively. The accuracy based on the logistic regression model using these features for differentiating IAC from AIS/MIA reached 78.7% with ROC analysis (AUC, 0.861; sensitivity, 78.0%; specificity, 80.0%).

Conclusion: In patients with pGNN, computerised texture analysis has the potential to differentiate histological invasiveness, especially maximum 3D diameter, surface volume ratio and zone entropy are independent differentiators of IACs from AISs and MIAs.

B-0775 14:48
The comparison of hook wire vs coil localisation for video-assisted thoracoscopic surgery
D. Kim, Y. Song; Changwon/KR (tobealight@naver.com)
Purpose: A hook wire has been widely used for CT-guided localisation before VATS procedure. However, microcoils have been differentiators of IACs from AISs and MIAs.
Methods and Materials: The medical records of 106 patients with 110 pulmonary nodules who underwent CT-guided localisation using a hook wire (group A) or microcoil (group B) before VATS performed between March 2013 and January 2017 were retrospectively reviewed.
Results: The procedure success rate was 100% in both groups. Dislodgement occurred in four patients in group A and not in group B. Patient pain score was significantly lower for group B than group A (4.0 vs. 6.3; P < 0.001). The VATS procedure time was significantly higher in group B than in group A (98.1% vs. 91.1%; P = 0.174). The VATS procedure time was significantly shorter for group B than group A (18.5 vs. 23.6 minutes; P = 0.004). The excised volume of surgical specimens was significantly smaller for group B than group A (8.5 vs. 11.7 cm³; P = 0.043). No major complications related to the localisation procedure were noted in either group.
Conclusion: This study showed similar effectiveness of VATS localisation between groups. However, microcoil is superior to hook wire for localisation of pulmonary nodules in terms of VATS procedure time and excised volume of surgical specimens, with the advantages of no dislodgement and less patient pain.

B-0776 14:56
Hook-wire localisation vs lipiodol localisation for patients with pulmonary lesions having ground-glass opacity: the hook-wire trial
J. Hur1, C.H. Park1, S.M. Lee1, J.W. Lee1, S.H. Hwang1, J.S. Seo1, K.H. Lee1, W. Kwon1, D.J. Im1, 2 Seoul/KR, 2 Wonju/KR (khuhz@yuhs.ac)
Purpose: The aim of this study was to compare the usefulness and safety of the hook-wire and lipiodol localisation techniques.
Methods and Materials: This prospective, non-randomised comparative study was conducted between April 2014 and December 2016 at 8 qualifying university teaching hospitals. Two hundred and fifty patients with pulmonary lesions having GGO were included based on the following criteria: pulmonary lesion < 3 cm with GGO >50%; persistence or growth of the lesion during the 3-month follow-up. Patients were assigned in a 1:1 ratio to either the lipiodol (n=125) or hook-wire group (n=125) for preoperative localisation procedures. The primary endpoint was the procedure success rate. Secondary endpoints were procedure-related complication rate, localisation procedure duration, and the respected specimen’s safety margin from the lesion.
Results: The procedure success rates (hook-wire vs lipiodol group) were 94.40% vs 99.16% (P=0.084); complications occurred in 53.60% vs 48.33% of patients (P=0.487). Haemorrhage and dislodgement rates were significantly higher in the hook-wire group (21.6% and 5.6%) compared to lipiodol group (5.8% and 0%) (P=0.01, and P=0.24, respectively). The lipiodol procedure time was significantly longer than that of the hook-wire technique (20.69±3.4 vs 17.15±5.91 min, P=0.001). The initially positive surgical resection margin was significantly higher in the hook-wire group (10.53% vs 2.86%, P=0.048).
Conclusion: There was no significant difference in success rate between the hook-wire and lipiodol methods. However, the haemorrhage and dislodgement rates were significantly higher in the hook-wire group, while the hook-wire group showed higher initially positive surgical resection margins.

B-0777 15:04
Diagnostic accuracy of F-18 FDG PET/CT in mediastinal lymph nodal staging of recently diagnosed carcinoma lung
R. Kumar1, E. R. Verma1, A. Dhamija1, E. Belho1, V. Gupta1, H. Mahajan1, V. Mahajan2; NewDelhi/IN (ramj00k@gmail.com)
Purpose: The aim of the study is to evaluate the diagnostic accuracy of FDG PET/CT in mediastinal lymph nodal staging in carcinoma lung patients.
Methods and Materials: A total of 120 recently diagnosed lung carcinoma patients, who underwent pre-treatment staging FDG PET/CT between March 2016 and May 2018 were included in the study. Lymph nodes more than 1 cm in the short axis and SUV max more than 3.0 in F-18 FDG PET/CT scan were considered suspicious for metastasis and correlated with their pathological reports. Clinical TNM staging assessed with PET/CT was compared with appropriate statistical methods.
Results: A total of 3117 lymph nodes with a mean of 26 lymph nodes per patient were resected. 179 nodes were reported metastatic, 37 as granulomatous and rest non-specific. FDG PET/CT staged 68 (56.7%) patients as N0, 18 (15%) as N1, 28 (23.3%) as N2, 6 (5%) as N3. The overall per nodal station basis sensitivity, specificity, positive predictive value, negative predictive value and accuracy was 51.2%, 98.3%, 84%, 92.2% and 91.4%. On comparing N staging on PET CT with pathological N staging, 85 (70.8%) patients were staged accurately, 22 (18.3%) were over-staged and 13 (10.8%) were under-staged.
Conclusion: FDG PET/CT is an accurate imaging modality for mediastinal lymph nodal staging in carcinoma lung patients. However, in view of low sensitivity due to limited spatial resolution of the PET scanner and low positive predictive value in granulomatous disease epidemic regions, like India, it is not an alternative to pathological staging.

B-0778 15:12
Dual-energy CT (DECT) lung tumour perfusion: can we distinguish features that can reflect prognosis?
J. Dewaeghe1, M.-C. Copin1, J.-B. Faivre2, V. Dekens1, M. Sedlmair1, R. Jemyl, M. Remy-Jardon1; Lille/FR, Forchheim/DE (martine.rymy@chru-lille.fr)
Purpose: To investigate potential relationships between DECT perfusion characteristics and prognostic histopathologic features.
Methods and Materials: A two-phase DECT scanning protocol was obtained in the presurgical evaluation of 40 tumours (squamous cell carcinomas: n=12; adenocarcinomas: n=37), including (a) an early phase over the entire thorax (ROI within the ascending aorta) (i.e., intravascular phase of tumoural perfusion); (b) completed by a delayed acquisition over the tumour, 50 s later (i.e., interstitial phase of tumoural perfusion). The first-pass and delayed iodine concentration (IC; mg/mL) and the arterial enhancement fraction (AEF=first pass IC/delayed IC x 100) were calculated over the entire tumour and within the most peripheral 2-mm-thick tumour layer, automatically segmented. The expression of the membranous carbonic anhydrase IX (mCAIX), an immunohistochemical marker of hypoxia, was assessed in tumour specimens.
Results: 33 tumours were mCAIX positive (Group 1) and 16 mCAIX negative (Group 2), the former showing a statistically significantly larger volume (P=0.04). At the level of the whole tumour, the delayed IC was significantly higher than that at first pass (median: 1.53 vs 1.4; P=0.04), suggestive of extravascular leakage within the interstitial space; there was no difference in DECT perfusion parameters between the two groups. Compared to Group 2, the rate of Group 1 tumours had significantly higher median values of IC (0.53 vs 0.21; P=0.021) and AEF (102.8 vs 65.6; P=0.02) with a trend toward higher delayed IC (0.48 vs 0.39; P=0.35).
Conclusion: DECT can provide insight into perfusion characteristics at the level of the tumoral invasion front.
Author Disclosures:
M. Sedlmair: Employee; Siemens Healthineers. R. Jemyl: Consultant; Siemens Healthineers. M. Remy-Jardin: Research/Grant Support; Siemens Healthineers.

B-0779 15:20
The effect of different monochromatic image choices on the accuracy of CT perfusion values for lung tumour in one-stop spectral and perfusion CT scan
C. Canan, H. Wang1, S. Yue1, P. Lu2, W. Li1; Zhengzhou/CN (1508249322@qq.com)
Purpose: To assess the effect of monochromatic images with different energy levels on the accuracy of CT perfusion data in one-stop spectral and perfusion CT scan.
Methods and Materials: One-stop spectral and perfusion CT scan inclucing whole tumour perfusion CT and whole lung contrast-enhanced CT) was performed in 42 patients. The monochromatic tumour images with energy level from 40 to 140 keV (group A1 to A11) generated from spectral CT were used to reconstruct CT perfusion images with primary perfusion data. CT perfusion parameters including blood volume (BV), blood flow (BF),mean transit time (MTT) and permeability surface (PS) were measured to compare

Scientific Sessions
Methods and Materials: Patients were included who underwent Calcium scoring (CACS) and CCTA with CT-FFR. Patients were excluded if the CACS was non-zero, if there were increased troponin levels or any other cardiac abnormality on the CT-images. On-site CT-FFR was computed for each coronary artery at proximal, mid and distal segments. At each measurement location, the lumen area was measured. CT-FFR was considered positive (<0.75). The relation between CT-FFR and lumen area was evaluated for each coronary artery and each location.

Results: 106 patients were included with corresponding CT-FFR measurements. An overall of 99 (31%) coronary arteries had CT-FFR values <0.75, all at distal locations. In 42 (40%) patients the LAD had distal CT-FFR values <0.75 (mean 0.62 (SD 0.10)). The RCA shows similar results with distal CT-FFR values <0.75 in 65 (61%) patients (0.61 (0.12). The Cx shows only a limited number of patients (16, 15%) with distal CT-FFR values < 0.75 (0.65 (0.09). CT-FFR and lumen area showed good correlation: 0.728 (p-value<0.001) for the LAD, 0.660 (p-value<0.001) for the Cx and 0.712 (p-value<0.001) for the RCA. The lumen areas were not significantly different between the >0.75 and <0.75 group (p-value<0.001).

Conclusion: CT-FFR values in patients without coronary artery disease can become positive at a distal location without indicating flow-limiting stenosis independent of lumen area. CT-FFR values measured distal should always be interpreted in combination with the CCTA images.

Author Disclosures:
U.J. Schoepf: Consultant; Bayer, Guerbert, HeartFlow Inc., Siemens Healthineers, Research/Grant Support; Astellas, Bayer, General Electric, Siemens Healthineers.

B-0782 14:25
High-risk and lipid-rich, but not calcified, plaque predicts ischaemia in non-obstructive lesions (ANOCA): a CTA/CTFFR study
G. Feuchtnner, C. Langer, F. Barbien, C. Beyer, G.J. Friedrich, F. Plank; Innbruck/AT (Gudrun.Feuchtnner@i-med.ac.at)

Purpose: ANOCA (angiina in the absence of obstructive coronary stenosis) is frequent in patients referred to coronary CTA. The morphological correlate is unclear. Aim was to assess which plaque types by coronary CTA predict ischaemia in ANOCA.

Methods and Materials: 106 patients with low-to-intermediate risk referred to 128-slice dual-source CT angiography (atypical chest pain, 89.1%) were included. CTA data were transferred to coronary fluid dynamics (CFD) modelling (Heartflow Inc.); lesion-based and distal FFR were calculated. CTA analysis included 1) stenosis severity (CADRADS); 2) plaque composition 1-4 (non-calcified, mixed or calcified) total (SIS), mixed (G-score) plaque burden; 3) plaque composition with a Lipin-Ring sign, plaque density (HU), positive remodelling, spotty calcification; 4) coronary calcium score; 5) qCTA stenosis.

Results: 89 non-obstructive lesions with <70% stenosis (40 high-risk-plaque, 40 calcified and 9 non-calcified) matched for qCTA (%area, %diameter stenosis) were included. In high-risk plaque, lesion-based and distal FFR were lower as compared to calcified (p=0.001 and p=0.002), respectively. Prevalence of ischaemia (FFR<0.8) (25% vs. 2.5%, p=0.007 for lesion based), and 40% vs. 17.5% for distal FFR was higher in high-risk plaque compared to non-calcified. Lower plaque density (HU) (p=0.024) predicted ischaemia in low-attenuation plaque (LAP<300HU, with an strengthened correlation for all lesions (p=0.003) on linear regression analysis. Positive remodelling was associated with lower FFR distal (p=0.042), and an increasing non-calcified plaque burden (G score) (p=0.008), but not total (SIS) and calcium score.

Conclusion: High-risk plaque and an increasing lipid-necrotic core and total non-calcified plaque burden predict ischaemia in non-obstructive lesions and explain ANOCA and while an increasing calcium-density acts contrary.

Author Disclosures:
G. Feuchtnner: Research/Grant Support; HeartFlow Inc. California USA.

B-0783 14:23
Comparison between stress CT perfusion versus FFRCT in the evaluation of suspected CAD: PERFECTION prospective study
A. Baggio1, M. Guglielmo1, G. Muscogiuri1, M. Soldi1, A. Del Torto1, A. Guarit11, M. Pepi1, G. Pontone1,1 Milan/IT, 3 BanIT (andrea.baggio@gmail.com)

Purpose: The PERFECTION study is a longitudinal, prospective and consecutive cohort study to compare the feasibility and accuracy of FFRCT versus stress-CTP for the diagnosis of functionally significant CAD.

Methods and Materials: 147 consecutive symptomatic patients for chest pain referred for clinically indicated ICA plus invasive FFR were enrolled. The primary endpoint was to compare the diagnostic accuracy of CCTA versus CTA+FFRCT versus CTA+stress-CTP for the detection of significant CAD defined by ICA and invasive FFR.

Results: Rest cCTA was successfully performed in all patients, FFRCRT was performed in 143/147 patients, stress-CTP was performed in 144/147 patients. CCTA demonstrated acceptable vessel and patient-based sensitivity (SE), specificity

between benign (n=20) and malignant (n=22) tumours by using independent-t test. Receiver operating characteristics (ROC) analysis was performed to calculate cut-off values for the differentiation between benign and malignant tumour.

Results: BV, BF values of group A1 to A11 and PS values of group A1 to A7 was significantly higher in malignant tumour than in benign tumour. ROC analysis for differentiation between benign and malignant tumours showed larger area under the curve(AUC) of BV, BV value in group A5 and PS in group A6. Sensitivity, specificity were 88.2% and 93.3% respectively at a cut-off value of 6.69 ml/100g for BV and 103.4 ml/(100g*min) for BF in group A5. The cut-off value of PS in group A6 was 10.27 ml/(100g*min) ,generating sensitivity of 83.9% and specificity 73.3%.

Conclusion: Use of 80 keV for reconstruction of one-stop spectral and perfusion CT showed higher value of differentiation between benign and malignant lung tumour.

14:00 - 15:30
Room M 1

Cardiac

SS 703
CT-FFR (fractional flow reserve) for assessment of coronary artery disease

Moderators:
C.A. Minouei; Bucharest/RO
R.A.P. Taix; Utrecht/NL

K-19 14:00
Keynote lecture
G. Pontone; Milan/IT

B-0780 14:09
Value of fractional flow reserve computed from triple-rule-out CT angiography data in the emergency department
S.S. Martin1, M. van Assen2, A.M. Fischer3, C.N. De Cecco1, M. Bauer1, A. Varga-Szemes1, D. Mastroidicas1, U.J. Schoepf1,2, Charleston, SC/US, G. Pontone1,2, Mannheim/DE (simartin@outlook.com)

Purpose: The aim of this study was to evaluate the additional value of noninvasive fractional flow reserve (CT-FFR) derived from triple-rule-out (TRO) coronary computed tomography angiography (CTA) data in the emergency department (ED).

Methods and Materials: On-site CT-FFR was calculated in 159 of 226 (70%) eligible patients with coronary artery diseases (CAD) who had undergone TRO-CTA. The agreement of CT-FFR (≤0.80) with stenosis on coronary CTA (≤50%), as well as additional cardiac diagnostic testing, was investigated. Furthermore, the predictive value of CT-FFR and CTA for coronary revascularization and major adverse cardiac events (MACE) was retrospectively assessed during a one-year follow-up period.

Results: CT-FFR results showed agreement with coronary CTA in 70% (111 of 159) of all cases. CT-FFR (≤0.80) served as a better predictor for coronary revascularization or MACE than assessment of stenosis (≤50%) on coronary CTA (hazard ratio [HR], 3.0; 95% CI, 1.0-9.6 vs. HR , 2.5; 95% CI, 0.8-7.9 (p=0.03). Further diagnostic cardiac testing was performed in 58% (92 of 159) and included SPECT (n = 60), stress echocardiography (n = 31), and stress MRI (n = 1). The agreement with additional diagnostic testing was significantly higher for CT-FFR (83%; 8 of 92) than for coronary CTA results (49%; 45 of 92) (p<0.01).

Conclusion: CT-FFR derived from TRO coronary CTA was a better predictor for coronary revascularization or MACE and showed better agreement with additional diagnostic testing than significant stenosis on CTA. Therefore, CT-FFR may improve the efficiency of the workup in patients presenting to the ED.

Author Disclosures:
C.N. De Cecco: Consultant; Guerbet. Grant Recipient; Siemens. A. Varga-Szemes: Consultant; Guerbet. Research/Grant Support; Siemens. U.J. Schoepf: Consultant; Bayer, Guerbet. Research/Grant Support; Siemens, Bayer, Astellas, GE.

B-0781 14:17
CT-FFR profiles in patients without coronary artery disease: the effect of location and lumen area
R.R. Bayer1, M. van Assen2, S.S. Martin1, R.H. Savage1, R. Steinbach1, A.M. Fischer1, L.P. Griffith1, U.J. Schoepf1,2, Charleston, SC/US, G. Pontone1,2, Mannheim/DE (bayer@muw.edu)

Purpose: To evaluate the influence of measurement location and lumen diameter changes on CT-FFR values in normal patients.
SP, negative predictive value (NPV), positive predictive value (PPV) and diagnostic accuracy (ACC) of 99%, 76%, 100%, 61%, 82% and 95%, 54%, 94%, 61%, 83% and 94%, 74%, respectively. The diagnostic performance of integrated protocol of rest cCTA-FFRCT showed a vessel and patient-based SE, SP, NPV, PPV and ACC of 88%, 94%, 95%, 84%, 92% and 90%, 85%, 92%, 83%, 87%, respectively. Finally, the diagnostic performance of integrated protocol of rest of cCTA-FFRCT showed a vessel and patient-based SE, SP, NPV, PPV and ACC of 92%, 95%, 97%, 87%, 94% and 98%, 87%, 99%, 86%, 92%, respectively. Both FFRCT and stress-CCTA significantly improved SP, PPV and overall ACC in both per-vessel and per-patient based model when added to cCTA, while no differences were found between cCTA+FFRCT versus cCTA+stress CTP.

Conclusion: Both FFRCT and stress-CCTA are valid tools in addition to cCTA to evaluate the functional relevance of CAD.

B-0784 14:41
Coronary computed tomography angiography-derived fractional flow reserve in anomalous origin of the right coronary artery from the left coronary sinus

Purpose: To examine fractional flow reserve derived from computed tomographic angiography (CT-FFR) in patients with anomalous origin of the right coronary artery from the left coronary sinus (R-ACAOS) with interarterial course on coronary CT angiography (CCTA), and its clinical relevance.

Methods and Materials: Ninety-four patients with interarterial R-ACAOS undergoing CCTA were retrospectively included. Anatomic features (including proximal vessel morphology [valv or stilt-like], take-off angle, take-off level [below or above pulmonary valve], take-off type, intramural course, %proximal narrowing, length of narrowing, minimum lumen area (MLA) at systole and diastole, and vessel compression index) on CCTA were analysed. Receiver operating characteristic analyses were performed to describe the diagnostic performance in detecting R-ACAOS with interarterial course with CT-FFR ≤0.80.

Results: Significant differences were found in proximal vessel morphology, take-off level, intramural course, %proximal narrowing area, MLA at diastole (all p<0.05) between normal and abnormal CT-FFR groups. Take-off level, intramural course, and stilt-like ostium (all p<0.05) predicted lesion-specific ischaemia (CT-FFR ≤0.80) with accuracies of 0.69, 0.71, and 0.81, respectively. Patients with CT-FFR ≤0.80 had a higher prevalence of typical angina (29.4% vs 7.8%, p=0.025) and atypical angina (29.4% vs 6.5%, p=0.016).

Conclusion: Take-off level, intramural course, and stilt-like ostium were the main predictors of abnormal CT-FFR values. Importantly, patients with abnormal CT-FFR values had a higher prevalence of typical angina and atypical angina, suggesting CT-FFR as a potential tool to gauge the clinical relevance of patients with interarterial R-ACAOS.

Author Disclosures:
U.J. Schoepf: Consultant; U. J. Schoepf is a consultant for and/or receives institutional research support from Astellas, Bayer, GE, Guerbet, HeartFlow, Siemens Healthineers, and Siemens.

B-0785 14:49
Diagnostic performance of fractional flow reserve derived from coronary computed angiography in myocardial bridging: a comparison with invasive fractional flow reserve
F. Zhou, 1 Y. Wang, 1 U.J. Schoepf, C. Tesche, L. Xu, 3 Y. Hou, 3 J. Yan, 3 J.Y. Zhang, 3 L. Zhang, 3 Nanjing/CN, Beijing/CN, 2 Charleston, SC/US, 3 Munich/DE, 3 Shenyang/CN, 3 Shanghai/NZ (zhouhui126.com)

Purpose: To investigate the diagnostic performance of machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR) to detect lesion-specific ischaemia in myocardial bridging (MB) using invasive FFR as reference standard.

Methods and Materials: This retrospective multicentre study included 107 MBs in 106 patients. An FFR value ≤0.80 was considered to be ischaemia-specific. MB was classified as either superficial or deep, while all MB vessels were further divided into 30%-69% and ≥70% groups according to diameter stenosis on invasive coronary angiography. Diagnostic performance of CT-FFR to detect lesion-specific ischaemia was assessed on a per-vessel level, using invasive FFR as reference standard. Pearson’s correlation analysis and Bland-Altman plots were used for agreement measurement.

Results: Of 107 MBs, 92 were classified as superficial. 49 MB vessels (45.8%) showed ischaemia by invasive FFR. Sensitivity, specificity, accuracy of CT-FFR to detect lesion-specific ischaemia were 0.94 (confidence interval [CI] 0.82-0.98), 0.84 (0.72-0.92), and 0.89 (0.81-0.94), respectively, in all MB vessels. There were no differences in diagnostic performance between superficial and deep MB (all p>0.05). The accuracy of CT-FFR was 0.96 (0.85-0.99) in ≥70% stenosis and 0.82 (0.66-0.91) in 30%-69% stenosis (p=0.023) with corresponding AUCs of 0.99 (0.91-1.00) and 0.86 (0.74-0.94) (p<0.013). Blind-Altman analysis showed a mild systematic underestimation of CT-FFR values when compared to invasive FFR (mean difference=0.014, 95% LoA:-0.12-0.15). The correlation coefficient was r=0.77 (p<0.001).

Conclusion: CT-FFR demonstrated high diagnostic performance for identifying lesion-specific ischaemia in vessels in MB when compared to invasive FFR, regardless of MB depth.

Author Disclosures:
U.J. Schoepf: Consultant; Astellas, Bayer, General Electric, Guerbet, HeartFlow, Siemens Healthineers.

B-0786 14:57
Coronary CT based on-site FFR might be a useful tool to identify haemodynamically relevant non-culprit lesions in patients who suffered myocardial infarction
J. Simon, B. Sztizlveszter, A. Ahres, M. Kolossvary, B. Jablonkai, B. Merkely, P. Andrássy, P. Maurovich-Horvat; Budapest/HU (juditsimon21@gmail.com)

Purpose: Prior studies demonstrated that CT-derived fractional flow reserve flow (CFR) has excellent diagnostic accuracy for the identification of ischaemia-causing lesions in patients with stable chest pain. Non-invasive assessment of non-culprit lesions in patients who suffered myocardial infarction (MI) could improve risk stratification and guide therapy.

Methods and Materials: We enrolled 33 patients (52±14±3years, 33.3% female) who suffered MI with 47 non-culprit coronary lesions. CT-FFR was calculated on an on-site algorithm and values were compared to invasive FFR measured at the index event. FFR value ≤0.80 was considered haemodynamically significant in both cases.

Results: The mean FFR-CT value was 0.85±0.10 while the mean invasive FFR value was 0.62±0.08. The sensitivity, specificity, positive predictive value and negative predictive value of FFR-CT versus invasive FFR was 93.3%, 89.7%, 66.7% and 68.4%, respectively (AUC=0.70). Correlation coefficient between CT-FFR and invasive FFR was 0.43 (p=0.002).

Conclusion: The majority of non-culprit lesions in MI patients are in the grey-zone for FFR-CT and therefore the diagnostic performance of FFR-CT for the detection of lesion-specific ischaemia in post-MI patients is moderate. However, the high specificity of FFR-CT in this patient population might be useful test characteristics to identify patients who need revascularization.

B-0787 15:05
The prognostic value of CT myocardial perfusion and CT-FFR for MACE in patients with coronary artery disease
M. van Assen, 1 C.N. De Cecco, 2 M. Eid, 1 M.J. Bauer, 1 M. Scarabelllo, 1 P. van Knelb Doebert, 1 M. Ouderk, 1 R. Vliegenhart, 1 U.J. Schoepf, 1 Groningen/NL, 2 Atlanta, GA/US, 3 Charleston, SC/US, 4 Munich/DE, 5 Milan/IT, 6 Heidelberg/DE (m.van.assen@umcg.nl)

Purpose: To determine the prognostic value of dynamic CT perfusion and CT-derived fractional flow reserve (CT-FFR) for the prediction of major adverse cardiac events (MACE).

Methods and Materials: Patients from 4 institutes who underwent CCTA and stress dynamic myocardial perfusion CT (CTMP) were included with a follow-up period of 18 months or until MACE occurred. On-site CT-FFR was computed for each coronary artery. A myocardial blood flow (MBF) index was calculated, for which each vessel territory was normalised to global MBF. The lowest CT-FFR and MBF index was selected for each patient. The prognostic value of CCTA, CT-FFR, and CTP was investigated with univariate and multivariate Cox proportional hazards regression models.

Results: 243 vessels in 81 patients were interrogated by CCTA with CT-FFR and 243 vessel territories (1,296 segments) were evaluated with dynamic CTP imaging. Of the 81 patients, 25 (31%) experienced MACE during follow-up. In univariate analysis, a positive index-MBF resulted in the largest risk for MACE (HR 11.4, 95%-CI: 3.4-38.2) compared to CCTA (HR 2.6, 95%-CI: 1.2-5.9) and CT-FFR (HR 4.6, 95%-CI: 2.0-10.5). In multivariate analysis, including clinical factors, CCTA, CT-FFR, and index-MBF, only index-MBF significantly contributed to the risk of MACE (HR 10.1, 95%-CI: 2.1-48.8), unlike CCTA (HR 1.2, 95%-CI: 0.4-3.5) and CT-FFR (HR 2.2, 95%-CI: 0.8-6.4).

Conclusion: Our study provides initial evidence that dynamic CTP alone has the highest prognostic value for MACE compared to CCTA and CT-FFR individually or a combination of the three, independent of clinical risk factors.

Author Disclosures:
C.N. De Cecco: Research/Grant Support; Dr. De Cecco receives institutional research support from Siemens,. Speaker; Dr. De Cecco has received speaker honoraria from Bayer. U.J. Schoepf: Consultant; Dr. Schoepf has received consulting fees and or speaker honoraria from Bayer, GE, Guerbet, HeartFlow Inc., and Siemens. Research/Grant Support; Dr. Schoepf receives institutional research support from Astellas, Bayer, Siemens. Speaker; Dr. Schoepf has received consulting fees and or speaker honoraria from Bayer, GE, Guerbet, HeartFlow Inc., and Siemens.
A patient specific lumped parametric model based approach to fractional flow reserve derived from coronary computed tomography angiography (CCTA) within 60 days before invasive fractional flow reserve (FFR) was retrospectively selected. Hemodynamically significant coronary artery stenosis was defined as invasive FFR>0.8. The diagnostic performance of the on-site FFR-CCT method was evaluated and compared to that of degree of luminal coronary stenosis assessment on CCTA.

Purpose: Analysis with an on-site FFR-CCT method improved diagnostic performance for the evaluation of hemodynamically significant stenosis compared to stenosis degree evaluation on CCTA.

Conclusion: The ranges for absolute iodine uptake vary with the patients’ gender whereas the ranges for blood-normalized iodine uptake vary with the patients’ age. Standard value ranges for normal quantitative iodine concentration in portal venous phase DECT images were defined for both, absolute and blood-normalized values.

Purpose: To define quantitative reference values of iodine concentrations in portal venous phase Material Density (MD) iodine images in Dual Energy CT (DECT) for normal liver parenchyma.

Methods and Materials: The iodine concentration in the liver parenchyma as well as of the abdominal aorta and main portal vein were obtained in n=182 patients in MD iodine images, obtained with a dual layer CT scanner. The iodine uptake was evaluated as the absolute iodine concentration and as a blood-normalized value. The influence of age and gender on the iodine uptake was examined.

Results: A significant difference could be observed for the absolute liver iodine concentration between genders (male: 1.928 mg/ml, female 2.310 mg/ml), yet not for the blood-normalized iodine concentration (male: 2.133 mg/ml, female 2.097 mg/ml). For the analysis of age, there was a significant negative correlation between the blood-normalized iodine concentrations and the patient age (r=−0.269). Standard iodine values for absolute iodine concentration ranged between 1.022 and 2.834 (male) and between 1.344 and 3.274 (female) and for blood-normalized iodine concentration between 1.451 and 2.783 (±0.0054 / year).

Conclusion: The range for absolute iodine uptake vary with the patients’ gender whereas the ranges for blood-normalized iodine uptake vary with the patients’ age. Standard value ranges for normal quantitative iodine concentration in portal venous phase DECT images were defined for both, absolute and blood-normalized values.
iodine-independent assessment was evaluated using patients who had contrast-enhanced multiphase CT.

Methods and Materials: MAD plot fat fraction accuracy was determined using an anthropomorphic phantom and vials containing different ratios of homogenized bovine liver/fat (0, 25, 50, and 100% fat by volume). The phantom was scanned on a Philips IQuon dual-layer CT (120 kVp and 140 kVp) and a Philips Ingenia (320-slice) with the MRI fat fraction measurements (mDIXON Quant) used as the reference standard. ROI data from the CT and MRI fat fraction maps were compared to the known fat fraction for proof of concept in vivo. MAD plot fat fraction iodine-independence assessment between pre- and post-contrast dual-layer CT was determined in four patients with varying degrees of hepatic steatosis. Pre- and post-contrast MAD plot fat fraction maps were compared using three ROIs per image, placed in similar liver locations.

Results: Bland-Altman analysis showed the mean difference between the known and measured phantom fat fraction percent was CT=120kVp = 0.52±1.77%, CT@140kVp = 0.80±1.94%, and MRI = 1.61±1.23%. Similar Bland-Altman analysis for the in vivo liver data showed that the mean difference between the pre- and post-contrast measured fat fraction percent was Venous = 0.21±1.52% and Delayed = 0.61±1.78%.

Conclusion: MAD plots provide an accurate method for measuring liver fat fraction with dual-layer spectral CT ex vivo, with the potential to do so for in vivo contrast-enhanced CT.

B-0793 14:24

Preliminary study for intra-abdominal liquids characterisation based on dual-energy CT

O. Meyrignac, R. Losco, R. Moreno, A. Sewonou, H. Rousseau; Toulouse/FR

Purpose: This study aimed for differentiation and characterization of intra-abdominal liquids based on parameters issued from dual-energy CT.

Methods and Materials: In vitro, monocentric, prospective study. Forty-six intra-abdominal liquids samples were divided into 5 groups according to their provenance: 12 from proven or strongly suspected infected liquids (I), 7 from bile (B); 6 from serous effusion (SE); 11 from lymphocytes (L); 10 blood samples (S). Acquisition was made on Toshiba One Genesis CT scanner using dual-energy technology with sequential acquisition, with samples placed in a water tank to simulate body surroundings. We analyzed: native densities at 80kV and 135kV, density in virtual monochromatic reconstruction at best CNR (= BCNR), dual-energy dissociation coefficient with water (DCw), atomic Z and electronic density. DCw being defined by the ratio between density differences between sample and water at 10 keV and 135 keV.

Results: The overall densities of the S group were significantly higher than the other groups (135kV=21UH, 80kV=24UH, BCNR=20UH; p<0.01). Within these groups, group D had a significantly higher density than all other groups (135kV=23UH, 80kV=27UH, BCNR=22UH; p<0.01). The DCw of group B was 3.9, significantly higher than the other groups (p>0.05) and DCw of group S, lower than the others (1.5, p>0.05). Average-electronic density of the S group was significantly higher than that of other groups (3.48±10×23/cm^3)p<0.05.

Conclusion: Using dual-energy we can differentiate bile and infected fluids from the other intra-abdominal liquids.

B-0794 14:32

Multi-energy CT quantification of first-pass perfusion in hypervascular liver lesions: potential to differentiate hypervascular metastasis from hepatocellular carcinoma

B. Kaltenbach, J.L. Wichmann, L. Yel, M.H. Albrecht, T.J. Vogl, S.S. Martin; Frankfurt a. Main/De, Charleston, SC/US (benjamin.kaltenbach@outlook.de)

Purpose: To investigate the diagnostic accuracy of first-pass static perfusion quantification for the differentiation of hypervascular hepatic metastasis from hepatocellular carcinoma (HCC) in non-cirrhotic liver patients undergoing multi-energy computed tomography (CT).

Methods and Materials: 46 patients (mean age, 64.9±10.1 years; 28 male and 18 female) with either hepatic metastasis due to gastropancreatic neuroendocrine tumour or HCC, who had undergone multiphase CT of the upper abdomen, were included in this retrospective study. For each lesion, arterial-phase attenuation and fat fraction values, as well as quantitative parameters indicating first-pass perfusion including iodine uptake and normalized iodine uptake (NIU) were measured. Lesion-to-liver-parenchyma ratio (LPR) values were calculated. Histopathology, MRI, and/or PET/CT served as the reference standard for all liver lesions. In addition, the diagnostic accuracy of contrast-enhanced and perfusion analysis for the differentiation of hypervascular hepatocellular metastasis and HCC was assessed using receiver operating characteristics (ROC) curve analysis.

Results: Hypervascular hepatocellular metastasis and HCC showed significant differences in arterial attenuation (p=0.003), iodine uptake (p<0.001), NIU (p<0.001), and LPR (p=0.003). No significant differences were found for unenhanced attenuation and fat fraction values (p=0.686 and p=0.892, respectively). NIU showed superior sensitivity (100%), iodine uptake, 71%,
Feasibility of volume index to assess liver volume: comparison of ultrasound and computed tomography

D. Seppelt1, T. Ittermann1, A. Haubold1, D. Fedders1, T.-T. Hoffmann1, C. Kolb1, J.-P. Kühn2, D. Fedders2, D. Greifswald1, D. Seppelt3
(daniol.seppelt@uniklinikum-dresden.de)

Purpose: Volume index measurement (VI) is based on simple measurement of liver diameters to estimate liver volume. The purpose was to evaluate the feasibility of VI based either on ultrasound (US) or computer tomography (CT) by comparison with CT based volumetry.

Methods and Materials: Fifty-nine patients, 21 women, mean age of 66.8±12.6 years underwent an abdominal CT following a standard protocol. In all cases, liver diameters were measured throughout the liver by exploiting the intrinsic properties of iodine enhancement at low kVp. As gold standard served the liver volume determined by an expert radiologist who segmented the liver on CT images. True liver volume and calculated VI determined by CT and US were compared using a Bland-Altman analysis.

Results: Liver volumes determined by manual segmentation, CT-based VI, and US-based VI were as follows: 1.500±347 cm3, 1.509±432 cm3, 863±371 cm3. Mean differences of VI between observers were 1.1±16.18.2% for CT-based technique, -3.47 (90.1±20.7%) for US-based VI, respectively. There was an excellent agreement between CT-based VI and true liver volume with a mean bias of 4.4±28.3%, and a high discrepancy for US-based VI; mean bias 58.3±56.9%.

Conclusion: Volume index based on measurements of liver diameters is a simple and straightforward approach to estimate true liver volume. CT-based volume index turns out to be a very reliable parameter and can be recommended for clinical usage. Use of US-based volume index should be discouraged from due to its unacceptable low accuracy.

B-0798 15:04
Dose optimisation in multiphasic computed tomography imaging of the liver with high-concentration contrast media

S. Cavalieri1, A. Ferrari1, R. Villa1, M. Brambilla1, A. Stecco1, A. Carriero1, Novara/IT (sergio.ca451@gmail.com)

Purpose: To reduce radiation dose to patients undergoing multiphase CT of the liver by exploiting the intrinsic properties of iodine enhancement at low kVp. Methods and Materials: 32 oncology patients underwent multiphase CT of the liver using a Philips Brilliance CT scanner and either a standard acquisition protocol (100 kVp in all phases; N=8) or an optimised weight-based acquisition protocol in the arterial phase (80 kVp in patients ≤80 kg; N=16 and 100 kVp in patients >80 kg; N=8). High-concentration contrast agent (Iomeprol 400 mgI/ml) and automatic tube current modulation were used in all patients. The standard dose and the optimised protocols were compared with t test for average CTDIvol, liver dose, and peak aortic enhancement measured in the aorta at the level of the celiac trunk (significance threshold p<0.05).

Results: When the optimised protocol was used, patients ≤80 kg showed a significant increase in peak aortic enhancement (507±59 HU vs 324±59 HU; p=0.01) and a reduction in average CTDIvol (from 12.5±2.6 to 8.3±1.3 mGy; p=0.005) and liver dose (from 17.4±4.1 to 10.9±1.6 mSv; p=0.005) for the arterial phase. As expected, patients >80 kg did not show any significant difference in aortic enhancement and radiation dose comparison to the standard protocol.

Conclusion: Our optimised protocol with use of 80 kVp and high iodine concentration resulted in a substantial improvement of aortic attenuation and radiation dose reduction in patients ≤80 kg.

Author Disclosures:
S. Cavalieri: Speaker; Bracco Symposium at SIRM 2018.
A. Ferrari: Speaker; Bracco Symposium at SIRM 2018.

B-0799 15:12
Multidetector liver CT: improved image quality, decreased radiation and contrast media dose with peristaltic contrast media injection system

C. Saade1, S. Khalifeh1, L. Karout1, L. Naffaa2; Beirut/LB (charbel.saade@aub.edu.lb)

Purpose: To compare hepatic vascular and parenchymal opacification between direct and peristaltic drive contrast media (CM) injection systems and its effect on image quality and pathology detection.

Methods and Materials: IRB-approved retrospective study consisted of 182 patients who underwent CT of the abdomen and pelvis in both groups; Group A: employed direct drive injector, and Group B: utilized the peristaltic injector. Quantitative opacification measurements of the vascular, parenchymal, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) and each hepatic segment (n=8) were compared by employing paired t test and Pearson's correlation. Receiver operating (ROC) and visual grading characteristics (VGC) measured the confidence intervals and image quality, respectively. Reader agreement employed Cohen's kappa methodology.

Results: Mean opacification of the vasculature and liver segments demonstrated no statistically significant difference between each group. CNR in the liver compared to hepatic vein was higher in Group B (2.17±0.82) compared to A (1.83±0.64). SNR in Group B (5.89±1.63 HU) was higher than A (4.95±1.59 HU) (p<0.001). Radiation dose and CM volume were significantly lower in Group B than A (p<0.0001). VGC showed no significant difference in qualitative image quality assessment. ROC demonstrated pathology detection in Group B than A (p<0.0001). Inter- and intra-observer variation showed that there is a strong relationship between liver vasculature and parenchymal opacification (Protocol A: r=0.75; B: r=0.76; p<0.0001).

Conclusion: Significant improvements in quantitative and qualitative assessments of liver pathology can be achieved with low CM and radiation dose when employing peristaltic CM injection system.

B-0800 15:20
A reduced contrast media injection protocol significantly improves the visualisation of liver vasculature at reduced radiation dose during hepatic CTA

C. Saade1, A. Haydar1, Beirut/LB (charbel.saade@aub.edu.lb)

Purpose: To investigate the opacification of liver vasculature and radiation dose by employing a patient-specific (PS) contrast administration protocol during hepatic CTA (HCTA).

Methods and Materials: This hybrid retrospective (protocol A) and continuous prospective (protocol B) study was IRB approved. HCTA was performed in 216 consecutive patients, with one of two protocols: protocol A, 100 mL of contrast material injected intravenously; and protocol B, employing the patient-specific contrast media protocol. Each protocol employed contrast material and saline flow rate of 4.5 mL/sec. Attenuation profiles of the hepatic arteries and veins were measured. Effective dose was calculated. Data were compared with the independent sample t test. Visual grading characteristics (VGC) analyses were performed.

Results: Arterial opacification demonstrated no significant increases in arterial opacification in protocol B, except for right main hepatic artery (p<0.001), segment VI of the right hepatic artery (p<0.036), left main hepatic artery (p<0.002), proximal segment of the gastroduodenal artery (p<0.014). The abdominal aorta and celiac trunk were significantly higher in protocol B compared to A (p<0.007), celiac trunk (p<0.004). In the veins, inferior vena cava, portal (all branches) and proximal splenic veins demonstrated a significant reduction in opacification protocol B compared to A (p<0.001). Effective dose was significantly reduced in protocol B (p<0.001). Contrast media volume in protocol B (57.60±12.25 mL) was significantly lower than in protocol A (p<0.001). VGC demonstrated no significant differences between protocols, with reader agreement increasing from moderate to excellent (p<0.001).

Conclusion: Employing a PS injection protocol demonstrates significant improvements in the visualisation of the liver vasculature at reduced radiation and contrast media dose.

14:00 - 15:30
Sky High Stage

Scientific Sessions

Thursday

Artificial Intelligence and Machine Learning

MY 7
Artificial Intelligence and Machine Learning

Moderators:
M. Dewey; Berlin/DE
M. Zins; Paris/FR

B-0801 14:00
Assistant effects of a computer-aided diagnosis system based on 3D convolutional neural network on LDCT reading

S. Wang1, Z. Wang1, S. Zhang1, Y. Fu, T. Hu, W. Peng; Shanghai/CN (shengjingwanga2007@126.com)

Purpose: To compare the difference of diagnostic performance between radiologists with and without computer-aided detection (CAD) system based on deep learning algorithm in detecting lung nodules in low-dose computed tomography (LDCT).

Methods and Materials: Seventy-nine patients (whether or not lung nodules were found) were enrolled. First, three radiologists randomly read these cases and assessed the risk score without a CAD system. Then, 4 weeks later, the three radiologists read the cases randomly and assessed the risk score again with the aid of a CAD system based on a 3D convolutional neural network. The results obtained by one expert chest radiologist with the aid of CAD system is
used as the ground truth. Results: Number of detected nodules increased in CAD group by 53.22% ($p < 0.01$). The range absolute difference between reader and ground truth was decreased from 0.96 to 0.43 ($p < 0.01$). And the average standard error (SE) of cases between readers decreased from 0.45 to 0.34 ($p = 0.11$) when using CAD system for assistance. The average SE of risk score was from 0.25 to 0.10 ($p = 0.01$) when using CAD system.

Conclusion: This study compared the reading results of different radiologists with and without in-depth learning of CAD system. The results showed that with the aid of CAD system, radiologists discovered more lung nodules and obtained better consistency.

B-0802 14:04

Automatic prostate segmentation of magnetic resonance images using convolutional neural networks

N. Aldo, F. Biavati, M. Rutz, S. Stoiber, M. Dewey; Berlin/DE (nader.aldoji@charite.de)

Purpose: To develop a fully automatic and accurate tool for prostate segmentation using 2D convolutional neural networks.

Methods and Materials: A dataset of 188 patients with T2-weighted images was used in this study (PROSTATEx challenge). All 2D-weighted axial images (256x256 pixels) were manually segmented and examined by an experienced radiologist. The training set consisted of 143 patients (a total of 2593 slices) and the test set of 45 patients (a total of 912 slices). The developed Dense U-Net was based on the U-Net architecture with six stages. We replaced the classical convolutional layers with a Dense net-like architecture which consists of two small Dense blocks separated by transitional layers and each of which comprised four convolutional operations. Results of the developed network were compared for all test images with the classical U-Net using the dice score.

Results: The Dense U-Net achieves an average dice score of 0.89 and a median dice score of 0.90 which was higher in comparison to the classical U-Net with average and median dice scores of 0.885 and 0.89, respectively. Both networks achieved accurate segmentation in the middle region of the prostate with an average dice score of 0.94 for the Dense U-Net and 0.93 for classical U-Net. Both networks resulted in relevantly lower dice scores for the apical and basal region of the prostate (Dense U-Net: 0.72 and 0.79; Classical U-Net: 0.70 and 0.78), respectively.

Conclusion: The developed Dense U-Net architecture outperformed the classical U-Net by achieving more accurate prostate segmentation on axial T2-weighted sequences.

B-0803 14:08

Automated x-ray bone segmentation using a conditional adversarial network

J. Haubold, A. Demircigil, M. Forsting, L. Umutlu, F. Nensa; Essen/DE (johannes.haubold@uk-essen.de)

Purpose: To train and evaluate a conditional adversarial network (pix2pix) for automated bone segmentation in x-ray images.

Methods and Materials: The bone tissue in 40 x-rays of the left elbow was segmented manually using the 3D Slicer software. The segmentations were used as ground truth for the training of a conditional adversarial network comprising a convolutoinal and a deconvolutional neural network (pix2pix) on automated bone segmentation. To validate the segmentation efficiency a 5-fold cross validation was performed and therefore the dataset was randomly split into five subsets each containing eight x-rays. In each of five tests the network was trained on 32 images and evaluated on the remaining eight images. Segmentation efficiency was evaluated using the Jaccard similarity coefficient.

Results: Overall Jaccard mean was 0.94 ± 0.03 (Jaccard mean for split 1=0.96; split 2=0.96; split 3=0.95; split 4=0.94; split 5=0.89) showing an overall good similarity of automatically segmented images compared to manually segmented images. Default training epoch value of 100 showed the best Jaccard similarity coefficient compared to 25, 50 and 250 epochs in pix2pix.

Conclusion: Using only 40 segmented x-ray images of the elbow a conditional adversarial network could be trained for automated bone segmentation with an overall good similarity coefficient compared to manually segmented images.

B-0804 14:12

Small (< 4 cm) renal masses: convolutional neural network-based deep-learning approach in differentiating fat-poor renal angiomyolipoma from renal cell carcinoma at MSCT

X. Li, L. Wang; Nanjing/CN (lixiao19901020@yahoo.net)

Purpose: To investigate diagnostic performance using a deep learning method with a convolutional neural network for the differentiation of fp-AML and RCC at dynamic contrast agent-enhanced computed tomography.

Methods and Materials: Approved clinical retrospective study from January 2013 to July 2017, patients with fp-AML and RCC were identified from the pathology database. 42 patients with fp-AML (no visible fat at unenhanced CT) and 158 patients with RCC. All patients were examined with a 320-slice dynamic volume CT by using same four phase renal protocol. This study is composed of two stages in which training validation was performed and a testing stage to evaluate the performance of the models with new pictures to each model. A testing stage which is simply done by loading the testing image dataset into the classifier.

Results: The model obtained a result for distinguishing fp-AML from RCC using model unenhanced, model corticomedullar, model nephrographic, model excretory, model enhanced and model quadruple with the test data sets was 0.64 (95% confidence interval [CI]: 0.58, 0.69), 0.83 (95% CI: 0.81, 0.85), 0.83 (95% CI: 0.81, 0.85), 0.81 (95% CI: 0.79, 0.83), 0.85 (95% CI: 0.84, 0.86), 0.84 (95% CI: 0.83, 0.85).

Conclusion: The CNN models except model unenhanced exhibited a high diagnostic performance in distinguishing fp-AML from RCC at dynamic CT. Further research might focus on the application of this tool in other benign renal lesions, such as oncocytomas.
B-0808 14:24
The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest
Y. Lu, B. Yin; Shanghai/CN (06307070088@fudan.edu.cn)

Purpose: The preoperative prediction of the WHO grade of a meningioma is important for further treatment plans. This study aimed to assess whether texture analysis (TA) based on apparent diffusion coefficient (ADC) maps could non-invasively classify meningiomas accurately using tree classifiers.

Methods and Materials: A pathology database was reviewed to identify meningioma patients who underwent tumour resection in our hospital with preoperative routine MRI scanning and diffusion-weighted imaging (DWI) between January 2011 and August 2017. A total of 152 meningioma patients with 421 preoperative ADC maps were included. Four categories of features, namely clinical features, morphological features, average ADC values and texture features, were extracted. Three machine learning classifiers, namely classic decision tree, conditional inference tree and decision forest, were built on these features from the training dataset. Then the performance of each classifier was evaluated and compared with the diagnosis made by 2 neurosurgeons.

Results: The ADC value alone was not able to distinguish 3 WHO grades of meningiomas. The machine learning classifiers based on clinical, morphological features and ADC value could achieve equivalent diagnostic performance (accuracy 62.96%) compared to 2 experienced neurosurgeons (accuracy 61.11% and 62.04%). Upon analysis, the decision forest that was built with 23 selected texture features and the ADC value from the training dataset attained the best diagnostic performance in the testing dataset (Kappa 0.64, accuracy 79.51%).

Conclusion: Decision forest with the ADC value and ADC map-based texture features is a promising multiclass classifier that could potentially provide more precise diagnosis and aid diagnosis in the near future.

B-0809 14:28
Automated stroke detection and profiling on initial non-contrast CT via machine learning and textural analysis
J.M.A. Alghamdi, S. Raja; Riyadh/SA (ilmalghamdi@ktmc.med.sa)

Purpose: To explore the utility of machine learning and textural analysis for possible automatic detection and temporal profiling stroke.

Methods and Materials: We reviewed stroke-code patients at King Fahad Medical City in Riyadh, who presented between January 2015 and September 2017. We got a total of 826 patients. After applying the exclusion criteria, we chose 567 patients. Baseline cases were reviewed and staged by 3 radiologists. As a result, we identified subsets of hyper-acute (42), acute (39), and sub-acute (23). Baseline and follow-up CT scans were co-registered on a dedicated review workstation. Evolving stroke on follow-up CTs was contoured on in 3D. The 3D-contours were mirrored on to contralateral normal region. Simultaneously, contours were duplicated on co-registered baseline CTs. Pixel level data from the flagged regions on baseline CT and follow-up were exported to Matlab. Utilizing home-built algorithms, 42 textures were computed. Textural features were analysed in SPSS modeller for classification.

Results: Utilizing the 42 textural scalars, among various machine learning algorithms, Decision Trees (C5.0) was found to be the most optimal differentiator between stroke (hyper-acute/acute/sub-acute) versus contralateral normal brain tissue, as well as classifying temporal profiling the stages of stroke. The decision trees were good to excellent in classifying hyper-acute (71%), sub-acute (82%), and modest for acute (60%) stroke.

Conclusion: It is feasible to differentiate and chronologically profile stroke utilizing textural analysis and machine learning. We seek to increase the accuracies in a larger series and also utilize additional textures and machine learning algorithms.

B-0910 14:32
A novel improved deep learning framework for liver lesion detection
Y. Chen1, J. Ma2, J. Wang2, F. Wang1, S. Feng1; Guangzhou/CN, 2Beijing/CN (chen-yingxi@163.com)

Purpose: Hepatocellular carcinoma (HCC) is the second most frequent cause of malignancy-related death in the world. Early detection of HCC is the key issue in clinical imaging. Computer-assisted diagnosis can help for early detection of lesion in many other organs. There is still lack of an effective deep learning framework for liver lesion detection. This study aims to find out an improved framework for liver lesion detection.

Methods and Materials: A new framework has been improved by the following ways: 1) using more numbers of layers in the neural network framework; 2) developed 2.5D-like strain tensors to generate feature-based deep learning network; 3) fusing the information of multi-phase images. Totally 621 patients were used to train the model, and the training set included 910 hepatic cysts, 495 haemangiomas and 173 HCCs. Other 60 patients were used to test the model, including 98 hepatic cysts, 38 haemangiomas and 30 HCCs. All the images contained tri-phasic sequences. All the lesions were labelled jointly by two experienced radiologists as standard.

Results: Before the improvement, the predictive accuracy of hepatic cysts, haemangiomas and HCCs were 69.23%, 64.29% and 70.96%, respectively. After using the improved framework, the predictive accuracy of hepatic cysts, haemangiomas and HCCs rose to 82.76%, 78.98% and 77.88%, respectively.

Conclusion: The novel improved deep learning framework has a relative better predictive ability of liver lesion detection, which provides an effective measure for computer-assisted imaging diagnosis. This framework is also helpful for the early detection of HCC.

B-0811 14:36
Evaluation of intra-scanner test-retest variability of machine learning features in low-dose computed tomography of interstitial lung disease
F. Prayer, S. Röhrich, J. Hofmanninger, A. Willenpart, G. Langs, H. Prosch; Vienna/AU

Purpose: To investigate the robustness of machine learning imaging features of patients with interstitial lung disease (ILD) in repeated low-dose computed tomography (LDCT) examinations on a single scanner.

Methods and Materials: Thirty consecutive ILD patients, after written declaration of consent, received repeated non-contrast LDCT of the chest on a single CT scanner within 15 to 60 minutes. Images of test and retest scans were reconstructed using one- and three-millimeter slice thickness, and soft tissue and lung kernels (i30f, i50f, and i70f). Imaging features used for machine learning-based diagnosis and progression prediction (Haralick texture features) were extracted after isotropic voxel resampling to 0.7mm resolution. Local features were quantized to volume descriptors and used to assess visual similarities between volumes. We evaluated the effect of retest and reconstruction parameters on the visual similarity by varying one parameter while keeping all other parameters fixed.

Results: Visual similarity between test and retest yield 0.02 mean (SD 0.01), 0.03 (0.01), 0.46 (0.16), 0.51 (0.02), and 0.12 (0.02) between i30f and i50f kernels, i50f and i70f, i30f and i70f and 1mm and 3mm slice thickness, respectively. Two-sample t tests revealed significantly higher influence of varying reconstruction parameters on visual descriptors compared to test-retest (all p<0.05).

Conclusion: LDCT imaging features of ILD used for machine learning obtained by repeated scans on a single scanner are reproducible. However, variability is introduced by reconstruction parameters, with slice thickness exhibiting higher influence than reconstruction kernel despite isotropic resampling.

B-0812 14:40
Accurate pulmonary nodule detection in CT images using multi-stage 3D deep convolution neural networks
X.J. Chen; Zhengzhou/CN (chenxuejun1967@163.com)

Purpose: To evaluate the application of a new method of computer-aided pulmonary in diagnosing the accuracy and efficiency of lung cancer.

Methods and Materials: CT images were acquired from 980 lung cancer patients. Manually marked pulmonary nodule location and pathology results are taken as gold standard. The dataset consists of 7736 nodules in which 3169 are malignant. The detection rate of pulmonary nodules and the malignant prediction rate were evaluated through manual detection and the computer-aided detection. Computer algorithm of computer-aided detection adopted multi-stage strategy. In the first stage, CT images were preprocessed to reduce variances such as CT thickness caused by different manufacturers. Second, self-designed neural network mimicking zooming in and out the image was used to extract multi-scale image features and generate region of interest (ROI). Finally, another 3D deep convolution neural network is applied to classify whether the ROI is true or false positive.

Results: Compared with the manual detection, the detection of nodules of computer-aided detection was high, which was statistically significant (84.71% vs 95.76%), and false-positive rate of between the computer-aided detection and the manual detection was not statistically significant P>0.05. The malignant prediction result of computer-aided detection shows 95.28% recall rate and 98.56% precision rate in patient level, and the malignant prediction result of manual detection shows 94.7% recall rate and 98.00% precision rate in patient level which were not statistically significant P>0.05.

Conclusion: The multi-stage 3D deep learning method verified by large clinical dataset shows greater efficiency helping detect pulmonary nodules and offer better accuracy.
Methods and Materials: A total of 117 patients with extra-thoracic malignancies, were prospectively included. 9 observers independently evaluated the images, first without CAD and then using CAD at both dose settings. Furthermore, 8 observers independently interpreted these datasets thrice, once with CR, twice without CAD, and third with SR. True positive rates (TPR), false positive rates (FPR) and reading times were recorded. Free-response receiver operating characteristic analysis was also used for the statistical analysis.

Results: The sensitivities without CAD for detection of nodules (41.06% and 37.02%) were less than those using CAD as SR (60.57% and 60.39%) in both two dose settings ($P < 0.001$). Reading times were significantly shorter in CR mode (165s) than those without CAD (235s) and in SR mode (294s) ($P < 0.01$). Sensitivity of reading with CAD as CR (64.92%) was significantly higher than reading without CAD (44.71%, $P < 0.001$) and not statistically different in SR mode (66.86%; $P > 0.05$) in the low-dose setting. The FOM in the CR mode was statistically significantly better than that without CAD (0.58 vs 0.47, respectively; $P < 0.001$), and not statistically different compared with using CAD in the SR mode (0.61, $P = 0.259$).

Conclusion: CAD benefited all readers including small nodules, which both significantly improved diagnostic performance and shortened the reading times, especially for interns, in the low-dose setting.

Author Disclosures: Q. Hu; Author; Chong Chen, Shi-choa Kang, Zi-yan SUN, Li-ming XIA.

B-0816 14:56
Reproducibility of fully automated liver volumetric analyses with artificial intelligence: towards laboratory radiology

D.J. Winkel1, G. Christ2, T.J. Weikert1, A. Forman1, T.J. Weikert1, 1Basel/CH, 2Princeton, NJ/US (Thomas.Weikert@usb.ch)

Purpose: Laboratory radiology conveys the vision of a norm-based quantitative disease detection in radiology. Thereto, automated imaging quantification pipelines are mandatory both for large-scale norm-collective creation and disease-related outlier detection. Here, we test such a pipeline in terms of reproducibility and stability using an AI-based algorithm trained for liver volumetric analyses.

Methods and Materials: Using a RIS/PACS search engine, we obtained 100 CT datasets with six series for each patient, totaling 600 series: non-contrast (nc), portal venous (pv) and arterial phase (art) with both 1.5mm and 5mm slice thickness. The data were analysed using multi-scale deep-reinforcement learning for 3D anatomical structure segmentation. Variations of liver volumes were compared using Cohen’s coefficient K. Variations of liver volumes were compared using univariate general linear model analyses with the liver volume as the dependent variable and contrast phase and slice thickness as fixed factors.

Results: The liver volumes for the different scan phases, averaged for 1.5 and 5 mm, were 1903±599, 1983±695 and 1928±865 ml (nc, pv, art). The two cycles of analysis yielded identical liver volumes for the given datasets (K = 1). The liver volume was neither dependent on the contrast phase (p = 0.938) nor on the slice thickness (p = 0.605).

Conclusion: Fully automated AI-based liver volumetry is a reproducible, stable and precise method. The results of our study provide the necessary confidence for future applications of automated abdominopelvic volumetric analyses in the sense of laboratory radiology.

Author Disclosures: G. Chabin; Employee; Siemens Healthcare.
Conclusion: In this study, we could show that it might be possible to detect lung cancer fully automatically with very low effective radiation doses of 0.11 mSv (3.3% of current clinical routine). Further improvement of this technology might enhance the specificity of lung cancer screening efforts and could lead to new applications for FDG-PET.

Author Disclosures:
M. Hölting: Speaker; received speaker’s fees from GE Healthcare.
G.K. Von Schulthess: Consultant; is a Consultant to GE Healthcare and a Co-Director of IDKD, an educational organization which receives funds from multiple companies. I.A. Burger: Speaker; received speaker’s fees from GE Healthcare, M. Messerli: Speaker; received speaker’s fees from GE Healthcare.

B-0818 15:04
Automated lung cancer detection in PET/CT using a deep learning approach
M. Müller, C.P. Reinert, K. Nikolau, C. La Fouquíère, C. Pfannenberg, S. Gatidis; Tübingen/DE

Purpose: To evaluate the feasibility of automated lung cancer detection in patients undergoing clinically indicated Position Emission Tomography/Computed Tomography (PET/CT) using a deep learning approach.

Methods and Materials: Anonymized FDG-PET/CT data sets of 275 patients with histologically proven lung cancer (“pathologic scans”) and 225 patients without a thoracic malignancy (“non-pathologic scans”) were retrospectively analyzed. Manual segmentations of tumours were performed using MTK (German Lung Research Center) and used for evaluation. Sagittal, coronal and transversal maximum intensity projections of PET data were generated prior to further analysis. Two different deep learning approaches were implemented: A seven layer convolutional neural network for classification into pathologic and non-pathologic and a U-Net architecture for classification and additional spatial segmentation of hypermetabolic cancer lesions. The testing was performed on 50 pathologic and 50 non-pathologic data sets. The classification accuracy was computed as the relative number of correctly classified data sets and the segmentation accuracy was quantified by computing dice coefficients between automated and manual tumour segmentation.

Results: The first proposed classifications network was able to distinguish between pathologic and non-pathologic data sets with relatively high accuracy (93%). Using the U-Net architecture classification accuracy could be improved to 90% and subsequent segmentation accuracy reached 98% dice coefficient. The false positive classification rate dropped to 2%.

Conclusion: Neural networks are feasible approaches for automated lung cancer detection in PET/CT. In order to yield clinically usable results and limit the false positive rate, the use of larger training data bases will be helpful.

B-0819 15:08
Non-invasive tumour decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR fingerprinting

Purpose: The introduction of the 2016 WHO classification of CNS tumours has rendered the combined molecular and histopathological characterization of tumours as a pivotal part of glioma patient management. Recent publications on radiogenomics based prediction of survival rate have demonstrated the predictive potential of imaging-based, non-invasive tissue characterization algorithms. Hence, the aim of this study was to assess the potential of multiparametric 18F-FET PET-MRI imaging including MR fingerprinting accelerated with machine learning and radiomic algorithms to predict tumour grading and mutational status of patients with cerebral gliomas.

Methods and Materials: 42 patients with therapy-naïve cerebral gliomas underwent an 18F-PET-MRI-MRI examination. Surgical biopsy or resection served for histopathological sampling. To differentiate the mutational status and the WHO grade of the cerebral tumour we trained a support vector machine and random forest with the radiomics signature of the multiparametric PET-MRI data including MRI fingerprinting. As a gold standard, surgical acquired histology and mutational status were used.

Results: The 5-fold cross-validated area under the curve in predicting the ATRX mutation was 85.1%, MGMT mutation was 75.7%, IDH1 was 88.7% and 1p19q was 97.8%. The area under the curve of differentiating low-grade glioma vs. high-grade glioma was 85.2%.

Conclusion: 18F-FET PET-MRI and fingerprinting enable imaging-based tumour decoding and phenotyping with a good performance in differentiating low-grade vs. high-grade gliomas and in predicting the mutational status of ATRX, IDH1 and 1p19q. These initial results underline the potential of 18F-FET PET MRI to serve as an alternative to invasive tissue characterization.

B-0820 15:12
Deep learning-based automated calcium scoring for cardiac computed tomography

Purpose: The aim of this study was to evaluate a deep learning-based automated calcium scoring application for cardiac computed tomography (CT).

Methods and Materials: We analysed an automated calcium scoring application that is composed of multiple deep learning models, including voxel segmentation and computing the likelihood of a voxel being coronary calcium. The software automatically identifies the coronaries and calcified lesions, whereas aortic plaques are excluded in the calculations using a model for aorta segmentation. This algorithm was trained on 2000 annotated electrocardiography-gated cardiac CT scans. Thereafter, the application was evaluated on 263 consecutive patients undergoing cardiac CT. Results were compared to coronary calcium scores (CCS) obtained by standard manual assessment of independent cardiovascular radiologists.

Results: Mean CCS revealed no significant differences between the automated algorithm (102.2) and the reference standard (114.2) (P=0.156). Moreover, CCS using the automated application showed an excellent correlation with the reference standard (Pearson, r=0.97). Overall, 243 of 263 patients (92.4%) were classified into the correct risk category (0, 1-10, 11-100, 101-400, or >400).

Conclusion: Deep learning-based automated calcium scoring for cardiac CT shows a high accuracy compared to reference scores.

Author Disclosures:
S. Rapaka: Employee; Siemens Healthineers, P. Sahbaee: Employee; Siemens Healthineers, C. Schwemmer: Employee; Siemens Healthineers, M.A. Gulsun: Employee; Siemens Healthineers, P. Sharma: Employee; Siemens Healthineers, U.J. Schoepf: Consultant; Heartflow, Guerbet, Siemens, Astellas. Research/Grant Support; Siemens, Bayer, GE.

14:00 - 15:30 Tech Gate Auditorium

Genitourinary

SS 707
Prostate and bladder tumours
Moderators:
M. Pavlica; Bologna/IT
T. Penzkofer; Berlin/DE

B-0821 14:00
Whole-body MRI for detecting bone metastases in treatment naïve high-risk prostate cancer: cracking nuts with a sledgehammer
E. Rud, F. Ottosson, T. Flatabo, E. Baco; Oslo/NO (erik.rud@ous-hf.no)

Purpose: The aim of this study was to evaluate the anatomical sites of bone metastases in patients with high-risk prostate cancer.

Methods and Materials: This retrospective quality control study analysed the prospective results of all whole-body MRIs performed in 2016 and 2017. All patients were treatment naïve, and all had high-risk prostate cancer defined as biopsy Gleason score >7b and/or PSA20-100 and/or cT2c. The MRI sequences included 3DT1, diffusion-weighted images and T2 STIR from C1 to the proximal femur. Results were dichotomized as bone metastasis positive (M1) or negative (M0), and the anatomical sites of metastases were registered. PSA in those with M0 and M1 was compared using Mann-Whitney U test, and the area under the curve (AUC) for PSA was calculated when using M1 as a state variable.

Results: 153 patients were included. Median age (interquartile range) was 71 years (64-76) and PSA was 13 ng/ml (7.9-25.0). Gleason score 6: 4 (3%), 7a: 38 (25%), 8: 50 (33%), years (64-76) and PSA was 13 ng/ml (7.9-25.0). Gleason score 6: 4 (3%), 7a: 38 (25%), 8: 50 (33%), 9: 31 (21%) and 10: 3 (2%), missing in three. Bone metastases were found in 7 out of 153 patients (4.6%, 95% CI: 1.8-9.4), all occurring in the pelvis. The median (IQR) PSA in M0 and M1 disease was 51 (37-71) and 12 ng/ml (7.8-22.5), respectively (p=0.006). All metastases were found in patients with PSA >22ng/ml and Gleason score ≥8. AUC for PSA was 0.917 (95% CI: 0.85-0.99).

Conclusion: All cases of bone metastases were found in the pelvis suggesting that whole-body MRI is excessive in patients with high-risk prostate cancer.
Methods and Materials: We extracted retrospectively patients with PCa from a prospective robot-assisted radical prostatectomy (RARP) database. We included 162 patients who underwent preoperative mp-MRI with 2×15 min and capsular bulging was chosen as predictors of ECE. We used chi-square-test (CSQ) and ROC curve for statistical analysis followed by calculation of diagnostic-test values.

Results: Among 162 patients, ECE was observed in 97. We evaluated ROC curves for LCCmax, which showed AUC of 0.8026 (p<0.0001) and best accuracy (ACC) for 19.3mm. Both LCCmax≥20mm and LCCmax≥15mm had significant correlation with ECE (p<0.001 at CSQ). LCCmax≥20mm had specificity (SP) of 0.77 (50/65) and positive predictive value (PPV) of 0.82 (71/86); LCCmax≥15mm had sensitivity (SN) of 0.89 (87/97) and negative predictive value (NPV) of 0.79 (39/49). Capsular bulging was associated with ECE (p<0.001 at CSQ) and had SN of 0.86 (84/97) and PPV of 0.79 (84/106).

Conclusion: According to our preliminary evaluation both LCCmax and capsular bulging at preoperative mp-MRI seems to play a role in predicting ECE.

B-0825 14:32
Multiparametric MRI of the bladder: interobserver agreement and accuracy with the vesical imaging-reporting and data system (ViRADS) at a single reference centre
G. Barcetti, R. Campa, M. Pecoraro, I. Ceravolo, C. Catalanlo, V. Panebianco; Rome/IT (giovanni.barcetti2@gmail.com)

Purpose: To evaluate the accuracy and interobserver variability of the Vesical Imaging-Reporting and Data System (ViRADS) for discriminating between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), in patients undergoing multiparametric MRI (mpMRI) before transurethral resection of bladder tumour (TURBT).

Methods and Materials: 75 patients referred to our institution for bladder cancer underwent mpMRI before TURBT. All mpMRI were reviewed by two radiologists, blinded to clinical history and histopathology. Correlation between mpMRI diagnosis and histopathology was estimated using the Kendall T. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for both readers, considering scenario 1 (Vi-RADS 3 classified as MIBC) and scenario 2 (Vi-RADS 3 classified as NMIBC). The K statistic was used to estimate inter-reader agreement.

Results: 53 patients were diagnosed with NMIBC and 22 with MIBC. The correlation analysis yielded the following results for the overall Vi-RADS score: T= 0.54 for reader 1 and T= 0.51 for reader 2. Both readers obtained a better sensitivity (91% and 82% vs 82% and 64%) and NPV (96% and 92% vs 92% and 86%) in scenario 1. A lower specificity (91% and 87% vs 96% and 94%) and PPV (80% and 72% vs 89% and 82%) were obtained in scenario 1. Area under curve was 0.918 for reader 1 and 0.897 for reader 2. Inter-reader agreement was good for the overall Vi-RADS score (K= 0.731).

Conclusion: In conclusion, mpMRI with the use of Vi-RADS is accurate in differentiating MIBC from NMIBC.

B-0827 14:40
Magnetic resonance imaging findings differentiate among perirectal bulking agent, urethral diverticulum and perirectal cyst, preventing misdiagnosis
T. Chuheoki, D. Wangcharoenrung1, K. Cattapan3, K. Hamed1, A.J. Mitchell1, M.G. Harsinghani1, E.J.B. De4, 1Bangkok/TH, 2Songkhla/TH, 3Boston, MA/US (thithinan.c@chula.ac.th)

Purpose: To evaluate magnetic resonance imaging findings to differentiate perirectal bulking agent, urethral diverticulum and perirectal cyst.

Methods and Materials: In this retrospective study, we searched radiologic department database. A total of 50 patients with perirectal cystic lesions and magnetic resonance imaging between 2001-2017 were included with 68 lesions (27 bulking agents, 29 urethral diverticulum and 12 perirectal cysts) were found. Two abdominal radiologists blinded to clinical history, independently evaluated T1, T2 and post-contrast images. The readers assessed number, morphological features, location, connection to urethra and mass effect, signal intensity, and enhancement for each lesion. Logistic regression analysis was performed for each univariate significant feature. Operative and pathologic reports were the reference standard.

Results: Magnetic resonance imaging findings in bulking agents which helped differentiate from urethral diverticulum were more cases with multiple lesions (P<0.021), upper or upper-mid urethral location (P=0.003), lack of both internal fluid/fluid level (P=0.029) and urethral connection (P=0.038). TI isointensity, T2 mild hyperintensity compared to muscles but lower T2 signal than urine (P<0.0001). Most cases of urethral diverticulum and perirectal cysts were detected at mid and lower urethra. Urethral diverticula were larger than bulking agent and perirectal cysts (P<0.0001). Perirectal cysts measured diameter=24, 16, and 15mm, respectively). Most bulking agents (93%) and urethral diverticula (90%) showed mass effect upon urethra while perirectal cysts (75%) did not (P<0.0001).

Methods and Materials: Retrospective analysis of 40 consecutive men that underwent radical prostatectomy between April 2016 and July 2018. Two readers (R1/R2) blinded to clinical and histopathologic findings independently evaluated T1, T2, and post-contrast images. The readers were found. Two abdominal radiologists blinded to clinical history, evaluated T1, T2 and post-contrast images. The readers were found.

Results: Mean age was 63 years (range 51-78). 14/40 (35%) patients had ECE. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2. For mpMRI versus PET/MRI, the region-specific results were as follows: AUC of 0.93 (0.87/0.97) for R1 and 0.91 (0.89/0.93) for R2.
Conclusion: Signal intensity and lesion characterisation on magnetic resonance imaging can significantly differentiate bulking agent from urethral diverticulum and periurethral cyst. These findings may help guide clinicians when considering operative intervention.

B-0828 14:48
MP-MRI can exclude prostate cancer progression in patients under active surveillance
L. Schimmöller, T. Ullrich, F. Mones, M. Quentin, R. Rabenalt, P. Albers, G. Antoch, C. Arsov; Düsseldorf/DE
(lars.schimmoeller@med.uni-duesseldorf.de)

Purpose: To assess the ability of multiparametric MRI (mp-MRI) of the prostate to exclude prostate cancer (PCa) progression in patients under active surveillance.

Methods and Materials: One hundred and forty-seven consecutive patients under active surveillance with known PCa with a Gleason score of 3+3 or 3+4 were initially enrolled and received mp-MRI (T2WI, DWI, DCE-MRI) of the prostate at 3T. Of these patients, fifty-five received follow-up MRI after a minimum interval of 12 months with subsequently targeted MR/MRS fusion-guided (FUS-G) plus systematic transrectal ultrasound-guided (TRUS-G) biopsy. Primary endpoint was negative predictive value (NPV) of the follow-up mp-MRI to exclude tumour progression. Secondary endpoints were positive predictive value (PPV), specificity, sensitivity, and cancer upgrade after initial mp-MRI.

Results: Of 55 patients 28 (51%) had a Gleason score upgrade in the re-biopsy. Among the 28 patients showed findings in the follow-up mp-MRI that were suspicious of tumour progress. 16 of 55 patients (29%) showed signs of tumour progress in the follow-up MRI but had a stable re-biopsy. 11 of 55 patients (20%) showed no signs of progress in follow-up MRI and none of these patients had a Gleason score upgrade in the re-biopsy. NPV was 100%. PPV was 64%. Sensitivity was 100% and specificity 98%.

Conclusion: mp-MRI can reliably exclude PCa progression in patients under active surveillance. Over 60% of the patients with signs of tumour progress in follow-up mp-MRI had a Gleason score upgrade in repeat biopsy.

B-0829 14:56
PSAD and ADC values improve the diagnostic accuracy of PI-RADS v2
A.C. Westphalen, F. Fazel, H. Nguyen, M. Cabarrus, K. Hanley-Knudson, K. Shinohara, P.R. Carroll; San Francisco, CA/US (antonio.westphalen@ucsf.edu)

Purpose: To determine if PSAD and ADC values improve the accuracy of PI-RADS v2 and identify patients likely to have high-grade cancer on areas without mpMRI visible lesions.

Methods and Materials: This is a single-reference-centre, cross-sectional, retrospective study of consecutive men with suspected or known low- to intermediate-risk prostate cancer who underwent 3T mpMRI and TRUS-MRI fusion biopsy from 07/15/2014 to 02/17/2018. Cluster-corrected logistic regression analyses were utilized to predict high-grade prostate cancer (Gleason score ≥ 3+4) at targeted mpMRI lesions and on systematic biopsy.

Results: 538 men (median age=66 years, median PSA=7.0 ng/ml) with 780 mpMRI lesions were included. High-grade disease was diagnosed in 371 men, PI-RADS v2 scores of 3, 4, and 5 were high-grade cancer in 8.0% (16/201), 22.8% (90/395), and 59.2% (109/184). ADC values, PSAD, and PI-RADS v2 scores were independent predictors of high-grade cancer in targeted lesions (OR 2.25-8.78; P values < 0.05; AUROC 0.84, 95% CI 0.81-0.87). Increases in PSAD were also associated with upgrade on systematic biopsy (OR 2.39-2.48; P values < 0.05; AUROC 0.69, 95% CI 0.64-0.73). Study limitations include its retrospective single-institution design and use of biopsy rather than prostatectomy specimens of standard of reference.

Conclusion: ADC values and PSAD improve characterization of PI-RADS v2 score 4 or 5 lesions. Upgrade on systematic biopsy is slightly more likely with PSAD ≥ 0.15 and multiple small PI-RADS v2 score 4 or 3 lesions. Author Disclosures: A.C. Westphalen: Advisory Board; 3D Biopsies LLC. Research/Grant Support; GE Healthcare. K. Shinohara: Advisory Board; 3D Biopsy LLC.

B-0830 15:04
Dynamic contrast-enhanced MRI perspectives in the assessment of aggressiveness of urinary bladder cancer
R.T. Abouelkheir, M.E. Abou El-Ghar, T. El-Diasty; El-Mansoura/EG (dr_rasha_taha@hotmail.com)

Purpose: To investigate role of dynamic contrast-enhanced MRI in non-invasive assessment of staging and aggressiveness of bladder cancer correlating with tumour microvesSEL density measurement as indicator of angiogenesis.

Methods and Materials: 81 consecutive patients were referred from our outpatient clinic of Urology and Nephrology Center, Mansoura University with suspected diagnosis of bladder cancer. Morphologic evaluation, dynamic MRI staging and analysis of “Tissue-Signal Intensity curves” were done, compared with histopathological staging. Tumour microvessel density was identified using CD34 immunoactivity. Kappa statistics, Spearman’s correlation test and ROC curves were used for statistical analysis.

Results: High positive correlation was found between dynamic MRI staging and histopathological staging (r = 0.965, p = 0.001), also between the type of tumour curve and pathological grading (r = 0.727, p < 0.001). High positive correlation was found between the tumour micro-vessel density and pathological staging (r = 0.606, p = 0.001), also between the micro-vessel density and tumour grading (r = 0.773, p < 0.001). Among the 81 cases, 71 cases were pathologically proven as malign and 10 cases were pathologically proven as cystitis. Dynamic MRI with “Time-SI curve” succeeded in differentiating malignant bladder tumours from cystitis. 58% of malignant tumours showed type III (descending) curve, 31% showed type II (plateau) and 11% showed type I (ascending) curve, depending on tumour stage, grade and angiogenesis. However, cases diagnosed as cystitis had type I curve.

Conclusion: Dynamic MRI can increase diagnostic accuracy of bladder tumour staging, angiogenic activity and assessment of tumour aggressiveness; it also can differentiate between malignant bladder tumours and cystitis.

B-0831 15:12
Radiologic analysis of multiparametric MRI for preoperative evaluation of pathological grade in bladder cancer
H. Wang, F. Zhang, W. Fu, J. Guan, Y. Guo; Guangzhou/CHN (izhang1105@163.com)

Purpose: To develop and validate a MRI-based radiomics strategy for the preoperative estimation of grading for bladder cancer (BC).

Methods and Materials: A total of 100 BC patients were divided into a training set (n=70) and validation set (n=30). Radiomics features were extracted from MR images (including T2WI, DWI and ADC maps) of each patient and feature subsets were constructed. The 5 feature subsets were subjected to least absolute shrinkage and selection operator (LASSO) algorithm respectively and logistic regression (LR) analysis was applied to develop 5 corresponding radiomics models (T2WI_Model, DWI_Model, ADC_Model, Joint_Model and MaxFea_Model). The diagnostic performance of the 5 models was evaluated using accuracy, sensitivity, specificity as well as AUC (area under the receiver operating characteristic curve) in the independent validation cohorts.

Results: The accuracy, sensitivity, specificity and AUC of the Joint_Model in both training and validation cohorts was 0.8657, 0.8433, 0.8000, 0.9150 and 0.8333, 0.7692, 0.8824, 0.9276 respectively. The AUC of the remaining four models in training and validation cohorts was 0.8300, 0.8083, 0.9183 and 0.8235, 0.7692, 0.9824, 0.9186 respectively, all of which were significantly lower than that of Joint_Model.

Conclusion: The multiparametric MRI based radiomics approach has the potential to be used as a non-invasive imaging tool for preoperative grading in BC. Multicenter validation is needed to acquire high-level evidence for its clinical application.

16:00 - 17:30
Sky High Stage
Interventional Radiology

MY 8
Interventional Radiology
Moderators: N.N.
V. Bérczi; Budapest/HU
B-0832 16:00
Perfusion MRI prediction of progression-free survival in patients with hepatocellular carcinoma treated with TACE
Z. Zhu, X. Zhao, C. Zhou; Beijing/CHN

Purpose: To predict the value of perfusion weighted imaging (PWI) in progression-free survival (PFS) of hepatocellular carcinoma (HCC) after transarterial arterial chemoembolization (TACE).

Methods and Materials: Ninety patients were enrolled in this study from Sep 2014 to Sep 2017. A total of 10 parameters including 4 clinical indexes: gender, age, size of lesion, tumour thrombus; and 6 functional MRI indexes: pretreatment and posttreatment volume transfer constant (Ktrans), exchange rate constant (Ke), and extravascular extracellular space volume ratio (Ve) were analyzed by multivariate analysis. Using independent sample t test, ANOVA, the Kaplan-Meier survival curve, Log-Rank test and Cox regression analysis to determine the prognostic value of DCE-MR parameters and clinical indicators.

Results: Age, pretreatment Ktrans and posttreatment Ktrans were 3 indicators in the prediction of HCC after TACE (P=0.027, P=0.036 respectively).
Purpose: The purpose of this study is to compare the safety and efficacy of using very small size (75um) drug-eluting beads (VS-DEB) with medium-size (100-300um) drug-eluting beads (M-DEB) in transarterial chemoembolisation (TACE) for the treatment of unresectable hepatocellular carcinoma (HCC).

Methods and Materials: 205 consecutive AIS patients treated by MT (tPA and no-tPA) were retrospectively analyzed. Distance between vessel origin and beginning of the thrombus on MRI (3D TOF and/or contrast-enhanced-MRA) and digital-subtracted-angiography (DSA) were measured in millimeters using a curve tool and the same anatomical parameters. DSA pixels were converted in millimeters by measuring 3 internal carotid diameters in MRI and determining the distance from pixels to millimeters.

Results: In tPA-MT group (n=129), Thrombi occurred in 36.4%, and in 6.6% of MT group (n=76) (p<0.001, Student t-test). In tPA-MT group, 27.29% patients had a moderate migration (5-to-10 millimeters), 11.85% patients had a severe migration (>10 millimeters) and another 6% patients had a migration that was not quantitative analyzed by TICI score 2B. In MT group, 69.90% patients had no Thrombi, moderate Thrombi in 6.6%, thrombus' extension in 2.6%: no patient presented distal migration or recanalization. The two groups had the same clinical prognosis (bleeding at 48hours, discharge NIHSS, mRS/death at 3 months). Number of device passes to reach thrombectomy was 1.40 (±1.39) in tPA-MT group, 1.63 (±1.09) in MT group, p=0.06.

Conclusion: IV thrombolysis seems to promote thrombus migration, present in 34.6% of patients in tPA-MT group compared to 6.6% of patients in MT group. This study adds more data concerning IV thrombolysis effects on AIS treatment when MT is also involved.

B-0837 16:20
Focal prostate cancer ablation "out of the rectum and out of MRI":
new tools for fusion-guidance and "super-activesurveillance"
S. Xue; V. Anderson, M. Li, J. Peretti, C. Garcia, P.L. Choyke, P. Pinto, B. Turkbeyi, B.J. Wood; Bethesda, MD/US (xue22@cc.nih.gov)

Purpose: To describe novel approaches and tools for fusion guidance for focal prostate ablation outside of the MRI gantry.

Methods and Materials: Describe the approach, criteria, workflow, software, and hardware enabling MRI TRUS fusion guided prostate focal ablation outside of the MRI gantry, towards an office-based setting. A clinical trial is outlined for approaching focal laser ablation of prostate cancer without requiring MRI. Patients undergo diagnostic MRI only for tissue at risk for under-treatment. Future clinical trials were demonstrated in a custom pelvic phantom, such as augmented reality for transperineal interventions, EM-tracked Foley catheter, hardware and software tools to enable or facilitate focal laser thermal ablation of prostate cancer targets are identified. Hydrodissection, thermocouples, ultrasound monitoring, and composite ablation planning were implemented in patients. Other tools were deployed in phantoms prior to clinical trial deployment.

Results: Early clinical results demonstrate MRI-TRUS fusion system can guide ablation of focal prostate cancer outside of the MRI gantry. Custom software allows for composite laser ablation of targeted tumours via a transperineal approach with or without electromagnetic (EM)tracking. Treatment planning software successfully identifies tissue at risk for under-treatment. Future clinical tools were demonstrated in a custom pelvic phantom, such as augmented reality, an EM-tracked Foley bladder catheter for correction of mis-registration, and a transperineal ultrasound fusion enabling no transrectal imaging or interventions.

Conclusion: Novel tools and approaches are demonstrated for fusion guided focal ablation of prostate cancer outside of the MRI gantry and out of the rectum. This includes fusion ablation in an ultrasound-guided office-like setting, augmented reality for transrectal interventions, EM-tracked Foley catheter, and transperineal prostate interventions fully outside of the rectum.

B-0838 16:24
Safety and outcomes of transarterial chemoembolization using small- versus medium-sized drug-eluting beads for unresectable hepatocellular carcinoma
A.M.K. Abdel Aal, K. Mahmoud, H. El Khudari, N. Aboueldahab, S. Saddekni, A. Gunn; Birmingham, AL/US (akamel@uabmc.edu)

Purpose: The purpose of this study is to compare the safety and efficacy of using very small size (75um) drug-eluting beads (VS-DEB) with medium-size (100-300um) drug-eluting beads (M-DEB) in transarterial chemoembolisation (TACE) for the treatment of unresectable hepatocellular carcinoma (HCC).

Methods and Materials: 205 consecutive AIS patients treated by MT (tPA and no-tPA) were retrospectively analyzed. Distance between vessel origin and beginning of the thrombus on MRI (3D TOF and/or contrast-enhanced-MRA) and digital-subtracted-angiography (DSA) were measured in millimeters using a curve tool and the same anatomical parameters. DSA pixels were converted in millimeters by measuring 3 internal carotid diameters in MRI and determining the distance from pixels to millimeters.

Results: In tPA-MT group (n=129), Thrombi occurred in 36.4%, and in 6.6% of MT group (n=76) (p<0.001, Student t-test). In tPA-MT group, 27.29% patients had a moderate migration (5-to-10 millimeters), 11.85% patients had a severe migration (>10 millimeters) and another 6% patients had a migration that was not quantitative analyzed by TICI score 2B. In MT group, 69.90% patients had no Thrombi, moderate Thrombi in 6.6%, thrombus' extension in 2.6%: no patient presented distal migration or recanalization. The two groups had the same clinical prognosis (bleeding at 48hours, discharge NIHSS, mRS/death at 3 months). Number of device passes to reach thrombectomy was 1.40 (±1.39) in tPA-MT group, 1.63 (±1.09) in MT group, p=0.06.

Conclusion: IV thrombolysis seems to promote thrombus migration, present in 34.6% of patients in tPA-MT group compared to 6.6% of patients in MT group. This study adds more data concerning IV thrombolysis effects on AIS treatment when MT is also involved.

B-0837 16:20
Focal prostate cancer ablation "out of the rectum and out of MRI":
new tools for fusion-guidance and "super-activesurveillance"
S. Xue; V. Anderson, M. Li, J. Peretti, C. Garcia, P.L. Choyke, P. Pinto, B. Turkbeyi, B.J. Wood; Bethesda, MD/US (xue22@cc.nih.gov)

Purpose: To describe novel approaches and tools for fusion guidance for focal prostate ablation outside of the MRI gantry.

Methods and Materials: Describe the approach, criteria, workflow, software, and hardware enabling MRI TRUS fusion guided prostate focal laser ablation outside of the MRI gantry, towards an office-based setting. A clinical trial is outlined for approaching focal laser ablation of prostate cancer without requiring MRI. Patients undergo diagnostic MRI only for tissue at risk for under-treatment. Future clinical tools were demonstrated in a custom pelvic phantom, such as augmented reality for transperineal interventions, EM-tracked Foley catheter, hardware and software tools to enable or facilitate focal laser thermal ablation of prostate cancer targets are identified. Hydrodissection, thermocouples, ultrasound monitoring, and composite ablation planning were implemented in patients. Other tools were deployed in phantoms prior to clinical trial deployment.

Results: Early clinical results demonstrate MRI-TRUS fusion system can guide ablation of focal prostate cancer outside of the MRI gantry. Custom software allows for composite laser ablation of targeted tumours via a transperineal approach with or without electromagnetic (EM)tracking. Treatment planning software successfully identifies tissue at risk for under-treatment. Future clinical tools were demonstrated in a custom pelvic phantom, such as augmented reality, an EM-tracked Foley bladder catheter for correction of mis-registration, and a transperineal ultrasound fusion enabling no transrectal imaging or interventions.

Conclusion: Novel tools and approaches are demonstrated for fusion guided focal ablation of prostate cancer outside of the MRI gantry and out of the rectum. This includes fusion ablation in an ultrasound-guided office-like setting, augmented reality for transrectal interventions, EM-tracked Foley catheter, and transperineal prostate interventions fully outside of the rectum.

Author Disclosure:
Methods and Materials: We retrospectively reviewed the medical records of patients with HCC between September 2010 and June 2018 who underwent TACE using VS-DEB (n=109) versus M-DEB (n=82). Imaging follow-up was done 4-6 weeks after TACE. Tumour response was measured by m-RECIST criteria. Toxicity was assessed using CTCAE v4.0. Overall and progression-free survival rates were calculated using Kaplan-Meier curves.

Results: The study included 191 patients with mean age of 63.4 (SD=8.6) years. The most common aetiology of cirrhosis was hepatitis C virus (58.1%). There was no difference in the demographics or the BCLC stage between both groups. In BCLC A and B patients, complete response, objective response and disease control was higher in the VS-DEB group (26.8%, 71.8% and 91.6% respectively) compared to the M-DEB group (3.9% [p=0.001], 45.1% [p=0.003] and 78.4% [p=0.039]). Overall survival in BCLC A and B patients was higher in the VS-DEB group compared to M-DEB (p=0.05). There was no difference in the progression-free survival between both groups. There was no significant difference in grade 3 and 4 toxicity between the two groups.

Conclusion: In BCLC A and B patients, the use of VS-DEB offers superior radiologic response and survival advantage compared to M-DEB, without significant incidence in toxicity.

Author Disclosures:
A.M.K. Abdel Aai: Consultant; boston scientific. Research/Grant Support; boston scientific.

B-0839 16:28
MRI-CT fusion imaging before high-selective lumbar sympatheticolysis
B. Reichardt; A. Örnek; V. Nicolas; C. Maier; Essen/DE; Bochum/DE

Purpose: To reduce side effects and the amount of alcohol applied, highly selective sympathicolysis of individual ganglia is desirable. The sympathetic trunk and individual ganglia are not always visible in CT imaging. We expected from an MRI-CT image fusion before intervention a possibility to identify single ganglia and to lyse them highly selectively.

Methods and Materials: 14 patients received a native lumbar MRI (DWIBS, Shrinkei, T1, STIR and PDWs) before sympathicolysis. After successful detection of a single ganglion from the side to be treated, one day later a preinterventional CT spiral of the lumbar spine in prone position was performed. The CT and the STIR or PDW fs sequence from the MRI data set were transferred to fusion software prior to puncture. After successful matching, highly selective sympathicolysis was performed with 1.5ml 95% alcohol.

Results: All interventions were successful and pain reduction was achieved. Apart from dysesthesia of the genitofemoral cutaneous nerve, no side effects occurred. The automated MRT/CT image fusion worked in 12/14 patients, 2 data sets had to be readjusted manually.

Conclusion: MRI/CT image fusion before sympathicolysis allows a highly selective intervention at the single sympathetic ganglion sympathetic ganglion, thus reducing the amount of alcohol to be administered and avoiding unwanted side effects. The technique is equally useful for other interventional treatments in which a CT alone is not sufficient.

B-0840 16:32
Lumbar sympathetic trunk in MRI and CT: its visibility and distance to two anatomical landmarks for pre-interventional planning
B. Reichardt; A. Örnek; V. Nicolas; C. Maier; Essen/DE; Bochum/DE

Purpose: The lumbar sympathetic trunk’s (LST) distance to two anatomical landmarks, the costal process and medial margin of the psoas muscle, was assessed due to its use as landmarks for lumbar sympathetic blocks: the costal process for fluoroscopic guided techniques and the psoas major for CT- and MRI-guided techniques. Based on the measurements, we evaluate the trunk’s visibility in MR and CT images for accurate needle positioning.

Methods and Materials: Retrospective analysis of 42 CT and MRI dataset before sympatholysis. LST’s distances to the psoas major’s medial margin and to the base of the lumbar vertebrae’s costal process were measured on the levels L2/3, L3/4 and L4/5. CT protocol: Th12 to S1 (100 kV, 60mA, 1mm slice thickness). MRI protocol: T1, T2, PDW/STIR, 1mm 3D-DWIBS or 3D-Shrinki with MIP for neurography.

Results: LST’s mean distance to the psoas major was 0.4 mm at L2/3, 3 mm at L3/4 and 4.6 mm at L4/5. The mean distance to the costal process was 32 mm at L2/3, 34 mm at L3/4 and 33 mm at L4/5. In MR and CT imaging, a structure could be determined as the LST correlating to the measurements with decreasing possible identification from cephalad to caudal levels.

Conclusion: The costal process is a usable landmark for fluoroscopic guidance and the psoas major for CT- and MRI-guided techniques. The LST is clearly visible in MR and CT images, which gives both techniques a decisive advantage over fluoroscopy concerning interventions at the LST, due to a visible target.
B-0844 16:48
The anatomic options of vessels and haemodynamic redistribution of the blood flow at selective intra-arterial chemotherapy (SIAC) in children with an intraocular retinoblastoma
I. Pogrebnyakov, I. Trofimov, A.V. Kukushkin, E. Virshke, B. Dolgushin; Moscow/RU (i.pogr@mail.ru)

Purpose: Describing the methodology of a SOAI in organ-preserving treatment of children with an intraocular retinoblastoma and demonstrating the various ways of supplying agent delivery to a tumour.

Methods and Materials: 316 SIAC procedures to 110 children (129 eyes) have been performed from 2011 to 2017. 2 methods of SOAI were applied: 1) the microcatheter technique - superelective catheterization of an eye artery or collateral branches of an ECA at blood flow haemodynamic redistribution; 2) the micro-balloon technique.

Results: Technical success was 95.8% (303 procedures). 245 procedures with the use of a microcatheter infusion were carried out in: a. ophthalmica - 196 (80%); a. meningea media - 27 (11%); a. intercarotis - 20 (8.2%); a. temporal superficial - 25 (10.4%); a. facialis - 1 (0.4%). From 61 procedures with using of micro-balloon 58 were successful. We did not manage to put a balloon more distally than the place of an entry of an eye artery in 3 cases. Unsuccessful attempts - 13 cases: failure of catheterization of a femoral artery - in 3, a kinking/coiling of the ICA - in 3, a vascular collapse as a result of reaction to contrast agent and/or mechanical impact on ICA - in 3, lack of contrasting of a retina - in 3, an occlusion of an ICA - in 1.

Conclusion: Use of various techniques for drug delivery to an eye tumour allows to achieve the maximum effect and does not depend on anatomic options and blood flow haemodynamic redistribution in the main vessels of an eye.

B-0845 16:52
The role of selective intraarterial and intravital chemotherapy in organ-preserving treatment of the children with an intraocular retinoblastoma
I. Pogrebnyakov, B. Dolgushin, I. Trofimov, A.V. Kukushkin, E. Virshke; Moscow/RU (i.pogr@mail.ru)

Purpose: Improving of organ-preserving treatment results of the children with an intraocular retinoblastoma (IRB) with local selective intraarterial (IAC) and intravital chemotherapy methods.

Methods and Materials: 110 children (129 eyes) with a one - and bilateral retinoblastoma were included in the study. All patients/eyes were divided into 2 groups. The 1st group included 99 children/116 eyes who received SIAC as a combined treatment if their previous treatment was not effective enough. The 2nd group included treatment-naive 11 children/13 eyes with unilateral and bilateral IRBs who received SIAC as the first means of treatment.

Results: In the first group, 95 of 116 eyes were saved. The globe salvage by Kaplan-Meier was reached in 94.5% in 1 year, 88.5% in 2 years, 86.5% in 3 years, 82.9% in 4 years and 75.0% from 4th to 6th years. Patients were followed up to 30.3±16.81 month, and 23.7±12.45 months was the relapse-free period. In the second group, 12 of 13 eyes were retained. The globe salvage by Kaplan-Meier was reached in 92.3% in 1 and 2 years. Patients were followed up to 13.5±5.3 months, and 23.7±12.45 months was the relapse-free period.

Conclusion: Local chemotherapy is an effective and perspective organ-preserving method. It can be used as a complex therapy part of advanced and refractory IRB forms and as a monotherapy of the primary identified IRB.

B-0846 16:56
Intermediate-stage HCC, SIRT and balloon-occlusive micro-cather: the right way?
A. Paladini1, G.E. Vallati2, G. Pizzì2, F. Cappelli2, D. Beomonte Zobel2, E.M. Amodeo2, A. Borzelli3, Novara/IT, 2Rome/IT, 3Naples/IT (andreapaladini1988@gmail.com)

Purpose: The use of selective internal radiation therapy (SIRT) with 90-Yttrium resin microspheres (Y90)-ms for hepatocellular carcinoma (HCC) is increasing. The use of Occlusafe microcatheter (Terumo, Japan) as new balloon antireflux microcatheter for Y90-ms infusion is a promising innovative technique potentially improving dose distribution within tumour while sparing normal liver. We evaluated the benefits of using Occlusafe microcatheter in terms of dose distribution as predictor of patients’ outcome.

Methods and Materials: A prospective enrollment of 10 patients with unresectable HCC who underwent planning pre-SIRT phase was performed. Volumes of the normal liver and tumour were contoured using a software based on pre- and post-treatment CT and SPECT/CT images. Two radiologists performed a qualitative volumetric evaluation in a blinded and randomized fashion using mRECIST parameters. Quantitative analysis of activity distribution based on pre- and post-treatment imaging and dose gradient was performed using a home-made tool for tumour/non-tumour (T/N) evaluation.

Results: Higher T/N ratio was observed on pre- and post-SIRT images thanks to the use of Occlusafe microcatheter compared with our historical cohort. In particular, the agreement of dose-distribution pre- and post-SIRT was observed in 100% patients, higher than 80% previously reported by our group. The evaluation of the two radiologists, using mRECIST parameters, showed a high dose-outcome relationship.

Conclusion: Volumetric and activity distribution measurements of superselective angiography during pre- and post-treatment confirm Occlusafe microcatheter as an improved strategy for increase T-N ratio and dose distribution prediction in SIRT procedure thus increasing the predictive capability of treatment planning.

B-0847 17:00
Robot-assisted percutaneous placement of K-Wires during minimal-invasive interventions of the spine
M.H. Albrecht1, Y. Croissant1, C. Czerny1, T.J. Vogl1, S. Zangos2; 1Frankfurt a. Main/DE, 2Döppingen/DE (MontzAlbrecht@gmx.net)

Purpose: To assess the accuracy and time requirements of image-guided percutaneous K-wire insertion in the spine using an advanced robot assistance device for needle guidance and to demonstrate a radiation-free workflow for the physician.

Methods and Materials: A planning CT-scan was acquired of a cadaver specimen and analyzed using a 3D-interventional software integrated in the robotic device. The optimal needle path was simulated and the needle holder of the robot was used for guidance during K-wire insertion. Twenty-four K-wires were inserted percutaneously in a transpedicular approach in 85:54% without positioning K-wires in the transverse vertebrae: thoracic (T) 2, 7-12 and lumbar (L) 1-5. A post-procedural CT scan was performed to analyse the accuracy of the K-wire insertion.

Results: All procedures were carried out without any perforation of the pedicle wall. The mean duration of planning the intervention path was 2:54±2:22min, mean positioning time was 2:04±0:42min and the mean time for K-wire insertion was 2:13±0:54min. In total, the average intervention time was 7:10±3:06min per pedicle. Compared to the planning, the K-wire position showed a mean deviation of 0.5mm in the vertical-axis and 1.2mm in the horizontal-axis. The average intervention path length was 8.1cm.

Conclusion: Our findings show a high accuracy in robot-assisted K-wire insertion during spinal interventions without any exposure of the operator to radiation.

Author Disclosures: M.H. Albrecht: Speaker; Received speaker fees from Siemens and Bracco.

B-0848 17:04
Predictive 99mTc MMA-SPECT/CT dosimetry in patients with locally advanced inoperable hepatocellular carcinoma treated by selective internal radiotherapy with 90Y resin microspheres
A.-L. Hermann1, G. Chatellier2, A. Dieudonne1, M. Ronot1, M. Sanchez1, H. Pereira1, G. Chatellier1, E. Garin3, R. Leblanc4, V. Vilgrain1; 1Paris/FR, 2OICLES/F, 3Rennes/FR (Annelaure.hermann@gmail.com)

Purpose: To predict survival and tumour response in patients with locally advanced and inoperable hepatocellular carcinoma (HCC) treated by SIRT (yttrium-90 [90Y] resin microspheres) using tumour-absorbed-dose calculated prior to therapy.

Methods and Materials: Among 184 patients from the SARAH trial who received SIRT, 121 and 109 were included in dose/survival and dose/tumour response analyses, respectively; CT, 99mTc-MMA-SPECT/CT and 99mTc SPECT/PET were centralized. Tumour-absorbed-dose was computed using...
24-{99m}Tc-MAA-SPECT/CT. Visual agreement between CT-MAA-{99m}Y (optimal, suboptimal, not optimal), overall survival (OS) and tumour response on 6-months follow-up CT (RECIST 1.1) were assessed.

Results: In the dose/survival population, median OS was 9.3 months (95% CI, 6.7 to 10.7) and median tumour-absorbed-dose was 112Gy (IQR, 67.8 to 220). Patients who received ≥100Gy (n=67) had significantly longer survival than patients who received <100Gy (median 14.1 months; 95% CI, 9.6 to 18.6 v. 6.1 months 95% CI, 4.9 to 6.8, respectively; P < .0001). Among them, those with optimal agreement (n=24) had the longest median OS (24.9 months; 95% CI, 9.6 to 33.9). In the dose/tumour response population, tumour-absorbed-dose was significantly higher in treatments leading to DC v. no-DC (median 121Gy IQR, 86.0 to 190 v. 85.1Gy; IQR, 58.4 to 164, respectively, P = .0204), while it was not significant with OR v. no-OR (P = .20). The highest DC rate (77.5%) was observed with tumour-absorbed-dose ≥100Gy and optimal agreement (n=40).

Conclusion: Tumour-absorbed-dose computed on 24-{99m}Tc-MAA-SPECT/CT is significantly associated with OS and DC; the most benefit is observed with both tumour-absorbed-dose ≥100Gy and optimal visual CT-MAA-{99m}Y agreement.

B-0849 17:08

Trans arterial embolization of non-variceal upper gastrointestinal bleeding: is the use of ethylene-vinyl alcohol Copolymer as safe as Coils?

M. Tipaldi1, M. Krokidis2, G. Orgera3, A. Rebonato3, C. Ambroggi4, M. Rossi3; 1Rome/IT, 2Cambridge/UK, 3Perugia/IT (tipaldi.andrea@gmail.com)

Purpose: The safety of liquid embolics over the conventional coils for the treatment of non-variceal upper gastrointestinal bleeding (UGIB) approach is still unclear. Purpose of this study is to assess the safety of ethylene- vinyl alcohol copolymer (EVOH 6%) over coils in the treatment of UGIB.

Methods and Materials: All the upper gastrointestinal tract embolization procedures performed in a single center in a 6-year period were reviewed. Patients embolised with coils (Group A) versus those embolised with EVOH 6% (Group B) were compared. Technical/clinical success, bleeding recurrence, complication and mortality rates were analyzed.

Results: A total 71 patients were included in the study (41 Group A and 30 Group B). Coagulopathy was present in 21% of Group A and 46% of Group B patients (p<0.05). Technical and clinical success was 97.6 and 92.7% for Group A, and 100 and 93.3% for Group B respectively (p<0.05). Ten patients (17% Group A; 10% Group B) rebled within the first 72h and all of them were re-treated successfully with a second embolization. In Group A one major complication (bowel ischaemia) occurred. No complication occurred in Group B. The survival rate in the first 30 days was 90.3% for group A and 90% for group B (p>0.05).

Conclusion: This study demonstrated EVOH 6% appears to be as safe and effective as coils in the treatment of non variceal UGIB.

B-0850 17:12

Prospective monocentre pilot study of intrahepatic mitomycin C infusion after radioembolisation with Y-90 in chemo refractory liver dominant metastatic breast cancer patients

B.M. Aarts1, E.G. Klompenhouwer1, R.C. Dresen2, C. Derose2, A. Laenen2, R.G.H. Beets-Tan1, P. Neven2, H. Wildiers2, G. Maleux2, Amsterdam/NL, 1Leuven/BE (b.aarts@nki.nl)

Purpose: In this pilot study we evaluated the safety of intrahepatic Mitomycin C (MMC) infusion after radioembolization with Yttrium (Y90)-labelled microspheres in chemo resistant LMBC patients.

Methods and Materials: Sixteen LMBC patients were included in this pilot study from 2012-2018 and first received Y90. The response after Y90 was evaluated with MRI, PET and laboratory tests. After assessment of no progression of disease, Mitomycin C infusion was administered in different dose cohorts; A: 6mg in 1 cycle, B: 12 mg in 2 cycles, C: 24 mg in 2 cycles and D: max 72 mg in 6 cycles. In cohort D the response was again evaluated after every 2 cycles and continued after assessment of no progression of disease. Toxicities were measured according to common toxicity criteria adverse events (CTCAe) version 5.0.

Results: Sixteen patients received Y90 treatment. Three patients showed disease progression and 1 patient had serious side effects of Y90, and consequently, were excluded for further intra-arterial therapy. The intended dose of MMC was adjusted in 5 out of the 12 patients due to progressive disease (n=3) and biochemical toxicity (n=2). No grade 3 toxicity levels or higher were reported after MMC infusion. Three grade 2 toxicities were reported consisting of thrombocytopenia (n=1), leucopenia (n=1) and increase in bilirubin levels (n=1).

Conclusion: The combined treatment of intrahepatic infusion of MMC after Y90 therapy is safe with a low toxicity profile when MMC is administered in different escalating dose cohorts and adjusted based on clinical, radiological and biochemical parameters.

B-0851 17:16

In the ablation of colorectal cancer liver metastases with a new generation MW system nodule size ≤2 cm independently predicts worse local tumour progression free survival

P. Marr1, A. Della Corte2, F. Ratti1, F. Cipriani1, S. Gusmini1, M. Salvioni1, M. Venturini1, T. Aldighetti1, F. De Cobelli1, Milan/IT, 2Vimodrone/IT, 3Bergamo/IT (dellacorte.angelo@hsr.it)

Purpose: In the ablation of colorectal cancer liver metastases (CRLM) high-power microwave generators present theoretical advantages in terms of local tumor control. We aimed to evaluate the outcome of CRLM microwave ablation (MWA) with a new generation system, assessing potential predictors of local tumour progression free survival (LTPFS).

Methods and Materials: From November 2014 to June 2018, 31 patients underwent 34 percutaneous, laparoscopic or open MWA procedures for the treatment of 51 CRLM with a 2450MHz/100W generator. Contrast-enhanced CT/MRI were used to assess 1-month complete ablation and LTP at follow up.

Results: Technical success and complication rates were respectively 96% and 4.9%. At the time of the analysis 11/51(21.6%) CRLM had locally progressed and overall estimated 1- and 2-year LTPFS rates for all 51 ablated CRLM were 84% and 63%, respectively. At univariable analysis CRLM diameter ≤2cm was the strongest predictor of worse LTPFS with 1-year LTPFS 64% vs 85% (of ≤2cm nodules), p=0. In a multivariable Cox regression model with CRLM number, RAS mutation, timing of CRLM development, history of post-MWA chemotherapy, number of pre-MWA chemotherapy cycles and time of chemotherapy discontinuation before ablation, nodule proximity to large vessels, energy administration, and size of primary colon cancer, CRLM diameter ≥2cm independently predicted worse LTPFS.

Conclusion: Our preliminary data show that the outcomes of MWA for CRLM with a new generation system are comparable with those reported in the literature and nodule size, with a threshold of 2 cm, represents the strongest predictor of worse LTPFS.
Thigh muscle (r=0.83, p<.001) and ASM (r=0.83, p<.001), and modified ASM, and modified ASM.

Results:

The area of thigh muscle was the area of psoas and erector spinae muscles measured at the level of L3-4 on visceral fat CT between -30 and 150 HU. The area of thigh muscle in both sides was measured on CT. Appendicular muscle mass (ASM) was achieved in 4 groups with visceral fat CT. The area of perivertebral muscle (range: 53-83), M:F=69:661) were included. The area of perivertebral muscle was well correlated with right and left hand powers, standard and rapid walking speeds were also measured. The Pearson’s correlation was used in statistics.

Conclusion:

The area of perivertebral muscle on visceral fat CT was well correlated with widely used sarcopenia indexes from muscle imaging and functional indexes.
B-0857 08:50
Feasibility study of reducing artifacts of spine metal implants for patients at 3.0T magnetic resonance imaging
G. Feste1, Y. Ge2, Y. Wei2, Zhengzhou/CN, 2Chengdu/CN (gaofeit50@163.com)

Purpose: To investigate the feasibility of reducing artefacts of spine with removal metal artefacts sequence (WARP) at 3.0T MRI.

Methods and Materials: 29 patients after spine surgery with mental implants which including 15 cervical and 14 lumbar spine cases were prospectively included. The image quality of WARP sequences and conventional sequences were compared (5 score evaluation scale) as well as the signal to noise ratio (SNR) and contrast noise ratio (CNR) of the image artefacts. The scanning time was recorded. Paired t-test and Mann-Whitney test were used respectively to compare the SNR and CNR, and qualitative scoring between the two sequences. P <0.05 was considered to indicate a significant difference.

Results: The image distortion and blur of the WARP sequences were obviously reduced compared with the conventional sequences. The SNR and CNR of the WARP sequences’ artefacts were lower than that of the conventional sequences (All P <0.05). The image quality scores of WARP sequences in cervical and lumbar spines[4(3 ~ 5) and 4(3 ~ 5)]were higher than that of conventional sequences[3(2 ~ 4) and 3(2 ~ 4)] (P <0.05). The scanning time of cervical spines in WARP sequence[14 min 9 s]was increased by 64 s(8.2%), and the time of lumbar spines[13 min 41 s]decreased by 9 s(1.1%).

Conclusion: The WARP sequences at 3.0 T could effectively reduce the artefacts of metallic prostheses without prolonging the scanning time at 3.0T MRI.

B-0858 08:54
Noise-optimised virtual monoenergetic imaging of dual-energy CT: effect on metal artefact reduction in patients with lumbar internal fixation
Y. Zeng1, K. Deng1, H. Yang2, Y. Tan3, J. Liu4, D. Geng5, J. Zhang1, 1Shanghai/CN, 2Changsha/CN (18211220088@fudan.edu.cn)

Purpose: The purpose of this study was to evaluate the effects of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on reducing metal artefacts compared to traditional virtual monoenergetic imaging (VMI) and linearly blended (M,0.6) reconstructions in patients with lumbar metal internal fixation in dual-energy CT (DECT).

Methods and Materials: Forty patients who underwent DECT were evaluated in this retrospective study. Images were reconstructed with M,0.6 as well as VMI+ and VMI at 10keV intervals from 40keV to 190keV. Attenuation and noise were measured in the hyperdense artefacts, the hypodense artefacts, the spinal canal, the abdominal aorta (AA), and the inferior vena cava (IVC). An artefact index (AI) was calculated. A subjective evaluation was conducted of the metal-bone interface, the surrounding soft tissue, the spinal canal, the AA, and the IVC.

Results: The AI values for the hypodense artefacts, the spinal canal, and the IVC were lowest in the 130keV VMI+ series, for the hyperdense artefacts in the 120keV VMI+ series, and for the AA in the 190keV VMI+ series. With the exception of the hypodense artefacts, AI values were lower compared to the M,0.6 images and all of the VMI series. The subjective image quality was greatest at 130keV VMI+ for the metal-bone interface, the surrounding soft tissue, the AA, and the IVC, as well as at 120keV VMI+ for the spinal canal. With the exception of the AA, those rating scores were higher compared to the M,0.6 images and the entire VMI series.

Conclusion: DECT with high-kV VMI+ efficiently reduce metal artefacts and show superior image quality in patients with lumbar internal fixation.

B-0859 08:58
Increased lateral meniscal slope is associated with greater risk of lateral bone contusion in noncontact ACL injury
J. Li1, K. Li. Chongqing/CN (tianwei19900911@163.com)

Purpose: To investigate the effect of an increased lateral meniscal slope (LMS) as measured on magnetic resonance imaging (MRI) on the likelihood of bone contusions in noncontact ACL injury.

Methods and Materials: From January 2013 to March 2018, a retrospective review of all ACL reconstruction surgeries was performed. 56 patients were included as study group (ACL-bone contusion group), who were matched to 56 control patients (isolated ACL group). Presence of bone contusion was determined from preoperative magnetic resonance images (MRIs). The LMS, LPTS, MMS and MPTS were measured on the MRI in a blinded fashion. The predictors of lateral bone contusions (LFC, LTP or both) including age, sex, BMI, LMS, LPTS, MMS and MPTS were examined by multivariable logistic regression. Associated findings including concomitant meniscal lesions and intra-articular cartilage damages were also calculated by multivariable logistic regression.

Results: The mean LMS in the study group was 6.51±3.52, which was significantly larger than that in the control group (3.82±2.70; P<0.01). In addition, increased LMS was significantly (P<0.01) associated with lateral bone contusions (lateral femoral condyle and lateral tibial plateau) in noncontact ACL injury. However, LPTS, MPTS and MMS were not significantly associated with bone contusions. Moreover, the presence of lateral contusions are associated with concomitant lateral meniscal tears and cartilage damages (<0.01).

Conclusion: An increased LMS is associated with increased risk of lateral bone contusions in noncontact ACL injury. LMS could be considered by orthopaedic surgeons as part of the preoperative evaluation of ACL injury.

Author Disclosures:
J. Li; Author; Ke Li.

B-0860 09:02
Knee MR using a body coil is equivalent to CT in measuring the TT-TG distance: removing the systematic bias
L.U. Alvaazouglu1, M.K. Toma1, P.H.C. Arruda2, O.A. Ezzedine1, A. Ormond1, M. Nico1, F. Silva1, Sao Paolo/BR (lais.epmo@gmail.com)

Purpose: To compare measurements related to patellar instability between MR and CT in asymptomatic volunteers, and to evaluate interobserver agreement between MR and CT measurements.

Methods and Materials: 17 asymptomatic volunteers were enrolled. A low-dose CT and an MR T1w axial sequence of the CT were performed simultaneously in the same sitting position. The subjects were asked to relax and chose the specific slices to assess the following landmarks: cartilaginous trochlear groove (CTG), bony trochlear groove (TG), center of insertional patellar tendon (PT) and centre of tibial tuberosity (TT). The chosen slices were compared and disagreements were solved in consensus. Then, the chosen slices were superimposed and the following measurements were assessed independently: PT-CTG distance, PT-TG distance, TT-TG distance. The chosen slices were compared and disagreements were solved in consensus. Then, the chosen slices were superimposed and the following measurements were assessed independently: PT-CTG distance, CTG-TT distance. Statistical analysis (SPSS 20.0) consisted of intraclass correlation coefficient (ICC) to compare MR and CT measurements and interobserver agreement between MR measurements.

Results: Good agreement was observed between CT and MR measurements (p<0.0001). The mean PT-CTG distance on CT and MR were 17.3±4.2 and 16.5±4.1 mm, respectively. When considering TT-TG distance (bony parameters), the mean values were respectively 17.1±2.4 mm and 16.2±3.7 mm. Inter-rater reliability was excellent for all measurements and for all slice choices on both imaging methods.

Conclusion: TT-TG measures in MR using a body coil showed excellent reproducibility when compared to CT using both soft-tissue and bony parameters, removing the bias of knee flexion when using the dedicated knee coil.

B-0861 09:06
Quantitative magnetic resonance imaging in patellar tendon-lateral femoral condyle friction syndrome: relationship with subtle patellofemoral instability
J. Li1, H.-T. Yang2, Chongqing/CN (tianwei19900911@163.com)

Purpose: To investigate the correlation of patellar tendon-lateral femoral condyle friction syndrome (PTLFCFS) with subtle patellofemoral instability to explore its pathogenesis.

Methods and Materials: One hundred knees of 80 patients with PTLFCFS were analysed retrospectively by retrieving magnetic resonance (MR) imaging data over a 3-year period from our database. Seven quantitative parameters for evaluating patellofemoral stability were measured on MR images, including the Insall-Salvati ratio, tibial tuberosity-trochlear groove (TT-TG) distance, trochlear groove depth, medial trochlear/lateral trochlear length (MT/LT) ratio, medial trochlear/lateral trochlear height (MH/LH) ratio, lateral patellar angle (LPA) & lateral trochlear inclination (LTI) angle. These patellofemoral parameters were compared between the PTLFCFS group & the normal control group (n = 88), & receiving operator characteristic (ROC) curve analysis was conducted to determine the specificity & sensitivity of these parameters.

Results: The trochlear depth, MT/LT, LPA, & LTI angle were significantly lower (P <0.001) & the Insall-Salvati ratio was significantly higher (P <0.001) in the PTLFCFS group. However, the TT-TG distance & MH/LH ratio had no significant difference (P = 0.231 & 0.073, respectively). The area under ROC curve of the Insall-Salvati ratio, trochlear depth, MT/LT, LPA, & LTI angle were 0.925, 0.784, 0.8, 0.731, & 0.675, respectively. The efficiency of the Insall-Salvati ratio was the highest among those 5 parameters.

Conclusion: This study verified the presence of subtle patellofemoral instability by measuring various patellofemoral parameters in patients with PTLFCFS. It confirmed that PTLFCFS is associated with subtle patellofemoral instability & could substantially explain the pathogenesis of PTLFCFS.

Author Disclosures:
J. Li; Author; Hailang yang.
B-0862 09:10
Clinical utility of fat suppressed 3-dimensional CAIPIRINA SPACE MRI of the knee in adults
S. Lee, G.Y. Lee, S. Kim; Seoul/KR (lish1220@gmail.com)
Purpose: This study was purposed to evaluate the clinical utility of 3-dimensional CAIPIRINA SPACE MRI of knee compared to 2D conventional method in the symptomatic patients.
Methods and Materials: Following internal review board approval and informed consent, in 3 months we enrolled 93 symptomatic patients (37 males and 56 females) who underwent knee MRI with both 2D conventional and 3D CAIPIRINA methods. Among them, 17 patients had arthroscopic surgery after MRI study. Two radiologists evaluated pathologic MRI findings by scoring systems in each anatomic region. We measured signal to noise ratio (SNR) in 3D CAIPIRINA MRI. Using intraclass correlation coefficient (ICC), inter-reader agreement, intra-reader agreement and inter-method agreement were applied. In 17 patients who underwent arthroscopy, we evaluated diagnostic performance of both two methods.
Results: The 3D CAIPIRINA MRI had good to excellent inter-reader agreement (ICC, 0.73 - 0.96) and intra-reader agreement (ICC, 0.88-1.0). Inter-method agreement between the 2D conventional and 3D CAIPIRINA images was also good to excellent (ICC, 0.8-1.0). The diagnostic performance of 3D CAIPIRINA MRI was equal or better to the one of 2D conventional MRI. The SNR of 3D-CAIPIRINA MRI showed mean, 14.51 and standard deviation 5.17. Mean scan time of 3D CAIPIRINA MRI was 4 minutes 43 seconds and the one of 2D conventional method was 17 minutes 27 seconds.
Conclusion: In the real practice, the 3D CAIPIRINA MRI could have equal or better performance compared to 2D conventional MRI, to evaluate pathologic findings of symptomatic patients with faster scan time.

B-0863 09:14
The most accurate measurement of TT-TG distance is through the 2/5 point of femoral trochlear notch
Y. Qi, Z. Wang; Tianjin/CN (qywjdyt@126.com)
Purpose: To find a point at femoral trochlear notch to accurately measure tibial tuberosity-trochlear groove distance (TT-TG), and correlate TT-TG with the ratio of lengths of patellar ligament and patellar (PLL/PL) and length of medial and lateral patellar retinaculum (MPR and LPR), using CT scan and image fusion.
Methods and Materials: 60 volunteers (average age, 31.87±7.28y; range,18-40y; men:women, 42:18) underwent CT (GE Discovery CT750) of knee joints, 30 left and 30 right knees. Additionally, 100-120kV, current: 180-200mAs. 5 points were divided equally at femoral trochlear notch on reformatted median sagittal plane. TT-TG was measured on corresponding axial fused images, the distances between the vertical lines of prominent tibial tuberosity and each of the five points at femoral trochlear notch. ANOVA and Mann-Whitney U tests were used to analyse data. PLL/PL was measured on median sagittal images which was the ratio of length of patellar ligament to the maximum distance of patella. The lengths of MPR and LPR were measured on axial images of the maximum patella transverse diameters. The correlation between each 5 TT-TG and PLL/PL and the lengths of MPR and LPR were calculated using Spearman rank correlation tests.
Results: The most accurate measurement of TT-TG was the vertical line through 2/5 point of femoral trochlear notch (F=0.668, p=0.615). TT-TG between genders and sides showed no difference (F=0.116, 0.456). There was no correlation of five TT-TG with PLL/PL and the lengths of MPR and LPR (p=0.541-0.909, p=0.068-0.770).
Conclusion: The most accurate measurement of TT-TG is the vertical line through 2/5 point of femoral trochlear notch on axial CT fused images, and the distance is irrelevant to PLL/PL and the lengths of MPR and LPR.

B-0864 09:18
Coll-HA versus bone marrow stimulation for chondral and osteochondral lesion: a 2-year randomized controlled trial
C. Tamburrano, M. Busacca, biologinaIT, Bologna/IT (chiaratamburrano@libero.it)
Purpose: To assess the benefit provided by a collagen-hydroxyapatite (coll-HA) multilayer scaffold for the treatment of chondral and osteochondral knee lesions.
Methods and Materials: The coll-HA scaffold was compared to bone marrow stimulation (BMS) in a multicenter randomized controlled trial: 100 patients affected by symptomatic grade III-IV lesions were evaluated for up to 2 years (51 study group, 49 control group). Primary efficacy measurement was IKDCsubj score at 2 years; secondary were: KOOS, IKDC, Tegner and VASpain scores at 6, 12 and 24 months. Tissue regeneration was evaluated with MRI Mocart score at 6, 12 and 24 months. An external independent agency ensured data correctness and objectiveness.
Results: A significant improvement of all clinical scores was obtained in both groups, although no overall significant differences were detected between treatments. The subgroup of patients affected by deep osteochondral lesions (i.e. Outerbridge IV and OCD) showed a significantly better IKDCsubj outcome (p<0.036) in the coll-HA group. Severe adverse events were documented in 3 patients in the coll-HA group and in 1 in the BMS group. The Mocart score showed no statistical difference between groups.
Conclusion: This biomimetic implant showed no benefit compared to BMS for chondral lesions, but this procedure can be considered safe and a suitable option for the treatment of osteochondral lesions.

B-0865 09:22
Application of simultaneous multi-slice TSE in high-resolution hand and foot imaging
G. Feifei, Y. Qi, Z. Wang; Chengdu/CN, gaofei150@163.com
Purpose: To investigate the feasibility of simultaneous multi-slice (SMS) technique in hand and foot imaging by comparing it with the Routine TSE sequence and IPAT in regards to imaging time and image quality.
Methods and Materials: 40 patients underwent a MAGNETOM Prisma 3T MR scanner. A sixteen-channel foot/ankle coil and a sixteen-channel hand/wrist coil were used. The MR exam included routine TSE, TSE with iPAT (iPAT-TSE), and a prototype SMS-TSE sequence. The apparent signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Image quality was rated by radiologist blindly based on a five-point evaluation.
Results: The CNR and SNR were statistically analyzed using LSD-t test. Image quality scores were tested for statistical significance by using Games-Howell test.
Conclusion: The SMS-TSE sequence can be used to obtain high quality images for the hand and foot at 3T with 45% less acquisition time than the standard TSE sequence.

B-0866 09:26
Cinematic MRI of the wrist: initial study for instability of the wrist in correlation to fluoroscopy and x-ray findings
B. Reichardt, A. Omek, V. Nicolas, Essen/DE, Rebochum/DE (benjamin.reichardt@uk-essen.de)
Purpose: Initial study on scapholunary ligamentary instability and ulnar impactation syndromes in MRI compared to radiography and fluoroscopy. The aim of this study was to develop an MRI protocol for the evaluation of the wrist during continuous active movement to show that dynamic imaging of the wrist is feasible and to show that the resulting anatomical images allow the measurement of metrics commonly used for the dynamic instability of the wrist. Methods and Materials: 10 probands and 10 patients with wrist-pain over the SL-Slit (healthy), 8 mm in patients; correlating to findings in DRUJ subluxation ratio were 0.04 (supination), 0.10 (neutral), and 0.14 (pronation) and 0.15, 0.25 and 0.16 in patients. SL interval was 1.43mm (healthy) and 2 (patients) for neutral, ulnar deviation, radial deviation positions, and increased to 1.64 mm (healthy) during the clenched-fist maneuver and 3.1mm in patients.
Conclusion: This study demonstrates the initial performance of active-MRI of scapholunate instability and ulnar-impactation syndrome which may be useful in the investigation of dynamic wrist instability.

B-0867 09:30
Comparison of patient satisfaction for wrist examinations in cone beam-computed tomography and multidetector-computed tomography
J. Neubauer, C. Reidelbach, E. Kotter, S. Goerke; Freiburg/DE, Offenburg/DE (jakob.neubauer@uniklinik-freiburg.de)
Purpose: To evaluate and compare patient satisfaction for wrist examinations in cone beam-computed tomography (CBCT) and multidetector-computed tomography (MDCT). Our hypothesis is that patient satisfaction is higher in the CBCT.
Methods and Materials: This IRB approved prospective study included patients who were scheduled for a computed tomography examination of the wrist in our institution over a period of 1 year. Patients were randomly assigned to either dedicated musculoskeletal CBCT or MDCT. After the examination, patients were asked to complete a questionnaire that included several questions regarding their satisfaction with the examination. Patients were asked to evaluate on a 5-point Likert scale whether the positioning was comfortable, whether they found the duration of the exam adequate, whether they were able to keep their hands steady during the exam, whether they were in more pain during the exam, and if they were getting intimidated through the scanner. For the CBCT and MDCT, patients were compared with a Mosier-Whitney U test. P values <0.05 were considered to denote statistical significance.

Results: 108 patients returned the questionnaire, composed of 53 CBCT and 55 MDCT examinations. The patients rated positioning in the CBCT as more comfortable than in the MDCT (p<0.001). For the ratings on all other questions, there was no difference between the two modalities.

Conclusion: Positioning in the CBCT was perceived as more comfortable than in the MDCT. All other measures of patient satisfaction were rated similarly for both devices.

B-0868 09:34
Diagnostic performance of high-resolution ultrasound in the evaluation of intrinsic and extrinsic ligaments of the wrist in patients with previous trauma or carpal instability
S. Gitto1, D. Albano2, C. Messina1, V. Chianca1, S. Rapisarda1, A. Corazza1, L.M. Sconfienza1,1, Milan/IT, 2Palaermo/IT, 3Genoa/IT (sal.gitto@gmail.com)

Purpose: To investigate the role of ultrasound (US) in the evaluation of intrinsic and extrinsic carpal ligaments having magnetic resonance arthrography (MRA) as reference standard.

Methods and materials: This prospective study included 19 patients (12M, 7F; mean age ±44±19 SD years) referred for wrist MRA and having history of trauma or carpal instability. US examination was performed just before MRA using a 14-6 MHz linear transducer. On both the dorsal and volar sides of the wrist, the intrinsic interosseus and midcarpal, collateral and extrinsic ligaments were evaluated. Ligament thickness was measured and tears were detected. Thereafter, ligament thickness and integrity were blindly assessed on the MRA images obtained with a 1.5-T unit. Ligament detection rate and thickness reproducibility between US and MRA were calculated.

Results: The dorsal side, US detected more ligaments (108/114, 94.7%) than MRA (96/114, 84.2%; p=0.016), while on the volar side the difference was not significant (149/171, 87.1% vs. 156/171, 91.2%, respectively; p=0.296). Ligament thickness reproducibility ranged between 44% (COR=0.9, bias=−0.8, p<0.001) of the volar uncinolateral ligament and 71% (COR=0.5, bias=−0.1, p<0.001) of the volar scaphotriquetral ligament. Diagnostic performance of US for ligaments where a tear was found was 100% sensitivity, 100% specificity, 100% positive predictive value, 100% negative predictive value, 100% accuracy for the volar and dorsal scapholunate ligaments, and the ulnar collateral ligament; it was 100%, 94%, 50%, 100%, respectively, for the volar uncinolateral ligament.

Conclusion: US has similar diagnostic performance to MRA in the assessment of intrinsic and extrinsic carpal ligaments and ligamentous tears.

B-0869 09:38
Submarine sign of epidermoid cysts: a diagnostic model based on ultrasound feature
D.H. Lee, S. Kim, A.L. Choi, C. Yoon; Seoul/KR (edathyunie@gmail.com)

Purpose: To develop a diagnostic model for superficial soft tissue mass with differentiation of epidermoid cyst (EC) based on ultrasound (US) features including a ‘submarine sign’.

Methods and Materials: In this retrospective study, patients (n=210) who underwent US for superficial soft tissue mass and surgical excision were included from January 2008 to October 2017. Included patients were split into a derivation (n=114) and validation cohort (n=96) by date of imaging (November 1, 2016). Following US features were analyzed : more than half depth involvement of dermal layer; ‘submarine sign’ (focal protrusion toward the epidermis); posterior acoustic enhancement; posterior wall enhancement; shape, margin, echogenicity, morphological types, vascularity and perilesional fat change. Multiple logistic regression was performed to develop a diagnostic model and constructed it as a nomogram. Then, we assessed the performance of this diagnostic model by discriminatory ability (AUC) and calibration through derivation cohort and validation cohort.

Results: More than half depth involvement of dermal layer (OR=2.092; 95% CI: p-value=0.047), submarine sign (OR=7.077; 95% CI: p-value=0.001) and posterior acoustic enhancement (OR=4.251; 95% CI: p-value=0.013) were significantly associated with ECs. The diagnostic model statistically constructed with these features showed good discrimination and calibration ability on both derivation (AUC = 0.831, 95% CI: 0.758-0.904 and Hosmer-Lemeshow goodness-of-fit test, p-value=0.8153) and validation cohort (AUC = 0.865, 95% CI: 0.795-0.933 and Hosmer-Lemeshow goodness-of-fit test, p-value=0.1816).

Conclusion: Our diagnostic model and nomogram can be utilized to predict the probability of EC. Also, submarine sign may be helpful image marker for EC.

B-0870 09:42
Machine learning classification of low-grade and high-grade chondrosarcomas based on magnetic resonance imaging-based texture analysis
S. Gitto1, D. Albano2, V. Chianca1, R. Cuocolo3, L. Ugga4, C. Messina1, L.M. Sconfienza1,1, Milan/IT, 2Palaermo/IT, 3Naples/IT, 4Scatati/IT (sal.gitto@gmail.com)

Purpose: Reliable grading of bony chondrosarcoma is crucial for the clinical outcome, because treatment ranges from intralesional curettage for low-grade neoplasms (G1) to resection or amputation for high-grade tumours (G2-G3). We aim to evaluate the diagnostic accuracy of machine learning (ML) algorithms for discrimination between low-grade and high-grade chondrosarcomas based on texture analysis (TA) parameters extracted from unenhanced Magnetic Resonance Imaging (MRI).

Methods and Materials: We retrospectively enrolled 58 patients with histologically proven chondrosarcoma (26 low-grade and 32 high-grade tumours). Patients were randomly divided into training (n=42) and test (n=16) groups for classification model development and testing, respectively. All tumours were manually segmented on T1-weighted and T2-weighted images by drawing a bidimensional polygonal region of interest (ROI). ROIs were used for first order and texture feature extraction on dedicated software, Pyramindas. For each tumour, different data subsets were obtained by six feature selection methods (C4.5 learner-based, gain ratio evaluator, information gain evaluator, Principal Component Analysis and subset evaluator) and analyzed using 9 ML classification algorithms, evaluating their accuracy for differentiation of low-grade from high-grade chondrosarcoma.

Results: A Support Vector Machine correctly classified 75% of chondrosarcomas as low or high grade based on the datasets obtained by the subset evaluator feature selection mode. Specifically, true positive rate was 80% and 67% for identification of high-grade and low-grade tumours, respectively.

Conclusion: ML algorithms showed good accuracy for low-grade and high-grade tumour classification based on unenhanced MRI examinations and could prove a valuable aid in preoperative characterization of chondrosarcomas.

B-0871 09:46
Use of MRI for age verification of U-17 footballers: the Ghana study
B.D. Sarkodie; Accra/GH (ghana_neo@yahoo.com)

Purpose: A fair playground is absolutely necessary in any age limited sports. Age determination in countries where birth registration is not compulsory can often be difficult making it a challenge to determine ages of people born in such countries. The purpose of this study was to determine the correlation between the chronological ages of under 17 Ghanaian footballers and the FIFA MRI grading.

Methods and Materials: The degree of radial epiphyseal fusion was evaluated in 486 male Ghanaian footballers aged 13-16 years over a 4 year period (June 2012-July 2018) using 1.5T Magnetic Resonance Imaging. The ages of the participants used in the study were those provided by the football players and confirmed with their national passports.

Results: Over 49% of these Ghanaian players below the age of 17 years had completely fused radial epiphysis. No significant correlation between the given chronological ages and the degree of fusion was found. The Spearman's correlation was given as (r = 0.068; p = 0.542).

Conclusion: There was no correlation between chronological age and degree of radial fusion among Ghanaian players. Normative study among Ghanaian/black African players is long overdue to ensure the U-17 players from these countries are not unfairly disadvantaged.
Conclusion: 29 (17.2%) showed foci of csPCa in the random samples, in particular, 4 of the 7) and 29 negative lesions (41%). Among negative lesions (GS ≤6), 5 of the

Purpose:

Results:

Methods and Materials:

Purpose:

Results:

Methods and Materials:

Conclusion:

Purpose:

Results:

Methods and Materials:

Purpose:

Results:

Methods and Materials:

Purpose:

Results:

Methods and Materials:

Conclusion:

orrelation of the biopsy and the radical prostatectomy results was made. Results: Index lesion was correctly detected in 78% of cases for both RADt and ADCt. The latter showed a better estimation of the final ISUP classification with a 70% concordance vs 67% of RADt. Both ADCt and RADt overestimated the final ISUP category in 4 cases, RADt caused an underestimation in two. PCa index lesions showed a 0.950cc mean volume and 12.2mm mean diameter, these were found to be 0.435cc and 9.4mm for RADt and 0.268cc and 8mm for ADCt. Mean nADCt was 0.61 for PCa, 0.59 for RADt and 0.52 for ADCt.

Conclusion: ADC value and dimensional characteristics of PCa were more similar to those of RADt, however there was not a significant difference between ADCt and RADt PCa detection rate. Finally, ADCt showed a finer similar to those of RADt, however there was not a significant difference in the size of iceball margin extends at least 1mm along tumour.

Conclusion: The goal of our study is to compare two prostate fusion biopsy modalities in a selected patient population.

Methods and Materials: In group 2 patients with no prior biopsy were enrolled in the study. They were divided randomly into 2 groups. Each group included 50 patients. All patients had PI-RADS 3 or 4 or 5 category lesions in their multiparametric prostate magnetic resonance imaging (mp-MRI). Patients with lesions smaller than 5 mm were excluded. Group 1 patients were biopsied with cognitive fusion method and patients in group 2 were biopsied with Toshiba Aplo 500 MR-US fusion biopsy device. Results of histopathologic examinations along with demographic and psa levels were analyzed.

Results: We calculated no significant difference between 2 groups in terms of age, psa level and lesion diameter (p = 0.025, p = 0.031, p = 0.040 respectively). In group 1 we detected 38 prostate cancer cases in cognitive fusion biopsy (Gleason scores were 3+3 in 23 patients, 3+4 in 10 and 4+3 in 4 and 4+5 in 1 patient). In group 2 we found 42 prostate cancer cases (3+3 in 25 patients, 3+4 in 13 patients, 4+3 in 3 and 4+5 in 1 patient). There was no significant difference between 2 prostate biopsy methods in terms of detecting targeted lesions (p=0.032).

Conclusion: Our study reveals that in a selected group of patient cognitive biopsy can be alternative for MR-US fusion biopsy method.

B-0878 11:27

Focal cryoablation for recurrent prostate cancer following radiation therapy: assessment of iceball margin and signal intensity of tumour by 3D registration of MRI

Purpose: To evaluate the effects of iceball margin and T2 signal intensity (SI) of tumour on local outcome of prostate cancer after cryoablation by 3-dimensional (3D) registration of intraprocedural magnetic resonance (MR) images.

Methods and Materials: Sixty-three percutaneous MR-guided focal cryoablation procedures were retrospectively reviewed. Intraprocedural MR images were analysed and registered using Software Assistant for Interventional Radiology (SAFIR) software to achieve the assessment of the 3D ablation margin. Local tumour recurrence was defined as evident tumour recurrence on follow-up MR images, positive MR-guided biopsy or biochemical failure without radiological evidence of metastatic disease.

Results: The median minimum iceball margin was 2.27 mm (4.73 to 6.32). The cut-off value for the minimum iceball margin to discriminate local tumour recurrence was 1 mm (p=0.001, AUC = 0.839 (0.722-0.921)). Median tumour volume was 1.22 ml (0.21-11.80) and a significant difference was found in tumour volumes between local control group (n=45) and local tumour recurrence group (n=16) (p=0.049). A significant difference was determined in prior history of androgen deprivation therapy (ADT) administration between local control group and local tumour recurrence group (20% and 50%, respectively; p=0.048). On multivariable analysis, minimum iceball margin (p=0.001) and prior ADT use (p=0.015) remained independent predictors of local tumour progression. Additionally, standard T2-SI value of tumours did not correlate with Gleason score (n=54, p=0.365) and local tumour recurrence (p=0.977).

Conclusion: Although 5-10mm iceball margin is preferred to guarantee adequate coverage and treatment, prostate cancer may be effectively treated if iceball margin extends at least 1mm along tumour.

B-0879 11:35

Suspected lesions categorised as PI-RADS 3 at multiparametric magnetic resonance (mp-MRI) for prostate cancer (PCa): should we biopsy? V. Giacinto, L. Basso, A. Casaleglio, V. Pronto, C. Terrone, C.E. Neumaier; Genoa/IT, Veronigiacinto@gmail.com

Purpose: The aim of this retrospective study is to investigate the diagnostic performance of Targeted biopsy-Standard biopsy (TB-SB) of lesions categorised as PI-RADS 3 at multiparametric Magnetic Resonance (mp-MRI).

Methods and Materials: Between March 2017 and August 2018, we enrolled a total of 68 patients suspected to have Prostate Cancer (PCa) on the basis of clinical and laboratory data underwent mp-MRI on 1.5T with Endorectal Coil. All images were evaluated according to PI-RADSv2, expressing location of suspected foci based on zonal prostate anatomy. Prostate Volume (PV) and Prostate Specific Antigen density (PSAD) were calculated. All patients underwent TB+SB. All histological results were matched with radiological findings.

Results: A total of 79 lesions were identified: 28 PI-RADS-3, 37 PI-RADS-4 and 14 PI-RADS-5. The Detection Rate (DR) of TB+SB was 21.9% for all suspected lesions, 11.8% for PI-RADS-3 and 22% for PI-RADS-4/5. The DR of SB was 18.7% for all suspected lesions, 10.2% for PI-RADS-3 and 16.7% for PI-RADS-4/5. The DR of TB was 33.8% for all suspected lesions, 24.3% for PI-RADS 3 and 37.8% for PI-RADS-4/5. The mean PSAD was 0.08 for PI-RADS-3 and 0.2 for PI-RADS-4/5.

Conclusions: The DR of TB was significantly higher than SB for all lesions sampled, especially for PI-RADS-3. The use of PSAD, with clinical and laboratory data, could represent an important adjunct tool to suggest which lesions should be scored as PI-RADS-3 should be biopsy. Due to the low PPV of PSAD <0.15 reported in literature, biopsy of lesions scored as PI-RADS-3 is a cautious approach.

B-0880 11:43

Feasibility of target dependent systematic core biopsy distribution models for transperineal MR/US fusion biopsy

N.L. Hansen, T. Lloyd, A. Macchi, A. Warren, T. Barrett, C. Kastner; Cologne/DE, Cambridge/UK, Milan/IT

Purpose: To retrospectively model prostate biopsy core distribution with reduced biopsy core numbers and local distribution using transperineal MR/US fusion guided biopsies.

Methods and Materials: Analysis was performed using data from a prospectively completed database of transperineal MR/US fusion guided biopsies between 2012 and 2016. Targeted Biopsy (TB) with 2 cores was taken from each mpMRI lesion followed by 18-24 Systematic Biopsies (SB) from sectors using the Ginsburg protocol. In a data based modelling exercise overall and GS 7-10 prostate cancer detection rate were compared between 2-core TB, 4-core background target biopsy (TB+SB), 10-20 core saturation target biopsy (Sat TB), and combined TB-SB.

Results: 467 men had a single mpMRI. Target lesion in MRI followed by combined transperineal targeted and systematic biopsy, TB alone, TB+SB, and Sat TB detected 71% (246), 78% (269), and 91% (345) of 345 PCa, respectively, and 62% (149), 76% (169), and 91% (202) of 221 GS 7-10PCa, respectively. The best detection rates were found for outer locations. Likert 5 tumour probability, prostate volume ≤54 cc, and lesion volume >0.5 cc, leading to detection rates of 98% (44/45) PCa and 94% (34/36) cSPCa with 4-core TB+SB.

Conclusions: MRI can give valuable information for which patients a target-dependent systematic core biopsy distribution is possible. A 4-core TB+BSB biopsy model with detection rates of 98% PCa and 94% cSPCa may be feasible for large, highly suspicious lesions of those in the outer sectors of small prostates (10% of our study population).

B-0881 11:51

MRI/US fusion transperineal prostate biopsy versus systematic biopsy for clinically significant prostate cancer detection in patients with negative ultrasound findings

Y. Chen, Y. Zhu, W. Guan, C. Yu; Shanghai/HN (joychen1266@hotmail.com)

Purpose: To assess MRI/US fusion transperineal prostate biopsy versus standard systematic biopsy for clinically significant prostate cancer (PCa) detection in patients with negative US findings.

Results: 40 patients with a median age of 65 years (range: 45-79) with a median PSA of 7.2 (range: 0.4-24) were included. MRI/US fusion biopsy detected 46/143 (32.4%) with a median number of 11 cores (range: 2-20). Systematic biopsy detected 22/143 (15.4%) with a median number of 12 cores (range: 2-20). The best detection rate was observed in the posterior lobe (4/13), followed by the left lateral lobe (3/7) and the right lateral lobe (2/10). A 4-core SB detected 20/143 (14.0%) with a median number of 8 cores (range: 4-16). The mean PSA level in MRI/US fusion biopsy was 7.7 (range: 0.4-24), and in systematic biopsy was 8.5 (range: 0.4-24). There was no significant difference in the mean age and PSA levels between the two groups.

Conclusions: MRI/US fusion transperineal prostate biopsy is a feasible and effective alternative to systematic biopsy for detecting clinically significant prostate cancer in patients with negative ultrasound findings.
Methods and Materials: A total of 97 men with suspicious multiparametric prostate MRI (PI-RADS category 3 or above) and negative US scheduled for mpMRI-US. Transperineal fusion biopsy was enrolled in this prospective study. Transperineal fusion biopsy was performed using Real-time Virtual Sonography system with 2-3 cores sampled from each suspicious lesion. After fusion biopsy, standard 12-core systematic biopsy was performed by another group of physicians who were blinded to MRI results. The diagnostic performance for clinical significant PCs of fusion biopsy was evaluated in comparison with systematic biopsy.

Results: The overall cancer detection rate was 49.5% (48/97). PCs was detected by fusion biopsy in 45 patients (46.4%, 45/97) and systematic biopsy in 36 patients (37.1%, 36/97, P=0.035). Among 48 patients with PCs, 44 (91.7%, 44/48) were diagnosed with clinically significant PCs. In comparison with systematic biopsy, the significant PCA detection rate for fusion biopsy was statistically higher (44.3%, 43/97 versus 30.9%, 30/97, P=0.001). MRI / US transperineal fusion biopsy resulted in an additional diagnosis of 14 patients with clinically significant PCs, including 10 patients missed by systematic biopsy and 4 patients undergraded by systematic biopsy. If fusion biopsy was omitted, only one patient with clinically significant PCs would be missed.

Conclusion: MRI/US transperineal fusion biopsy can improve clinically significant PCA detection in patients with negative baseline TRUS findings compared with standard systematic biopsy.

Methods and Materials: Serial whole-body scans were acquired at different time intervals in five breast cancer patients (Stages II-IV). SPECT/CT was performed at 2 and 24 h post-99mTc-EC-DG administration. An average blood time-activity curve was calculated from the pooled blood sample data of five patients at 0-, 1-, 2- and 4 h after 99mTc-EC-DG injection. One-hour post-administration 18F-FDG-PET scans were also acquired. All the scans were qualitatively evaluated by one board-certified nuclear medicine physician. Quantitative comparisons were also made by drawing three-dimensional regions of interest and calculating tumour-to-background (T:B) ratios.

Results: The primary breast tumour uptake was visualised with 99mTc-EC-DG and 18F-FDG in five patients. 99mTc-EC-DG tumour uptake in n=3 patients was similar to the 18F-FDG uptake. Lower 99mTc-EC-DG was found in n=2 compared to 18F-FDG. The blood time-activity curve indicated rapid 99mTc-EC-DG clearance. The T:B ratios of 18F-FDG indicated a meanSD of 7.29±3.26 and for 99mTc-EC-DG 2.49±1.1 for the five patients. A P<0.124 indicated non-statistical significant difference between two paired samples.

Conclusion: HPI 99mTc-EC-DG SPECT/CT scan has similar diagnostic accuracy compared to 18F-FDG PET/CT for the primary breast tumour. Yet, advantages of 99mTc-EC-DG PET/CT are its lower cost and less specific equipment as well as lower radiation dose patient and staff. IHP 99mTc-EC-DG has promising uptake properties as a diagnostic tumour-imaging agent and could play a future role in the diagnostic workup and monitoring of these patients.

Methods and Materials: Retrospective evaluation was performed using PET/CT image datasets of 52 histologically proven head and neck cancer patients, receiving definitive 3D PET/CT fused chemo-radiotherapy (CRT). PET/CT was performed before the start of the CRT and repeated after the completion of therapy clinical for response evaluation. SUV$_{max}$, SUV$_{peak}$, MTV and TLG values of the primary tumour have been assessed before and after the therapy. Two patient groups were created in relation to the presence or absence of viable primary tumour tissue. Group related metabolic parameter evaluation was performed, using the Kruskal-Wallis test.

Results: In 28/52 (54%) cases viable residual tumour tissue was detected on the restaging PET/CT image datasets, and in 24/52 (46%) cases complete evaluation was performed, using the Kruskal-Wallis test.

Conclusion: MRI/US transperineal fusion biopsy can improve clinically significant PCA detection in patients with negative baseline TRUS findings compared with standard systematic biopsy.

Methods and Materials: The association of SPECT and CT images can have a synergic effect in Nuclear Medicine imaging. Although, the use of SPECT and CT combined images must be carefully done, due to the several artefacts that may occur and that can diminish the accuracy of this technique.

Methods and Materials: The acquisition and processing protocols must be carefully followed, and the acquired images must be reviewed for technical and diagnostic quality before the patient leaves the department.

Results: The identification of the artefact and its source (if related to the equipment or to patient characteristics) is very useful in order to prevent or correct the artefact or minimise its effect on image quality.

Conclusion: Nuclear Medicine Technologists and Radiographers have an important role on the implementation of strategies to avoid artefacts to occur or to minimise its impact if they are not avoidable. Images must be interpreted by skilled readers who are well aware of the patients’ clinical history, using workstations that allow integrated viewing of the functional and na atomic data. In this way, a high quality study will provide useful diagnostic information for further diagnostic management and patient care. Knowledge and training is very important to enhance image quality and as the quality of SPECT/CT device improves, it is expected that new applications will emerge.

Methods and Materials: A retrospective analysis of patients undergoing diagnostic cardiac catheterisation for paediatric patients.

Results: Diagnostic cardiac catheterisation is an invasive procedure used in paediatric patients with congenital heart disease. The investigation requires general anaesthesia (GA), which is associated with neurodevelopmental risks (1). However, non-invasive CT angiography with a cardiac package can also be used and provides detailed information on intra- and extra-cardiac anatomy, coronary arteries, and vascular structures. We investigated whether the introduction of a non-invasive CT catheterisation package reduced the number of patients undergoing invasive diagnostic cardiac catheterisation procedures.

Methods and Materials: A retrospective analysis of patients undergoing diagnostic cardiac catheterisation and CT angiography was conducted for 2 years prior to (2013/14) and after (2016/17) introduction of a cardiac CT scanner at the Royal Hospital for Children, Glasgow. Statistical comparison of the data was undertaken using chi-squared tests.

Results: There was a significant difference in the number of diagnostic cardiac catheterisation and CT angiography procedures being conducted pre- and post-introduction of the CT scanner ($X^2 = 118.09$, P = 0.01). Diagnostic CT imaging increased from 85 to 345 cases in 2013/14 vs. 2016/17, whereas cardiac catheterisation procedures decreased from 143 to 68 cases, respectively.

Conclusion: Introduction of a CT scanner with a cardiac package resulted in a significant decrease in invasive cardiac catheterisation procedures and an associated increase in non-invasive CT imaging. The shift from invasive to non-invasive investigations reduces patient and parental distress, as well as the risks associated with GAs in the paediatric population.
B-0886 11:02
Comparison of radiation dose and image quality between an image intensifier and flat panel detector system in ERCP
E. Saukkö1, H. Niinivila2, A. Henner2, M.T. Nieminen3; Turku/Fi, Oulu/Fi (ekaterna.saukko@tyks.fi)

Purpose: In recent years, many conventional image-intensifier (II) fluoroscopy systems have been replaced by flat panel detector (FPD) technology. The aim of this study was to assess the patient radiation dose and image quality in endoscopic retrograde cholangiopancreatography (ERCP) with both types of fluoroscopy systems. ERCP is a gastrointestinal procedure used as a gold standard in the treatment of pancreaticobiliary disorders.

Methods and Materials: Data related to patient demographics and radiation exposure in ERCP from an II system (n=91) and FPD system (n=101) was retrospectively collected at the same institution. Image quality was evaluated by measuring image noise from regions of interest (ROIs) on ERCP images acquired on each type of fluoroscopy system (n=30 and n=30). These measurements were further used in the signal-to-noise ratio (SNR) and figure of merit (FOM) calculations.

Results: The median dose area product (DAP), fluoroscopy time (FT) and number of acquired images from II system were 1.55 Gycm², 1.4 min and 3 images. With FPD system, the median DAP, FT and number of acquired images were 1.72 Gycm², 1.7 min and 3 respectively. There was no difference in SNR (means±SD) between systems (II 16.5±5.0 vs. FPD 17.9±7.9). However, the FOM was lower with II system compared to FPD system (1.5±1.1 Gy/cm² vs. 3.6±3.3 Gy/cm²).

Conclusion: The results underline the necessary measures towards the optimisation of patient dose and image quality in ERCP procedures. Slight increase in DAP and FT needs to be further investigated in clinical practice.

B-0887 11:10
Patient radiation dose during coronary angiography and intervention: a multi-center, retrospective study
S. Kaartinen, A. Henner, T. Mäkelä; Oulu/Fi (anja.henner@ouamk.fi)

Purpose: Radiation dose to patient undergoing coronary angiography procedures is high. In Finland there are diagnostic reference levels for coronary angiographic procedures. This study sought to examine if the reference levels were met in the five hospitals in Northern Finland during the study period and are there differences between different hospitals.

Methods and Materials: Data related to radiation exposure, patient demographics and procedural characteristics in coronary angiographic procedures (n=2 901) performed in 2016 in five different hospitals was retrospectively reviewed and analyzed. Patient doses were compared between hospitals, between procedures and to diagnostic reference levels given by STUK.

Results: Results of this study indicate that patient radiation doses vary not only between different interventional cardiology procedures but also between the hospitals. Doses given in DAP (Gy·cm²) ranged between 0.00 and 989.69 in all the coronary angiography procedures in all five hospitals and averages (+/−SD) were 39.61 (41.08) for hospital 1, 20.13 (11.44) for hospital 2, 24.74 (19.62) for hospital 3, 15.31 (14.51) for hospital 4 and 8.56 (61.72) for hospital 5. Doses were mostly dependent on the fluoroscopy equipment, patient demographics, procedure and performing physician.

Conclusion: There is need to make effort to further minimize the patient doses during coronary angiography and measures should be made to meet the guidelines given by diagnostic reference levels.

B-0888 11:18
Infection control: developing aseptic methods and creating a guideline for interventional radiology units
S. Simelius-Nieminen, H. Malmivirta, V. Seiko-Vänttinen, E. Saukkö; Turku/Fi (suvi.simeliusnieminen@gmail.com)

Purpose: Aseptic conscience is the base for aseptic procedures. Healthcare-associated infection (HCl) can occur because of microbes in patient, personnel, surfaces or contaminated instruments. WHO estimates that there are 4.5 million HCIs yearly in Europe. Infection control depends on very simple things as good hand hygiene and good aseptic methods in invasive interventions. The aim of this development project was to assess aseptic technique and to create a written guideline for aseptic methods for Interventional Radiology Unit of Turku University Hospital.

Methods and Materials: The action research study was carried out with electronic questionnaire and observation of aseptic methods. Electronic questionnaire and observation of aseptic methods were analysed and similarities with differences were searched using content analysis.

Results: Five main themes were highlighted: improving hand disinfection, usage of surgical masks, usage of sterile indicator gloves, usage of chlorine dioxide-based disinfectants and improving antibiotic prophylaxis on bile duct procedures and on nephrostomy patients. Chlorine dioxide-based disinfectant was reclaimed and four other themes were discussed on learning cafe with personnel. Based on the literature and results, a guideline was created in Interventional Radiology Unit for fluoroscopy-guided procedures.

Conclusion: Improvements were done on these themes, but it takes time and effort to successfully implement new ways in practice.

B-0889 11:26
Inoperable patients with chronic thromboembolic pulmonary hypertension: initiation a balloon pulmonary angioplasty programme
T. Loupa, L. Brites, C.M.D.S. Almeida; Lisbon/PT (cristindn@gmail.com)

Purpose: Balloon pulmonary angioplasty (BPA) is an emerging treatment for patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH), however there is a lack of studies in safety and efficacy of BPA for inoperable chronic thromboembolic pulmonary disease (CTED) patients.

Methods and Materials: Data from all CTEPH patients were collected retrospectively in the centre records. The mean pulmonary artery pressure, the cardiac index and home oxygen therapy were analysed in order to compare patient’s progress.

Results: BPA procedures were performed in 11 patients (n=14). All patients underwent a comprehensive diagnostic work-up including right heart catheterism at baseline and 24 weeks after intervention. BPA resulted in improvements in World Health Organization (WHO) functional class (3.5 to 2.1). Home oxygen therapy was used (57% to 20%) and a reduction of mean pulmonary artery pressure (59±11 to 46±8 mmHg) and cardiac index (2.3±1.1 to 2.5±1.4 L/min/m², P = 0.92) was verified. Procedure-related adverse events occurred in 20% of the interventions.

Conclusion: BPA was an effective therapeutic approach for non-operative CTEPH patients. BPA can be a new treatment option for carefully selected CTED patients.

B-0890 11:34
Dose distribution for vascular procedures at a tertiary training hospital in South Africa
H. Muller1, W.I.D. Rae2, H. Friedrich-Nel1; 1Bloomfontein/ZA, 2Sydney/AU (henrillumuller@out.ac.za)

Purpose: Radiation exposure during interventional radiology can deliver skin doses, which can approach the lower limit for biological effects (2Gy). It is thus important that referring clinicians, radiologists, radiographers and patients are aware of these potentially high doses. Interventional procedures are often complicated, requiring long fluoroscopy times. It is, therefore, important to identify specific procedures with an increased risk of radiation injury. The aim of this study was to determine which procedures contribute the highest radiation dose to individual patients and the population in a tertiary training hospital in South Africa.

Methods and Materials: The study included 3310 patients undergoing diagnostic and interventional vascular procedures, which involved fluoroscopic x-ray exposure, for a three-year period. Procedural data were entered into a database, which included dose-area products (DAP) and screening times.

Results: The maximum dose delivered to an individual patient was 4.16 Gy during a renal arteriogram. Doses delivered during transfemoral outflow and endovascular aneurysm repair procedures approached or exceeded the threshold for deterministic effects. Transfemoral outflows and four-vessel angiograms delivered the highest population dose.

Conclusion: Specific high-dose procedures were identified which may require patient follow-up to monitor skin effects. Measures to decrease radiation doses and limit radiation effects must be taken especially for the identified procedures. From the study, it is seen that diagnostic procedures are performed more often resulting in a high population dose. Interventional procedures are performed less often but can deliver a high dose to the individual patient due to the complex nature of these procedures.

B-0891 11:42
The establishment of a triage tool for patient stratifications undergoing myocardial perfusion scintigraphy stress tests in Malta
K. Borg Grima1, P. Bezzina1, L.A. Rainford1, 1Malta/MT, 2Dublin/E (karen.borg-grima@um.edu.mt)

Purpose: Normal myocardial perfusion stress (MPS) scans are associated with less than 1% chance of cardiac events, annually. Within clinical practice it is difficult to identify patients who will not reach 85% or more of the target heart rate during the MPS stress test, potentially undermining the diagnostic capability of the test. A triage tool may provide an alternative way to assess the functional status of a patient before the stress test, aiding to standardise practice across Nuclear Medicine (NM) departments.
Musculoskeletal

SS 1010

Hip imaging

Moderators:
F.B. Ergen; Ankara/TR
V. Njajuli; Novi Sad/RS

Methods and Materials:
This study consisted of a multi phased approach using several data collection methods, including: an international online survey; 252 retrospective patient file analysis; 6 qualitative interviews with physicians and 300 patient questionnaires. Ethical permission was obtained for each phase.

Results:
Online survey results highlighted the need for a patient triage tool. In 17 NM centres (n = 43) practitioners were unsure of the presence of stress testing protocols. The final phase linked population identified risk criteria: diabetes (p < 0.012), smoking (p < 0.003) and previous myocardial infarction (p < 0.001), with the results of the interviews, in order to establish through the use of a triage tool, each patient’s ability to successfully finish the exercise stress test.

Conclusion:
Initial findings indicate the proposed triage tool may be an effective method for referring physicians in Malta, to direct patients to the type of diagnostic test suited for their clinical scenario and to the stress test protocol.

B-0892 11:50

Dose reduction in hybrid imaging techniques in nuclear medicine

A. Gezo1, E. Pereira2; Lisbon/PT,
A. Alhadeff1/PT (ana.r.gezo@gmail.com)

Purpose:
Vogel and Wainwright (1989) said ‘structure without function is a corpse and function without a ghost’. Nowadays, hybrid imaging is changing this paradigm. ‘Nuclear Medicine is evolving into nuclear radiology’ and the same procedure is combining functional and structure evaluation.

Methods and Materials:
The newer, hybrid equipments are as challenging as interesting areas of radiation safety for both professionals and patients.

Methods and Materials:
The frequency of hybrid imaging modalities, like PET/CT and SPECT/CT is increasing because the use of CT in nuclear medicine imaging improves diagnostic accuracy. Hybrid imaging is also increasing patient doses. Huang et al. (2009) points that CT may contribute up to 76% on the total effective dose of a PET/CT, raising special concerns on dose reduction.

Results:
The first and perhaps most important way to minimize dose comes from deep understanding the equipment. Protocol optimization may enable decreasing the administrated activity of emission image. CT dose can vary widely according to equipments and protocols, defining importance of the appropriate protocol for the scans purpose.

Conclusion:
Technological improvements in nuclear medicine imaging can influence patient radiation burden significantly: available data on SPECT/PET and PET/CT innovations are mostly linked to improved image quality and/or reduced scanning times, however dose reductions are possible. Available data in CT innovations are often linked to patient dose reduction while maintaining image quality. Nevertheless, a trade-off should be made with respect to image quality improvement, scan time reduction and patient dose reduction.

B-0893 10:30

Measurement of femoral antetorsion with CT and MR: why trigonometry should be added

F. König1, E. Rutz2, J.A. Jacobson3, A.L. Falkowski4, O. Magerkurth5,
Badem/CHE, 2BASLE/CHE, 3Ann Arbor, MI/US, 4fabian.koenig@ksb.ch

Purpose:
To describe a mathematical model allowing transfer of measurements of femoral antetorsion (AT) acquired from axial-oblique-images to the „axial method“ combining advantages of better visibility of the collum and ability to use the established normal values for assessment of femoral AT.

Methods and Materials:
Measurement of AT on axial imaging omits the true CC angle by assuming 90°. Hence, AT is a result of a projection. On oblique-axial-imaging the CCD angle is fully appreciated and anteverision of the collum represents a projection other than that of 90°, inevitably resulting in smaller AT angles. To transfer measurements of oblique-axial-images (OAI), the CCD on true coronal images is assessed (cCCD). Then the angle (oblique-alpha) of the long axis of the collum to the horizontal on OAI is measured. Finally length of the collum (c) from the center of the femoral head to the center of the diaphysis is assessed. By using different right triangles and basic geometry the AT of the femur can be calculated stepwise. Final formula of AT = arctan (sin(oblique-alpha) x collum length) / (cos(c CCD-90°) x \(\text{collum length}^2\).)

Results:
This formula provides AT angles equal to those measured on axial images. For example: c CCD=122°; alpha oblique=9°; Collum length: 57mm; Calculated AT=28.457°; Measured AT=28.

Conclusion:
It is possible to calculate the classic AT angle from measurements on one coronal and one oblique-axial-image with better visibility of the collum. This may increase intr- and interreader reliability and still allows the use of normal values provided by earlier studies with axial images.

B-0894 10:38

Failure patterns in femoral head osteonecrosis: a micro-CT study with histological correlation

C. Mroue1, C. Galant2, F. Libert3, B. Vande Berg3,
1Beyrouth/LB, 2Tournaie/BE (charbel.mroue@hotmail.com)

Purpose:
To describe failure patterns of bone and cartilage in osteonecrotic femoral heads using micro-CT with histological correlation.

Methods and Materials:
Seven resected osteonecrotic femoral heads (6 men and 1 woman) were scanned by using micro-CT (SkyScan 1173, Bruker, Kontich-Belgium; 12 µm isotropic resolution) before histological processing. Fifteen micro-CT images were reformatted to match with fifteen histological slices (9 necrotic and 6 non-necrotic areas). Micro-CT images were analyzed by a musculoskeletal radiologist blinded to histology, to detect cartilage or bone interruption within the necrotic specimens and the different layers of the necrotic lesions (hyaline cartilage, the subchondral lamellar bone plate, the subchondral, deep and peripheral trabecular bone of the lesion). The corresponding histological images were independently analyzed by a bone pathologist to assess cartilage and bone interruptions in a similar layer approach.

Results:
No cartilage/bone interruption was detected in the non-necrotic areas of the specimens at micro-CT and at histology. Within the necrotic areas, bone interruptions were noted in the subchondral bone plate (9/9; 100%), subchondral trabecular bone (7/9; 78%), deep trabecular bone within the necrotic lesion (4/9; 44%) and peripheral trabecular bone near the reactive interface (1/9; 11%). All lesions were seen at microscopic analysis. Interruption of the cartilage was detected in 1 specimen at micro-CT and in 4 specimens at histology. A quantitative analysis after segmentation is undergoing.

Conclusion:
At micro-CT imaging, bone interruptions are found exclusively in the necrotic areas. Superficial layers are more involved.

B-0895 10:46

Image quality of hip MR arthrography with intra-articular injection of hyaluronic acid

E.A. Nocerino1, L. Nicosia2, M. Alì3, B.C. Monti3,
F. Sardanelli2, A. Aliprandi2, 1Cassina de’ Pecchi/IT, 2Gallarate/IT, 3Milan/IT (elisabetta.nocerino85@gmail.com)

Purpose:
To compare image quality of hip magnetic resonance arthrography (MRA) with intra-articular injection of high-viscosity hyaluronic acid (HA-MRA) to that of hip MRA with intra-articular injection of Gd-based contrast agent (Gd-MRA) in patients with femoral-acetabulal impingement (FAI).

Methods and Materials:
Design: single centre, observational, retrospective, inter-individual, cross-sectional. FAI patients with who underwent hip HA-MRA (35 mL of high-viscosity HA plus 17 mL of saline) were compared with 37 age- and possibly sex-matched FAI patients who underwent hip Gd-MRA (20 mL of 2-mmol/L solution of gadopentetate dimeglumine). Two independent blinded radiologists assessed image quality for all sequences (two-dimensional proton density, non-fat-sat axial, fat-sat coronal and sagittal; three-dimensional dual-echo steady state), using a 5-point Likert scale considering separately cartilage, labrum, as well as round and transverse ligaments. Pearson’s χ² and Cohen’s k were used.

Results:
The HA-MRA group was composed of 37 patients (23 males, 14 females; median age 38 years), the Gd-MRA group of 37 patients (21 males, 16 females; median age 38 years), without significant difference for age (p=0.937) and sex (p=0.636). For both readers, image quality for all the investigated hip structures never resulted significantly different on any of the sequences: labrum (p=0.340), cartilage (p=0.198), round ligament (p=0.255), transverse ligament (p=0.806), and capsule (p=0.314). Inter-reader agreement ranged from χ² = 0.785 to k = 1.000.

Conclusion:
The HA-MRA provided a performance not significantly different from that of hip Gd-MRA. A perspective for a one-stop-shop combination of MRA and viscosupplementation in FAI is open.
Purpose: To assess (1) the location of necrosis, (2) location and pattern of femoral cartilage damage (normal/delamination/thinning/defect) on traction MRA, and (3) diagnostic accuracy of traction MRA in detecting cartilage lesions in the 14 patients (14 x 4-56 quadrants) undergoing surgery. Results: (1) Necrosis was located most frequently in the antero-superior quadrant (93% of hips), (2) Most frequently femoral cartilage delaminations was found in the anter-superior quadrant (87% of hips). (3) Sensitivity was 93% (25/27) and specificity was 100% (29/29) of traction MRA to detect femoral cartilage lesions. Conclusion: AVN predominantly affects the antero-superior quadrant and leads to corresponding femoral cartilage delamination which can be detected accurately using traction MRA.

B-0897 11:02
Postoperative, traction MR arthrography in patients with persisting pain after arthroscopic FAI correction reveals high prevalence of osseous deformities and intra-articular lesions

F. Schmaranzer, T. Lerch, K. Siebenrock, M. Tannast, E. Schmaranzer; Beme/CH, St. Johann/AT (florian.schmaranzer@insel.ch)

Purpose: Patients management after failed arthroscopic FAI surgery is challenging. To assess prevalence of new/residual (1) osseous deformities, (2) cartilage lesions using direct, traction MRA after pre- and postoperative MR imaging after hip arthroscopy.

Methods and Materials: This is an IRB-approved retrospective study. The institutional database (2016-2018, 360 hips) was reviewed for patients with AVN and complete radiographs and direct, traction MRA of the hip at 3T. Thirty patients were included (mean age 31 ± 9 years, 60% female; ARCO stages I=30%, II=57%, III=13%). Fortyseven (47%) hips underwent joint preserving surgery (10 open, 4 arthroscopic). Traction technique included weight-adjusted traction (15-23 kg), a supporting plate to avoid pelvic tilt. Imaging protocol included coronal, axial, sagittal and radial 2D PD-w TSE sequences without fat saturation obtained under traction. Location of necrosis and lesions was described circumferentially and allocated to 4 joint quadrants. We assessed (1) location of necrosis, (2) location and pattern of femoral cartilage damage (normal/delamination/thinning/defect) on traction MRA, and (3) diagnostic accuracy of traction MRA in detecting cartilage lesions in the 14 patients (14 x 4-56 quadrants) undergoing surgery.

Results: (1) Necrosis was located most frequently in the antero-superior quadrant (93% of hips), (2) Most frequently femoral cartilage delaminations was found in the antero-superior quadrant (87% of hips). (3) Sensitivity was 93% (25/27) and specificity was 100% (29/29) of traction MRA to detect femoral cartilage lesions.

Conclusion: AVN predominantly affects the antero-superior quadrant and leads to corresponding femoral cartilage delamination which can be detected accurately using traction MRA.

B-0896 10:54
Traction MR arthrography of the hip for characterization of femoral head necrosis and resulting femoral cartilage damage in patients eligible for joint-preserving surgery

F. Schmaranzer, T. Lerch, J.L. Cullmann, E. Schmaranzer, J.T. Genthein, K. Siebenrock, M. Tannast; Beme/CH, St. Johann/AT (florian.schmaranzer@insel.ch)

Purpose: To assess (1) the location of necrosis, (2) location and pattern of femoral cartilage damage, and (3) diagnostic accuracy to detect femoral cartilage lesions using direct, traction MR arthrography (MRA). Results: (1) Necrosis was located most frequently in the antero-superior quadrant (93% of hips), (2) Most frequently femoral cartilage delaminations was found in the antero-superior quadrant (87% of hips). (3) Sensitivity was 93% (25/27) and specificity was 100% (29/29) of traction MRA to detect femoral cartilage lesions. Conclusion: AVN predominantly affects the antero-superior quadrant and leads to corresponding femoral cartilage delamination which can be detected accurately using traction MRA.
Conclusion: Despite the difference in activity between groups, there were equally high rates of labral tears and acetabular cartilage loss, questioning the role which sport plays in the development of these findings and their relationship to symptoms. The focally increased superior capsular thickness in ballet dancers may be an adaptive response to extreme ranges of movement.

B-0901 11:34
3D T1 mapping of hip cartilage: a comparison of a new inversion-recovery-based method with conventional dual-flip angle acquisition
F. Schmaranzer, T. Lerch, J.L. Cullmann Bastian, K. Siebenrock, M. Tannast, J.T. Herhagen, M. Ith, B. Jung; Bernese/CH (florian.schmaranzer@insel.ch)

Purpose: Although commonly used for quantitative imaging of hip cartilage, 3D dual-flip angle (DFA) techniques are highly sensitive to flip angle variation (B1 inhomogeneities), even more at 3T. The purpose is to compare precontrast T1 values of hip cartilage using a new inversion-recovery (IR)-based method with conventional DFA acquisition in asymptomatic volunteers.

Methods and Materials: This is an IRB-approved study of 18 asymptomatic hips (9 volunteers; mean age 27±2 years; 60% female). Subjects underwent non-contrast, quantitative T1 imaging of hip cartilage at 3T: (1) 3D DFA GRE-based technique (0.9 mm isotropic T1 VIBE; acquisition time 8:30 min) including a prescan for B1 correction. (2) 3D dual-IR approach that has been recently introduced in brain imaging (0.9 mm isotropic T1 MP2RAGE; acquisition time 7:30 min) in which T1 values are calculated based on two different inversion pulses. Radial images were reformatted for both T1 techniques. Regions of interest were placed manually, based on anatomic landmarks within the cartilage at each hour position of the clock face.

Results: Mean T1 values and standard deviation of overall (1488±174ms vs 1036±41ms), anterior (1533±219ms vs 1025±45ms) and posterior (1442±157ms vs 1047±42ms) hip cartilage was higher for the DFA compared to the IR method (all p<0.001). Conclusion: Despite the B1 prescan inter-individual differences (standard deviation), T1 values of cartilage were greater with the DFA method compared to the IR method due to the greater flip angle variations at 3 T. Thus, 3D MP2RAGE may provide a more robust alternative for T1 mapping of hip cartilage.

Author Disclosures: F. Schmaranzer; Grant Recipient; Swiss National Science Foundation.

B-0902 11:42
Hip arthropathy and computed tomography of abdomen: a retroperitoneal indicator of post-arthroplasty hip flexor impingement
M. Alfaqih, S. Ali, J. Sana Ali, P. Chea, S. Flacke, R. French, D. Elentuck; Burlington, MAUS; "Durham, NCUS (sarah.m.ali@lahey.org)

Purpose: To evaluate if a tangible association exists between psoas muscle (PM) atrophy with acetabular component version.

Methods and Materials: 190 CT scans of abdomen/pelvis in patients with unilateral total hip arthroplasty (THA) were reviewed, culminating a total of 50 patients meeting inclusion and exclusion requirements. The length of the uncovered acetabular component (UAC) was measured. The acetabular component version was measured on axial (AAX) and sagittal (SAV) reformats. The percentage difference between ipsilateral and contralateral PM in terms of muscle atrophy in patients with THR who have an increased UAC and decreased AAV and SAV.

Results: Mean T1 values and standard deviation of overall (1488±174ms vs 1036±41ms), anterior (1533±219ms vs 1025±45ms) and posterior (1442±157ms vs 1047±42ms) hip cartilage was higher for the DFA compared to the IR method (all p<0.001). Conclusion: Despite the B1 prescan inter-individual differences (standard deviation), T1 values of cartilage were greater with the DFA method compared to the IR method due to the greater flip angle variations at 3 T. Thus, 3D MP2RAGE may provide a more robust alternative for T1 mapping of hip cartilage.

Author Disclosures: F. Schmaranzer; Grant Recipient; Swiss National Science Foundation.

B-0903 11:50
The value of the single energy metal artefact reduction algorithm in post-surgery follow-up of patients with hip tumour prostheses
L. Ding, L. Ma, F.-L. Zhang; Guangzhou/CN (408021193@qq.com)

Purpose: To evaluate the effect of the single energy metal artefact reduction (SEMAR) algorithm with a 320 Multidetector computed tomography (MDCT) volume scanner in post-surgery follow-up of patients with hip tumour prostheses.

Methods and Materials: From November 2015 to September 2018, 103 consecutive patients with a tumour prosthesis of hip joint underwent a 320-MDCT scan. The images were reconstructed using two different methods: iterative reconstruction (IR) alone and IR associated with SEMAR. Four radiologists visually graded the whole image quality at articular level on a 6-point scale from 0 (periprosthetic anatomic structures are completely obscured by metal artefacts) to 5 (periprosthetic structures are recognised with high confidence). Additionally, the readers assessed the presence of periprosthetic complication on a similar 6-point scale from 0 (extensive artefacts, periprosthetic complications are unable to be recognised) to 5 (minimal artefacts, periprosthetic complications are recognised with high confidence), Wilcoxon matched-pairs signed rank test and Intra-class correlation coefficients (ICCs) were used for the scores of image quality and prosthetic complications.

Results: Visualization of periprosthetic structures were significantly improved by the SEMAR algorithm (3.3±4.2 vs. 1.5±2.4, P<0.05). In 64 of 103 patients, periprosthetic complications were confirmed by other imaging examination, clinical or pathology, and prosthetic complications. The new algorithm also increased diagnostic confidence of periprosthetic complications (4.0±4.4 vs 2.4±3.1, P<0.05). The sensitivity of diagnostic confidence of periprosthetic complications was increased (93.2% vs.54.3%, P<0.05).

Conclusion: The SEMAR visibly reduces the metal artefact and can increase diagnostic confidence of periprosthetic complications in patients with hip tumour prostheses.

10:30 - 12:00 Studio 2019
Image Informatics
SS 1005a
Hot topics in machine learning: from radiomics to natural language analysis
Moderators:
S.S. Martin; Frankfurt/DE
E. Nerl; Pisa/IT

B-0904 10:30
Generation of a curated dataset from unstructured reports using natural language processing, illustrated on CT reports regarding pulmonary embolism
T.J. Weikert, I. Nesic, J. Cyriac, M. Moor, J. Bremerich, A.W. Sauter, G. Sommer, B. Stieljes; Basel/CH (thomasjohannes.weikert@usgb.ch)

Purpose: Retrospective classification of exams in positive vs. negative findings is a frequent first step in the development of curated datasets for the training of artificial intelligence algorithms. Given that radiology reports offer this information mostly in a non-structured fashion, we wanted to test the performance of a self-developed NLP-based procedure.

Methods and Materials: We downloaded all reports of CT pulmonary angiograms (CTPAs) conducted at our institution in 2016/2017 (n = 2,917; language: German). We then extracted the impression sections. The status (pulmonary embolism: yes/no) was manually assessed by a radiologist. CTPAs with other clinical questions than pulmonary embolism or poor diagnostic quality were excluded. The labelled impression sections from 2017 (n = 1,436) served as ground truth to train a deep neural network for NLP (linear support vector machine classifier). The performance of this network was tested using the exams from 2016 (n = 1,367).

Results: Our NLP approach reached a sensitivity of 88.9% and specificity of 96.5%. The positive predictive value was 81.6 and the negative predictive value was 98.1%. In total, the status of 1,303 of 1,365 exams was correctly predicted (accuracy: 95.5%). The cases with wrong classifications had a higher percentage of specialties. and prosthetic complications. The new algorithm also increased diagnostic confidence of prosthetic complications in patients with hip tumour prostheses.

B-0905 10:38
Scanner parameter induced variability of radiomics features in routine chest CT data
S. Rübben, J. Hofmanninger, J. Pan, F. Prayer, H. Prosch, G. Langs; Vienna/AT (sebastian.roehrich@meduniwien.ac.at)

Purpose: To assess the influence of heterogeneous acquisition and reconstruction parameters on radiomics features in pulmonary CT-scans in a large-scale clinical routine population processed by a fully automated unsupervised machine learning (ML) pipeline.

SS 1005a
Methods and Materials: 4800 patients who received a chest CT-scan at our hospital were included without regard to pathology or indication. An unsupervised ML approach was applied to identify patterns depending exclusively on imaging features. Prior to processing, images were resampled to an isotropic voxel resolution of 0.7 mm. Visual clusters were identified by extracting texture and 3D-SIFT-features within the lung followed by unsupervised dimensionality reduction techniques (deep-stacked autoencoder) and k-means-clustering. The resulting clusters were compared with regard to different technical parameters (kVp, convolution kernel, slice thickness and scanner type). We performed Fisher's exact test on the clusters to assess associations between cluster membership and technical parameters. In addition, we studied variability in follow-up studies after lung transplantation (LuTX), n=182.

Results: Cell-Chi-squared-tests yield p<0.0002 for all 20 parameters after Benjamini-Hochberg-correction for multiple testing. There is a smaller variation in the more homogeneous cohort of LuTX-follow-ups, however, we still observed significant associations between technical parameters and visual variation (i.e., kVp, slice thickness, reconstruction kernel and scanner type, all ps ranging from 4.4e-5 to 0.04).

Conclusion: The known dependence of radiomics features on technical parameters in CT-scans greatly influences the results of unsupervised ML-approaches, up to a degree where pathological differences in images may become obscured by technical variability.

B-0906 10:46

ePAD: A platform to enable machine learning and AI application development in medical imaging

D.L. Rubio, M.U. Akdogan, C. Altindag, E. Alikin; Stanford, CA/US (dirubin@stanford.edu)

Purpose: To develop a user-friendly tool to enable collaborative, multi-site image annotation and to capture the annotation data in a standards-based format to facilitate radiomics analysis and building deep learning models.

Methods and Materials: The Electronic Physician Annotation Device (ePAD; http://epad.stanford.edu) is an open source, web-based tool enabling distributed, large scale collection of radiology image annotations. ePAD provides a user friendly interface for viewing and annotation similar to a PACS, but captures all annotations in the new DICOM-SR/AIM standard object, enabling interoperability of annotations across institutions. ePAD also collects clinical and descriptive information about patients (e.g., diagnoses, imaging observations, and anatomic locations) using AIM templates, and it provides collaboration features such as privileging of access/viewing of annotations and summaries of annotation efforts. ePAD includes tools that leverage the image annotations for creating machine learning models. ePAD is modular and extensible by the community.

Results: ePAD is being used by many institutions, currently with 423 users who have created over 50,000 image annotations in 504 projects (on servers that are online, local instances are not included). The platform is particularly well suited for supporting multi-institutional collaborative projects for collecting image annotations in large scale, and it has been recently used for collecting image annotations for The Cancer Genome Atlas (TCGA) project for brain and bladder cancer collaborative groups.

Conclusion: The ePAD platform is expected to catalyze image annotation data collection efforts, accelerate collaborations in such projects, and ultimately help lead to machine learning and AI applications to improve radiology.

B-0907 10:54

On the generalisability of deep learning across populations and abnormalities: a case study of the Stanford MURA and CheXNet algorithms

H. Wang1, T. Zou1, C. Xia1, P. Borrego2, P. Sousa2, M. Zhang1,3; Beijing,CN, 1Barcelona,ES, 2Zhejiang/CN (zhangminming@zju.edu.cn)

Purpose: To investigate the generalisability of deep learning across populations and abnormality locations.

Methods and Materials: We re-implemented Stanford ML Group’s CheXNet (chest x-ray abnormality detection) and MURA (musculoskeletal abnormality detection) on their original datasets (mainly from American hospitals), and then tested the models on independently collected datasets. We tested three labels (effusion, nodule and pneumonia) of CheXNet on 769 China adults and 200 Chinese children, and tested the MURA model on a Chinese dataset consisting of both MURA’s original 7 abnormalities locations (3019 studies; elbow, finger, hand, forearm, humerus, shoulder and wrist) and 5 additional locations (3475 studies: foot, thoracic spine, extremity, sacrum and pelvis).

Results: The AUCs of CheXNet on its original American adult test dataset, Chinese adults, and Spanish Children were 0.86 vs. 0.88 vs 0.84 (effusion), 0.84 vs 0.72 vs 0.77 (nodule), 0.81 vs 0.70 vs 0.57 (pneumonia). Regarding the MURA model, when the original 7 locations were tested, algorithm’s sensitivities of the original test dataset and the Chinese dataset were 80.3% vs. 43.9% (elbow), 74.7% vs. 50.0% (fingertip), 71.9% vs. 53.3% (forearm), 43.9% vs. 19.9% (hand), 86.5% vs. 69% (humerus), 86.3% vs. 69% (shoulder), 75.3% vs. 26.9% (wrist); on the other 5 labels, MURA algorithm’s performance was 59.4%, Thoracic-spike 33.9%, extremity 84.1%, Sacrum 70.6%, pelvis 74.0%.

Conclusion: Deep learning showed some satisfactory transferability (e.g., effusion and extremity abnormality). Yet, algorithms’ overall performance decreases when generalising to the different populations; disease complexity (i.e., musculoskeletal abnormalities) and demographic distance (i.e. adults vs. children) may exacerbate the problem.

Author Disclosures:

H. Wang: Employee; Employee, Infervision, T. Zou: Employee; Employee, Infervision, C. Xia: Board Member; member of board.

B-0908 11:02

Fully automatic construction of optimal radiomics workflows

M.P.A. Starmans, S.R. van der Voort, M. Vos, F. Incekara, J.J. Visser, M. Smits, M.G. Thomeer, W.J. Niessen, S. Klein; Rotterdam/NL (m.starmans@erasmusmc.nl)

Purpose: Radiomics uses medical image features to establish relationships between imaging and clinical data. Many radiomics methods have been described in the literature. However, there is no method that works for all applications. We present a workflow for optimal radiomics classification (WORC) to fully automatically construct an optimal workflow per application.

Methods and Materials: WORC states the complete radiomics workflow as a combined algorithm selection and hyperparameter optimisation problem. Deep learning training, WORC automatically adapts itself by testing thousands of pseudo-randomly defined radiomic workflows. The best workflows are combined into a single optimal signature. To evaluate WORC, three experiments on different clinical applications were performed: (1) classification of 19 patients with primary liver tumours in benign or malignant on T2-weighted MRIs, (2) prediction of 1p/19q co-deletion in 287 patients with presumed low-grade gliomas on T1- and T2-weighted MRIs and (3) distinguishing liposarcomas from lipomas in 88 patients on T1-weighted MRIs. Ground truth was obtained through pathology. Evaluation was implemented through a 100x random-split cross-validation, with 80% of the data used for training and 20% for independent testing. Performance is given in 95% confidence intervals (Cls).

Results: The Cls of the area under the curve, specificity and sensitivity were (0.86, 0.99), (0.58, 0.89) and (0.65, 0.98) for liver tumours (0.74, 0.85), (0.58, 0.76) and (0.72, 0.86) for brain tumours and (0.74, 0.93), (0.59, 0.86) and (0.67, 0.92) for lipomas/liposarcomas.

Conclusion: The good results in three different applications demonstrate that WORC is a promising approach for fully automatic construction of optimal radiomics workflows.

B-0909 11:10

Deep DSA (DDSA): learning mask-free digital subtraction angiography for static and dynamic acquisition protocols using a deep convolutional neural network

E. Eulig, J. Maier1, M. Knap1, T. Koening2, K. Horndler2, M. Kachelrieß3; Heidelberg/DE, 2Nuremberg/DE (eillas.eulig@dkfz-heidelberg.de)

Purpose: To provide DSA-like images in the absence of a mask (unenhanced image).

Methods and Materials: Conventional DSA selectively displays vessels by subtracting an unenhanced mask image from a contrast-enhanced fluoroscopic image. It thereby relies on the assumption that the static mask, which is typically acquired prior to contrast injection, accurately represents the background anatomy of the patient also during contrast injection. In case of patient, table or C-arm motion this assumption is not fulfilled, however. Therefore, we developed DDSA, a deep convolutional neural network similar to the U-net. DDSA predicts DSA-like images directly from their corresponding contrast-enhanced x-ray images. Supervised training was performed on patient data of different anatomical regions, acquired with a commercial mobile C-arm system. The ground truth was available through conventional DSA. Data were augmented to improve generalisation of the network. Due to its frame-wise applicability DDSA can predict angiograms for static and dynamic data in real-time without the need to acquire masks. DDSA was applied to several clinical test cases with and without patient and C-arm motion. Due to its frame-wise applicability DDSA can predict angiograms for static and dynamic data in real-time without the need to acquire masks. DDSA was applied to several clinical test cases with and without patient and C-arm motion. Using its frame-wise applicability DDSA can predict angiograms for static and dynamic data in real-time without the need to acquire masks. DDSA was applied to several clinical test cases with and without patient and C-arm motion.

Results: The performance of DDSA was 7 ms for a 1024x1024 x-ray image on a GTX 1080ti GPU. In all test cases, the resulting images were visually similar to conventional DSA even for the challenging case of very thin vessels. Quantitative evaluation on static data showed very small (median absolute relative error 5.4%) deviation from conventional DSA.

Conclusion: DDSA has the potential to fully replace conventional DSA by reducing patient dose and making it applicable to dynamic acquisitions.

Author Disclosures:

T. Koening: Employee; Ziehm Imaging GmbH, K. Horndler: Board Member; Ziehm Imaging, CEO; Ziehm Imaging GmbH.
B-0910 11:18
Are radiologists bad teachers for AI algorithms: differences in the interobserver variability between consensus-defined labelling and free labelling of NIH chest x-ray14 dataset
H. Mahajan, P.K. Ganase, A. Vaidya, G. Nanda, M. Murugavel, V. Venugopalan, M. Barnwal, V. Mahajan; New Delhi/IN (geetutumoir@yahoo.co.in)

Purpose: To assess differences in interobserver variability before and after a consensus-based definition of the NIH Chest x-ray14 dataset labels.

Methods and Materials: We randomly extracted 800 x-rays from the NIH chest x-ray14 dataset. They were read by three radiologists (25 years, 20 years and 15 years of experience) in two equally divided batches. Of the 14 NIH labels, atelectasis, consolidation and pneumonia were clubbed under 'opacity'. The other labels were used ‘as is’. For batch-1, the radiologist assigned labels for 400 x-rays based on their prior understanding of nomenclature. For batch-2, the labels were defined by consensus and assigned on the remaining 400 x-rays. Interobserver variability was assessed (Fleiss bounds) via the Krippendorff’s alpha coefficient corrected for chance.

Results: Interobserver variability between free and consensus labelling did not vary in general. Opacity, pneumonia, effusion, nodule/mass and ‘no finding’ were in the ‘fair to good’ (0.41-0.75) range, while infiltration, emphysema, fibrosis and pleural thickening were in the ‘poor’ (<0.40) bound in both tests. Interestingly, effusion and cardiomegaly labelling worsened to ‘poor’ post-consensus. Significantly, no label was in the ‘very good’ (>0.75) category.

Conclusion: Training of AI algorithms is advised only on labels with alpha close to 0.75 (example ‘Normal’ vs ‘Abnormal’ or ‘pneumothorax’) when employing a purely image-based interobserver metric as ground truth. More research into the reasons for interobserver variability, and its significance in clinical practice, is needed.

B-0911 11:26
Supervised one-to-one style transfer to improve the quality of CT images
L. Li1, B. Ren1, S. Wang1, C. Xia2; Beijing/CN; 1Amherst, MA/US; 2lliangong/intervision.com

Purpose: The quality of CT is largely affected by attributes of the scan, such as radiation dose, convolution kernel and sharpness. CNN-based technique is susceptible to small perturbations for input. A standardisation is essential for improving the effectiveness and robustness.

Methods and Materials: We employ an unrolled proximal primal-dual optimisation scheme, where the operators were replaced with convolutional neural network. It iterates between source-target image pair to learn the style difference such as noise level and convolution kernel of the commercial scanner. The model was trained on a collection of FDCT phantom and data from collaborating hospital, and applied to reconstruct CT scans from our private database. The images were subsequently tested using Intervision AI-CT model with relatively low precision, whose latest version has been commercialised for early lung cancer screening.

Results: The reconstructed images achieved SSIM>97% (20-30% improvement), PSNR>39 on validation set, and SSIM>94% (7-12% improvement), PSNR>34 on human phantom test set. The detection result on reconstructed images exhibited significant increase in precision at cost of a modest decrease in recall. The total F1 score was improved by 32% on our private dataset. It was also observed that the lung-to-standard reconstruction was effective regardless of the sharpness attribute.

Conclusion: Standardisation of CT images is key to the success of an effective and specialised CNN-based methods. In our attempt to address the issue, results have shown a significant improvement of image quality and detection performance on the reconstructed images.

Author Disclosures: L. Li: Employee; Intervision. S. Wang: Founder; Co-founder of Intervision. C. Xia: Board Member; Board Member of Intervision.

B-0912 11:34
Opening the “Black Box”: radiological insights into a deep neural network for lung nodule characterisation
V. Venugopalan1, K. Vaidhya2, V. Mahajan1, H. Mahajan1, S. Vaidya3, A.R. Devalia1; New Delhi/IN; Mumbai/IN; Bengaluru/IN (vasanthdriv@gmail.com)

Purpose: To explain predictions of a deep residual convolutional network for characterization of lung nodule by analysing heat maps.

Methods and Materials: A 20-layer deep residual CNN was trained on 1245 chest CTs from NLST trial to predict the malignancy risk of a nodule. We used occlusion to systematically block regions of a nodule and map drops in malignancy risk score to generate clinical attribution heatmaps on 160 nodules from LIDC-IDRI dataset which were analysed by a thoracic radiologist. The features were described as heat inside nodule (IH) - bright areas inside nodule, peripheral heat (PH) - continuous/interrupted bright areas along nodule contours, heat in adjacent plane (AH) - brightness in scan planes juxtaposed with the nodule, satellite heat (SH) - a smaller bright spot in proximity to nodule

in the same scan plane, heat map larger than nodule (LH) - bright areas corresponding to the shape of the nodule seen outside the nodule margins and heat in calculation (CH).

Results: These six features were assigned binary values. This feature vector was fed into a standard J48 decision tree with tenfold cross-validation, which gave an 85% weighted classification accuracy with a 77.8% TPR, 8% FP rate for benign cases and 91.8% TP and 22.2%FP rates for malignant cases. IH was more frequently observed in nodules classified as malignant whereas PH, AH, and SH were more commonly seen in nodules classified as benign.

Conclusion: We discuss the potential ability of a radiologist to visually parse the deep learning algorithm-generated ‘heat map’ to identify features aiding classification.

Author Disclosures: K. Vaidhya: Employee; Predible Health.

B-0913 11:42
Generating dual-energy images from monoenenergetic 80 kV images using a conditional generative adversarial network
A. Demircioglu, J. Haubold, M. Forsting, K. Nassenstein, L. Umutlu, F. Nensa; Essen/DE (aydin.demircioglu@uk-essen.de)

Purpose: To reduce the image noise and beam hardening artifacts in computed tomography images a conditional generative adversarial network was trained and evaluated.

Methods and Materials: In dual-source techniques acquired dual-energy (80+140kV) computed tomography images were retrospectively used to train a conditional generative adversarial network (cGAN), which contains a generative and a discriminative neural network. 80 kV monoenenergetic images and 0.5M dual energy images were obtained from 14 patients (4748 images in total) and were used as input data for the cGAN. The trained model was evaluated on another patient (571 images). The quality of the artifact reduction was measured by computing the median of the absolute difference in intensity per pixel relative to the 80kV image. Overall error is computed by average over all test images.

Results: The overall error of the cGAN was 0.24 (95 CI: 0.22-0.27), indicating a very clear reduction of image noise and beam hardening artifacts. None of the test images showed a degradation relative to the 80 kV monoenenergetic image. Additional inspection by an expert radiologist showed that the cGAN results were also visually of high quality.

Conclusion: Using 4748 training images from 14 patients a conditional generative adversarial network could be trained to generate virtual dual-energy images from 80kV monoenenergetic images with an overall good similarity to ground truth 0.5M dual energy beam hardening and image noise reduced images.

B-0914 11:50
Machine learning-based prediction of haematocrit values from native MRI myocardial T1-maps to avoid blood sampling for extracellular volume fraction analysis
A. Varga-Szemes1, M. Bauer2, M. van Assen2, C.N. De Cecco1, P. Suranyi3, L. Grafth1, U.J. Schoepf1, C. Xia1; Charleston, SC/US; 2Munich/DE; 3Gröningen/NL (vargaasz@mcus.edu)

Purpose: To evaluate a machine learning (ML) algorithm to estimate blood haematocrit (Hct) values (Hct[lab]) with native MRI T1-maps to avoid blood sampling prior to cardiac MRI studies involving extracellular volume fraction (ECV) analysis.

Methods and Materials: A total of 51 patients (56±13y) who underwent 1.5T cardiac MRI were included. MRI protocol consisted of native (MOLLI 5(3)/3) and post-contrast (4/13/1/2) myocardial T1-mapping. Native blood T1 values were measured in the left ventricle for Hct estimation. A linear regression (LR) analysis was applied to model the relationship between the image-derived and laboratory Hct (Hct[lab]) values. For the ML approach, 31 additional features based on patient demographics, clinical history, and imaging parameters were extracted and used to train a linear Support Vector Machine.

Results: Hct derived by the LR and ML algorithms were 38.7±3.3% and 39.1±3.6%, respectively, and were in good agreement with Hct[lab] (38.7±4.8; P=0.446). The LR approach provided the following model for Hct calculation: Hct[%]=89.8×RI[native,blood]+19.0. The ML-based Hct showed stronger relationship (r=0.78; p<0.001) to Hct[lab] values than the LR-based Hct (r=0.70; p<0.001). Analysis of the residuals demonstrated an increase in accuracy for the ML approach compared to LR (RMSE 3.07 vs. 3.47). ECV values derived from LR, ML, and lab techniques were in good agreement (38.1±16.9, 37.9±16.8, and 37.9±17.0%, respectively; P=0.475).

Conclusion: The ML-based algorithm provides accurate Hct and reliable myocardial ECV calculation, highlighting its potential in clinical workflows to generate ECV without the need for same-day laboratory Hct measurement.

Author Disclosures: A. Varga-Szemes: Research/Grant Support; Siemens, Guerbet. U.J. Schoepf: Research/Grant Support; Siemens, Bayer, Bracco, HeartFlow, Guerbet.

Scientific Sessions
Breast SS 1002

Breast density and risk stratification

Moderators:
N.N.
G. Eisen; Istanbul/TR

K-21 10:30
Keynote lecture
A. Vourtsis; Athens/GR

B-0915 10:39
Impact of the use of a breast cancer risk assessment tool on the intensive screening of women clinically referred to as intermediate to high risk
S. Woussen1, H. Westerlinck2, M. Keupers3, R.M. Prevos3, T. Thywissen3, C. Van Ongeval1,1; Harelbeke/BE;2Harelbeke/BE;2Leuven/BE;2Meerssen/NL;2Diepenbeek/BE (softie.woussen@gmail.com)

Purpose: Screening of women at intermediate risk of breast cancer (BC) requires yearly mammography and US; screening of high-risk women requires additional yearly MRI. Our goal is to verify the subjective interpretation of BC risks against a validated risk-estimation model (IBIS). Thus, to obtain more effective breast prevention strategies.

Methods and Materials: We retrospectively reviewed 471 clinically medium- to high-risk women who underwent screening mammography from August 2014 to August 2016. Because of presence of a BC gene mutation (33) or a lack of records (7), 40 women were excluded. Of the 431 remaining patients, 267 (62%) and 33 (14%) received additional screening US and MRI, respectively. Data from each included patient necessary to calculate the IBIS-BC-risk were inserted into the latest version (8.0b) of the risk- evaluation tool.

Results: The median age is 51 years and the median IBIS risk score is 23%. There were 41 (14%) breast cancer cases discovered through the screening. The personal lifetime risks are distributed as follows: <17 in 111, 17-20% in 46, 20-25% in 99, 25-30% in 71 and ≥30% in 104 women.

Conclusion: One fourth of the included patients showed a low IBIS-BC-risk (<17%), lifetime risk of BC was clinically overestimated: they should not be screened more intensely. Considering an IBIS score of 25% as reference for breast MRI, 40% of our study group should receive breast MRI instead of the 14% actually. More effective breast prevention strategies could be obtained by an objectification of the BC risk assessment.

B-0916 10:47
Defining a parsimonious breast cancer risk model to risk-stratify average-risk women for follow-up screening
M. Abdolfei1, J.I. Payne1, P. Brown3, L. Barnes3, J. Caines3, K. Tsunoda3, P. Talbot1, O. Tong1, S.E. Iles3;1Halifax;2NS/CA;3Oslo/NO (Sian.iles@nshealth.ca)

Purpose: This study evaluated the consistency and discriminatory power of short-term breast cancer risk models with and without biopsy history (BxHx) within a general screening population.

Methods and Materials: All screen-detected breast cancer cases among digitally screened women 40-75 years (2009-2015) within a population-based breast screening program and 3 age- and screen year-matched controls were sampled. Clinical risk factors, fully automated percent mammographic density (PMD), and breast volume assessments were obtained for 1,593 cases and 5,003 controls and used to derive patient-specific risk estimates from a series of logistic regression models. Predictive performance was assessed using area under receiver operator characteristic (AUROC), and agreement between models for assigning women to low (<50th percentile)- versus high (≥50th percentile)-risk groups was assessed using weighted kappa.

Results: Predictive performance of the multivariate models varied substantially (AUROC: 0.547-0.655). A reduced model with PMD, breast volume, age, family history, and BxHx performed equivalently to the full model that additionally included menopausal status and HRT use (AUROC=0.655 and 0.655, respectively); removing BxHx from the reduced model decreased performance (AUROC=0.591). Agreement between predicted probabilities of the full versus reduced model classified into low versus high risk was almost perfect (AUROC= 0.591). Agreement between predicted probabilities of the full versus reduced model classified into low versus high risk was almost perfect (AUROC= 0.591). Agreement between predicted probabilities of the full versus reduced model classified into low versus high risk was almost perfect (AUROC= 0.591).

Conclusion: A short-term risk model incorporating PMD, breast volume, family history, BxHx, and age may provide a practical solution for risk stratification within a screening population without the need to collect other clinical risk factors that are prone to recall bias and are not always available.

Author Disclosures:
M. Abdolfei: CEO; Densities Inc. P. Talbot: Employee; Densitas Inc.

B-0917 10:55
Reproducibility and measurement error in automated breast density assessment
J.-L. Tham1, E.F. Harkness2, K. Stocking3, A.R. Brentnall2, J. Cuzick3, D.G. Evans4, S.M. Astley5;1Manchester/UK;2London/UK (Sue.Astley@manchester.ac.uk)

Purpose: To quantify the reproducibility and measurement error of volumetric breast density in mammograms.

Methods and Materials: We analysed data from the Predicting Risk of Cancer at Screening Study (PROCAS), a large cohort study to estimate risk of breast cancer in women attending routine breast screening. We used data from post-menopausal women who had a repeat mammographic view taken within 28 days of their screen on entry to PROCAS; all mammograms were taken on GE Senographe Essential Systems. Volumetric percentage breast density for each mammographic view was assessed using Volpara V1.5.4 and log transformed. Measurement error was assessed by calculating the coefficient of variation and reproducibility assessed using the intraclass correlation coefficient (ICC).

Results: 519 repeat views from 419 women were eligible for analysis. The mean age of women was 60 years (range 46-73 years) and the median number of days between images was 18 days (interquartile range 14-21 days). The ICC (95% confidence interval [CI]) was 0.88 (0.84, 0.91), 0.89 (0.84, 0.92), 0.89 (0.84, 0.93) and 0.93 (0.90, 0.95) for the left and right craniocaudal (CC) and mediolateral oblique (MLO) views, respectively. The coefficient of variation was 16.7% (15.1, 18.8), 16.4% (14.8, 18.5), 15.8% (13.9, 18.4) and 13.8% (95% CI: 12.1, 16.1) for LCC, RCC, LMLO and RMLO views, respectively.

Conclusion: This study found good to excellent reproducibility and a measurement error of 14-17% in assessing volumetric breast density. This should be taken into account when interpreting changes in breast density between successive measurements.

Author Disclosures:
J. Tham: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, New Zealand). E.F. Harkness: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, New Zealand). A.R. Brentnall: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, NZ). J. Cuzick: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, NZ). D.G. Evans: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, NZ). S.M. Astley: Other; Volpara software provided free under a research agreement by Volpara Health Technologies (Wellington, NZ).

B-0918 11:03
Factors influencing the disagreement between the automated volumetric breast density and radiologist’s visual assessment in assessment of breast density
H. Lee, J. Moon, J. Hwang, J.-Y. Woo; Seoul/KR (geenie-m@hanmail.net)

Purpose: To identify the various radiological and clinical factors associated with disagreement between automated volumetric breast density measurement (VBDM) and visual assessment by radiologists in assessment of breast density.

Methods and Materials: Three thousand and forty-three women who underwent screening and diagnostic mammography from August 2016 to February 2017 were included. The agreement in breast density between visual assessment by the radiologist based on 5th BI-RADS and VBDM (Volpara Version 3.1) were compared using a weighted kappa (κ) value. The factors including patient age, the purpose of mammography, presence of mass, microcalcifications, macrocalcifications, asymmetry or architectural distortion, a difference in bilateral breast density and BI-RADS final assessment were evaluated using univariate and multivariate analyses.

Results: Among 3043 women, 873 (28.7%) showed disagreement. The agreement between visual assessment by radiologist and VBDM were substantial (weighted κ value = 0.674). Univariate analysis showed patient age (p <0.001), purpose of mammography (p = 0.026) and a difference in bilateral density (p <0.001) as factors contributing to disagreement. In multivariate analysis, patient age (p = 0.003), presence of mass (p = 0.016) and a difference in bilateral density (p <0.001) were contributing factors for disagreement.

Conclusion: There is substantial agreement in breast density evaluation between VBDM and visual assessment by radiologists. Disagreement between VBDM and visual assessment was related to patient age and a difference in bilateral breast density.
B-0919 11:11

The role of breast density in predicting interval detected breast cancer

M. Abdollahi1, J.I. Payne1, P. Brown1, P. Barnes1, J. Caines1, K. Tsuruda1, P. Talbot2, O. Tong2, S.E. Beel2, Hallifax, NS/CA, 3Oslo/NO

(Stan.liles@nhshealth.ca)

Purpose: This study evaluated the predictive performance of short-term interval breast cancer risk models within a general screening population.

Methods and Materials: This case control study was performed among digitally screened women aged 40-75 (2009-2015) within a provincial breast screening program in Canada. The sample included all 132 interval breast cancer cases and 685 controls. Interval breast cancer was defined as breast cancer diagnosed after a negative screening examination or after an abnormal screening examination with negative work-up but before the next regularly scheduled screening examination. Data on clinical risk factors including age, breast volume (as a surrogate for BMI), first degree family history, history of breast biopsy, menopausal status, and HRT use were obtained for all subjects. Percent mammographic density (PMD) and breast volume assessments were obtained via automated software (Densitas Inc.). Logistic regression models were used to derive patient-specific risk estimates. Predictive performance was assessed using the area under receiver operator characteristic (AUROC).

Results: There was no difference in the average age of cases and controls at 55 and 56 years respectively. The model with PDM alone outperformed a model with all other clinical risk factors combined (AUROC=0.679 vs 0.614, respectively). Adding PDM to a model with all the other clinical risk factors increased the AUROC to 0.716.

Conclusion: Percent mammographic density was the most significant predictor of interval detected cancers and was a stronger predictor of interval detected cancers than all other clinical risk factors combined. Model performance needs to be validated using a separate dataset.

Author Disclosures:
M. Abdollahi: CEO, Densitas Inc. P. Talbot: Employee; Densitas Inc.

B-0920 11:19

Mammographic parenchymal pattern: correlation with age, breast density and prediction of cancer detection and nodal status in a UK screening population

Purpose: To investigate differences in parenchymal pattern (PP) of breast tissue on screening mammograms and evaluate association with screen-detected or interval cancer and node status.

Methods and Materials: This case-control study of 1204 women age 50-74 included 302 screen-detected and 297 interval cancers (239 node positive, 360 node negative) and 605 controls. Three readers classified PP grade on prior film-screen mammograms, calculated fibroglandular volume (FGV) and volumetric breast density (VBD) on uncompressed images. Intraclass correlation (ICC) compared readers’ PP grades. Trend analysis was performed after one-way ANOVA to test for linear trends between increased PP and mean VBD, and mean FGV. Conditional logistic regression determined whether PP could predict mode of detection (screen detected or interval), and nodal status (positive or negative).

Results: There was good correlation between readers for PP grade (ICC 0.736, 95% CI 0.713, 0.757). Mean VBD did not differ significantly with increased PP grade. Mean FGV linearly increased with PP grade (p<0.0001). The relative risk (RR) of cancer in PP5 vs. PP1 was 2.2 (p<0.01) for screen detected cancer and 2.5 (p<0.01) for interval cancers. In PP5 vs. PP1, the odds ratio (OR) of node positive cancer vs. control was 1.8 (non-significant, p=0.16) and for node negative cancer was 3.0 (p=0.01).

Conclusion: Visual assessment of PP is reproducible. PP grade increases with FGV and age. RR of screen-detected, interval, and node negative cancer significantly increases with PP grade, though the RR of node positive cancer does not.

Author Disclosures:
E. Burnsíde: Research/Grant Support; American Cancer Society.

B-0921 11:27

Association between BMI and subsequent breast cancer among women with a prior false-negative without biopsy in BreastScreen Norway

M. Lillevøge, S. Holvind; Oslo/NO (marie.lillevøge@kretregisteret.no)

Purpose: Evaluate the association between Body Mass Index (BMI) and a subsequent breast cancer, among women with a prior negative recall after additional imaging and ultrasound only (false-negative without biopsy) in BreastScreen Norway.

Methods and Materials: BreastScreen Norway is a population based screening program that invites all Norwegian women to biennial independently double-read two-view mammography in birth cohorts corresponding to age 50-69 years. 3,201,915 screens (97% negative and 3% resulting in a recall) were performed among 763,470 women in the study period 1995-2016. We included 55,625 women who experienced a recall concluded negative after additional imaging and ultrasound only. We followed women for invasive breast cancer (ipsilateral and/or contralateral), from false-positive until end of follow-up (31.12.2016, date of death, emigration or diagnosis of breast cancer, whichever came first). Cox regression was used to study how BMI was associated with subsequent breast cancer among women with a prior false-positive without biopsy, adjusted for age.

Results: Compared to women of normal weight (BMI 18.5-25), overweight women (BMI <18.5) had a similar long-term risk of subsequent breast cancer (HR=1.22, 95% CI: 0.96-1.57) after a prior false-negative without biopsy. We observed a statistically significant increased long-term risk of subsequent breast cancer (HR=1.25, 95% CI: 1.09-1.43 and HR=1.43; 95% CI: 1.19-1.71) among overweight women (BMI 25-30) and obese women (BMI ≥30).

Conclusion: Among women with a prior false-negative without biopsy in BreastScreen Norway, overweight and obese women have a 25% and 43%, respectively, increased long-term risk of a subsequent breast cancer compared to women of normal weight.

B-0922 11:35

The value of automated breast ultrasound added to full-field digital mammography in women with dense breasts

I. Bocca, A. Ciuara, C. Ciortea, A.-S. Berghé; Oluj-Napoca/RO (ioanabocca00@yahoo.com)

Purpose: The objective of our study was to assess the performance of the new imaging techniques: full-field digital mammography (FFDM), 3D mammography and automated breast ultrasound (ABUS) in the detection of breast cancer.

Methods and Materials: Two radiologists independently evaluated a total of 127 ABUS acquisitions, the FFDM and 3D mammograms of women with dense breast tissue. During the study no clinical information or patient history was provided to the readers. The results were compared to the gold standard: histopathology for biopsied lesions, HHUS-handheld ultrasound for typically benign lesions (cyts) and follow-up for benign appearing lesions unchanged for at least 2 years.

Results: Nineteen breast cancers were proved by biopsy. For FFDM alone the sensitivity was 72.7%, the specificity and the positive predictive value was 100% and the negative predictive value was 92.3%. By completing the FFDM with ABUS the sensitivity increased to 78.3%, the specificity was 91.8%, the positive predictive value was 69.2% and the negative predictive value was 94.7%. For 3D mammography the sensitivity was 100%, the specificity 86.4%, the positive predictive value was 75% and the negative predictive value was 100%.

Conclusion: In screening, ABUS added to FFDM compared with FFDM alone, improved reader’s detection of breast cancers in women with dense breast tissue, but did not exceed 3D mammography. As a diagnostic method, ABUS associated with FFDM outperformed 3D mammography.

B-0923 11:43

Automated breast ultrasound versus breast tomosynthesis in further evaluation of recalled dense breasts after screening mammograms

N.H. Saed1, I. Adel, N.A. Chalabi2, R. El Shehik, H. Aboelmaged; Cairo/EG (norranhussein@yahoo.com)

Purpose: To compare the added value of automated breast ultrasound (ABUS) versus breast tomosynthesis (BT) as diagnostic tools in the work-up of screening detected positive findings in dense breasts recalled from the national screening program.

Methods and Materials: After ethics committee approval, and patients’ consent, 242 women with dense breasts who undergone screening mammography, and were recalled for suspected positive findings were enrolled in the study. Positive findings included focal asymmetry, mass, distortion, or microcalcifications. All patients underwent both BT and ABUS by two independent breast radiologists and a BIRADS score was given for each modality. BT was performed in CC and MLO views. ABUS images were acquired in anteroposterior, lateral and medial views. Images were interpreted in the coronal 3D view using the survey mode, followed by the transverse and sagittal reconstructed images. Results were compared to pathology and follow-up of negative/typically benign findings.

Results: Sensitivity, specificity, PPV, NPV, LR positive, LR negative and accuracy of ABUS were 92, 98, 92, 98, 44, 0.08 and 97, respectively, and in BT were 92, 97, 96, 98, 12, 0.09 and 92. Agreement by Kappa was 0.886. ABUS and BT both agreed on TP in 43 cases out of 51 proved cancers. There were 4 FN cases in each modality. There were 4 FP by ABUS and 15 by BT. Both was avoided by ABUS in 187 confirmed by BT in 176 cases.

Conclusion: ABUS has shown a higher accuracy than BT. Its main limitations are microcalcifications and the retroareolar region.
B-0924 11:51
Mammographic screening in male patients at high risk for breast cancer: is it worth it?
M.A. Marino, A. Gucalp, B. Bernard-Davalio, D.M. Keating, D. Martinez, E. Morris, M.S. Jochelson, Messina/IT, New York, NY/US (mariaadele.marino@gmail.com)

Purpose: There is currently no standard of care for screening asymptomatic men who are at increased risk for developing breast cancer. The purpose of this study is to investigate the utility of mammography for breast cancer screening in men at increased risk for breast cancer.

Methods and Materials: In this HIPAA compliant IRB-approved single-institution study, mammography, pathology and clinical records on 827 men who underwent mammography between 09/2011 and 07/2018 were analysed via the electronic medical record. 664 of these men presented with masses, pain or nipple discharge and were excluded. The remaining 163 asymptomatic men with family and/or personal history of breast cancer and/or known breast cancer mutation underwent screening mammography and are the subject of this analysis.

Results: 163 asymptomatic men 24-87 years (median 66 years) underwent 806 screening mammograms. 125/163 (76%) had a personal history and 72/163 (44%) had a family history of breast cancer. 24/163 (15%) had known mutations: 4/24 (17%) BRCA1 and 20/24 (83%) BRCA2. 792/806 (98%) of 806 screening mammograms were suspicious (BI-RADS 4/5) and all were malignant.

Conclusion: Screening mammography in high-risk men yielded a cancer detection rate of 4.9/1000 examinations. The estimated cancer detection rate was 4.9 /1,000 examinations.

(0.4%) mammograms were suspicious (BI-RADS 4/5) and all were malignant (BI-RADS 3, all of which were subsequently downgrade d to BI-RADS 2. 4/806 mutations: 4/24 (17%) BRCA1 and 20/24 (83%) BRCA2. 792/806 (98%) of 806 screening mammograms. 125/163 (76%) had a perso nal history and

B-0925 10:39
Prediction of neurodevelopmental outcome in preterm neonates with cerebral MR spectroscopy and DWI using neural-network-based classifiers
T. Djurdjevic, S. Pereverzyev, L. Lampmayer, V. Neubauer, U. Kiechl-Kohlendorfer, V. Wallner, A.E. Grams, E.R. Gizewski; Innsbruck/AT (tanja.djurdjevic@i-med.ac.at)

Purpose: We aimed to evaluate if magnetic resonance spectroscopy (MRS) and diffusion weighted images (DWI) performed in preterm neonates (PNs) at term equivalent age can predict their neurodevelopmental outcome at the corrected age of 12 months using neural-network-based classifiers (NNCs).

Methods and Materials: From 309 PNs born before 32 gestational weeks, 214 were excluded because of missing MRS or incomplete data sets. The data sets of 95 PNs were considered for motoric and cognitive development, of whom 6 and 5, respectively were categorized as underdeveloped. Seven potentially relevant metabolite ratios and 2 DWI characteristics were evaluated, each in 6 different areas of the brain. We performed a feature selection algorithm for receiving a subset of those characteristics that we could assume as significant.

To reduce bias by unbalanced classes, only PNs that share values of those characteristics with ones that had shown underdevelopment were considered for further calculations. On those smaller sets of PNs, we finally constructed classifiers using NNCs. These classifiers were able to predict underdevelopment in PNs after considering the characteristics selected previously.

Results: The constructed NNCs give a 100% accuracy in the case of the motoric underdevelopment. In the case of cognition underdevelopment, we obtain a true positive rate of 100% and a positive predictive value of 83.3%.

Conclusion: MRS and DWI obtained at term equivalent age in PNs allow prediction of their motoric and cognitive development at the corrected age of 12 months. The proposed approach using NNCs promise its use in the clinical practice.

B-0926 10:47
Synthetic MRI detects delayed myelination in preterm neonates
V. Schmidthauer, G. Geis, K. Goeral, K. Klebermaß-Schrehof, A. Berger, D. Prayer, G. Kasprian; Vienna/AT (victor.schmidthauer@medunivien.ac.at)

Purpose: “Synthetic MRI” generates different MR contrasts and characterises tissue properties based on one multi-dimensional multi-eco FLAIR sequence (MDME). The aim of this study is to assess the feasibility of “Synthetic MRI” in the assessment of myelination in term-born (TN) and preterm neonates (PN).

Methods and Materials: 30 PN and TN were examined at the approximate due date [gestational age+days to MRI=corrected gestational age (CGA)] using a standardised neonatal MRI protocol (1.5Tesla/T1SE/T2SE/DWIDTI sequences), MDME sequence (FOV: 200x165x109mm/voxl: 0.6x0.6x1.5mm, matrix: 256x152x256/slices/TE: 13ms/TR: 3300ms/acquisition time: 5min 22sec)-based post-processing was performed using “Synthetic MRI” (Synthetic MR AB, Storgatan 11, Linköping, Sweden, version 8.0.4).

Myelination was assessed by scoring seven brain regions on T1/T2 maps generated by “Synthetic MRI” and on standard T1/T2 images, acquired separately. Analysis of covariance (ANCOVA) was used for group comparison.

Results: In 25/30 (83.33%) cases [18 PN (mean gestational age: 176.9d/SD=15.56) and 7 TN (mean gestational age: 279.1d/SD=8.66)] myelination assessment could be performed. T1/T2 maps were generated by “Synthetic MRI”: ANCOVA results showed significantly lower myelination scores in PN compared to TN (F(1, 22)=5.658/p=0.026). The myelination score showed a positive correlation with the CGA at MRI (F(1, 22)=r=0.662/n=25/p=0.012; T1: F(1, 22)=r=0.620/p=0.035

Conclusion: T1/T2 maps generated by “Synthetic MRI” are more sensitive and rapidly than standard MR sequences.

B-0927 10:55
Comparison of intracranial volumes of preterm-born infants and age-matched foetuses
V. Pfahler1, G.M. Gruber2, G. Kasprian3, A. Hilgendorf3, K. Förster3, A. Flemmer1, B.B. Ertl-Wagner3; Munich/DE, Vienna/AT, 2Toronto, ON/CA

Purpose: The aim of our study was to compare intracranial volume (ICV), brain volume (BV), and volumes of the inner and the outer cerebral fluid spaces (iCSF and oCSF) of preterm-born infants and age-matched foetuses.

Methods and Materials: Preterm born infants and foetuses were matched for gestational age (+4 days). Gestational age ranged from 32 to 39 gestational weeks. 23 preterm born infants and 23 age-matched foetuses without reported brain pathology on structural MRI were included in the analysis. Manual segmentation and volumetry was conducted based on axial T2-weighted images of the brain (slice thickness 3 mm), using the ITK-SNAP software. ICV, BV and volumes of iCSF and oCSF were compared applying a paired t test at a significance level of alpha=0.05. Statistical analyses were conducted using MATLAB.

Results: ICV was significantly smaller in preterm born infants as compared to age-matched foetuses (alpha=0.003, ICVterm=382140 mm3/4+9713, ICVfoetal=320005 mm3/4-93416). Likewise, preterm born infants displayed significantly reduced BV and oCSF volumes (alpha=0.005 and alpha=0.035, respectively, BVterm =312254 mm3/4+43384, BVfoetal=259332 mm3/4+84314, oCSFterm =62803 mm3/4-13134, oCSFfoetal=53391 mm3/4-16732). iCSF volumes did not show a significant difference. Notably, the relation of BV and oCSF volumes to ICV was constant in preterm-born infants and foetuses, meaning that the ratio BV/ICV and oCSF/ICV did not differ significantly in the two groups.

Conclusion: Preterm-born infants have significantly reduced ICV, BV and oCSF volumes as compared to age-matched foetuses in utero. The mechanisms underlying these differences and their potential impact on ex utero versus in utero brain development remain to be investigated.
Dentate and basal ganglia T1 hyperintensity after multiple gadolinium administrations and brain microstructure: an in vivo diffusion-weighted MR study in paediatric patients

P. Gulino1, E. Salvatore2, A. Cavallieri1, M. Franzese1, L. Sai1, M. Aiello2, C. Cavalleri1, M. Salvatore2, M. Mascalph1, F. Florence1T, N. Naples1T
(pietrogulino@yahoo.it)

Purpose: We explored if visually detectable T1-weighted hyperintensity (T1wH) in gray matter (GM) nuclei of paediatric patients is associated with evidence of local structural changes as revealed by diffusion-weighted imaging (DWI).

Methods and Materials: Retrospective study on data collected in a paediatric hospital between 2010 and 2017. We included 151 patients who had received 10 or more administrations of gadolinium-based contrast agents (GBCAs) for neuro- oncologic conditions (age <18 years at the time of the last administration) and 55 controls who had not received prior GBCAs. We visually assessed the signal intensity (SI) in T1-weighted images and measured the T1 SI ratio between dentate/pons and pallidus/parietal white matter, caudate/parietal white matter and thalamus/parietal white matter, and the apparent diffusion coefficient (ADC) in the dentate, pallidus, caudate and thalamus. We used non-parametric two-sample Wilcoxon test to evaluate differences of the T1 SI ratio and ADC and performed a multivariate analysis to evaluate the effect of age and of the number of prior GBCAs administrations.

Results: T1wH in the GM nuclei was visually detected in 23 of the 151 patients and in none of the controls. The 23 patients had a significantly higher T1 SI ratio in GM nuclei as compared to controls (p<0.05). ADC values in GM nuclei were not significantly different in patients with T1wH as compared to controls. Multivariate analysis showed that ADC is associated with age but not with number of GBCAs administrations.

Conclusion: T1wH is not associated to local microstructural changes in the mid-term as assessed with DWI.

Gadoterate meglumine, a macrocyclic agent causes gadolinium retention in the brain of children: a case-control study

E.D. Topcuoglu1, O.M. Topcuoglu2, A. Semiz Oysu, Y. Bukte; Istanbul/Turkey
(elifdilaratopcuoglu@gmail.com)

Purpose: To demonstrate whether there was intracranial macrocyclic gadolinium deposition after multiple contrast enhanced MRIs with gadoterate meglumine in paediatric population.

Methods and Materials: This retrospective case-control study included children who had at least 3 enhanced brain MRIs. Age- and sex-matched control group with unenhanced brain MRIs were selected for comparison. All patients received gadoterate meglumine intravenously (0.1 mmol/kg). Signal intensity (SI) measurements were made by drawing 6 region of interests (ROIs): dentate nuclei (DN), pons, globus pallidi (GP), frontal white matter (FWM), thalamus (T) and clivus for both groups on unenhanced T1 weighted images. The ratio of those to cerebro-spinal fluid (CSF) were also calculated for standardization. Student t-test was used for comparison of SI and SI ratios. Pearson correlation was calculated for the correlation between the SI and the number of gadoterate meglumine administrations.

Results: A total of 45 children (age range: 5-17 years; mean, 13.7±3.4 years) were included. A significant difference was detected between two groups for DN/CSF, pons/CSF, GP/CSF, talami/CSF and FWM/CSF (P<0.001, P<0.001, P=0.002, P=0.002, P=0.024, respectively). There was no significant difference between two groups for clivus and clivus/CSF (P=0.41 and P=0.15, respectively). A good correlation between the number of gadoterate meglumine administrations and the SI for DN/CSF, pons/CSF, GP/CSF and T/CSF (r=0.90, r=0.73, r=0.91 and r=0.90, respectively) was found.

Conclusion: A significant T1 SI increase reflecting gadolinium retention in the brain, was detected for children with at least three gadoterate meglumine administrations in this series.

Cavernous sinus enlargement: a novel finding in Sturge-Weber syndrome

L. Pasquini1, D. Tortora2, M. Rossi Espagnoli, L. Figà-Talamanca1, F. Manunza2, C. Ocella2, A. Rossi2, M. Severino1; Rome/IT, Genoa/IT
(polinia.pasquini@chuv.ch)

Purpose: The cerebral venous system is typically involved in Sturge-Weber syndrome and characterized by asymmetrical enlargement. Considering the anatomic centrality of the cavernous sinus and that it is intercalated in the venous network which is commonly affected by Sturge-Weber syndrome, we hypothesized its involvement in the disease and investigated possible clinical correlations.

Methods and Materials: Sixty patients with Sturge-Weber syndrome and 84 age- & sex-matched controls were included in this retrospective study. We measured on axial T2WI the left (A), right (B) and bilateral (LL) transverse diameters of the cavernous sinuses. We calculated the difference (A-B), and the “cavernous sinus asymmetry index” as the ratio (A-B)/LL. Finally, we performed a visual analysis to identify patients with asymmetric cavernous sinus enlargement. Differences among groups were assessed by Mann-Whitney U and Jonckheere-Terpstra tests. Clinic- radiological associations were evaluated by Fisher’s exact test.

Results: All the CS measures were significantly different between SWS patients and healthy controls. The SA1 and the left-right difference were significantly higher in SWS patients (p=0.06, p=0.12), CS enlargement was significantly associated with intracranial vasomotorial formations (p=0.013) and the presence of ectatic veins (p=0.002).

Conclusion: The cavernous sinus enlargement occurs not only at the same level of the facial and leptomeningeal capillary malformation, but may also present without other intracranial vascular anomalies and may be related to the blood overcharge or to the recently discovered GNQA mutation. Further studies are needed to draw definite conclusions regarding this new feature, which should be carefully evaluated in MR scans of patients suspected for SWS.

B-0931 11:27

Pediatric brain: T1-weighted signal intensity of deep brain nuclei increases with age but not with a serial administration of gadoterate meglumine

P. Pozeg1, R. Meuli, J. Forget, P. Maeder; Lauzanne/CH
(polina.pozeg@chuv.ch)

Purpose: Current findings on gadolinium retention in the paediatric brain after repeated exposure to macrocyclic contrast agents are inconclusive and possibly confounded by brain maturation processes. We investigated the longitudinal effects of repeated Dotarem exposure (gadoterate meglumine) on the T1-weighted signal intensity (SI) changes in paediatric patients, and assessed the magnitude of age-related increase in T1-weighted SI in a control cohort without prior gadolinium exposure.

Methods and Materials: In this retrospective, double-cohort study, we measured SI (native T1-weighted GRE) of multiple deep brain nuclei, normalized by the pons (reference tissue). 24 patients (1-20 years, mean=5.74, SD=4.15), exposed to at least 10 consecutive administrations of exclusively Dotarem, were included in the longitudinal cohort. We analysed SI changes over 10 successive administrations, accounting for age, using linear mixed effects modelling. Secondly, 190 patients, naïve to any gadolinium-based contrast agents, were included in the control cohort (age range 1-20 years, 10 patients/bin, bin width: 1 year) to assess the age-dependent SI changes in the ROIs.

Results: The number of Dotarem administrations did not significantly affect the SI in any of the ROIs (all p>0.05), whereas age significantly correlated with SI increase in the globus pallidus and caudate (p<0.05). We confirmed SI changes over 10 successive administrations, accounting for age, using linear mixed effects modelling. Secondly, 190 patients, naïve to any gadolinium-based contrast agents, were included in the control cohort (age range 1-20 years, 10 patients/bin, bin width: 1 year) to assess the age-dependent SI changes in the ROIs.

Conclusion: Repeated exposure to Dotarem was not associated with brain hyperintensity in the paediatric patients, while age importantly contributed to the SI changes in several deep brain nuclei.

Author Disclosures: P. Pozeg: Grant Recipient; Guerbet. P. Maeder: Grant Recipient; Guerbet.

B-0933 11:43

MRI findings in gene therapy-treated adrenoleukodystrophy

P-A. Genoves1, K. Buch, C. Corre, F. Eichler; Boston, MA/US
(pcaruso@partners.org)

Purpose: X-linked cerebral adrenoleukodystrophy (ALD) is a genetic disorder caused by mutations in the ABCD1 gene with poor untreated prognosis. Starting in 2014, lentiviral-transfected autologous haematopoetic stem cell transfer (HSCT) was introduced for the treatment of ALD. The purpose of this study is to provide the first description of the time course of intracranial MRI findings in post-lentiviral HSCT treated ALD patients.

Methods and Materials: 17 ALD patients who underwent lentiviral gene therapy were included in our cohort. Patients received serial MRI scans at 1, 6, 12, 18, and 24 months s/p HSCT. The clinical neurology severity scale was calculated for each time point. The evolution of the T2 signal abnormality, enhancement, and the Loes score (the standard grading system for cerebral ALD) were evaluated.

Results: The clinical ALD severity score stabilised or improved for all patients. The high T2 signal component of the treated ALD increased in 100% of patients at one month and in 80% of patients at all subsequent time points. Enhancement resolved in 40% of patients at one month, and in 100% of patients by 6 months. The Loes score increased an average of 4 points over the 24 months.

Conclusion: All ALD patients treated with lentiviral HSCT stabilised clinically, while the T2 signal component of the treated disease extended over the 24-month follow-up period and the enhancement resolved by 6 months.
B-0935 10:30
Polypl detection rate as a quality measure in CT colonography: analysis of the performance of a CT colonography service using a reduced bowel preparation without dietary restriction.

S. Vicini1, M. Rengo2, F. Tiberia1, D. Bellini1, G. Trionfera2, I. Carbone2, A. Laghi1, L. Sterl1,2,2, Latina/IT, Rome/IT, Valmontone/IT (simone.vicini@gmail.com)

Purpose: To evaluate the performances of a CT colonography (CTC) service using polyp detection rate (PDR) as quality measurement. To stratify results according to patient’s age, gender and symptoms.

Methods and Materials: We retrospectively analyzed 1446 consecutive patients who underwent CTC from July 2015 to September 2018. In all patients a reduced bowel preparation (100 g of Macrogol and 60 ml of hyperosmolar iodinated contrast media for fluid tagging) and no dietary restriction was administered the day before the examination. PDR was calculated, considering only polyps ≥ 5 mm, for the entire population and after the stratification in subgroups according to age (< 65 vs ≥ 65 y), gender (male vs female) and symptoms (asymptomatic vs symptomatic). All positive patients at CTC were subjected to endoscopy to confirm the presence of polyps. Polyps were scored according to the location, dimension and quality of the bowel preparation. Differences between subgroups were evaluated with Chi-square test.

Results: In total 1,446 patients (627/819 M/F, mean age 62.45 ± 14.22 years) were analyzed. Bowel preparation was optimal in 1,392 patients (96.3%). PDR of total population was 9.19% (133/1446). PDR was significantly higher in older patients and male patients (11.32% vs 7.57%, P = 0.025) of shoulder phenomenon.

Conclusion: The findings that suggest carcinoma diagnosis were: absence of diverticula in the affected segment (sensitivity 87.9%; specificity 90.5%); straight growth pattern (sensitivity 71.4%; specificity 90.9%); shoudering phenomenon (sensitivity 90.5%; specificity 81.8%); complete distortion of mucosal folds (sensitivity 95.2%; specificity 75.8%). Considering mass-like lesions, growth pattern and mucosal folds distortion lose their diagnostic value. The diagnosis of internal haemorrhoids from CTC has a straight growth pattern (sensitivity 71.4%; specificity 90.9%); shoudering phenomenon (sensitivity 90.5%; specificity 81.8%); complete distortion of mucosal folds (sensitivity 95.2%; specificity 75.8%). Considering mass-like lesions, growth pattern and mucosal folds distortion lose their diagnostic value. The diagnosis of internal haemorrhoids has a 5 point Likert scale and the presence of anal verge prominence, asymmetry, and a cushion-like appearance. The sensitivity and specificity for the detection of hemorrhoids on CTC was 61% (95%CI 53.5%-68%) and 69% (95%CI 63%-75%). The specificity was better for the radiologists (81% vs. 63%) and the sensitivity was slightly better for the gastroenterologists (56% vs. 49%). The agreement between the raters in the assessment of the presence of hemorrhoids was 0.61 (95%CI 0.51 to 0.69). Logistic regression identified the presence of anal verge in supine position (OR 2.7, 95%CI 2.0 to 3.5) as the best predictor of the absence of internal hemorrhoids.

Conclusion: Internal hemorrhoids on CTC cannot be distinguished with any certainty. Hemorrhoids should only be suggested as a differential diagnosis of rectal floor findings.

B-0940 11:10
Effectiveness of bowel preparation without diet restriction for optimal quality CT colonography: a validation study.

F. Tiberia1, F. Vizza1, F. Rengo2, G. Trionfera2, I. Carbone2, A. Laghi1, Latina/IT, Rome/IT, Valmontone/IT (docfi@hotmail.it)

Purpose: The aim of our study was to investigate whether bowel preparation without diet restriction for CT colonography (CTC) is sufficient to reach the proposed minimum standard rate of adequate bowel preparation (> 90%) and to identify any influencing factors in our population.

Methods and Materials: In our retrospective study we enrolled 1446 patients (mean age 62.45 ± 14.22 years, 627 men) who underwent CTC after bowel preparation with 100 g of macrogol 60 ml of sodium diatrizoate and meglumine diatrizoate solution, for fluid tagging, the day before the examination. No dietary restrictions were applied. Quality of bowel preparation was assessed with a previously validated 4-point Likert scale evaluating, on a per segment basis, the quantity of tagging and degree of distention. We performed a subgroup analysis to examine the impact of the following factors on bowel preparation: age (> 65 vs ≤ 65 years) and diverticular disease.
Results: Optimal tagging and distention were rated in 1392 (96.26%) and 1428 (98.75%) patients, respectively, resulting in optimal quality of preparation for 1409 (97.44%) patients. Diverticular disease was associated with lower incomplete distention rates (0.7% vs 1.98%, p=0.03) and lower quality of fluid tagging (4.6% vs 2.4%, p=0.03). Patient’s age did not affect both tagging (3.5% vs 3.9%) and distention (0.8% vs 1.7%) (p=0.63 and p=0.12 respectively).

Conclusion: Our proposed preparation without dietary restriction is effective in providing optimal fluid tagging and bowel distention for optimal quality CTCs. Diverticular disease negatively affects the quality of fluid tagging and degree of bowel distension.

B-0942 11:26
Diagnostic performance of MRI- vs MDCT-categorised T3cd/T4 for identifying high-risk stage II or stage III colon cancers: a pilot study

Purpose: To determine the diagnostic performance of magnetic resonance imaging (MRI) vs. multi-detector computed tomography (MDCT) in patients with curatively resectable colon cancer in comparison with that of multidetector computed tomography (MDCT).

Methods and Materials: Thirty-eight patients with histopathologically indicated adenocarcinomas prospectively underwent MRI of the colon. Two radiologists independently and retrospectively assessed for T-category, including T3 substage (≥T3mb vs. ≥T3cd). The diagnostic accuracy and inter-reader agreements among assessments using each modality were compared using a pairwise comparison of receiver-operating characteristic curves and a weighted κ statistic, respectively.

Results: Twenty-nine patients (76.3%) were histopathologically diagnosed with high-risk stage II or stage III colon cancer. The false-diagnostic-positive rate with MRI was lower than that with MDCT (0% vs. 7.9% for reader 1, 2.6% vs. 10.6% for reader 2). The diagnostic performance of MRI was better than that of MDCT across both readers (AUC: 0.707 vs. 0.506 [P = 0.032] for reader 1, 0.651 vs. 0.485 [P = 0.055] for reader 2). Moreover, MRI inter-reader agreement for the assessment of T3cd/T4 was significantly better than that of MDCT (κ=0.821 vs. 0.391 [P<0.001]).

Conclusion: The diagnostic performance of MRI imaging of the colon may be better than that of MDCT for identifying high-risk stage II or stage III cases. Given that MRI reduced the false-positive diagnosis rate, the usage of MRI-categorised T3cd/T4 diagnoses may prevent neoadjuvant chemotherapy overtreatment, though further studies with a larger sample size are required.

B-0943 11:34
Abdominal calcium score in the evaluation with computed tomography of the risk of leakage of the colon anastomoses
E. Santonocito, C. Trombatore, M. Travali, S.M. Santonocito, A. Di Cataldo, P.V. Foti, A. Basile, S. Palmauci; Catania/IT (enzosan@hotmail.it)

Purpose: Surgery of the abdominal area is burdened by a 4% postoperative mortality, with non-fatal complications in 20-40% of cases. The leakage of surgical anastomosis is one of the complications with the highest rate of mortality and morbidity. The aim of this study is to analyze the correlation between development of complications and degree of atherosclerosis of the abdominal aorta by CT.

Methods and Materials: The study was conducted retrospectively, recruiting 57 patients: 30 with anastomotic leakage (cases) and 27 without any postoperative complications (controls). The atherosclerosis degree of the abdominal aorta was quantized in the preoperative CT images through the calculation of the Calcium Score (Agatson method), with identification of the value of AAC (Abdominal Aortic Calcification). The risk of leakage of the colon anastomoses was predicted by the Calcium Score (all p<0.02), and had significantly less intake of vegetables and fiber (OR: 0.73, 95%CI: [0.53, 1.00] and 0.65, 95%CI: [0.46, 0.92], all p<0.02), with significant age and mean caloric intake.

Conclusion: Assessing DD by whole-body MRI is feasible and demonstrates similar pathophysiological associations as previously reported. MRI as a non-invasive tool provides novel opportunities including identification of high-risk DD phenotypes.

B-0944 11:42
Does spectral CT help to predict the severity of ischaemic colitis?
E. Danse, N. Michoux, A. Karlheuser, O. Devit, P. Baldin, A. Jouret-Mourin, L. Jacquet, E. Coche; Brussels/BE (etienne.danse@ulouvain.be)

Purpose: To evaluate the ability of spectral CT to predict the severity of ischaemic colitis.

Methods and Materials: 19 patients with a final diagnosis of ischaemic colitis were evaluated with our spectral CT (QCICON, Philips Healthcare). The maximal calcium wall thickening (mm), UH Score, on virtual non contrast acquisition (HUINC), on portal phase (HUINC, HUINC, HUINC) (corinna.storz@med.uni-tuebingen.de) ratio, iodine load (mg/ml), Z value were evaluated. CRP, blood lactate level, lactate deshydrogenase level (LDH), leukocyte count were analyzed. The search for differences between evolution (group 1 resolution without surgery, n = 10) and historically proven necrosis (group 2, n=9) was performed using Mann-Whitney U-test. A multivariable logistic regression analysis followed by a ROC curve analysis was done to identify prognostic factors of necrosis.

Results: The HUINC, HUINC, HUINC ratio was higher in group 1 (2.3 vs 1.3, p = 0.008). Z and iodine load were higher in group 1 than in group 2 (Z: 7.97 vs 7.41, p = 0.001, iodine load: 0.96 vs 0.22 mg/ml, p = 0.001). LDH was significantly higher in group 2 (421 vs 192 U/L, p = 0.004). At multivariable analysis, the association of CRP and LDH count in predicting the severity of ischaemic colitis demonstrated the highest performance (AUC = 0.986 [0.781; 1.000], Se = 100% [63; 100], Sp = 89% [52; 100], NVP = 100% [63; 100], PPV = 89% [52; 100], p < 0.001).

Conclusion: The combination of blood tests and colic wall abnormalities observed with spectral CT can contribute to predict the outcome of ischaemic colitis.

B-0945 11:50
Whole-body MRI prevalence and extent of asymptomatic diverticular disease and the association of dietary habits, cardiomtabolic and constitutional risk factors
C. Storz1, T. Rothenbacher2, S. Rospieszcz2, J. Linseisen1, H. Messmann1, C. N. De Cecco1, A. Peters, F. Bamberg1, 2München/DE, 3Charleston, SC/US, 4Neuherberg/DE, 5Heidelberg/DE (corinna.storz@med.uni-tuebingen.de)

Purpose: To assess the prevalence and the extent of diverticular disease (DD) and the association of cardiomtabolic risk factors, dietary habits and constitutional factors assessed by magnetic resonance imaging (MRI) in an asymptomatic general population.

Methods and Materials: Participants enrolled in a prospective case-control study underwent a 3 Tesla MRI, including T1w-VIBE Dixon sequence. Presence and extent of DD were categorized according to the number of diverticula in each colonic segment. The amount of visceral, subcutaneous and total adipose tissue and the degree of hepatic steatosis (PDFF) were quantified using a multi-echo T1w sequence. Traditional cardiomtabolic risk factors were obtained and dietary intake habits were derived using a comprehensive food-intake questionnaire. Univariate and multivariate associations were calculated.

Results: Among 393 participants included in the analysis, 42% had DD, predominantly in the left-sided colon. Subjects with DD were older, had significantly higher body mass index as well as higher cholesterol levels and systolic blood pressure (all p<0.003). In contrast, no significant correlation was found for physical activity, not for alcohol consumption (all p>0.31). Furthermore, subjects with DD had higher amounts of adipose tissue and hepatic PDFF (all p<0.02), and had significantly less intake of vegetables and fiber (OR: 0.73, 95%CI: [0.53, 1.00] and 0.65, 95%CI: [0.46, 0.92], all p<0.02), with significant independence of age, sex and mean caloric intake.

Conclusion: Assessing DD by whole-body MRI is feasible and demonstrates similar pathophysiological associations as previously reported. MRI as a non-invasive tool provides novel opportunities including identification of high-risk DD phenotypes.

Emergency Imaging
SS 1017
Best of emergency radiology (part 2): from neurological emergencies to penetrating injuries
Moderators:
B. Erkan; Istanbul/TR K. Katulskas; Poznan/PL

Purpose: A challenge for the clinician is effective decision-making in the setting of information overload. A supersimulated challenge is a radiologic report that is variable in format, length and linguistic style. Structured reporting helps enforce completeness and standardization. To improve the quality and usability
of our reports we assessed the referring clinician’s needs for trauma head CT.

Methods and Materials: A literature search determined several evidenced-based parameters that should affect clinical decision-making. A questionnaire went by email to referring clinicians from emergency room, neurosurgery, otolaryngology, spinal and maxillofacial Surgery. The questionnaire contained calibration questions, opinion questions about the status of the current reports, questions regarding a proposed structured report and communication of findings.

Results: 41 respondents completed the questionnaire. 55% read the radiologic impression and 27% the findings on a regular basis. 80% prefer shorter reports and 76% prefer to get structured reports in a table form. 32% wished to receive results other ways than the telephone, for example, a signal on an electronic dashboard. When asked about possible improvements, respondents asked for a link to the images with critical findings, less description of normal findings and continued reporting of all secondary findings.

Conclusion: Clinicians prefer structured reports to the narrative style for trauma head CT. There is a clear need for more personalized reports depending on the clinical severity, the clinician’s subspecialty and personal preferences. Further developments need to enable other ways to transmit information in a more rapid and personalized format.

B-0947 10:38
Computed tomographic pattern of intracranial injuries among patients with okada (motor cycle) road traffic accidents in Southwestern Nigeria O.M. A tallabi, O. Akinwumi, Ibadan/NG (ojomolla3t@hotmail.com)

Purpose: To determine pattern and prevalence of intracranial injuries on cranial computed tomography scan in patients with head injury following motorcycle road traffic accident.

Methods and Materials: This study was a descriptive cross-sectional study conducted on 190 patients, who presented with head injury at the Accident and Emergency Unit of University College Hospital, Ibadan, following motorcycle road traffic accident in a five-month period and who underwent computed tomography scan.

Results: More than half of the patients (n=59.8%) were within the ages of 20-39 years with a mean age of 33±14.37 years. A total of 183 patients did not wear the crash helmet at the time of injury with 155 patients (n=81.6%) sustaining intracranial injury (p<0.21). Cerebral contusion (n=62.6%), cerebral haematoma (n=31.7%) and cerebral oedema (n=86.8%) were noted in these patients. Most of the cranial, subarachnoid and epidural bleeds accounted for 28.5%, 22.2% and 21.5%, respectively. Only seven patients (3.8%) had intraventricular extension of these bleeds. One hundred and sixty-eight patients (n=88.4%) had varying types of skull fractures. The significant relationship between the presence of intracranial injury and severity of head injury was demonstrated in this study as the increase in intracranial injuries correlated with severity of head injury from mild to severe (p<0.001).

Conclusion: The sharp increase in okada (motorcycle) accidents now account for life-threatening intracranial injuries and has become a major public health concern needing enforcement of traffic regulation and safety measures.

B-0948 10:46
CTA evaluation of cervical ICA occlusion vs pseudo-occlusion in major stroke S. Molinaro, S. Veglia, O. Davini, C. Ruggieri; Turin/IT (ilmioalterego52@gmail.com)

Purpose: To evaluate the PPV of CT angiography in distinguishing between thrombotic occlusion and pseudo-occlusion of cervical ICA, using density measures (ROI) in patients with major stroke eligible to endovascular treatment.

Methods and Materials: From 353 patients who received a diagnosis of major stroke between Jan 16 and Mar 18, we studied 19 of them with no enhancement of major intracranic vessel and ICA (tandem occlusion) in two-phase CTA scan. Both images and reports were reviewed and three ROI were placed, one in the proximal tract of ICA and two (I and II phase) in the distal one, to assess a correlation between ROI values, angiographic report and CTA.

Results: 14 out of 19 patients had a CT diagnosis of occlusion, which was confirmed after in 9 cases with angiography (PPV 64.3%, CI95% 35.1%-87.2%) and 5 of pseudo-occlusion (28%) with regular vessel opacification in angiography in 1 case (PPV 20%, CI95% 0.5%-1.6%). Using the ROI in the II phase allowed to increase the accuracy (ARound 0.718, CI95% 0.490-1); more specifically, with a 65 HU ROI as cut-point (occlusion <65HU) the PPV was 85.7% (CI95% 42.1% 99.6%) and PPV was 41.7% (CI95% 5.2% 72%).

Conclusion: CTA in ischaemic stroke has the role of identifying the region of vascular occlusion. In case of suspect tandem occlusion, visual judgment cannot always distinguish between ICA true occlusion or pseudo-occlusion. The density measurement of the vessel by ROI increases both PPV and NPV and could be used as a new judgement criterion for correct reporting.

B-0949 10:54
Novel rapid imaging protocol of the bilateral MCA territories for thrombectomy in acute ischaemic stroke by old-model 320-row area detector CT. T. Mori, Y. Tanno, N. Nakai, K. Yoshikoa; Kamakura/JP (mont-koc@umin.net)

Purpose: The 320-row area detector CT (320ADCT) produces large volume data (VD) and image reconstruction of the old model is time consuming. Therefore, 4D-CT angiography (4D-CTA) is not always applicable to pre-thrombectomy. The aim was to design the practical protocol for pre-thrombectomy with any model.

Methods and Materials: To avoid subtraction of all images and to shorten image processing time, post-contrast volume scanning (VS) only was performed. VS used 1-st single rotation intermittent dataset scans. The mask was acquired at 1s and beginning 10 s after injection of contrast medium, 20 intermittent volume scans were acquired. Each volume consisted of 120 images, because of not 0.5-mm but 1-mm thickness with z-axis coverage of the not 160 mm but 120 mm (minimal width depending on the model), and total 2520 images were produced. After transferring VS to a workstation (WS), the 8-cm width VS along the middle cerebral artery (MCA) axis was cut out on the WS and 4D-CTA was generated. Examination time and image quality were evaluated.

Results: Small VS was transferred quickly to the WS and 4D-CTA of the MCA axis was generated soon and total time until viewing images on PACS was about 5 minutes. Image quality of 4D-CTA was useful in identifying candidates of thrombectomy. Compared to initial protocol of a 0.5-mm thickness with z-axis of the whole brain and subtraction of all images, total operation time became about a quarter.

Conclusion: Our protocol can provide practical 4D-CTA of the MCA axis in acute stroke setting.

B-0950 11:02
The Ottawa subarachnoid haemorrhage rule in the decision for acute CT head: external validation in a contemporary European cohort R.W. Foley; S. Ramachandran; A. Akintimehin; S. Williams; P.A. Kelly; Bristol/UK, Leicester/UK, London/UK (rfoley@gmail.com)

Purpose: The Ottawa subarachnoid haemorrhage (SAH) rule is a clinical decision tool to aid in the decision for CT Head in Emergency Department (ED) patients with acute non-traumatic headache. The objective of this study was to analyse the performance of the Ottawa rule in a UK cohort.

Methods and Materials: Patients undergoing CT Head for the investigation of non-traumatic SAH over a 6-month period at two tertiary centres were assessed. Each patient’s Ottawa score was calculated and compared to the final diagnosis. The Ottawa score consists of 6 items, namely age ≥ 40, neck pain/stiffness, witnessed loss of consciousness, onset during exertion, thunderclap headache or limited neck flexion on examination. Analysis was undertaken using R version 3.1.1.

Results: The cohort consisted of 366 patients and there were 16 cases of SAH (based on CT findings or xanthochromia in cerebrospinal fluid). The Ottawa rule identified 288 patients requiring CT Head. The sensitivity of the Ottawa rule was 100% (95% CI; 71%-100%) and the specificity was 22% (95% CI; 18%-27%). The negative predictive value was 100% (95% CI; 93%-100%)

Conclusion: The Ottawa SAH Rule corrected identified all patients with SAH in this cohort. The use of this rule would allow for an objective triage of patients presenting with acute headache to ED and in 22% of patients CT head could have been avoided. The Ottawa Rule is a useful tool to aid in the decision for CT Head in ED patients under investigation for SAH and should be utilised in clinical practice.

B-0951 11:10
Value of spot sign (SS) on CT angiography (CTA) such indicator of early haematoma expansion in the spontaneous intracerebral haemorrhage (ICH)- some therapeutic considerations E. Aguglia, G. Di Bartolomeo, A.F. Navarra, M. Di Matteo, M. Galliano, G. Manente; Teramo/IT (edopug@hotmail.com)

Purpose: Spot sign (SS) on CT-angiography (CTA) is a valid indicator of early haematoma expansion in spontaneous intracerebral haemorrhage (ICH). However, its contribution to outcome have not been well explored.

Methods and Materials: We evaluate 93 patients with spontaneous ICH, NCCT and CTA performed on admission within 6h after onset of symptoms, retrospectively from 2012 to 2018. We compare the Blend sign (BS) and black hole sign (BHS) on non-contrast computed tomography (NCCT). Discharge outcome was good (modified Rankin Scale [mRS] 0-3) and poor (mRS 4-6) outcomes. The impacts of SS on outcome were assessed in univariate logistic regression models and the relations with baseline haematoma volume and intraventricular haemorrhage or multivariate for the BS, BHS or SS.
Results: Of 93 patients with spontaneous ICH, 11 (11.8%) presented SS. There was a substantial correlation between SS and BS (κ=0.631) and a moderate correlation between SS and BHS (κ=0.445). In the univariate logistic regression the presence of BS/BS/SS (all P<0.001) on admission CT scan were associated with poor outcome. The multivariate analysis identified intraventricular haemorrhage (odds ratio [OR] 2.32 per mL, P=0.021), baseline haematoma volume (OR 1.05 per mL, P=0.001) and SS on CTA (OR 12.16, P=0.002) as independent predictors of poor outcome.

Conclusion: Of the CT variables indicating early haematoma expansion, SS on CTA was the most reliable outcome predictor to address for a rapid endovascular treatment. However, some authors give a strong correlation with SS on CTA, BS and BHS on NCCT that can be used for predicting outcome.

B-0952 11:18
Non-head-injured paediatrics in the emergency department: clinical predictors of abnormal head CT findings
J. Wu, H. Huang, M. He, Q. Fan, M. Ma, L. Lin; Fuzhou/CN (249961548@qq.com)

Purpose: To identify the clinical predictors of abnormal head CT findings of non-head-injured paediatrics in emergency department.

Methods and Materials: Three years consecutive cases of non-head-injured paediatrics (114 years old) with head CT acquisitions in emergency department of our hospital from 2015 to 2017 were reviewed retrospectively. Clinical predictors included age, gender, seizure, headache, dizziness or vertigo or ataxia, syncope, vomiting, fever, predisposing conditions (including history of hypoxic-ischaemic encephalopathy, bleeding disorders, malignancy, et al), abnormal physical examinations, altered mental status. Mono-factor and multi-factor logistic regression analysis were used to identify the independent clinical predictors of abnormal head CT findings of non-head-injured paediatrics in emergency department.

Results: 22 cases with existed intracranial diseases (5), unclear medical history records (7) and a history of injury (10) were removed from total 396 cases, and final 374 cases were included. 230 males, 144 females, the average age was 6.9±4.3 years, the medium age was 7 years. 29 (7.8%, 95%CI: 5%-10.5%) of 374 cases with abnormal head CT findings were found. Abnormal head CT findings of 7.8% (29/374) were seizures, 6.7% (25/374) were abnormal physical examination findings, 5.4% (20/374) were altered mental status.

Conclusion: The clinical predictors of abnormal head CT findings of non-head-injured paediatrics in emergency department were identified: predisposing conditions (OR=12.16, 95%CI:1.17-11.72), altered mental status (OR=9.593, 95%CI: 2.80-32.83). The sensitivity was 7.8%, the specificity was 92.2%, the positive predictive value (PPV) was 18.0%, the negative predictive value (NPV) was 92.2%.

B-0954 11:34
Evaluation of a novel 3D-surface reconstruction technique in post-mortem CT after stab attacks: diagnostic accuracy and forensic impact compared to conventional CT and autopsy findings
J. Böven, J. Boos, R.S. Lanzman, Y. Kloster kemper, P. Kröll, C. Thomas, G. Antoch, J. Aissa; Düsseldorf/DE (judith.boeven@med.uni-duesseldorf.de)

Purpose: Evaluation of diagnostic accuracy and forensic relevance of a novel 3D-reconstruction technique (cinematic rendering) used for stab wounds in post-mortem CT compared to conventional CT and autopsy findings.

Methods and Materials: Inclusion of six human cadavers undergoing whole body PMCT with blood loss as cause of death in all cases. Two radiologists counted the number of stab wounds in PMCT and the number of the wounds that were detectable in 3D-cinematic-rendering (CR) reconstructions. Afterwards assessment of the total number of stab wounds during autopsy by two forensic pathologists. One forensic pathologist evaluated the CR reconstructions regarding their relevance in forensic interpretation and demonstration on a five-point scale (1: very useful for forensic interpretation and demonstration; 5: not useful).

Results: 6 human cadavers had a total number of 99 stab wounds found in autopsy by pathologists. Both PMCT readers detected 59 stab wounds. 56/59 (94,9%) of the stab wounds were found on CR reconstructions. Both, CR and PMCT were significantly inferior compared to autopsy. CR reconstructions were significantly more useful than conventional PMCT (p<0.005) concerning forensic interpretation and demonstration aspects.

Conclusion: Photorealistic 3D-reconstructions are declared more useful for forensic interpretation and demonstration compared to conventional PMCT in the diagnosis of stab wounds. A significantly lower amount of stab wounds was found in autopsy performed by forensic pathologists than in PMCT and 3D-CR-reconstructions, however autopsy is still the method of choice in detection of stab wounds. 3D-reconstructions of stab wounds are more useful for demonstration aspects compared to conventional PMCT.

B-0955 11:42
Imaging of penetrating extremity injuries in a Scandinavian level-1 trauma centre: a 4-year analysis of the trauma registry data from the Karolinska trauma centre, Stockholm
P.M. Cewe Jonsson1, S. Thorisdottir2, G.L. Oladottir1, S. Koskinen1,3; Solna/SE, Stockholm/SE; Huddinge/SE (paulina.cewe-jonsson@sll.se)

Purpose: To analyse incidence, mechanism of injury, imaging approach and clinical outcome in penetrating extremity injuries at a level-1 trauma centre.

Methods and Materials: A retrospective cohort study of penetrating injuries between 2013 and 2016 (4 years) to the extremities retrieved from the Karolinska Trauma Registry. Imaging data were accessed through hospital RIS and PACS, and electronic medical records were analysed. Two radiologists collected and analysed imaging data while the third evaluated the subgroup of extremity injuries.

Results: Of 636 patients with penetrating injury, 443 had imaging data available. Of these, 36.8% (183/443) had penetrating extremity injuries. This cohort comprised 145 males (89.0%; age range 15-83, mean 31.4) and 18 females (11.0%; age range 18-93, mean 35.7). Main mechanisms of injury were stabbing (SW) 50.3% (82/163) and shooting (GSW) 43.0% (70/163). Half of the injuries were limited to the lower extremities (51.5%, 84/163). Imaging was performed in 85.3% (139/163) of patients. CT angiography (CTA) was the most common imaging modality (83/139, 67%). Arterial damage was present on 44 CTAs (47.3% 44/93). Compared to SW, GSW increased the odds for surgery significantly (OR 2.5 p<0.02). In general, GSW increased the odds for surgery by 7.7 times (p<0.008) compared to SW. 30-day morbidity rate was 11.7% (19/163). Overall mortality rate was 0%.

Conclusion: Penetrating extremity injuries are relatively common. In this study, imaging was performed in 85% of patients. CTA was the most common imaging modality. GSW significantly increased the overall odds of surgery compared to SW. No deaths occurred in our patient cohort.
10:30 - 12:00 Room Y

Interventional Radiology

SS 1009 Vascular interventions in the aorta and peripheral arteries

Moderators: R.F. Dondelinger; Liège/BE
F.F. Strobl; Munich/DE

B-0957 10:30 Preoperative tibial artery run off score differences before endovascular or bypass surgery in patients with long popliteal artery lesions
A. Kratovska, S. Ponomarjova, P. Ivanova; Riga/LV

Purpose: Objective, quantitative preoperative tibial run-off score (TRS) calculation is not highlighted by guidelines of critical limb ischaemia (CLI) although it plays important role in revascularization treatment method selection (RTMS) for patients with long popliteal artery atherosclerotic lesion. The aim of this study was to analyse association of TRS with RTMS.

Methods and Materials: Single centre retrospective case-control study performed in 2016-2017 in tertiary care hospital. 47 patients with infrarenal aortic bypass surgery (IBGS) and 36 with endovascular therapy (EVT) of femoropopliteal segment (n=83) who met the inclusion criteria were selected. An authors adjusted TRS calculation system (total occlusion=0 point, intact=22) was used to analyse tibial artery status. Age, gender, Rutherford category, femoropopliteal lesion TASC II type, TRS and statistical association of variables with RTMS analysed by SPSS 22 program. P < 0.05 considered statistically significant.

Results: Mean TRS in IGBS group was statistically significantly higher than in EVT group: 9.074 ±3.887 vs 5.7 ±3.852 (p<0.001). In univariate analysis from all the variables analysed age (t test, p=0.008), gender (Exact Fisher test, p = 0.032), TASC II lesion type (Pearson Chi-Square test, p =0.006) and TRS (t test, p=0.006) were statistically significantly associated with RTMS. Multivariate analysis ruled out that only TASC II lesion type and TRS are significantly associated with RTMS (p<0.001).

Conclusion: TRS is a strong predictor of revascularization modality choice in patients with CLI and long popliteal artery lesion and is significantly higher in IGBS group. Objective, quantitative preoperative TRS evaluation could be recommended in a routine practice.

B-0958 10:38 Long-term results of the aortoiliac kissing stents and risk factors of in-stent restenosis
M. Vártels, I.Z. Juhasz, D.T. Nguyen, C. Csosay-Novák, B. Nemes, K. Höttl, E. Dósa; Budapest/HU (vertesmiki@gmail.com)

Purpose: To determine the long-term patency of the aortoiliac kissing stents and to identify predisposing factors for the development of in-stent restenosis (ISR).

Methods and Materials: A retrospective analysis was conducted of 105 patients (median age 60.9 years; 64 women) with symptomatic aortoiliac occlusive disease who had kissing stents implanted between 2001 and 2015. Patient, vessel, lesion and stent characteristics were examined. Lesions were classified according to TASC in 52 (49.5%), B in 29 (27.6%), C in 4 (3.8%), and D in 20 (19%)

Results: 30-day mortality rate were analysed. A total of 28 patients (male/female ratio, 21/7; median age, 54 years) who underwent selective TAE of thoracic haemorrhage-culprit arteries were included in this study. Technical and clinical success, complications, and 30-day mortality rate were analysed.

Conclusion: Our clinical experience suggests that TAE used to control thoracic arterial bleeding following chest trauma is safe and effective as a minimally invasive alternative to surgery.

B-0959 10:46 Comparative assessment of occupational radiation exposure between transbursal and transfemoral approach during percutaneous retrograde scleroembolisation of left varicocele
A. Conti, M.C. Calcagno, D. Mio, A. Modica, D. Rizzo, L. Mammì, P.V. Foti, S. Palmucci, A. Basile; Catania/IT (mc.calcagno@gmail.com)

Purpose: Aim of this study is to compare the occupational radiation exposure difference between transfemoral (TF) or transbursal (TB) venous access, during percutaneous retrograde sclerotherapy of left spermatic vein.

Methods and Materials: In this randomized trial we evaluate 18 males patients (9 via TF and 9 via TB venous access - mean age 29.8 years old, range 18-43 years old), treated, between March and September 2018 (the study is still in progress), by retrograde scleroembolisation of left varicoceles. During the procedures, the occupational exposure is measured using a direct reading integral dosimeter calibrated in Hp(10) (personal dose equivalent at the depth of 10 mm). To maximize the statistical coherence and avoiding bias, the procedure has always been performed by the same operator, using the same angiography system, protocol and dosimeter. Data have been collected at the end of each procedure referring to fluoroscopy time, DAP (dose area product) and exposure measured in Hp(10). Statistical analysis has been performed using t-test.

Results: Operator occupational exposure in Hp(10) is higher using TF access (63.4±47.24 vs 27.89±17 µSv; p=0.0496). Mean fluoroscopy time (8.31±2.391 vs 5.489±2.045 min; p=0.0161). DAP (92.89±62.69 vs 40.22±22.7 Gycm²; p=0.037), effective dose (E) and eye lens equivalent dose (HE) are higher as well using TF access.

Conclusion: TB venous access in the scleroembolisation of left varicocele offers an advantage in terms of better haemostasis, reduced complications, better patient compliance and moreover in terms of lower radiation exposure of the operator and the patient.
and during VAST. Right heart strain, mean pulmonary arterial pressure (mPAP), peripheral transcutaneous oxygenation, and survival were assessed.

Results: Technical success of VAST was achieved in all patients. Mean procedure time (puncture to haemostasis) was 112±47 (range 55-180) minutes, contrast medium volume 130–190 (100-150) ml, thrombectomy aspiration volume 213±55 (150-300) ml, mPAP improved from 8±7 to 52±65 mmHg to 1.8±3 (24-33) mmHg (p=0.008) and peripheral oxygenation increased from admission 83±4 (79-90)% to 96±2 (96-99)% post-interventional (p=0.022). Cardiac imaging studies 24 hours later showed improvement of right to left ventricular quotient from 1.5±0.2 (1.2-1.7) to 1.0±0.1 (0.8-1.2) (p=0.03). Follow-up up to 2 years showed no procedure associated bleeding complication or death.

Conclusion: In an international prospective registry of a limited number of patients vacuum-assisted aspiration thrombectomy proved to be a safe and effective option for percutaneous catheter-directed treatment of acute massive pulmonary embolism.

B-0962 11:10

Gemstone Spectral Imaging (GSI) in early CT-follow up after endovascular aortic repair (EVAR)

H. Muenzelfeld, T. Schmidt, H. Posch, B. Gebauer, B. Hamm, G. Böning; Berlin/DE (hanna.muenzelfeld@charite.de)

Purpose: Endovascular aortic repair (EVAR) is one of the most challenging procedures in interventional radiology related to several risks and complications. To contrast enhanced ultrasound (CT), CT is used for follow up. We aim to evaluate the diagnostic accuracy of a novel technique: the potential of Gemstone Spectral Imaging (GSI) for early CT-follow up after EVAR.

Methods and Materials: Preliminarily, 13 cases of GSI CT after EVAR were included. The dual phase protocol includes a dual energy (GSI) arterial phase and a monoenergetic venous phase at an equal scan length. Liver suppressed images (ISI) and virtual monochromatic images (VMI) were reconstructed from GSI data. Radiation dose was compared intraindividually and to a low dose triple phase protocol, including a pre-non contrast phase. Diagnostic confidence with special regard to endoleak detection was assessed.

Results: Preliminary results confirm the diagnostic usability of GSI-CT in early follow up after EVAR with diagnostic confidence levels equivalent to our standard. Intraindividually, GSI technique shows equal radiation exposure compared to monoenergetic images (mean CTDI 8.09±4.5 vs. 8.60±4.1). The GSI did not significantly increase mean applied dose compared to the low dose triple phase protocol (mean DLP 1051±389 vs. 842±565 mGy cm, p=0.2) by replacing the non-contrast phase by ISI.

Conclusion: Dual energy GSI CT with a dual phase protocol is feasible for early CT-follow up after EVAR without sacrificing diagnostic confidence and endoleak detection by utilization of ISI and VMIs. GSI does not significantly increase applied radiation dose compared to the monoenergetic phase and to a low dose triple phase protocol.

B-0963 11:18

Prospective single-centre registry of endovascular aortic repair (EVAR) using ultra-low profile altitude endograft

A. Buecker**, H. Homburg/DE, P. Firmans/DE

Purpose: To report preliminary prospective single-center experience of endovascular aortic repair (EVAR) using ultra-low profile (14F) Altura (Lombard Medical) stentgrafts.

Methods and Materials: During 2016-2018, 31 consecutive patients (3 females) (mean age 73±5; range 57-88 years) underwent elective or urgent (n=2) EVAR of abdominal aortic aneurysms (AAA) (mean diameter 55±5.9 to 68-75 mm; angulation 31±24 (0-80°); infrarenal neck length 31±12 (14-55 mm); aorto-iliaic aneurysms (n=2); common iliac artery aneurysm diameter 35 and 45mm and one renal chimney (AAA S5mm) using Altura endografts. Prospектив follow-up recording morbidity and mortality outcomes, endoleak and re-intervention included contrast-enhanced duplex-ultrasound and computed tomography.

Results: Technical success for device deployment was 100%. Mean procedure time (needle to haemostasis) was 59±13 (40-91) minutes; fluoro-scopy time 10±4 (4-18) minutes; dose-area product 4,131±2,030 (1,377-8,188) μGy cm2; contrast medium volume 75±29 (40-150) ml. Compared to a per aneurysm characteristics matched patient cohort treated with Medtronic Endurant II, fluoro-scopy (median 10 vs. 17 minutes p=0.0001); dose-area product (p=0.0063) and procedure-time (60 vs. 69 minutes; p=0.0477) were significantly lower for Altura. Overall hospitalisation was 6±5.2 (3-26) days (Intensive care unit 1±0.8 (1-4) days). There was no relevant blood loss. Early (<90 days) complications included a 1% stroke and 1% limb loss. Follow-up up to 9-months in patient experienced mild temporary post-implantation syndrome; 4 patients required additional surgery for symptomatic femoral artery dissection/pseudoaneurysm. During mean-follow up of 5±7 (1-25) months freedom from device-related complications, aneurysm-related re-intervention or death was 100%. Aneurysm shrinkage (<5 mm) was seen in 20% of patients.

Conclusion: Preliminary experience showed promising short-term results with the low-profile easy-to-use Altura device. Long-term studies are required to assess durability and device-related complications.

B-0964 11:26

Fusion imaging to guide thoracic endovascular aortic repair (TEVAR): comparison of two methods: 2D/3D vs 3D/3D image fusion

P.-A. Barrai; A. Bartoli, P. Piquet, M. Demais-Jacquier, M. Gaudry, A. Jacquier; Marseille/FR (pierre-antoine.barral@ap-hm.fr)

Purpose: To compare two-dimensional (2D) versus three-dimensional (3D) image fusion for thoracic endovascular aortic repair (TEVAR) image guidance.

Methods and Materials: Between June 2014 and March 2018, all patients who underwent TEVAR were included. TEVAR was performed by a multidisciplinary team in a hybrid suite under image fusion guidance. Two different fusion procedures namely 2D/3D and 3D/3D were evaluated in terms of accuracy, X-ray exposure (dose-area product, DAP), volume of contrast medium injected, fluoroscopy time, and procedure time. All aortic and general complications were recorded up to one-month follow-up.

Results: 42 patients were prospectively included. 26 were performed under 2D/3D, and 16 were performed under 3D/3D. The 3D/3D method allows a more accurate positioning of the aortic mask on the top of the fluoroscopic images (proximal landing zone diameter: 1.8mm±3.3 vs the 2D/3D method: p=0.001). The volume of contrast material injected was strongly reduced to 2D/3D (120±45 ml vs 113±56 ml; p<0.0001). At one-month’s follow-up, we recorded 4 complications for 2D/3D and 1 complication for 3D/3D with no significant differences between the two groups.

Conclusion: 3D/3D image fusion is feasible and safe and yields higher image fusion accuracy than 2D/3D image fusion during TEVAR. It helps to reduce contrast volume and irradiation, but does not demonstrate better clinical outcomes at one month.

B-0965 11:34

Distal transradial approach at the anatomical snuffbox for interventional procedures: a single-centre pilot study

S.-E. Park1, S. Cho2, C. Hocheo2, S. Lee;1 Changwon/KR, 2 Jinju/KR (uneyes@gnuh.co.kr)

Purpose: Distal radial artery (RA) access at the anatomical snuffbox is a new approach for endovascular procedure. We demonstrate in twenty-one cases the possibility of distal RA access to performed endovascular treatment without any additional equipment or cost. To evaluated the feasibility and safety in a single centre using distal transradial access (TRA) for endovascular treatment.

Methods and Materials: Distal TRA was attempted in 21 patients (16 men; mean age, 62.2 years) who underwent 21 consecutive procedures (chemoembolization [n=5], bronchial artery embolization [n=3], renal intervention [n=3], uterine artery embolization [n=1], arteriovenous fistula angioplasty [n=3], subclavian artery stenting [n=3], other embolization [n=3]). From January 2018 to September 2018. Exclusion criteria included procedures requiring sheath > 6 Fr, Barbeau D waveform and distal RA diameter < 2 mm on ultrasound. Patients were evaluated for complications during follow-up (range 14-60 days).

Results: Technical success was 95.2% (20/21). There was no major complication. Minor complications (4.8%) included distal RA segmental occlusion (n=1). The failed case required crossover to transfemoral access due to proximal subclavian artery occlusion. Mean haemostasis time is 151.8 minutes (range 120-360 minutes).

Conclusion: Distal TRA at the anatomical snuff box was feasible and safe in various diseases over a range of vascular interventions.

B-0966 11:42

Tunneled central venous catheters (TCVC) in infants using adult peripheral inserted central catheters (PICC) devices: ten years experience

Purpose: Tunneled Central Venous Catheters (TCVC) is a reliable venous access in infants up to 12 months. We present our experience with tunneled adult PICC line devices used in this age group.

Methods and Materials: We retrospectively searched our electronic hospital database for a 10 years period collecting data from consecutive pediatric patients less than 1 year old, who underwent tunneled central venous catheter insertion. The patient’s demographics, site of access, and procedure details were recorded where outcomes included technical success and post procedure complications.
Results: From April 2008-April 2018 a total of 182 TCVC were inserted in 161 patients (49.7%, n=80 male). Mean age was 100 days (range 0-342) with average weight 4.20 Kg (range 1.80-9.40). The most common indication for insertion was for antibiotics in 41% of cases (n=66) followed by TPN 34.7% (n=56) while other indications were recorded for the remaining cases. Technical success was 99% (n=180). Early complications were seen in 8.8% (n=14) including among others inadvertent line removal in 4.9%, line sepsis in 1.1%, line thrombosis in 1.6% (n=3), and others. Average line functional duration prior to removal was 26 days (range 0-180). The majority of the lines 76.9% lasted for the intended duration of treatment.

Conclusion: Tunneled Central Venous Catheters using adult PICC line devices in infants is a safe technique with excellent success rate and minimal complications rates.

B-0967 11:50
Efficacy of drug-eluting stents ELUVIA in treatment of high grade of femoropopliteal lesions
F. Rosella, T. Gorgatti, A. Vit, V. Gavrilovic, A. Pellegrin, M. Sponza; Udine/IT (francesco.rosetta.md@gmail.com)

Purpose: Preliminary study of efficacy about Drug-Eluting Stents (DES) ELUVIA in 39 cases on 27 patients with high grade of symptoms and femoropopliteal lesions.

Methods and Materials: Patients were stratified according to clinical characteristics (age, sex, smoking, diabetes, CKD in HD, dyslipidemia). Lesions were stratified according to TASC II: 3A (7.6%), 2B (5.1%), 2C (69.2%), 2D (17.9%) (average length 95.25mm, DVstd 43.16mm). Primary Outcome was patency at 6, 12 and 18 months during follow up: absence of target lesion revascularization, no significant neointimal proliferation at B-Mode US and duplex ultrasound peak systolic velocity ratio of ≤2.5, at clinical visit and EchoColorDoppler control.

Results: Success rate of procedures was 100%: any vascular complications, neither distal embolic events. The rate of primary patency was of 82% at 6 months, 74% at 12 - 18 months. During follow up occurred 9 restenosis/occlusion, 7 in the first 2 months, 6 TASC C and 1 TASC D, retreated with a success rate of 100%, and rate of secondary patency of 100% at 6 months, 91% at 12 months. Only 2 occurred after sixth month, in patients retreated with a success rate of 100%, and rate of secondary patency of 100% at 6, 12 and 18 months. Pr imary Outcome was patency at 6, 12 and 18 months during follow up: absence of target lesion revascularization, no significant neointimal proliferation at B-Mode US and duplex ultrasound peak systolic velocity ratio of ≤2.5, at clinical visit and EchoColorDoppler control.

Conclusion: Patency rate was high despite the severity of lesions, and similar to results of studies performed on populations with lower grade of lesions. Study indicates that DES are safe and effective in treatment of high grade of femoropopliteal lesions.

10:30 - 12:00 Coffee & Talk 3

Head and Neck

SS 1008
Head and neck cancer
Moderators: A.D. King; Hong Kong/CN, A. van der Hoorn; Groningen/NL
K-23 10:30
Keynote lecture
N.I. Traykova; Plovdiv/BG

B-0968 10:39
Histogram analysis of CE-MRI for differential diagnosis of pleomorphic adenomas and malignant tumour of parotid gland
K. Xu, Y. Zhang; Zhengzhou/CN (109496417@qq.com), B. Wen; J. Cheng; J. Zhu; Zhengzhou/CN, Beijing/CN (wenbaohong2012@163.com)

Purpose: To determine the diagnostic value of readout segmentation of long variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) (b=1000 s/mm²) in the evaluation of lingual squamous cell carcinoma and lingual lymphoma.

Methods and Materials: 70 patients with lingual squamous cell carcinoma and 21 patients with lingual lymphoma confirmed by pathology were retrospectively analysed from February 2016 to January 2018; all patients underwent preoperative routine MRI and RESOLVE DWI. The ADC average values of the lesions were calculated; t test was used to compare the ADC values of lingual squamous cell carcinoma and lingual lymphoma. Diagnostic performance of ADC value was compared using receiver operating characteristic curve (ROC).

Results: The mean ADC value of lingual squamous cell carcinoma was (1.09±0.16) × 10⁻³ mm²/s and lingual lymphoma was (0.64±0.11) × 10⁻³ mm²/s, thus, there was a statistically difference between them (t=12.40, P < 0.001). The area under the ROC of ADC value differentiating lingual squamous cell carcinoma and lingual lymphoma was 0.999±0.001. Using ADC value ≤0.88×10⁻³ mm²/s as the critical value for diagnosing lingual lymphoma and comparing with pathological results, the result obtained had a sensitivity of 100%, specificity of 98.57%, ADC value had high correlations compared with pathological results, and Kappa value was 0.970.

Conclusion: RESOLVE DWI is quite effective in differential diagnosis between lingual squamous cell carcinoma and lingual lymphoma.

B-0970 10:55
Staging tongue cancer with the 8th edition of TNM: can MR provide a surrogate of the pathologic DOI?
R. Campora, F.M. Piana Jacquot, I. Zorza, G.M. Agazzi, M. Ravaneli, D. Farina, Brescia/IT (camporic@hotmail.it)

Purpose: To assess the reproducibility of three surrogate methods of DOI measurements applicable to MR and their correlation with N stage at presentation and follow-up.

Methods and Materials: Retrospective analysis on 58 MR scans performed preoperatively in patients affected by SCC of the oral tongue. Two independent operators measured on axial and coronal plane: radiologic tumour thickness (RTT) drawing a line perpendicular to the mucosal surface and reaching the deepest part of the tumour; endophytic tumour (ET) drawing a line between the normal mucosal layers at the extremes of the lesion and from that measuring perpendicularly the tumour depth; reconstructed tumour thickness (TR), measuring on the unaffected side the distance between normal mucosa and septum, subtracting then the distance between the deepest part of the tumour and the septum. Reproducibility was measured with ICC and Bland-Altman and clinical correlations were studied with Mann-Whitney test.

Results: Considering all techniques, ICC showed scored 0.9265 as worst value, Cohen’s k scored 0.6463 as worst value. ET in the coronal plane was the only measurement significantly correlated to N stage (median in pN0 patients 6.7mm, in pN+ patients 6.9mm p=0.0058) and recurrences (median in pN0 patients 5.9mm, in R1 13.9mm p=0.0332).

Conclusion: MR measurements showed acceptable reproducibility between two operators with very different experience. ET in the coronal plane appears a viable surrogate to the pathologic DOI.

B-0971 11:03
Parotid tumours differential diagnosis: MRI dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) compared to fine needle aspiration cytology (FNAC)
G. Guazzarotti, E. Venturini, R. Mellone, A. De Gasperi, D. Di Santo, A. Del Maschio, F. De Cobelli; Milan/IT (guazzarotti.giorgia@hsr.it)

Purpose: To determine diagnostic accuracy of combined evaluation of DWI and DCE in the differential diagnosis of parotid tumors, compared to FNAC.

Methods and Materials: Patients with parotid lesion underwent preoperative dynamic contrast-enhanced (MRI:TR/TE=5000/1000msec,DCE) and FNAC. Mean ADC was measured by ROI avoiding necrosis and compared to mean muscle ADC, obtaining ADCratio(ADC); 2 rADC thresholds(identified by ROC analysis) were used to obtain 3 groups: pleomorphic adenomas(PA)/cysts(Cy), lymphomas(L), indeterminate lesions. For indeterminate lesions, Time-Intensity Curves(TIC) were evaluated and classified as type A(time to peak(TTP)>150s),
B(TTP<150s, washout ratio [WR]<30%), C(TTP=150s, WR<30%), D(Flatt); type C were considered malignant. Sensitivity(SE), specificity(SP), positive and negative predictive values (PPV, NPV) were evaluated using histology as gold standard. Diagnostic accuracy of FNAC and MRI were compared.

Results: We evaluated 44 benign (9 PA, 2 basal cell adenomas [BA], 18 Warthin [W], 2 IgG4 disease [IG]), 13 malignant lesions (7 carcinoma [C]), 2 metastases [M]). 2 rADC thresholds were identified to distinguish PA/C (rADC<1.37; AUC=0.96) and L (rADC<0.57; AUC=0.96) to obtain 3 groups: rADC<0.57 (3/4L), rADC>1.37 (17/19 PA), 3/3 C; 1/18 W, 1/7 K. Combining DWI and DCE we correctly diagnosed 52/57 lesions (91.2%); 11 True Positives (TP), 2 False Negative (FN). 41 True Negatives (TN), 3 False Positives (FP) with 84.6% SE, 93.2% SP, 78.8% VPP, and 95.5% VPN. T1&T2 signal and morphology did not allow a better characterization of FP&FN results. 54 patients underwent FNAC, with 8 non-diagnostic finding and 46 adequate specimens; 7 revealed malignant cells. 39 benign lesion, with 7 TP, 1 FP, 5 FN, 33 TN. FNAC correctly discriminated between benign and malignant lesions in 74% cases (40/54), fewer than MRI.

Conclusion: DWI and DCE allow to confidently discriminate benign and malignant parotid tumors in preoperative work-out, representing a valid alternative to FNAC.

B-0972 11:11
The value of RESOLVE on 3.0 T MRI for predicting the early efficacy of concurrent radiochemotherapy of advanced stage nasopharyngeal carcinoma patients
C. Xu; Zhengzhou/CN (xcm-1977@163.com)

Purpose: To discuss the value of RESOLVE for predicting early therapeutic effect of concurrent radiochemotherapy in advanced stage nasopharyngeal carcinoma patients.

Methods and Materials: The ADC value and the area of the tumour was measured before treatment and 2 weeks after treatment independently performed by two radiologists with 5 years experiences and the agreement evaluation was performed using ANOVA analysis. The difference between pretreatment ADC value was compared in CR group and non-CR group by independent sample t test. ROC curve was drawn and the maximum Youden index value was the cutoff calculating the ADC value and predicting the sensitivity and specificity for malignancy, respectively.

Results: 1) The agreement between 2 radiologist was excellent. The ICC was 0.890±0.023, the sensitivity and specificity of the pretreatment area value in predicting CR was 85.2% and 71.0%, with the cut-off value of 0.792±0.10 mm\(^2\)/s, and the area under the ROC curve was 0.778. 2) There was an apparent correlation between the pretreatment area value and the tumour regression rate (r=0.333, P=0.006).

Conclusion: There was important value using the pretreatment area value measured by RESOLVE for predicting the early effect of concurrent radiochemotherapy in advanced stage nasopharyngeal carcinoma patients.

B-0973 11:19
Impact of radiologic imaging revision in the multidisciplinary management of head and neck cancer patient
D. Rossi; D. Alterio; S. Volpe; F.A.K. Pounou; C. Giannitto; M. Ansarin; M. Bellomi; B.A. Jereczek-Fossa; L. Preda; M. Bellomi; Battellina; Battellina@gmail.com

Purpose: To quantify impact of radiologic images revision performed by expert radiologists in the contest of multidisciplinary team (MDT) discussion of head and neck cancers.

Methods and Materials: We retrospectively reviewed all cases discussed at MDT meetings from April 2014 to April 2017 and selected only those for whom a radiologic revision was required. Any changes of the radiologic description compared to the original chart was collected and classified as follow: 1) changes of radiologic staging 2) changes in treatment strategy categorized as ‘major changes’ and ‘minor changes’.

Results: 540 cases were analyzed. Imaging revision was required at the time of tumour diagnosis in 310 (57.4%) cases and most of patients (69%) had advanced stage (III and IV) tumour. In 262 (48%) cases no changes of the initial radiologic report was performed. In a total of 144 (27%) cases the available imaging was not considered sufficient for a final indication to treatment an further analysis were required. In the remaining 134 (25%) cases, the radiologic revision lead to a modification of either tumor staging (55%) or treatment strategy (45%). Specifically, major and minor modifications were applied in 44 (13%) and 71 (11%) of the considered cases, respectively.

Follow-up was available for 118 (86%) cases and showed that MDT decision was correct in 117/118 (99%) cases, with 43 patients having an histological confirmation of the MDT decision.

Conclusion: Our data strongly confirm the paramount importance to include an expert head and neck radiologist in the core of each Institutional head and neck MDT.

B-0974 11:27
Quantification of heterogeneity to classify benign parotid tumours
F. Patalesi; M. Sansone; G. Franceschelli; R. Fusco; M. Petriolo; F. Pesapane; S. Zannoni; P. Brambillasca; G. Carrafiello; Milan/IT; Naples/IT (battellina@gmail.com)

Purpose: To measure heterogeneity to classify Warthin tumours (WT) and pleomorphic adenomas (PA) of parotid glands by correlating functional IVIM and DCE-MRI histogram parameters with pathology.

Methods and Materials: A total of 36 pathologically proven parotid tumours (18 WT and 18 PA) in 25 consecutive enrolled patients were included in this study. For both DCE-MRI and DW-MRI, model-free and model-based parameters were computed voxel-by-voxel on manually segmented VOIs. For each lesion, the following functional biomarkers were considered: Ktrans, kep, vp, MRE, TTP, WIS, WOS, MRE, f, D* D. A histogram analysis was performed, identifying for each MRI biomarker central tendency features (mean, median) and heterogeneity parameters (standard deviation, kurtosis, skewness, mad, entropy and energy). The Wilcoxon signed-rank test was used to compare the histogram characteristics in WT and PA. Furthermore, ROC curves and multivariate analysis were employed to identify, respectively, the parameters and the pairs of parameters with the best accuracy.

Results: Univariate analysis showed that almost all biomarkers exhibit significant difference between PA and WT either for central tendency or heterogeneity parameters (p value <0.05 at Wilcoxon signed-rank test). As regards the ROC analysis, after cross-validation, the highest area under curve (AUC) was achieved using TTP median and skewness and by D* median and entropy. With respect to the multivariate analysis, it seems that no meaningful improvement of classification performance can be obtained using two features.

Conclusion: Differential diagnosis of WT and PA may benefit from the use of IVIM and DCE-MRI parameters and from the information provided by histogram descriptors.

B-0975 11:35
Lesion-parenchyma ratio of DCE-MRI pharmacokinetic parameters for characterisation of salivary gland tumours
F. Mungai; G.B. Vernon; M. Pietragalla; L. Bonasera; M. Bartollucci; V. Miele; Florence/IT; Pistia/IT; Rome/IT (f.mungai@gmail.com)

Purpose: Quantitative data derived from pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are affected by high variability and their clinical use in characterizing salivary tumours is controversial due to low reproducibility. This study introduces a clinically feasible method using DCE-MRI data for characterization of principal salivary gland tumours.

Methods and Materials: DCE-MRI images were acquired from 60 patients with salivary gland tumours. For each patient, PK parameters of Ktrans, kep, Ve, Vp, and IAUC (using modified Tofts model) were measured on both the lesion and the normal contralateral salivary gland parenchyma. Lesion-parenchyma ratio (L/P) for each parameter was then calculated. ANOVA and ROC analysis were performed.

Results: Five groups of lesions were identified (reference standard: histopathology): pleomorphic adenomas (n=20), Warthin tumours (n=16), other benign entities (n=4), non-Hodgkin lymphomas (n=4) and malignancies (n=16). Among groups there were significantly different mean values of L/P-Ktrans (p<0.026), L/P-Kep (p<0.019), L/P-Ve (p=0.010), L/P-Vp (p<0.010) and L/P-IAUC (p<0.004). Ratio values higher than 1.0 were found for L/P-Ktrans in malignancies (mean value 1.966); L/P-Ve in adenomas (2.051), other benign entities (1.081) and malignancies (1.591); L/P-Vp in Warthin tumours (1.943) and malignancies (3.797); L/P-IAUC in malignancies (2.106). ROC analysis demonstrated the highest area under the curve (AUC=0.94) for L/P-IAUC, with sensibility and specificity for malignancy, respectively, of 88% and 100% (cut-off value 1.035).

Conclusion: The use of lesion-parenchyma ratio of DCE-MRI quantitative data can provide a robust and accurate method for characterization of salivary gland tumours and can be easily implemented in clinical routine.
B-0976 11:43
Theatre radiology: making the inoperable operable with real time, intraoral ultrasound guided trans oral robotic surgery
A. July, D. Ap Dalyyd, V. Paier, J. Hardman; London/UK

Purpose: Trans-oral robotic surgery is minimally invasive and has generated promising early results. We illustrate our experience using intra-oral ultrasound, intraoperatively to assess oropharyngeal tumours and guide trans-oral robotic surgery.

Methods and Materials: 12 month period: February 2018 to February 2019 Inclusion criteria: Cases suitable for TORS (T1/T2 tumours, recurrences, good mouth opening) Exclusion criteria: Limited mouth opening, high risk anatomy. All patients assessed whilst under general anaesthesia, A fine, linear intra-operative pencil probe (18 MHz) is applied to the lesion, prior to and/or after introduction of the robotic arms. Ultrasound findings cross-referenced with available pre-operative imaging and collaboratively mapped by the radiologist and surgeon.

Results: Good visual correlation of tumour morphology with CT/MR Greater access to the posterior tongue and oropharynx under general anaesthesia. Improved confidence of surgeon in orientating dissection planes. Where contact between the ultrasound probe and posterior oropharyngeal tumours is difficult due to curvature of the tongue, it would be feasible to flood the intubated pharynx with water enabling ultrasound conduction without direct probe contact. Ultrasound of the resected tumour tissue is performed to ensure adequate margins resected.

Conclusion: Oncological outcomes of TORS can be comparable to open surgery and transoral laser microsurgery. Added advantages are on bloc resection and inset of free flaps without mandibular split. Less blood loss, shorter patient hospital stay and overall lower complications are seen. The head and neck radiologist plays a vital role using intra-oral ultrasound to guide the surgeon’s orientation of excision planes with a view to optimising surgical margins.

B-0977 11:51
Usefulness of CT perfusion generated time-density curves and perfusion parameters in the diagnosis and differentiation of parotid neoplasms
M. Swango, L. Upreti; Delhi/IN (sarathk163@gmail.com)

Purpose: To evaluate role of Time-density curves (TDCs) and perfusion parameters generated from CT perfusion (CTP) in diagnosis and differentiation of parotid neoplasms.

Methods and Materials: CTP was performed in 32 patients on a 64 slice MDCT scanner. Data were analysed by deconvolution based software to obtain maps for blood flow (BF), blood volume (BV), mean transit time (MTT), and capillary permeability (PS). Regions of interest were placed through tumour to obtain perfusion values and tissue Time – Density curves. TDCs were classified into four types based on time to peak enhancement (TTE) and washout ratio (WR). Mann-Whitney U test was used for comparison of perfusion values. Final diagnosis was established by postsurgical histopathology examination.

Results: Study revealed 20 benign and 12 malignant lesions. Among pleomorphic adenomas 8 type A, 3 type C and one type B curve was seen. Two Warthin tumours showed type B curve. Two benign cysts showed type D curve. TDC type was variable in malignant tumours with 2 type A, one type B and 9 type C curves. The malignant tumours showed higher BF, BV and PS values and lower MTT value compared to benign tumours. The BF, BV and PS values (p < 0.001, p < 0.001, p < 0.001) were statistically significant in differentiating pleomorphic adenomas from malignant tumours.

Conclusion: TDCs obtained from dynamic CT perfusion of the parotid gland could considerably improve diagnostic accuracy and is helpful in differentiation of various parotid neoplasms complimentary to perfusion values and conventional contrast CT.
Conclusion: In acute ischaemic stroke e-ASPECTS assistance increased accuracy and reduced time for detection of EIC. Routine assistance in CT interpretation has the potential to reduce time to treatment and improve accuracy across clinicians and sites.

Author Disclosures:
I.O. Grunwald: Shareholder; Co-founder and share holder Brainomix Ltd.

B-0981 10:46
Automated detection and localisation of pneumocephalus in head CT scan
S. Tanamala, S. Chilamkurthy, M. Bivij, P. Rao, D. Swetha, Swetha@tanamala@qure.ai

Purpose: Pneumocephalus, accumulation of air in intracranial space, can lead to midline shift and compression of brain. In this work, we detail the development of deep learning algorithms for automated detection and localization of pneumocephalus in head-CT scans.

Methods and Materials: Firstly, to localize the intracranial space from a given head-CT scan, a skull-stripping algorithm was developed using a randomly sampled anonymized dataset of 78 head CT scans (1688 slices), which were segmented and then applied to a validation dataset of 450 (906) slices. For detecting pneumocephalus, a deep learning based approach was used. A deep neural network was trained on the scans to accurately predict the pneumocephalus region. The predicted pneumocephalus region is refined by removing the regions outside the intracranial space identified by the skull stripping algorithm. The refined pneumocephalus region is then used to detect features. Using these features, a random forest was trained to classify the presence of pneumocephalus in a scan. Areas under receiver operating characteristics curves (AUC) were used to evaluate the algorithms.

Results: An independent dataset of 1891 head CT scans (40 slices from 301 subjects) had pneumocephalus) was used for testing above algorithms. AUC were used to evaluate the algorithms.

Conclusion: In this work, we showed the efficacy of deep learning algorithms in localizing and classifying the pneumocephalus accurately in a head-CT scan.

Author Disclosures:
S. Tanamala: Employee; Qure.ai.
S. Chilamkurthy: Employee; Qure.ai.
P. Rao: Employee; Qure.ai.
D. Swetha: Employee; Qure.ai.

B-0982 10:54
Automated detection of intracranial calcifications in CT using deep learning
G. Bortsova, F. Dubost, A. Van der Lugt, D. Bos, M. De Bruinje; Rotterdam/NL (gerdabertsova@gmail.com)

Purpose: Intracranial carotid artery calcification (ICAC) is a major risk factor for stroke, and might contribute to dementia and cognitive decline. Further research into the relationship between ICAC and neurological diseases is hampered by the time-consuming manual annotation of ICAC lesions. Therefore, we introduce a fully automatic ICAC detection method.

Methods and Materials: Non-contrast-enhanced CT scans were performed in 2319 participants of the Rotterdam Study, a population-based cohort study (mean age 69.6(8.8), 51.7% female). Two trained observers annotated the scans by indicating regions of interest (ROI) on the intracranial carotid artery (from the horizontal petrous segment to the circle of Willis) where calcifications were visible. ICAC lesion segmentations were obtained by thresholding these ROIs at 130 HU. We developed a deep learning-based algorithm to automatically delineate ICAC lesions in CT scans. The performance was estimated by 10-fold cross-validation.

Results: Pearson correlation between ICAC volumes computed from manual and automatic ICAC segmentations was 99%. The interrater agreement was 96%. For patients with ICAC, median sensitivity was 87% (74, 95) and false positive volume (FPV) was 5.4mm³ (1, 19.5). Median FPV to ground truth volume ratio was 0.07 (0.02, 0.2). For ICAC-free patients, median FPV was 1.4mm³ (0.1, 5.5).

Conclusion: Our algorithm can be used to automate the time-consuming manual annotation of ICAC in large epidemiological studies, whilst maintaining a comparable level of accuracy. This can facilitate research into causes and consequences of ICAC, which might result in development of new treatments.

Author Disclosures:
G. Bortsova: Consultant; COSMOMIO. Research/Grant Support; Netherlands Organisation for Scientific Research (NWO).
F. Dubost: Consultant; Quantib BV.

B-0983 11:02
Automated age-specific regional brain atrophy estimation: an integrated workflow
J. Caspers, B. Turowski, C. Rubbert; Düsseldorf/DE (Jullian.Caspers@med.uni-duesseldorf.de)

Purpose: Estimating deviations of regional brain volume from a patient’s normative age cohort is challenging and entails immense inter-rater variations. We propose an automated workflow for age-dependent estimation of brain volume changes relative to a standard population.

Methods and Materials: 3D T1w MRIs of 693 healthy subjects aged between 16 and 77 years from the publicly available enhanced Nathan Kline Institute Rockland Sample were preprocessed to generate age- and gender-specific grey-matter (GM) templates. Preprocessing is performed with CAT12 for SPM12 and comprises GM segmentation, normalization to MNI152 and 8mm smoothing. For each age between 18 and 75, voxel-wise mean and standard deviation (SD) maps were generated across all subjects of the respective age ±2 years. To estimate volume changes of an out-of-sample subject, a 3D T1w scan is preprocessed in the same way as for template generation. Then a voxel-wise z-value map is generated from the resulting normalized GM map using the age-dependent mean- and SD-templates. The z-map is transformed into subject space, colour coded and fused with the structural MRI.

Results: The proposed workflow can be implemented in a parallelized fashion on a state-of-the-art server to automatically generate individual atrophy maps and send them into the PACS. Processing of one subject is feasible in less than 10 minutes. The colour-coded maps fused with the structural MRI allow for direct semi-quantitative detection of regional brain volume deviations in individual patients.

Conclusion: Automated brain volume change estimation as implemented in the presented framework is feasible and could significantly facilitate radiologic workflows.

B-0984 11:10
Radiological reading: man vs machine

Purpose: MRI is of paramount importance in the diagnosis and monitoring of patients with multiple sclerosis (MS). Typically, MRI scans are obtained yearly and are crucial to assess disease activity, and therefore therapeutic decision-making, in MS patients. As MS is an inflammatory and neurodegenerative disease, both lesions T2/FLAIR and brain atrophy on T1 should be evaluated. The aim of this study was to assess the quality of clinical radiological reports in patients with MS and to compare these with a radiological structured reporting review and clinically cleared automated software.

Methods and Materials: Lesion burden and whole brain atrophy was assessed on baseline MRI scans of 50 MS patients (RRMS or SPMS) in 3 different ways: (1) a standard clinical radiological report, (2) a structured radiological report assessed by a neuroradiologist, (3) quantitative assessment using the CE/FDA cleared icobrain software. A statistical comparison between the three different reporting methods was performed evaluating T2/FLAIR lesion load and brain atrophy.

Results: A large discrepancy was found between the radiological report and the expert structured review (i.e. 50% vs 100% of the reports mentioned lesion burden at baseline and 24% vs. 48% mentioned brain atrophy). On the contrary, the expert assessment and the quantitative icobrain results showed a high similarity (p<0.001, ANOVA comparing both assessments in terms of small vs. severe lesion load/atrophy).

Conclusion: These results demonstrate that automated and clinically cleared MRI software outperforms a standard radiological report in the assessment of disease status on MRI in patients with MS.

Author Disclosures:
W. Van Hecke: Board Member; icometrix. CEO; icometrix. Founder; icometrix. Shareholder; icometrix. A. Ribbens; Employee; icometrix. Investigator; icometrix. Shareholder; icometrix. T. Billiet; Employee; icometrix. Investigator; icometrix.

B-0986 11:18
Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative MRI texture analysis
B. Kocak, E. Memis Durmaz, P. Kadioglu, O. Polat Korkmaz, N. Comunoglu, N. Tanriover, N. Kocer, C. Islak, O. Kizilkilic; Istanbul/TR (drburakkocak@gmail.com)

Purpose: Predicting response to somatostatin analogues in acromegaly patients with pituitary macroadenomas.

Results: A large discrepancy was found between the radiological report and the expert structured review (i.e. 50% vs 100% of the reports mentioned lesion burden at baseline and 24% vs. 48% mentioned brain atrophy). On the contrary, the expert assessment and the quantitative icobrain results showed a high similarity (p<0.001, ANOVA comparing both assessments in terms of small vs. severe lesion load/atrophy).

Conclusion: These results demonstrate that automated and clinically cleared MRI software outperforms a standard radiological report in the assessment of disease status on MRI in patients with MS.

Author Disclosures:
W. Van Hecke: Board Member; icometrix. CEO; icometrix. Founder; icometrix. Shareholder; icometrix. A. Ribbens; Employee; icometrix. Investigator; icometrix. Shareholder; icometrix. T. Billiet; Employee; icometrix. Investigator; icometrix.
Methods and Materials: Forty-seven patients (24 responsive, 23 resistant to SAs) were eligible for this retrospective study. Following image processing steps, 828 texture features were extracted from T2-weighted images by manual segmentation of the whole tumour for each patient. Dimension reduction was first done with a reproducibility analysis by two radiologists and then with a wrapper-based algorithm using a nested cross-validation. The macrofeatures were also grouped according to their rSI (hypointense versus others) on T2-weighted MRI. The ML classifiers for qTA and rSI evaluation were k-nearest neighbours (k-NN) and J48, respectively. Reference standard for classifications was biochemical response and resistance. Main performance metrics for comparison were area under the curve (AUC).

Results: Only 535 out of 828 texture features had excellent reproducibility. Among these, the wrapper-based algorithm yielded 4 textural features. Using qTA, the k-NN algorithm correctly classified 85.1% of the macrofeatures in terms of response to SAs with an AUC of 0.847. Using rSI, the J48 classifier correctly classified 53.1% of the macrofeatures with an AUC of 0.468. There was statistically significant difference between qTA-based classification and rSI-based classification performances (P<0.05).

Conclusion: The machine learning-based qTA of T2-weighted MRI might be a potential non-invasive tool in predicting response to SAs in patients with acromegaly and pituitary macroprolactinomas.

The paper related to this abstract has recently been published: Eur Radiol (2018). https://doi.org/10.1007/s00330-018-5876-2
training took 48 hours on an Nvidia 1080ti GPU. For testing T2W, images from 5 independent cases, having 7 T2 hyperintensities with corresponding diffusion restriction (group 1) and 16 with no diffusion restriction (group 2), were also analysed.

Results: Binary cross entropy of 0.15 for normal and of 0.11 for infant cases was obtained. The model took 750ms to produce each image. In the test cases, 6 out of 7 T2 hyperintensities in group 1 showed diffusion restriction and all 16 T2 hyperintensities in group 2 did not show restriction. The one ‘missed’ lesion in group 1 was 2.5mm in diameter. Blurring of virtual DW images was observed, which did not impede clinical judgement.

Conclusion: We demonstrate a novel use-case for deep learning in reducing the MRI exam time and potentially creating a single universal MRI sequence.

B-0991 10:46

An Inter and intra patient radiomic study to select the most promising features aiming to precision medicine feasibility

C. De Mattia, R. Ronza, M. Grassi, M. Pecorilla, P.E. Colombo, S. Siena, A. Vanzulli, A. Torresin; Milano/IT (christina.dematia@ospedaleluguarda.it)

Purpose: To characterize with radiomics techniques the pulmonary metastases of 176 patients, distributed in two cohorts, according to primitive cancer. To identify the features (RFs) variability due to image acquisition, reconstruction, contouring, and to lesions morphology.

Methods and Materials: First, a standard of CT acquisition and image reconstruction was defined. 357 lesions were contoured using Multi-Modality Tumour Tracking (IntelliSpace Portal 9.0, Philips). For each lesion, 885 RFs were extracted using IBEX platform; v1.0.9. For each RF, we evaluated Student t test and relative discrepancy between the two cohorts. For each exam, in all lesions we calculated the relative discrepancy changing scan phase, reconstruction filter, layer thickness and segmentation parameters. Ibex can analyze only the layer where the lesion appears larger (2D) or the entire lesion volume (3D). We compared the two methods.

Results: We identified 12 promising RFs (p-value<0.01). Intra-cohort ANOVA test showed no scanner and voltage dependence, excluding images reconstructed with iterative filters. All RFs strongly depend on phase and reconstruction filter, with relative discrepancies over 1000%. Autocorrelation, sum average, sum variance, HGLRE, LRHGLE and SRHGLE are the less dependent on these parameters (relative discrepancy <50%). Segmentation seems to be the less relevant factor on the RFs variability. Generally, RFs more sensitive to lesion morphology are also those more affected by modifications of the above-mentioned parameters. From 3D analysis to 2D, discrepancy can be more than 1000%.

Conclusion: A lesion by lesion radiomic characterization is possible, provided that it is obtained with a standardization process of the radiomic workflow.

B-0992 10:54

A novel machine learning approach for assessing osteoporotic fracture risk by texture analysis of femoral neck radiographs

T. Yeshua, S. Rebibo, K. Slez, O. Safran, M. Liebgall, I. Leichter; Jerusalem/IL (lzpak@hadassah.org.il)

Purpose: Bone strength is determined not only by its mineral density but also by the spatial structure of bone trabeculae. Our aim was to assess osteoporotic fracture risk by texture analysis of the proximal femur in routine radiographs, using machine-learning tools.

Methods and Materials: 17 radiographs of in-vitro femurs and routine proximal femur radiographs of 44 subjects (15 with osteoporotic fractures and 29 without a fracture) were analyzed. The critical force required to fracture the in-vitro femurs was measured. The gray-levels of all images were automatically balanced to yield equal brightness and contrast. Two regions-of-interest (ROI) for texture analysis were defined, one in the femoral neck, and the other, distal to the lesser trochanter. Five parameters describing the distribution of the gray-levels in the ROIs and 6 Gray-Level Co-occurrence Matrix (GLCM) parameters, describing the spatial allocation of the gray-levels in the ROIs were defined. Support Vector Machine (SVM) with cross-validation was used to train the algorithm and test its results, based on a combination of both ROIs.

Results: The algorithm characterized the in-vitro weak and strong bones with an accuracy of 88%. The radiographs of the patients were characterized as osteoporotic or non-osteoporotic with an accuracy of 86%. The most prominent features for estimating fracture risk were the mean gray-level, which is related to bone density, as-well-as smoothness, uniformity and entropy, which are related to the spatial distribution of the trabeculae.

Conclusion: Machine-learning tools may be used to analyze routine femoral radiographs and assess fracture risk with high accuracy.

B-0993 11:02

Implementation of channelled hoteling observer (CHO) to assess image quality of GE discovery IGS 740 angiography system

M. Bertolini*, V. Trojan dimensions, O. Itnoss, R. Sassatelli, O. Ortenzia, C. Ghezzi**, Reggio Emilia/IT (reggioemilia@bologna.it), Parma/IT (marco.bertolini@ausl.re.it)

Purpose: To use the well-known CHO to characterize a novel angiography system (GE Discovery IGS 740) using a contrast-detail phantom simulation in a clinical scatter condition.

Methods and Materials: A Leeds TO10 phantom was used. The phantom has 17 radiographs of in-vitro femurs and routine proximal femur radiographs of 44 subjects (15 with osteoporotic fractures and 29 without a fracture) were analyzed. The gray-levels of all images were automatically balanced to yield equal brightness and contrast. Two regions-of-interest (ROI) for texture analysis were defined, one in the femoral neck, and the other, distal to the lesser trochanter. Five parameters describing the distribution of the gray-levels in the ROIs were defined. For each RF, we evaluated Student t test and relative discrepancy between the two cohorts. For each exam, in all lesions we calculated the relative discrepancy changing scan phase, reconstruction filter, layer thickness and segmentation parameters. Ibex can analyze only the layer where the lesion appears larger (2D) or the entire lesion volume (3D). We compared the two methods.

Results: We identified 12 promising RFs (p-value<0.01). Intra-cohort ANOVA test showed no scanner and voltage dependence, excluding images reconstructed with iterative filters. All RFs strongly depend on phase and reconstruction filter, with relative discrepancies over 1000%. Autocorrelation, sum average, sum variance, HGLRE, LRHGLE and SRHGLE are the less dependent on these parameters (relative discrepancy <50%). Segmentation seems to be the less relevant factor on the RFs variability. Generally, RFs more sensitive to lesion morphology are also those more affected by modifications of the above-mentioned parameters. From 3D analysis to 2D, discrepancy can be more than 1000%.

Conclusion: A lesion by lesion radiomic characterization is possible, provided that it is obtained with a standardization process of the radiomic workflow.

B-0994 11:10

Effective atomic number image produced with energy-resolved photon counting detector toward the development of next-generation plain X-ray diagnosis

Purpose: Analysis of X-ray attenuation is fundamental for developing a material identification method. We have developed a procedure to derive an effective atomic number (Z_eff) image using a prototype energy-resolving photon counting detector. In this study, we aim to verify our method for the application to diagnosis using plain X-ray.

Methods and Materials: Our method can determine Z_eff pixel by pixel. First, the intensity of X-rays before and after penetrating the samples in three energy bins was measured, and the products of linear attenuation coefficient (µ) and material thickness were calculated. Next, beam hardening was properly corrected. The response of a multi-pixel-type CZT detector, energy resolution and charge sharing were also taken into consideration. Then we calculated Z_eff by means of our method in which the relationship between µ and Z_eff was used. To verify our method, we measured samples of which Z_eff was known: acrylic (Z_eff=6.5), and aluminium (Z_eff=13) having mass thickness of 1.5, 10 g/cm², and dental samples. Finally, we compared the difference between calculated and reference Z_eff.

Results: Our present method can obtain Z_eff images with accuracies of Z_eff±0.5% regardless of material thickness. Furthermore, we can analyse the fine structure of dental enamel and dentine quantitatively. These results show our method works properly for human body structure material (Z_eff=20).

Conclusion: Using a prototype photon counting detector, we demonstrated the procedure of generating Z_eff image. We expected that it has carry-over effect to establishment of new quantitative diagnosis and utilization of plain X-ray to various diseases.

Author Disclosures:

H. Hayashi; Employee; Kanazawa University. Grant Recipient; JOB CORPORATION, Nagase Landauer. T. Asahara; Employee; Okayama University. A. Katsumata; Employee; Asahi University. Y. Kanazawa; Employee; Tokushima University. S. Yamamoto; Employee; JOB CORPORATION. M. Okada; Employee; JOB CORPORATION.

B-0995 11:18

K-edge subtraction imaging at the Munich compact light source

Purpose: About one-third of all deaths worldwide can be traced back to cardiovascular diseases. An important interventional radiology procedure for their diagnosis is digital subtraction angiography (DSA). An alternative to DSA is K-edge subtraction (KES) imaging, which has been shown to be advantageous for moving organs and to eliminate artefacts caused by
Areal bone mineral density estimation using photon-counting energy-discriminating computed tomography topograms

Purpose: Dual-energy X-ray absorptiometry (DXA) is a well-established standard for the diagnosis and monitoring of osteoporosis. DXA provides areal bone mineral density (aBMD) maps which are estimated from two spectrally separate planar x-ray images. With the advent of photon-counting energy-discriminating detectors, perfectly aligned multi-energy topograms with good spectral separation can be acquired in a single scan. We investigated the potential of these topograms for a DXA-like aBMD evaluation.

Methods and Materials: A series of topograms of a BMD calibration spine phantom (European Spine Phantom, QRM GmbH, Mührendorf, Germany) was acquired on a research photon-counting CT scanner (Siemens Healthcare GmbH, Forchheim, Germany). A tube voltage of 140 kV and two energy thresholds of 20 keV and 75 keV were selected. The phantom consists of water-equivalent plastic with diameters of 260 mm (lateral) and 180 mm (anterior-posterior) and holds three anthropomorphic vertebrae, L1-L3, of varying hydroxyapatite content. Collimation and mAs-product were set to 3 mm and 6 mAs. A custom tool was developed to subtract soft tissue and create aBMD density maps from the input topograms. Deviations from the known aBMD values of 0.5, 1.0 and 1.5 g/cm² of the anterior-posterior projections of vertebræ L1-L3 were evaluated.

Results: From the generated aBMD maps, mean values for vertebræ L1-L3 were extracted and averaged across scans. The resulting values of 0.53 ± 0.10 g/cm², 0.99 ± 0.09 g/cm² and 1.45 ± 0.09 g/cm² for L1-L3 were in good agreement with the truth.

Conclusion: Our evaluation shows a promising new application for single-scan multi-energy topograms, which might provide an alternative to using dedicated DXA.

Author Disclosures: T. Nowak: Employee; Siemens Healthcare GmbH. Shareholder; Siemens Healthineers AG. B. Schmidt: Employee; Siemens Healthcare GmbH. Shareholder; Siemens Healthineers AG. A. Euler: Employee; Siemens Healthcare GmbH. Shareholder; Siemens Healthineers AG. N. Saltybaeva: Employee; Siemens Healthcare GmbH. Shareholder; Siemens Healthineers AG.
Purpose: The purpose of this study was to assess independent predictors for sensitivity of pulmonary subsolid nodule detection in non-ultralow dose CT scans. We carried out a retrospective study of the referrals and follow-up for patients discussed in the PN MDT between 9/2017 and 4/2018. Results: 154 nodules were referred to PN MDT. 16% of PNs referred to the MDT were discharged without any follow-up. 38% were discharged after CT surveillance or further investigations i.e. PET-CT. 44% of nodules had volumetric analysis performed. Conclusion: The Imperial College Healthcare Trust runs a comprehensive service for the investigation of PNs. Although there is scarcity of published data on this topic, our finding that only 16% of referrals were immediately discharged from the PN MDT shows a good awareness of what requires further investigation. We provided a summary of the BTS management algorithms locally to raise awareness amongst general radiologists of features of benign nodules that do not require referral. We also emphasised the importance of seeking out previous imaging studies for comparison and performing volumetric analysis where possible.

Author Disclosures:
W. Weston: Consultant; Dr Nicola Strickland, Dr Sarah Sheard.

B-1001 10:47
Accuracy of model-based iterative reconstruction for CT volumetry of part-solid nodules and pure solid nodules at various dose settings: an anthropomorphic chest phantom study
S.-K. Kim, C. Kim, K.Y. Lee, J. Cha; Aansan/KR

Purpose: To evaluate the accuracy of model-based iterative reconstruction for volume measurement of part-solid nodule (PSN) and pure solid nodule (SN) compared with filtered back projection (FBP) and hybrid iterative reconstruction (HIR).

Methods and Materials: Four different SNs (diameters: 3 mm, 5 mm, 7 mm, and 9 mm) and 4 PSNs (3 mm, 5 mm, 7 mm, and 9 mm, inner solid portion diameters: 20 mm, outer ground-glass portion diameters) and chest phantom was used for study. The scanning was repeated 4 times at five radiation dose levels (120 kVp at 100 mAs, 50 mAs, 20 mAs, and 10 mAs, and 80 kVp at 10 mAs). Each CT scan was reconstructed using FBP, HIR (iDose), and MIR (IR-R1, IR-ST1, IR-SP1). The volume of SNs, and solid/GGO portion of PSNs were measured semi-automatically.

Results: The lowest absolute percentage measurement error (APE) of GGO part of PSN were demonstrated in IR-R1 among the algorithms in all dose level setting (all P<0.05), and the APE of solid portion of PSN in all dose level setting without 80 kVp/10 mAs also showed the significantly lowest value in IRM-R1 among the algorithms (all P<0.05). For SNs, the APEs at 120 kVp/50 mAs, 20 mAs, and 10 mAs were the lowest in IRM-ST1 among the algorithms (all P<0.05, except 120 kVp/20 mAs), and the others were the lowest in IRM-SP1 (all P<0.01).

Conclusion: MIR showed higher accuracy of SN and PSN volume measurements compared with FBP and HIR in most dose settings in this phantom study.

B-1002 10:55
Assessment of predictors for pulmonary subsolid nodule detection in non-lung apex in ultralow dose CT reconstructed with ASiR-V
Y. Kai, Y. Hui Shu; Beijing/CN (yekaiisy@gmail.com)

Purpose: The purpose of this study was to assess independent predictors for sensitivity of pulmonary subsolid nodule detection in non-ultralow dose CT (ULDCT) reconstructed with ASiR-V.

Methods and Materials: 37 patients who underwent chest LDCT with low-dose CT at the Imperial College Healthcare Trust (ICHT, London/UK) were included. A retrospective review was performed of the LDCT reports and the attending radiologist's notes to obtain the following data: institutional reference (IR) and automated detection (AD) of the subsolid nodules in LDCT (IR and AD (IR+AD)), the size of the nodules, the location of the nodules, and the additional CT-based modality used for follow-up. Using an ROC method, the AUC and the threshold value were calculated. The sensitivity of the IR+AD was compared against the SOR. Then, logistic regression was used to test independent predictors for performance of pulmonary nodules detection.

Results: The mean effective radiation dose of ULDCT was 0.096±0.005 mSv compared with 0.33±0.32 mSv for LDCT, which was 88% lower. A total of 46 nodules were identified by LDCT and overall sensitivity was 63.04% for ULDCT (29/46). The sensitivity for nodules with diameter greater than 5mm and 6mm, it was 81.8%(27/33) and 92%(23/25), respectively. In multivariate analysis, size and patients' BMI were independent predictors for sensitivity (P<0.05). But when it came to BMI<30, size was the definitive factor for nodule detection and BMI had little influence on it.

Conclusion: For people with BMI>30, ultralow dose CT reconstructed with ASiR-V enables a high sensitivity for the detection of pulmonary subsolid nodules longer than 8 mm in an extremely low dose.

B-1003 11:03
Comparison of the capability of nodule component measurement and management on follow-up CT examinations between 3D CADv systems with and without CNN

Purpose: To evaluate the utility of 3D computer-aided volumetry (CADv) with convolutional neural network (CNN) for pulmonary nodule management on follow-up CT examinations as well as surgical resections. In this study, CADv with and without CNN automatically assessed solid, GGO and total nodule (TN) volumes. The doubling time (DT) was determined from TN volume change by each CADv system. To evaluate the accuracy of volume measurement on each CADv method, solid, GGO and TN volumes within each nodule were measured by 3 different radiologists. Then gold standards were determined by simultaneous truth and performance level estimation method. To determine the utility of CNN, each volume assessed by CADvs with and without CNN was statistically correlated with those of gold standard. Then each volume measurement error was also compared between CADvs with and without CNN by t test. ROC analysis was performed and diagnostic performance of DT was compared with each other by McNemar’s test.

Results: CADv with CNN (0.82<r<0.92, p<0.0001) showed better correlations with gold standard than that without CNN (0.57<r<0.75, p<0.0001). Measurement errors of GGO and TN by CADv with CNN were significantly smaller than those without CNN (p<0.05). When applied each feasible threshold value, sensitivity of CADv with CNN (92.2%) was significantly higher than that without CNN (83.3%, p<0.004).

Conclusion: 3D CADv with CNN is more usefull than that without CNN for management of pulmonary nodule on routine follow-up CT examinations.

Author Disclosures:
Y. Ohno: Research/Grant Support; Canon Medical Systems Corporation.
A. Yaguchi: Employee; Toshiba Corporation.
K. Aoyagi: Employee; Canon Medical Systems Corporation.
S. Seki: Research/Grant Support; Canon Medical Systems Corporation.
T. Yoshikawa: Research/Grant Support; Canon Medical Systems Corporation.

B-1004 11:11
Comparing volume doubling time and SUVmax for benign and malignant lung nodules
D.D. Yang, B. Riley, A.N. Tavare, S. Hare, A. Parthipun; London/UK (ddyang21@gmail.com)

Purpose: To assess the ability of volume doubling time (VDT) and PET/CT avidity to distinguish between benign and malignant lung nodules.

Methods and Materials: All patients with lung nodules ≤3 cm who underwent lung biopsy at a single centre between May 2016 and May 2017 were identified retrospectively. Patients with CT and/or FDG-PET/CT scans performed ≤28 days but <2 years apart, both demonstrating the biopsied nodule, were
SUV association between VDT (categorised as malignant nodules, while SUV difference in SUV days for benign and 317 days for malignant nodules. Median SUV spatial resolution and 15.0mm@1.0% for the low-contrast resolution. 3. The physical parameters for lung cancer

Conclusion: A feasible method to generate adequate image quality between different CT scanners with general image quality control phantoms. Methods and Materials: First, the Lungman NI phantom simulating normal size chest with 4 nodules and the Catphan 500 phantom were scanned with low dose on scanner1 (Philips CT). The image quality of the simulated nodules with FBP reconstruction were evaluated by two radiologists to select the lowest reference mAs (mA0) for detecting nodules. Second, the physical parameters were also assessed using the Catphan 500 at the lowest mAs. Third, CT scanner2 (GE Revolution) scanned the Catphan 500 phantom to find the right NI (NI0) for getting the above mentioned physical parameters. Finally, 100 volunteers assigned to two scanners randomly underwent lung cancer screening with either the NI0 or mA0 setting.

Results: 1. The reference mA0 was 20mA@100kV on CT scanner1 and 18mAs@100kV on CT scanner2. The physical parameters for lung cancer screening with the determined scan techniques were 7 line pairs/cm for the spatial resolution and 15.0mm@1.0% for the low contrast resolution. 3. The image quality of the two groups had similar scores (p>0.05) and with similar radiation doses (P>0.05). All positive nodules (Group 1: 9 solid and 3 ground nodules; and Group 2: 11 solid and 9 GGO nodules) were detected.

Conclusion: Using general quality control phantoms to set coherent image quality between different CT scanners for low dose lung cancer CT screening is feasible.

B-1007 11:35 Understanding temporal enhancement of pulmonary nodules with dynamic contrast enhancement CT and utility of each acquisition C. Jokar1, M. Gotway2, D. Parise1, K. Cummings1, E. Jensen1, P. Parise1, Phoenix, AZ/US; 2Albany, NY/US (parise.prasad@mayo.edu)

Purpose: Dynamic contrast enhancement for pulmonary nodule entails image acquisition protocols: 1, 2, 3 and 4 minutes post-contrast and predicts aggressiveness if the nodule enhances >15HU over baseline (Swensen et al. Radiology 2000; 214: 73-80). However, the temporal enhancement of the pulmonary nodule over this time frame is not well validated especially the necessity of the 3- and 4-minute acquisitions. An IRB-approved retrospective study was conducted to evaluate these temporal characteristics.

Methods and Materials: All SPN enhancement CT studies (n=610) successfully completed from 2004 to 2017 were included. The average nodule attenuation (HU) from unenhanced and dynamic contrast-enhanced images at 1, 2, 3 and 4 minutes was recorded. An attenuation difference greater than 15 HU between the unenhanced and any of the enhanced 1, 2, 3 or 4 minutes was considered a positive study. The number of nodules showing >15 HU enhancement only at 3 or 4 minutes but did not enhance at 1 and 2 minutes was also calculated.

Results: 61 nodules demonstrated maximal positive enhancement at 1, 86 at 2, 66 at 3, and 69 at 4 minutes. 16 and 18 nodules showed more than 15 HU enhancement only at 3 and 4 minutes, respectively.

Conclusion: Nodule enhancement exceeding 15 HU using a dynamic enhancement protocol may occur at any of the 4 time points dictated by the study protocol. Although a large number of nodules demonstrate maximal enhancement at 1 and 2 minutes, maximal nodule enhancement occurring at 3 and 4 minutes is seen in a substantial proportion of patients.

B-1008 11:43 Effect of iterative reconstruction and artificial neural network denoising techniques on lung nodule volumetry in ultra-low dose computed tomography: a phantom study D. Han, M.A. Heuvelmans, G. Pelgrim, G. Sidorenkov, P.M.A. van Ooijen, M. Oudkerk, R. Vliegenhart; Groningen/NL

Purpose: To compare lung nodule volumetry for iterative reconstruction (IR) and non-iterative technique artificial neural network (NiTANN) in ultra-low-dose CT (ULD-CT), using low-dose CT (LDCT) with filtered back projection (FBP) as reference.

Methods and Materials: Five artificial round solid nodules (volume, 40-85 mm3) placed in a thoracic phantom, were scanned with third generation dual-source CT (Force, Siemens, Germany) with three reconstructions. A LDCD protocol (120 kVp, 20 ref mAs), and ULD-CT protocol with tin filter (Sn100 kVp, 46 ref mAs) were used, with dose-length product of 33.7 mGycm and 4.9 mGycm, respectively. ULD-CT images were reconstructed with FBP and IR (ADMIRE) level 3 and 5, with a sharp reconstruction kernel without edge enhancement. ULD-CT FBP images were further processed using NiTANN (PixelShine, Algemedica, USA). Semi-automatic volumetry (MMONCology, Siemens, Germany) was performed on 120 nodule datasets. Accuracy and variability of nodule volume in ULD-CT were compared to LDCT using Wilcoxon signed-rank test with Bonferroni correction and Bland-Altman’s analysis, respectively.

Results: Nodule volumes for ULD-CT were significantly lower than for LDCT (median difference for ULD-CT/IR: -2.5 mm3; IQR [7.3]; ULD-CT/FBP: -3 mm3; IQR [4.5]; ULD-CT/NiTANN: -8 mm3 IQR [6.0]). The relative 95%-limits of agreement were ±20%, ±19% and ±15% for IR, FBP and NiTANN, respectively. No significant difference was found when measured volumes were compared to physical volume.

Conclusion: An artificial neural network denoising technique showed slightly larger underestimation of nodule volumes than IR in ULD-CT, but tended to have less variability.

B-1009 11:51 Detectability of non-solid pulmonary nodules by deep learning: results from a phantom study Q. Li1, L. Li2, K. Liu1, C. Xia1, Y. Xiao1, S. Liu1; 1Shanghai/CHN; 2Beijing/CHN (925454346@qq.com)

Purpose: To investigate how different nodule size, nodule density, effective dose and reconstruction kernels affect the performance of a deep learning algorithm for the detection of non-solid pulmonary nodules in phantom CT scans.

Methods and Materials: CT scans were performed on a chest phantom containing non-solid nodules (diameters of 5, 8, 10, and 12 mm; 630 and -800 HU for each diameter) at two different radiation dose settings (4.1mGy and 0.3mGy). A total of 64, 10, and 74 nodules were detected. A deep learning model was developed based on real-patient data (without any phantom data). Evaluation of deep learning model focused on sensitivity [TPs/(TPs + FPs)] and precision [TPs/(TPs + FNs)].
Performance of deep learning algorithms in computer-aided detection tasks.

Conclusion: Phantom studies can be applied to systematically evaluate the performance of deep learning algorithms in computer-aided detection tasks.

Author Disclosures:
L. Li: Employee; Employee of Infervision. C. Xia: Employee; Employee of Infervision.

10:30 - 12:00 Room M 1

Cardiac

SS 1003
Cardiac CT in search of coronary artery disease

Moderators:
M. Kantarcı, Erzurum/TR
M. Krupinski; Krakow/PL

K-25 10:30 Keynote lecture
M. Williams; Edinburgh/UK

B-1010 10:39
Acute chest pain evaluated with cardiac CT: validation of new atherosclerotic markers

M. Fusaro1, M. Rattazzi2, C. Nardin1, M. Tiepolo1, A. Dorigo1, G. Tessarini2, G. Stamati2, C. Agostini1, G. Morana1, 1Treviso/IT, 2Padua/IT, 3Corigliano Calabro/IT

Purpose: The aim of this study is analysing the association between circulating new atherosclerotic markers and the presence of coronary artery disease (CAD).

Methods and Materials: Patients with acute chest pain (ACP) and low risk of ACS (normal TnT and ECG) arriving to ED from March 2016 to October 2017 were evaluated with a triple rule-out CT. We measured circulating levels of polymorphonuclear elastase (PMN), lactoferrin, proteinase 3 (PR3) and neutrophil gelatinase-associated lipocalin (NGAL). Patients have been then divided according to the presence/absence of CAD and biochemical/clinical parameters and correlated to CT scan. Statistical analysis was performed with SPSS 24.

Results: 200 consecutive patients, 86 with CAD (A) and 114 without CAD (B). The two groups showed significant difference in terms of age (A: 57.6±8.0, B: 50.5±9.3, p=0.001) and gender (males: A 79.1%, B 57%, p=0.001). No difference was observed for systolic and diastolic blood pressure, lipid profile and smoke. Circulating levels of PR3, NGAL and PMN appear superimposable in both groups while a significant increase of lactoferrin levels has been observed in group A (A: 128.7±78.0 U/mL, B: 105.5±42.6 U/mL, p=0.014), which remained significant even after adjustment for age, gender, waist circumference, presence of hypertension, presence of diabetes, lipid profile and smoke habit (p<0.015). After exclusion of patients with CAD >50%, the difference remained significant (p=0.033).

Conclusion: Circulating levels of lactoferrin are associated with the presence of CAD, independent of traditional cardiovascular risk factors, leading to a more precise stratification of patients with acute chest pain.

B-1011 10:47
HTA of patient management with and without triple rule out CT protocol

G. Tessarini1, M. Fusaro2, C. Bortolan2a, G. Morana2, E. Guas1, 1Padua/IT, 2Treviso/IT (tessarini.giovanni@gmail.com)

Purpose: Health technology assessment (HTA) of Triple Rule Out (TRO) CT protocol vs standard of care for the management of Patients with acute chest pain, in the the clinical setting of a tertiary referral hospital.

Methods and Materials: We evaluated 8 parameters derived from the HTA hospital-based model: general relevance, safety, effectiveness in literature and real life, economic impact, equity, social and ethical impact, management impact. The study consists of 3 phases: parameter prioritization, analysis and conclusions.

Results: We identified 1420 expected cases/year for NSTEMI, 426 for pulmonary embolism, 9676 for aortic aneurysm. Both safety and social impact for TRO protocol (vs. TRO) effectiveness quoted in terms of length of stay in the hospital, was 23.22 hours for TRO vs 30.8 hours for standard of care. Estimated costs were 349.23 € for TRO and 336.65 € for standard of care per Patient. Cost-effectiveness analysis showed a incremental cost-effectiveness Ratio of -1.66 for the TRO. Both protocols had same equity, legal and organisational impact. Final score was of 0.89 for CT vs 0.74 for standard of care, showing superiority of TRO.

Conclusion: HTA analysis showed a better score for TRO, thanks to his safety, effectiveness and good social impact.

B-1012 10:55
Second generation of dual source computed tomography for evaluating coronary artery lesions in Vietnamese paediatric patients with Kawasaki disease

H. Nguyen, T. Nguyen, P.M. Thong, H.S. Ha, N.K. Viet, L.T.T. Lien, P.B. Ngoc, H.V. Hao; Hanoi/VN (thanhhuong.nguyen982@gmail.com)

Purpose: To evaluate coronary artery lesions (CAL) in paediatric patients with Kawasaki disease by DSCT 256 detectors then comparing with the measurements of 2D echocardiography (2DE).

Methods and Materials: Patients (children) from with Kawasaki disease underwent DSCT 256 detectors at Bach Mai hospital from December 2015 to July 2018. The average effective dose of DSCT and 4-point subjective imaging quality was collected. The location, number and size of coronary aneurysm were independently evaluated by DSCT and 2DE. Bland-Altman analysis was used to evaluate the agreement of aneurysms measurements between DSCT and 2DE.

Results: 96.7% (232/240) coronary artery segments had good imaging quality (score ≥ 3). Average effective dose of DSCT was 1.58±0.56 mSv (0.77-3.23). Coronary aneurysm in 1 segment, 2 segments and 3 segments was 80.5%, 16.7% and 2.8%, respectively. The mean ± SD aneurysm diameter measured by DSCT and 2DE was 7.18 ± 2.72mm and 7.16 ± 2.55mm, respectively. The mean ± SD aneurysm length measured by DSCT and 2DE was 13.49 ± 8.65mm and 13.38 ± 8.58mm, respectively. Bland-Altman plot showed a good agreement between DSCT and 2DE.

Conclusion: DSCT is a feasible modality with excellent imaging quality and low effective dose exposure for rapid and accurate assessment of CAL in infants and children due to Kawasaki disease.

B-1013 11:03
Randomised trial comparing transdermal with lingual and sublingual nitroglycerin administration for coronary vasodilation in coronary CT-angiography

Purpose: Nitroglycerin increases coronary artery diameter and improves coronary artery evaluation in coronary CT-angiography (CCTA). This study aimed to compare the safety and efficacy of lingual, sublingual and transdermal administration of nitroglycerin in coronary vasodilation.

Methods and Materials: This prospective, randomized controlled study included 198 subjects who underwent scheduled CCTA between 6/2017 - 9/2017. Subjects were randomized to one of three routes of nitroglycerin (0.8mg) administration: tablet(sublingual), spray(ingual), or patch(transdermal). After acquiring ECG-gated non-contrast CT, nitroglycerin was given at least 5 minutes (lingual/sublingual) or 45 minutes (transdermal) before ECG-gated CCTA. Linear quantile mixed-effects models were constructed to quantify relationship between coronary diameter and nitroglycerin administration method. Side effects and vital sign changes were documented. When headaches were present, intensity was scored using a 10-point Likert scale (1 - minimal to 10-worst imaginable headache).

Results: The studied population had a mean age of 58.1±12.6 years of which 91/198 (46.0%) were female. On average, coronary diameters in CCTA were 91/198 [46.0%, were female. On average, coronary diameters in CCTA were 91/198 [46.0%, 11.16, difference: 0.01[-0.02, 0.01], p=0.201] compared to tablet (1.15[1.14-1.16], difference: 0.00[0.00, 0.01], p=0.815) or patch (1.16[1.15-1.17], difference: 0.01[0.01, 0.03], p=0.201) to tablet (1.15[1.14-1.16], difference: 0.00[0.02, 0.01], p=0.815) or patch (1.16[1.15-1.17], difference: 0.01[0.01, 0.03], p=0.201) to tablet (1.15[1.14-1.16], difference: 0.00[0.02, 0.01], p=0.815) or patch (1.16[1.15-1.17], difference: 0.01[0.01, 0.03], p=0.201) to tablet (1.15[1.14-1.16], difference: 0.00[0.02, 0.01], p=0.815) or patch (1.16[1.15-1.17], difference: 0.01[0.01, 0.03], p=0.201). No significant differences were observed between tablet, spray, and patch, respectively (tablet vs. patch, p>0.04).

Conclusion: Lingual, sublingual and transdermal nitroglycerin administration had no statistically significant differences in the vasodilatory effect on coronary arteries, with transdermal route being a safe alternative for CCTA.

Author Disclosures:
U. Hoffmann MD MPH: Research/Grant Support; KOWA, HeartFlow Inc.
B. Ghoshhajra: Consultant; Medtronic, Inc., and Siemens Healthcare, Inc.
B-1014 11:11
Comparison of coronary lumen diameter in CT angiography: spray nitroglycerin vs sublingual nitroglycerin tablet administration
B. Choi; K.Y. Lee; C. Kim; S. Lee; B.-K. Je; J. Oha; H. Yong; E.-Y. Kang; Y.-W. Oh; M. Ansan;RKR; SSeoulKR (chigurudki@gmail.com)

Purpose: To compare the coronary vasodilatation effects of spray nitroglycerin (NTG) with those induced by sublingual NTG administration in coronary CT angiography (CTA) and to investigate the effects of spray NTG in elderly patients.

Methods and Materials: From June 2016 to March 2019, a total of 1169 CTA using spray NTG (spray group) and 829 CTA using sublingual NTG (sublingual group) were analysed. Our institution used only sublingual NTG tablet for coronary CTA prior to March 2017 and subsequently only used spray NTG according to the hospital policy. Among these, 93 patients underwent CTA twice using both spray NTG and sublingual NTG. Diameter of all measurable segments were measured and compared between spray group and sublingual group. Also, comparison of vessel diameters between spray group and sublingual group in the elderly patients were performed. The intra-individual analysis was also performed in 93 patients.

Results: No statistically significant differences were evident between these 2 groups in baseline characteristics. Spray group tends to have more measurable vessels than sublingual group. All coronary segments in spray group were significantly larger than those in sublingual group (all P<0.01). This tendency was also found in the elderly. In the intra-individual analysis, all coronary segments in spray group were significantly larger than those in sublingual group (all P<0.001).

Conclusion: Spray NTG is more effective in evaluating coronary arteries in CTAs even in the elderly, resulting in vasodilatation more effectively than sublingual NTG. We recommend spray NTG to be preferred mode of administration at CTA.

B-1015 11:19
Systolic high-pitch coronary CT angiography for evaluation of the coronary arteries in heart transplant recipients
M. Calvo Imirizaldu, A. Epszona Casajus, A. Garcia Balzán, J.C. Pueyo Villalobos, G. Rabago, G. Bastamaka Alemari, Pamplona/ES (mcalvoi@unav.es)

Purpose: This study aimed to evaluate the feasibility, image quality, and radiation dose of high-pitch coronary CT angiography (CCTA) in orthotopic heart transplant recipients (OHT).

Methods and Materials: 22 consecutive OHT (16 men, mean age 62.5±11.8 years, mean BMI 26±4.3 kg/m2, mean heart rate 88±13.6 bpm) underwent CCTA to rule out coronary allograft vasculopathy in a high-pitch mode using a third-generation dual-source CT scanner. Data acquisition was triggered at 35% of the R-R interval. Two independent observers blindly assessed image quality on per-segment, per-patient, and per-patient basis using a 4-point scale (4-excellent, 1-not evaluative). Scores 2-4 were considered of diagnostic quality on a per-patient, per-vessel, and per-patient basis using a 4-point scale (4-excellent, 1-not evaluative). Scores 2-4 were considered of diagnostic quality. Interobserver agreement on the image quality was assessed with kappa statistics. Radiation dose was recorded for each patient.

Results: 322 coronary segments were evaluated. Diagnostic image quality was observed in 98.1% of the segments. Interobserver agreement for image quality assessment was very good on a per-patient (κ = 0.82), per-patient (κ = 0.83), and per-segment basis (κ = 0.89). Mean image quality score was 3.5±0.74 for the entire coronary tree, 2.7±1.03 for the RCA, 3.5±0.76 for the LCA, and 2.5±0.8 for the CX. Per-patient mean image quality score was 2.2±0.79. Estimated mean radiation dose was 0.49±0.32 mSv.

Conclusion: High-pitch coronary CCTA in a systolic phase of the cardiac cycle allows achieving diagnostic image quality coronary angiograms in OHT at very low radiation dose.

B-1016 11:27
Automated coronary artery segmentation using a U-net deep learning architecture
C. Wald, N. Alldj, S. Feger, N.-A. Hartmann, S. Lukas, S. Zargaran Tavakoli, M. Dewey; Berlin/DE (christian.wald@charite.de)

Purpose: Exact segmentation of coronary arteries on cardiac computed tomography (CT) is crucial for accurate evaluation of the presence of coronary artery disease. In an automatic approach we propose a convolutional neural network in order to segment the coronary arteries on cardiac CT.

Methods and Materials: We used a total of 22 patients who underwent 320 row coronary CT. For each we obtained a 3D CT volume with 512*512*560 voxels where coronary arteries were manually annotated slice-wise. We developed a neural network of 3D U-net architecture for automated segmentation in line of the manually segmented volumes were used for training, three for validation and nine for testing. For computational reasons we used patches with 48*48*48 voxels and included 20,000 for training. We evaluated the model patch-wise on test cardiac CT volumes and reconstructed the coronary arteries of the whole volumes by merging patches.

Results: We evaluated the performance of the network by computing the dice score between the manual segmentations and the network output on test volumes. We achieved a mean dice score of 0.755±0.04. Test volumes were manually annotated twice and the average inter-reader dice score was 0.77±0.05 which was not significantly different from the network performance (p=0.27). Evaluating the network on the right coronary artery only resulted in an average dice score of 0.70±0.01 which did not differ significantly from the entire network output (p=0.87).

Conclusion: The proposed method of automatically extracting coronary arteries using a 3D U-net is comparable to a human reader.

Author Disclosures:
C. Wald: Research/Grant Support; Berlin Institute of Health, DFG. M. Dewey: Research/Grant Support; European Commission, DFG, Berlin Institut of Health.
Speaker; Canon Medical Systems, Guerbet, Cardiac MR Academy Berlin, Bayer. Other; Siemens Medical Solutions, General Electric, Philips Medical Systems, Toshiba Medical Systems.

B-1017 11:35
The optimal monochromatic image level of coronary CT angiography on a dual-layer detector spectral CT with half-dose contrast agent
X. Huang, Y. Hou, Y. Ma, S. Gao, Z. Jia, X. Lu; Shenyang/CN (632136789@qq.com)

Purpose: To investigate the optimal monochromatic level of reconstruction images of coronary CT angiography (CCTA) on a dual-layer detector spectral CT (DLCT) with half-dose contrast agent.

Methods and Materials: A prospective collection of 200 patients (116 males, 84 females, age 55±11 years) were randomly divided into the routine dose contrast group and half-dose contrast group (both n=100). CCTA was performed on a DLCT with prospective ECG-gated mode and 120 kV. For the routine dose group, polychromatic images with iterative model reconstruction (IMR) (group A) were reconstructed. For the half-dose group, three monochromatic levels of images were reconstructed (group B, 45 keV; group C, 50 keV; group D, 55 keV). Iodixanol 270mgI/ml was used with a dose of 0.8ml/kg and 0.4ml/kg, respectively, for the routine group and half-dose group. Contrast-to-noise (CNR) and subjective indicators (contrast, sharpness, subjective noise, acceptability) in each group were compared.

Results: The CT value, SNR, CNR in group C were higher than those in group A (P<0.001). The SD in group B was larger than that in group A (P<0.001). There was no significant difference between objective scores of group D and group A (P>0.05). There were no significant differences in sharpness, subjective noise, and acceptability between group C and group A (P>0.05), and the contrast was superior to that of group A (P<0.001). The contrast in group B was better than that of group A (P<0.001), but the subjective noise was worse than that of group A (P<0.001). The sharpness, contrast, and acceptability of group D were all worse than that of group A (P<0.001).

Conclusion: 50 keV monochromatic reconstruction images of DLCT provide comparable coronary image quality with half-dose contrast agent.

B-1019 11:43
Predictive role of lipid panel and DLCN score in the assessment of coronary artery disease with coronary CT in patients with familial hypercholesterolemia
A. Ascione, G. De Rubeis, N. Galea, M. Francone, C. Catalano; Rome/IT (andrea121.ascione@gmail.com)

Purpose: To assess the possibility of predicting presence and severity of coronary artery disease as observed with cardiac CT through lipid panel and Dutch Lipid Clinic Network (DLCN) score.

Methods and Materials: Between January 2014 and March 2018, 86 patients (50 males [58%]; mean age 48) affected by Familial Hypercholesterolemia were analyzed through coronary CT. Lipid panels and DLCN scores were completed for all patients. The degree of stenosis for all 17 coronary segments was assessed according to CAD-RADS; total calcium burden was also computed. The predictive model was implemented using linear and logistic regression.

Results: Mean values (mg/dL) of the lipid panels were: Total cholesterol 340 ± 88, HDL 60 ± 16, TG 120 ± 56, LDL 257 ± 79; mean DLCN score was 7 before genotyping and 13 after genotyping. Prevalence of significant Coronary Artery Disease (CAD-RADS ≥ 4) was 12.8% (11 out of 88). The average number of lesions detected at pre-contrast CT was 2 ± 5.2, Agatston score 73 ± 257.5. LDL cholesterol, TG and total cholesterol levels were able to predict the Agatston score (r = 0.26 [p = 0.03]; r = 0.4 [p = 0.006]; r = 0.24 [p = 0.4]). Only the TG value was able to predict the level of CAD-RADS (r = 0.4 [p < 0.05]); neither DLCN score nor any lipid panel value can predict significant coronary artery disease (CAD-RADS > 4).

Conclusion: Lipid panel and DLCN score cannot predict the degree of significant Coronary Artery Disease at cardiac CT.
Lung cancer: screening and beyond

Moderators:
G. Cicchetti; Rome/IT
X. Montet; Geneva/CH

B-1020 10:30

Comparison of RECIST, IRECEST, and PERCIST for the evaluation of response to PD-1/PD-L1 blockade therapy in patients with non-small cell lung cancer
L. Beer, M. Hochmair, A. Haug, D. Kifijak, B. Schwabel, M.E. Mayerhofer, H. Prosch; Vienna/AT (Lucian.beer@meduniwien.ac.at)

Purpose: The aim of this study was to compare the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, the immune RECIST (IRECIST) criteria, and the Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) 1.0 for the assessment of response evaluation in patients with advanced non-small cell lung cancer (NSCLC) treated with PD-1/ PD-L1 inhibitors.

Methods and Materials: This prospective study of 42 patients treated with a PD-1 / PD-L1 inhibitor was approved by our Institutional Review Board, and all patients gave written informed consent. Tumor burden dynamics were assessed on [18F]FDG PET/CT before and after treatment initiation. Immunotherapeutic responses were evaluated according to the RECIST 1.1, IRECIST, and PERCIST 1.0 for the dichotomous groups, responder vs. non-responders. Cohen's k coefficient, and Wilcoxon's signed-rank test were used to evaluate concordance among these criteria. We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier test.

Results: RECIST 1.1 and PERCIST 1.0 response classification were discordant in six patients (14.2%; k= 0.581). RECIST 1.1 and IRECIST were discordant in two patients, who evidenced pseudoprogression after treatment initiation. Median PFS, as well as OS, was significantly longer for responders compared to non-responders for all criteria (p<0.001) without any significant difference between the three criteria (p>0.05).

Conclusion: RECIST 1.1 and PERCIST 1.0 show only a moderate agreement, but both can predict treatment response to PD-1 / PD-L1 inhibitor therapy. In cases of pseudoprogression, metabolic tumor activity may help to correctly classify treatment response.

Author Disclosures:
L. Beer: Grant Recipient; Österreichische Nationalbank, Theodor Körner Fond, Krebsforschungsfond der Stadt Wien. H. Prosch: Advisory Board; Boehringer Ingelheim, Roche, MSD, BMS, AstraZeneca, Novartis. Speaker; Boehringer Ingelheim, Roche, MSD, BMS, AstraZeneca, Novartis.

B-1021 10:38

Imaging programmed death ligand-1 (PD-L1) expression in non-small cell lung cancer with 99mTc-antibody conjugated with SPECT-CT
G. Chand1, D. De Santis1, D. Caruso1, T. Biondi2, G. Funicelli1, E. Rosati1, A. Zuccelli1, G. De Dominicis1, A. Lagni1, Rome/IT, 2Benedevre Marittimo/IT (marta.zerunian@gmail.com)

Purpose: To correlate CT-derived texture parameters and IRECIST in patients with advanced non-small cell lung cancer (NSCLC) treated with pembrolizumab as a first line.

Methods and Materials: Twenty patients with advanced NSCLC were prospectively enrolled. All participants underwent contrast enhanced CT at baseline and after pembrolizumab. Response to therapy was assessed with IRECIST. An expert radiologist, blind to response to therapy results, manually drew a volume of interest (VOI) of the whole tumour at baseline and after immunotherapy on venous phase by a dedicated software (TexRad). Texture parameters (Mean, Entropy, Kurtosis, Skewness, and MPP) were extrapolated and reported. Results were correlated with IRECIST and P values <0.05 were considered significant.

Results: Twelve (60%) patients showed partial response (PR) while 8 (40%) patients had confirmed progressive disease (iPDP). Entropy and Mean decreased in patients with PR (Entropy: 5.2 ±0.3 vs 4.3 ±0.4, P= 0.03; Mean:14.7 ±24.9 vs 8.0 ±25.8, P= 0.01) and increased in patients with DP (Entropy: 4.9 ±0.5 vs 5.1 ±0.3, P= 0.04; Mean:6.3 ±15.8 vs 12.0 ±23.1, P= 0.01). The others texture parameters analyzed did not show significant differences before and after immunotherapy (all P>0.05).

Conclusion: Entropy and Mean could be used as imaging biomarkers to predict response to immunotherapy in patients with NSCLC. Texture parameters may play a role in the radiologic assessment of advanced NSCLC treated with pembrolizumab.

B-1022 10:46

Non-small-cell lung cancer treated with pembrolizumab: correlation between texture analysis and iRECIST
M. Zerunian1, D. De Santis1, D. Caruso1, T. Biondi2, G. Funicelli1, E. Rosati1, A. Zuccelli1, G. De Dominicis1, A. Lagni1, Rome/IT, 2Benedevre Marittimo/IT

Purpose: To evaluate concordance among these criteria. We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier test.

Results: No adverse events related to SPECT-CT were recorded. All scans showed an expected biodistribution of PD-L1 sDaB with single-photon emission computed tomography-computed tomography (SPECT-CT).

Methods and Materials: Twenty patients with advanced NSCLC were prospectively enrolled. All participants underwent contrast enhanced CT at baseline and after pembrolizumab. Response to therapy was assessed with IRECIST. An expert radiologist, blind to response to therapy results, manually drew a volume of interest (VOI) of the whole tumour at baseline and after immunotherapy on venous phase by a dedicated software (TexRad). Texture parameters (Mean, Entropy, Kurtosis, Skewness, and MPP) were extrapolated and reported. Results were correlated with IRECIST and P values <0.05 were considered significant.

Results: Twelve (60%) patients showed partial response (PR) while 8 (40%) patients had confirmed progressive disease (iPDP). Entropy and Mean decreased in patients with PR (Entropy: 5.2 ±0.3 vs 4.3 ±0.4, P= 0.03; Mean:14.7 ±24.9 vs 8.0 ±25.8, P= 0.01) and increased in patients with DP (Entropy: 4.9 ±0.5 vs 5.1 ±0.3, P= 0.04; Mean:6.3 ±15.8 vs 12.0 ±23.1, P= 0.01). The others texture parameters analyzed did not show significant differences before and after immunotherapy (all P>0.05).

Conclusion: Entropy and Mean could be used as imaging biomarkers to predict response to immunotherapy in patients with NSCLC. Texture parameters may play a role in the radiologic assessment of advanced NSCLC treated with pembrolizumab.
Everolimus-related pneumonitis in advanced neuroendocrine tumours: correlation of radiological findings and clinical symptoms

Purpose: Everolimus, an mTOR inhibitor, is approved for the treatment of advanced pancreatic neuroendocrine tumours (NET). Drug-induced pneumonitis is a major adverse event in everolimus treatment and can lead to determination of the treatment. To evaluate the correlation between clinical symptoms and radiological findings in everolimus-induced pneumonitis in patients with advanced neuroendocrine tumours.

Methods and Materials: 90 patients with advanced NET treated with everolimus were included in this retrospective study. All patients received chest CT scans prior to the initiation of everolimus and at a regular interval during the treatment. At the day of the scan, every patient was clinically examined. Cough and dyspnea as the most common symptoms of pneumonitis were scored according to the ‘Common Terminology Criteria for Adverse Events 3.0’ (symptomatic score). Chest CT scans were scored based on the severity of interstitial lung disease (ILD score) and the overall pulmonary extent (pneumonitis extent). Pattern analyses of the pulmonary disease was performed independently by 2 radiologists.

Results: Pneumonitis was diagnosed in 18(20%) of the patients. There was no significant correlation between symptomatic score and ILD score or pneumonitis extent. Pattern analyses showed significant results when divided in cryptocogenic organizing pneumonia(COP)(n=14) and non-COP(n=4) pattern. Patients with non-COP pattern showed significantly higher ILD scores than COP pattern(p=0.035).

Conclusion: We could show that the severity of CT findings in everolimus-induced pneumonitis does not correlate with the patients’ clinical symptoms. That’s why asymptomatic patients should not necessarily quit therapy in advanced neuroendocrine tumours. CT pattern analysis could help in the prediction of clinical impact.

B-1025 11:10

Differentiation of benign lung nodules and metastases: a machine-learning approach using texture features from spectral detector CT-derived iodine maps and conventional images

S. Lennartz, A. Mage, N. Grosse Hokamp, S. Schäfer, D. Maintz, T. Persigehl, Kölne/DE, Heidelberg/DE (simon.lennartz@uk-koln.de)

Purpose: The diagnostic value of iodine quantification for assessing pulmonary malignancies has previously been investigated mostly with ROI-based iodine quantification. The purpose of this study was to analyze if benign lung nodules (BLN) and pulmonary metastases (PM) can be differentiated with a machine-learning-based classification approach using texture analysis of spectral detector CT (SDCT)-derived iodine maps and the referring conventional images.

Methods and Materials: For this IRB-approved study, we retrospectively identified 66 patients who underwent SDCT (Iqon, Philips) of the chest: 29 patients with 34 BLN confirmed by prior/follow-up CT (constant in size for 26 months) or histopathology and 37 patients with 180 PM verified by histopathology, (PET-CT or unequivocal change during treatment (maximum lesion number: 6 per patient). Semi-automatic 3D segmentation of all lesions was performed (mint lesion, Mint Medical). Volumetric attenuation (from conventional images) and iodine concentration (from iodine maps) were acquired. Entropy, kurtosis, mean of the positive pixels (MPP), skewness and uniformity of the positive pixels (UPP) within the volumes of interest were calculated for conventional images and iodine maps. All acquired parameters were transferred to an available machine-learning framework (Matlab, MathWorks).

Results: K-nearest neighbour classification method (kNN) with 10 neighbours and Euclidean distance metric yielded the best performance in differentiating BLN from PM with a diagnostic accuracy of 84.2% using cross-validation with a prediction speed of approx. 1200 obs/sec.

Conclusion: Based on first-order texture features derived from quantitative iodine maps and conventional images obtained with SDCT, kNN facilitates accurate differentiation of benign lung nodules and pulmonary metastases.

AuthorDisclosures:
S. Lennartz: Other; Received travel expense reimbursement from Philips Healthcare.
N. Grosse Hokamp: Speaker; Philips Healthcare.
S. Schäfer: Employee; Mint Medical GmbH.
D. Maintz: Speaker; Philips Healthcare.

B-1026 11:18

Lung cancer screening with low dose computed tomography: the republic of Kazakhstan experience

Z. Zholdybay, G. Akhmetova, G. Akhmetova, A. Panina, A. Ainakulova, Almaty/KZ (z.zholdybay@unisti.kz)

Purpose: To evaluate the initial results of a pilot project of a lung screening program with low dose computed tomography (LDCT) in the Republic of Kazakhstan, discuss the challenges of program implementation.

Methods and Materials: 569 patients were screened from July to October 2016. 230 men (40.5%) and 339 women (59.5%), ≥30 years old (smokers, non-smokers; former smokers with no previous history of cancer and healthy individuals). A helical LDCT of the chest was performed (120 kVp, 10mA with images reconstruction at 1-1.25mm overlapping slices). Baseline LDCT data were considered positive if at least one non-calciﬁed nodule 8mm or larger in size, or non-solid nodule 8mm or larger in size was identiﬁed. Follow-up monitoring for persons with positive baseline LDCT data were carried out according to Fleischner guidelines.

Results: The median age at baseline was 58.5 years (range 35-82). A total of 36 pathological ﬁndings were revealed in the lungs. Of these, 22 (57.9%) with obvious malignant signs, 10 (26.3%) ground glass opacity areas and 6 (15.8%) were assessed as probably benign. All nodules were pathologically veriﬁed. Thus, from the 32 suspicious nodules in 21 (65.6%) cases - non-small cell lung cancer was identiﬁed, in 5 (15.7%) cases - adenocarcinoma, in 6 (18.7%) cases no tumour cells were detected.

Conclusion: LDCT lung cancer screening program showed rather high speciﬁty 98.0% with lower sensitivity 81.3%. The average frequency of lung cancer in randomized patient population was 4.8%.

B-1027 11:26

One-year results from the South Wales Rapid Diagnostic Clinic for patients with serious but non-specific symptoms of cancer

I.A. Siddiqui, K.G. Foley, B. Palaniappan, A. Gibson, T. Pearce, G.J. Davies, Cardiff/UK, Imran.a.siddiqui@gmail.com

Purpose: Cancer is a leading cause of death in the UK. Initiatives such as the 2-week wait (2-WW) have been implemented to expedite investigations for patients with red-flag symptoms. However, only 50% of patients diagnosed with cancer have such symptoms. Approximately 20% of patients have serious but non-specific symptoms, such as nausea and weight loss. These patients often experience diagnostic delays. Here, we present results from the first 12 months of a rapid diagnostic clinic (RDC) aiming to investigate patients with serious but non-specific symptoms of cancer.

Methods and Materials: This is an ongoing prospective population-based interventional study. Forty-two GP practices covering a population of approximately 301,000 patients were invited to participate. Consultant review was performed in the RDC and appropriate radiological investigations were requested. The CT was performed and reported by a consultant radiologist on the same day. The primary outcome was the conversion rate.

Results: In 12 months, 259 patients (median age 69.2 years) were recruited. Twenty-five cancers were diagnosed, a conversion rate of 9.7%. Lung cancer was the most frequent malignancy (n=6). Overall, 76% of patients were stage 4. The most common symptom presenting was weight loss (77%), 138 patients (53.3%) were seen within 1 week of referral.

Conclusion: These results highlight the potential benefit of a RDC investigating patients with serious but non-specific signs of cancer. This rate was higher than the USC conversion rate in our health board (3-8%). Such diagnostic interventions should be considered to improve conversion rates in this specific patient group.

B-1028 11:34

Pulmonary metastases from pancreatic cancer: morphologic and quantitative differences compared to lung metastases from colorectal cancer

I. Torresin, A. Radici, R. Ronza, M. Pecorilla, C. De Mattia, C. Sgrazzutti, P.E. Colombo, A. Torresin, S. Siena, A. Vanzulli; Milano/IT (ilaria.vicentin@unimi.it)

Purpose: To find out the morphological and quantitative differences between lung metastases from pancreatic cancer (PC) and colorectal cancer (CRC).

Methods and Materials: 326 lung metastases derived from PC (160) and from CRC (166) were retrospectively reviewed at CT by 2 radiologists, categorizing them in 3 groups according to their morphology: solid nodule, solid excavated nodule, air space pattern (ground glass lesions and nodules with a halo sign). The quantitative analysis consisted in radiomics workflow: 10 categories of radiomics features were considered, clustered in 5 families (Shape, First Order Statistics, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Neighbour Intensity Difference). A statistical univariate analysis was conducted.

Scientific Sessions
Results: Among the 160 PC lung metastases, 43 presented the air space pattern (26.9%), 87 were solid nodules (54.3%) and 32 were solid elevated nodules (20%). Among the 146 CRC lung metastases, 140 were solid nodules (84.3%), 20 were solid elevated nodules (12.1%) and 6 nodules presented an air space pattern (3.6%). The statistical univariate analysis showed that radiomics families of First Order Statistics, Gray Level Co-occurrence Matrix, Gray Level Run Length and Neighbourhood Intensity Difference were valid predictors for the discrimination between the two cohorts.

Conclusion: The difference between the metastatic pattern of PC and CRC is significant since among our cohort, 25 patients with PC presented lung metastases with an air space pattern, whereas only 2 patients with CRC presented the same occurrence. This difference can also be assessed from the quantitative point of view through specific radiomics features.

B-1029 11:42
Difference between measurement of T size at computed tomography and at resected specimen: is it relevant for NSCLC stage?

D. Colombi¹, S. Chiesa², F. Bodini³, N. Morelli¹, M. Silva¹, N. Sverzettal², C. Franco¹, E. Micheletti², F. Piacenza², I. Parmar²

(1)colombidavid@gmail.com

Purpose: To evaluate the impact of the differences between presurgical contrast enhanced computed tomography (CECT) and gross pathology measurements on the non-small-cell-lung-cancer (NSCLC) T-staging.

Methods and Materials: Thirty-eight patients were evaluated in 34 consecutive patients (8 females; median age: 69 years-old; interquartile range: 58-82) for CECT and gross pathology. Measurements on the non-small-cell-lung-cancer (NSCLC) T-staging. Mean processing time of the algorithm was 64±23 seconds compared to a mean of 342±382 seconds for manual tumour segmentation. The algorithm facilitates a fast and reliable detection and 3D segmentation of primary tumours in NSCLC. The time required for both procedures was 0.972; p<0.001). Mean processing time of the algorithm was 64±23 seconds but mandatory when it comes to radiation treatment planning, therapy for pre-surgical planning. This post-processing technique is general and not limited to language practice. This post-processing technique is general and not limited to language practice. This post-processing technique is general and not limited to language practice.

Conclusion: The difference between measurement of T size at computed tomography and at resected specimen: is it relevant for NSCLC stage? Manual tumour segmentation is time consuming and cost intensive, but mandatory when it comes to radiation treatment planning, therapy for pre-surgical planning. This post-processing technique is general and not limited to language practice. This post-processing technique is general and not limited to language practice.
B-1033 10:46
Altered resting-state functional connectivity of the anterior cingulate cortex in anxious rats post-acoustic trauma

X.-M. Xu, G.-J. Teng; Nanjing/CN (xmu15@163.com)

Purpose: Acoustic trauma (AT) often leads to aberrant neural activity in a distributed brain network that not only includes the central auditory pathway, but also extra-auditory brain regions. Exactly where and how AT-induced cochlear hearing loss affects the central nervous system during the acute and sub-acute periods are poorly understood. We aimed to identify the neural substrate for aberrant patterns that mediate AT-related anxiety.

Methods and Materials: Forty-five male Sprague-Dawley (SD) rats were exposed to broadband noise of 122 dB for 2 hours and randomly divided into three groups: 0-day post-noise (N0D-acute period), 10-day post-noise (N10D-subacute period) and controls. Each group had 15 rats. All of them underwent emotion-related behavioural measurements (including open-field test and light/dark box) and resting state blood oxygenation level-dependent fMRI.

Results: Behavioural tests revealed that rats were much more anxious in the acute period and sustained little till 10 days later. Using an anterior cingulate cortex (ACC) seed, rats undergoing acoustic trauma demonstrated a large-scale network that had a spatial distribution beyond auditory network during both periods (N0D and N10D). Between-group analysis revealed that N0D rats displayed widespread reductions in functional connectivity, spanning primary somatosensory cortex, medial geniculate body, inferior colliculus, cingulate cortex, area 2, cerebellar lobule comparing with N10D rats and a similar pattern had also occurred in comparison with control group, while the FC increased during the sub-acute period.

Conclusion: Taken together, an “acoustic-causing” network accounting for distress, pain and gating of anxiety was proposed.

B-1034 10:54
Reward-related system fMRI activation as a monitoring tool for alcohol abuse rehabilitation

O. Omelchenko, M. Makarkchuk, O. Podkova, L. Myronyak, V. Rogozhyn; Kiev/UA (O.Omelchenko@Gmail.com)

Purpose: Early response evaluation is necessary in patients with alcohol abuse rehabilitation. We propose reward-related system activation analysis with fMRI as the rehabilitation monitoring tool in alcohol abuse patients.

Methods and Materials: Two groups of subjects were studied using 1.5T CANON Titan. Group 1 consisted of 8 patients (4F, 4M, aged 28-43) with alcohol abuse, undertaking non-pharmacological rehabilitation and alcohol drinking refusal for 8 weeks. Group 2 consisted of 10 healthy volunteers (5F, 5M, aged 22-50) without alcohol abuse and normally drinking small amounts of alcohol. Event-related fMRI was used. Visual stimuli of alcohol-related items contrasting with non-alcohol related bottles were used for stimulation. For fMRI we used EPI pulse sequence: TR/TE=3000/60ms. Analysis was made with FSL (Oxford, GB).

Results: No alcohol craving was reported by Group 1 patients. No strong emotions were reported by Group 1 patients during observation of alcohol-related stimuli. Activation of the uncus of left hemisphere was shown for Group 1 and 2. Activation of right insula, right dorsolateral prefrontal cortex and left striatum was shown for Group 1. Pronounced activation of right insula, dorsolateral prefrontal cortex and left uncus was found in Group 2. Activation of right nucleus accumbens, left anterior cingulate cortex and motor cortex was shown for Group 2. Thus, absence of activation of reward-related system (nucleus accumbens, anterior cingulate) may be the correlate of successful alcohol abuse rehabilitation.

Conclusion: Reward-related system fMRI activation may reward-related as a tool for alcohol abuse patients rehabilitation monitoring.

B-1035 11:02
Brain resting state connectivity in the development of secondary hyperalgasia in healthy men

M.S. Hansen, J.D. Nybing; Copenhagen/DK, Boston/MA, US (m.s.hansen@regionh.dk)

Purpose: Central sensitisation is a condition in which there is an abnormal responsiveness to noxious stimuli. As such, the process may contribute to the development and maintenance of pain. Factors influencing the propensity for development of central sensitisation have been a subject of intense debate and remain elusive. Injury-induced secondary hyperalgasia can be elicited by experimental pain models and is believed to be a result of central sensitisation, potentially reflecting individual levels of central sensitisation. The objective of this study was to investigate possible associations between size of secondary hyperalgasia area and brain connectivity in known resting state networks.

Methods and Materials: We recruited 121 healthy, male participants (age 22, (SD 3.35)) who underwent resting state fMRI. Prior to the scan, areas of secondary hyperalgasia following brief thermal sensitisation (3 min, 45°C heat stimulus on the right thigh) were evaluated in all participants. Data were processed using FSL-Melodic software and analysed using dual regression.

Results: 115 participants were included in the final analysis. We found a positive correlation (increasing connectivity) with increasing area of secondary hyperalgasia in the sensorimotor- and default mode networks. We also observed a negative correlation (decreasing connectivity) with increasing secondary hyperalgasia area in the sensorimotor-, fronto-parietal-, and default mode networks.

Conclusion: Our findings indicate that increasing area of secondary hyperalgasia is associated with increasing and decreasing connectivity in multiple networks, suggesting that differences in propensities for central sensitisation, assessed as secondary hyperalgasia areas, may be expressed as differences in the resting state central neuronal activity.

B-1036 11:10
Altered cortical morphology of visual cortex in children with intermittent exotropia

L. Lu, S. Tang, X. Wang, Q. Gong, X. Huang; Chengdu/CN (157539273@qq.com)

Purpose: To investigate cortical differences and age-related cortical differences between children with intermittent exotropia (IXT) and normal developmental children (NDC).

Methods and Materials: 16 IXT and 16 age-, gender-, handedness-, education- matched NDC were recruited. All participants completed oculomotor examinations, including visual acuity, cycloplegic refraction, angle of deviation measured by prism and alternate cover test, stereoaucuity, and exotropia control using the Newcastle Control Score. All participants underwent high-resolution anatomical magnetic resonance imaging (MRI) using a 3-T MR scanner. FreeSurfer software was used to obtain measures of cortical volume, thickness, and surface area. Statistical differences of MRI measures between IXT and NDC were identified using a least general linear model with the intracranial volume, gender and age as covariates.

Results: Compared to NDC, children with IXT showed reduced surface area in primary visual cortex, increased surface area in inferior temporal cortex, increased cortical thickness in left orbitofrontal cortex, right middle temporal and inferior frontal cortex (p<.05; Monte Carlo corrected). We also observed significant age-related differences of cortical measures between two groups. Specifically, normal age-related decreases of surface area and cortical volume of superior parietal cortex were disrupted in children with IXT.

Conclusion: Quantitative characterization of independent aspect of cortical anatomy in IXT patients, we identified neuroanatomical deficits in visual cortex and association cortices highlighting the widespread impact of altered input to the visual system in IXT.

B-1037 11:18
Preoperative brain mapping: task-based and resting-state fMRI matching

A. Smirnov, M. Sharave, T. Melnikova-Pitskhelauri, E. Pogosbekyan, L. Fadeeva, D. Pitskhelauri, I. Pronin; Moscow/RU (alex.s.smirnov@gmail.com)

Purpose: In the current work, we propose a three-step approach to automatic efficient functional brain areas mapping as well demonstrate in case studies on three patients with glomas the potential applicability of constrained source separation technique (semiblind independent component analysis, ICA) to brain networks discovery and the similarity of task-based fMRI (t-fMRI) and resting-state fMRI (rs-fMRI) results.

Methods and Materials: Three patients with brain glioma were examined with MRI 3T with t-fMRI and rs-fMRI protocols. Here we used tapping and language tests for t-fMRI, blind and semiblind ICA for both methods t-fMRI and rs-fMRI. To measure similarity between spatial maps, we use Dice coefficient, which shows the ratio of overlapping voxels and all active voxels in two compared maps for each patient.

Results: RSNs of interest (motor and language) discovered by rs-fMRI highly correlate with t-fMRI reference and are located in anticipated anatomical regions. In general, compared to the functional brain areas obtained with t-fMRI and rs-fMRI, there is a greater specificity of semiblind ICA compared to blind ICA.

Conclusion: Our preliminary stage in the study of functional changes in neuronal activity caused by brain tumours showed the degree of concordance between t-fMRI and rs-fMRI as well as produced by blind and semiblind ICA. We hope that further our research will allow predicting the activity of neural network architectures and non-invasive mapping of functional areas for preoperative planning.
The effect of visual stimulation on the aspartate concentration in activated cortex at 3T

Purpose: Aspartate (Asp) is a neurotransmitter whose levels are reported to be decreased in activated brain zones at 7 Tesla. Previously we demonstrated that Asp can be measured more accurately using MEGA-PRESS pulse sequence at 3T. The IMRS of Asp is performed at 3T for the first time.

Methods and Materials: Eleven healthy subjects (19-34 y.o.), Philips Achieva dStream 3T and Head-Neck SENSE coil. Video stimulation; monitor, mirror, 8-Hz flashing checkerboard. The spectroscopy voxel (20x40x30 mm) was located in visual cortex. Asp signal was obtained with AspMEGA-PRESS sequence: TE=90 ms, TR=2000 ms, NSA=288, 27 ms editing pulses applied at δ0=3.89 ppm and δ0=5.21 ppm (9.5 min). Spectrum in rest was obtained and then spectrum during visual stimulation. Asp peak was processed in JMRUI (AMARES) and Asp intensity (I_{Asp}) was found. PRESS spectra from 'OFF-sphere' were compiled; creatine (I_{Cr}) was found in LCModel. Asp was normalized on Cr: I_{Asp}/I_{Cr} = Asp/Cr. For each participant, the relative effect of stimulation was calculated: rel.Asp = Asp(stimulus)/Asp(rest). rel.Asp0 was compared with 1 with Mann-Whitney (MW) criterion.

Results: The Asp peak at 2.71 ppm has high SNR and is easily approximated by a single peak in AMARES (MRUI). The statistically significant (p<0.05) decrease of rel.Asp by a single peak in AMARES (JMRUI). The effect of visual stimulation on the aspartate concentration in activated cortex at 3T (TE=90 ms, TR=2000 ms, NSA=288, 27 ms editing pulses applied at δ=3.89 ppm and δ=5.21 ppm (9.5 min)). Spectrum in rest was obtained and then spectrum during visual stimulation. Asp peak was processed in JMRUI (AMARES) and Asp intensity (I_{Asp}) was found. PRESS spectra from 'OFF-sphere' were compiled; creatine (I_{Cr}) was found in LCModel. Asp was normalized on Cr: I_{Asp}/I_{Cr} = Asp/Cr. For each participant, the relative effect of stimulation was calculated: rel.Asp = Asp(stimulus)/Asp(rest). rel.Asp0 was compared with 1 with Mann-Whitney (MW) criterion.

Conclusion: The SNR of Asp peak in AspMEGA-PRESS 24 mL spectrum is much greater than at 7T without spectral editing and is sufficient enough for the confident quantitative analysis. The decrease of Asp in response to neuronal activation is in good accordance with previous findings at 7 Tesla.

Advanced MR imaging with cognitive and vestibular stimulation in vestibular migraine

Purpose: The aim of the study was to evaluate the changes in cortical activation during 5 different tasks after stimulation of vestibular pathways at patients with vestibular and episodic migraine to identify metabolic changes possibly seen in thalamus, that is a key role in vestibular and pain pathways.

Methods and Materials: Fifteen patients with vestibular migraine and 15 patients with episodic migraine that had diagnosed at Çukurova University Neurology Department were included into this prospective study. Functional MRI was applied before and after the caloric test. BOLD fMRI data were registered during conjunctive eye movements, cognitive task, visual stimuli with 3 Tesla MR 32-channel head coil. SPSS v20 and SPM software was used for the statistical analysis.

Results: Functional MR imaging demonstrated increased cerebellar and insular activation in patients with vestibular migraine following caloric testing during finger-nose testing. During object naming task to activate linguistic-associated cortical areas increased thalamic activation was determined in vestibular migraine patients after caloric testing. In migraine patients, loss of activation in the occipital lobe was observed during visual stimulation after caloric testing.

Conclusion: Activation changes in brain regions during vestibular pathway activation and during performing cognitive, different tasks in vestibular and episodic migraine patients provide information about the pathophysiology of disease and functional changes that may occur during an attack in patients.
Results: In 1,248 NLST eligible screenees, LC frequency was 1.2% at 1 year, 2.6% at 3 years. At 1 year, nodule volume on LDCT was the only predictor of LC risk (volume ≥ 250 mm³, odds ratio (OR) 34.25, p = 0.0009). At 3 years, the risk of LC was predicted by: nodule volume 113-250 mm³ (OR9.32, p = 0.01), nodule volume > 250 mm³ (OR29.07, p = 0.001), Tiffeneau’s 70% (OR2.08, p = 0.0195). A simulation of triennial screening rounds, with selective annual round only for nodule volume ≥113 mm³ (19.9% in our population) showed 40% reduction of LDTC through 3 years, and 80% LDCT saving at each annual round.

Limitations: Administrative difficulties and lack of funding limited the recruitment (4,099 recruited as compared to 10,000 of original design).

Conclusion: Annual round is worthwhile for nodule ≥113 mm³ (about 20% in our population). Screening every 3 years can safely reduce the LDCT burden for nodule <113 mm³ (about 80% in our population).

Funding for this study: Grants: Italian Ministry of Health (RF2004), AIRC2004 (IG1227) and AIRCSxmille (IG12162), Fondazione Cariplo (2004-1160) and Lombardy Region (2006-1688).

Author Disclosures:
C. Jacobs: Research/Grant Support, MeVis Medical Solutions AG.
B. van Ginneken: Shareholder; Thirona BV, Other; MeVis Medical Solutions.

Clinical trials in Radiology and data sharing: results from a survey by the European Society of Radiology research committee

Methods and materials: This survey was conducted between July and September 2018 among European heads of imaging departments and speakers at the Clinical Trials in Radiology sessions at ECR 2015-2018. The survey was approved by the ESR research committee and administered online.

Results: The response rate was lower among department heads (27%, 114/428) than among Clinical Trials in Radiology speakers (56%, 18/32; p < 0.001). These institutions reported having conducted 429 trials, leading to 332 publications, of which 43% were first and 44% last authorships by those institutions. For future trials, 98% of respondents (93/95) said they would be interested in sharing data, although only 34% had shared data already (23/68, p < 0.001). The major barriers to data sharing were data protection (78%, 4709/8676, 54.3%) and 4215/7914 (53.3%) subjects. The cumulative detection of CRC was 47.7% (4709/8676) and 4215/7914 (53.3%).

Limitations: Low response rate.

Conclusion: A considerable number of imaging trials are being performed and published by radiologists in Europe while data sharing is hardly taking place, despite great interest: most likely because of data protection and ethical issues, as well as the absence of a data sharing platform.

Funding for this study: none

Clinical trials in Radiology and data sharing: results from a survey by the European Society of Radiology research committee

Methods and materials: This survey was conducted between July and September 2018 among European heads of imaging departments and speakers at the Clinical Trials in Radiology sessions at ECR 2015-2018. The survey was approved by the ESR research committee and administered online.

Results: The response rate was lower among department heads (27%, 114/428) than among Clinical Trials in Radiology speakers (56%, 18/32; p < 0.001). These institutions reported having conducted 429 trials, leading to 332 publications, of which 43% were first and 44% last authorships by those institutions. For future trials, 98% of respondents (93/95) said they would be interested in sharing data, although only 34% had shared data already (23/68, p < 0.001). The major barriers to data sharing were data protection (78%, 4709/8676, 54.3%) and 4215/7914 (53.3%) subjects. The cumulative detection of CRC was 47.7% (4709/8676) and 4215/7914 (53.3%).

Limitations: Low response rate.

Conclusion: A considerable number of imaging trials are being performed and published by radiologists in Europe while data sharing is hardly taking place, despite great interest: most likely because of data protection and ethical issues, as well as the absence of a data sharing platform.

Funding for this study: none

Detection rate for advanced neoplasia of single round of CT colonography vs three rounds of faecal immunochemical test in population screening for colorectal cancer: the SAVE randomised trial

Methods and materials: In this pragmatic randomised trial, 14,981 subjects aged 54 to 65 years, living in a district of Florence, Italy, were randomised (1:2) and invited by mail to one of two screening interventions: 1) single round CT colonography; 2) three biennial rounds of FIT. Main outcome was detection rate for advanced neoplasia, defined as the proportion of invitees to screening intervention with screen-detected cancer or advanced adenoma. Secondary outcome was positive predictive value (PPV) for advanced neoplasia.

Results: Participants to single CTC were 1288 (48.25% 26.7%); subjects, whereas participants to first, second and third FIT rounds were 4677/9288 (50.4%), 4709/6676 (54.3%) and 4215/7914 (53.3%) subjects. The cumulative detection rate per-invitee for a single CTC round (1.39%; 67/4825) was lower than for three FIT rounds (1.98%; 184/9288) (p = 0.012). However, PPV of single
CTC (53.2%) was higher than that of three FIT rounds (32.4%) (p<0.0001).

Limitations: Lack of a screening colonoscopy group as comparator for detection rate.

Conclusion: For population screening of CRC, a strategy based on single CTC yields a lower detection rate per invitee than three biennial FIT rounds but is associated with less unnecessary diagnostic colonoscopy.

Funding for this study: This trial was funded by Tuscany Region and by Cassa di Risparmio di Firenze Foundation.

11:39

Discussant: T. Mang: Vienna/AT (thomas.mang@meduniewien.ac.at)

11:45

Cost-effectiveness analysis of computed tomography vs invasive coronary angiography in a randomised controlled trial

G. Abida Gehling1; I. Perez2; A. Hollingsworth3; T. Reinhold1; M. Dewey3; 1Berlin/D, 2Okkayama, Japan, 3US

Purpose: To conduct a cost-effectiveness analysis of computed tomography (CT) coronary angiography and invasive coronary angiography (ICA) from the perspective of insurance providers.

Ethics committee approval: Institutional review board approval was obtained and all patients provided written informed consent.

Methods and materials: 329 patients with stable chest pain and suspected coronary artery disease were randomly assigned to either CT or ICA at a single centre. We gathered cost information from hospital billing information and from follow-up questionnaires. Quality of life was assessed with the EuroQol-5D-3L questionnaire.

Results: 275 patients could be included in the cost-effectiveness analysis. There was no significant difference in quality of life before CT and ICA (0.86 vs 0.87 QALY/year; p=0.45) and after a median of 4.43 years of follow-up in the CT and ICA group (0.85 vs 0.68 QALY/year; p=0.97). Average insurance cost per patient for the initial management was 758.45±184.01€ in the CT and 1970.42±133.38€ in the ICA group (p<0.001). Outpatient CT was significantly less costly than inpatient CT (394.85 vs 1501.42, p=0.001). The incremental cost per follow-up year was similar in the CT (1805.76±511.99€) and the ICA group (1997.31±742.92€; p=0.57).

Limitations: Incomplete follow-up questionnaires and limited outpatient procedure cost information.

Conclusion: Initial management of patients with stable chest pain using CT is more cost-effective than using ICA while follow-up cost are similar.

Funding for this study: German Research Foundation was not involved in any stage of the study design, data acquisition, data analysis, or manuscript preparation.

Author Disclosures: M. Dewey: Grant Recipient; German Research Foundation. Other; Bayer, Bracco, Cardiac MR Academy, European Commission, European Regional Development Fund, German Foundation of Heart Research, German Federal Ministry of Education and Research, GE Healthcare, Guerbet, Springer, and Toshiba.

11:54

Discussant: N.N.

10:30 - 12:00

Tech Gate Auditorium

Abdominal Viscera

SS 1001b

Hepatobiliary contrast agents: focal and diffuse liver disease

Moderators: A. Torregrosa Andrés; Valencia/ES
F. Vernuccio; Palermo/IT

B-1042 10:30

Gadoxetic acid (GA)-enhanced liver MRI and hepatic haemangiomas (HH): diagnostic performance and impact of dynamic phase on lesion characterisation

F. Castiglione1; M. Grazzioli1; M. Puglia2; B. Fritto1; M. Morone1; L. Romanini1; F. Donato1; R. Ambrosini1; L. Grazzioli1; 1Brescia/IT, 2Naples/IT
(trancy-cast@hotmail.it)

Purpose: To evaluate diagnostic accuracy of MRI using GA for characterisation of HH, comparing the dynamic phase alone with respect to the whole study. Diagnostic confidence of different experienced radiologists was also tested.

Methods and Materials: We prospectively enrolled 124 patients with suspected lesions at CECT/US, excluding hepatopathic patients. Histology/biopsy or lesion stability at follow-up imaging was the standard of reference. A 1.5T scanner was used, with acquisitions of baseline, dynamic and hepatobiliary phase images before and during automatic i.v. injection of GA. Three sets of imaging were reviewed by 3 differently experienced readers in 3 sessions (1: baseline; 2: dynamic phase and 3: unenhanced+dynamic phase images). Pearson’s Chi-square analysis was used to assess sensitivity, specificity and diagnostic accuracy for the whole examination, for the dynamic study and for each reader and session. Inter-reader agreement was evaluated using Cohen’s Kappa.

Results: 332 lesions were analysed: 165 HH (49.7%), 91 metastases (27.4%), 3 CC (0.9%) and 76 benign lesions (22%). Sensitivity, specificity and diagnostic accuracy were, for the whole-study evaluation, 99.6%, 99.6% and 99.6% and, for the dynamic study alone, 98.2%, 99.6% and 98.8%, with a statistically significant difference between them (p<0.0001). Excellent interobserver agreement (99% concordance, k=0.98) was observed both for the whole study and for the dynamic phase evaluation (98.8%, k=0.97).

Conclusion: The dynamic study alone using GA demonstrated high sensitivity and specificity values. Combined evaluation (baseline+dynam images) slightly improves diagnostic performance in less experienced readers and in small, non-typical HH.

B-1043 10:38

Gadoxetic acid-enhanced magnetic resonance imaging for prediction of the postoperative prognosis of intrahepatic mass-forming cholangiocarcinoma

M. J. Kim, S. Kim, C. An, K. Han, S. Lee; Seoul/KR (sjelee37@yuhs.ac)

Purpose: To identify imaging markers that independently predict the postoperative outcome of intrahepatic mass-forming cholangiocarcinoma (IMCC) using gadoxetate disodium-enhanced magnetic resonance imaging (MRI).

Methods and Materials: Data from 54 patients who underwent preoperative gadoxetate disodium-enhanced MRI and curative surgery for IMCC were retrospectively evaluated. The prognostic power of various imaging and pathological features reportedly associated with recurrence-free survival (RFS) and overall survival (OS) were analysed using Cox regression models. A model combining imaging and pathological features was developed and its performance was evaluated using the Harrell C index and Akaike information criterion.

Results: Capsule penetration (P = 0.016) and tumour size (P = 0.015) were independent markers for RFS, while capsule penetration (P = 0.012) and hepatic vein obstruction (HVO, P = 0.018) were independent markers for OS, respectively, in the imaging-based model. Capsule penetration was the only imaging marker identified in the combined prediction model of RFS, and the combined model showed a higher C index and lower AIC value compared with the model based on pathological features alone.

Conclusion: The evaluation of capsule penetration and HVO using MRI may improve prediction of the postoperative prognosis of intrahepatic IMCC by incorporating imaging markers with a surgical staging system.

B-1044 10:46

Peritumoral radiomics features from gadoxetic acid-enhanced MR imaging predicting early recurrence of hepatocellular carcinoma

Z. Zhang, J. Chen, H. Jiang, L. Cao, Z. Ye, B. Song, T. Duan; Chengdu/US (zhangzhend90@163.com)

Purpose: To investigate the ability of peritumoral radiomics features from gadoxetic acid-enhanced MR images for predictive evaluation of early recurrence (<1year) in hepatocellular carcinoma (HCC).

Methods and Materials: 39 patients with surgically confirmed HCC were enrolled in this IRB-approved prospective study. A total of 1925 radiomics features within peritumoral region (a 5-pixel-wide radius surrounding the tumour boundary) were obtained from multiple phases (T2-weighted, non-enhanced T1-weighted, arterial phase, portal venous phase and hepatobiliary phase). The most predictive features were selected to build a radiomics signature using the least absolute shrinkage and selection operator(LASSO)algorithm with a 10-fold cross validation applied. Then, a prediction model comprising radiomics signature and predictive clinical variables was constructed using multivariable logistic regression analysis. Receiver operation characteristic (ROC) analysis and decision curve analysis were performed to evaluate the accuracies of the predictive models.

Results: Nineteen early recurrences (48.7%) were confirmed by imaging follow-up. A radiomics signature with four radiomics features, including Correlation, InverseDifferenceMoment (IDM) from T2-weighted images and Histogram MinIntensity, IDM from arterial phase images, demonstrated good performance with the sensitivity, specificity and area under the ROC curve of 85%,92% and 0.926, respectively. Multivariable logistic regression analysis identified the radiomics signature (OR=1.781,p<0.001), microvascular invasion (OR=5.859,p=0.046) and Edmondson-Steiner histologic
Assessment of abbreviated MRI of liver for initial follow-up of patients with liver metastases from colorectal cancer

M.R. Torkzad1, A. Riddell2, D.-M. Koh3, Sutton/UK, 2Surrey/UK

Purpose: To compare abbreviated MRI (AB) of liver to standard MRI of liver (ST) for follow-up of patients treated for colorectal cancer liver metastases. Methods and Materials: A retrospective analysis of all consecutive patients with colorectal metastases treated at our centre from 2011 until 2017 was done by two senior radiologists blinded to the results of each other. Each radiologist evaluated initially only HBP (hepatobiliary phase images with gadoxetate) and by two senior radiologists blinded to the results of each other. Each radiologist with colorectal metastases treated at our centre from 2011 until 2017 was done with liver metastases (CRLM).

Results: The acquisition time was significantly shorter in image set 2 than in image set 1 (6.2 vs. 24.4 minutes, p<0.0001). The diagnostic performances were not significantly different between image sets 1 and 2 in two readers (p<0.277-0.814). The mean motion artefact score was significantly lower on the SSAP than on the original AP (1.77±0.74 vs. 2.07±1.84, p<0.001). 75/77 (97.4%) hypervascular HCCs showed hyperintensity on the SSAP and/or subtraction images. Conclusion: An AGAM including SSAP showed comparable diagnostic performance to a full dynamic MRI with faster image acquisition, fewer motion artefact, and preserved vascular hypervascularity for detecting HCC.

Preoperative detection of colorectal liver metastases: DWI alone or combined with MDCT is no substitute for Gd-EOB-DTPA-enhanced MRI

A. Schulz1, E.S. Joelsen-Hatlelho1, K.W. Brudvik1, B. Hanekamp1, K.K. Aasand1, E. Vikki1, C.K. Johansen1, J. Dormagen1, Oslo/NO (anselm.schulz@gmail.com)

Purpose: To evaluate if preoperative detection of colorectal-liver-metastases (CRLM) with less resource-consuming DWI alone or in combination with MDCT can compete with gadoxetate-ethylbenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. Methods and Materials: Forty-four patients received MDCT and Gd-EOB-DTPA-enhanced MRI including DWI prior to liver resection for CRLM. Two radiologists evaluated five image sets each. The Dwi-set consisted of diffusion-weighted sequences (b-values 0, 50 and 800s/mm²), ADC-map, coronal, axial T2-weighted single-shot sequences. The Dwi-T2F-set contained additionally respiratory-triggered T2-weighted TSE-spiral sequences. The MDCT-set consisted of contrast arterial, portal-venous and late phase. The MDCT-DWI-set additionally of Dwi. The CE-MRI-set contained all MRI-sequences. The diagnostic performance of the imaging-sets was based on 299 lesions including 123 CRLM. Histopathology and follow-up were reference standards. Results: CE-MRI-set had highest sensitivity (p<0.013) with 95.1% compared to 72.4%, 73.2%, 73.2% and 87.0% for Dwi-set, Dwi-T2F-set, MDCT-set and MDCT-DWI-set. CE-MRI-set had highest sensitivity (p<0.012) for CRLM <3cm with 97.1% compared to 54.8%, 51.4%, 22.6% and 58.1% for Dwi-set, Dwi-T2F-set, MDCT-set and MDCT-DWI-set. The MDCT-DWI-set improved sensitivity overall and in size-sensitive subgroup analyses compared to MDCT-set (p<0.03). MDCT-DWI-set showed highest specificity (98.3%) followed by 97.7%, 97.7%, 94.9%, 87.6% for the Dwi-set, Dwi-T2F-set, MDCT-set and CE-MRI-set (p<0.001). Conclusion: Combination of Dwi with MDCT improved sensitivity and specificity compared to each modality alone. Dwi might be sufficient as follow-up or screening for primary staging of colorectal cancer in case of negative MDCT. MRI with Dwi and Gd-EOB-DTPA showed highest sensitivity for CRLM and should be the preferred preoperative modality when meticulous lesion evaluation is essential.

Abbreviated gadoxetic acid-enhanced MRI (AGAM) including second shot arterial phase (SSAP) for hepatocellular carcinoma surveillance

J. Kim, C. Lee, Seoul/KR (pridebio@naver.com)

Methods and Materials: A total of 132 patients underwent gadoxetic acid-enhanced MRI using a modified injection protocol for HCC surveillance between July and December 2017. 82 HCCs in 68 patients were initially diagnosed based on the histopathologic result or typical imaging features. Modified injection protocol included routine dynamic imaging after a first injection of 6-ml and SSAP after a second injection of 4-ml. Image set 1 was full original protocol. Image set 2 consisted of TWI, Dwi, hepatobiliary phase, and SSAP (simulated abbreviated protocol). Acquisition time was measured in each image set. The per-patient sensitivity, specificity, PPV, and NPV, and per-lesion sensitivity and PPV were compared between two image sets. Image quality evaluation and visual assessment of vascularity were performed on the original AP, SSAP, and subtraction images.

Results: The acquisition time was significantly shorter in image set 2 than in image set 1 (6.2 vs. 24.4 minutes, p<0.0001). The diagnostic performances were not significantly different between image sets 1 and 2 in two readers (p<0.277-0.814). The mean motion artefact score was significantly lower on the SSAP than on the original AP (1.77±0.74 vs. 2.07±1.84, p<0.001). 75/77 (97.4%) hypervascular HCCs showed hyperintensity on the SSAP and/or subtraction images. Conclusion: An AGAM including SSAP showed comparable diagnostic performance to a full dynamic MRI with faster image acquisition, fewer motion artefact, and preserved vascular hypervascularity for detecting HCC.

Findings of sinusoidal obstruction syndrome on gadoxetic-acid-enhanced MRI in patients with chemotherapy for colorectal liver metastases are poorly reproducible between radiologists

F. Staail1, J.B. Houwers2, S. Heeres1, M. de Boer1, D.M. Lambrechts1, M. Maas1, R.G.H. Beets-Tan1, Amsterdam/NL, 2Maastricht/NL (f.sstaail@nki.nl)

Purpose: To assess the reproducibility of gadoxetic acid-enhanced MRI (EOB-MRI) to determine the presence and severity of sinusoidal obstruction syndrome (SOS) in patients treated with chemotherapy for colorectal liver metastases (CRLM).

Methods and Materials: 32 patients treated with chemotherapy for CRLM (either oxaliplatin based, oxaliplatin based in combination with bevacizumab, or non-oxaliplatin-based treatment), with available EOB-MRI scans in the hepatobiliary phase, were retrospectively included. The presence and severity of SOS were independently scored by three radiologists with varying experience (10-20 years of experience in EOB-MRI), who were blinded to the clinical data, using a 5-point scale (SOS score 0-definitely not present to 4-definitely present). The inter-observer agreement between readers was assessed with a quadratic-weighted kappa.

Results: The time between chemotherapy completion and EOB-MRI scan was 1.1 (+/-1.4) months. Inter-observer agreement was poor with kappas ranging from 0.25 (95%CI 0.01-0.48) to 0.33 (95%CI 0.08-0.58). More equivocal scores (SOS score = 2) were chosen by less experienced radiologists (83% and 43.8% equivocal scores) compared to a more experienced radiologist (3.1% equivocal scores).

Conclusion: The assessment of SOS on hepatobiliary phase EOB-MRI in patients treated with chemotherapy for CRLM shows a poor inter-observer agreement which questions the diagnosis of SOS. This questions the value of hepatobiliary phase EOB-MRI for this purpose.

Enhancement features, blood-based bio-markers and immunohistochemical expression of hepatocyte transporters in patients with non-alcoholic fatty liver disease (NAFLD)

D.S. Feier1, N. Bastati-Huber3, A. Beer1, S. Pötter-Lang2, R.M. Fragner2, A. Ba-Ssalamah1, Cluj-Napoca/RO, 2Vienna/AT (diaina.feier@gmail.com)

Purpose: To quantify enhancement features of gadoxetic acid-enhanced MRI and blood-based biomarkers parameters in patients with non-alcoholic fatty liver disease (NAFLD), and correlate them with the immunohistochemical expression of the hepatocyte transporters (OATPb2/8, MRP2, MRP3). Methods and Materials: The local institutional review committee approved this study and waved written informed consent. This was a retrospective study of gadoxetic acid-enhanced 3T MR imaging performed in 46 consecutive patients with NAFLD (mean age (SD), 49.46 (15.52) years. The MR images were analyzed by using the relative enhancement (RLE). NAFLD fibrosis score (NF5) and FIB-4 were used as blood-based biomarkers parameters. Regression analyses were applied to identify variables associated with OATPB2/8, MRP2, MRP3 expression.

Results: A statistically significant higher number of patients with NASH had increased lobular inflammation (p<0.0001), ballooning (p<0.0001), and increased degree of steatosis (R0.015). The MR images were analyzed by using the relative enhancement (RLE). NAFLD fibrosis score (NF5) and FIB-4 were used as blood-based biomarkers parameters. Regression analyses were applied to identify variables associated with OATPB2/8, MRP2, MRP3 expression.

Results: A statistically significant higher number of patients with NASH had increased lobular inflammation (p<0.0001), ballooning (p<0.0001), liver steatosis (p<0.0001) and inflammation (p<0.0001) compared to those with simple steatosis. RLE, NF5 and FIB-4 were used as blood-based biomarkers parameters. Regression analyses were applied to identify variables associated with OATPB2/8, MRP2, MRP3 expression.

Conclusion: Combination of Dwi with MDCT improved sensitivity and specificity compared to each modality alone. Dwi might be sufficient as follow-up or screening for primary staging of colorectal cancer in case of negative MDCT. MRI with Dwi and Gd-EOB-DTPA showed highest sensitivity for CRLM and should be the preferred preoperative modality when meticulous lesion evaluation is essential.

Scientific Sessions
Scientific Sessions

B-1051 11:34

Postoperative complications after living donor liver transplantation: risk assessment on Gd-EOB-DTPA-enhanced 3-T MRI imaging using quantitative-qualitative parameters

A. Kahraman1, M. Kolu2, B. Kahraman1, Z. Ozdemir1, L. Karaca1, S. Yilmaz1, Maltayar TR1, Sanliurfa TR1 (mdsagasi2003@hotmail.com)

Purpose: To investigate if Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) with measurements of quantitative and qualitative parameters on hepatobiliary phase images can predict the risk of postoperative complications after living donor liver transplantation (LDLT).

Methods and Materials: This prospective study included 60 subjects (30 living donor candidates and 30 their recipients). We obtained Gd-EOB-DTPA-enhanced 3T MRI before LDLT in donors and after LDLT in their recipients. MRI parameters including relative liver enhancement (RLE) value, biliary signal value and visual evaluation of liver and biliary enhancement on hepatobiliary phase images were recorded. The patients were followed for postoperative biliary and vascular complications and then grouped according to the presence and absence of complications. The relations between MRI parameters and postoperative complications were analysed statistically. In addition to MRI parameters, the latter also included postoperative laboratory variables.

Results: The recipients of living donor liver transplantation had significantly lower mean RLE values and biliary signal values than those without and than donors (p<0.001). Qualitative MRI parameters involving visual assessments of liver enhancement and biliary signal were also significantly different in recipients with postoperative complications compared to donors and patients without postoperative complications (p<0.001). RLE values and biliary signal values were inversely related to the postoperative bilirubin values in recipients (p=0.005, r=-0.496; p=0.001, r=-0.624). There were no correlation between INR values and MRI parameters (p=0.837; p=0.813).

Conclusion: The quantitative and qualitative MRI parameters obtained by Gd-EOB-DTPA-enhanced MRI on hepatobiliary phase images can help with the assessment of the risk for postoperative complications after LDLT.

B-1052 11:42

What is the effect of steatosis, iron overload and renal function on the uptake and excretion of gadoxetic acid-enhanced MRI?

L. Beer1, N. Bastasti, S. Pötter-Lang, D. Stoyanova, E. Michael, Y. Bican, H. Einspieler, A. Ba-Ssalamah; Vienna/AT (Lucian.Beer@meduniwien.ac.at)

Purpose: To explore the effect of steatosis, hepatic iron overload, and renal function on gadoxetic acid (GA) uptake in hepatobiliary phase (HPB) images in patients with diffuse chronic liver disease (CLD).

Methods and Materials: This retrospective IRB-approved study included 265 patients (164 men, 101 female, mean age 54±16 years) with CLD who had undergone GA-enhanced MRI of the liver between 2010-2015. Demographic and clinical data were obtained from our patients' medical history and included age, sex, body mass index, creatinine, and estimated glomerular filtration rate (eGFR). Relative liver enhancement (RLE), was calculated by two radiologists using unenhanced and GA-enhanced HPB images, 20 minutes after administration of the GA. Hepatic fat fraction (%) was measured on dual-echo gradient-echo hepatic images. Echinosis level was semi-quantitatively assessed on T2-weighted fat-suppressed images (Grade 1-3). Spearman’s correlation coefficients were used to assess the correlation between RLE and laboratory parameters. ANOVA with Bonferroni post-hoc-test was used to compare different groups.

Results: There was a significant correlation between RLE and eGFR (R=0.225, p<0.001) and siderosis grade (R=0.210, p<0.001), while hepatic fat fraction did not correlate with RLE (R=0.098, p=0.116). RLE in patients with high impaired renal function (eGFR<30 ml/min/1.73 m²) was significantly lower than in patients with slightly impaired (eGFR 30-90) or normal kidney function (eGFR >90) (R=46%/vs.82%/vs.89%; p<0.001). In addition, RLE was significantly lower in patients with severe siderosis compared to those with no siderosis (RLE 46%/vs.86%; p<0.011).

Conclusion: Gadoxetic-acid relative enhancement significantly correlates with renal function; however, it is independent of hepatic fat fraction in patients with diffuse CLD.

Paediatric SS 1012

Paediatric musculoskeletal and oncologic imaging

Moderators: N. Mitreska; Skopje/MK U. Schwarz-Nemec; Vienna/AT

K-26 10:30

Remote lecture

J.M. Patsch; Vienna/AT

B-1053 10:39

Making measurements on coronal ultrasound images of infant hips during Barlow manoeuvre: a new and rapid screening method for developmental dysplasia of the hip

U.Y. Ayaz1, M.E. Dögen; Mersin/TR (umitayasarayaz@yahoo.com)

Purpose: To investigate the screening examination time for sonographic screening of developmental dysplasia of the hip (DDH), we aimed to obtain the femoral head coverage (FHC) as well as alpha and beta angles of the normal infant hip using Barlow manoeuvre during the coronal ultrasound (US) images.

Methods and Materials: In this prospective study, a total of 150 hips of 75 healthy infants were included. The infants were initially evaluated by US and then clinically followed-up till their hips were proved to demonstrate normal orthopedic development at physical examination. Median clinical follow-up time was 276 days. US examination of the hip in coronal plane was performed during Barlow manoeuvre in supine position using a linear-array transducer.

Results: The positions of the femoral heads in their acetabulum and the development of hip components (bony acetabulum, cartilaginous labrum) were normal in all the infants. All the hips were stable and classified as Graf type 1 with alpha angles ≥ 60°. Mean FHC with range values for the right and left hips were, 65.9±7.3° (range, 47.8°-80.8°) and 64.4±6.9° (range, 46°-77%), respectively. The difference between the mean FHC of right and left hips was not significant (P=0.05).

Conclusion: Our up-to-date FHC values were considered to be more clinically relevant, since the measurements were made during Barlow manoeuvre. Our newer technique can be used for obtaining FHC, as well as alpha and beta angles using the same single coronal US image for each hip which significantly shortens the examination time.

B-1054 10:47

Use of magnetic resonance imaging to predict progression of juvenile idiopathic arthritis in paediatric patients in clinical remission

F. Sertorio1, M. De Cesari, M. Mazzoni, A. Pistorio, A. Urru, F. Magnaguagno, C. Malattia, G.M. Magnano; Genoa/IT (flammetta.sertorio@gmail.com)

Purpose: To assess the prevalence of subclinical synovitis as detected by MRI in a cohort of patients with juvenile idiopathic arthritis (JIA) in clinical remission and to evaluate its association with disease flare and structural damage progression.

Methods and Materials: All contrast-enhanced MR performed from 2007 to 2015 on patients with JIA in clinical remission were analysed by two independent readers. Joint damage progression was assessed by conventional radiography (CR). Statistical analyses were performed.

Results: Ninety patients were included: 14/90 (15.6%) in remission off medication, while 76/90 (84.4%) in remission on medication. 45 patients were assessed by MRI in the wrist, 30 in the hips, 13 in the ankle and 2 in the knee. 57 patients (63.3%) had evidence of subclinical synovitis on MRI. The interobserver agreement for presence/absence of synovitis was good (κ=0.74). 43/57 patients (75.4%) with subclinical synovitis experienced a disease flare versus 11/33 patients (33.3%) who had not any synovial inflammation. Radiographic damage progression was assessed by CR in 54/90 patients and was detected in 19/54 patients (35.2%). A significant association between systemic JIA subtype and deterioration of joint damage was found; MRI-detected bone marrow oedema (BMO) score and the baseline radiographic damage score were also significantly related to structural progression.

Conclusion: Subclinical synovitis detected by MRI was significantly associated with disease flare, while BMO showed remarkable promise in predicting joint destruction. These findings support the MRI utility for the assessment of JIA patients in clinical remission and may have important clinical implications for their management.

OATP2/8 expression (r=0.41, p=0.002) and NFS and FIB-4 positively correlated with the expression of MRP2 (r=0.37, p=0.007).

Conclusion: Imaging and blood-based biomarkers parameters used together may discriminate between patients with NASH and simple steatosis.
B-1055 10:55
Secondary fractures in paediatric radial head and neck fractures: common association, commonly missed
A.J. Degnan, V.M. Ho-Fung, J.C. Nguyen, J.T.R. Lawrence, S.L. Kaplan; Philadelphia, PA/US (degnan.andrew@gmail.com)

Purpose: Radial head and neck fractures are typically viewed as adult-type fractures uncommon in children. The nature and frequency of associated additional fractures are poorly understood.

Methods and Materials: Elbow radiographs in 500 consecutive children (<18 years) during a five-year period (January 1, 2013-December 31, 2017) with reports containing terms related to radial head or neck fracture were reviewed for fracture identification. Pathologic fractures and fractures sustained prior to the study period were excluded. Review of cases yielded 270 unique patients with radial head and/or neck fractures.

Results: Approximately two-thirds (65.6%) of radial head and/or neck fractures occurred in isolation whereas 34.4% of patients had an additional elbow fracture with concomitant olecranon fractures being most common (23.0%), followed by medial epicondylic fractures (4.1%), coronoid fractures (3.3%) and other types of additional fractures. Complete radius fractures were more likely to have an additional fracture than incomplete fractures (OR: 3.30, CI: 1.88-5.78, p<0.001). Significant joint effusion was also associated with the presence of an additional fracture (OR: 2.18, CI: 1.06-4.45, p=0.03). Combined radial head and neck and olecranon fractures occurred in a younger age group (7.32 years, SD: 3.19) than isolated radial head/neck fractures (9.89 years, SD: 3.85), p<0.001. Approximately one-third (32.6%) of additional fractures were not identified on initial radiographs, 39% of which were not visible on initial radiographs.

Conclusion: Radial head and neck fractures are underappreciated in the paediatric population. These radius fractures have a substantial association with additional fractures, and secondary fractures are often missed or occult on initial radiographs.

B-1056 11:03
The applicability of the Greulich and Pyle atlas to a modern Irish population
L. McCarthy1, C. O'Flynn2, J. O'Connor1, J. Prunty3, J. C. Nguyen4, K. Maguire4;
1Dublin/E, 2Cork/E, 3Mayo/H, 4UCork/H (lauraghmccarthy1@hotmail.com)

Purpose: The Greulich and Pyle Radiographic Atlas of the Hand and Wrist is the gold standard in clinical practice for assessment of skeletal development of children from birth to maturity. The literature however suggests that the atlas is not universally applicable to all populations. Given the clinical importance of the Greulich and Pyle atlas and the need to ensure that methods used for age assessment are tested it is imperative that a study be undertaken to determine its appropriateness for use in a modern Irish population.

Methods and Materials: A retrospective cross-sectional analysis was performed of hand/wrist radiographs from children presenting to the Accident and Emergency Department of Cork University Hospital between 2008-2013. Radiographs of 444 children (Male: Female 257:187) with an age range of 0-19 years were examined. Observers were blinded to chronological age at the time of assessment of skeletal age. Each radiograph was assessed using the Greulich and Pyle Atlas and a skeletal age assigned. Cephalometric age was subtracted from skeletal age to obtain the residual difference.

Results: Skeletal and chronological age were highly correlated in both males (0.968) and females (0.968) (p<0.01). The mean difference between skeletal age and chronological age was negative in value, indicating that in the current sample skeletal age was advanced compared to chronological age. For males mean skeletal age was advanced by 1.14 (±15.12) months and for females mean skeletal age was advanced by 2.58 (±12.78) months.

Conclusion: The Atlas appears to still be applicable to a modern Irish population.

B-1057 11:11
The value of MR spectroscopic bone marrow fat fraction measurements in the assessment of treatment response in patients with Gaucher disease
A.J. Degnan, V.M. Ho-Fung, D.-J. Wang, C. Barrera, R. Ahrens-Nicklas, C. Ficicioglu; Philadelphia, PA/US (degnan.andrew@gmail.com)

Purpose: Gaucher disease involves deficiency of β-glucocerebrosidase that results in the accumulation of abnormal macrophages in the spleen, liver and bone marrow. Liver and spleen volumes are currently used alongside laboratory markers for disease severity. It is unclear if these markers are sufficient in assessing overall severity and risk for bone-related complications including impaired growth and osteonecrosis. Magnetic resonance spectroscopy (MRS) measures bone marrow quantitatively with lower fat fractions corresponding to more severe disease.

Methods and Materials: Patients with Type I Gaucher disease were imaged using MRI and MRS for liver and spleen volumes as well as fat fraction calculations within the lumbar spine and femoral neck prior to and during enzyme replacement therapy. Healthy control MRS data were included for comparison. Statistical analysis included Mann-Whitney U tests and Pearson correlation.

Results: This IRB-approved retrospective study included 6 Gaucher patients (2 female, 4 male; 9.8 years, SD: 5.8) and 6 healthy controls (3 female, 3 male; 11.7 years, SD: 3.7). Fat fractions were significantly lower in patients (femoral neck: 31.9% vs. 62.6%, p=0.020; lumbar spine: 18.5% vs. 35.8%, p=0.019). Gaucher disease decreased bone fat fractions in correlation with treatment. Treatment duration correlated with femoral neck fat fraction (Pearson: 0.912, p<0.001), age (Pearson: 0.892, p<0.001) and lumbar spine fat fraction (Pearson 0.689; p=0.007); inverse correlations with organ volumes were not significant.

Conclusion: Bone marrow fat fractions in Gaucher disease may better correspond with treatment duration than traditionally monitored organ volumes. Larger prospective study is needed to assess if bone marrow imaging provides additional information in guiding therapy in Gaucher disease.

B-1058 11:19
Non-breathe hold dynamic contrast enhanced abdominal and thoracic MRI in paediatric oncologic patients using a GRASP-sequence at 3T
T. Woerner, P. Raczek, A. Buecker, G. Schneider; Homburg/DE (dr.guenther.schneider@uks.eu)

Purpose: One of the few advantages of modern CT scanning over MRI in paediatric imaging is the possibility to perform dynamic CE studies without the need of a breath-hold. However, new MRI techniques like Golden-Angel Radial Space Parallel MRI (GRASP) allow for free-breathing dynamic contrast enhanced volumetric imaging. The aim of our study was to evaluate GRASP sequences in evaluation of abdominal and thoracic malignancies in paediatric patients.

Methods and Materials: In 32 paediatric patients MRI was performed on a 3T scanner (Siemens,VIDA). Patients below 10 years of age were sedated for imaging studies. MR protocol included non-breath-hold unenhanced radial T2w images, radial T1w and T1w fs VIBE sequences and DWI. During contrast administration (0.05 mmol/kg MultiHance,Bracco) a GRASP Sequence with a temporal resolution of 4 - 6 sec and reconstruction of 16 - 26 phases was performed. After CM radial VIBE sequences were repeated. In patients with liver lesions another set of radial VIBE sequences was performed in the biliary phase of CM excretion to further characterise lesions.

Results: Dynamic non-breath-hold imaging of the abdomen was successful in all cases and even excellent in thoracic imaging depiction of perfusion characteristics of tumours. Characterisation of liver lesions based on the typical enhancement characteristics was feasible in all cases and in a similar manner renal and adrenal tumours could be evaluated.

Conclusion: Non-breath-hold dynamic contrast enhanced imaging is feasible in paediatric patients using GRASP sequence and gives detailed information about perfusion characteristics of abdominal and thoracic tumours without radiation exposure.

Author Disclosures:
A. Buecker: Grant Recipient; Siemens. G. Schneider: Grant Recipient; Bracco, Siemens. Speaker; Bracco, Siemens.

B-1059 11:27
Is TI-RADS useful as an ultrasonographic malignancy risk stratification method in pediatric thyroid nodules?
Y. Durum, V. Ozturk, N. Ersöz, A. Anık, C. Karaman; Aydın/TR (md.suhaotzurk@gmail.com)

Purpose: Data on TI-RADS generally belong to studies performed in adults. Therefore we aimed to evaluate the performance and utility of TI-RADS in the paediatric groups.

Methods and Materials: From January 2015 to 2018, 108 nodules were evaluated in 1028 thyroid ultrasound examinations. Images were retrospectively evaluated by two radiologists with 3 and 7 years of paediatric radiology experience, according to TI-RADS classification. Morphological findings of the detected nodules and their histopathological results were recorded. Histopathological findings and at least 6 months of follow-up imaging were taken as reference.

Results: 73 patients were female (67.6%). The mean age was 11.4 and the mean nodule size was 7.5 ± 8.3 mm. According to TI-RADS, 41 (38%) were hypoechoic and 5 (4.6%) were very hypoechoic. When margin features evaluated, 85 (78.7%) lesions were smooth, 8 (7.4%) were irregular. According to the histopathologic assessment 100 (95.2%) of the nodules were benign and 5 (4.8%) were malignant. 2 nodules were evaluated as non-diagnostic cytology and 1 nodule as suspicious for malignancy. All malignant nodules were in the TI-RADS 5 category. The majority of benign nodules (79%) were found in TI-RADS 1, TI-RADS 2 and TI-RADS 3 categories. 80% of the malign nodules were very hypoechoic and taller than wide in shape, also all malignant nodules had microcalcifications (p=0.000). The sensitivity of TI-RADS was 100%, specificity was 78.8%, PPV was 19.2%, NPV was 100%.

Conclusion: According to our study, TI-RADS system can be used to evaluate thyroid nodules in paediatric patients similar to adults.
B-1060 11:35
Paediatric rhabdomyosarcomas: which type of radiological assessment after induction chemotherapy better predicts the survival?
G. Orsatti, G. Varotto, M. Bonzini, M. Minotti, C. Morosi, F. Crimi, C. Giraudoi, E. Quaia, R. Stramare, Padua/IT, Milan/IT (giovanna.orsatti@gmail.com)

Purpose: To investigate the prognostic value of radiological response assessment after induction therapy in paediatric rhabdomyosarcomas (pRMS), comparing three different methods.

Methods and Materials: This retrospective, bicentric study included 62 non-metastatic pRMS. Two radiologists measured tumour size on pre- and post-treatment MR images using three methods: the maximal diameter, respecting the World Health Organization criteria (1D), the multiplication of the two maximal axial diameters, respecting the Response Evaluation Criteria in Solid Tumours (1D), the multiplication of the three maximal diameters and m/6, following the European paediatric soft tissue sarcoma study group guidelines (3D). Regarding tumour response, each patient was classified as a responder (complete or partial response) or a non-responder (stable or progressive disease) according to each method and its respective therapeutic thresholds. The event-free survival (EFS) and the overall survival (OS) were compared using regression analysis method.

Results: As regards the five-year EFS, the 3D assessment showed significantly higher values for responders than non-responders (80.4% vs 22.2%, p<0.0001); no significant differences emerged for 1D and 2D methods. The 3D measurements were significantly better predictors of five-year OS (84.1% vs 44.4%, p=0.0003). The inter-observer agreement was higher for 3D than 1D and 2D measurements (CCC=0.93, 0.86 and 0.75, respectively); the inter-method agreement for the therapeutic responses (weighted κ-coefficient) were calculated.

Conclusion: The 3D assessment of therapeutic response in pRMS seems to provide a better correlation with the clinical outcome than other radiological methods.

B-1061 11:43
Diffusion-weighted magnetic resonance imaging for the evaluation of Wilms tumours: radiological-pathological correlation
E. Nazarova, N. Merkulov, A. Mitrofanova, G. Tereshenko; Moscow/RU (evelina.nazarova@fccho-moscow.ru)

Purpose: Wilms tumour (WT), or nephroblastoma is one of the most common extracranial tumours in pediatric population. Different histological types of nephroblastoma impact staging, treatment options and outcome. The aim of the study was to analyze possible correlation between diffusion-weighted imaging (DWI) data and different histological types of WT.

Methods and Materials: The study was based on data of 31 pediatric patients with histopathologically verified WT. Median age at the time of diagnosis was 5 years (from 1 to 8 years old), male to female ratio was 1:1.3. Imaging data was obtained with 3T MRI (magnetic resonance imaging) scanner. The apparent diffusion coefficient (ADC) value for each tumour was calculated using region of interest measurements. The mean ADC values and histological types of WT were compared using regression analysis method.

Results: Out of 31 patient 6/31 (19%) were low risk, 16/31 (52%) intermediate and 9/31 (29%) high risk. The mean ADC values were 0.3±0.05 ×10-3 mm2/s for low grade WT, 1±0.12 ×10-3 mm2/s for medium grade WT, and 0.6±0.06 ×10-3 mm2/s for high grade WT. Intraclass correlation coefficient was 0.93.

Conclusion: In our study, we have found a significant correlation between ADC values and histological types of WT. MRI DWI can be a useful tool in the initial assessment and differential diagnosis in patients with nephroblastoma.

B-1062 11:51
Role of intraarterial chemotherapy for retinoblastoma: our experience with review of literature
L.S.P. Karanam, S. Baddam, V. P, S. Honavar; Hyderabad/IN (drkls@gmail.com)

Purpose: To describe the role of ophthalmic artery chemotherapy in 78 children of intraocular retinoblastoma. Technical details, procedural events, complications and outcomes were analysed in this large single-centre cohort.

Methods and Materials: From April 2014 to February 2018, 78 patients with age group between 6 months to 83 months underwent IAC at our institution: 45 eyes of group D and 33 eyes of group E. Demographic details, no. of sessions, response to therapy, follow-up were documented in all the cases. We used techniques of direct ophthalmic artery catheterisation, middle meningeal artery cannulation and balloon occlusion methods for the targeted drug delivery with triple-drug regimen (topotecan, melphalan and carboplatin).

Results: 78 patients underwent a total of 228 sessions. Complications in the form of transient lid oedema, swelling, loss of eyelashes and conjunctival congestion occurred in 8 patients. Fever with neutropenia occurred in 2 patients. No procedural-related complications such as strokes or femoral artery puncture site haematomas occurred in any patient. Recurrent tumour was seen in 3 eyes, persistent sub-retinal seeds in 2 eyes and persistent vitreous seeds in 1 eye. 15 patients underwent enucleation and globe salvage was achieved in 80.7% of overall patients and 87.3% in treatment-naive eyes in a follow-up of 2 years in 85% of the patients.

Conclusion: OAC achieves greater biological effect while minimizing systemic effects and plays important role in globe salvage especially in places, with advanced retinoblastoma. It can be done safely and should be considered as first-line treatment with acceptable risks.
Scientific Sessions

Saturday, March 2
Radiotherapists

SS 1314

Radiographic issues

Moderators:

N.N.

B.R. Mussmann; Odense/DK

B-1063 08:30

The impact of imaging receptor technology on workflow, patient dose values and image quality of bedside chest radiography

J. Santos,1 S. Carmo,2 A.R. Cardoso3 C.M.D.S. Almeida2 1Coimbra/PT, 2Lisboa/PT, 3Joanesantonio@estescobimbra.pt

Purpose: The aim of this study was to compare different image receptor technologies in order to optimise bedside chest radiography workflow and examination dose values.

Methods and Materials: The quality control of the portable equipment was verified. Exposure parameters and examination dose values were analysed for standard patients that were submitted to chest radiography using the existing computed radiography (CR) image detector (n=18). Experimental tests with an adult anthropomorphic phantom were performed in order to compare the CR image receptors and a digital radiography (DR) detector (n=12). Dose values (DA/PMGy.cm²) and objective image quality was performed (image signal and noise) and new pre-set protocols for DR detector were defined with clinical approval. Standard patient exposure parameters and examination dose values using DR were analysed for comparison (n=29). Images from patients submitted to chest radiography with both systems were selected (n=16). Three radiologists, using the European Criteria for chest radiography, performed subjective image quality analysis. The time between the radiographers start the examination and image availability on the system was quantified.

Results: Experimental phantom tests revealed the possibility to optimise the exposure and reduce dose values in 25%. The images were available in the system 30 minutes before with the DR system. With the new image receptor it was possible to reduce patient dose in 32% with similar image quality.

Conclusion: The technology allowed workflow time reduction and examination dose reduction maintaining image quality. The experimental tests and the results discussion contributed to radiographer’s faster technology adaption.

B-1064 08:38

The effects of weight-bearing and non-weight-bearing anteroposterior DR of feet in hallux valgus deformity

H. Zhang, J. Wang, J. Liu; Tianjin/CN (15602179624@163.com)

Purpose: To measure and compare the angles about hallux valgus, using weight-bearing and non-weight-bearing anteroposterior DR to provide more reliable data for rectifying hallux valgus.

Methods and Materials: During 2016.12-2017.05, 15 patients (20 feet) (men:woman=9:6; average age: 50±14.3y) with hallux valgus received weight-bearing and non-weight-bearing anteroposterior DR (GE Discovery XR656) before operation. Weight-bearing position: the patients stood on the special device for foot and ankle weight-bearing imaging. Both feet were separated and were equal to shoulder’s width. Non-weight-bearing position: the patients sat on the photographic table, with feet close to the table. The X-ray tube inclined 15°cephally. The centre line was at the base of the third metatarsal of the foot with hallux valgus, the focus-film distance was 120cm. Voltage: 50KV; current: 4mA. The hallux valgus angle (HVA), intermetatarsal angle (IMA) between first and second metatarsal bone, distal metatarsal articulard angle (DMAA) of first metatarsal were measured using Image pro Plus 6.0. The HVA, IMA and DMAA of weight-bearing and non-weight-bearing groups were compared using paired t test.

Results: The HVA, IMA, DMAA in weight-bearing position was 38.18±11.69, 15.64±4.15, 18.23±8.36; in non-weight-bearing position was 35.18±10.77, 12.96±4.05, 15.00±7.96. The HVA, IMA, DMAA in weight-bearing position were larger than that of non-weight-bearing position, showing statistically significant differences (t = 2.98, 4.6, 2.21, P<0.010, P<0.000, P=0.044).

Conclusion: The HVA, IMA and DMAA in physiological weight-bearing group are larger than non-weight-bearing groups in patients with hallux valgus.

B-1065 08:46

Dose optimisation of lumbar spine radiographs using a phantom: what are the ideal exposure parameters?

Z. Lai, C. Sá dos Reis, Z. Sun; Perth/AU (claudia.sadosreis@curtin.edu.au)

Purpose: To investigate the optimal exposure parameters in lateral lumbar spine radiograph for dose reduction while maintaining adequate image quality.

Methods and Materials: 36 images were acquired manipulating exposure parameters: source-to-detector distance (SDD) (100cm, 130cm, 150cm), beam energy (85kVp10), beam intensity (4.5mAs, 9mAs, 18mAs) and additional copper filter, (0mm, 0.1mm, 0.3mm) to investigate the impacts on effective dose (ED) and IQ. ED was assessed using objective approach (contrast-to-noise ratio/CNR and magnification) and perceptual approach (6 observers provided IQ score and drawn lines in relevant anatomical structures). The perceptual approach was repeated with two luminance levels (170lux and 25lux). PCXMC software with Monte Carlo simulation was used to estimate ED. Data were analysed using descriptive statistics, Student’s t test and intraclass correlation coefficient (ICC) according to the nature of questions.

Results: The highest ED (0.022mSv) was found at 100cm, 75kVp, 18mAs and 0.3-mm copper filter, while the highest CNR (7.23) was achieved at 130cm, 75kVp, 18mAs and 0.0-mm copper filter. The lowest ED and CNR were generated at 150cm, 95kVp, 4.5mAs and 0.3-mm copper filter. No significant difference was observed between the results for different luminance levels (p<0.09). All observers were able to identify relevant anatomical structures in all images. The intra- (0.61-0.79) and inter-observer ICC (0.55-0.82) varied between moderate and good.

Conclusion: This study showed that it is possible to detect all relevant lumbar spine anatomical structures in lateral radiographs using 150cm, 95kVp, 4.5mAs and 0.3-mm copper filter. These parameters allowed the lowest ED (0.002mSv) and a CNR of 2.13. Further studies should be performed including different body habitus and equipment.

B-1066 08:54

An investigation into the effectiveness of breast and gonad lead shielding in abdominal radiography

Z. Kierans1, A. Argo2 J. Kotze3, L. Van Der Velde4, H. Zwaagstra5, K. Groning5, M. O’Connor5, I. Verzuilen2,6 Dublin/IE, 5Lausanne/CH, 7Bloomfontein/ZA, 8Groningen/NL, 9Oslo/NO (zoe.kierans@ucdconnect.ie)

Purpose: Lead shielding can be applied to radiosensitive organs to minimise radiation dose and, therefore, the risk of stochastic effects. Using a phantom-based approach, this study assessed whether lead shielding for breast and gonads influences dose in abdominal radiography.

Methods and Materials: AP abdominal X-ray examinations were performed on six anthropomorphic phantoms: a neonate, 1-, 5-, 10- and 15-year-olds and an adult male phantom. Breast attachments were added to the 15-year-old and adult phantoms to mimic female patients. The radiation dose to the breasts and male gonads, shielded (led equivalent 0.5mm thickness) and unshielded, was measured using a RADCAL dosimeter. Lead shields applied to these regions were positioned outside the primary beam. Five dose measurements were acquired and averaged for each protocol. Descriptive statistics were used to describe mean dose, standard deviation and percentage dose reduction with shielding. Wilcoxon signed rank tests were used to test significance of differences in organ doses with and without leads.

Results: Radiation dose to the breast tissue was reduced by 46-93% across all age groups, with the greatest reduction to breast dose found in the 15-year-old and adult phantoms. In adults, breast dose was reduced by 50.4µGy to 3.3µGy. A lesser dose reduction of 13-50% to the male gonads was achieved with shielding. The dose reduction observed with shielding in each age group was statistically significant (p<0.05).

Conclusion: During AP abdominal X-ray examinations, shielding of the breasts and male gonads is recommended to reduce radiation to these radiosensitive regions.

B-1067 09:02

The impact of different exposure factors on image quality of lumbar spine in five different sizes phantoms: a factorial design study

S.M. Abrahams, J.R. Meakin, R.M. Palfrey, K.M. Knapp; Exeter/UK (k.m.knapp@exeter.ac.uk)

Purpose: To investigate the impact of tube potential (kVp), source to image distance (SID) and Copper filtration on image quality score (IQS) of lumbar spine radiographs with different size bespoke phantoms (18, 29, 38, 42 and 46 BMI).

Methods and Materials: A factorial design study was conducted with a DR X-ray machine (Multi Fusion Max, Siemens, Germany), using three factors: kVp x SID3 x Cu filtration2. All images were subjectively assessed by two experienced reporting radiographers using the European Image Quality Criteria (CEC) with 2 alternative forced choice (2aFC) and a 5 point Likert scale. Analysis of variance was used to investigate the impact of each factor on the IQS.

Results: kVp has a significant negative impact on IQS, with r2 decreases as the BMI increase (r2 = 0.92, 0.91, 0.87, 0.52 and 0.25). SID has no significant impact on IQS across all phantoms. However, the IQS decreased along with the SID in the 18, 42 and 46 BMI phantoms while increased in the 29 and 38 BMI phantom. The filtration showed a negative non-significant impact on IQS in the first three phantoms. However, in the 42 and 46 BMI phantoms, the filtration has a significant negative impact on the IQS with r2 = 0.17 and 0.21 respectively.
B-1069 09:10

Lumbar spine imaging: can we reduce the effective and organ dose with the use of PA projection?

E. Alukic, N. Mekis; Ljubljana/SI (erna.alukic@zti.unij.si)

Purpose: The aim of the research was to determine, whether the use of PA projection in lumbar spine radiography decreases the entrance surface dose (ESD), effective dose and organ dose to the patient in digital radiography.

Methods and Materials: The measurement were performed on 100 patients that were referred to lumbar spine radiography. Patients were randomly divided into two equal groups of 50. One group was imaged in the AP and the other in the PA projection. Body Mass Index (BMI) was calculated for each patient from their weight and height. Also, the Dose Area Product (DAP), exposure index (EXI), tube time-current (mAs), image field size and the source-patient distance were obtained. Both effective dose and selected organ dose calculation were done according to the Monte Carlo simulation with the use of PCXMX 2.0 program and the ESD was calculated from the tube output. The selected organs in each study were the organs that lie in the primary field. Prior to the study the National medical ethic committee approval was obtained.

Results: In PA projection, the ESD was significantly reduced, by 33%, effective dose by 53% and the average absorbed organ dose by 64% respectively. There was a statistically significant difference in the BMI and EXI between the AP and PA projection.

Conclusion: Based on the results the use of PA projection in lumbar spine imaging should be the first method of choice in general radiography.

B-1069 09:18

Direct projection augmented reality-guided x-ray examination system: a preclinical study

N.-H. Koo; Seoul/KR (kunohyun@naver.com)

Purpose: The aim of this study was to evaluate the utility of direct projection augmented reality-guided X-ray examination system.

Methods and Materials: An X-ray examination on the chest and abdomen were conducted using Definium 8000 DR system and Rando phantom. The resulting images were respectively extracted in the DICOM format through PACS system and were directly projected onto the phantom in the form of an augmented reality using a beam projector. To evaluate the utility of direct projection augmented reality-guided X-ray examination system, a radiologist and a radiological technologist indicated T3, T9 and L3 spine using metal rods before and after the application of direct projection augmented reality technique. The mean error of the initial indicated position from the center of the reference spine was measured and was compared using independent t-test.

Results: Mean errors significantly decreased after the application of direct projection augmented reality technique (T3: 3.02±1.83mm, T9: 4.81±0.87mm, L3: 4.2±0.74mm) compared to before the application (T3: 67.48±7.23mm, T9: 79.93±9.33mm, L3: 62.37±5.91mm), with statistical significance (p<0.01).

Conclusion: It was confirmed that errors in the position significantly decreased when applied with direct projection augmented reality in the X-ray examination. Conclusion. It is expected that a clinical application of direct projection augmented reality-guided X-ray examination based on the study results will be a great help in minimizing re-examination due to position errors and radiation exposure.

B-1070 09:26

Pelvis imaging: achieving dose reduction with different patient position

A. Resnik1, J. Ziber1, N. Mekis2; 1Novo mesto/SI, 2Ljubljana/SI (anja.resnik13@gmail.com)

Purpose: The aim of the research was to determine the effect on the radiation dose to the patient and image quality in pelvis radiography when cranially or caudally positioned on the table according to AEC chambers.

Methods and Materials: The research was carried out in two parts on two x-rays: Siemens Ysio and Siemens Axiom Luminus. In the first part of the study we measured DAP on the phantom, where 10 images were taken in cranial and 10 in the caudal layout. The second part of the study was expanded to 200 patients, one hundred per each digital x-ray. We measured DAP, field size, height and distance from which we calculated ITM. The effective dose and absorbed dose to selective organs were calculated using PCXMC2.0. The image quality assessment was performed by three experienced radiologists with the use of ViewDICOM Imaging software. Prior to the study the National medical ethic committee approval was obtained.

Results: When patients were caudally orientated on the examination table (Siemens Ysio), DAP value was reduced by 37.7% (p<0.002), average effective dose by 35.7% (p<0.002) and mean absorbed dose to selective organs by 33.4% (p<0.001) while image quality was better by 5.2% (p<0.041).

Conclusion: We did not find any significant difference between orientations on Siemens Axiom Luminus due to specific AEC chambers.

B-1071 09:34

Geometric efficiency: measuring methods’ comparison

C. Dionisi, M. Coppo; R. Villa, M. Brambilla; Novara/IT (mag.a.coppo@gmail.com)

Purpose: To assess the reliability and the uncertainty related to two different methods for geometric efficiency (GE) evaluation.

Methods and Materials: CT Scanners: two different multi-detector computed tomography (MDCT) Philips Ingenuity 128 (Philips, The Netherlands) and Philips ICT Brilliance 256 (Philips, The Netherlands) were used for the measurement of GE. Gaichromic films: after a proper calibration in air kerma the Gaichromic films were acquired in free air for different nominal collimations. The geometric efficiencies were obtained from the analysis of the profiles corresponding to kerma. CT Dose Profiler: this solid-state detector was scanned in helical mode in free air for different nominal collimations; its dedicated software allows to automatically estimate the effective field width and the geometric efficiency.

Results: The analysis of geometric efficiencies obtained with the Gaichromic method underlines a good agreement with the expected values, characterised by a difference lower than 8%. Nevertheless, the accordance decreases for thinner collimations (under 5mm), up to 17%. Similar results were found for the evaluation performed throughout the CT Dose Profiler probe. The probe is designed to measure GE automatically on small areas only, making it unable to measure GE for collimations only available on axial mode.

Conclusion: This study shows how both methods, through the use of radiochromic films or Dose Profiler, can measure geometric efficiency for both thin and wide beam collimations. Nevertheless, the automatic evaluation performed by the CT Dose Profiler probe makes it feasible for periodically constancy check.

B-1072 09:42

Optimisation of shunt radiography

A. Bremines, B. Ween; Oslo/NO (alexabre@odont.uio.no)

Purpose: Hydrocephalus shunt protocols vary. To maintain high accuracy using flat panel detectors, an investigation of grid versus air gap with respect to image quality and doses was done.

Methods and Materials: A phantom study included 15 images. A panel of 16 professionals graded image sharpness, signal-to-noise, in grades of lines per millimetre (lp/mm). Dose-area product (DAP) and signal noise ratio (SNR) values were measured. Images represented a grid/non-grid situation, whereas non-grid images were measured with air gaps in steps up to 50cm.

Results: Images were rated within the range of 1.2-1.6 lines per mm. Highest spatial resolution represents 1.6 lp/mm, which were rated 99 times (41%) of the total of 240 evaluations for all images. The other ratings (59%) were distributed over a wide area. DAP values showed little variations: 12.6 (+/- 0.4) mAs/cm for grid, and 12.3 for air gap, respectively. SNR variations were not important. The results indicate that air gap is preferable over the grid. Longest air gap (50cm) got highest scores, followed by 45 and 40cm.

Conclusion: Longer air gaps are better than grid when the aim is to achieve the best image quality without increasing doses.

B-1073 09:50

Optimisation of collimation and its impact on patient dose in radiography of lumbar spine in an anteroposterior and lateral projection

A. Pažanin, D. Škrk; N. Mekis1, D. Dubrovinik/HR, Ljubljana/SI (apazanin@gmail.com)

Purpose: To determine the change of radiation dose to the patient when the collimation referred in the literature is used for the lumbar spine radiography in AP and lateral projection.

Methods and Materials: The study was performed on 90 patients that were referred to the lumbar spine radiography in one of the Croatian hospitals. Patients were randomly divided into two equal groups. First group was imaged with the current collimation protocol and the second group with the collimation mentioned in the literature. For each patient DAP, image field size, source-to-patient distance, weight and height were collected. From that data using the PCXMC Monte Carlo simulation method effective dose and absorbed organ dose were calculated.

Results: There was no statistically significant difference in BMI between the group of patients with and without collimation. The reduction of primary field in AP projection when the collimation was used was by approximately 36% (p<0.001) and DAP by 49% (p<0.001). The reduction of the primary field in the lateral projection was 40% (p<0.001) but we didn’t find any statistically significant difference in DAP. The effective dose in AP projection decreased by 50% and average organ dose by 43% respectively. After the
image quality assessment, it was found that the central ray positioning in the lateral position in group without collimation was incorrect that resulted in lower DAP values, ineffective dose and organ dose.

Conclusion: Based on the results we can conclude that the use of proper collimation and central ray positioning is crucial to obtain ALARA principle.

08:30 - 10:00 Sky High Stage

Genitourinary

MY 13

Genitourinary

Moderators:
P. Asbach; Berlin/DE
K. Markert; Gdansk/PL

B-1074 08:30

Amide proton transfer MR imaging for cervical cancer: a preliminary study

Y. He, C. Lin, Y. Qi, X. Wang, H. Zhou, H. Xue, Z. Jin; Beijing/CN
(yihe_526@163.com)

Purpose: To evaluate the feasibility of amide proton transfer (APT) MR imaging for detection of cervical cancer.

Methods and Materials: Between 10/2017 and 9/2018, 52 patients with pathologically confirmed cervical cancer and 49 healthy volunteers underwent APT MR imaging on a 3T MR scanner (Ingenia CX, Philips Healthcare, the Netherlands). APT values, calculated based on 3D TSE images acquisition with dual RF transmits interleaved labelling. The B0 artefact was corrected via

Student's t-test was performed to compare the differences of APT values between cervical cancer and normal cervix. ROC analysis was performed to computationally determine the feasible threshold value, sensitivity and specificity.

Results: APT values of cervical cancer and normal cervical stroma were 2.716±0.060 and 1.853±0.059 (mean±standard error of mean) respectively with statistical significant difference (p<0.0001, 95%CI 0.693-1.033). Motion artefact was not significant in region of cervix. Inter-observer ICC was 0.988 (95%CI 0.978-0.993). The AUC for differentiating cervical cancer from normal cervical stroma was 0.916. The feasible threshold values was determined as 2.221 with sensitivity of 81.25% and specificity of 83.67%.

Conclusion: APT MR imaging is feasible in cervical cancer detection. Cervical cancer showed significant higher APT values than those of normal cervical stroma.

B-1075 08:34

Correlation of three-dimensional computerized tomographic renal volumetry with DTPA split renal function in prospective donors for renal transplantation

G. Choudary, P.G. Kale, S. Peddi; Tirupati/IN (gpchowdary777@gmail.com)

Purpose: Evaluation of split renal function (SRF) in living donors is important to ensure that the donor retains the better functioning kidney. The SRF is traditionally measured by means of renal scintigraphy. Recent studies have reported the utility of three-dimensional (3D) computerised tomographic (CT) renal volumetry as an alternative to renal scintigraphy in estimating SRF. The purpose of the current study is to compare the split renal volume (SRV) obtained from 3DCT with split renal function obtained from scintigraphy.

Methods and Materials: This is a retrospective study over 5 years that included 23 prospective renal donors who underwent CT and renal scintigraphy. Renal volumetry was performed using Siemens syngo volumetry software. Pearson's correlation coefficient was used to determine the correlation between quantitative data sets.

Results: 23 donors were evaluated. The mean body weight and surface area were 57.3±9.3 kg and 1.56±0.13 m² respectively. The mean total renal volume was 212.7±38 cm³ and mean split renal volume was 49.7±6±2.86 and 50.2±3.24.86 m³ on right and left sides, respectively. No significant correlation was found between uncorrected SRF and SRV. Significant correlation was found between renal volume and function when both were corrected to body surface area (p value <0.0001).

Conclusion: Renal volume calculation can be done on CT data set already acquired for the assessment of renal vascular anatomy. The simple volumetric method with DCT has the potential to replace renal scintigraphy for the assessment of SRF as a preoperative imaging examination for living-donor transplantation.

B-1076 08:38

Prostate magnetic resonance imaging with and without contrast medium: is biparametric MRI sufficient for routine examinations?

D. Junker1, F. Steinkoh1, B. Szankay1, U. Nagelse1; H. Hall in Tirol/AT, 2 Imbruck/AT (daniel.junker@tirol-kliniken.at)

Purpose: Biparametric (bpMRI) and multiparametric (mpMRI) magnetic resonance imaging of the prostate were compared to investigate if and how diagnostic accuracy and tumour detection rates of prostate MRI are influenced by omitting dynamic contrast-enhanced imaging (DCE).

Methods and Materials: In this retrospective study, the results of bpMRI and mpMRI were compared when using the PI-RADS version 2 scoring system for 236 included patients. The distribution of tumours to PI-RADS score levels, tumour detection rates, diagnostic accuracy, and RoC analysis were calculated and compared to the results of histopathological analysis.

Results: The PI-RADS scores were changed in 9.76% of patients when using bpMRI instead of mpMRI, increasing the number of PI-RADS 3 scores by 8.89%. No changes of more than one score level were observed. BpMRI did not show significant differences in diagnostic accuracy or tumour detection rates (AuC of 0.914 vs 0.917 in ROC analysis). Of 135 prostate carcinomas (PCa), 5.93% were downgraded from PI-RADS 4 to PI-RADS 3 when omitting DCE, while 94.07% were scored identically. Changes were observed for only low-grade PCAs with Gleason score 6 or 7a.

Conclusion: BpMRI did not lead to significant differences in diagnostic accuracy when compared to mpMRI. Accordingly, it seems reasonable to use a biparametric approach for initial routine prostate MRI to reduce risks, examination time and costs without significantly lowering the diagnostic accuracy.

B-1077 08:42

Benefit of diagnostic support of PI-RADS assessment by quantitative ADC measurements and radiomics in MR diagnosis of prostate cancer

Purpose: We investigated the added benefit of quantitative mean ADC (mADC) and radiomic machine learning (RML) when used in combination with clinical decision-making according to PI-RADS.

Methods and Materials: Previously published mADC and RML models developed and validated on a cohort of 31 consecutive patients (training cohort, 183 patients; test cohort, 133 patients) have shown increased performance compared to PI-RADS. Here, we combine both models with PI-RADS by allowing the models to downgrade (Design A) or upgrade (Design B) PI-RADS reports. Clinically significant prostate cancer (cSPc) was defined as Gleason Grade Group >=2 and a positive MRI as PI-RADS >=4. The McNemar test was used to compare differences in sensitivity and specificity.

Results: On a patient basis, compared to PI-RADS, specificity increased from 45% to 65% (mADC, p<0.001) and 62% (RML, p<0.001), while sensitivity decreased marginally from 89% to 87% (mADC, p=1.0) and remained unchanged at 89% (RML) in the test cohort for Design A. For Design B, specificity decreased from 43% to 30% (mADC, p=0.002) and 32% (RML, p=0.004), while sensitivity increased from 89% to 96% for both designs (p=0.25) in the test cohort.

Conclusion: Significant diagnostic improvement can be achieved by downgrading clinical PI-RADS reports based on mADC or RML, suggesting an approach to effectively incorporate quantitative and radiomic information into current PI-RADS reporting.

Author Disclosures:
J. Radke: Consultant; Saegeling Medizintechnik, Siemens Healthineers. Speaker; Saegeling Medizintechnik, H. Schlemmer: Board Member; Curagita. Consultant; Siemens, Curagita, Profound, Bayer. Grant Recipient; RMBF, Deutsche Krebshilfe, Dietmar-Hopp-Stiftung, Roland-Ernst-Stiftung, Speaker; Siemens, Curagita, Profound, Bayer, D. Bonekamp: Speaker; Profound Medical Inc.

B-1078 08:46

Multiparametric MRI outperforms three popular clinical models in predicting pT3 prostate cancer in patients undergoing radical prostatectomy

E. Zaneli1, L. Cereser1, G. Glaninarin1, V. Ficarra2, C. Ziani1, R. Girometti1, 2; Udine/IT, 3 Messina/IT (girrometti@ismir.org)

Purpose: To compare clinical models (CM), mpMRI alone, and mpMRI plus clinical models (mpMRI-CM) in predicting pathologic stage T3(pT3) in patients with clinically-localized prostate cancer (PCa).

Methods and Materials: Over two years we prospectively performed staging 3D mpMRI in patients referred to radical prostatectomy for biopsy-proven <T3 PCa, assessing the risk for extraprostatic extension (EPE) and/or seminal vesicle invasion (SVI) with the Partin tables (PT), Memorial Sloan Kettering Cancer Center nomogram (MSKCCN), and Cancer of the prostate risk assessment (GAPRA) score. Two radiologists, blinded to pathology, reviewed
mpMRI independently using the prostate imaging reporting and data system version-2 (PI-RADSv2), and assessed EPE/SVI with a PI-RADSv1- and v2-derived score.Receiver operating characteristic and logistic regression analyses were performed to determine the per-patient accuracy of mpMRI vs CM in mpMRI-CM in predicting pT3 (EPE and/or SVI).

Results: We included 73 patients, most with cT1c (67.1%) and/or grading group 1-2 (96.2%) cancers. Median risk for EPE/SVI was 27.3/1.9% (PT) and 47.0/2.0% (MSKCCn); median CAPRA score was 3. On pathology, 32.9% of patients showed pT3. Areas under the curve (AUCs) for pT3 were 0.62 for PT, 0.62 for MSKCCn, 0.64 for CAPRA, and 0.73-0.74 for mpMRI readers (p<0.05). AUCs of mpMRI-CM were similar or lower compared to those of mpMRI alone. mpMRI was the only independent predictor of pT3 (OR 7.40/5.53 for readers 1/2, respectively).

Conclusion: mpMRI outperformed CM in predicting pT3. Adding mpMRI to CM did not improve predictive accuracy compared to mpMRI alone, suggesting a stand-alone use for staging PCa.

B-1079 08:50
Do DCE-derived quantitative parameters predict clinically significant prostate cancers? A study on patients referred to radical prostatectomy
F. Greco, R. Girometti, L. Cereser, G. Comò, C. Zulian; Udine/IT (rgirometti@sirm.org)

Purpose: To investigate whether dynamic contrast-enhanced (DCE)-derived parameters predict clinically significant prostate cancer (csPCa).

Methods and Materials: We retrospectively included patients with biopsy-proven csPCa. We referred to radical prostatectomy and underwent staging multiparametric magnetic resonance imaging (mp-MRI) over a two years period. mpMRI was acquired on a 3.0T magnet with a prostate imaging reporting and data system version 2 (PI-RADSv2)-compliant protocol, including a DCE sequence (44 acquisitions of a 8.6 sec-long T1-weighted fat-saturated sequence). Image analysis was performed by two readers in consensus, placing a region-of-interest on (1) non-affected prostate and (2) PI-RADS3 findings proven to be a cancer on pathology, measuring the transfer constant (k(ep)), rate constant (k(ep)), extravascular extracellular volume fraction (v(e)), and fractional plasma volume (v(p)) (Extended-Toft model). Receiver operating characteristic analysis and logistic regression were run to assess the prediction of csPCa compared to non-affected prostate, on a per-lesion basis.

Results: Included were 59 patients with 51 csPCas. Of the investigated parameters, those showing a significant difference compared to non-affected prostate (<0.01,U Mann-Whitney-test) were k(ep) (0.50 vs. 0.30 min⁻¹) and k(ep) (1.66 vs. 0.93 min⁻¹). Despite k(ep) and k(ep) showed an area under the curve of 0.84 (cut-off >0.28 min⁻¹) and 0.88 (cut-off 1.18 min⁻¹) in assessing cancer, respectively, none of them was a predictor of csPCa in a multivariate model including all DCE parameters and PI-RADSv2-related features (p>0.01).

Conclusion: DCE quantitative parameters do not predict pathology-proven csPCa, suggesting they have no diagnostic role at the moment.

B-1080 08:54
Transperineal thermoablation in patients with benign prostatic hyperplasia: our experience
R. Regine, E. Palmieri, P. Candoni, R. Fattaghi, A. Martino; 4, 5 Caserta/IT, 1 San Giorgio a Cremano/IT, 2 Catania/IT (francescopalmeri@hotmail.com)

Purpose: To evaluate the feasibility and safety of trans-perineal laser thermoablation (TPLT) of the prostate in patients with benign prostatic hyperplasia (BPH).

Methods and Materials: Twenty-two patients with age range 53-87 y.o. with obstructive BPH underwent a trans-perineal laser thermoablation treatment. Clinical examination, PSA serum analysis, trans-retrocal ultrasound and urodynamic examinations were performed for all patients. Under sedoanalgesia, all patients underwent a TPLT treatment for each prostatic lobe by means of two 21-gauge 15-cm needle connected to 980-nm diode laser (3600 J energy; 4 W power). Every patients used a urinary catheter for 15 days after treatment. Prostate volume and uroflowmetry were measured 1, 3, 6 and 12 months after TPLT.

Results: No major complications from TPLT treatment were noted. In particular, no patients reported local, pelvic, or abdominal pain during the procedure or subsequent alterations of defaecation rhythm, anorectal/intestinal problems, or haematuria. Prostate volume reduced of 15-20% and of 35-59%, respectively, 1 month and 12 months after TPLT; uroflowmetry results improved in all patients.

Conclusion: In our experience, transperineal laser thermoablation in patients with benign prostatic hyperplasia was demonstrated to be a safe, well-tolerated, and repeatable method to treat BPH, reducing prostate volume and improving uroflowmetry results. Using a trans-perineal approach we avoided the complications that a trans-uretral surgery can cause.

B-1081 08:58
Kidney stone composition analysis using machine learning and spectral detector CT: an ex-vivo study
N. Grosse Hokamp; J. Salem, S. Lennartz, R.P. Reimer, A. Heidenreich, D. Maintz, S. Haneder; Cologne/DE (nils.grosse-hokamp@uk-koeln.de)

Purpose: Several recent studies suggest using dual energy CT for differentiation of kidney stones by means of HU-measurements on low and high energy datasets; however, most studies focused on single component stones. This study aimed to determine, if machine learning enables a more precise differentiation with respect to the main component on a per-voxel basis.

Methods and Materials: 202 stones harvested from patients were scanned in a non-anthropomorphic water phantom using a spectral detector CT scanner. Virtual monoenergetic images (VMI) of 40 keV and 200 keV as well as conventional CT images (CI) were reconstructed. All stones were semi-automatically segmented on CI, the resulting volume of interest was transferred to VMI datasets. All pixel values were exported and served as input functions in an available machine learning framework (Matlab, MathWorks, Natick, USA). The main component of the stone was determined using infrared-spectroscopy.

Results: Segmentation resulted in a total of 74.769 voxels, average voxels per stone was 370. An unweighted k-nearest neighbor classification (kNN) with 10 neighbors and Euclidean distance metric performed best. This kNN yielded an overall accuracy of 82.2% using 5-fold cross-validation with a prediction speed of approx. 1200 observations per second. Greatest overlaps were found between stones which’s main component was calcified (whewellite, weddellite and brushite).

Conclusion: Machine learning enables accurate analysis of kidney stone composition. Even in mixed stones the main component may be predicted.

Author Disclosures:
N. Grosse Hokamp; Speaker; Philips Healthcare. D. Maintz; Speaker; Philips Healthcare.

B-1082 09:02
Comparison between biparametric MRI (bp-MRI) and multiparametric MRI (mp-MRI) for the diagnosis of prostate cancer (PCa): preliminary results of a prospective randomised trial
G. Giannetto1, L. Pusceddu2, V. Dronzonio2, V. Vani3, V. Romano3, C. Maglia3, S. Mazzetti1, D. Regge2, F. Russo1,1 Turin1IT, 2 Candioti1IT, 3 Candioti TO1IT, 4 Torino1IT, 5 Candioti-Torino1IT (giannetto27@gmail.com)

Purpose: To compare bp-MRI and mp-MRI in a prospective randomised clinical trial including biopsy-naive subjects at risk for PCA.

Methods and Materials: Biopsy-naive men with increased PSA values (≤15 ng/ml) and negative digital rectal examination were randomised into two arms. Subjects in arm A underwent fast bp-MRI protocol (axial T2W and DWI) with no endorectal coil (ERC) and no iv contrast agent. Men in arm B underwent mp-MRI including 1T1W, T2W, DWI with ERC and iv contrast agent administration. After MRI, all subjects underwent biopsy, which was considered the reference standard of this study. Patients with positive MRI and biopsy Gleason Score ≥4 were defined as true positives.

Results: Overall, 143 men underwent MRI examination. 99/143 (69%) were randomised in arm A and 44/143 (31%) in arm B. In the bp-MRI arm, 32/99 (32%) men had a suspicious lesion and in 23 cases biopsy was positive for PCa. In the mp-MRI arm, 23/44 (52%) men were positive at imaging and 15 were PCa at biopsy. In arm A, sensitivity and specificity were 74% and 87%, respectively; in arm B, 88% and 70%, respectively.Considering only PIRADS 4-5 subjects, 19/23 (83%,p=0.35) and 13/15 (87%,p=0.14) were positive at biopsy in arm A and B, respectively.In 7/67 (10%) subjects with negative bp-MRI, a biopsy revealed a clinically significant PCa (csPCa). In 1/21 (5%) man negative at mp-MRI, a biopsy found a csPCa.

Conclusion: Mp-MRI has higher sensitivity than bp-MRI in identifying csPCa in biopsy-naive men, while bp-MRI reveals higher specificity.

B-1083 09:06
Application of intravoxel incoherent motion imaging (IVIM) in patients with hyperuricemia
Z. Zheng, X. Cai, Y. Feng; Guangzhou/CN (zhongyuanchong08@163.com)

Purpose: The objective of this study was to evaluate the utility of IVIM parameters to identify the early changes in patients with hyperuricemia.

Methods and Materials: A total of 84 male participants, asymptomatic patients with hyperuricemia (27 cases), got patients (31 cases) and 26 age- and sex-matched healthy volunteers were enrolled in this study. All subjects underwent IVIM sequence (b=0,30,50,80,100,150,200,300,500,800,1000s/mm²) on a 3.0T MRI scanner. Mean cortical and medullary IVIM parameters (ADC, D, and f values) were calculated by setting multiple regions of interest. Differences in every IVIM parameter among the three groups were assessed. Also, they were correlated with estimated glomerular filtration rate (eGFR).

Scientific Sessions
Results: The D values in the renal cortex and medulla were significantly decreased from the control group, AH to GA group (p<0.05). The cortical and medullary ADC values were significantly decreased across the three groups except for the comparison between HA and GA group (p>0.05). The Vf values of the three groups were decreased in turn, the control group was significantly higher than the HA group and GA (p<0.05), whereas the cortical Vf values has only difference in the HA group and GA group (p<0.05); There was no statistically significant difference between the D* values among the three groups. No significant correlation were found between IVM parameters and eGFR (p>0.05).

Conclusions: IVM demonstrated potential useful to assess early hyperuricemia with renal dysfunction in patients with hyperuricemia. Its evaluation index D value was more sensitive to the early renal function impact by hyperuricemia than eGFR.

B-1085 09:10
Experingitive investigation of whole-lesson histogram MRI metrics for differentiating uterine degenerative leiomyomas and leiomyosarcomas
K. Ma, Zhengzhou/CN (132272526@qq.com)
Purpose: The purpose of this study is to assess the utility of texture analysis of multiple MRI sequences for the differentiation of uterine degenerative leiomyomas and leiomyosarcomas.

Methods and Materials: 12 leiomyosarcomas and 29 degenerative leiomyomas undergoing MRI before resection were included. DICOM images for the following three sequences were exported for subsequent analysis using the software named Mass. ADC maps, ADC mean, ADC peak, ADC 10th percentile, ADC 90th percentile, T1-weighted image. Using the software, a Whole-lesson volumes of interest incorporating all lesion voxels on all slices was placed on the largest uterine lesion. The diagnostic performance of histogram metrics was assessed. The ROC curves were compared in pairs by the Delong method, and P < 0.05 was considered statistically significant.

Results: For the ADC maps, significant differences were observed for mean, skewness, 10th percentile, 50th percentile, 90th percentile; For T1-weighted contrast-enhanced images, significant differences were observed for mean, standard deviation, 10th percentile, 90th percentile, 99th percentile (p<0.05); ROC analysis indicated that 90th percentile of ADC had the highest diagnostic accuracy, the maximum area under the ROC curve was 0.891 with a specificity of 72.7% and a sensitivity of 81.8%.

Conclusion: For whole-lesson histogram metrics obtained on various MRI sequences, 90th percentile of ADC provided the highest performance for differentiating uterine degenerative leiomyomas and leiomyosarcomas. Although these findings require validation in larger studies, they have implications for facilitating improved treatment selection for these two entities.

B-1086 09:14
Imageing surveillance in operable invasive transitional cell carcinoma of the bladder
S.A. Ahmed, M.M. El Barody, N.A.A. El Malek, M.A. El Salam Ebrahem; Assut/EG (Elbarody_radiol@yahoo.com)
Purpose: To evaluate diagnostic accuracy of abdominopelvic ultrasound (US), virtual cystoscopy (VC) and MRI diffusion (MRI DWI) with conventional cystoscopy (CC), in diagnosis of bladder lesions and the correlation with surgical pathologic findings.

Methods and Materials: Forty-five patients with bladder cancer underwent complete TUR and received chemoradiation schedule, they imaged prospectively by US, VC and MRI DWI followed by CC and histopathology of the resected specimen. From 1/2017 to 9/2018, 31 consecutive patients with either 1 or more palpable lesion were enrolled in the study. Ablation therapy was administered by the urologists in charge. The primary endpoint was the degree of concordance between the different imaging modalities and the surgical pathology. The secondary endpoint was the correlation of imaging accuracy with tumor stage, histology, grade of invasion and size of lesions.

Results: There was no significant difference between semi-automatically and manually segmented volumes of the TKV (p > 0.456). The CV, however, differed significantly (p < 0.002). The mean volume for the TKV was 165±37 ml for the right kidney and 162±39 ml for the left kidney. For the CV it was 31.2±23.2ml for the right kidney and 62.8±23.3ml for the left. No significant interreader variability was present.

Conclusion: Semi-automated segmentation and volumetric analysis of the TKV using T1w MRI images deliver accurate and reproducible results. However, the differentiation of the renal cortex and medulla has a high error and can only be used for approximations of the volume.

B-1089 09:26
Correlation of erectile dysfunction after radical prostatectomy with findings of preoperative multiparametric prostate MRI
M. Sauer, P. Tennstedt, C. Berliner, H. Huland, G. Adam, D. Beyersdorf; Hamburg/DE (m.sauer@uke.de)
Purpose: To evaluate whether preoperative multiparametric prostate MRI (mpMRI) can help to stratify the risk of erectile dysfunction (ED) after radical prostatectomy (RP) based on specified imaging parameters.

Methods and Materials: 102 patients (median age: 63 years) underwent standardized mpMRI at 3T prior to prostatectomy. Erectile function was assessed before and after RP using the Expanded Prostate Cancer Index Composite Questionnaire score (EPIC), Tumour stage, extracapsular extension (ECE), prostate volume, membranous urethra length/angle (MUL/MAA), apex form according to Lee et al., apex infiltration (AI) and PI-RADS scores were determined for every patient’s MRI. Additionally, various clinical parameters including age, preoperative EPIC score and the degree of nerve sparing surgery were registered. All parameters were correlated to the postoperative EPIC scores determining the degree of erectile dysfunction.

Results: The median preoperative and postoperative EPIC scores for all patients were 15.7 and 7.7, respectively (with 100% representing best functionality). Of all patients 21% demonstrated tumours > T2 with 18%...
positive ECE and 75% positive AI. Median PI-RADS score was 4 with dominance of Apex Type C (58%), a median MUL/MUA of 10mm/120° and a median volume of 43 ml. However, none of these imaging parameters correlated to the postoperative EPIC scores (p<.05). Of all clinical parameters, there was significant correlation of preoperative EPIC score (p<.001) and the extent of surgical nerve sparing (p<.05).

Conclusion: None of the investigated imaging parameters of mpMRI correlates with the degree of postoperative erectile dysfunction.

B-1090 09:30
Can MRI including DCE and DWI improve characterisation of endometrial carcinosarcoma?
L. Rivière1, L. Rossi1, T. Lam Giang2, E. Laas3, G. Bataillon1, P. Cherel1, H. Brisse1, F. Reyal1, C. Malhaire1,1; Paris/F,2;Geneva/CH,3;Saint-Cloud/FR (lucr@hotmal.fr)

Purpose: To describe the MRI characteristics of endometrial carcinosarcoma (CS), including dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI), in comparison with those of endometrial carcinoma (EC).

Methods and Materials: In a retrospective study of our institute histopathological database from 2003 to 2018, patients with CS or EC who received a preoperative MRI were included. Morphological, perfusion (maximum relative enhancement (SIRel)) and wash-in rate (WIR)) and DWI analyses were performed. The T2 signal heterogeneity, necrosis, haemorrhage, intensity and heterogeneity of enhancement were recorded by two radiologists. Inter-reader agreement was calculated.

Results: Ninety-one patients (36 CS and 55 EC) were included. The CS size range was between 30 and 300 mm, a median volume of 43 ml. However, none of the imaging parameters correlated to the postoperative EPIC scores (p<.05). Of all clinical parameters, there was significant correlation of preoperative EPIC score (p<.001) and the extent of surgical nerve sparing (p<.05).

Conclusion: None of the investigated imaging parameters of mpMRI correlates with the degree of postoperative erectile dysfunction.

B-1092 09:34
Prostate cancer lesion characterisation: rapid acquisition using compressed sensing imaging in combination with endometrial lesion segmentation for dual-parameter decision support
D.J. Winkel, T. Heye, M.R. Benz, B. Stieltjes, D. Boll, V. Hofmann; Basle/CH (verena.hofmann@usb.ch)

Purpose: To investigate the diagnostic performance of dynamic contrast-enhanced (DCE) MRI to detect prostate cancer comparing high-spatiotemporal resolution golden-angle radial sparse imaging (GRASP) with standard-of-care sequences (volumetric interpolated breath-hold examination; VIBE) and to assess whether dual-parameter decision support, using perfusion and diffusion characteristics, can achieve higher diagnostic accuracy compared to single-parameter assessments.

Methods and Materials: 101 peripheral zone prostate cancer lesions in 94 patients and a clinical suspicion for prostate cancer were evaluated by 3T MRI. Histopathological confirmation on MRI-TRUS fusion biopsy was matched with normal prostate parenchyma contralaterally. MRI was performed with DWI and DCE using two acquisition schemes: GRASP (temporal resolution 2.5s, in-plane resolution 0.56x0.56mm) or VIBE (temporal resolution 10s, in-plane resolution 1.25x1.25mm). Quantitative perfusion (Ktrans, Kep) and diffusion (ADC) parameters were assessed using univariate general linear model analyses defining processing (planimetry/volumetry), histopathology (normal/pathologic), and sequence (VIBE/GRASP) as independent variables. Receiver operating characteristics (ROC) and accuracies were determined.

Results: DCE with GRASP yields diagnostic accuracy comparable to standard-of-care sequences [volumetric: 81 vs. 83Ktrans, 79 vs. 75Kep (p<.05)]. Single-parameter analyses: ADC outperformed both Ktrans/Kep in the detection of prostate cancer [volumetric: 94ADC (p<.001), Dual-parameter analyses: combining ADC with Ktrans or Kep obtained from GRASP [volumetric: 97ADC/Ktrans and 97Kep], improved performance compared to any single-parameter evaluation and any assessment based on VIBE [volumetric: 94ADC/Ktrans and 94Kep (p<.001)]. Planimetric analyses of DCE-MRI with GRASP showed similar results.

Conclusion: Diagnostic performance of DCE-MRI using GRASP is comparable to standard-of-care sequences. When GRASP is employed in combination with volumetric lesion processing in a dual-parameter discrimination system, it showed better diagnostic performance compared to single-parameter methodologies as well as any evaluation approach using the VIBE sequence.

B-1093 09:38
Pitfalls in reporting fast biparametric magnetic resonance imaging of the prostate: what kind of cancers do we miss? A preliminary retrospective analysis
L. Pusceddu1, G. Gianetto1, V. Romano1, V. Vani2, F. Cortese1, G. Desi1, S. Mazzetti1, D. Regge1, F. Russo2; 1Candollo/IT, 2Turin/IT (laura.pusceddu@gmail.com)

Purpose: The aim of the study was to assess the causes of diagnostic failure in the identification of prostate cancer (PrCa) in patients who underwent fast biparametric MRI (bpMRI).

Methods and Materials: We retrospectively evaluated data from a randomized trial in which men with increased PSA values (4<PSA<15 ng/ml) and without previous prostate biopsy were considered for inclusion in a fast bpMRI protocol (axial T2W and DWI with no endorectal coil and no i.v. contrast agent administration). After MRI, all patients underwent biopsy, which was considered as the reference standard. An experienced radiologist reviewed all cases with no suspicious lesion at MRI but with PrCa revealed by biopsy, in order to assess if lesions could be visible but incorrectly interpreted and their characteristics.

Results: 23/99 patients included in the study had a positive biopsy; bpMRI did not identify 11/23 cases (47%). Four missed lesions had a biopsy Gleason Score (bGS) ≥3+3, five had a bGS of 3+2 (2/5 with pattern 4+10%) and 2 cases had a Gleason primary 4. At the expert review, 4 missed lesions, described as microfoci of PrCa at biopsy (<1 mm), were not visible. Among tumors detected during MRI review, the following characteristics were responsible for the missed identification: triangular or striped shape, proximity to the adenoma pseudocapsule and intermediate ADC values.

Conclusion: BP-MRI shows some limitations in the identification of tumors with specific MRI features. These missed lesions are usually less aggressive from a pathological standpoint.

10:30 - 12:00 Room B

Abdominal Viscera

SS 1401a
Assessing pancreatic malignancy
Moderators: N. Kartalis; Stockholm/SE M. Kauf; Heidelberg/DE

B-1094 10:30
Diagnostic accuracy of CT features and CT texture analysis in differentiating focal autoimmune pancreatitis from adenocarcinoma: a retrospective study
G. Cattaneo1, A. Fighera2, A. Campagnola2, G. Zamboni2, L. Frulloni2, G. Mansueti1, Verona/IT (dpreppera@gmail.com)

Purpose: To assess the value of morphological criteria and texture analysis in differentiating between focal autoimmune pancreatitis (AIP) and pancreatic adenocarcinoma (PDAC) at CT.

Methods and Materials: We reviewed the multiparametric MDCT scans of 60 patients with solid pancreatic lesions: 30 focal AIP, 30 PDAC. Each scan was evaluated for: lesion size and margins, main pancreatic duct (MPD) intralobular stenosis and upstream dilatation, upstream chronic pancreatitis, biliary dilatation. Attenuation was measured in the lesion and the unaffected parenchyma contralaterally.

Results: Significant differences were observed between AIP and PDAC in unenhanced (p<0.010), arterial (p<0.008) and venous (p<0.006) lesion attenuation, unenhanced normal parenchyma attenuation (p<0.048), biliary dilatation (p<0.004), and texture-entropy in the delayed phase (p<0.000). Univariate logistic regression analysis confirmed significance of lesion density in unenhanced (p<0.014), arterial (p<0.014) and venous phases (p=0.011) as “AIP risk factors”. Upstream MPD dilatation (p<0.001) was also a significant predictor of PDAC. Multivariate regression analysis confirmed the predictive capacity of upstream chronic pancreatitis (p<0.011) for adenocarcinoma. The whole logistic binomial univariate model showed a significant predictive value for diagnosis of PDAC, with a COX-SELL R2=0.422; the ROC curve confirmed its accuracy, with AUC=0.918 (p<0.037).

Conclusion: Upstream MPD and chronic pancreatitis, biliary dilatation, lesion density at unenhanced, arterial and venous phases were statistically significant in differentiating between AIP and PDAC. Progressive enhancement significantly increases the probability of AIP; upstream MPD dilatation, biliary dilatation and chronic pancreatitis increase the probability of PDAC.

Saturday
B-1095 10:38
Contrast-enhanced ultrasound for differentiation of pancreatic carcinoma (PC) from mass-forming chronic pancreatitis (MFCP)
P. Gupta, S. Sinha, N. Dhaka, A. Rajwanshi, K. Vaipehi, R. Kochhar; Chandigarh/IN (panjagupta586@gmail.com)

Purpose: To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) in the differentiation of PC from MFCP.

Methods and Materials: Consecutive adults with a mass in the head of the pancreas underwent a CEUS of the pancreas. Parameters assessed were the pattern of enhancement (hypoechoic/enhancing and complete or incomplete) and dot and lace vascular pattern (defined as visualisation of dot or lace-like vessels within the lesion). Cytology or histopathology was used as the reference standard.

Results: Of the 48 patients, the diagnosis of PC was confirmed in 27 (72.9%) and MFCP in 10 (27.1%). Eleven patients were excluded as sampling could not be performed (n=6), and diagnosis other than PC (n=5). There were 23 males and 14 females with a mean age of 55.14 years. Hypoenhancement was documented in 25 patients with PC and only 1 patient with MFCP. Iso- enhancing mass was seen in 9 patients with MFCP and only 2 patients with PC. A complete enhancement was seen in 3 patients with MFCP and only 1 patient with PC. Dot and lace pattern was seen in 20 patients with PC and only 2 patients with MFCP. The sensitivity, specificity, PPV, and NPV of the degree of enhancement for differentiation of PC from MFCP were 96.15%, 81.82%, 92.59% and 90%, respectively. Complete vs incomplete enhancement had a high sensitivity (96.15%) but lower specificity (30%).

Conclusion: CEUS is a useful imaging modality in the differentiation of PC from MFCP. Hypoenhancement has the highest diagnostic accuracy among all the CEUS parameters.

B-1096 10:46
Quantitative analysis of arterial-phase MR images in differentiating focal-type autoimmune pancreateitis from pancreatic ductal adenocarcinoma
J. Kwon, J. Kim; Seoul/KR (wisewishdom.rad@gmail.com)

Purpose: To assess whether quantitative analysis of arterial-phase MR images is helpful to differentiate focal-type autoimmune pancreatitis (AIP) from pancreatic ductal adenocarcinoma (PDA).

Methods and Materials: Thirty-six patients with focal-type (single mass forming) and 72 patients with surgically resected PDA were enrolled. Dynamic contrast-enhanced MR imaging (DCE-MRI) were included. The signal intensity (SI) of the pancreatic mass and normal parenchyma and the lesion contrast (SImass/parenchm/SInormal) were measured on each phase of DCE-MRI. The lesion contrast on arterial phase (AP) (contrastAP) and the contrast ratio between AP and unenhanced phase (UP) (contrastAP/UP) were calculated.

Results: Of the 48 patients, the diagnosis of PC was confirmed in 27 (72.9%) and MFCP in 10 (27.1%). Eleven patients were excluded as sampling could not be performed (n=6), and diagnosis other than PC (n=5). There were 23 males and 14 females with a mean age of 55.14 years. Hypoenhancement was documented in 25 patients with PC and only 1 patient with MFCP. Iso- enhancing mass was seen in 9 patients with MFCP and only 2 patients with PC. A complete enhancement was seen in 3 patients with MFCP and only 1 patient with PC. Dot and lace pattern was seen in 20 patients with PC and only 2 patients with MFCP. The sensitivity, specificity, PPV, and NPV of the degree of enhancement for differentiation of PC from MFCP were 96.15%, 81.82%, 92.59% and 90%, respectively. Complete vs incomplete enhancement had a high sensitivity (96.15%) but lower specificity (30%).

Conclusion: CEUS is a useful imaging modality in the differentiation of PC from MFCP. Hypoenhancement has the highest diagnostic accuracy among all the CEUS parameters.
Evaluation of vascular and local lymph node invasion, resectability of pancreatic ductal adenocarcinoma with spectral detection CT

Y. Yang, Q. Han, X. Chen, H. Dong; Shanghai/CN (yy201a15@hjh.com.cn)

Purpose: The aim of this study was to compare the predictive accuracy of 120kVp conventional dataset and spectral dataset derived from spectral detection CT (SDCT) in predicting vascular and local lymph node invasion in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods and Materials: Forty-three patients with surgical and pathologic confirmation of PDAC were retrospectively analysed by 2 radiologists independently. All patients underwent SDCT examination and two datasets were created: 120kVp conventional images and spectral images which included virtual monochromatic image and iodine density image. Peripancreatic arterial invasion, venous invasion and local lymph node invasion were measured using two setup datasets respectively. NCCN criteria guidelines were used in predicting the correlation between the resectability, surgical grade and pathology.

Results: The mean sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) of 120kVp conventional dataset were as follows: 60.0%, 83.3%, 84.2%, and 62.5% for arterial invasion; 63.0%, 87.5%, 89.5.8%, and 58.3% for venous invasion; 56.7%, 84.6%, 89.5%, and 45.8% for lymph node invasion; those results of spectral dataset were 84%, 99.5%, 91.3% and 80.0% for arterial invasion; 85.2%, 93.8%, 95.8%, and 79.9% for venous invasion; 83.3%, 84.6%, 92.6%, and 68.8% for lymph node invasion. To predict tumour resectability using spectral dataset, Se, Sp, PPV and NPV were 92.1%, 80.0%, 97.2%, 57.1% respectively, and compared with surgery and pathology with great agreement (κ=0.73-0.78).

Conclusion: Spectral datasets improve assessment of arterially invasion, venous invasion and lymph node invasion, predictive resectability in PADC with increasing conspicuity and margin sharpness of the lesion.

Perfusion parameters quantified with perfusion CT in pancreatic adenocarcinoma before and after neoadjuvant chemoradiotherapy: comparison between responders and non-responders

A. Hamdy, Y. Ichikawa, Y. Toyomasu, M. Nagata, N. Nagasawa, H. Sakuma; Tsu/JP (ahmed.hamdy@kasralainy.edu.eg)

Purpose: To monitor serial changes of blood flow (BF), blood volume (BV) and permeability-surface area product (PS) before and after neoadjuvant chemoradiotherapy (CRT) in patients with pancreatic ductal adenocarcinoma (PDAC) using perfusion CT, and to compare tumour perfusion in responders and non-responders to therapy.

Methods and Materials: Perfusion CT before and after CRT was acquired in eighteen patients with pathologically proven PDA who underwent pancreatectomy after completing neoadjuvant CRT. Quantitative maps of BF, BV and PS were generated from 4D perfusion images acquired with dual-source CT. CRP pancreatic patients were categorised into responders and non-responders according to histopathological grade of response to therapy. Correlations among pre- and post-CRT perfusion, histopathological response, CA 19-9 and RECIST were assessed.

Results: Baseline BF was significantly higher in responders compared to non-responders to CRT (48±12.4 vs 34.2±18 mL/100g/min, P=0.03) but no significant difference was found for BV and PS (BV= 5.22±2 vs 3.77±2 mL/100g/min, P=0.2 and PS= 32.6±19 vs 22.3±15 mL/100g/min, P=0.4). In responders, all perfusion parameters increased significantly after CRT (BF: 57.8±16.7 mL/100g/min, P=0.004; BV=7±2.5 mL/100g/min, P=0.02 and PS= 33.4±10.2 mL/100g/min, P=0.03). In non-responders, perfusion increase was not significant (BF= 42.7±14.8 mL/100g/min, P=0.08; BV= 4.9±2.4 mL/100g/min, P=0.07 and PS= 27.8±10.4 mL/100g/min, P=0.1). RECIST and CA 19-9 showed no correlation with perfusion parameters and correlated poorly with histopathological response (r=0.2)

Conclusion: Quantitative perfusion CT is a promising tool for monitoring response to CRT in patients with PDA. Increased perfusion after CRT and higher baseline BF predict response to CRT.

Perfusion vs metabolism: which functional parameter should we choose in patients with pancreatic adenocarcinoma to predict response to chemoradiotherapy?

A. Hamdy, Y. Ichikawa, Y. Toyomasu, M. Nagata, N. Nagasawa, H. Sakuma; Tsu/JP (ahmed.hamdy@kasralainy.edu.eg)

Purpose: Perfusion CT and 18F-FDG PET/CT are used for functional assessment of pancreatic ductal adenocarcinoma (PDA). We aim to compare the ability of both techniques to predict histopathological response of PDA to neoadjuvant chemoradiotherapy (CRT).

Methods and Materials: Perfusion CT and PET/CT were performed before CRT in 14 consecutive patients with biopsy-confirmed PDA who were planned for neoadjuvant CRT and were classified as responders or non-responders to therapy according to the histopathological grade of response obtained after pancreatectomy. Baseline perfusion parameters and SUVmax were compared between both groups. Correlations among perfusion, SUVmax and histopathological response were assessed.

Results: Perfusion: responders showed significantly higher BF than non-responders to CRT (48.3±11.4 vs 32.1±12.5 mL/100 g/min, respectively, P=0.02). Moreover, BF and BV showed significant correlation with histopathological grade of response (BF: r= -0.70, P= 0.005; BV: r= 0.60, P=0.03). Metabolism: there was no significant difference in baseline SUVmax between responders and non-responders (5.5±3.2 and 6.5±5, respectively, P=0.70). SUVmax exhibited only weak negative correlations with perfusion and histopathologic response, without statistical significance (BF: r=-0.22; BV: r=-0.31; PS: r=-0.29, response: r= -0.07).

Conclusion: Tumour perfusion estimated with perfusion CT is a better functional imaging biomarker than tumour metabolism estimated with PET/CT for the prediction of histopathological response to therapy in patients with pancreatic adenocarcinoma.

CT texture analysis for detection of tumour recurrence in patients resected for pancreatic adenocarcinoma

A. Mazzaro, G. Zamboni, A. Fighera, A. Campagnola, G. Mansueto; Verona/IT (andrea.mazzaro1558@gmail.com)

Purpose: To compare the CT texture analysis features of local tumour recurrence and postoperative fibrosis in patients who underwent resection of pancreatic adenocarcinoma.

Methods and Materials: We reviewed the CTs of 61 consecutive patients with resected pancreatic adenocarcinoma that had an early detection of solid tumour recurrence in the surgical bed at the after-surgery follow-up CT. For all patients clinical data and further follow-up CTs were available. Two readers in consensus performed texture analysis of the tissue in the first CT by drawing a ROI in the most representative slice in the venous phase. First-order statistics CT texture data (variance, skewness and kurtosis) were extracted using Mzdada software. An unpaired T-test was used for statistical analysis.

Results: Among the 61 patients, the further follow-up CTs revealed in 29 the development of local tumour recurrence and in 32 post-surgical scar tissue which remained stable in size and imaging features. Mean kurtosis was 0.459 for patients with local recurrence and -0.126 for patients with post-surgical fibrosis, with a significant difference between the two groups (p=0.001). Mean variance at the first CT was 315.13 for recurrence and 296.70 for fibrosis, with no significant difference between groups (p=0.55). Mean skewness was 0.096 for recurrence and -0.057 for fibrosis, with no significant difference (p=0.67).

Conclusion: Kurtosis appeared to be an effective parameter to differentiate between local recurrence and post-surgical fibrosis in patients resected for pancreatic adenocarcinoma. Other first-order statistics from CT texture analysis do not appear useful in the detection of local recurrence.

Locally advanced and metastatic pancreatic cancer: the role of CT quantitative imaging biomarkers for predicting outcomes of patients treated with chemotherapy

S.-H. Cheng, H.-D. Xue, Z.-Y. Jin; Beijing/CN

Purpose: The primary aim of this study was to determine if CT texture analysis measurements of the tumor are independently associated with progression-free survival (PFS) and overall survival (OS) in patients with locally advanced or metastatic pancreatic cancer who were treated with chemotherapy.

Methods and Materials: 41 patients with locally advanced or metastatic pancreatic cancer who underwent contrast-enhanced CT before chemotherapy between 2014 and 2017 were analyzed with quantification of mean gray-level intensity (Mean), entropy, mean of positive pixels (MPP), kurtosis, standard deviation (SD), and skewness for fine to coarse textures (spatial scaling factor (SSF) 0-6, respectively). The association between pretreatment and posttreatment texture parameters, as well as Δ value (difference between pretreatment and posttreatment texture parameters), and survival time was assessed by using Kaplan-Meier analysis and a Cox proportional hazards model.

Results: Multivariate Cox model indicated that tumor size, tumor SD (HR, 0.98; 95% CI 0.98-0.99), tumor mean intensity (Mean), entropy, mean of positive pixels (MPP), kurtosis, standard deviation (SD), and skewness for fine to coarse textures (spatial scaling factor (SSF) 0-6, respectively). The association between pretreatment and posttreatment texture parameters, as well as Δ value (difference between pretreatment and posttreatment texture parameters), and survival time was assessed by using Kaplan-Meier analysis and a Cox proportional hazards model.
measurements with SSF=4 were significantly and independently associated with PFS, while tumor size and tumor SD (HR, 0.928; 95% CI: 0.882, 0.976) measurements with SSF=3 were significantly and independently associated with OS. None of the post-therapy ord in texture parameters had a significant association with OS or PFS.

Conclusion: Pretreatment CT quantitative imaging biomarkers from texture analysis are associated with PFS and OS in patients with locally advanced and metastatic pancreatic cancer who were treated with chemotherapy.

10:30 - 12:00 Room C

Radiographers

SS 1414

Ultrasound and computer applications in medical imaging

Moderators:

N.N.

J. Reponen; Oulu/FI

B-1105 10:30

Effect of adding charcoal capsule to abdominal ultrasound preparation on image quality

M. Tometh; M. Wazan, A. Abdul Jabar, E. Abbass, N. Mishah; Jeddah/SA (mut315@hotmail.com)

Purpose: Patient preparation before abdominal ultrasound plays a major role to ensure better visualization of organs, but abdominal gasses in many patients still exist in large amount causing artifacts; it is important to search for safe, efficient, reliable and cost effective method to improve patient preparation to eliminate abdominal gasses.

Methods and Materials: Prospective Study on randomly selected sample size of 52 adult patients from different ages and mixed gender. Pediatric, pregnant, abdominal surgery, bedridden, and patients with bowel obstruction were excluded from this study. For accepted patients the routine upper abdominal ultrasound with usual preparation following instruction for 8 hours was followed, then same group of patients scanned again after 48 hours and instructed to follow the same standard preparation for but, in addition they were asked to take one capsule of charcoal 8 hours. Then we compared ultrasound image quality in abdominal region for the same patient before and after by focusing on pancreas as a reference.

Results: Improvement in pancreas head region was 50%, pancreas neck the improvement was 32.5%, pancreas body 57.45% and 32.5% in the pancreas tail. A significant improvement was notices in overweight, obese patients group by 57.2% while in underweight & normal weight the improvement was 39.05%. The improvement in males 66.9% while 49.9% in females. Overall improvement in pancreas visualization was 63%.

Conclusion: Active charcoal can be used to reduce gastrointestinal gasses in efficient, low cost, safe and ease of use to improve the visualization of adult abdominal ultrasound.

B-1107 10:46

Sonographic estimation of amniotic fluid volume using the amniotic fluid index and the single deepest pocket in a resource-limited setting

F.A. Burabe; G. Luntis, N.I. Chigozie, F. Nkubil, J.Z. Diama, P.A. Ogenyl; 1Madinuguri/NG, 2Awka/NG (Fainmata.Burabe@gmail.com)

Purpose: To determine the normal value of amniotic fluid (AF) volume among pregnant women in a Northern Nigerian population and to determine if there is a relationship between AF index (AFI) and single deepest pocket (SDP) with anthropometric variables.

Methods and Materials: A prospective cross-sectional study was conducted among singleton pregnant women at late second and third trimester attending the antenatal clinic in Abubakar Tafawa Balewa Teaching Hospital, Bauchi, from December 2016 to April 2017. The mean AFI and SDP were measured by sonography. Participation was voluntary. Descriptive statistics, i.e. mean, standard deviation, and correlation coefficient, were used for the analysis.

Results: A total of 206 women, aged between 18 and 40 years, with fetal gestational ages between 22 and 39 weeks were included in the study. The values for AFI in the study ranged from 12 to 28.7 cm, with a mean value of 19.84 ± 3.64 cm, and SDP ranged from 3.7 to 9.1 cm with a mean value of 6.04 ± 1.12 cm. This study found a weak relationship between the anthropometric variables and AFI and SDP and a strong relationship between AFI and SDP with a correlation coefficient of R = 0.901 and P = 0.014.

Conclusion: The mean values for AF volume using AFI and SDP in the studied population were 19.84 ± 3.64 cm and 6.04 ± 1.12 cm, respectively; a strong positive relationship between AFI and SDP, and a negative relationship between body mass index with AFI and SDP.
B-1111 11:18
The role of obstetric ultrasound in low resource setting: pilot survey done in Elgeyo-Marakwet and Kericho county from 2016 March to 2018 December
K. Olie, Kericho/KE (kosegkyips@gmail.com)

Purpose: There are vast inequalities across maternal and infant mortality with the developing world accounting for the majority of the burden and within countries rural areas expecting worse outcomes than urban. This review focuses on obstetric ultrasound service and its potential to improve maternal and newborn health in low resource settings. Recent advances in affordability, durability, and portability have brought ultrasound to the forefront as a sustainable and high impact technology for use in developing world clinical settings as well.

Methods and Materials: Ultrasound services were introduced at Elgeyo and Kericho county Data sheets for each ultrasound scan performed during routine clinical care were collected and analyzed to determine patient demographics, which ultrasound applications were most frequently used, and whether the use of the ultrasound changed patient management plan

Results: Adult women appeared to benefit most from the presence of ultrasound services. During these outreachs a total of 1029 women were scanned. Twenty percent of these scans showed abnormalities. These woman were referred to the nearest health center or hospital where they received more care.

Conclusion: We suggest ultrasound is a useful modality that particularly benefits women’s health and obstetrical care in the developing world and it feasible, factual and accurate.

B-1113 11:34
An ethnographic study to investigate general practitioner’s opinion of ultrasound services in primary care
M. Boland, L.A. Rainford, C. Byrne, M.-L. Ryan; Dublin/IE (mairead.boland@ucdconnect.ie)

Purpose: In Ireland, patients may wait 42 weeks for an ultrasound, which is detrimental to patient workflow and delays diagnosis. Research investigating increased imaging access in primary care shows that timely imaging corresponds to decreased unnecessary admissions to Emergency Departments (ED). GP opinions were sought of direct access ultrasound on; waiting list, patient management, referral pathways and determining GP satisfaction with radiology report content and radiology accessibility for further consultation.

Methods and Materials: An ethnographic approach was applied to survey two groups of GPs - one who have direct access to ultrasound within a primary care setting and GPs who refer to regional hospitals with long waiting lists. Semi-structured interviews were completed, themes were identified and GP’s responses compared.

Results: GPs with direct access (n=12) reported waiting times of 2/3 weeks compared to several months for hospital referrals. This group indicated the benefit of patients remaining within primary care, reporting potential reductions in unnecessary ED and consultant referrals and enhanced management of gynaecological conditions and abdominal presentations. GPs considered patient’s preference, time to access services and ease of travel when referring 50% of GP’s with direct access indicated satisfaction with radiology reports and radiology accessibility, the remainder highlighted the importance of radiology guidance within reports.

Conclusion: Direct access to diagnostics was evidenced as beneficial to both patients and GPs in reducing waiting times and providing efficient diagnosis. Radiology guidance and consultation availability was highlighted as important for primary care imaging service users to support efficient patient management pathways.

B-1114 11:42
The effect of deep learning reconstruction on calcium scoring C. Stevenson1, J.L. Schuizer2, T. Acharya3, K. Bronson4, S. Rollison4, W. Bandettini5, S. Shanbhag6, M.Y. Chen7,1, Kanagawa/JP, 2Amsterdam/NL, 3Kazerun/Iran, 4Chile, 5W. Bandettini, 6S. Shanbhag, 7M.Y. Chen

Purpose: Assessing coronary artery calcium (CAC) is a valuable tool in individualizing cardiac risk assessment. Deep convolutional neural network image reconstruction has the potential to improve image quality. The aim of this study is to investigate the effect of a deep learning image reconstruction algorithm on Agatston calcium score accuracy and signal to noise ratio (SNR) in CAC scanning.

Methods and Materials: With institutional ethics approval, 40 consecutive patients underwent 2 EKG-gated coronary calcium score scans (120kV, 0.275s rotation speed 100-140mm range, mA was calculated using automatic exposure control). Each scan was reconstructed with conventional filtered back projection (FBP) and deep learning reconstruction. Agatston score was calculated on a per patient basis using standard techniques utilizing a 130 HU threshold. SNR was calculated for each reconstruction. Data was analyzed using linear regression and paired t-test.

Results: Patients averaged 63 ± 15 years old, 45% were male, and the median radiation exposure was 0.68 mSv (interquartile range 0.62-1.22). The median Agatston score was 61.7 (inter quartile range 0-315) with clinical FBP reconstruction. Deep learning reconstruction had excellent agreement with FBP (R=0.99) over a wide range (0-4121); however, it underestimated calcium score by 6%. SNR for deep learning reconstruction improved 37.1% compared to FBP (3.24 ± 0.43 vs. 2.46 ± 0.39, p=0.00001).

Conclusion: Deep learning image reconstruction has an excellent correlation with conventional FBP reconstruction for CAC imaging at standard radiation doses. The improved image quality and higher SNR may enable lower radiation while maintaining accurate Agatston scores.

Author Disclosures:
C. Stevenson: Employee; Canon Medical Systems Corporation. J.L. Schuizer: Employee; Canon Medical Systems Corporation. M.Y. Chen: Research/Grant Support; Canon Medical.

B-1115 11:50
Radiographer as RIS/PACS administrator; promoting professional networking and continuing professional education by the society of radiographers in Finland
H. Syysmäki1, P. Wood2, R. Laaksonen-Heikkilä3, 4Turku/FI, 5Helsinki/FI (hanne.syysmaki@edu.turkuamk.fi)

Purpose: The purpose of this study was to investigate the background information about Finnish PACS and RIS -administrators and what are their needs of professional networking and continuing professional education. This study was an empirical part of the master’s thesis performed at Turku University of Applied Sciences.

Methods and Materials: A quantitative questionnaire survey was conducted in 2017. The questionnaire developed for the study was sent to all members of the Society of Radiographers in Finland (SDRF), but targeted only to radiographers who works as PACS and RIS -administrators. Estimated number of Finnish PACS- and RIS -administrators were 60 persons. In total, 37 responses were received.

Results: The results of the questionnaire showed, that there is not enough continuing professional education for PACS and RIS administrators in Finland. In addition, the content of continuing professional education did not adequately support or enhance their professional competence. Professional support works best among the workers who work for the same employer. Networking seems to be valued and therefore respondents were interested in a wider professional network. However, there were also reservations about the benefits of networking through the professional division.

Conclusion: Finnish PACS and RIS administrators need more continuing professional education that adequately support and enhance their professional competence. Opportunities for professional support and networking should be developed.

B-1116 10:30
SS 1406
Advanced methods in experimental radiology
Moderators: S. Gatids; Tübingen/DE F.M.A. Kiesling; Aachen/DE

SS 1406 10:30
Spectral photon-counting CT multi-phase liver imaging with dual contrast agent S.A. Si-Mohamed1, V. Tatard-Leitman1, P. Coulon2, P. Douek1, P.B. Noel1, L. Boussel1, Bronze/FR, Suressnes/FR, 3M München/DE (salim.si-mohamed@chu-lyon.fr)

Purpose: To demonstrate the feasibility of dual-contrast multiphase liver imaging via K-edge imaging using Spectral Photon-Counting CT (SPCCT).

Methods and Materials: In-vivo experiments were conducted on 4 rabbits after approval by the local ethics committee. Data acquisition was performed at 120 kVp and 100 mA. The protocol was to inject the iodine contrast agent (400 mL, 1.5 mL/kg) 21 seconds before the injection of gadolinium contrast agent (0.5 M, 5 mL/kg). The acquisition was performed 10 seconds thereafter. Conventional HU, and quantitative iodine and gadolinium images were analyzed.

Results: SPCCT allowed the discrimination between the two contrast agents; gadolinium led to an enhancement of the arteries and iodine of the liver parenchyma and portal veins. The attenuation values (HU) and concentrations
B-1117 10:38
Spectral CT of cancer cells with nanoparticles: in vitro and in vivo results
M. Moghiseh, D. Kumar, R. Aamir, C. Lowe, K. Chichloltan, P. H Butler, P. Sykes, A.P. Butler, N. Anderson; Christchurch/NZ
(mahdieh_moghiseh@yahoo.com)

Purpose: To determine if spectral CT can identify and quantify gold nanoparticles (AuNPs) targeted to specific cancer cells in vitro and in vivo. The long-term goal is to evaluate tumour response to treatment and to facilitate anti-cancer drug development.

Methods and Materials: Initially, two ovarian cancer cell lines (OVCARS and SKOV3) were studied. To evaluate the effect of AuNP size, plates of 600,000 of each cell line were incubated with four sizes particles (18, 40, 60 and 80nm) at four concentrations (8.6, 25.8, 29.8 and 38.5pm). The cell growth was imaged with a MARS spectral CT working in clinical x-ray energy range. A second experiment was performed to validate the quantification method in a mouse model. The gold quantification results were confirmed using phantoms containing oil, water, gold chloride, and hydroxyapatite.

Results: The first experiment demonstrated that uptake of AuNPs into ovarian cancer cells varies according to particle size and cell type. The best size particle to detect SKOV3 were 18 and 80nm. However, uptake of the same size of particles was very low for OVCARS cells. Based on these results, 18 and 80nm particles were injected into the mouse model of ovarian cancer cell (in vivo results are under investigation).

Conclusion: This study has established a methodology to quantify drug delivery to specific ovarian cell. This is proof of principle that drug delivery to cells can be measured using non-invasive spectral CT. Our methodology is designed to accelerate advances in cancer research and translate it to human imaging using spectral CT.

B-1118 10:46
Quantification of gadolinium with 3rd generation dual source dual energy CT: role of spectral separation
A. Agostini, A. Borgheresi, A. Mari, A. Lorenzeni, L. Ottaviani, S. Maggi, A. Giovagnoni; Ancona/IT (andrea.agostini84@yahoo.it)

Purpose: To evaluate feasibility, accuracy and the role of spectral separation in Gadolinium quantification with a 3rd generation Dual Source Dual Energy CT (dsDECT) on a phantom model.

Methods and Materials: Preparation of phantom (Electron Density Model 062M, CIRS, USA) with 5 inserts containing scalar dilutions in distilled water solution (0.00375M-0.5M) of Gadolinium chelate (Gd-BOPTA 0.5M, Multi-Tango, Guerbet). Spectral parameters: 3rd generation dsDECT (Siemens Definition Flash, Siemens Healthcare); preliminary acquisitions at 70, 80, 90, 100, 110, 140, 150 kV; Dual Energy acquisitions 70-100/150 kV; 80/140 kV; modulated mA; rotation time 0.5s; pitch 0.7; slice thickness/spacing 2/1 mm. Dual energy Indexes (DEI) were calculated with 5 identical clon ed regions of interest (ROI) on each insert on preliminary acquisitions (ImageJ 1.52a, NIH, United States) and linear regression model (MedCalc v12.5, MedCalc Software). Gadolinium densities within inserts were calculated on Dual Energy acquisitions with Liver VNC (Syngo.via Frontier, Siemens Healthcare) and compared with actual Gd concentrations with Bland-Altman Analysis. Non-parametric tests were used with significant p<0.05.

Results: Linear regression models provided DEI ranging between 1.64 at 80/140 kV and 2.56 at 70/150 kVp (R2=0.999, p<0.001). Quantification of gadolinium densities on dual energy acquisitions provided percentage errors of 7%-37% for acquisitions at 70/300 kVp and 16%-36% at 80/140 kV with significant differences (Friedman p = 0.024) and a trend to increase at lower concentrations and spectral separation.

Conclusion: Gadolinium quantification is feasible with 3rd generation dsDECT with increasing accuracy at wider spectral separation and higher concentrations.

B-1119 10:54
Quantitative evaluation of nonalcoholic fatty liver disease using normalised local variance US in a rat model
J. Bae, J. Lee, D. Lee, H. Kim, J. Han; Seoul/KR (jaeoseok.bae@gmail.com)

Purpose: To identify factors that influence the speckle pattern hepatic parenchyma on ultrasonography (US) using a normalized local variance (NLV) technique in a dietary-induced nonalcoholic fatty liver disease rat model using histopathological examination and magnetic resonance spectroscopy (MRS) as standards of reference.

Methods and Materials: Sixty-four male Sprague-Dawley rats were fed a methionine-choline-deficient diet with variable periods (0, 2, 4, 6, 8, 10, 12 days or 2, 3, 4, 5, 6, 8, or 10 weeks; four rats in each group except for eight rats in 8 and 10 weeks groups). At the end of each diet duration, NLV US and MRS were performed. Thereafter, the rats were sacrificed, and livers were histopathologically evaluated. The Spearman correlation was performed to assess the relationship between the NLV values and steatosis or fibrosis, and multivariate linear regression was used to determine factors for the NLV values.

Results: There was a negative correlation between the NLV value and the hepatic steatosis (Spearman p = -0.570 and -0.534 for histopathologic examination and MRS, respectively; P < .001 for both). The NLV value and the hepatic fibrosis showed negative correlation as well (Spearman p = -0.616; P < .001). Multivariate linear regression revealed that the stage of hepatic steatosis and fibrosis was significant factors that affected the NLV values.

Conclusion: The NLV values have a negative correlation with the fat fraction measured at histopathologic examination and MRS. The stage of hepatic steatosis and fibrosis were significant factors that affected the NLV values.

Author Disclosures:
J. Bae: Grant Recipient; Canon Medical Systems.
J. Lee: Grant Recipient; Canon Medical Systems.
D. Lee: Grant Recipient; Canon Medical Systems.

B-1120 11:02
Dual-targeting and excrable ultrasmall SPIONs for T1-weighted-positive MR imaging of intracranial glioblastoma by targeting lipoprotein receptor-related protein
C. Du, X. Liu, H. Li, L. Yu, D. Geng, Y. Chen, J. Zhang; Shanghai/CN (1944446586@qq.com)

Purpose: To more precisely delineate the boundary of intracranial glioblastoma pre-surgical operation, a multifunctional-targeted nanoprobe composed of PEGylated ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) with surface-conjugated Angiopep-2 was successfully stepwise constructed, which efficiently crossed the blood-brain barrier (BBB), targeted the glioblastoma and then generated positive contrast enhancement for T1-weighted MR imaging.

Methods and Materials: The targeting capability and especially the biocompatibility/excretion of these ANG-modified MRI nanoprobes were systematically evaluated not only at intracellular level in vitro but also on tumour xenografts in vivo.

Results: The relaxivity r1 was calculated to be as high as 4.68 mMs−1 s−1 and the relaxivity r2 was determined to be 15.96 mMs−1 s−1, resulting in a relatively low r2/r1 ratio (r2/r1 < 3.41). For targeting ANG/PEG-USPIONs group, the enhanced bright contrast of tumour in T1-weighted images was observed distinctly, and the boundary of tumour was delineated much clearer. The optimal T1-weighted MR contrast enhancement of the tumour was at 1.5 h post-injection of ANG/PEG-USPION nanoprobes, and the enhanced signal intensities of ANG/PEG-USPION nanoprobes were maintained for at least 4 h, which was much longer than commercial Gd-DTPA contrast agents (1 h).

Conclusion: The as-constructed dual-targeting ANG/PEG-USPION nanoprobes has relatively high r1 relaxivity and could be utilized as positive contrast agent for MR imaging of intracranial glioblastoma.

B-1121 11:10
EGFR-targeted liposomal nanohybrid ceramides: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer
Y. Li, Y. Du, X. Liang, H. Xue, Z. Jin; Beijing/CN (shandongliyuan1988@126.com)

Purpose: Epidermal growth factor receptor (EGFR) is a major target for the treatment of colorectal cancers (CRCs), and programmed death ligand-1 (PD-L1) is an attractive target for CRC immunotherapy.

Methods and Materials: Herein, we report the synthesis of porphyrin-containing liposomal nanohybrid ceramides decorated with cetuximab, an anti-EGFR antibody, and conjugated with IRdye800CW and MRI-contrast DOTA-Gd to enable in vivo tumour detection and photodynamic therapy (PDT). Moreover, PD-L1 was added as an adjuvant therapy. The antitumour efficacy of PDT combined with PD-L1 immunotherapy was assessed.
Results: EGFR-targeted nanoparticle showed targeted imaging of tumours. EGFR-targeted PDT combined with PD-L1 immunotherapy was more effective against tumour growth in comparison to EGFR-targeted nanoparticle delivery with laser irradiation plus PD-L1 immunotherapy.

Conclusion: Thus, EGFR-targeted nanoparticle exhibited significant potential toward dual-modality imaging-guided precise PDT, combined with immunotherapy.

B-1124 11:18
Cell death PET imaging of rat liver cirrhosis with 68Ga-NOTA-PEG3-Duramycin
S. Shu, X. Xianhong, T. Ganghua; Shanghai Jiao Tong University, Shanghai/CH

Purpose: The aim was to assess the value of 68Ga-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA)-tripolyethylene glycol (PEG3)-Duramycin (Ga-NOTA-PEG3-Duramycin) position emission tomography (PET) imaging of liver cirrhosis in a rat model.

Methods and Materials: Male Sprague-Dawley rats (160~180g) were used to establish a rat model of liver cirrhosis by a single administration of thiocarbamide (TAA). Control rats were treated with saline (n=3 per group). At week 10 of TAA administration, PET/CT with 68Ga-NOTA-PEG3-Duramycin or 18F-fluorodeoxyglucose (18F-FDG) was performed on TAA-induced and control rats. The liver accumulation of 68Ga-NOTA-PEG3-Duramycin or 18F-FDG, illustrated as percentage injected dose per gram (% ID/g) of tissue. Liver tissues were harvested and analyzed for histologic examination after PET/CT imaging. Binding assays of 68Ga-NOTA-PEG3-Duramycin with Juakat cells was preformed. Ga-NOTA-PEG3-Duramycin uptake ratio of 68Ga-NOTA-PEG3-Duramycin was also significantly higher than that of 18F-FDG (% ID/g). In TAA-treated rats, the liver-to-bone uptake ratio of 68Ga-NOTA-PEG3-Duramycin was also significantly higher than that of 18F-FDG (% ID/g).

Results: Binding assays showed that 68Ga-NOTA-PEG3-Duramycin accumulated in both apoptotic and necrotic cells. After treatment with TAA or saline for 10 weeks, model rats showed a significantly higher liver accumulation of 68Ga-NOTA-PEG3-Duramycin than control rats (P<0.05). In TAA-treated rats, the liver-to-bone uptake ratio of 68Ga-NOTA-PEG3-Duramycin was also significantly higher than that of 18F-FDG (P<0.05).

Conclusion: Ga-NOTA-PEG3-Duramycin PET/CT imaging could be applied for noninvasive diagnosis of liver cirrhosis in a rat model.

B-1125 11:26
In vivo tracking of tumour-derived exosomes correlates with premetastatic cell infiltration and target-site of metastasis
M. Gerwing, V. Kocman, A. Helfen, M. Stölting, L. Greune, A. Schmidt, W. Heindel, M. Wildgruber, M. Eisenblaetter; Münster/DE

Purpose: Exosomes, small vesicles carrying inter alia proteins, miRNA and RNA, are important mediators in intercellular communication. The purpose of this project was to assess the in vivo biodistribution of exosomes from highly malignant breast cancer cells in comparison to exosomes from the serum of healthy mice, and their effect on the immune cell infiltrate in target organs of metastasis.

Methods and Materials: Exosomes were isolated from the tissue culture supernatant of highly malignant 4T1 breast cancer cells or the serum of healthy BALB/c mice. The purity of the isolate was checked by electron microscopy and western blotting. After labeling with the fluorescent dye DiR (750/780 nm), exosomes were injected i.v. into healthy BALB/c mice and their distribution was assessed using fluorescence-reflectance imaging (FRI). After ex vivo imaging of the organs, lungs and spleen were stained for FACS analysis of granulocytes, T- and B-cells to identify changes in the immune cell content.

Results: The assessment of the in vivo distribution of DiR-labelled exosomes with FRI showed exosomes from highly malignant 4T1 cells to preferentially accumulate in the target organs of metastasis, in this case lung, liver and spine (tumour-exosomes vs. serum-exosomes: lung 18.6 vs. 10.4, p<0.01; liver 77.3 vs. 56.5, p<0.02; spine 5.1 vs. 3.5, p<0.01). Furthermore, an increased infiltration of immune cells in these target-organs of metastasis after injection of tumour-derived exosomes was identified.

Conclusion: Exosome accumulation, which promotes the infiltration of immune cells in target-organs of metastasis, can be visualized by FRI.

B-1126 11:34
Orthotopic hepatocellular carcinoma: molecular imaging-monitored intratumoral hyperthermia-enhanced direct oncolytic virotherapy
J. Song1, F. Zhang1, J. Ji1, M. Chen1, Q. Weng1, X. Yang2, M. Xu1, C. Lu1, Z. Zhao1, Lishui/CN, Seattle, WA/US

Purpose: To validate the feasibility of molecular imaging-monitored intratumoral radiofrequency hyperthermia (RFH)-enhanced direct oncolytic virotherapy for hepatocellular carcinoma (HCC).

Methods and Materials: This study included in vitro confirmation experiments using luciferase-labeled rat HCC cells and in vivo validation experiments on rat models with orthotopic HCCs. Both cells and HCCs in four groups (n=6/group) were treated by: (1) combination therapy of oncolytic virotherapy (T-VEC) plus RFH at 42°C for 30 minutes; (2) oncolytic virotherapy alone; (3) RFH alone; and (4) saline. For in vitro confirmation, confocal microscopy and bioluminescence optical imaging were used to evaluate the cell viabilities. For in vivo validation, oncolytic viruses were directly infused into rat HCCs through a multi-functional perfusion-thermal RF electrode, followed by RF hyperthermia. Ultrasound and optical imaging were used to follow up size and bioluminescence signal changes of tumours overtime, which were correlated with subsequent laboratory examinations.

Results: For in vitro experiments, confocal microscopy showed the lowest number of viable cells, as well as a significant decrease of bioluminescence signal intensity of cells with combination therapy group, compared to other three groups (P<0.01). In vivo experiments, ultrasound and optical imaging showed the smallest tumour volume, and significantly decreased bioluminescence signal intensity in combination therapy group compared to other three groups (P<0.05), which were well correlated with pathologic analysis.

Conclusion: It is feasible to use molecular imaging to guide RFH-enhanced intratumoral oncolytic virotherapy of HCC, which may open new avenues for preventing persistency or recurrence of RFA-treated intermediate-to-large HCCs.

10:30 - 12:00 Room O
Musculoskeletal

SS 1410 Knee imaging
Moderators: R. Guggenberger; Zurich/CH
V. Vasilevska-Nikodinovska; Skopje/MK

B-1127 10:30
Super-resolution reconstruction of knee MRI images
E. De Smet, B. Jeuissen, J. Sijbers, F. Vanhevel, P.M. Parizel, P. Van Dyck; Antwerp/BE

Purpose: Super-resolution reconstruction (SRR) combines several distinct low-resolution images into a single high-resolution image. This study explored the feasibility of SRR for isotropic 3D knee MRI and compares this method to direct 3D acquisition.

Methods and Materials: Seventeen subjects (3 volunteers and 14 patients with knee pain) underwent 3T MRI with sagittal 2D T2-SE thick-slices (TR/TE=3080/36ms, voxel size=0.5×0.5×2.0mm3, number of slices=53, scan time=1min45s). The experiment was repeated 7 times, while the slice stack was rotated around the phase encoding direction in increments of 26 degrees (77°, 103°, 129°, 154°). SRR was performed to an isotropic high-resolution grid with voxel size 0.5×0.5×0.5mm3. Sagittal 3D TSE acquisition was also obtained (TR/TE=1300/38ms, voxel size=0.5×0.5×0.5mm3, number of slices=208, scan time=12min42s). Two radiologists evaluated subjective image quality using a Likert scale. Volunteers and a phantom (Newmatic Medical, MI, USA) were scanned twice for quantitative image evaluations. Findings were analysed using the Friedman test (p<0.05).

Results: Overall image quality and visibility of anatomic structures were significantly better with SRR than with 3D TSE, exhibiting blurrier artefacts and poor low-contrast object detectability (p<0.05). Meniscal lesions were better depicted with SRR (p<0.05), whereas observer ratings for cartilage and ligamentous lesions were similar. Relevant SRRs and CNRs were significantly higher for SRR than for 3D TSE (p<0.05). Clear improvement in resolution achievable by SRR was also confirmed by the edge response curve in the phantom study.

Conclusion: SRR of knee MRI is feasible and represents a promising alternative for high-resolution isotropic 3D imaging of the knee.

B-1128 10:38
Identification of bone marrow oedema and osteochondral injuries of the knee: diagnostic accuracy of dual-energy CT and virtual non-calcium techniques
G. Foët1, M. Catania2, A. Beltramello1, G. Carbognin1, J. Negrat/IT, Verona/IT

Purpose: To prospectively evaluate the diagnostic accuracy values of dual-energy computed tomography (DECT) to identify bone marrow oedema and osteochondral injuries of the knee.

Methods and Materials: This prospective study included 33 consecutive patients studied with DECT (80 kV and tin filter 150 kV) and MRI with short tau
inversion recovery images (STIR) within 7 days. DECT data were post-processed on a dedicated offline workstation (SyngoVia®) using a three-material decomposition algorithm. Two experienced radiologists, blinded to MRI, evaluated the presence of abnormal attenuation of each knee on DECT maps. STIR images served as the standard of reference. Diagnostic accuracy values of the DECT maps and of the CT numbers using receiver operator curves (ROC) and inter- and intra-observer agreements were calculated. A value of p<0.05 was considered statistically significant.

Results: MRI revealed the presence of bone marrow oedema of the knee in 17/33 cases (51.6%), with 10 osteochondral injuries. DECT numbers were significantly different between positive (mean -72.4 ± 41.6HU) with a p value <0.001. Using -15HU cutoff to identify bone marrow oedema, the sensitivity, specificity, PPV and NPV and accuracy of DECT were 89.5, 92.9, 94.4, 86.6 and 90.9%, respectively. The inter-observer and intra-observer agreements were near perfect (κ=0.82 and κ=0.86, respectively).

Conclusion: DECT represents a reliable imaging tool for demonstration of bone marrow oedema and osteochondral injuries of the knee.
Methods and Materials: T2 CartiGram (CG) sequence of knee joint was performed on four healthy asymptomatic volunteers (age 32±3 years) on 3.0T and 1.5T (GE healthcare) MRI scanners in addition to the standard MRI. In the first part of the study, for evaluating the same day variability at 1.5T and 3.0T, CG was performed twice with a break of 5 minutes and subject lying in the same position inside the scanner. In the second part, for evaluating inter-day variability in the same scanner, CG was performed twice with a gap of 1 month on 3.0T scanner. From the T2 map, mean values and coefficient of variation were calculated.

Results: The intra-day coefficient of variations for the lateral and medial side were 0.49%, 0.77% for the cartilage, 1.57%, 1.60% for muscle and 2.2%, 2.7% for meniscus on 1.5 T whereas the similar values were 0.69 %, 0.6 % for cartilage, 0.66 %, 1.2 % for muscle and 3.0 and 1.8 for meniscus on 3 T. The temporal coefficient of variations for the lateral and medial side were 3.2%, 4.7% for the cartilage, 1.17%, 0.46% for muscle and 7.8%, 4.3% for meniscus.

Conclusion: The intra-day variability of the T2 values was lowest for the cartilage on 1.5 T and 3T scanner whereas the temporal variability was lowest for the muscles.

Author Disclosures: R. Bhattacharjee: Employee; Philips Healthcare.

B-1134 11:26
Time-saving opportunities in radiology: accurate structural imaging and T2 mapping of cartilage and meniscus in knee osteoarthritis using a 5-minute DESS MRI scan
S.M. Eigenraam, A.S. Chaudhari, M. Reijman, B.A. Hargreaves, G.E. Gold, E.H.G. Oei; Rotterdam/NL, 2Stanford, CA/US (s.eigenraam@erasmusmc.nl)

Purpose: Quantitative T2 measurements and structural assessment of knee osteoarthritis (OA) currently require multiple separate MRI sequences, resulting in long acquisition times. We evaluated a 5-minute double-echo steady-state (DESS) sequence for simultaneous T2 relaxation of cartilage and meniscus, and structural OA assessment, in patients with no, mild and moderate knee OA.

Methods and Materials: We scanned 53 patients using a 5-minute 3D DESS-sequence: 20 patients with no OA (Kellgren-Lawrence grade (KLG) 0), 18 patients with mild OA (KLG2) and 15 patients with moderate OA (KLG3). We performed single-slice T2 measurements of four cartilage and four meniscus ROIs using DESS and compared with the MRI Osteoarthritis Knee Score (MOAKS) using DESS with multiplanar reformatting. Statistical testing between KLG for T2 and MOAKS was performed using ANOVA, correlations between KLG and T2 or MOAKS per ROI were assessed using linear regression analyses.

Results: In cartilage, mean T2 values were 36.1±4.3, 40.6±5.9 and 47.1±4.3 ms for KLG0, KLG2 and KLG3, respectively (p<0.001). In menisci, mean T2 values of 15±3.6, 17.5±3.8 and 20.6±4.7 ms were found for KLG0, KLG2 and KLG3, respectively (p=0.001). The correlation between KLG and T2 ranged from 0.43 to 0.71 and from 0.39 to 0.51 in cartilage and meniscus ROIs, respectively. The correlation between KLG and MOAKS ranged from 0.50 to 0.62 and from 0.29 to 0.52 in cartilage and meniscus ROIs, respectively.

Conclusion: T2 measurements and structural imaging biomarkers of cartilage and meniscus, simultaneously acquired with a 5-minute DESS-sean, can distinguish different stages of OA, making this sequence an accurate and time-saving tool for knee OA research.

B-1135 11:34
Do Ahlbäck scores identify subgroups with different magnitudes of cartilage thickness loss in patients with moderate to severe radiographic osteoarthritis? Data from the OAI
S. Hangaard1, M. Boesen2, H. Biddal2, W. Wirth1, F. Frederiksen/DK, 2Copenhagen/DK, 3Salzburg/AT (sth.hangaard.01@region.dk)

Purpose: To investigate if the Ahlbäck scoring system of radiographic knee osteoarthritis (OA) is able to further subdivide KLG-3 and -4 patients into groups with different sensitivity to change in cartilage thickness over one year in patients with moderate to severe knee OA.

Methods and Materials: One-year femorotibial cartilage thickness change was obtained from 3D-cartilage sensitive MRI data in 108 osteoarthritis initiative (OAI) participants with moderate to severe radiographic knee OA KLG-3/4. Ahlbäck scores were available from the public available OAI-database. Ahlbäck scores were performed using the same baseline x-rays. Subregional change in cartilage thickness was assessed after manual segmentation of weight-bearing femorotibial cartilage at baseline and 1 year. Cartilage thickness change was analysed in the entire femorotibial joint (FTJ), the medial compartment (MFTC) and the lateral compartment (LFTC). One-year change was calculated for FTJ, MFTC, LFTC and the location-independent ordered values 1 and 16 (OV1/OV16) representing the subregions with largest loss (OV1) and gain (OV16) within each knee.

Results: Of the 108 patients, n=30/78 had KLG-3/4. The corresponding Ahlbäck scores (1-5) were n=30/33/36/9/0. Cartilage thickness changes between Ahlbäck groups showed no statistical significant difference for FTJ, MFTC, LFTC and OV1, but change in OV16 was significantly higher in Ahlbäck-4 knees (p=0.03) compared to Ahlbäck 1-3 knees.

Conclusion: Radiographic knee OA grading with Ahlbäck scores was not superior to KLG for prediction of cartilage thickness loss over one year, in patients with moderate and severe knee OA supporting the continuous use of the easier and more widely used KLG in clinical trials.

B-1136 11:42
Association between baseline meniscal extrusion on MRI and long-term incident knee osteoarthritis in two different cohorts
J. Van der Voet1, D. Chiphof, D. Vroegindeweij, S. Bierma - Zeinstra, J. Runhaar, E. Oei; Rotterdam/NL (javandervoet@gmail.com)

Purpose: Previously, we identified a significant association between meniscal extrusion and short-term incident knee osteoarthritis (KOA). To validate these findings, we evaluated long-term incident KOA in knees with meniscal extrusion, using two cohorts.

Methods and Materials: We used data from the PROOF study, which evaluated a high-risk population of overweight women, and the Rotterdam Study (RS), a prospective population-based cohort study. Meniscal extrusion was defined as ≥ 3 mm on MRI. Outcomes were incident radiographic (KL ≥ grade 2) or clinical KOA according to the ACR criteria, assessed at 6.6 years (PROOF) and 5.1 years (RS). With generalized estimating equations, we determined the association of knees with baseline meniscal extrusion and incident KOA, adjusted for baseline differences. Furthermore, we computed the population attributable risk percentage (PAR%) of meniscal extrusion.

Results: PROOF: 421 knees were available for analysis of which 23% had baseline meniscal extrusion. Incident radiographic KOA was borderline significantly higher in knees with meniscal extrusion compared to those without (OR 1.95, 95% CI 0.95, 3.98 PAR 11%). Incident clinical KOA was significantly higher (OR 2.33, 95% CI 1.19, 4.59, PAR 16%).

RS: 891 knees were analyzed of which 6% showed meniscal extrusion. Incident radiographic KOA was significantly higher in knees with extrusion (OR 2.54, 95% CI 1.12, 5.76, PAR 30%). Incident clinical KOA was borderline significantly higher (OR 2.05, 95% CI 0.84, 4.65, PAR 31%).

Conclusion: Meniscal extrusion is significantly associated with long-term incident KOA. A high number of incident cases were attributable to meniscal extrusion.

B-1137 11:50
The prevalence of Baker’s cyst in relation to the arrangement pattern between medial head of gastrocnemius tendon and semimembranos tendon

Purpose: To investigate the cause of Baker’s cyst by analyzing the arrangement pattern that can give much friction between medial head of gastrocnemius tendon (MHGCT) and semimembranos tendon (SMT).

Methods and Materials: From August 2017 to February 2018, patients who underwent knee MRI with “Baker’s cyst” in PACS were searched. Patients (control group) who did not have Baker’s cyst in the knee MRI performed in the same period were also searched. For screening purpose, age and gender were adjusted by propensity score matching and 116 patients were selected. For the imaging analysis, the arrangement pattern between MHGCT and SMT was classified into 3 types (type 1: concave SMT, type 2: flat SMT, type 3: round SMT) and type 2 and 3 hypoththesized that they would induce Baker’s cyst better. When imaging analysis was performed, presence of osteoarthritis, major ligaments and tendons tear were also described. Demographic findings was investigated through medical chart review. Univariable logistic regression was performed on all variables and the odds ratio was calculated.

Results: The frequency of type 1, 2 and 3 was statistically significant depending on the presence or absence of Baker’s cyst (p<0.001). The frequency of type 3 (n=33, 70.21%) was the highest in Baker’s cyst group and type 1 (n=70, 64.81%) was the highest in non-Baker’s cyst group. Baker’s cyst was more common in type 2 (OR: 2.59, CI: 1.30-5.17, p=0.0068) and type 3 (OR: 4.11, CI: 1.91-8.33, p=0.003).

Conclusion: The arrangement of MHGCT and SMT is considered to be a factor affecting the formation of Baker’s cyst.
Renal and adrenal tumours

B-1138 10:30

SS 1407

Which is the accuracy for malignancy of contrast-enhanced ultrasound of Bosniak 2F cystic renal lesions incidentally found on CT and MRI? A. Cretese, G. Como, R. Girometti, L. Cereser, G. Giannarini, C. Valotto, C. Zulani, Udine/IT (andrea.cretese@gmail.com)

Purpose: To investigate the accuracy of contrast-enhanced ultrasound (CEUS) in detecting malignancy in incidentally found complex renal cysts (CRC) previously categorized as Bosniak ≥2F.

Methods and Materials: We analyzed a retrospective cohort of 18 patients who underwent CEUS between July 2015/July 2018 to assess CRC categorized Bosniak ≥2F after incidental detection on computed tomography (CT) or magnetic resonance imaging (MRI). CEUS was performed by one radiologist with 15 years of experience using a Logiq E9 ultrasound system (GE healthcare, Chicago, USA) and i.v. administration of 2.4 mL INN-sulphur hexafluoride, categorizing CRC according to Bosniak classification. After matching CEUS with the standard of reference (postoperative pathology or imaging follow-up up to 12 months), we calculated per-lesion sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for malignancy, using a CEUS-based Bosniak ≥3 categorization.

Results: CEUS found a total of 20 CRC, categorizing them as Bosniak ≥2F, Bosniak 3, and Bosniak 4/4 in 8/20 (40%), 7/20 (35%), and 5/20 (25%) cases, respectively. Based on CEUS findings, patients were referred to surgery (10/18 cases) or imaging follow-up (8/18 cases), with a final diagnosis of malignancy in 10/20 CRC (50%). Sensitivity, specificity, PPV and NPV of CEUS were 100%, 83%, 84%, and 100%, respectively. CEUS changed initial Bosniak categorization in 7/20 lesions (35%) (p<0.05; McNemar test), including 10/18 cases (all malignant on pathology) and 4 downgraded cases (all stable at follow-up).

Conclusion: CEUS was accurate in assessing malignancy in incidentally CRC, changing initial Bosniak categorization in about one third of patients.

B-1139 10:38

Contrast-enhanced computed tomography (CECT) quantitative radiological parameters to predict outcome in patients with renal cell carcinoma (RCC) L. Basset, C. Baroudonnens1, A. Sorrentino1, G. Perugin1, F. Rosa1, A. Olivero1, N. Testino2, C. Terrone1, C. Neumaier1, Genova1/IT, Avellino/IT, Sena/IT, Genova1/IT (bukabasso89@gmail.com)

Purpose: Visceral and subcutaneous adipose tissue (VAT and SAT) are clinically associated with increased risk of chronic kidney disease (CKD), due to chronic inflammatory response after surgery. The aim of this retrospective study was to evaluate the usefulness of computed tomography (CT) in patients with renal cell carcinoma (RCC) for the evaluation of kidney volumes and its clinical association with increased risk of chronic kidney disease (CKD), due to chronic inflammatory response after surgery. The 10:30

Methods and Materials: We enrolled 112 patients who underwent radical nephrectomy. Pre-operative and follow-up eGFR was calculated using the CKD epidemiology study equation. CT performed prior to surgery was evaluated by two expert radiologists. VAT, SAT, total adipose tissue (TAT) and abdominal circumference were calculated on an axial plane passing through umbilical plane. VAT%, tumour volume (TV), functioning resected volume (FRV) and contralateral kidney volume (CKV) were calculated using dedicated segmentation protocol and analysed with a simple linear regression model.

Results: Mean BMI was 26.0 kg/m. Mean eGFR was 70.1 ml/min decreasing to 53.88 ml/min at 12 months. Mean VAT was 158.48 cm. Mean TV was 200.25 cm with a mean VAT% of 44%. Mean CKV was 162.31 cm. Mean FRV of 139.96 cm. Pre-op eGFR (p<0.001), BMI (p<0.021), CKV (p<0.02) and %VAT (p<0.007) showed significant correlation with decrease of eGFR 12 months after surgery.

Conclusion: Other than the well-known factors predicting the decrease of renal function after nephrectomy, the CKV and VAT% could predict patient outcome in pre-operative evaluation.

B-1140 10:46

Kidney volumes in living donors: does size really matter? F.R. Schwarz1, B. Shaw2, R. Lerebours1, F. Vernuccio1, F. Gonzalez1, L. Hurwitz-Koweek1, K. Ravindra1, D. Marin1, Dunham, NC/US, 2Palermo/IT (fredreginotto@oaann.schwarz@duke.edu)

Purpose: Computed tomography angiography (CTA) is performed before transplant surgery to assure the smaller donor kidney is transplanted and assess for blood supply and possible disease. This study assesses the relationship between renal diameters and renal volumes, as well as the frequency of appropriate renal selection for transplant using conventional renal diameters and the long-term outcome in donors.

Methods and Materials: This is a HIPAA-compliant, IRB-approved study, 50 renal donors were identified from 2010-2018 (mean age 40 years; 30 F, 20 M). Renal size was assessed by measuring renal diameters in three dimensions and volume; arterial supply and venous drainage were assessed. Glomerular filtration rates (GFR) were documented before surgery, within 24 hours post–transplant, at 6, 12 and 24 months. Descriptive statistics (means, SD, IQR), paired t tests and Spearman’s rank correlations were used for comparisons.

Results: The left kidney had a larger average volume (165 vs 154.6 cm3; P<0.01) than the right but craniocaudal lengths were similar (10.9 vs 10.6 cm). 10% of kidneys had two or more arteries, 6% had abnormal venous drainage. GFR recovered from 51.8 mL/min/1.73 m2 directly to 63.9 mL/min/1.73 m2 24 months after surgery. There was a strong correlation between craniocaudal and laterolateral diameters and volume (P<0.01). The larger kidney was transplanted in 28% of cases which had no statistically significant impact on long-term renal function (P>0.01).

Conclusion: Renal volume correlates well with conventional diameters and transplanting the larger donor kidney had no long-term detrimental effect on donor kidney function.

Author Disclosures:
F.R. Schwarz: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology. L. Hurwitz-Koweek: Research/Grant Support; Siemens Healthineers, Grant to department of Radiology.

B-1141 10:54

Native T1 mapping as an in vivo biomarker for the identification of higher grade renal cell carcinoma L.C. Adams, Berlin/DE

Purpose: To identify higher grade clear cell renal cell carcinoma (cRCC) with native T1 mapping and to histologically correlate the results with the collagen volume fraction.

Methods and Materials: For this institutional review board-approved, singlecenter prospective study, 68 consecutive patients received abdominal MRI scans at 1.5 T between January 2017 and July 2018, using a modified Look-Locker inversion recovery (MOLLI) sequence. 30 patients with cRCC (20 men, mean age 61.9 years;10.1), who underwent partial or radical nephrectomy and histological grading according to the ISUP classification, and a separate healthy cohort of 30 individuals without renal malignancies or complex cysts (18 men, mean age 59.7±14.6 years), met the eligibility criteria. T1 maps were quantitatively measured with region of interest (ROI) measurements in T1 maps. Quantification of the collagen volume fraction was performed on histological sections (picrosirius red staining).

Results: Native T1 values were significantly lower for lower grade cRCC (ISUP 1-2) compared to higher grade cRCC (ISUP 3-4) (p<0.001; A cut-off value of 1101 ms distinguished higher grade from lower grade tumours with a sensitivity of 100% (95% CI: 0.69-1.00), a specificity of 85% (95% CI: 0.62-0.97) and an accuracy of 90% (95% CI: 0.73-0.98). Native T1 values were significantly associated with the histological collagen volume fraction (p<0.05). Furthermore, T1 times in the renal cortex, medulla and tumour tissue showed an excellent inter-observer agreement.

Conclusion: Native T1 mapping could represent an in vivo biomarker for the differentiation of lower and higher grade cRCC, providing incremental diagnostic value beyond qualitative MRI features.

B-1142 11:02

Reducing radiation dose while maintaining observer performance using prior iterative reconstruction (PIR) in multiphase dual energy renal CT P. Navin1, A.F. Halawesh1, B. Schmidt2, B. Kim2, M. Wells2, A. Khandelwal2, T. Moor1, McCollough1, J. Fletcher1, Galway/IE, 2Rochester, MN/US (padminavin@yahoo.co.uk)

Purpose: To investigate the dose reduction potential using a novel prior iterative reconstruction (PIR) algorithm in multiphase renal dual-energy (DE) CT.

Methods and Materials: Projection data from multi-phase renal DECT examinations was collected and noise inserted (using a validated technique) to simulate 60% dose reduction and reconstructed images were used as input to the PIR algorithm. Three GU radiologists blindly examined datasets (two reading sessions) using either full dose or 40% dose PIR image sets.
B-1143 11:10
Differentiation of adrenal adenomas from adrenal metastases using single-phased dual energy CT: a comparison to MRI
M.T.O. Winkelmann, M.N. Bongers, Tübingen/DE
Purpose: Aim of this study was to evaluate accuracy of dual energy CT (DECT) iodine and fat quantification and virtual-unenhanced imaging (VNC) for differentiation between adrenal adenomas and metastases using MRI as a reference.
Methods and Materials: 47 patients with 51 lesions (female:male=29:18, mean age:67 years) having received clinically indicated DECT and MRI (mean interval: benign 2.9 months/ malignant 0.28 months). Quantitative parameters such as VNC values, fat fraction, iodine density and mixed image (CT-mixed) values were collected. MRI in- and opposed phase and contrast enhanced imaging were used as a reference. Mean values of VNC, fat fraction, iodine density and CT-mixed in DECT images were compared between adenomas and metastases using non-parametric tests. Diagnostic accuracy was assessed by calculating receiver operating characteristics (ROC). Results are given as median with interquartile ranges.
Results: Iodine density and fat fraction values in DECT showed significant differences between adenomas (2.44±1.16 [1.7, 2.9]; 31.1% [27.1, 34.6]) and metastases (1.62±0.25 [1.6, 12.4, 23.4]) (all p<0.03). Analysis of VNC revealed significant differences between adenomas (5.4±2.6 [12.7] and metastases (27.6±15.8, 32] (p<0.001). No significant differences between adenomas (59.3±46.7, 75.4) and metastases (62.4±43.3, 89.2) were detected in CT-mixed. ROC analysis revealed significantly higher AUC values and increased sensitivity for VNC and fat fraction (AUC = 88%; sensitivity = 71.4%; specificity = 82.9%) than CT-mixed (53.6%:51.8%: p=0.005).
Conclusion: DECT is suitable for differentiation between adenomas and metastases by quantification of fat fraction and computation of VNC images with high diagnostic accuracy.
B-1144 11:18
Incidental adrenal masses (IAM) at basal CT or enhanced CT: differentiating non-functioning adenomas from tumour lesion using histogram and texture analysis (TA)
G. Stranieri, A. Priola, D. Basile, S. Priola, A. Veltri, Turin/IT (giuseppestranieri92@gmail.com)
Purpose: Usefulness of CT histogram and texture analysis to differentiate non-functioning adenomas from malignant lesions in the setting of IAM found at basal CT or enhanced CT.
Methods and Materials: We extracted retrospectively patients who underwent basal CT (IAM: medium density=10HU; % negative pixels=10%) or in portal phase CT (medium density=20HU) from January to December 2017. We included 70 IAM: 46 non-functioning adenomas and 24 malignant lesions. The reference standard was histological response or their typization with multiphasic enhanced-HCT, chemical-shift magnetic resonance or PET-CT. A commercial software (LifeEX) was used to obtain textural parameters and histogram analysis. The results were compared with logistic regression model to estimate discrimination capability.
Results: At basal CT, the two groups shown significative differences in minimal value HU (p=0.02) and in LRRHE of GLRLM matrix (p=0.02) with AUROC of 0.822 and 0.856 (LRHGE: sensitivity 79%; specificity 90%). The logistic analysis demonstrated the LRHGE as an independent predictive parameter in univariate (Odds Ratio[OR]=1.0001; p=0.04) and multivariate analysis after correcting for age and size.AAt enanched-CT, the two groups shown significative differences in GLRLM and GLZLM matrices: RLNU and GLNU were the best discriminators (p=0.03, AUROC=0.719, sensitivity 70%, specificity 87%, respectively). The logistic analysis found RLNU as the only significative parameter at multivariate analysis (OR=1.0012; p=0.04). The Histogram analysis didn’t show difference between groups, either at basal or enhanced-CT (p>0.05).
Conclusion: Our study shows that TA could be useful to characterize IAM at CT, avoiding additional risks or costs linked to other studies.
B-1145 11:26
Reassessment the ability of renal CE-CT for avoiding pathological upstaging of clinical T1 to pathological T3 renal cancer in the era of robotic partial nephrectomy
Purpose: Tumour invasion into the renal sinus fat or segmental branches of the renal vein are now considered important factors for pathological upgrading from pT1 to pT2 and early recurrence of small RCC after partial nephrectomy. We evaluated the ability of multiphasic renal CECT with focusing on the tumour extension into the renal sinus.
Methods and Materials: We retrospectively evaluated surgically proven 214 RCCs in 212 patients underwent preoperative multiphasic thin-slice (≤1mm) CECT on 3rd generation dual-source CT scanner. A board-certificated radiologist blinded to the surgical finding scored probability of sinus fat invasion (SFI), perinephric fat invasion (PFI), and renal vein invasion (RV) using a 5-point Likert scale.
Results: 46 RCCs were diagnosed as ≥pT3a (SFI: 13; PFI: 28; RV: 33). Sensitivity, specificity, accuracy and Az-value for diagnosing each pT3-factor were 85%, 95%, 95%, 0.88 for SFI; 71%, 98%, 94%, 0.75 for PFI; and 85%, 85%, 0.94 for RV: respectively, while overall performance of diagnosing entire pT3 disease were 96%, 97%, 97%, 0.88, Soft bulging into the sinus fat was demonstrated in 41% of pT2 tumour and 17% of ≥pT3 tumour, while irregular bulging was found in 19% (32/168) of pT2 tumour and in 76% (36/46) of ≥pT3 tumour.
Conclusion: Detailed analysis of thin-slice renal CECT could predict the possible tumour invasion into the renal sinus fat or the peripheral branches of the renal vein, and could be useful for preventing pathological upstaging of CT1 to pT3 in cases of small RCC treated with partial nephrectomy.
Author Disclosures: S. Takahashi: Research/Grant Support; Siemens Healthineers.
Efficacy of Raysum image in urolithiasis detection
K.K. Lau, S. Deb, A. Kuganesan; Melbourne/AU (kenpllau@gmail.com)

Purpose: Baseline abdominal radiographs (AXR) are commonly performed for computed tomography urinary tract (CTU) proven calculi. Subsequent AXR may be used to assess urolithiasis progression. A virtual ray sum image (RSI) from CTU dataset can be generated with a similar AXR appearance. The aim of this retrospective study was to determine the efficacy of the RSI in detecting urolithiasis.

Methods and Materials: All consecutive adult patients with urolithiasis positive CTU and an AXR within 24 hours of CTU and similar patient number with negative CTU in 5 month-period were included. Patients who had the baseline AXR > 24 hours after CTU were excluded. AXR and RSI were blindly reviewed by two radiologists. Patient thickness, presence of excess gas/faecal material, calculus size, mean calculus Hounsfield unit (HU) and location were analysed to determine if they had urolithiasis.

Results: 152 calcium in 50 adult patients were included with RSI sensitivity of 44% (95% CI 36-52) and AXR 30% (95% CI 22-38). There was substantial agreement between the two techniques with Kappa=0.70 (95% CI 0.58-0.81, p<0.001). No visible calculi on RSI became visible on AXR. No false positive was seen on RSI. Logistic regression analyses demonstrated calculus size and mean calculus HU significantly affected sensitivities of both RSI and AXR.

Conclusion: Raysum Image as a post processed image derived from CTU dataset may remove the baseline AXR in patients with CT proven urolithiasis. This would reduce patient radiation dose and streamline workflow in busy radiology departments.

Diagnostic accuracy of dual-energy CT for renal mass evaluation: systematic review and meta-analysis
N. Panvinì, D. Bellini, A. Laghi, D. Marin, B.N. Patel, C.L. Wang, I. Carbone, A. Miletto, Latina/IT; 2, Rome/IT; 3, Durham, NC/US, 4, Stanford, CA/US, 5, Seattle, WA/US (npavinini88@gmail.com)

Purpose: To perform a systematic review and meta-analysis to evaluate the diagnostic accuracy of dual-energy CT (DECT) for renal mass evaluation.

Methods and Materials: In March 2018, we searched MEDLINE, Cochrane Library, Embase and Web of Science databases. Analytic methods were based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Pooled estimates for sensitivity, specificity, and diagnostic odds ratios were calculated for DECT-based virtual monochromatic imaging and iodine quantification techniques as well as for conventional attenuation measurements from renal mass CT protocols. If was used to evaluate heterogeneity. Methodological quality of included studies and potential bias were assessed using items from Quality Assessment Tool for Diagnostic Accuracy Studies-2.

Results: Of the 1043 articles initially identified, 13 were selected for inclusion (969 patients, 1193 renal masses). Cumulative data of sensitivity, specificity and summary diagnostic odds ratio were 83% (95%CI: 76-89%; F: 88.1%), 75% (95%CI: 70-80%; F: 99.1%), 183.4 (95%CI: 30.7-1093.4; F: 61.6%) for virtual monochromatic imaging; 99% (95%CI: 97-100%; F: 17.6%), 91% (95%CI: 89-94%; F: 84.2%), 511.5 (95%CI: 217-1201; F: 0%) for iodine quantification, respectively. No significant differences in area under the curve were found between iodine quantification and conventional attenuation measurements (P>0.7).

Conclusion: DECT yields high accuracy for renal mass evaluation. Determination of iodine content with the iodine quantification technique demonstrates diagnostic accuracy similar to conventional attenuation measurements from renal mass CT protocols. The iodine quantification technique may be used to characterize incidental renal masses when a dedicated renal mass protocol is not available.
Purpose: To assess the reported underestimation rate (UR) of atypical ductal hyperplasia (ADH) diagnosed percutaneously using surgical excision (SE) or follow-up for conservative management (CM).

Methods and Materials: A systematic search was performed in October 2018 using MEDLINE and EMBASE for studies reporting the UR for pure ADH assessed by VABB. The study was registered on PROSPERO and written following the PRISMA statement. The pooled UR (pUR) was calculated using the random-effect model; subgroup and meta-regression analyses for the assessment of potential UR-predictors. The Newcastle-Ottawa scale and Egger test were used for study quality and publication bias, respectively.

Results: Of 521 articles, 93 were analysed totalling 177,001 percutaneous biopsies, 7,625 of them (4.2%) being ADH (5,916 SE, 1,709 CM). Thirty-seven studies used core-needle, 36 vacuum-assisted biopsy, 17 mixed, 3 did not report; 32 stereotactic guide, 13 ultrasound, 9 MRI, 6 mixed, 33 did not report. Heterogeneity was high (I²=80%). pUR was 27.0% (95% CI 24.2-30.0%), 29.2% (95% CI 26.4-32.3%) for SE and 5.5% (95% CI 3.7-8.0%) for CM (p<0.001). When reported, the proportion of upgrade to invasive cancer versus ductal carcinoma in situ was 19.2%-9.2% overall, 29.2%-8.6% for SE, 5.5%-3.7% for CM (p<0.001). Subgroup analysis found significant impact of type of needle (p=0.001) and type of imaging guiding the biopsy (p<0.001) on the surgical pUR. Quality of studies was low-to-medium. No risk of publication bias (p>0.081).

Conclusion: The pUR for ADH was 27.0%, higher for SE (29.2%), but clinically relevant (5.5%) also for CM.

B-1152 10:54
Radiologic and clinicopathologic associations with upgrade to malignancy in high-risk breast lesions
C. You, Y.J. Gu, S. Chen, X.X. Shen, W.J. Peng; Shanghai/CN (youchao8888@aliyun.com)

Purpose: To assess the radiologic and clinicopathologic features of high-risk breast lesions (HRLs) diagnosed with biopsy and further to develop a prediction model to distinguish HRLs that upgrade to malignancy after surgery.

Methods and Materials: This retrospective study included 267 patients with biopsy-proven HRLs who performed both mammography (MG) and MRI preoperatively and underwent surgical excision between January 2017 and March 2018. Positive predictive value (PPV) for upgrade to malignancy in all HRLs and specific for each sub-category were evaluated. Multivariate analysis was conducted to identify association between clinical (age, family or personal history of breast cancer), radiological findings before biopsy (lesion size, imaging characteristics and final BI-RADS category of both MG and MRI) and final excision outcome.

Results: The overall upgrade rate of HRLs to malignancy was 31.4% (84 of 267). The most common HRL was ADH (58.8%, 157 of 267) and the most common upgrade type of malignancy was DCIS (54.8%, 46 of 84). At multivariate analysis, upgrade was more likely to be seen in mass lesion at MG (OR = 1.69; 95% CI: 1.28, 3.72) and in moderate or marked background parenchymal enhancement (SPE) breast at MRI (OR = 1.25; 95% CI: 2.3, 5.28). The category of BI-RADS 4-5 versus BI-RADS 1-3 was also independently associated with upgrade.

Conclusion: The rates of upgrade to malignancy in biopsy-proven HRLs were high, at around 31%. The presence of a mass at MG, moderate or marked BPE at MRI, and BI-RADS 4-5 category may represent useful predictors of upgrade.

B-1153 11:02
Positive predictive value for malignancy of uncertain malignant potential (B3) breast lesions diagnosed on vacuum-assisted biopsy: is surgical excision still recommended?
F. Balati, F. Comiolo, M. Lucioni, G. Di Leo, T. Schiattino, P. Lomoro, S. Fabbri, G. Scaperrotta; Milan/IT (francesco.balati@hotmail.it)

Purpose: Breast lesions classified as “uncertain malignant potential” are a heterogeneous group of abnormalities with an increased risk of associated malignancy. Clinical management of B3 lesions diagnosed on vacuum-assisted breast biopsy (VABB) is still challenging: surgical excision is no longer the only available treatment and VABB may be sufficient for therapeutic excision. The aim of this study was to evaluate the positive predictive value (PPV) for malignancy in B3 lesions that underwent surgical excision, identifying possible up-grading predictive factors and characterizing the malignant lesions eventually diagnosed. These results were compared with a subset of patients with B3 lesions who underwent follow-up.

Methods and Materials: 1250 VABBs were performed between January 2006 and December 2017 at our centre. 150 B3 cases were diagnosed and 68 of them underwent surgical VABB. VABB findings were compared with excision histology. A PPV for malignancy for each B3 subtype was derived.

Results: The overall PPV rate was 28%, with the highest upgrade rate for atypical ductal hyperplasia (41%), followed by classical lobular neoplasia (29%) and flat epithelial atypia (11%). Only two cases of carcinoma were detected in the follow-up cohort, both associated with atypical ductal hyperplasia at VABB.

Conclusion: Open surgery is still recommended in case of atypical ductal hyperplasia while, for other B3 lesions, excision with VABB-only may be an acceptable alternative if radio-pathological correlation is assessed, if all microcalcifications have been removed by VABB and if the lesion lacks high-risk cytological features.

B-1154 11:10
Second-line vacuum-assisted excision biopsy with 8G needle for the management of B3 microcalcifications: preliminary results
C.M. Weiss, E. Di Gaetano, S. Platatori, A. Cattarin, D. Bragagnolo, G. Morana; Treviso/IT (cmweiss@me.com)

Purpose: To assess the clinical impact of the new management pathway incorporated a second-line vacuum-assisted excision biopsy (VABE) with 8G needle for microcalcifications of uncertain malignant potential (B3).

Methods and Materials: A retrospective analysis was undertaken of all B3 lesions on first-line vacuum-assisted biopsy (VAB) with 10G needle for microcalcifications between January 2017 and January 2018. Following a VABE, all cases were discussed at the multidisciplinary meeting (MDM) to decide upon management options, referral for 5 years of annual mammographic surveillance (MS) or surgical biopsy (SB). Outcome measures assessed included final diagnosis, frequency of SB, impact on management and comparison with previous results.

Results: In 143 VAB for microcalcifications we observed B3 lesions in 33/143 (23%) patients (mean age 54; range 42-76), 9/13 (7%) patients underwent subsequent SB due to imaging findings and pathological results (e.g. ADH expression in B3), 39 with a malignant result. The remaining 24/33 (73%) patients were referred to VAEB: 11/24 (46%) B2 lesions and 13/24 (54%) B3 lesions. After MDM, 21/24 (87.5%) patients with completely removed microcalcifications (11B2; 10B3) were referred to MS and 3/44 (12.5%) undergoing SB received a final benignity diagnosis (3/3; 100%).

Conclusion: In our study, the overall malignant lesions’ incidence in B3 microcalcifications was 3/33 (9%), similar to 10% (3/29) of the previous period January 2015 to December 2016 in which all VAB B3 underwent SB. The new pathway with second-line 8G VABE has reduced the number of benign SB by 62% while maintaining the same rate of malignancy. MS results are still ongoing.

B-1155 11:18
Percutaneous ultrasound-guided excision biopsy (VABB) system of breast lesions with imaging-histology discordance
C. Depretto, F. Balestra, F. Cartia, C. Ferranti, G. Scaperrotta; Milan/IT (catherine.dp@gmail.com)

Purpose: To assess the performance of percutaneous ultrasound-guided excision biopsy of radiologically-histologically discordant breast lesions as an alternative to surgical excision.

Methods and Materials: We retrospectively evaluated 159 breast lesions in 159 patients which undergo a 14G ultrasound-guided biopsy and subsequent percutaneous ultrasound-guided excision with VABB system between January 2015 and April 2018. Lesions, with an average diameter of 10.3 mm (range 3-30 mm), showed suspicious ultrasound imaging (BI-RADS 4) but histological outcome non-malignant: B1 (n = 18 patients), B2 (n = 109) and B3 (n = 32). We assessed: the update rate (UR), the technical success (TS) and the technical efficacy (TE) of the procedure and the delayed false-negative results (DR), with radiological follow-up in the following two years; procedural complications were assessed.

Results: The post-VABB histological outcomes were B1 (n = 7), B2 (n = 117), B3 (n = 24) and B5 (n = 11), of which 5 CDI (2 associated to DCIS) and 6 DCIS, all surgically radicalized. The UR was 6.9%. The TS was 100%. The TE was 87.9%. The DR was 0%. There were only 7 minor complications (4.4%): haematomas, seromas and liponecrosis.

Conclusion: The study demonstrates that VABB excision can be an effective alternative to surgery for all discordant lesions; it allows to adequately diagnose malignant lesions not identified with the CNB, without determining either diagnostic delays or major complications. Compared to surgical treatment, it has lower costs, more simplified and rapid management and almost no cosmetic impact for patients.
B-1156 11:26

Minimally invasive excision of suspicious breast lesions

N.M. Abdel Razek; Cairo/EG (naglaabdelrazek@yahoo.com)

Purpose: To assess the diagnostic efficiency of BLES is a management option for small suspicious breast lesions.

Methods and Materials: The study is a prospective one conducted during the period from February 2011 to January 2018, approved by the ethics committee. The study included 435 patients with small suspicious non-palpable breast lesions categorized as BIRADS 4 & BIRADS 3 with positive family history for breast cancer. All cases were histopathologically diagnosed and the results were compared to the results of open surgery.

Results: 435 suspicious lesions were successfully removed using the BLES, 19.3% (84/435) were benign including fibrocystic disease, sclerosing adenosis, radial scars and papillomas without atypia. 38.2% (165/435) were high risk lesions including papillomas with atypia, ALH, ADH & 48.4% (142/435) were malignant including DCIS, LCIS, IDC & ILC. The maximum size removed was 12 mm. The margin was free in 40/142 (28.2%) and the margin was close in 45/142 (31.7%) & the margin was involved in 57/142 (40.1%) of the malignant cases (all were below 8 mm size). 22/142 proven malignant lesions were exposed to re-surgery and in 20/142, no surgery after BLES, only radiotherapy and sentinel node biopsy. BLES is 100% as sensitive as the OB regarding the concordance and sensitivity with no underestimation.

Conclusion: BLES could be an efficient management for small breast carcinomas if complete excision with free margin was achieved yet still it is the decision of the MDT. Further group work and multicenter studies are required to set guidelines for its use as an optional management for T1 cancer.

B-1157 11:34

Performance of breast lesion excision system (BLES) in a complete removal of small clusters of suspicious microcalcifications proved malignant

A. Christou1, V. Koutoulidis2, D. Kouloucheri2, E. Panourgias2, C. Zografos2, G. Zografos2,3, Brightuk/UK, Athens/GR (alexandrichristou@gmail.com)

Purpose: To retrospectively assess the role and performance of BLES in excision of small clusters of microcalcifications proved histopathologically to be cancers.

Methods and Materials: Between January 2014 and 2016, 90 cases of microcalcifications were diagnosed as cancers in our department through the course of BLES biopsy under stereotactic guidance. 20-mm probe was used in all cases. From these, 54 had an initial mammographic size up to 14 mm and selected for statistical analysis to assess the success of the method in excision. The histopathology result of the BLES specimens were compared with the final surgical result. The mean age of our target population was 58.2 years (st.dev=8.2, range 43-79 years).

Results: 41/54 were pure DCIS, 5/54 were invasive cancers (IDC, ILC, tubular) and 8 had both invasive (6) or microinvasive (2) and DCIS components. A complete removal was achieved in 31/54 cases (57.4%). The initial mammographic size and the histopathologically free disease margins of BLES specimen were the only statistically significant predictive factors for excision. At a cut off initial size of 5 mm ROC analysis showed specificity 95.7%, and AUC 72%. and free disease margins revealed specificity 90.6%, and AUC 78% (success rate 78.2%, P<0.001). The radiology (absence of calcifications on post-BLES mammogram)-BLES pathology concordance in BLES excision showed sensitivity 89.3%. The underestimation rate was 11.1% (5/45 cases).

Conclusion: BLES under stereotactic guidance is an accurate biopsy technique with potential use as a therapeutic tool of selected cases of small cancers expressed as suspicious microcalcifications.

B-1158 11:42

Utility of diagnostic breast excision biopsies during two decades of screening mammography

J.D. Luiten1, A.C. Voogt1, V.G. Tjian-Heijnen1, J. Wesseling1, E.J.T. Luiten1, L. M. Duin2,3, Tilburg/NL, Maasacht/TL, Amsterdam/NL, Breda/TL, Nijmegen/TL (jacklynten@hotmail.com)

Purpose: We evaluated the use and value of breast screening excision biopsies for diagnostic purposes over the last decades in women undergoing mammographic screening, either as a primary procedure or following an inconclusive perioperative biopsy.

Methods and Materials: All women with an excision biopsy among 777,151 screens, obtained from January 1996 until December 2015, were included.

Results: Of 17,001 (2.2%) women referred with screen-detected abnormalities, 1007 (5.9%) underwent excision biopsy. Whereof 550 (54.6%) performed as a first diagnostic intervention, decreasing from 4.2 per 1000 screens in 1996-1997 to 0.02 per 1000 screens in 2014-2015. The remaining 457 (45.4%) excision biopsies were performed secondary to pathologic findings at percutaneous biopsy. During 1996-1997, 0.8 secondary biopsies per 1000 screens were performed, decreasing to 0.3 per 1000 in 2006-2007 and afterwards increased to 0.6 per 1000 in 2014-2015 (p=0.005). Of all 457 secondary biopsies, 274 (60.0%), had a benign pathology outcome, increasing from 39% in 1996-1997 to 76.3% in 2014-2015. Of the 30 patients with a (pre-) malignant pathology at secondary biopsy in the two most recent cohorts (2012-2015), 11 (37%) showed invasive carcinoma and 19 (63%) DCIS (of which 13 low grade DCIS).

Conclusion: Although the use of excision biopsy significantly decreased over the past two decades, we observed a significant increased rate in more recent years. Since the vast majority of currently performed excision biopsies reveals a benign diagnosis or show low grade DCIS, a secondary excision biopsy should only be considered if radiologic surveillance and repeated percutaneous biopsy continues to yield indeterminate results.
for tumor volume except for older age and presence of intra tumoral necrosis ($p=0.04$ and 0.001 respectively). The ADC value was not reliable in predicting the tendency to recur. Studying the accuracy of brain invasion detection by MRI, in comparison to the operative report, showed high specificity (83%) and low sensitivity (31%).

Conclusion: MR imaging has a promising role in predicting meningioma grade prior to surgery which can directly impact future management protocols regarding surgical planning and complications.

B-1160 10:38

Paediatric cerebellar tumours: how useful is the apparent diffusion coefficient?

A. Arous, E. Jemel, M. Krichene, O. Zayani, M. Mahmoudi, C. Drissi, S. Najj, N. Hammami, M. Ben Hammouda, F. Paris/FR, T. Tunis/TK, S. Flax/TN (eya_d@yahoo.fr)

Purpose: Determination of histological types of paediatric cerebellar tumours determines the prognosis. Diffusion-weighted imaging (DWI), through apparent diffusion coefficient (ADC) analysis, can detect diffusion within tissues which can help to appreciate tumour cellularity. The aim of our study is to evaluate the ability of ADC values to differentiate between the most common cerebellar tumours in children.

Methods and Materials: Children operated for cerebellar tumours between 2010 and 2014 were retrospectively included in this study. The minimum ADC value of solid component of tumours (ADC_{min}) and the ratio of ADC_{max} compared to normal tissue (ADC_{ratio}) were measured by two radiologists blinded to the histopathological diagnoses and compared using one-way analysis of variance (ANOVA). A receiver operator curve (ROC) analysis was also performed to generate optimal cutoffs for which the ADCmin would predict tumour histology.

Results: Our study included 31 cerebellar tumour. There were 7 pilocytic astrocytomas (PA), 14 medulloblastomas (MB) and 10 ependymomas (EP). ADC_{min} values and ADC_{ratio} were significantly different in three types of tumours ($p<0.001$). ADC_{min} values were lowest for MB (0.49 ± 0.06) without overlap with ADC_{ratio} values of EP (0.96 ± 0.12) and PA (1.27 ± 0.18). For the ROC analysis, ADC_{min} ≥ 1.21 distinguished PA from the other tumours with a sensitivity of 71.4% and a specificity of 100%. MB was discriminated from PA and EP by an ADC_{min} value of 0.7 with sensitivity and specificity of 100%.

Conclusion: ADC_{min} and ADC_{ratio} values are reliable parameters to distinguish the most common paediatric cerebellar tumours.

B-1161 10:46

The value of whole tumour-volume based ADC histogram analysis of differential diagnosis in paediatric posterior fossa tumours

S. Yuanyuan, Zhengzhou/CHN (857435584@qq.com)

Purpose: To study the value of whole tumours ADC histogram analysis of differential diagnosis in two paediatric posterior fossa tumours (ependymoma and astrocytoma).

Methods and Materials: A retrospective analysis was conducted by brain MRI examination and pathology diagnosis of 77 cases of posterior fossa tumours in children patients in our hospital. Among them, there were 41 cases of ependymoma (there were 21 males and 20 females) and 36 cases of astrocytoma (there were 19 males and 17 females). To draw the region of interest (ROI) in the ADC MR transaxial images of two groups on each layer of tumour, performing a statistical analysis on the two sets of parameters obtained for each tumor on the corresponding MR and PET images. Statistical analysis included Spearman’s correlation coefficient and discriminant analysis.

Results: Through histogram analysis of 9 parameters, these 6 parameters were statistically significant (all $P<0.05$), including mean, skewness, Perc.10%, Perc.50%, Perc.90% and Perc.99%, the remaining 3 parameters, variance, kurtosis, Perc.01%, had no significant (all $P>0.05$).

Conclusion: The whole tumours ADC grey histogram analysis of two kinds of paediatric posterior fossa tumours in the differential diagnosis has certain value. It can be used as a new auxiliary method of diagnosis in two paediatric posterior fossa tumours.

B-1162 10:54

Histogram analysis of enhancement MRI may predict relapse of primary CNS lymphoma after surgery-combined first-line chemotherapy

L. Hau, Zhengzhou/CHN (18339298063@163.com)

Purpose: Primary central nervous system lymphoma (PCNSL) is defined as extranodal lymphoma confined to the central nervous system. Despite the high complete remission rate achieved with aggressive first-line therapy, 10-35% of PCNSL are treatment refractory and 35-60% of patients relapse. Our aim was to verify if T1 enhancement MRI histogram analysis is able to predict the relapse of PCNSL after surgery combined first-line chemotherapy.

Methods and Materials: Retrospective analysis of pathologically confirmed 60 cases of PCNSL was enrolled in this study. All patients who had undergone surgery followed by histologically proved PCNSL, followed up with polychemotherapy, but suffering from a relapse were consecutively recorded 6 months later. Drawing the region of interest (ROI) on the maximum level of ADC did not match in 30% of cases. T/mean and ADC/mean also showed significant negative correlation ($r=-0.23$, $P<0.005$). The T/mean showed best accuracy to distinguish between low and high-grade gliomas using discriminant analysis. The combination of T/mean and ADC/mean reached of 100% accuracy.

Conclusion: We found a strong negative correlation between T/mean and ADC/mean. A statistical analysis performed to find out the characteristics of the significant differences between the relapse and no relapse.

B-1163 11:02

Analysis of clinical, imaging and pathological characteristics in patients with pineal parenchymal tumour of intermediate differentiation

T. Du, M. Zhu, X. Qi, K. Yao, L. Wang, X. Zhang, J. Hu, J. Gao, Beijing/CN (bridge_tq@163.com)

Purpose: To analyse the features of imaging, pathology and prognosis of patients with pineal parenchymal tumour of intermediate differentiation (PPTID).

Methods and Materials: 17 patients with PPTID, 10 male and 7 female (age range 4-65 years), underwent MR scanning and surgery. According to the proposal of the 2016 4th edition of WHO Classification of Tumors of Central Nervous System [1], the cases were graded and followed up.

Results: All the patients had supratentorial hydrocephalus, 6 and 11 of whom had tumours growing into aqueduct and squeezing aqueduct, respectively. 13 cases (76.5%) with clear boundaries between tumours and thalamus were observed by MR. The cases were divided into grade II (10 cases) and grade III (7 cases), and into 3 groups by Ki-67 index (%55, %10-10%, and %10). Ki-67 index of PPTID III was significantly higher than that of PPTID II ($x^2=11.102$, $P<0.05$). There were 6 cases (35.3%) with recurrence revealed by follow-up, including 2 of grade II and 4 of grade III. 21 of them were included in recurrent cases. No recurrence revealed by follow-up.

Conclusion: 76.5% of the tumours had clear boundaries with thalamus, suggesting that most of the PPTID had no obvious peripheral infiltration. That 35.3% of the tumours were observed growing along the aqueduct could be the imaging characteristic of PPTID. The patients with high Ki-67 index in PPTID group were more likely to relapse.

B-1164 11:10

Correlation between $[^{11}C]$methionine PET uptake and apparent diffusion coefficient in patients with gliomas

Z. Savintseva, T. Skvortcova, D.V. Zaks; St. Petersburg/RU (lycadas@gmail.com)

Purpose: The aim of the study was to assess the value of apparent diffusion coefficient (ADC) from diffusion weighted imaging and PET/CT with $[^{11}C]$methionine (PET-MET) for glioma grading and to correlate these metrics.

Methods and Materials: 29 adults with untreated histologically proven brain gliomas were included. Patients underwent MRI with diffusion sequences and PET-MET. ADC maps and $[^{11}C]$methionine uptake maps were generated for each patient and then coregistered head-to-head using application software. Metrics evaluation included calculating minimum ADC (ADCmin) and maximum $[^{11}C]$methionine uptake index measured as the ratio of the highest tumour SUV to the that in the intact brain (TBmax). Mean value of ADC and TB were obtained for each tumor on the corresponding MR and PET images. Statistical analysis included Spearman’s correlation coefficient and discriminant analysis.

Results: TBmax and ADCmin values were negatively correlated ($r=-0.85$, $P<0.05$). The localization of maximum $[^{11}C]$methionine uptake and minimal ADC did not match in 30% of cases. T/mean and ADC/mean also showed significant negative correlation ($r=-0.5$, $P<0.05$). The T/mean showed best accuracy to distinguish between low and high-grade gliomas using discriminant analysis. The combination of T/mean and ADC/mean reached of 100% accuracy.

Conclusion: We found a strong negative correlation between T/mean and ADC/mean. A statistical analysis performed to find out the characteristics of the significant differences between the relapse and no relapse.
B-1165 11:18
Association between tumour acidity and hypervascularity within human gliomas using pH-weighted amine CEST-MRI and DSC-perfusion MRI at 3T

Y. Wang1, J. Yao1, C. Raymond2, B. M. Ellison2,1, Beijing/CHN, Los Angeles/US

Purpose: To investigate the association between image contrast obtained from pH-sensitive amine chemical exchange saturation transfer echo planar imaging (CEST-MRI) and relative cerebral blood volume (rCBV) measurements obtained from dynamic susceptibility contrast (DSC)-perfusion MRI in patients with glioma.

Methods and Materials: pH weighting was obtained using CEST-MRI estimation of the magnetization transfer ratio asymmetry (MTR asym) at 3ppm and rCBV was estimated using DSC-MRI. The correlation between median [B1-MTR asym] at 3ppm and rCBV within areas of T2 hyperintense lesions was evaluated in a total of 81 patients with histologically proven gliomas (40 WHO IV, 23 WHO III, and 18 WHO II gliomas).

Results: Both MTR asym at 3ppm and rCBV within T2 hyperintensity increased with increasing tumour grade. A strong correlation was observed between median MTR asym at 3ppm and rCBV within areas of T2 hyperintensity (R²=0.335, P<0.0043). No association was observed between MTR asym at 3ppm and rCBV within areas of necrosis or enhancing tumour.

Conclusion: The general degree of tumour acidity, measured with amine CEST-MRI, was correlated with hypervascularity, measured with DSC-MRI. These data confirm a potential association between tumour glycolysis and angiogenesis in human gliomas.

B-1166 11:26
Differentiation of histologically proven intracerebral tumour entities with quantitative iodine mapping in dual-layer computed tomography

J. Borggreve, M. Gebest, M. Hauger, C. Kabbasch, M. Schlammann, J. Dörner, Cologne/DE

Purpose: Dual-Layer computed tomography (DLCT) allows for precise quantification of iodine content and iodine homogeneity in cerebral tumour volumes with blood-brain barrier disruptions. We used iodine density mapping (IDM) to investigate feasibility for the discrimination of biopsy proven malignant cerebral lesions (MCL).

Methods and Materials: Retrospective study of 139 consecutive DLCT scans conducted on stereotactic needle-biopsy at one CT scanner (IOON, Philips, NL). Iodine density (ID) and contrast-to-noise-ratio (CNR) were determined in IDM using ROIs in MCL and healthy contralateral white matter. Size and localization of ROIs were kept constant between reconstructions. Standard deviation of IDM was considered representative of iodine homogeneity (IDI), ID, CNR and ID were correlated with histopathology.

Results: Mean age was 59.4 (±17.1) years, 52 female patients. There were no significant differences of ID in dependence of age but between genders in low-grade astrocytoma (m:0.42±0.09, mean±SD) vs. f:0.92±0.16, p<0.002) and lymphomas (m:1.15±0.16, f:1.47±0.19, p<0.05). Lymphomas showed strongest CNR (3.28±1.23) in IDM which was significantly higher in glialblastoma (2.37±1.55, p<0.005) and metastases (1.95±1.14, p<0.02). Glialblastomas and metastases did not show significant differences. The strong enhancing lesions (lymphoma/metastases/GBM) had higher iodine content than oligodendrogliomas, Grad II and Grad III astrocytoma that showed IDM CNR in the range 1.22-1.27±0.45-0.82.

Conclusion: Quantitative IDM appears feasible to discriminate tumour lesions such as lymphomas from all other tumours and GBM from low and intermediate grade astrocytoma. It was not capable to discriminate metastases from GBM. Gender may be a significant confounder of IDM in certain brain lesions.

Author Disclosures: J. Borggreve: Speaker; JB received honorarium for scientific lectures from Philips.

B-1167 11:34
Consecutive acquisition of MRDSA and perfusion MRI in cases of brain metastasis through the addition of a supplementary dose of a Gd-based contrast agent at 3T

K. Tsuchiya, W. Watanabe, A. Abe, K. Uchina, J. Handa, S. Goto; Kagawa/JP

Purpose: To assess the feasibility and value of MR digital subtraction angiography (MRDSA) combined with perfusion imaging (PWI) by employing a dual injection of a Gd-based contrast agent in the diagnosis of brain metastasis.

Methods and Materials: Sixteen patients were imaged using a 3-T scanner. Imaging protocol included conventional pre-contrast T1-T2-weighted (T1/T2WI), FLAIR, and diffusion-weighted images. After the first injection of gadoteridol at 0.1 mmol/kg, MRDSA and the first post-contrast T1WIs were obtained. After a second 0.1 mmol/kg injection of gadoteridol, PWI and a second post-contrast T1WIs were acquired. MRDSA maps and MRDSA images were evaluated in terms of lesion contrast using a 3-point scale (1=poor/2=fair/3=good). Furthermore, assessment of whether these techniques added diagnostic information to conventional MR imaging was performed. Finally, contribution of the second injection in terms of number of lesions and their visibility was assessed.

Results: In all cases, MRDSA and PWI maps allowed assessment of tumour haemodynamics with average score of 2.9 ± 0.5 and 2.9 ± 0.5, respectively. In 7/16 cases (43.8%), MRDSA and/or PWI provided additional diagnostic information to conventional MR imaging. While the number of detected lesions did not increase after the second injection, the lesion visibility improved in 14/16 cases (87.5%).

Conclusion: Consecutive acquisition of MRDSA and PWI by employing a dual single-dose injection of the macrocyclic agent gadoteridol, which can be used in such a cumulative administration scheme in our country in cases of suspected brain metastases, improves the diagnosis as well as the visualization of brain metastasis at 3T.

B-1169 11:42
The forgotten juxta-sellar mass: ectopic pituitary adenomas

A. Alagely, L. Oekomeldeiz, G.K. Vilanilam, E.H. Middlebrooks, V. Gupta; Jacksonville/FLUS

Purpose: To increase awareness of ectopic pituitary adenoma (EPA) presenting as a juxta-sellar mass and review the radiologic features and management strategies.

Methods and Materials: This case series details four unique radiographic presentations and key imaging findings of EPA based on their anatomic location: suprasellar, cavernous sinus, sphenoid sinus, and clivus.

Results: Clinical and radiological manifestations of EPA are variable. The symptomatology depends on mass effect upon adjacent structures, hormonal activity, and rarely, CSF leakage into the sphenoid sinus. Measurement of hormonal titers can facilitate early diagnosis and avoid unnecessary biopsies and/or surgical intervention. On CT, EPAs are often isodense to gray matter and enhance moderately after intravenous contrast. Evaluation of adjacent bone involvement can also be performed using CT. On MRI, EPAs are often low signal on T1WI and variable signal on T2WI with mild to moderate enhancement after intravenous gadolinium. MRI also best reveals the anatomic location of the lesion relative to the pituitary gland, cavernous sinus, and suprasellar structures.

Conclusion: A high index of suspicion of EPA is warranted in the evaluation of juxta-sellar lesions located in the suprasellar cistern, cavernous sinus, sphenoid sinus, and clivus. Laboratory investigation of elevated pituitary hormones may help avoid invasive procedures in establishing the diagnosis, facilitate appropriate management, and achieve better outcomes.

10:30 - 12:00 Room F2

Breast

SS 1402b
Breast imaging biomarkers and radiomics
Moderators: D. DJilas; Sremka Kamenica/RS

I.-A. Gheonea; Craiova/RO

B-1170 10:30
Radiomics based on baseline DCE-MRI is predictive of tumour pathological complete response to neoadjuvant systemic therapy in breast cancer patients

P. Granzier1, A. Ibrahim2,1, H. Woodruff3, T. van Nijnatten4, M. de Boer1, F. Hulsmans1, P. Lambin1, M. Smidt1, M. Lobbes1,1, Maastricht/NL, Sittard-Geleen/NL (r.granzier@maastrichtuniversity.nl)

Purpose: To evaluate the applicability of radiomics models based on baseline dynamic contrast-enhanced MRI (DCE-MRI) for the prediction of pathologic complete response (pCR) of breast tumours to neoadjuvant chemotherapeutic or targeted therapy (NCT) in breast cancer patients.

Methods and Materials: Two independent cohorts from 2 centres were used to train and validate a radiomics-based classification model. The training cohort included 102 patients with 129 breast tumours. The external cohort (120 patients, 125 breast tumours) was split into testing (n=63) and validation cohorts (n=62). Patients received NCT and underwent baseline DCE-MRI.

Results: In all cases, MRDSA and PWI maps allowed assessment of tumour haemodynamics with average score of 2.9 ± 0.5 and 2.9 ± 0.5, respectively. In 7/16 cases (43.8%), MRDSA and/or PWI provided additional diagnostic information to conventional MR imaging. While the number of detected lesions did not increase after the second injection, the lesion visibility improved in 14/16 cases (87.5%).

Conclusion: Consecutive acquisition of MRDSA and PWI by employing a dual single-dose injection of the macrocyclic agent gadoteridol, which can be used in such a cumulative administration scheme in our country in cases of suspected brain metastases, improves the diagnosis as well as the visualization of brain metastasis at 3T.

SS 1402b
Breast imaging biomarkers and radiomics

Moderators: D. DJilas; Sremka Kamenica/RS

I.-A. Gheonea; Craiova/RO

B-1170 10:30
Radiomics based on baseline DCE-MRI is predictive of tumour pathological complete response to neoadjuvant systemic therapy in breast cancer patients

P. Granzier1, A. Ibrahim2,1, H. Woodruff3, T. van Nijnatten4, M. de Boer1, F. Hulsmans1, P. Lambin1, M. Smidt1, M. Lobbes1,1, Maastricht/NL, Sittard-Geleen/NL (r.granzier@maastrichtuniversity.nl)

Purpose: To evaluate the applicability of radiomics models based on baseline dynamic contrast-enhanced MRI (DCE-MRI) for the prediction of pathologic complete response (pCR) of breast tumours to neoadjuvant chemotherapeutic or targeted therapy (NCT) in breast cancer patients.

Methods and Materials: Two independent cohorts from 2 centres were used to train and validate a radiomics-based classification model. The training cohort included 102 patients with 129 breast tumours. The external cohort (120 patients, 125 breast tumours) was split into testing (n=63) and validation cohorts (n=62). Patients received NCT and underwent baseline DCE-MRI scan. Tumours were delineated manually by 3 individuals on MRI acquired 2 minutes after contrast injection. Features were extracted using OncoRadiomics software. Overall concordance correlation coefficient was used to assess feature stability among observers. Stable features were ranked and selected via support-vector machine recursive feature elimination. Random forest binary classifications were generated using the training cohort and hyper-parameters tuned on training and test cohorts. Performance of the model was assessed using area under the curve (AUC).
Results: 30.2% of tumours in training cohort achieved breast pCR, 23.8% and 32.2% of tumours achieved pCR in test and validation cohorts. 1322 features were extracted, of which 1094 features were stable. The 20 top-ranked features were selected to build the pCR prediction model. The AUC of the model was 0.68 in both training cohort and external validation.

Conclusion: Our results demonstrate that baseline DCE-MRI radiomics analysis of breast re-treatment MRI can be used to predict tumour pCR after NCT. Further studies with larger sample sizes are needed to confirm these results.

Author Disclosures:
H. Woodruff: Employee; (minority) shares in the company Oncoradiomics.
P. Lambien: Advisory Board; Oncoradiomics SA, Convert pharmaceuticals SA. Patent Holder; Two times issued patent to pTheragnostic/DNAmito (PCT/EP2014/059089), Research/Grant Support; Varian Medical.

B-1171 10:38
Feasibility study of whole breast texture analysis for predicting tumour response to neoadjuvant chemotherapy
J.-Y. Zhou, H. Dan, G. Cheng; Shenzhen/CN (afldoctor@163.com)

Purpose: To investigate the feasibility of whole breast texture analysis in predicting tumor response to neoadjuvant chemotherapy (NAC) for patients with non-mass breast cancer.

Methods and Materials: In this institutional review board approved study, 70 patients with non-mass breast cancer between March 2008 to March 2018 were included. Breast magnetic resonance (MR) imaging was performed before treatment (E1), after two cycles of NAC (E2), and after four cycles of NAC (E3, usually before surgery). Two-dimensional computerized analysis was performed and the texture features of the lesion side and the healthy side were obtained. Pathological results obtained by surgery and the Miller-Payne pathological grade was used as the gold standard. These quantitative parameters were analyzed by t-test and least absolute shrinkage and selection operator (LASSO) regression.

Results: Pathologic complete response (Miller-Payne grade 4 and 5) was achieved in 20 (28.6%) of 70 cases. Skewness (E3 lesion, E3 lesion/ E3 healthy), entropy (E3 lesion/ E3 healthy), variance of SI (E3 lesion/ E3 healthy), and entropy (E3 lesion/ E3 healthy) showed significant differences in t-test (p<0.05). LASSO regression analysis showed that the whole breast texture features have a good performance in judging tumor response of neoadjuvant chemotherapy. (area under the receiver operating characteristic curve = 0.803).

Conclusion: It is feasible to use the whole breast texture analysis as a new method of predicting tumor response to NAC in non-mass breast cancer.

Author Disclosures:
J. Zhou: Research/Grant Support; This study is supported by an internal research fund of Peking university shenzhen hospital.
H. Dan: Research/Grant Support; This study is supported by an internal research fund of Peking university shenzhen hospital.
G. Cheng: Research/Grant Support; This study is supported by an internal research fund of Peking university shenzhen hospital.

B-1172 10:46
Tumour texture parameters of IDC in neoadjuvant chemotherapy: early identification of non-responders on breast MRI
M. Nadriianski, Z. Milosevic; Belgrade/RS (dr.m.nadriiaski@gmail.com)

Purpose: Texture parameters (variance of SI, mean of gradient, variance of gradient, kurtosis of SI, and entropy) were evaluated on baseline MRI and following the 2nd cycle of neoadjuvant chemotherapy (NAC) in patients with IDC, to assess the tumour texture features in early identification of non-responders (NR) to NAC.

Methods and Materials: Fifty patients (N=50) were included in the retrospective analysis of baseline and MRI following the 2nd cycle of NAC. Texture parameters were computed and correlated to morphologic features and DWI-ADC in 25 NR with IDC. Additional matched 25 responders (R) served as the control group.

Results: Tumour size and ADC did not change significantly in NR after the 2nd cycle of NAC (2.88±0.38 vs. 2.76±0.36 cm), p=0.14; 1.01±0.14 vs. 1.05±0.13 [mm²/s], p=0.36), tumour texture parameters changed significantly: variance of gradient (346.5±12.6 vs. 355.6±16.9, p=0.01), kurtosis of SI (1.47±0.09 vs. 1.54±0.11, p=0.02), entropy LH (60.39±4.34 vs. 64.42±3.05, p=0.01), and entropy HL (61.02±5.51 vs. 65.63±3.63, p=0.00001). Variance of SI, mean of gradient, variance of gradient and kurtosis of SI were significantly different between NR and R after the 2nd cycle of NAC (p<0.00001; p=0.0008; p=0.047; p<0.0001).

Conclusion: Tumour texture parameters: entropy HL, entropy LH, kurtosis and variance of gradient increase in NR following the 2nd cycle of NAC. Texture parameters (variance of SI, mean of gradient, variance of gradient and kurtosis of SI) significantly differ between NR and R after the 2nd cycle of NAC. Texture parameters may contribute to early identification of NR on breast MRI.

B-1173 10:54
Background parenchymal enhancement on breast MRI in patients undergoing neoadjuvant chemotherapy: is it a biomarker of tumour response?
C. Costanza, G. Mariscotti, M. Durando, A. Tagliafico, L. Bergamasco, I. Castellano, P. Fonisi, I. Turini; Genoa/IT (dott.claudiocostanza@gmail.com)

Purpose: To evaluate if changes in background parenchymal enhancement (BPE) on breast MRI can be associated to tumour response in patients with locally advanced breast cancer undergoing Neoadjuvant Chemotherapy (NCT).

Methods and Materials: A retrospective review identified 55 patients with locally advanced breast cancer who underwent NCT between January 2015 and January 2018. All patients had breast MRI before, during and after NCT. Two dedicated breast Radiologist, blinded to clinical and pathological data, rated BPE level according to Bi-RADS criteria (minimum=1, mild=2, moderate=3, marked=4) on pre- and post-NCT breast MRIs. A statistical analysis was performed to compare BPE changes and the pathological response after treatment (complete response versus non-complete response, including partial and non-response).

Results: In the study population, tumour size at diagnosis ranged from 2-9cm (mean=5.7cm); 30/55 (55%) patients were pre/perimenopausal and 25/55 (45%) postmenopausal. There was a complete pathological response post-CTN in 23 patients (42%), partial response in 27 (49%) and non-response in 5 (9%). At MRI pre-CTN, BPE level was minimum in 15/55 patients (27.6%), mild in 15/55 (27.6%), moderate in 22/55 (39.2%) and marked in 17/55 (31.4%) and did not significantly (p=0.995) differ based on final pathological response. Post-CTN BPE levels were lower in complete pathological response cases, although not statistically significant (p=0.885). BPE level decreased after NCT in 21/55 (38.2%) patients. The decrease in BPE occurred in 10/23 (43%) cases of complete pathological response and in 10/32 (31%) cases of non-complete response (p=0.60).

Conclusion: Our preliminary results suggest that a decrease in BPE could have a role as a potential biomarker for predicting tumour response in patients undergoing NCT.

B-1174 11:02
A new objective mathematical tool for assessment of response and predicting residual disease in breast cancer using CESM
M. Gomaa, E. Kamal, R.M. Kamal, S. Mostafa, R. Mubarak, M. El-Adawy; Cairo/EG (mohammedgomaa555@yahoo.com)

Purpose: Initiating a new objective mathematical tool for evaluation of response post-neoadjuvant chemotherapy in breast cancer and residual disease using the CESM.

Methods and Materials: 42 breast cancer patients were included. All underwent 2 CESM; before and after NAC. We used a mathematical image analysis software (MATLAB and Simulink) (Release 2013b). The proposed technique used 2 CESM images as inputs. The technique consists of 3 main stages: preprocessing 2. Extracting the region of Interest (ROI) and 3. Assessment the response to chemotherapy. The technique depends on the analysis of the tumour number of pixels included within the ROI and intensity values to find the percentage between the ROI before and after chemotherapy.

We compared the evaluation of the mathematical tool technique, RECIST 1.1 & combined response evaluation approach using both RECIST 1.1 in addition to subjective visual evaluation. Results were correlated to postoperative pathology using Miller-Payne grades.

Results: Correlation with pathology between the proposed method, RECIST & combined method was 0.890.590.69 with accuracy 85.7%,54.8%&85.7% respectively. With classification of patients into responder and non-responders, the mathematical evaluation showed higher sensitivity, positive and negative predictive values (100, 97.5, 100 % respectively) compared to the evaluation of RECIST method (87.2%, 97.1% 28.6% and the combined response method (97.4%, 97.4% and 66.7%). The pathology showed 39/42 patients were responders. Combined response evaluation approach; 38/39 patients were responders while using RECIST 1.1; only 34 patients and using the proposed method; 39/39 were responders.

Conclusion: Mathematical analysis of CESM allows objective evaluation of the response of breast cancer to chemotherapy.
B-1175 11:10
Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes
D. Leitner1, M. B. Bernard-Davila, M. S. Jochelson1, K. Pinker-Domenig1, E. A. Morris2
1New York, NY/US, 2Vienna/AT (doris.leitner@gmail.com)

Purpose: To evaluate the diagnostic performance of radiomic signatures extracted from diffusion-weighted imaging (DWI) for the assessment of breast cancer receptor status and molecular subtypes.

Methods and Materials: Ninety-one patients with biopsy-proven breast cancer (age range 40-80) were included. Using a Radiomics approach normal and cancerous breast tissues from DBT images were analyzed using radiomics features such as penetrating vessel, vessel distribution, vessel morphology and vascular index on SMI, and enhancement degree, enhancement order, area, slope, and time to peak on CEUS were correlated with genomic characteristics in 31 invasive breast cancers. We evaluated quantitative and qualitative ultrasound vascular parameters on superb microvascular imaging (SMI) and contrast-enhanced ultrasound (CEUS); parameters of SMI (vascular index, vessel morphology, distribution, and penetrating vessel) and CEUS (time intensity curve parameters and enhancement pattern). Targeted next-generation sequencing of 105 genes was performed for the genomic DNA obtained from breast tumour and normal tissues. Single-variant association test was performed to evaluate relationship between ultrasound imaging features and genetic alteration of tumour tissue for angiogenesis in invasive breast cancer patients.

Results: Radiomics analysis of breast cancer on digital breast tomosynthesis (DBT) in women with dense breasts and negative mammography using our targeted sequencing approach identified that ultrasound vascular features such as penetrating vessel, vessel distribution, vessel morphology and vascular index on SMI, and enhancement degree, enhancement order, area, slope, and time to peak on CEUS were associated with one or more somatic mutations in APC, ATM, BRCA1, BRCA2, CSF1R, FGFR1, HIF1A, KDR, MET and NTRK1, with FGFR1 being the most commonly mutated gene (p<0.05). The PolyPhen-2 analysis revealed that 33% of the identified mutations (39 of 119) were predicted to have damaging effects on protein function.

Conclusion: Our preliminary radiogenomic results demonstrate the potential of ultrasound vascular imaging to predict tumour angiogenesis and genetic variants associated with invasive breast cancer in a non-invasive manner.

Author Disclosures: 1Other; Received speaker honoraria from GE Healthcare; 2Research/Grant Support; This work was supported by Research Grant, Toshiba Medical Systems Korea Co., Ltd., Guerbet, and Philips healthcare.

B-1176 11:18
Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results of a multicenter study
D. Martinez1, M. Martino2, B. Bernard-Davila1, M. S. Jochelson1, D. Martinez1, E. A. Morris2, S. Thakur2, K. Pinker-Domenig2, N. H. Mayo-Braes2
1New York, NY/US, 2Sao Paulo/BR, Vienna/AT (doris.leitner@gmail.com)

Purpose: To evaluate the diagnostic performance of radiomic signatures extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) for the assessment of breast cancer receptor status and molecular subtypes.

Methods and Materials: One-hundred and thirty-two patients with biopsy-proven breast cancer (luminal A, n=49; luminal B, n=32; HER2-enriched, n=28; triple negative, n=33; other, n=42; HER2-enriched, n=24; triple negative, n=27) who underwent CE-MRI at 3T were included in this IRB-approved HIPAA-compliant retrospective multicenter study. Radiomics analysis of manually segmented tumors included calculation of features derived from first-order histogram (HS); co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient (GRA), autoregressive model (ARM), discrete Haar wavelet transform (WAV), and lesion geometry (GEO). Fisher, probability of error and average correlation (POE=ACC), and mutual information (MI) coefficients were used for feature selection (optimal subsets of ten features each). Linear discriminant analysis followed by k-nearest neighbor classification (with leave-one-out cross-validation) was used to perform expertises. N=106 Radiomics features were extracted and evaluated.

Results: The following accuracies >90% were achieved for approach (a) segmented on DWI: luminal B vs. HER2-enriched, 94.7% (based on COM features); luminal B vs. others, 92.3% (COM, HIS); HER2 enriched vs. others, 90.1% (RLM, COM). Higher accuracies were achieved with approach (b) segmentation on ADC maps: luminal A vs. luminal B, 91.5% (COM, WAV); luminal B vs. HER2-enriched, 100% (COM, WAV); luminal B vs. others, 91.1% (WAV, ARM, COM).

Conclusion: DWI radiomic signatures enable the assessment of breast cancer molecular subtypes with high diagnostic accuracy. Higher accuracies are achieved when tumour segmentations directly are performed on ADC maps.

Author Disclosures: 1Other; Received speaker honoraria from GE Healthcare; 2Research/Grant Support; This work was supported by Research Grant, Toshiba Medical Systems Korea Co., Ltd., Guerbet, and Philips healthcare.

B-1177 11:26
Radiogenomics of invasive breast cancer: association between ultrasound vascular imaging features and tumour genomic profiles for tumour angiogenesis
E. Park1, B. Seo1, M.-R. Han2, J. Kim1, H. Lee1, K. Cho2, O. Woo2, S. Song2, 1Ansan/KR, 2Seoul/KR (epark100@naver.com)

Purpose: To evaluate the relationship between ultrasound vascular imaging features and genetic alteration of tumour tissue for angiogenesis in invasive breast cancer patients.

Methods and Materials: This retrospective study was approved by the institutional review board. Preoperative ultrasound vascular imaging features were correlated with genomic characteristics in 31 invasive breast cancers. We evaluated quantitative and qualitative ultrasound vascular parameters on superb microvascular imaging (SMI) and contrast-enhanced ultrasound (CEUS); parameters of SMI (vascular index, vessel morphology, distribution, and penetrating vessel) and CEUS (time intensity curve parameters and enhancement pattern). Targeted next-generation sequencing of 105 genes was performed for the genomic DNA obtained from breast tumour and normal tissues. Single-variant association test was performed to evaluate relationship between ultrasound imaging features and genomic profiles. We used PLINK to detect the single variants associated with ultrasound features.

Results: Our targeted sequencing approach identified that ultrasound vascular features such as penetrating vessel, vessel distribution, vessel morphology and vascular index on SMI, and enhancement degree, enhancement order, area, slope, and time to peak on CEUS were associated with one or more somatic mutations in APC, ATM, BRCA1, BRCA2, CSF1R, FGFR1, HIF1A, KDR, MET and NTRK1, with FGFR1 being the most commonly mutated gene (p<0.05). The PolyPhen-2 analysis revealed that 33% of the identified mutations (39 of 119) were predicted to have damaging effects on protein function.

Conclusion: Our preliminary radiogenomic results demonstrate the potential of ultrasound vascular imaging to predict tumour angiogenesis and genetic variants associated with invasive breast cancer in a non-invasive manner.

Author Disclosures: 1Other; Received speaker honoraria from GE Healthcare; 2Research/Grant Support; This work was supported by Research Grant, Toshiba Medical Systems Korea Co., Ltd., Guerbet, and Philips healthcare.

Scientific Sessions
Conclusion: The AUC of 0.74 with a cut-off P=0.017; S(0,2) Contrast, P=0.011; VertlRLNonUni, P =0.025; S(0,2) weighted images: WavEnLH.s-5, S(0,1) Contrast, S(0, 2) Contrast, T. Yamada, H. Sakahara; Texture analysis and machine learning for differentiation between benign and malignant tumors as determined by pathology.

Methods and Materials: We investigated magnetic resonance images of a large cohort of breast cancer patients with contrast-enhanced CESTMs were available for 968 patients, as well as golden standard pathology results. We delineated 1135 masses on 562 patients. 1864 radiomics features were extracted from the delineated masses, of which the eight most relevant were selected via correlation bias reduction and recursive feature elimination. The data was balanced based on outcomes using an adaptive synthetic sampling approach, and a random forest model was built to classify pathology as invasive ductal carcinoma (IDC) or non-IDC. The dataset was split into training (795) and validation (340), and model performance was evaluated as the AUC of the ROC.

Results: We found that 401 delineations were of IDCs. The most predictive features involved mean, median and 90th percentile of intensity. The model performed with an AUC of 0.86 (95% CI:0.82-0.90) on validation data.

Conclusion: The radiomics model was highly predictive in distinguishing between IDC and non-IDC. Future studies will include clinical features and we will validate on external data. We will also compare the model to deep learning methods and physician performance.

Author Disclosures:

P. Lambin: Grant Recipient; Varian Medical, Oncoradiomics, pTheragnostic, Heath Innovation Ventures, DualTpharma. Patent Holder; DNNano. Shareholder; Oncoradiomics.

B-1180 11:50 Texture analysis and machine learning for differentiation between phyllodes tumours of the breast from fibroadenomas in non-contrast MRI

M. Tsuchiya, T. Masui, M. Katayama, K. Terauchi, M. Sasaki, K. Kawamura, T. Yamada, H. Sakahara; Radiomics and deep learning can aid classification of contrast-enhanced B-1179

M. Tsuchiya, T. Masui, M. Katayama, K. Terauchi, M. Sasaki, K. Kawamura;

Purpose: To investigate whether magnetic resonance (MR) features can distinguish phyllodes tumours of the breast from fibroadenomas and assess the feasibility of machine learning based texture analysis (TA).

Methods and Materials: This retrospective study included 50 women with histopathologically proven phyllodes tumours of the breast (n=25; benign, 14; intermediate, 8; malignant, 3) or fibroadenomas (n=25) who underwent breast MRI between January 2004 and January 2018. Regions of interest for TA were manually drawn on axial fat-saturated T2-weighted images on the slice displaying the largest cross-sectional area of the tumour. First order, second order, and higher order texture features were extracted from each tumour by using a freely available software package. Texture feature selection based on machine learning analysis were performed for selection features and multiple logistic regression model. The accuracy of TA features for differentiating between phyllodes tumours of the breast from fibroadenomas was evaluated using a receiver-operating-characteristic (ROC) analysis.

Results: Five independent texture features allowed for differentiation between phyllodes tumours of the breast and fibroadenomas on fat-saturated T2-weighted images: WavEnLH.s-5, S(0,1) Contrast, S(0,2) Contrast, VertlRLNonUni, S(0,2) SumAvg (WavEnLH.s-5, P=0.017; S(0,1) Contrast, P=0.017; S(0,2) Contrast, P=0.011; VertlRLNonUni, P=0.025; S(0,2) SumAvg, P=0.017); Multiple logistic regression models revealed that the feature of S(0,2) Contrast resulted in the highest accuracy for differentiating phyllodes tumours of the breast from fibroadenomas, with an area under the curve (AUC) of 0.74 with a cut-off ≥2.24 (76.0% sensitivity, 76.0% specificity).

Conclusion: This machine learning based TA of non-contrast MR images allows for the distinguish phyllodes tumours of the breast from fibroadenoma.
B-1183 10:55
Fuzzy PACS: linking large unorganised image and report databases for development and validation of deep learning algorithms
R. Mukherji, V. Mahajan; New Delhi/IN (viduu@mahajanimagining.com)

Purpose: Development and validation of deep learning (DL) algorithms for medical imaging requires access to large organised datasets of images and their corresponding reports. Currently, most medical imaging data in the world are unorganised and require images and text reports to be manually linked. An approach for linking medical images and reports of patients, where no unique identifier for linking them exists, is presented.

Methods and Materials: A DICOM image database of 311,694 studies and a separate mysql database with 296,938 reports needed to be matched at study level. No unique identifier existed to link the two databases and not all reports had matching images, and there was only partial overlap between the databases. Additionally, patient names were incorrectly entered with varied formats in the two databases making direct matching impossible. Fuzzywuzz Python library, which incorporates fuzzy string matching, a technique based on Levenshtein distance between strings to estimate text similarity was used to match patient name in the two databases following date and modality-level filters. Four fuzzy matching techniques (simple, partial, token-set and token-sort ratios) were evaluated.

Results: Simple, partial, token-set and token-sort ratios gave 4.56%, 46.45%, 57.37% and 7.97% matches of reports, respectively, with 95% match confidence. Token set ratio, which had the highest match percentage, matched 170,336 reports to their corresponding studies.

Conclusion: Fuzzy matching is a promising technique to merge independent datasets without unique identifiers, saving thousands of man-hours, critical for development and validation of DL algorithms.

B-1184 11:03
Subspecialisation in radiology: effects on the diagnostic spectrum of radiologists and report turnaround time in a Swiss university hospital
M.H. Maurer1, M. de Bucourt2, A. Berghöfer2, A. Huppertz2, A.B. Rosenkranz2, F. Streitparth3, J.T. Heverhagen2, T. Meyl1, Bern/CH, Berlin/DE, New York, NY/US, Munich/DE (martin.maurer@insel.ch)

Purpose: To analyse the changes in radiologists’ work profiles and the reporting time after the implementation of a subspecialisation in the radiology department of a large Swiss university hospital.

Methods and Materials: In a retrospective analysis, the overall number of different radiologic examinations performed in the department of radiology of a large Swiss university hospital were documented for 2014 and 2016 before and after the implementation of subspecialised reporting (subspecialities: abdominal, musculoskeletal, cardiothoracic, emergency, and paediatric imaging) in May 2015. For six selected radiologists the number and types of reported examinations as well as the related radiology report turnaround times (RTATs) were analysed in detail and compared between the two 1-year periods.

Results: Overall, there was a significant increase of 10.3% in the total number of examinations performed in the whole department in 2016 compared with 2014. For 4 of the 6 radiologists, the range of different types of examinations significantly decreased (p<0.05). Furthermore, there was a significant change in the subset of the ten most commonly reported types of examinations reported by each of the 6 radiologists. Mean overall RTATs significantly increased for 5 of the 6 radiologists (p<0.05).

Conclusion: Implementation of subspecialised reporting led to a change in the structure and a decrease in the range of different examination types reported by each radiologist. Mean RTAT increased for most radiologists. Subspecialised reporting allows the individual radiologist to focus on a specific field of professional competence but can result in longer overall RTAT.

B-1185 11:11
Operational performance optimisation by means of an imaging analytics platform: a case study
P. Szatmari1, P. Pytlewski2, N. Papankolou3, R. Iling4, Budapest/HU, Warsaw/PL, Nicoisa/CY (peter.szatmari@affidea.com)

Purpose: To optimize operational performance using an advanced imaging analytics platform in combination with lean management concepts.

Methods and Materials: Affidea is operating the public hospital in Walbrzych through a public-private partnership scheme, where the MRI scanner was connected to the MR Excellence Platform to monitor in real-time several key performance indicators including number of exams, examination time, non-scanning time and image resolution. Several interventions in the operational level were performed in the following six sigma and Kaizen philosophy and de-emphasised waste. The main interventions included elimination of free slots in the daily schedule, continuity of exam bookings, implementation of pre-built monthly scheduler and grouping of similar exams in designated scheduling blocks. All relative inputs were extracted from the MR Excellence Platform.

Results: There was a significant reduction in the waiting time to perform an exam from 8 days to 1.78 days after the implementation of the Operational Optimization project, where the average number of daily exams performed raised from 24.5 to 28.4 after the optimization of MRI protocols. All new sequences were evaluated in terms of diagnostic efficiency and image quality and approved by the local radiologists.

Conclusion: Imaging analytics powered operational optimization can result in significant improvement in operational efficiency of an MRI department maintaining high diagnostic standards.

Author Disclosures:
F. Streitparth: Employee; Affidea BV. P. Pytlewski: Employee; Affidea BV. N. Papankolou: Owner; MRIcons LTD. R. Iling: Employee; Affidea BV.

B-1186 11:19
FlaT of pathological head CT interpretations using natural language processing (NLP)
Y. Barash, T. Levy, Y. Elazar, E. Zimlichman, E. Konen, S. Soffer, G. Guralnik, M.M. Amitai, E. Klang; Ramat Gan/IL (yibarash@gmail.com)

Purpose: Alerting on pathological findings in imaging reports is a quality measure. We compared two NLP algorithms for flagging pathological head CT reports: the bag of words (BOW) algorithm and the long short-term memory (LSTM) deep learning algorithm.

Methods and Materials: Institutional review board approval was granted. The BOW model is used for text classification where the frequency of occurrence of each word is used as a feature for training a classifier. LSTM is a neural network that has some in memory cells that are used for short-term memory cells. The output of the LSTM network is modulated by the state of these cells. This can be utilized in NLP as the sequence of words in a paragraph has contextual meaning. We collected consecutive head CT non-English (Hebrew) reports performed in our ER during annual January and February (2013-2017). Each report was labeled as either normal or pathological (e.g. haemorrhage, infarct, mass). All the words in the dataset were tokenized. The BOW algorithm used unigrams and bigrams as features. For the LSTM network, we embedded each word after tokenization. MLP over the last hidden layer and cross-entropy loss for training. The algorithms’ performances were assessed using the accuracy metrics.

Results: We retrieved 5,890 head CT reports. The incidence of pathological findings was 55%. The algorithm BOW algorithm showed an accuracy of 87.5% and the LSTM algorithm showed an accuracy of 89.1%.

Conclusion: The LSTM algorithm showed improved accuracy over the classic BOW algorithm on non-English reports.

B-1187 11:27
Fast displaying time of electronic patient record and PACS sharing system with IHE-XDS/XDS-I and cloud technology
H. Kondo1, T. Kawai2, M. Mochida3, T. Yamaguchi4, Yonago/JP, Hino/JP (kondoh@med.tottori-u.ac.jp)

Purpose: EPR and PACS sharing system was demanded interoperability and quick viewing even on Internet. We developed that sharing system with IHE-XDS and XDS-I and cloud technology.

Methods and Materials: Global standard IHE-XDS and XDS-I was introduced on centre cloud server and thin-client infrastructure with one registry server. It was connected EPR server and DICOM server of regional eighteen hospitals and HLT based data and DICOM images. It showed the data and images on thin client infrastructure and IP-sec VPN through Internet. The image display time of the sharing system though internet seemed to be faster than intra-hospital PACS with RAID disc and gigabit ethernet. The display times were measured by video data and compared the sharing system access from PC with iPhone tethering and from PC in Heidelberg conference through Internet with intra-hospital PACS.

Results: The display times were 0.627 seconds (0.37-0.86) in intra-hospital PACS, 0.228 seconds (0.23-0.27) in the sharing system access with iPhone tethering, 0.250 seconds (0.198-0.297) access from PC in Heidelberg conference through Internet with intra-hospital PACS.

Conclusion: The thin client system was said to reduce the network load to 1/1000. And Large flash memory dramatically reduced data access in the server. Even if Internet used, the display time was said to be faster than intra-hospital PACS. Because the thin client system is sending the subtraction image on same matrix size, there are no data reduction in black and white image.

B-1188 11:35
Blended learning using radiology short video based lecture series improves medical school student performance and satisfaction
A. Vavasseur, F. Muscari, P. Otal, H. Rousseau, L. Dercle, F. Mokrane; Toulouse/FR (vavasseur.a@chu-toulouse.fr)

Purpose: A shift in student’s behavior has been observed in medical schools. Medical school students (MSs) are millennials and part of a new ‘YouTube’ generation. Our purpose is to measure the impact of a combination of...
educational resources as a blended learning (short video-based lecture (VBL), as part of the flipped classroom) among three promotions of MSs from our university hospital.

Methods and Materials: 3 consecutive promotions performed a pre-test, based on abdominal imaging (respectively 102, 93 and 109 students). Then, they had access to 61 VBLs focused on abdominal imaging (total duration of Sh 11m), VBLs were available over a period of 5 months via a dedicated educational online platform. Finally, MSs performed a post-test and a face to face course to correct it. The efficiency of this teaching format was measured quantitatively by a post-test and learner analytics, as well qualitatively (direct learner feedback using student’s satisfaction questionnaire).

Results: Blended learning combining VBLs and face to face course significantly improved student results. The average post-test results was 77.2% and significantly higher than the pre-test (53.8%; Student t-test: P<0.001). Satisfaction surveys about this format showed that 99% of students were satisfied or very satisfied by this e-learning training. The amount of videos views was 91 views per student (average) and a total of 27662 views. Moreover, students adherence to this medical education format increased across promotions.

Conclusion: The flipped classroom based on short video based lecture attracts medical students, improve their performances in radiology and obtains their adherence.

B-1189 11:43
Automatic segmentation for coronary computed tomography angiography using convolutional neural networks
J. He*, Q. Zhou, X. Li*, X. Xu*, X. Ding*, X. Zhou*, M. Zhang; 1Hangzhou/CN

Purpose: To present a convolutional neural networks (CNN) for automatic segmentation of Coronary Computed Tomography Angiography.

Methods and Materials: 115 patients were examined by 128-slice dual-source CCTA and then the CT images were automatic segmented by CNN technique, of which 91 patients is used for training and 24 for testing. We present a multi-scale 3D convolutional networks to segment the coronary artery for automatic segmentation and assisting the diagnosis of coronary artery disease (CAD). Specifically, the multi-scale 3D CNN was firstly utilized to segment coronary artery and aorta from the test dataset. Then a vessel-measurement-based region growing algorithm was proposed to refine the vessel segmentation, especially for the vascular branching, resulting a test Dice coefficient of 0.7833. In addition, several key indicators of coronary artery disease were derived automatically including starting point of artery vessels.

Results: Experimental results show that coronary artery and aorta were identified and segmented successfully while the maximum symmetric surface distances are 0.35mm and 0.42mm, respectively. Comparing with most proposed methods, our method is full-automatic and can realize the segmentation without any manual interaction. As for the efficiency, it takes only an average time of 3.4s to segment one volume of the CCTA.

Conclusion: In this study, we presented a multi-scale 3D convolutional neural networks and showed the feasibility of the proposed method on segmenting coronary artery from CT.

B-1190 11:51
Deep learning based chest x-ray whole-image search and retrieval
N. Ramanauskas, J. Dementaviciene, D. Baruauskas, J. Bialopetravicius, J. Armaitis, G. Rimeika; Vilnius/LT

Purpose: A typical hospital currently possesses more than a decade worth of digital radiological images with their radiological descriptions in the PACS/HIS system. We aimed to create a radiological chest x-ray search system.

Methods and Materials: In our solution, a deep learning neural network trained on a large set of radiographs with respective radiological findings is used in order to index the images. This indexing process takes into account not only the pathology, but also the localization of the pathology, and the overall features of the radiograph. In order to quantify the quality of the search system, a radiology resident was presented with a set of 77 challenging chest x-ray images. Each of the reference images was subsequently indexed by the search system, and used to retrieve 10 radiographs from the hospital database of more than 200'000 images. A radiology resident was asked to evaluate and write reports for each of the images initially without assistance. After each report he was asked to review the the returned search matches and modify the report if he found it necessary. We evaluated the initial and the modified reports and extracted statistics.

Results: The report was modified after inspecting search matches for 56/77 cases. The impression was modified after inspecting search matches for 50/77 cases. The differential diagnosis was expanded for 28/77 cases. A Deep Learning model has been created.

Author Disclosures:
N. Ramanauskas: Employee; Oxipit, UAB. Founder; Oxipit, UAB.
D. Baruauskas: Employee; Oxipit, UAB. Founder; Oxipit, UAB.
J. Bialopetravicius: Employee; Oxipit, UAB. Founder; Oxipit, UAB.
J. Armaitis: Employee; Oxipit, UAB. Founder; Oxipit, UAB.

K-29 10:30
Keynote lecture
A. Trianni; Udine/IT

B-1191 10:39
A proposed paradigm revision for recurrent radiation safety training

Purpose: Designing a radiation training curriculum to meet the needs and concerns of clinical audiences can be perplexing. We formulated and tested a new teaching paradigm structured as a slow-motion, one-on-one conversation. We describe the results of a recent seminar that used this paradigm.

Methods and Materials: The test was conducted at a recent international interventional cardiology meeting. Topics were staff radiation safety and patient radiation management. Several weeks in advance of the session, two clinical faculty members polled their workplace colleagues and presented key ‘audience’ questions to two medical physicists. The clinical faculty presented expanded versions of their questions at the session, following which the physicist faculty answered these questions point-by-point. The session started with essential general topics not included in the clinical question list and ended with a discussion between the entire faculty and audience.

Results: Essential basic topics (e.g. dose) had to be added. Priority audience concerns about reproductive risks and clinical radiobiology were unanticipated. Enough time was allowed to circulate several versions of the entire training set to the faculty before going live. Faculty interactions resulted in major improvements in the questions, answers, and general topic sections. The audience remained engaged throughout the presentations and discussion and asked many additional questions.

Conclusion: This format was highly productive and generated high levels of audience participation. Audience members informally polled after the session felt that many of their a priori concerns were presented and appropriately discussed. The final topic list also provides insights into improvement of formal didactic training.

Author Disclosures:

B-1192 10:47
The reasons for practitioners’ passive approach to informing patients prior to their radiological examinations
H. Ökarine, L. Ukkola, A. Henner; Oulu/FI (helja.ookarinen@ppshp.fi)

Purpose: Despite requirements, there are suspicions that patients do not obtain adequate information from any source in connection with their radiological examinations. The aim was to survey whether practitioners in Northern Finland provide information, and if not, to elucidate the reasons for the passive approach.

Methods and Materials: Using a questionnaire, practitioners were asked whether they have informed patients about the necessity or radiation dose and risks of the examination during the past year. In case of a passive approach, the reasons were inquired. In all, 205/361 (57%) practitioners responded to the inquiry; 85% of the respondents were radiographers and 15% radiologists, and 53% were from the university hospital and 47% from other departments.

Results: Altogether 43% of the respondents did not inform about the necessity. 87% of them assumed that the referrer had already provided the information. Furthermore, 62% and 56% did not inform about the dose or risks, respectively. Regarding the passive approach to dose information, practitioners supposed that the referrer had already informed, information was not needed or might cause unnecessary fear (41, 47 and 41%, respectively). There were
similar reasons for avoiding risk information (63, 37 and 45%, respectively). According to the open question, many practitioners expect patients to ask questions before informing them.

Conclusion: Ignorance regarding responsibilities, assumption that patients are not interested and concern about causing unnecessary fear were the main reasons for the passive approach among the practitioners. There is a need to provide them education, practical guidelines and easy-access digital educational material.

B-1193 10:55
A retrospective review of justification of computed tomography examinations in Northern Ireland
Y. Sullivan, L. Fraser, G. Woodhouse; Oxford/UK (ysullivan.sullivan@phe.gov.uk)

Purpose: Justification is one of the key principles of radiation protection. The most appropriate use of CT relies on many factors which must be considered each and every time a scan is justified. The Regulation and Quality Improvement Authority (ROIA), commissioned this study to assess the justification rate of CT examinations in a single 24-hour period across NHS Trusts in Northern Ireland.

Methods and Materials: The study retrospectively reviewed the clinical information within 450 referrals for diagnostic CT scans against published referral guidelines to assess justification. Each referral was independently assessed by two consultant radiologists and where opinions differed, arbitration was carried out. The reviewers were also asked to indicate if an alternative modality would have been more appropriate in any referrals that they deemed unjustified. Results were analysed for variations in justification rate by patient gender, patient age, geographical location and anatomical region scanned.

Results: This study found that 94% of the CT referrals reviewed were justified. The number of justified scans varied with regard to the anatomical region being scanned, with the abdomen and pelvis being the only region that demonstrated any statistical significance in the number of unjustified examinations. The highest suggested alternative modality was MRI at 33% of the unjustified referrals.

Conclusion: The study compared favourably to a similar study carried out in Sweden from 2009 where the justification rate was 80%. This review shows that conventional systems utilising up-to-date referral criteria and robust justification processes can ensure that inappropriate examinations are rare.

B-1194 11:03
A radiation dose index monitoring (RDIM) system comparison for CT procedures
A. Mazzilli1; A. Loria1; R. Castriconi1; T. Luisa Aguerro2; R. Calandrino1; A. del Vecchio1; 1 Milan/IT; 2 Valencia/ES (mazzilli.aldo@hsr.it)

Purpose: Since the issuing of the 2013/59/Euratom directive, several RDIM systems have been developed. The aim of this study was to compare Effective Doses (ED) and Organ Doses (OD) calculated by two different systems for Computed Tomography (CT) procedures.

Methods and Materials: Dosimetric data were collected for more than 30 cardiac acquisitions of adult patients performed with a dual-energy CT device. The ED and OD for each acquisition were calculated by the two most widespread RDIM systems and the differences were evaluated. Both RDIM systems calculations are Monte Carlo (MC) based. The software allow an interactive dose calculation modifying acquisition parameters. In order to perform a more appropriate comparison, ED and OD differences between the two software were analyzed in automatic and interactive mode considering the same acquisition scan-length and target region. For the interactive mode comparison, the organs have been grouped into irradiated, partially-irradiated and not-irradiated.

Results: Statistical analysis of automatic and interactive mode yielded an ED median difference of 0.53mGy (25th-percentile: 0.16mGy; 75th-percentile: 2.4mGy) and 0.45mGy (25th-percentile: 0.21mGy; 75th-percentile: 2.11mGy), respectively. The median OD differences for interactive mode showed a similar behavior of the two software for partially-irradiated and not-irradiated organs. For irradiated organs a greater dispersion of the doses (4.56mGy) was found.

Conclusion: Although the ED differences were quite small, a great variability in the OD was found, especially for the irradiated organs. Therefore, dose measurements in phantom or independent MC-simulations should be made to validate these kinds of software.

B-1195 11:11
Using an automatic patient dose registry to help in the optimisation of interventional radiology practice
E. Vane; J.M. Fernandez, R.M. Sánchez-Casanueva, J. Ten; Madrid/ES (ellesoy@med.ucm.es)

Purpose: Obtaining sufficient diagnostic information (image quality) during interventional procedures is a priority, but optimisation also requires considering patient radiation doses. This work presents the experience using a homemade automatic patient dose registry (“Dose On Line for Interventional Radiology” DOLIR) for optimisation.

Methods and Materials: The automatic patient dose registry allows collecting data for all the radiation events (when the Radiation Dose Structured Reports are available) and auditing the protocol of the examinations and their different imaging acquisition modes: fluoroscopy, cine, DSA and CBCT events. A continuous comparison (using samples of 30 procedures) with Diagnostic Reference Levels (DRLs) allows suggesting corrective actions when appropriate. The Medical Physics Service carries out periodic validation of patient dose quantities managed by the system.

Results: The system used in a large university hospital during the last two years is currently connected to the interventional systems of other 6 hospitals, so as to jointly manage the patient dose values and arrange intercomparison of protocols. The current number of interventional procedures available in the system is about 40,000. Kerma area product, kerma at the patient entrance reference point and some calculated skin dose maps (and peak skin doses) are included.

Conclusion: The use of the automatic patient dose registry allowed an easy and fast analysis of the individual patient dose values (in case of potential skin radiation injuries) and obtaining median patient dose values for groups of procedures (with the same or similar clinical indications). The easier comparison with DRLs helped suggest corrective actions when appropriate.

B-1196 11:19
Update of the diagnostic reference levels for CT in Switzerland using dose management software
C. Abelé1, N. Ryckx2, R. Treier2, S. Schindera1, R. Menz1; 1 Basle/CH, 2 Lausanne/CH, 1 Liebefeld/CH, 2 Aarau/CH (roman.menz@usb.ch)

Purpose: To update the previous Swiss national diagnostic reference levels (DRLs) by acquiring big data on CT radiation doses with dose management software.

Methods and Materials: CT dose data from 14 radiological institutes in Switzerland, for a total of 50 CT scanners, were collected between 2014 and 2017 through local dose management software. Fifteen different standard CT protocols were compared. Data cleaning steps were adjusted individually for each participating institute and protocol. After data cleaning, 220,269 CT exams were available. The DRLs were calculated as the 75th percentile of median CTDIvol and DLP values per scanner. They were compared to the previous DRLs published in 2010.

Results: The DRLs for single acquisitions were 51 mGy (CTDIvol = 22%) and 890 mGy cm (DLP, -11%) for CT of the head, 7 mGy (CTDIvol = -20%) and 250 mGy cm (DLP, -37%) for CT of the chest, 11 mGy (CTDIvol = -27%) and 540 mGy cm (DLP, -17%) for CT of the abdomen and pelvis, 25 mGy (CTDIvol = 0%) and 420 mGy cm (DLP, +20%) for CT of the facial bones/sinuses, and 8 mGy (CTDIvol = -47%) and 300 mGy cm (DLP, -33%) for CT to exclude pulmonary embolism.

Conclusion: The updated national DRLs for CT are substantially lower compared to the previous DRLs demonstrating the efforts of the radiological community in Switzerland to lower CT radiation exposure.

Author Disclosures: C. Abelé: Research/Grant Support; Federal Office of Public Health (FOPH), Switzerland. S. Schindera: Research/Grant Support; Federal Office of Public Health (FOPH), Switzerland.

B-1197 11:27
Exposure levels from radiology procedures used in myeloma diagnostics
L. Weber1, J. Kristiansson2, M. Hertonchet1, R. Siemund2, H. Geijer2, M. Geijer1; 1 Lund/SE, 2 Örebro/SE (lars.weber@skane.se)

Purpose: Myeloma diagnostics have traditionally been performed using a radiographic skeletal survey. CT scanning has been suggested as a replacement and has been introduced in our institution. Effective doses have been reported in the literature, without correlation with body mass index (BMI). We have evaluated the effective doses imparted to the patients during this procedure.
Methods and Materials: Length, weight and dose-length product were collected for each patient and CT examination. Conversion factors based on BMI were generated using Monte Carlo-based simulations on voxel-based phantoms (n=5). For each phantom size a sex- and BMI-specific conversion factor was generated. Subsequently, individual conversion factors were generated through exponential curve fitting. Finally, the effective dose was calculated for each patient based on sex and BMI.

Results: The sex-averaged conversion factors for overweight, normal weight and obese patients (BMI = 18, 21 and 25, respectively) were 0.011, 0.011 and 0.010 mSv/mGycm, respectively. The median effective dose for a scan length from the top of the head to the knees was 5.1 mSv (n=256, range = [2.7, 12.6]) for all patients. Dose levels in our institution are comparable with published data but higher than that for conventional skeletal imaging.

Conclusion: CT scanning for myeloma diagnostics in our institution showed higher doses than have been published for conventional skeletal imaging but is still comparable to other investigations of this methodology. The advantages in terms of shorter examination times are perceived to be positive for the predominantly elderly patients where dose concerns are of less importance.

B-1198 11:35
A method to optimize DSA clinical protocols
V. Ravaglia, G. Venturi, N. Scrittori, S. Famedi; Ravenna/IT
(valentina.ravaglia@auslromagna.it)

Purpose: To optimize DSA vascular protocols using an objective method of evaluation, in terms of a figure of merit (FOM) that correlates patient entrance dose but not the SNR, resulting in a higher FOM.

Methods and Materials: Measurements were performed on a Philips AlluraClarity FD20 angiographic system for 7 different clinical peripheral protocols. Exposure parameters and added filtration s F1, F2 and F3 (1 mm Al) were automatically selected by AEC. A dedicated DSA phantom with Al strips simulating vessels was imaged and ED + respectively, 0.1, 0.4 and 0.9 mm Cu) were automatically selected by AEC. A

B-1200 11:51
Should testing for lead contamination be included in lead radiation protection apparel quality control?
M. Barati 1, R. Bling 2, L. Kardos 3, C. Paraskevopoulou 1, K. Katsari 1
1 Amsterdam/NL, 2 Budapest/HU (milan.barati@affidea.hu)

Purpose: Lead Radiation Protection Apparel (RPA) is routinely used for radiation protection of patients, accompanying persons and personnel during diagnostic and interventional procedures. In 2017 an article, ‘Lead Aprons are a Lead Exposure Hazard’ was published,suggesting the addition of lead dust testing to the quality control (QC) process. The aim of this study was to assess whether this test should be included in our own process.

Methods and Materials: The QC program was performed on 212 RPAs from 11 Affidea centers in Hungary. RPA condition was evaluated through visual/tactile inspection and imaging.‘Damaged’ is defined for aprons with defects <15mm on parts shielding critical organs or defects ≥670mm on any other area; collars/gonad shields with defects >11mm. ‘Passed with limitations’ includes all RPA with defects not greater than these criteria. RPA with no defects were ‘passed’. LeadCheck (3M) colorimetry was used to test for lead dust.

Results: 84% RPA ‘passed’ QC, 9% ‘passed with limitations’ and 7% were ‘damaged’. All RPA ‘damaged’ and ‘passed with limitations’ and 15% of ‘passed’ were tested for lead dust. 43% of ‘damaged’ RPA, 11% of ‘passed with limitations’ and 4% of ‘passed’ were found contaminated. Contaminated RPAs were cleaned, restitched and found negative for lead dust.

Conclusion: Results prove the importance of lead dust assessment as part of QC. Further investigation of the reappearance of lead dust must be undertaken to establish the frequency of cleaning.

10:30 - 12:00
Room K

Chest

SS 1404
Advanced lung imaging: MRI and artificial intelligence
Moderators:
N.N.
J. Coolen; Leuven/BE

B-1201 10:30
Comparison of quantitative regional perfusion-weighted phase resolved functional lung (PREFUL) MRI with pulmonary perfusion DCE-MRI in COPD patients
T.F. Kaireit 1, A. Voskrebenzev 1, M. Gutbertel 2, J. Freisle 2, B. Jobst 2, H.-L. Kauczor 1, T. Weile 2, F. Wacker 1, J. Vogel-Claussen 2, 1 Hannover/DE, 2 Heidelberg/DE (til.lkaireit@ime.com)

Purpose: Perfusion-weighted non-contrast enhanced proton lung MRI during free breathing is maturing as a novel technique for assessment of regional lung perfusion, but has yet not been validated in COPD patients. The goal of this study was to determine if phase-resolved functional lung (PREFUL-) MRI correlates with dynamic contrast enhanced (DCE)-MRI as established reference and lung function testing.

Methods and Materials: Forty-seven patients with stable COPD were included as a single center subgroup analysis nested in the German COPD cohort study COPD-COH - a prospective, observational, multicenter cohort. For PREFUL- MRI a spoiled gradient echo sequence and for DCE-MRI a contrast-enhanced three-dimensional time-resolved spoiled gradient echo sequence was used at 1.5T. Slices of PREFUL and DCE-MRI were matched using a landmark based approach and co-registered. Perfusion defect percentages (QDP) were calculated for both methods and correlated with each other and lung function testing using Spearman’s correlation coefficient (r), spatial overlap metrics and Bland-Altman plot analysis.

Results: PREFUL-MRI and DCE-MRI matched spatially with a spatial overlap of 62.2(57.2-67.2)%; QDP were comparable on a global 39.3(31.8-45.5)% vs. 44.7(35.4-50.0)% as well as on a lobar level, although a systematic overestimation of PREFUL-QDP compared to PBF-QDP mainly in the lower lobes resulted in an overall overestimation for the whole lung with a mean difference of 5%(95% confidence interval [CI]: 3.0%-7.0%). Significant
correlations with lung function test parameters was found for both methods, such as PREFUL-QDP vs. FEV1, rho=0.75, P<0.0001.

Conclusion: PREFUL-MRI is a promising noninvasive, radiation-free tool for quantification of regional perfusion in COPD patients.

B-1202 10:38
Fully automated 3D quantification of the lung emphysema in COPD using 3D-UTE MRI

I. Benlala, P. Berger, P.O. Girodet, C. Dromer, J. Macey, F. Laurent, G. Doures; Pessac/FR

Purpose: To develop and validate a fully automated 3D quantification of emphysema extent in COPD patients using 3D-MRI with ultrashort echo time (UTE).

Methods and Materials: Twenty-nine COPD patients (21 males/ 8 females, age 70±7 years) and 11 healthy volunteers (10 males/1 female, age 64±4 years) were prospectively enrolled between 2014 and 2017. All patients underwent pulmonary function test, 3D-UTE MRI at millimetre spatial resolution (voxel size=1mm³) and MDCT scan the same day. Two readers experienced in chest imaging performed the evaluation. 3D automatic quantification of relative low signal area (LSA%) and relative low attenuation area (LAA%,<-950HU) were measured as a surrogate for emphysema using 3D-UTE MRI and MDCT, respectively. Skewness of lung MR frequency distribution histogram was also determined. Comparison of means was performed using t-test and correlation using Pearson test. Reproducibility was assessed using Lin's concordance correlation coefficient.

Results: Using 3D-UTE, LSA% was significantly higher in COPD patients than in healthy volunteers (p<0.001). Skewness of lung MR frequency distribution histogram was significantly right tilted towards the lowest signal values in COPD (p<0.001). In 29 COPD patients, both LSA% and skewness correlated well with both LAA% (rho=0.77, p<0.001; rho=0.87, p<0.001, respectively) and FEV1 (rho=-0.43, p<0.01; rho=-0.55, p<0.001, respectively). Intra- and inter-reader reproducibility of both LSA% and skewness were found perfect using Lin's concordance correlation coefficient (p<0.99).

Conclusion: 3D automatic quantification of the lung emphysema is feasible and reproducible using non-contrast enhanced 3D-UTE MRI and may prove useful in the follow-up of COPD patients without radiation exposure.

B-1203 10:46
Comparison of quantitative capability among DWI with FASE and EPI sequences at 1.5T or 3T systems and FDG-PET/CT: for differentiating malignant from benign solitary pulmonary nodules

Purpose: To directly and prospectively compare the quantitative capability for diagnosis of solitary pulmonary nodules (SPNs) among diffusion-weighted imaging (DWI) with fast advanced spin-echo (FASE) and echo planar imaging (EPI) sequences in a 3T system, DWI with EPI sequence at a 1.5T system and FDG-PET/CT.

**Methods and Materials: 97 consecutive patients with 129 SPNs underwent DWIs with FASE and/or EPI sequences at 3T and 1.5T systems, FDG-PET/CT, and pathological and/or follow-up examinations. According to final diagnoses, all SPNs were divided into malignant (n=87) and benign (n=42) SPNs. In each lesion, apparent diffusion coefficients (ADCs) from all DWIs (ADC_{FASE}, ADC_{TEPI} and ADC_{STEP}) and SUV_{max} were assessed by ROI measurements. To compare all indexes between two groups, Student’s t-test was performed. Then ROC analyses were performed to compare diagnostic performance among all indexes. Finally, sensitivity, specificity and accuracy were compared among all methods by McNemar’s test.

Results: There was significant difference of all indexes between two SPN groups (p<0.0001). ROC analyses showed area under the curve (AUC) of ADC_{STEP} was significantly larger than that of others (p<0.05). Accuracy (AC) of ADC_{FASE} (90.7%) was significantly higher than that of others (ADC_{TEPI}: 84.4%, p=0.008; ADC_{STEP}: 82.9%, p=0.002; SUV_{max}: 75.2%, p<0.0001).

Conclusion: DWIs with FASE sequence has a better potential for quantitative diagnosis of SPNs than DWI with EPI sequence at 1.5T and 3T systems and FDG-PET/CT. FASE sequence would be better to be applied for DWI at 3T system to improve diagnostic performance of SPNs.

Author Disclosures:
Y. Ohno: Research/Grant Support; Canon Medical Systems Corporation.
M. Yuji: Employee; Canon Medical Systems Corporation.
S. Seki: Research/Grant Support; Canon Medical Systems Corporation.
T. Yoshikawa: Research/Grant Support; Canon Medical Systems Corporation.
Y. Kasaai: Employee; Canon Medical Systems Corporation.

B-1204 10:54
Paediatric Hodgkin’s and non-Hodgkin’s lymphoma on chest MRI: do we really need intravenous contrast agent?

C.T. Arendt, M. Beeres, D. Leihtner, F. Tischendorf, M.C. Langenbach, B. Kalterbach, T.J. Vogl, T. Gruber-Rouh; Frankfurt a. Main/DE (ct.arendt@gmail.com)

Purpose: Increasing awareness of potential short- and long-term side effects from gadolinium-based contrast agents has underlined the need for contrast-free MR imaging. The aim of this study was to determine whether the intravenous administration of contrast media is necessary for thoracic imaging in children and adolescents with lymphoma.

Methods and Materials: Patients under 25 years of age who underwent histopathological examination of thoracic lymph nodes and at least one chest MRI with unenhanced and contrast-enhanced sequences (Jan 2010 - Oct 2016) were enrolled in this monocentric, retrospective study. Seven different thoracic lymph node stations, including mediastinal, hilar, periclavicular and axillary regions, were evaluated by two readers regarding lesion diameter, number, shape, necrosis and infiltration of surrounding structures. Findings were categorized into suspicious (>1 cm; round; necrosis; infiltration) and unsuspicious.

Results: 51 consecutive patients (mean age, 16.0 yrs; age range, 4-23 yrs; 60.8% male) with histologically proven diagnosis of thoracic Hodgkin’s (70.6%) and Non-Hodgkin’s lymphoma (29.4%) were retrospectively included. 236 examinations were analysed, 36 study participants received additional follow-up studies (average number, 4.7; range, 1-15). Most lymph nodes categorized as suspicious were located in the mediastinum (89.9%). High agreement (lowest κ=0.88) between unenhanced and contrast-enhanced sequences was found for both suspicious and unsuspicious lymph nodes. The only significant difference was observed in sizing mediastinal lymph nodes with a deviation of 1mm (p=0.001; all other p>0.05).

Conclusion: Staging and disease surveillance in young patients with thoracic lymphoma can be safely done without contrast agent.

B-1205 11:02
Differentiation of inflammatory and fibrotic ground-glass opacity (GGO) with MRI; a pilot study

C. Romei¹, L. Turturici¹, L. Tavanti¹, M. Marletta¹, P. Wielopolski², S. Colagrande¹, D. Caramella¹, F. Falaschi¹, P. Cierf¹, S. Isaia¹, Rotterdam/NL, Florence/IT (chiara.romei@gmail.com)

Purpose: To differentiate fibrotic and inflammatory GGO using T2-weighted (T2-w) and contrast-enhanced MRI (CEMRI).

Methods and Materials: After consent, 3 patients with IPF/NSIP underwent CT and MRI on the same day, which were repeated after 6-month-therapy. MRI consisted of 3D-SPGR-PD-w, 2D-PROPELLER, 3D-CUBE-T2-w and CEMRI acquired at 5-10-20 minutes. Two main radiological interstitial lung active disease (ILD) features were quantitatively scored with PRAGMA-ILD on MRI: Fibrotic(fl) and Normal Lung(NL) tissue. FL included all fibrosis-related changes (honeycombing, reticulation, GGO). Data were expressed as ml and % total lung volume. MRI data were compared with CT data scored with CALIPER-software and clinical data. Based on T2-w signal intensity (SI) and CEMRI, FL was classified as inflammatory. Statistic included Pearson correlation and Mann-Whitney-U test.

Results: MRI-score had excellent correlation with CALIPER (r=0.87, p<0.00001), MRI-score overestimated fibrosis (mean-distance 15.3 % SD 7.5 %) and underestimated normal lung (mean-distance 17.8 SD 7.5) compared to CT. 4/9 ROIs showed significant difference in T2-w SI and were labelled as inflammatory. The mean SI differences FL were 106.8 (SD 32.1) and 2.1 (SD 34.4) for the inflammatory and the stable ROI, respectively. Inflammatory ROIs had higher SI difference than stable ROI between baseline and follow-up (p<0.0001). Two inflammatory areas, as expected in the NSIP, evolved in fibrotic tissue. CEMRI showed rapid peak of enhancement in the FL suspicious for active inflammation.

Conclusion: In our pilot study ILD morphological changes can be reliably be quantified with MRI. T2-w SI and CEMRI can identify inflammation area and their evolution during ILD therapy.

B-1206 11:10
What is the contribution of MR spectroscopy in the differential diagnosis of solitary pulmonary masses?

A. Hekimoglu¹, O. Ergun¹, A. Turan¹, T.T. Turkenoglu², B. Hekimoglu¹, Ankara/TR (azadehhekimoglu@gmail.com)

Purpose: The aim of our study was to evaluate the availability of Magnetic Resonance Spectroscopy (MRS), which is a non-invasive method for the differentiation of benign or malignant pulmonary masses.
B-1207 11:18
Imaging of thymic lesions in patients with myasthenia gravis: is dual energy CT superior to MRI?

(naveenrajamohan@gmail.com)

Purpose: To compare imaging parameters of Dual energy CT (DECT) with MRI for differentiation of thymoma from Thymic hyperplasia (TH) and correlate the imaging findings of thymoma with the WHO grade & Masaoka Koga (MK) stage among patients with Myasthenia Gravis (MG).

Methods and Materials: Fifty-four patients of MG were recruited and underwent a single venous phase DECT (n=29), a Dynamic Contrast Enhanced MRI (1.5T, n=41) or both (n=53). Based on the histopathology they were divided into two groups (i) Thymoma (n=27) & (ii) Thymic hyperplasia (n=18), while patients with normal thymus glands (n=9) were excluded. Statistical analysis was performed between the two groups for DECT and MRI. Results: Quantitative MRI parameters including Signal intensity index (SII) and Chemical Shift Ratio (CSR) showed a sensitivity & specificity of 78%/75% and 65%/86% respectively for detecting thymoma, at present published cutoff values (SII>7.77, CSR>0.849). Using ROC analysis, we propose a cutoff for SII<38% & CSR<0.75 with an improved sensitivity and specificity to 65%/88% & 89%/86% respectively. Quantitative DECT parameters using our proposed cutoffs for attenuation on Virtual Non-Contrast image (33.3 HU) and Venous Phase (51.3 HU), & fat fraction (>17.8%) showed a sensitivity and specificity of 100%/100%, 89.9%/90.9%, & 100%/100% respectively. DECT was also superior to MRI in predicting WHO grade, however no quantitative parameter on either DECT or MRI could differentiate the MK stages.

Conclusion: DECT has the potential to provide equal if not greater information than MRI for characterizing thymic lesions in patients with MG, however further validation is required.

B-1208 11:26
Lung volumes and its association with subclinical impairment in whole-body MRI imaging

Purpose: A study of 400 whole-body MRI scans from the KORA-FF4 cohort study underwent whole-body MRI. Pulmonary volumes were derived from coronal T1w-sequences. Cardiac function was assessed from cine-SSFP sequences using cw42, and LV filling rates were assessed by using pyHeart (in-house developed). Cardiac function parameters were standardized to body surface area, and its association to lung volume was analyzed using Pearson correlation and multivariate linear regression models.

Results: MRI parameters were available for 356 subjects (56.4±9.2 years). Cardiac measurements were within the normal physiologic range, and the mean lung volume was 4.0±1.1L. In a univariate model, left ventricle (LV) and right ventricle (RV) stroke volume were negatively correlated to lung volume. After multivariate adjustment, stroke volume as well as end-diastolic volume from LV (β=2.75, p<0.001; β=1.71, p=0.001) and RV (β=2.14, p<0.02; β=1.45, p<0.001) were negatively associated with lung volume. Myocardial mass peak ejection rate and ejection fraction were not associated with lung volumes. For LV, the early diastolic filling rate was negatively associated with lung volume (β=1.73, p=0.006; β=11, p=0.08).

Conclusion: Using whole-body MRI, we observed an association between lung volume and biventricular end-diastolic and stroke volume, as well as LV filling rates, indicating potential for early detection of subclinical cardiac impairment.
B-1211 11:50
Al-powered detection of pulmonary embolism in CT pulmonary angiograms: a validation study of the diagnostic performance of prototype algorithms
T-J. Weikert, D.J. Winkel, J. Bremerich, B. Stiteljes, A.W. Sauter, G. Sommer; Basel/CH (thomasjoannes.weikert@usz.ch)

Purpose: To validate the performance of deep convolutional neural networks optimised for the detection of pulmonary embolism (PE) on CT pulmonary angiograms (CTPAs).

Methods and Materials: We downloaded all CTPAs performed in 2017 along with the corresponding reports (n = 1,499) from our RIS/PACS archive using an in-house-developed search engine. The reports were manually reviewed by a radiologist. CTPAs with other clinical questions than PE or poor diagnostic quality were excluded. The remaining exams were then classified into positive (n = 232) and negative (n = 1,204) for PE. All emboli in positive exams were labeled by a radiologist using bounding boxes. The data served as ground truth. We downloaded all CTPAs performed in 2017 along with the corresponding reports (n = 1,499) from our RIS/PACS archive using an in-house-developed search engine. The reports were manually reviewed by a radiologist. CTPAs with other clinical questions than PE or poor diagnostic quality were excluded. The remaining exams were then classified into positive (n = 232) and negative (n = 1,204) for PE. All emboli in positive exams were labeled by a radiologist using bounding boxes. The data served as ground truth.

Results: Four trained prototype algorithms were tested on our CTPA dataset. The best performing algorithm was a fully convolutional neural network with a backbone based on the Resnet architecture. It achieved a sensitivity of 93% and a specificity of 95%. This corresponds to a positive predictive value of 77%.

Conclusion: The best-performing AI algorithm we validated is capable of detecting pulmonary embolism in CTPAs with high sensitivity and specificity. In a clinical setting, this can complement conventional workflows with a workflow prioritisation and has the potential to improve the quality of healthcare by accelerating the diagnostic process and communication. We plan to further test the algorithm and finally implement it in the clinical routine to perform prospective evaluations.

B-1212 10:30
Diagnostic accuracy of combined CCTA and low-dose dynamic stress CT myocardial perfusion with a whole-heart coverage CT scanner in patients with suspected CAD
A. Baggio1, M. Guglielmo1, G. Muscogiuri1, M. Solidi2, A. Del Torto1, A.I. Giancatti1, M. Pepe1, G. Pontone3; 1Milan/IT, 2Bari/IT, 3Basel/CH (andrea.baggio@mg.medicina.uniroma1.it)

Purpose: Our purpose is to test the diagnostic accuracy of integrated CCTA plus dynamic myocardial stress-CTP with low-dose protocol using a whole-heart coverage CT scanner as compared to ICA plus invasive FFR.

Methods and Materials: Eighty-five consecutive symptomatic patients scheduled for ICA were prospectively enrolled. All patients underwent rest cCTA followed by stress dynamic CTP with a whole-heart coverage CT scanner (Revolution CT, GE Healthcare, Milwaukee, Wisconsin). Diagnostic accuracy and overall effective dose were assessed and compared to ICA and invasive FFR.

Results: The prevalence of obstructive CAD and functionally significant CAD were 69% and 44%, respectively. cCTA alone demonstrated a per-vessel and per-patient sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 83%, 66%, 89%, 54%, 71% and of 96%, 32%, 86% 65%, and 68%, respectively. Combining cCTA with stress CTP, per-vessel and per-patient sensitivity, specificity, negative predictive value, positive predictive value, and accuracy were 71%, 86%, 86%, 72%, 81% and 88%, 75%, 82%, 82%, and 82%, with a significant improvement in specificity, positive predictive value, and accuracy in both models. The addition of stress CTP to cCTA improved the area under the curve from 0.82 to 0.87 (p<0.011) and from 0.78 to 0.87 (p<0.011) in a vessel and patient-based model, respectively. The mean ED for cCTA and stress CTP was 2.8 ± 1.2 and 5.3 ± 0.7 mSv, respectively.

Conclusion: The addition of dynamic stress CTP to coronary artery imaging by cCTA provides additional diagnostic accuracy with acceptable radiation exposure.

B-1213 10:46
Characteristics of first-pass myocardial iodine distribution as assessed by dual layer CT with different injection protocols
S. Boccalini1, S.A. Si-Mohamed1, M. Matuzzi2, B. Plaine2, D.C. Ratzinger2, L. Hanquez1, L. Bousset1, D. Revel1, P. Douek1; 1Bron/FR, 2Lyon/FR, 3Lausanne/CH (sara.boccalini@yahoo.com)

Purpose: To compare iodine distribution in healthy myocardium at first-pass perfusion imaging between two different contrast injection rates using dual-layer CT (DLCT).

Methods and Materials: Between January and July 2018, patients with clinically indicated coronary CT were randomized to undergo spectral coronary DLCT-angiography with different injection protocols. The two protocols were: 35 ml/min at <80kg and 0.5ml/kg in patients >80 kg (maximum 45ml) at 2.5ml/sec (A) or double contrast dose at 5.0ml/sec (B). Patients with coronary stenosis >50% were excluded. Regions-of-interest were manually drawn on the 16 AHA standard myocardial segments. Iodine concentration was measured of material decomposition (iodine-water) maps in mg/mL.

Results: 25 and 28 patients for protocol A and B were included, respectively. With median values of 1.37mg/mL (IQR=0.53) at 2.5ml/sec and 1.74mg/mL (IQR=0.73) at 5.0ml/sec the overall iodine concentration was significantly different (p<0.01). For group A no significant difference was found between the 16 segments (p=0.8), between basal, mid and apical segments (p=0.34) and between coronary territories (p=0.31). In group B the homogeneity of iodine concentration between the 16 segments and basal, mid and apical segments was at the limit (p=0.06 and p=0.07) while being significantly different between the territory of the LCX (median=2.03 mg/mL; IQR=1.06) vs LAD (median=1.63 mg/mL; IQR=0.92) and vs RCA (median=1.69 mg/mL; IQR=1.12) (p<0.01).

Conclusion: Iodine concentration in healthy myocardium obtained with DLCT with higher at faster injection rate and greater dose. Iodine myocardial distribution was homogeneous at lower injection rate. Conversely, significant differences between coronary territories at higher flow rates were found.

B-1214 10:54
Feasibility of extracellular volume quantification using dual-energy CT
M. van Assen1, C.N. De Cecco2, P. Sahabae2, P. Griffith3, M.J. Bauer1, A. Varga-Szemes1, M. Oudekerk1, R. Vliegenhart1, U.J. Schoepf1;
1Groningen/NL, 2Charleston, SC/US (griffile@musc.edu)

Purpose: To assess the feasibility of dual-energy CT (DECT) to derive myocardial extracellular volume (ECV) and detect myocardial ECV differences without a non-contrast acquisition, compared to single-energy CT (SECT).

Methods and Materials: Subjects (n=35) with focal fibrosis (n=17), diffuse fibrosis (n=10), and controls (n=9) underwent non-contrast and delayed acquisition to calculate SECT-ECV. DECT-ECV was calculated using the delayed acquisition and the standard non-contrast images. In the control and diffuse fibrotic groups, the entire myocardium of the left ventricle was used to calculate ECV. Two ROIs were placed in the focal fibrotic group, one in normal and one in fibrotic myocardium.
B-1216 11:02
Cardiac CT in the quantification of myocardial extracellular volume fraction (ECV) with a semiautomatic method: comparison with cardiac MR

D. Vignale, A. Palmisano, A. Del Maschio, F. De Cobelli, A. Esposito; Milan/IT (vignale.davide@hsr.it)

Purpose: To assess the potential of cardiac CT in the quantification of extracellular volume fraction (ECV), a parameter with increasing diagnostic and prognostic role, in comparison to cardiac MR as the reference standard.

Methods and Materials: A total of 14 patients affected by various diseases (3 idiopathic dilated cardiomyopathy, 3 CAD, 2 acute myocarditis, 2 chronic myocarditis, 1 hypertrophic cardiomyopathy, 1 amyloidosis, 2 no overt cardiac pathology) underwent cardiac CT including a delayed low-kilovoltage scan (10 minutes after contrast injection). The same patients underwent cardiac MR at 1.5 T with native and post-contrast TI mapping. ECV-CT is defined as the quotient between the density difference of myocardium and the density difference of blood pool before and after contrast injection, weighted to the haematocrit. With the same MATLAB® toolkit, we co-registered T1-native and T1-enhanced MR images to create a map of the heart ECV on the same slice used for CT. ECV-CT and ECV-MR maps were segmented to extract ECV values of LV septum and lateral wall.

Results: 28 ECV values were compared. ECV-CT range was 23.4-72.3% (mean 33.1±10.0%). ECV-MR range was 25.3-75.2% (mean 34.2±11.0%). Correlation between ECV-CT and ECV-MR was optimal (r=0.943, p<0.001).

Conclusion: ECV can be semi-automatically extracted from cardiac CT datasets, with a good correlation with cardiac MR.

B-1217 11:10
AI-based prediction of haematocrit values from non-contrast CT imaging data - towards fully automated CT-derived myocardial extracellular volume fraction quantification

M.J. Bauer,1, M. van Assen,2, C.N. De Cecco,2, J.A. Durden,2, M. Scarabello,1, H.T. Rudson,1, L. Griffith,1, A. Varga-Szemes,2, U.J. Schoepf;1,1 Charleston, SC/US, 2 Kroningen/NL, 3 Milan/IT (email=bauermaximilian.de)

Purpose: Imaging approaches for the quantification of the myocardial extracellular volume fraction (ECV) require the patient's haematocrit as an input variable. We assessed the performance of a fully automated, in-house developed artificial intelligence (AI) approach to predict haematocrit values from multiple patient- and acquisition-related variables in comparison to a linear regression (LR) model employing HU values alone.

Methods and Materials: A total of 286 patients that had undergone non-contrast cardiac CT and had haematocrit values determined via blood sampling within 2 days of the scan were retrospectively included. For each case, we measured HU values in the ascending aorta both manually and by a fully automated deep learning (DL) segmentation approach. A LR analysis was employed to model the relationship between HU values and laboratory haematocrit values. In addition, a total of 31 features on patient demographics, clinical history, and imaging parameters were extracted for the machine learning (ML) approach and used to train a linear Support Vector Machine (SVM) employing repeated, nested k-fold cross validation.

Results: The HU values obtained by the manual (mean 44.0±3.7) and the DL segmentation approach (mean 44.3±3.3) were in excellent agreement (R²=0.95). The LR approach demonstrated a weak relationship between the model and the laboratory haematocrit values (R²= 46, MAE=2.4%), while the ML approach resulted in a moderate relationship (R²= 0.59, MAE= 1.8%).

Conclusion: The use of AI is a promising approach for the calculation of CT-derived haematocrit values that benefit from additional information and comes with immediate potential for fully-automated ECV quantification approaches.

Author Disclosures:
C.N. De Cecco: Consultant; Guerbet, Research/Grant Support; Siemens.
M.J. Bauer: Consultant; Guerbet, Research/Grant Support; Siemens.
A. Varga-Szemes: Consultant; Guerbet, Research/Grant Support; Siemens.
U.J. Schoepf: Consultant; Bayer, Guerbet, Research/Grant Support; Siemens.
B. Chiesi:

B-1218 11:18
Could "synthetic hematocrit value" has a use on ECV calculating via cardiac MRI? A single centre study

A. Erdemir, O. Cacal, T. Haziroglu; Ankara/TR (a.gurkan.erdemir@gmail.com)

Purpose: Currently, myocardial extracellular volume (ECV) can easily get calculated on cardiac magnetic resonance imaging (MRI), by using patient's haematocrit values acquired via blood sampling. However, sometimes blood sampling can be missed out which makes ECV calculating difficult. Synthetic ECV estimation, by synthetic hematocrit value, may make the ECV calculating process much more applicable and comfortable. The aim of this study is to investigate synthetic hematocrit values' validity on ECV estimating in our center's routine practice.

Methods and Materials: Between November 2017 - July 2018, 327 patients with cardiac MRI were reviewed. 61 patients who have appropriate imaging and blood sampling included to study. Whole basal, middle and apical segments' native ECV and synthetic ECV values were assessed via cardiac MRI. The results of each segments' synthetic values compared with each segments native values using both "ANOVA" and "Interclass Correlation COefficient" analysis.

Results: The vaules of both "synthetic hematocrit and synthetic ECV" were significantly reliable as compared with the values of both "native hematocrit and native ECV" regarding of cardiac segments. (p<0.0001). The results of both synthetic hematocrit and synthetic ECV values had above 0.80 interclass correlation and above 0.90 unstandardized coefficient for each segments.

Conclusion: Synthetic ECV values, acquired via synthetic ECV calculation, can be accepted as native ECV values in routine practice, regarding increasing both ECV estimation rates and patients comfort.

B-1219 11:26
Safety and diagnostic accuracy of regadenoson as vasodilator in stress perfusion cardiovascular magnetic resonance

A. Erztopa Cagasi, M. Calvo Imirzaldu, A. Garcia Baizan, A. Paternain Nuin, J. Puyuelo Villoslada, J. Gavira, G. Bastarrica Aleñà, Pamplona/ES (aeztopa@unav.es)

Purpose: To assess the safety and diagnostic accuracy of regadenoson as vasodilator in stress cardiovascular magnetic resonance (CMR) studies performed in individuals with known or suspected coronary artery disease (CAD).

Methods and Materials: We prospectively recruited 217 patients (159 men, mean age 65±11.9 years, 26.7% diabetes) with known or suspected CAD who underwent stress-CRM. Examinations were acquired in a 1.5-Tesla MR system (MAGNETOM Aera, Siemens Healthineers) using an intravenous bolus of 0.4mg (5mL) of regadenoson. Vital signs were monitored at rest and under stress and clinical symptoms and adverse events induced by the vasodilator were collected. Test results were confirmed by conventional coronary angiography (CCA) when available.

Results: Most patients remained asymptomatic (49.3%). The most frequent symptoms were chest pain (18.9%) and dyspnoea (17.1%). All symptoms were transient and well-tolerated. During the stress, the average increase in heart rate (HR) was 24±13.7 bpm and the mean decrease in systolic and diastolic blood pressure (SBP and DBP) was 7.0±15.8 mmHg and 4.9±10.2 mmHg, respectively. In the obese (BMI≥30; n=51) a statistically lowered HR (mean difference of -5.9± 2.1; CI=-10.1, -1.6;p=0.007) and SBP responses (mean difference of 3±2.8;CI 2.8,13,7;p=0.03) were noted. The DM group had a significantly higher HR at baseline (67.1±9.9 vs 62.5±15.5 bpm; p=0.03) and lower increase in HR (19.1±9.3 vs 26.1±14.5 bpm;p=0.001), whereas symptomatic patients showed a greater increase in HR (27.4±11.2 vs 20.6±10.7 bpm, p=0.001). Compared with CCA, regadenoson stress-CRM showed 94.9% sensitivity, 88.6% specificity, 88.1% positive and 84.6% negative predictive values to detect significant coronary stenosis.

Conclusion: Regadenoson is a well-tolerated and effective vasodilator that can be safely used in stress-CMR.

B-1220 11:34
Prognostic value of myocardial perfusion reserve index in patients with coronary microvascular disease: a multi-centre study

W. Zhou, M. Chai, W. Wong, P. Yap, Y. Lai, T. Lee, S. Leung, J. Lee, M.-Y. Ng; Hong Kong/HK (zw19933@hku.hk)

Purpose: Coronary microvascular disease(CMD) is an established cause of stable chest pain in patients without obstructive coronary artery disease(CAD). CMD identification by myocardial perfusion reserve index (MPRI) on stress cardiac magnetic resonance (SCMR) has been
demonstrated with a cut-off of 1.4. However, the prognostic value of MPRI identification of CMD has not been established.

Methods and Materials: 106 SICMR studies of symptomatic patients (50% male) without OCAD performed at three different MRI units since 2009 were analysed retrospectively. OCAD (i.e. ≥50% narrowing or fractional flow reserve <0.8) was excluded by catheter angiogram or CT coronary angiogram. MPRI was derived semi-quantitatively as upslope ratio of stress and rest myocardial perfusion signal intensity curve corrected for arterial input function. A MPRI <1.4 was classified as having CMD. Primary outcome was a combined major adverse cardiovascular event (MACE) of acute coronary syndrome, heart failure hospitalization and all-cause death.

Results: 54.7% patients had CMD. Reduced MPRI was associated with older age (p=0.03), female (p=0.02), diabetes (p=0.01), hypertension (p=0.03), and hyperlipidemia (p=0.004). Median follow-up was 5.75 years (CI:5.31-6.00) and 12.2% MACEs happened. CMD patients had worse prognosis compared to non-CMD patients [hazard ratio 3.29; CI: 1.04-10.4; p=0.04], MPRI remained an independent prognostic marker [hazard ratio=0.066; CI 0.01-0.77; p=0.03] after adjusting age, gender, BSA, cardiovascular risk factors and ejection fraction.

Conclusion: Reduced MPRI is an independent predictor of MACE and provides future therapeutic developments in CMD patients.

B-1221 11:42
Modification of left ventricle myocardial perfusion reserve after the implantation of coronary sinus stent: a stress-rest CMR study
A. Palmisano, A. Esposito, G. Benedetti, F. Giannini, L. Baldetti, A. Del Maschio, F. De Cobelli; Milan/IT

Purpose: The treatment of refractory angina is a challenge. The implantation of a hourglass shaped stent (Reducer) in the coronary sinus showed to improve symptoms, but objective data demonstrating the effect on myocardial perfusion reserve are lacking. Aim was to evaluate the modification in myocardial perfusion reserve occurring after Reducer implantation through stress-rest CMR.

Methods and Materials: 15 patients underwent 1.5 T CMR and clinical evaluation [Canadian Cardiovascular Society grading of angina pectoris (CCS Class) and six minutes walking test (6minWT)] before and 3 months after Reducer implantation. CMR examinations included stress-rest first-pass perfusion and LGE. Segmental and global Myocardial Perfusion Reserve index (MPRi) were measured, also accounting for myocardial layer.

Results: Thirteen out of 15 patients reported an improvement ≥ 2 CCSA class (p<0.0001) and a 60% increase in the average distance within the 6minWT (p=0.004). Stress-CMR demonstrated an improvement of myocardial perfusion reserve [ischaemic burden per patient from 13% to 10.88%, p=0.0092; median MPRI from 1.2 (0.9-1.5) to 1.3 (1.1-1.7), p<0.0001; number of segments with inducible perfusion defects (IPDs) from 92/240(38%) to 69/240(29%); p<0.001]. MPRI improvement was largely greater in more ischaemic segments at baseline: segments with IPDs vs without IPDs (ΔMPRi: 0.452 vs 0.183; p=0.0051) and with baseline MPRI <1.3 vs ≥1.3 (ΔMPRi: 0.355 vs -0.036; p=0.001). Moreover, MPRI improved according with a transmural gradient from epicardium to endocardium (ΔMPRI 0.4057 vs 0.3156, p=0.0292).

Conclusion: Clinical benefit from CS Reducer implantation was associated with a significant improvement in myocardial perfusion reserve driven by the more ischaemic segments.

B-1222 11:50
Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion
X. Liu, Z. G. Yang, Y.-K. Guo, Y. Ren, Y. Gao; Chengdu/CN

Purpose: This study aims to investigate the association between left ventricular (LV) myocardial deformation and myocardial perfusion using cardiovascular magnetic resonance (CMR) imaging in patients with type 2 diabetes mellitus (T2DM).

Methods and Materials: We recruited 71 T2DM patients and 30 healthy individuals; the T2DM patients were subdivided into newly diagnosed T2DM group (n = 31, with diabetes for ≤5 years) and longer term T2DM group (n = 40, with diabetes >5 years). LV deformation parameters, including global peak strain (PS), peak systolic strain rate (PSSR), and peak diastolic strain rate (PDSR), and myocardial perfusion parameters such as upslope, time to maximum signal intensity (TTM), and max signal intensity (Max SI) were measured and compared among the three groups. Pearson’s correlation was used to evaluate the correlation between LV deformation and perfusion parameters.

Results: The longitudinal PS and PSSR were significantly decreased in longer term group compared to the newly diagnosed group or normal subjects. Pooled data from T2DM patients showed a decrease in global PDSR compared to healthy individuals, apart from lower upslope and Max SI. Further, TTM was significantly higher in the longer term group compared to the other two groups. We also show a significant correlation between decreased longitudinal PDSR and increased TTX in the T2DM patients (r = 0.515, p < 0.001).

Conclusion: Our results imply that a contrast-enhanced 3.0T CMR can detect subclinical myocardial dysfunction and impaired myocardial microvascular perfusion in the early stages of T2DM, and that the myocardial dysfunction is associated with impaired coronary microvascular perfusion.
Scientific Sessions

B-1228 11:02

MRT findings in Christianson syndrome
P.A. Caruso*, M. Pescosolido*, K. Buch*, E. Morrow, Boston, MA/US;
*Providence, RI/US (pcaruso@partners.org)

Purpose: Christianson syndrome (CS) OMIM 300243 is an x-linked disorder caused by mutation in the SLC9A6 gene OMIM 300231 characterised by intellectual disability, seizures, ataxia, microcephaly, and ophthalmoplegia. MRT findings in CS have been reported only rarely and as case reports. Our purpose is to present the spectrum of imaging findings in the largest cohort of independent CS pedigrees.

Methods and Materials: 14 male patients with the CS phenotype and genetically proven deleterious SLC9A6 mutations were recruited for evaluation. MRTs on all 14 patients were retrospectively reviewed by two neuroradiologists. Images were reviewed for cerebellar pattern of atrophy, cortical, white matter, and nuclear signal abnormality, and supratentorial white matter and hippocampal abnormalities.

Results: Cerebellar atrophy was seen in 7/14 (50%) patients with a unique pattern of cerebellar atrophy that predicts the inferior cerebellar lobules, gracilis and biventer lobules VIbMm, VIIAm, VIIbMm, and that results in high T2/FLAIR signal in the depths of the cerebellar fissures, in 5/14 (36%) patients. A dronogly cerebellum was seen in 2/14 (14%). Dentate nuclear abnormal high T2 signal was seen in 6/14 (43%), 9/14 (64%) patients had occipital white matter lesions. Hippocampal abnormalities were seen in 5/14 (36%).

Conclusion: Cerebellar atrophy and occipital white matter lesions are frequently seen in CS. The pattern of cerebellar atrophy predicting the inferior hemispheres seen in 36% of patients presents a unique MRT endophenotype that in the setting of intellectual disability, seizures, and microcephaly is strongly suggestive of CS and may be seen as a potential useful imaging biomarker.

B-1229 11:10

Deep medullary venous thrombosis in neonates correlates highly with the development of shunt-dependent hydrocephalus
K. Buch, S. Rincon, K. Krishnamoorthy, G. Gomboli, P.A. Caruso;
Boston, MA/US (kbuch@partners.org)

Purpose: Deep medullary venous thrombosis (DMVT) in neonates may lead to shunt-dependent hydrocephalus (ShDH). While 10% of newborns with IVH from germinal epithelial bleeds (GEB) eventually require intraventricular shunts, the frequency of ShDH in neonates with IVH from DMVT remains unknown. Our purpose is to study a cohort of neonates with DMVT to determine if DMVT is a risk factor for ShDH.

Methods and Materials: Between 2006 and 2016, 27 neonates were found to have DMVT by MRT. DMVT was scored as mild involving 1-3 central veins, moderate 4-6, or severe, greater than 6. The extent of DMVT, presence of hydrocephalus, IVH, seizures, and frequency of progression to ShDH were recorded.

Results: 17 males and 10 females with a mean gestational age of 37 weeks (range 26-41 weeks) were included. The majority of neonates were scanned at 1-10 days of life (average = 10.2 days, range 0-66 days). 12 patients had mild DMVT, 10 moderate, and 5 severe. 21 patients had IVH that ranged from trace to severe. Hydrocephalus was observed in 13/27 (48%) patients, 5/27 (19%) of neonates developed ShDH and 5/21 (24%) of the neonates with DMVT and IVH developed ShDH.

Conclusion: The frequency of ShDH in neonates with IVH and DMVT is 24%, over twice as high as the frequency of ShDH in neonates with IVH from GEB. Awareness of this increased risk may indicate closer imaging surveillance in this group of neonates.

B-1230 11:18

Characterising resting-state networks in bilateral severe-to-profound sensorineural hearing loss infants within an early sensitive period
S. Wang, G. Fan; ShenyangCN (jelly_668@126.com)

Purpose: The development of central auditory system has a sensitive period during the first few years of life. This study was aimed to characterize the patterns of resting-state functional network connectivity in infants with bilateral severe-to-profound sensorineural hearing loss (SNHL) within an early sensitive period.

Methods and Materials: 36 infants with bilateral severe-to-profound SNHL (mean age = 16 months, range 6-35 months) and 33 age and sex matched healthy controls were recruited for the present study based on referral for clinical MRI and other inclusion criteria. All subjects underwent 3.0T anatomical and resting-state functional MRI. Independent component analyses (ICA) was applied to identify 20 spatially distinct brain networks including auditory, visual, somatosensory, executive control, default-mode networks (DMN), cerebellar, and subcortical networks. Participant-level network maps were obtained using dual-regression and functional network connectivity (FNC) was used to test within- and between-network connectivity differences between patients with SNHL and typically developing infants.
Results: We find that infants with SNHL exhibit significantly stronger connectivity within auditory, DMN and executive control network. Trends were also observed for stronger connectivity in the cerebellum network. In addition, we observed significant differences in the amplitudes of between-network correlations, which involved auditory, visual and somatosensory networks.

Conclusion: These novel findings provide valuable insights into the characteristics of early brain reorganization and compensatory activation changes in congenital bilateral severe-to-profound SNHL infants within early sensitive period.

B-1231 11:26
MRI in the preoperative diagnosis of medulloblastoma: correlation with molecular subgrouping
N. Plakhotina1, E. Vázquez2, I. Delgado Alvarez2, A. Sanchez-Montanez Garcia-Carpintero3, E. Martinez1, A. Llor1, G. Burcet Rodriguez2, J. Camacho2, 1St. Petersburg/RU, 2Barcelona/ES, 3Tarragona/ES (plakhotinadezhda@gmail.com)

Purpose: To determine the value of MRI for diagnosing the various molecular subgroups of medulloblastoma.

Methods and Materials: A retrospective analysis was performed of MRI findings in 28 patients with medulloblastoma, examined between January 2010 and January 2018. There were 10 (35.7%) female and 18 (64.3%) male patients with a mean age of 4.7 years. All patients underwent MRI of brain, including conventional sequences, DWI, MR spectroscopy, ASL perfusion, and dynamic enhanced perfusion, as well as whole-spine MRI, including sagittal T1 sequence was added to the conventional MR examination to evaluate the role of DWIs in the diagnosis and characterization of the masses. These lesions were higher in the delayed group. The AD values were slightly varied, where some white matter tracts in the delayed group showed higher and lower values. Correlations were seen between the DTI metrics with the developmental delay components in the white matter tracts such as corona radiate, medial lemniscus, cingulum, optic radiation, superior cerebellar peduncle, superior longitudinal fasciculus and posterior limb of internal capsule.

Conclusion: Most of the white matter tracts assessed showed diffusion changes that implied delayed white matter maturation in developmental delayed patients compared to control. The DTI metrics had potential as non-invasive imaging markers for delayed white matter maturation in children with developmental delay.

10:30 - 12:00 Room M 3

Oncologic Imaging

SS 1416
Neurooncology: making the most of quantitative imaging
Moderators: N.N. E. Papadaki; Itraklion/GR

B-1234 10:30
Enhancement of T1WI histogram in the identification with primary central nervous system lymphoma and glioblastoma
C. Chen, J. Cheng, Y. Zhang; Zhengzhou/CN (chmchn812@163.com)

Purpose: To investigate the diagnostic value of enhanced T1WI histogram in the identification of primary central nervous system lymphomas and glioblastomas.

Methods and Materials: Retrospective analysis of pathologically confirmed 41 cases of primary central nervous system lymphoma and 30 cases of glioblastoma. T1, T2-weighted, and enhanced T1 magnetic resonance images of the two types of tumours were collected. The MaZda was used to extract the maximal area of interest of the tumour to observe the two types of tumours were collected. The MaZda was used to extract the histogram features of the tumour, including the mean, variance, skewness, kurtosis, and the 1, 10, 50, 90, and 99 percentiles, were used to find significant differences between the two kinds of tumours. Statistical analysis was performed using SPSS 21.0 statistical software. The ROC curve was used to analyze the diagnostic efficacy of statistically significant parameters between the two groups of tumours.

Results: Among the nine parameters extracted using histogram analysis, the mean, variance, skewness, 1st, 10th, and 50th percentiles were statistically significant (P<0.05), while there was no significant difference in kurtosis, 90th percentile, and 99th percentile (P>0.05). In these parameters, the skewness was the most effective in identifying primary central nervous system lymphomas and glioblastomas, and the area under the ROC curve was 0.960, and the sensitivity and specificity were 80% and 100%, respectively.

Conclusion: Histogram analysis is helpful for the identification of primary central nervous system lymphoma from glioblastoma and the skewness has a high diagnostic efficiency.

Scientific Sessions

B-1233 11:42
Evaluation of white matter maturation in children with developmental delay using diffusion tensor imaging (DTI)
A. Yap, K. Rahmat, R. Muridin, P. Seow, C. Fong, L. Ong, L. Tan, N. Ramli; Kuala Lumpur/MY (katt_wr2009@yahoo.com)

Purpose: This study assessed the white matter maturation using diffusion tensor imaging (DTI) in paediatric patients with developmental delay to imply delayed white matter tract maturation.

Methods and Materials: Nineteen developmental delayed children and twenty-five neurodevelopmentally healthy children underwent MRI and cross sectional DTI scans. The developmental assessment of all the subjects was then performed. An automated processing pipeline for the white matter tracts assessment was comprised of DTI data pre-processing, image registration, DTI analysis and evaluation of tracts was implemented. Spearman test was used to establish correlations between the DTI metrics and developmental delay components.

Results: The results obtained from the developmental delayed group were compared with age-matched healthy group. Findings showed that majority of the 17 white matter tracts investigated demonstrated significant differences between the two groups. The FA values were lower while MD and RD values were higher in the delayed group. The AD values were slightly varied, where some while some white matter tracts in the delayed group showed higher and lower values. Correlations were seen between the DTI metrics with the developmental delay components in the white matter tracts such as corona radiate, medial lemniscus, cingulum, optic radiation, superior cerebellar peduncle, superior longitudinal fasciculus and posterior limb of internal capsule.

Conclusion: Most of the white matter tracts assessed showed diffusion changes that implied delayed white matter maturation in developmental delayed patients compared to control. The DTI metrics had potential as non-invasive imaging markers for delayed white matter maturation in children with developmental delay.
B-1235 10:38
T2WI histogram analysis of whole tumour volume for differentiating glioblastoma from primary central nervous system lymphoma
C. Gao, J. Cheng, Y. Zhang; Zhengzhou/CN (chcmhn812@163.com)

Purpose: To study the value of T2WI whole tumour volume histogram analysis in the diagnosis of primary central nervous system lymphoma and glioblastoma.

Methods and Materials: Retrospective analysis of 41 cases of primary central nervous system lymphoma and 29 cases of glioblastoma confirmed by pathology in our hospital. T2WI axial images were selected. Mazda software was used to map the regions of interest on each layer of the tumour in both groups, and a total tumour volume histogram analysis was performed to observe the histogram characteristics of the two tumours, including mean, variance, and skewness. The kurtosis, the 10th percentile, the 50th percentile, the 90th percentile, and the 99th percentile identify the significant differences between the two tumours. Statistical analysis was performed using SPSS 21.0 statistical software. The ROC curve was used to analyze the diagnostic efficacy of statistically significant parameters between the two groups of tumours.

Results: In the nine parameters obtained from T2WI whole tumour volume histogram analysis, the mean, variance, kurtosis, skewness, 50th percentile, 90th percentile, and 99th percentile were statistically significant (P<0.05). Among these parameters, the variance identification of the primary central nervous system lymphoma and glioblastoma was the most effective, and the area under the ROC curve was 0.884, and the sensitivity and specificity were 69% and 90.2%, respectively.

Conclusion: The whole tumour volume T2WI histogram analysis is helpful for the identification of primary central nervous system lymphoma from glioblastoma and the variance has a high diagnostic efficiency.

B-1236 10:46
Whole tumour histogram analysis of apparent diffusion coefficient for evaluation of histological grade and BRAF mutation status in pleomorphic xanthoastrocytomas
J. Tan, J. Cheng, F. Liu; Zhengzhou/CNY (ayj198612@126.com)

Purpose: To investigate whether histogram-profiling of apparent diffusion coefficient (ADC) could stratify histological grade and predict BRAF mutation status of pleomorphic xanthoastrocytomas (PXA).

Methods and Materials: The ADC maps of 61 patients with pathologically diagnosed PXAs were used for whole tumour histogram-profiling according to the 2016 WHO classification. The patients were firstly allocated to the grade II and grade III anaplastic PXA groups, and further divided into BRAFV600E-mutated and wild-type groups. Comparative statistics were performed to investigate the association of histogram parameters between groups. Receiver operating characteristic (ROC) curve analysis was applied to determine the accuracy and optimum cut-off value of histogram parameters. Binary logistic regression analysis was used to determine the independent predictors of the BRAFV600E mutation.

Results: Various histogram parameters (ADCmean, ADCmax, ADCp10, ADCp75, ADCp90, ADCmedian) were significantly greater in the grade II PXA group than those in the grade III anaplastic PXA group (P<0.05). The mean ADC value of the grade II PXA group was significantly higher than that of the grade III anaplastic PXA group (P<0.05). ROC analysis revealed that ADCp90 was the most accurate parameter for stratifying histological grade of PXAs, with a cut-off value of 1.34×10-3 mm2/s (sensitivity 0.682 and specificity 0.889). Further, ADCmax and ADCp90 were significantly greater in the BRAFV600E-mutated group compared with the wild-type group (P<0.018 and 0.027, respectively). Binary logistic regression analysis revealed that ADCmax was independently associated with the BRAF mutation status (P=0.030).

Conclusion: Whole tumour histogram-profiling of ADC was useful for histological grading of PXAs, rendering ADCp90 as the most accurate parameter with high specificity and sensitivity. Further, ADCmax was the independent predictor for BRAF mutation of PXAs.

B-1237 10:54
Prediction of the BRAF mutation status of pleomorphic xanthoastrocytomas using pre-operative multi-parametric MRI
J. Tan, J. Cheng, F. Liu; Zhengzhou/CNY (ayj198612@126.com)

Purpose: We aimed to predict the BRAF mutation status of pleomorphic xanthoastrocytomas (PXA) based on pre-operative multi-parametric MRI characteristics.

Methods and Materials: A set of 18 clinical and MRI features were evaluated in 33 patients with pathologically-confirmed PXAs for prediction of BRAFV600E mutation. The results obtained for the BRAF-mutated and wild-type groups were compared. Characteristics that were significantly more prevalent (P<0.05) in the BRAF-mutated PXAs were defined as diagnostic features. The receiver operating characteristic curve and binary logistic regression analysis were carried out to determine diagnostic accuracy and optimum cut-off value.

Results: A comparison of findings between the groups showed that the cases with BRAF-mutated PXAs tended to be younger (P=0.010), and more often had a history of epilepsy (P=0.047). Though the difference in number was not significant in the two groups, all the multiple lesions were found in the wild-type group. Furthermore, BRAF-mutated PXAs tended to be superficial with obvious meningeal contact (P=0.040), appeared as predominantly cystic with a mural nodulus (P=0.024). The mean ADC and normalized ADC ratio were significantly greater in the BRAF-mutated group (P<0.012 and 0.003, respectively). The optimal cut-off values of mean ADC and normalized ADC ratio were 0.86×10-3 mm2/s (sensitivity 0.769 and specificity 0.824) and 1.07 (sensitivity 0.769 and specificity 0.882), respectively. The combination of all these significant features resulted in the highest sensitivity and specificity of 0.923 and 0.882, respectively.

Conclusion: The BRAF mutation status of PXAs may be predicted using pre-operative multi-parametric MRI with high specificity and sensitivity.

B-1238 11:02
To study the diagnostic value of adc global gray histogram in differentiating primary central nervous system lymphoma from pleomorphic glioblastoma and single brain metastases
Z. Ma, J. Cheng; Zhengzhou/CN

Purpose: To study the diagnostic value of adc global gray histogram in differentiating primary central nervous system lymphoma from pleomorphic glioblastoma and single brain metastases.

Methods and Materials: A retrospective analysis in our hospital had brain MRI examination and 95 cases of pathologically-confirmed primary central nervous system lymphoma 38 cases, 29 cases of glioblastoma, 28 cases of solitary metastases. Three groups of MR ADC axial images were used to draw the region of interest on each level of tumour with MAZDA software, and the gray level global histogram was analyzed. The parameters of the three groups of histograms were tested by kruskal-wallis, and the comparison between groups was tested by bonferroni method. The statistical significance of each parameter was compared.

Results: Through histogram analysis of 9 parameters, these 9 parameters were statistically significant (all P<0.05), including mean, variance, kurtosis, skewness, Perc.01%, Perc.10%, Perc.50%, Perc.90% and Perc.99%. The sensitivity of Perc.50% between glioblastoma and central nervous system lymphoma was 84.21, specificity was 86.21. The sensitivity of mean Perc.50% between glioblastoma and single metastatic tumour was 90.90%. The sensitivity of Perc.90% Perc.99% between the central nervous system lymphoma group and the single metastatic tumour group was 92.86% and the specificity was 63.16.

Conclusion: Histogram analysis is helpful for the identification of central nervous system lymphoma and glioblastoma and single metastatic tumour. The perc.50% between glioblastoma and central nervous system lymphoma, between glioblastoma and single metastasis, perc.90% between central nervous system lymphoma and single metastatic tumour has high diagnostic efficacy.

B-1239 11:10
A whole-tumour histogram analysis of apparent diffusion coefficient maps for distinguishing lateral ventricle central neurocytoma from ependymoma
W. Wang, J. Cheng; Zhengzhou/CNY (weijianwang520@163.com)

Purpose: We explored the role of a whole-tumour histogram analysis of apparent diffusion coefficient (ADC) maps for discriminating lateral ventricle central neurocytoma from ependymoma.

Methods and Materials: We retrospectively evaluated findings in 35 patients with lateral ventricle central neurocytoma and 20 patients with ependymoma who underwent diffusion-weighted imaging (b = 800 s/mm2) at 3T with acquisition of corresponding ADC maps. We derived histogram data from regions of interest drawn on all slices of the ADC maps in which tumour was visualized, including areas of necrosis and haemorrhage in the tumour. We used the t test to evaluate the capacity of histogram parameters (variance, kurtosis, 1th, 10th percentiles) to discriminate central neurocytoma from ependymoma and analyzed the receiver operating characteristic (ROC) curve to determine the optimum threshold value for each parameter and its corresponding sensitivity and specificity.

Results: Lateral ventricle central neurocytoma demonstrated significantly lower variance, kurtosis, 1th, 10th percentiles than ependymoma (P<0.05). ROC curve analysis of the variance yielded the best area under the ROC curve (AUC; 0.83), sensitivity of 80%, and specificity of 82%, with a cutoff value of 2012.

Conclusion: A Whole-Tumour Histogram analysis of ADC maps might be helpful for discriminating lateral ventricle central neurocytoma from ependymoma.
B-1240 11:18
Characterisation of peripheral nerve sheath tumours in patients with neurofibromatosis type 1 using diffusion-weighted magnetic resonance imaging

Purpose: To evaluate the potential of diffusion-weighted MRI (DW-MRI) for differentiation of malignant and benign peripheral nerve sheath tumours (MPNST/BPNST) in patients with neurofibromatosis type 1 (NF1) using apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVM) models.

Methods and Materials: 26 patients with NF1 were included in this prospective study resulting in n=67 tumors. DW-MRI was performed at 3T (T1wTSE, T1w mDixon with in- and opposed phase, T2wTSE and DWI). DW-MRI consisted of eleven b-values (0-800 s/mm²). A monoeponential function was used to calculate ADC maps and a bieponential function was applied for the IVM model, generating diffusion coefficient (D) and perfusion fraction (f) maps. Regions of interest (ROI) were manually drawn to determine signal intensities. Mann-Whitney-U, Fisher’s exact test, receiver-operating-characteristic (ROC) analyses and spearman correlation were performed. Inter-rater reliability was evaluated.

Results: MPNST compared with BPNST were characterized by lower mean ADC values (ADCmean: 1.23 vs. 2.09 × 10⁻⁶ mm²/s; p=0.0001) and lower mean diffusion coefficients (Dmean: 1.03 vs 1.88 × 10⁻⁶ mm²/s; p=0.0001). Perfusion fraction f was significantly higher in MPNST than in BPNST (21% vs 11%, p=0.0003). For both entities, f was higher in the periphery compared to the center of the lesions (p<0.0001). ROC showed good levels of sensitivity and specificity for both ADC and D (sensitivity vs specificity: ADCmean 92%-98%, AUC 0.983; Dmean 92%-98%, AUC 0.979). Inter-rater reliability was good to very good (kappa ADCmean 0.896; Dmean 0.846).

Conclusion: Diffusion weighted imaging allows identification of MPNST in NF1 with high levels of sensitivity and specificity.

B-1241 11:26
ASL perfusion MRI reveals reduced cerebral blood flow in the hippocampal region in patients with former childhood medulloblastoma
Y. Tangildizi, A. Kronfeld, M.-A. Neu, A. Wingenter, A. Russo, K. Khawaja, A. Tropine, M.A. Brockmann, J. Faber, Mainz/DE (y.tangildizi@gmx.net)

Purpose: The number of long-term survivors of former childhood Medulloblastoma is increasing. Therefore late sequelae of radiochemotherapy (RCT), such as reduced cerebral blood flow (CBF), are gaining importance. In this study changes of cerebral blood flow (CBF) were analyzed using arterial spin labelling (ASL) perfusion MRI.

Methods and Materials: Perfusion weighted images of 28 patients (mean age:25.2; range:10-55 years; mean years after primary radio-chemo-therapy 14.9, range:1-45) and 24 healthy subjects (mean age:32; range:22-63 years) were acquired using ASL. For each individual CBF-maps were calculated and brought into MNI-space using SPM12. Mean CBF in grey matter was determined for every group. A voxelwise two-sample t-test was performed (SPM12), and mean CBF was calculated in the regions showing a significant difference and compared between individual patients.

Results: No significant differences regarding mean grey matter CBF-values between the two groups were observed. (patients (healthy):67.0 (66.4) ± 3.09 (1.24) ml/100g/minute, respectively). However, voxelwise t-test revealed a highly significant reduction of CBF in the hippocampal region (patients (healthy):68.1 (80.6) ± 3.95 (2.07) ml/100g/minute, respectively) between the healthy and the RCT group.

Conclusion: ASL perfusion MRI can be used as a noninvasive tool for imaging CBF reduction after RCT in patients with former childhood medulloblastoma. A significantly reduced CBF in the hippocampal region, which is known to be sensitive to ionizing radiation, was found. We suggest that ASL Perfusion sequences should be included in the regularly follow up MRI protocols. Furthermore, the effects of the reduced CBF in the hippocampal region have to be investigated.

B-1242 11:34
Machine learning-based radiomics to predict molecular subgroups of medulloblastoma
J. Yan, Z. Zhang, J. Cheng; Zhengzhou/CN (jy1986124@126.com)

Purpose: Novel biological insights have led to consensus of classifying medulloblastoma into four distinct molecular subgroups - wingless (WNT), sonic hedgehog (SHH), Groups 3, and Group 4. We aim to predict molecular subgroups of medulloblastoma by using advanced machine learning approach which extracts important information based on pre-operative MRI radiomics features.

Methods and Materials: Thirty-seven patients with medulloblastoma (WNT = 11, SHH = 9, Group 3 = 8 , and Group 4 = 9) were enrolled, and all were subjected to contrast-enhanced T1WI sequence. A total of 1089 radiomics features were extracted from contrast-enhanced T1WI images. Then, statistically significant different features in comparison among the four groups were selected for the subsequent model training and performance evaluation by using one-way ANOVA feature selection. A support vector machine was used to predict molecular subgroups of medulloblastoma. Finally, predictive performance was assessed by accuracy, precision, recall and F1. To access algorithm generalization, we used a 2-fold cross-validation approach.

Results: The molecular subgroups of medulloblastoma can be classified by important radiomics features and machine-learning approaches with a 70% accuracy, a 67% precision, a higher recall of 92%, and a 77% F1.

Conclusion: Our findings suggest a great potential to use MR radiomics features-based machine learning method to predict the molecular subgroups of medulloblastoma.

B-1243 11:42
Delayed FDG PET/CT in differentiating true progression from pseudo-progression in glioblastoma treated with chemoradiation

Purpose: Delayed 18F-FDG PET has been shown to increase the specificity of PET imaging for cerebral neoplasm. We sought to compare 1-hour and 5-hour imaging post-injection in patients with metastatic brain tumours treated with radiation.

Methods and Materials: 27 patients with suspicious enhancement following radiation were identified and imaged with this protocol. Diagnostic confirmation of progressive disease (PD) or radiation necrosis (RN) was by pathology (5 cases) and/or radiographic follow-up (16 cases). Maximum standard uptake values (SUV) were calculated for suspicious areas of MR enhancement (lesion) and compared to normal appearing brain (background) at both time points.

Results: 17 patients had pathology and/or imaging follow-up. 12 cases were classified as having PD and 5 as having RN. PET findings were concordant in all 5 cases with pathologic follow-up. PET findings were concordant in 14/16 cases based on radiographic follow-up imaging. The mean L/B for PD at the early time point (1.2±0.3) was significantly lower than L/B for the later time point (2.4±1.1, p=0.003). The mean L/B for PD was 2.5±1.1 at the later time point compared to 0.8±0.2 for RN (p=0.001). For the earlier time point, L/B for PD was 1.6±0.7, compared to the L/B for RN, which was 0.7±0.2 (p=0.004).

Conclusion: L/B ratios at early and delayed time points successfully differentiate between PD and RN in the majority of cases. A significant greater L/B ratios between TP and RN on delayed imaging versus 1-hour imaging. These results are promising and further investigation is warranted.

B-1244 11:50
Application of histogram analysis of diffusion Kurtosis imaging to tumour grading and tissue heterogeneity
A. Gao1, J. Cheng, J. Bai1, Y. Zhang, Y. Hong2, D. Kong2; 1Zhengzhou/CN, 2Hangzhou/CN (annyangao456@163.com)

Purpose: The aim of this study was to evaluate the significance of DKI parameters in grading glioma.

Methods and Materials: DKI (541s) and conventional sequence at 3.0T MR scanner (Prisma Siemens Healthcare, Erlangen, Germany). DKI acquires data with 5 b-values (0-2500sec/mm²) and 30 directions for every b-value. DKI was scanned using a SE-EPI sequence and the parameters were: FOV =220×220mm², slice thickness = 5mm, slices = 20, TR/TE = 3500/78ms. Matlab platform was used to calculated diffusion parameters Kapp and Dapp value based on TRACEW parameter image.R0s were manually drawn around the solid part of the tumour. Histogram analysis from these parameters were correlated with glioma grades. Independent-samples T test or Mann - Whitney - Wilcoxon test was used. The parameters with the best percentile from cumulative histograms were identified by analysis of the AUC of the ROC analysis.

Results: 25 low grad gliomas and 49 high grad gliomas were observed. Kapp values increased with increasing glioma grade, but the Dapp values decreased. There were significant difference between high and low grade glioma groups on the Kapp value of maximum, mean, standard deviation, 75th percentile, 95th percentile, and the Dapp value of minimum, mean, 25th percentile, 50th percentile, 75th percentile, 95th percentile, skewness coefficients. According to the ROC , the highest AUC were found at Dapp minimum value (AUC,0.829), Kapp 75th percentile value (AUC,0.819).

Conclusion: Histogram analysis of DKI parameters from solid part of the tumour data can be a useful method for glioma grading and Tissue Heterogeneity.
Purpose: We prospectively included 60 patients for examination on a 3 T MRI using the study protocol. Grasp was applied to a region of interest (ROI) on the edge of the tumor, and the perfusion was evaluated using the grasp-vibe sequence for perfusion evaluation in head and neck region using golden angle radial sampling (vibe) with 191 measurements and a resulting temporal resolution of 2.5 s and a spatial resolution of 0.94 x 0.94 x 3.00 mm (A). Additional sequences with matching spatial (B: 1 measurement, 145 s, 0.94 x 0.94 x 3.00 mm) and temporal (C: 3 measurements, 2.5 s, 1.88 x 1.88 x 3.00 mm) resolution without grasp were obtained subsequently. Image quality was evaluated as overall diagnostic quality, mucosal and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality on a five point Likert scale.

Results: Overall diagnostic image quality, vessel delineation and lesion contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C. Slight radiating artefacts, not affecting the contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C. Slight radiating artefacts, not affecting the contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C. Slight radiating artefacts, not affecting the contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C. Slight radiating artefacts, not affecting the contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C. Slight radiating artefacts, not affecting the contrast was highest in A. Mucosal fold and vessel delineation, lesion enhancement and edge sharpness, artefacts and fat suppression quality were comparable to B and superior to C.

Conclusion: Head and temporal resolutions can be obtained synchronously using the grasp-vibe sequence for perfusion evaluation in head and neck MRI.

Purpose: To preliminarily investigate the clinical value of diffusion kurtosis imaging (DKI) in head and neck squamous cell carcinomas (HNSCCs), and to evaluate its correlation with different histologic grades.

Methods and Materials: Total 22 HNSCCs patients who underwent tumour resection and lymphadenectomy were involved. DKI data were obtained by a single-shot echo-planar imaging sequence with three b values of 0, 800 and 1600 s/mm². Diffusivity (D) and kurtosis (K) and conventional apparent diffusion coefficient (ADC) were calculated. The MR images were compared with the histopathologic findings. One-way ANOVA, spearman correlation and receiver operating characteristic curve (ROC) analysis were analyzed, with P value of 0.05 indicating significance.

Results: In correlation analysis, ADC value was negatively correlated with kurtosis (r=−0.511, p=0.003), and positively correlated with diffusivity (r=0.882, p<0.001). And kurtosis value was negatively correlated with histologic grades (r=−0.384, p=0.030). In ROC analysis, AUC of the kurtosis and diffusivity values for differentiating well-differentiated from poorly/moderately differentiated carcinomas were 0.753 and 0.729 separately, higher than that of ADC values. And AUC of combined three parameters together was 0.867, with 94.1% sensitivity and 100% specificity, higher than combinations of either two.

Conclusion: In this preliminary study, kurtosis derived from DKI was negatively correlated with histologic grades of HNSCCs. And the relatively high diagnostic accuracy of combined ADC and DKI parameters may be helpful for the preoperative differentiation of histologic grades.
Methods and Materials: The MR images of 36 patients with a biopsy- or surgery-proven pleomorphic adenomas, 14 patients with Warthin tumours and 15 patients with malignant parotid gland tumours were retrospectively analysed. Histogram-based analysis was performed with the software MaZda. ROIs were drawn on every section of the ADC map containing the tumour, then 12 parameters derived from histogram were calculated. Statistical analysis among the three groups were performed to find out the statistical significance of each histogram parameter. And the differential efficiency of each parameter was determined using a receiver operating characteristic curve (ROC) analysis.

Results: Totally 9 parameters (MinNorm, MaxNorm, mean, variance, skewness, Perc.10%, Perc.50%, Perc.90%, Perc.99%) among three groups were statistically significant (P<0.05). Between the pleomorphic adenomas and Warthin tumours, these 9 parameters were of statistical significance. Mean, skewness and Perc.50% revealed high diagnostic efficiency with the areas under the ROC curve (AUC) of 0.976, 0.970, 0.970, respectively. Between the pleomorphic adenomas and malignant parotid gland tumours, also these 9 parameters were of statistical significance. Mean, Perc.10% and Perc.50% revealed high diagnostic efficiency with AUC of 0.851, 0.866, 0.841, respectively. But between the Warthin tumours and malignant parotid gland tumours, only 3 parameters (mean, skewness, Perc.50%) was statistically significant.

Conclusion: Whole-tumour histogram analysis of ADC maps are effective in differentiating common parotid gland tumours.

B-1253 11:02
Diagnostic utility of mean peak systolic velocity of superior thyroid artery (STA PSV) in differentiation of Graves’ disease (GD) and thyrotoxicosis presenting with thyrotoxicosis.

Methods and Materials: A total of 111 patients with newly diagnosed thyrotoxicosis (82 with GD and 29 with thyrotoxicosis) without antithyroid medication or β-blockers intake, history of neck irradiation, neck surgery, radioiodine therapy were included. 45 age and sex matched healthy subjects were included as control. Thyroid function tests (FT3, FT4, and TSH) and serum TSH receptor antibody (TRAB) were done. All subjects underwent a detailed colour Doppler ultrasonography of the thyroid gland and spectral flow analysis of both superior thyroid arteries using 5-12 MHz linear transducer of PHILIPS HD 7 USG machine. Mean STA PSV was obtained by averaging right and left STA PSV.

Results: Totally 9 parameters (MinNorm, MaxNorm, mean, variance, skewness, Perc.10%, Perc.50%, Perc.90%, Perc.99%) among three groups were statistically significant (P<0.05). Between the pleomorphic adenomas and Warthin tumours, these 9 parameters were of statistical significance. Mean, skewness and Perc.50% revealed high diagnostic efficiency with the areas under the ROC curve (AUC) of 0.976, 0.970, 0.970, respectively. Between the pleomorphic adenomas and malignant parotid gland tumours, also these 9 parameters were of statistical significance. Mean, Perc.10% and Perc.50% revealed high diagnostic efficiency with AUC of 0.851, 0.866, 0.841, respectively. But between the Warthin tumours and malignant parotid gland tumours, only 3 parameters (mean, skewness, Perc.50%) was statistically significant.

Conclusion: Whole-tumour histogram analysis of ADC maps are effective in differentiating common parotid gland tumours.

B-1254 11:06
Visualisation of the trigeminal nerve branches on enhanced 3D-SPACE-STIR sequence: initial experience

Methods and Materials: Eleven patients who underwent non-enhanced and enhanced 3D-SPACE-STIR MR scan were enrolled prospectively. Imaging scores were evaluated by three radiologists according 3 levels. Weighted k analysis was used to assessment the interobserver variability. Displaying rates of the ophthalmic branch (V1), maxillary branch (V2), mandibular branch (V3) trunk and divisions of V3 were analysed. Signal intensity of the V1, V2, V3 trunk and lateral pterygoid muscle (LPM) were measured to calculate the signal intensity ratio (SIR) and contrast ratio (CR).

Results: It showed higher imaging scores (2.85±0.36) on enhanced 3D-SPACE-STIR MR imaging than non-enhanced imaging (1.16±0.39), with excellent interobserver variability. The SIR and CR values of V1, V2 and V3 trunk were higher on enhanced MR imaging. Displaying rates for the three trunks on enhanced MR imaging were 97.3%, 100% and 100%, respectively, while 93.18%, 95.45% and 100% on non-enhanced MR imaging. A similar tendency was observed for the divisions of V3. Displaying rates for inferior alveolar, lingual, buccal, masseteric, auriculotemporal and deep temporal
nerves on enhanced MR imaging were 100%, 100%, 86.36%, 97.73%, 100% and 90.91%, respectively, while 100%, 97.73%, 84.09%, 90.91%, 93.18% and 79.55%, respectively, on non-enhanced MR imaging.

Conclusion: Enhanced 3D-SPACE-STIR MR imaging demonstrates better background suppression and excellent visualization of the trigeminal nerve branches.

B-1255 11:10

Three-dimensional shear wave elastography for differentiating benign from malignant thyroid nodules

C.-K. Zhao, Shanghai/CA (798434308@qq.com)

Purpose: To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for assessing thyroid nodules.

Methods and Materials: A total of 176 surgically or cytologically confirmed thyroid nodules (malignant 63, benign 113) in 176 patients who had undergone conventional ultrasound (US), two-dimensional (2D) and 3D SWE examinations were included in this study. Quantitative elasticity values were computed on 2D and 3D SWE (E_max, E_min and E_SD of a large region of interest (ROI) and E_mean of a 2 mm ROI). Diagnostic performances of conventional ultrasound (US), two-dimensional (2D) and 3D SWE were assessed. The role of 2D SWE and 3D SWE in reducing unnecessary fine-needle aspiration (FNA) for low suspicious nodules was also evaluated.

Results: The diagnostic performances in terms of area under the receiver operating characteristic curve (AUC) were 0.612 for conventional US, 0.836 for 2D SWE (P<0.001 in comparison with conventional US), 0.839 for 3D SWE (P<0.001 in comparison with conventional US), E_max achieved the highest diagnostic performance in 2D SWE while E_SD in 3D SWE, whereas no significant difference was found between them (P>0.05). 3D SWE increased the specificity in comparison with 2D SWE (88.5% vs. 82.3%, P=0.039). For the 37 nodules with low suspicion on conventional US, 2D SWE was able to avoid unnecessary FNA in 77.1% (27/35) of benign nodules and 3D SWE further increases the number to 86.6% (31/35).

Conclusion: 3D SWE is a useful tool in predicting thyroid nodule malignancy and reducing unnecessary FNA procedures in low suspicious thyroid nodules.

B-1256 11:14

DWI-associated entire-tumour histogram analysis for the differentiation of nasopharyngeal carcinoma from nasopharyngeal lymphoma

K. Ma, J. Cheng, X. Zhang, C. Song; Zhengzhou/CH (1322725260@qq.com)

Purpose: To investigate the diagnostic efficiency of DWI using entire-tumour histogram analysis in differentiating nasopharyngeal carcinoma (NPC) from nasopharyngeal lymphoma (NPNHL) in comparison with conventional ROI-based measurement.

Methods and Materials: DW images (b of 0-1000 s/mm2) from pathology confirmed 45 NPCs and 34 NPNHLs were retrospectively collected. The measurement of tumour apparent diffusion coefficients (ADCs) was performed using histogram-based and ROI-based approach, respectively. The diagnostic ability of ADCs from two methods for differentiating NPC from NPNHL was determined by ROC regression, and compared with McNemar’s test.

Results: Histogram-based ADCs (mean, standard deviation, 10th, 50th, 90th, 99th) and ROI-based ADCs (mean) reflected significant difference between NPC and NPNHL (all p-values <0.05). Histogram 99th ADCs had the highest Az (0.838), Youden index (0.594), and positive likelihood ratio (LR+, 3.89) in differentiating NPC from NPNHL against standard deviation, 10th ADCs, 50th ADCs, 90th ADCs, and ROI-based ADCs. Histogram standard deviation, 10th ADCs and 90th ADCs showed higher sensitivity (80.0%-89.9% vs. 70.6%, p < 0.05), but lower specificity (78.6%-79.4% vs. 83.3%, p < 0.05) than ROI-based ADCs in differentiating NPC from NPNHL.

Conclusion: DWI-associated histogram analysis had higher sensitivity, Az, Youden index, and LR+ for differentiation of NPC from NPNHL than ROI-based approach. It can be speculated that the histogram has certain auxiliary value in clinical diagnosis.

B-1257 11:18

Accessing the skull base: CT-guided submaxillary core needle biopsy for the diagnosis of skull base lesions

I. Burck, M. Rosenzweig, N.-E. Nour Eldin, H. Kvasnicka, T. Stöver, V. Jacobi, T. Vogl; Frankfurt/DE (iris.burck@kgu.de)

Purpose: To assess the time efficiency and evaluate the diagnostic accuracy of CT-guided submaxillary core needle biopsy (CNB) for the diagnosis of deep-seated head and neck masses.

Methods and Materials: Twenty-seven patients with skull base lesions underwent CT-guided submaxillary CNB between 2003 and 2018. All CNB were performed under ultrasound guidance and local anaesthesia using an 18-gauge needle for biopsy. 2-4 histological specimens were obtained for histopathological analysis. Histological findings were classified as “benign”, “suspicious for malignancy” or “malignant”. Medical records were reviewed with regard to therapy, in case of operative strategies surgical results, histological findings or in case of chemotherapy or radiotherapy treatment response. Additionally, clinical follow-up was evaluated. Prevalence, CNB-sensitivity and specificity, positive predictive value as well as negative predictive value were calculated.

Results: Eighty-nine percent of specimens from CNB were considered accurate, 11% of the histological specimen were non-diagnostic, so re-biopsies were performed in 3 cases. There were no postinterventional complications. All patients could be released the same day, 0 of them at least 8 hours (7.87±3.4).

Conclusion: Based on our findings, we conclude that CT-guided submaxillary CNB is a time-saving procedure that has a high diagnostic accuracy and, therefore, allows for major clinical decisions on the basis of histopathological diagnosis from histological specimen, as well as preventing patients from undergoing open surgical procedure to obtain adequate histological specimen.
B-1261 11:34
Correlation between the size of the inferior orbital wall defect and treatment tactics in orbital trauma according to the MSCT data
O. Pavlova, N.S. Serova, D. Davydov, S.K. Ternovoy; Moscow/RU (dr.olgapavlova@gmail.com)

Purpose: To establish the correlation between the size of the defect within the inferior orbital wall and proper treatment tactics in patients with orbital trauma according to the multi-slice computed tomography (MSCT) data.

Methods and Materials: A total of 91 patients with orbital trauma (100%) were admitted to the hospital during the 1-2 day after the injury. MSCT was performed using Toshiba Aquilion One 640. The size of the inferior orbital wall defect was measured using volumetric analysis and calculation of the defect square. According to the acquired size and square, the classification of defects was established: small (below 54 mm²), moderate (from 54.1 mm² to 117.2 mm²), severe (from 117.3 mm²) and total.

Results: According to the classification 9 small inferior orbital wall defects (10%) were revealed, in 19 patients - moderate (21%), in 27 cases - severe (29%) and in 36 patients - total defects (40%). According to acquired data conservative treatment was performed in patients with small defects with additional diagnostic control. Patients with moderate defects underwent implantation of endoprosthesis of inferior orbital wall. Patients with severe and total defects underwent implantation of inferior orbital wall endoprosthesis combined with osteosynthesis fixation within midfacial structures.

Conclusion: The classification of the inferior orbital wall defects according to the MSCT data provide additional diagnostic information about the patients with orbital trauma. Developed classification allows to define the correct treatment tactics in order to select conservative or surgical treatment as well as to establish the correct size of orbital wall endoprosthesis.

B-1262 11:38
Anatomage table: a possible new tool for diagnosis and classification of Le Fort fractures
Z. Falaschi, S. Cavaleri, I. Valente, G. Mazzucca, A. Cariso, S. Bor, A. Carriero, F. Boccaschi, A. Stecco; Novara/IT (zenofalaschi@gmail.com)

Purpose: Anatomage is a virtual anatomic dissection table. Despite it being widely used for students’ education, there are still few clinical studies about its usefulness as a diagnostic tool. The purpose of this study is to evaluate Anatomage’s capability to improve maxillo-facial CT scan’s diagnostic accuracy.

Methods and Materials: Ten trauma patients who performed a maxillo-facial CT scan were enrolled. Five patients were diagnosed with a type I, II or III Le Fort fracture, while five had no evident maxillary bones fracture (control group). Data obtained from the exams were uploaded on the Anatomage table for reading. Four different groups of readers were identified: attending doctors, senior residents, junior residents and students. They evaluated CT scans on the radiological workstation (RW) first, and 37 days later reviewed the Anatomage-generated 3D models. Each group included two reciprocally blinded readers. Four parameters were assessed: grade of Le Fort fracture, confidence, anatomic resolution and 3D-model handling. Qualitative parameters were assessed using Likert scale.

Results: Intra-reader agreement of Le Fort grade, measured with Cohen’s kappa, was above 90% in all readers. Kappa values showed almost perfect agreement in 7/8 readers and substantial agreement in 1/8. Qualitative parameters scores were higher on Anatomage than on RW: Confidence 3.53/4, Anatomic Resolution 3.70/4 vs. 2.96/4, 3D-Model Handling 3.70/4 vs. 2.79/4.

Conclusion: Anatomage Table can be a valid aid in diagnosis and classification of complex maxillo-facial injuries, both for residents, students and attending doctors.

B-1263 11:42
Functional multi-detector computed tomography (FMDC) for various orbital pathologies
N.D. Kudryavtsev, M.V. Malakhova, Y.O. Grusha, S.S. Danilov, V.V. Khovrin, K.B. Puzakov, T.N. Galyan; Moscow/RU (nikita_kudryavtsev@hotmail.com)

Purpose: Modification of methodology of orbital functional computed tomography with the aim to reduce radiation exposure and to increase quality of generated images.

Methods and Materials: For modification of the method, 17 patients with thyroid eye disease (TED), orbital tumours and paretic strabismus were chosen. During the study patients moved gloves in the following order: center, top, down, left, right and orbits were scanned only after gloves were fixed in end points. 5 scans were carried out within one study. Studies were performed with volumetric mode in 64-MDCT.

Results: For patients with TED, alongside with increase of muscle size, we detected evolution of their activity vector, decrease of contractive function, optic nerve compression at the top of the orbit by enlarged muscles. For patients with postradiation paretic strabismus, we detected total absence of functional activity of the lateral rectus muscle. In two cases we detected extracranial tumours, slow-moving when the eyeball is in motion and pressing the lateral rectus muscle inward. In 3 cases we diagnosed moving intracranial tumours of the orbit that were not intimately connected to the optic nerve and not bringing pressure to it when patient changed point of gaze.

Conclusion: FMDCCT is a valuable method that allows to reduce radiation exposure (average dose 400-500 DLP), to detail topography of different orbital structures and reveals features of dynamic relationships of soft and bone tissues (including pathologic).

B-1264 11:46
Value of ADC and DCE-MRI in differentially diagnosing of angiomatous meningioma and solitary fibrous tumours/haemangiopericytoma
C. Chen, C.-.P. Ren, R.-.C. Zhao, J.-.L. Cheng; Zhengzhou/CN (934777536@qq.com)

Purpose: This study aimed to assess the value of ADC and DCE-MRI in differentially diagnosing of angiomatous meningioma and solitary fibrous tumours/haemangiopericytoma.

Methods and Materials: A total of 17 cases of AM and 18 cases of the SFT/HPC confirmed by pathology were analysed retrospectively. All of patients underwent ADC and DCE-MRI. Age, gender, ADC, TIC, Simax, Tmx, MCER and EER were measured and compared AM to SFT/HPC. The diagnostic efficacy of ADC and DCE-MRI in distinguishing AM and SFT/HPC was calculated. Whether or not ADC and DCE-MRI were correlated with age. Two independent samples t tests, t test, chi-square test, Wilcoxon rank sum test and Pearson correlation were used.

Results: The ADC value [(0.91±0.03)×10⁻³ mm²/s], MCER [(304.59±34.43)%] of 17 cases of AM were statistically different from 18 cases of SFT/HPC [(1.20±0.05)×10⁻³ mm²/s, (179.88±27.54)%] and gender, too (p<0.05). The cut-off value of ADC and MCER was, respectively, 1.03×10⁻³ mm²/s and 226.7% in differential diagnosis of AM and SFT/HPC. There were 6 I type TICs, 10 II type TICs , and 1 I II type TICs in 17 cases of AM. There were 5 I type TICs, 9 II type TICs, and 4 III type TICs in 18 cases of SFT/HPC. The age, Simax, Tmx and EER were not statistically different between the two tumours (P>0.05). The age of AM and ADC value, age of SFT/HPC and ADC value were all linearly dependent.

Conclusion: ADC value of AM is less than SFT/HPCs; MCER of AM is greater than SFT-HPCs, and ADC is more valuable than MCER, and these parameters can help diagnosis.

10:30 - 12:00
Tech Gate Auditorium

Neuro

SS 1411b
Diffusion tensor imaging (DTI)

Moderators: K. Kenigsberg; Minsk/By N.N.

K-30 10:30
Keynote lecture
G. Kasprian; Vienna/AT

B-1265 10:39
The assessment of diffusion tensor imaging parameters of visual pathways in patients with primary open-angle glaucoma: preliminary study
A. Piekaruk, P. Podgórski, M. Czarnecki, W. Rydel, A. Turno-Krecicka, M. Misuk-Holjo, A. Zimny; Wrocław/PL (alina1979@op.pl)

Purpose: The aim of our study was to estimate the value of quantitative diffusion tensor imaging of the optic pathways in primary open-angle glaucoma.

Methods and Materials: Sixteen glaucoma patients (34-84y; mean 62.8) and 16 healthy age-matched individuals (57-78y; mean 58.7) underwent diffusion tensor imaging of the brain using 1.5T MR scanner (FOV 24, matrix 96x96, b=0, b=1000,15 directions, TE =100, TR=11000, NSA =4, slice thickness=2.5). Based on the Johns Hopkins University single-subject JHU-MNI SS BPM Type II V2.1 atlas for every participant were extracted 12 regions of interest (ROI) along optic pathways and additional tracts in which measurements of averaged fractional anisotropy (FA) and diffusivity (total diffusivity-trace) automatically were performed. For statistical analysis, Student's t test was indicated (p<0.05).

Results: For the optic tracts, posterior limbs of internal capsules, posterior thalamic radiation (including optic radiation), right posterior superior temporal gyrus FA values were significantly lower (p<0.05) in glaucoma patients vs. controls. Trace values increased significantly in POAG group for
the retrolenticular parts of internal capsule, posterior limb of right internal capsule and right posterior thalamic radiation (including optic radiation) (p<0.05). Considering the cingulum, superior longitudinal fasciculus, sagittal stratum and posterior parts of middle and inferior temporal gyrus no significant difference in DTI parameters in both hemispheres was found (p>0.05).

Conclusion: Diffusion tensor imaging (DTI) can detect gliomatosus optic pathway degeneration and differentiate involved from not involved areas.

B-1266 10:47
Diffusion tensor imaging in trigeminal neuralgia caused by neurovascular conflict and in estimation of long-term results of microvascular decompression
M. Amelin, J. Rzaev, G. Moysak, A. Tulupov; Novosibirsk/RU

Purpose: To estimate fractional anisotropy changes in trigeminal nerve root in patients with trigeminal neuralgia, caused by neurovascular conflict before and in long term after microvascular decompression.

Methods and Materials: Study included 33 patients (23 female, 10 male, aged 26 to 81 years (mean 60 years)) with TN, who underwent microvascular decompression. Before microvascular decompression, in a day after it and in a long term after (up to 19 months) diffusion-tensor imaging of trigeminal nerves was performed using 1.5-Tl MR unit Siemens Magnetom Avanto.

Results: In all patients in affected side we found statistically significant (p<0.10) drop of fractional anisotropy comparing to healthy side. After successful MVD FA on affected side also had difference from healthy side (p=0.001). In 6 patients we could see reduction after MVD FA of trigeminal nerve root in affected side decreased comparing to level before MVD, all of them had a long story of pain and poor FA dynamic right after MVD.

Conclusion: Difference of FA between affected and healthy side in patients with TN is related to microstructural changes of affected side. Microstructural recovery changes in trigeminal nerve root in patients with disappearing of pain related with increase of FA and recurrence or persisting of pain related to decrease or absence of FA dynamic comparing to pre-operative data. Application of DTI could be helpful in selection of treatment tactics. Recovery of FA after MVD is an objective criterion of success of MVD.

B-1267 10:55
Diffusion tensor imaging for vascular dementia predication: threshold level of fractional anisotropy in liable white matter tracts
I. Levashkina1, S.V. Serebryakov2, O.V. Kitaigorodskaya2, 1St. Petersburg/RU, 2Kyiv/U (levashkina.lidc@yandex.ru)

Purpose: To develop criteria of cerebral tracts integrity using DT-MRI to predict vascular dementia. To find the threshold level of fractional anisotropy (FA) in liable tracts to measure dementia risk.

Methods and Materials: Characteristics of 235 subjects with diagnosed encephalopathy participated in the study: age 65.29±7.49, 79 subjects with cognitive impairment and 156 with no disorders. DT-MRI was done on 3T Siemens Magnetom (Neuro 3D package). To receive FA in 11 regions of interests, manual free-hand method was applied.

Results: Statistically significant (p<0.05) FA decrease was identified in three regions for cognitive impairment group: front sectors of corona radiata (ROI1), inferior longitudinal fasciculi (ROI2), anterior horn of internal capsule (ROI3). ROC analysis showed FA values lower than 0.280 for ROI1, 0.400 for ROI2 and 0.520 for ROI3 mean highest risk of dementia. FA values higher than 0.400 for ROI1, 0.505 for ROI2 and 0.625 for ROI3 mean low risk. FA between threshold levels - higher risk as closer to the low bound. To make the results independent from MRI type and measurement method, authors suggest to use absolute values of FA, but index ratio of FA in liable ROI to splenium of corpus callosum, which shows no difference for groups with and without cognitive impairment. The index also was calculated for three main ROIs and could be disclosed.

Conclusion: Three ROIs, correlated with cognitive disorders risk, were identified. For dementia prediction recommended to use index - FA value in each ROI to splenium of corpus callosum.

B-1269 11:11
Determination of fractional anisotropy cut off values on diffusion tensor imaging in differentiating recurrence versus radiation necrosis in gliomas
P. Asokan1, S.S. Shivalingappa1, A.A. Rao Kesari2, A. Ashok Kumar2, I. Desai1, S. Sampangi1; 1Bangalore/IN, 2Bikaner/IN (asokaprakash@gmail.com)

Purpose: To compare FA values extracted from DTI MR images in differentiating recurrence and necrosis in gliomas. To develop cut off values for tumour recurrence.

Methods and Materials: This is a single institutional retrospective study from March 2015 to May 2018, evaluating the role of DTI FA values in differentiating recurrence from radiation necrosis. Patients of all ages with glioma treated with surgery/chemotherapy and radiotherapy who are referred to the radiology department for magnetic resonance imaging evaluation. Total 82 cases are evaluated with DTI FA values.

Results: Out of 82 cases, 57 cases are with residual disease, 25 cases are with radiation necrosis. Results between residual and radiation necrosis is highly significant between two groups with p<0.001. The mean score of minimum FA ratio in residual disease is 0.26 +/- 0.18 and radiation necrosis is 0.13 +/- 0.055. The mean score of maximum FA ratio in residual disease is 0.15 +/- 0.06 and radiation necrosis is 0.08 +/- 0.030.

Conclusion: Hence with MRI Diffusion tensor imaging FA values we can differentiate between residual disease and radiation necrosis and the cut off value for residual disease is between 99 to 182, the cut off values for radiation necrosis is 47 to 80. The FA ratio in residual disease is high ranges between 0.26 to 0.15 and low in case of radiation necrosis is 0.13 to 0.8.

B-1270 11:10
White matter involvement in young non-demented Down’s syndrome subjects: a tract-based spatial statistic analysis
A. Guererra, A. Romano, M. Moraschi, A. Pierallini, A. Bazzoz; Rome/IT (guererraraesilia@gmail.com)

Purpose: Cognitive decline in Down syndrome shows neurodegenerative aspects similar to what is observed in Alzheimer’s disease. Few studies reported correlation between DTI in traumatic injury and in estimation of long term results of microvascular decompression.

Methods and Materials: Study group consisted of seventeen right-handed subjects with DS and seventeen control subjects. All individuals were examined by MRI exam including DTI acquisition (32 non-coplanar directions); image processing and analysis were performed using FMRIB Software Library software package. Finally, the diffusion tensor was estimated voxel by voxel and the fractional anisotropy, mean diffusivity, axial and radial diffusivity map derived from the tensor. A two-sample T test was performed.

Results: A FA decrease and a MD, RD and AD increase were found in DS subjects, compared to control subjects, in the region of the anterior thalamic radiation, the inferior longitudinal fasciculus and the cortico-spinal tract, bilaterally. In addition, MD, AD and RD showed changes in more white matter tracts, suggesting greater sensitivity for WM damage than FA.

Conclusion: We demonstrated white matter changes in specific regions of young, non-demented DS subjects and that MD changes seemed to precede FA ones. These parameters could be used as predictive/early biomarkers of cognitive decline and could have great impact in better adapting the timing of therapies.

B-1271 11:27
Diffusion tensor imaging in intractable unilateral mesial temporal lobe epilepsy
A.N. Paramalai, A. Chelladurai, M. Logoudos; Chennai/IN (anan7687@gmail.com)

Purpose: To confirm the efficacy of Diffusion Tensor Imaging (DTI) parameters in the diagnosis of unilateral mesial temporal lobe sclerosis (MTS) and to know the extratemporal and contralateral hemisphere involvement in intractable MTS.

Methods and Materials: We evaluated 25 patients with intractable unilateral MTLS by using DTI, MRI, clinical and EEG parameters. Out of these 12 were right sided and 13 were left sided MTLS. We compared the mean diffusivity (MD) and fractional anisotropy (FA) values in hippocampus, parahippocampus, fornix, middle cerebellar peduncle, corpus callosum, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, anterior and posterior cingulum, thalamus, internal capsule, caudate and lentiform nucleus.

Results: There was significant decrease in FA values with increased mean diffusivity in ipsilateral hippocampus, parahippocampus, fornix, middle cerebellar peduncle, corpus callosum, uncinate fasciculus, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, and cingulum.

Conclusion: DTI shows microstructural abnormalities beyond the involved hippocampus extending to ipsilateral and contralateral major white matter tracts that is not apparent on conventional MRI. These observations shows epileptogenic foci and spread in the neural network, which may be responsible for secondary generalization.
B-1272 11:35
Excessive alcohol consumption in adolescent men compromiss frontal white matter integrity via disruption of myelin (and axons): a combined DTI-metabolic study

Purpose: To investigate influences of subclinical alcohol use during adolescence on WM microstructure and to characterize those with serum metabolic alterations.

Methods and Materials: Thirty-five moderate-to-heavy drinkers (15 males, 20 females) and 27 light-drinking controls (12 males, 15 females) were included based on their consumption items of Alcohol Use Disorders Identification Test (AUDIT-C) scores measured at three time points over ten years. Magnetic resonance imaging (MRI) was conducted at study endpoint. Whole brain analysis of fractional anisotropy (FA) was performed using tract-based spatial statistics (TBSS). FA, radial diffusivity (RD), axial diffusivity (AD) and mean diffusivity (MD) values in 50 WM tracts were obtained. Visual rating MCI and 16 controls) . Using template-based ROI technique to process the patients with mild cognitive impairment (MCI) and normal healthy control.

Purpose: Revealing the microstructure abnormalities of spino cerebellar ataxia by DKI, especially MK, was superior than fMRI for detecting the DTI parameter changes in these areas were also significantly associated with lower MoCA scores (p<0.05). The MCI group had significant higher lesion volume. With morphometry analysis, the MCI group had significantly smaller hippocampal volume (p<0.05). Smaller hippocampal volumes and increased WM lesion volumes were significantly associated with poorer MoCA scores (p<0.05). Although there were no significant differences in the Fazekas scores between the 2 groups, a higher Fazekas score was significantly correlated with a lower MoCA score (p<0.05).

Conclusion: DTI , morphometric analysis and WM lesion assessments are useful for detecting MCI . DTI is useful in detecting WM tracts compromise seen early on in MCI patients . Early therapeutic interventions could potentially halt the deterioration and prevent the onset of dementia.

Results: Decreased FA was found in moderate-to-heavy drinking men in bilateral genu and body of the corpus callosum, superior and anterior corona radiata, and right inferior fronto-occipital fasciculus (Fpml-wise-error corrected p<0.05), accompanied by increased RD and a smaller area of reduced AD (p<0.05). No significant difference in FA was detected in moderate-to-heavy drinking women. Among those affected regions in moderate-to-heavy drinking men, DTI metrics correlated with serum metabolites (p<0.05) playing roles in energy metabolism, myelination and axonal degeneration.

Conclusion: Long-term subclinical alcohol use during adolescence is associated with altered white matter integrity in frontal inter- and intra-hemispheric fibers in men. No such observations were found in women suggesting different effects of excessive alcohol use on male and female adolescents. The compromised WM integrity in moderate-to-heavy drinking men is correlated to serum metabolic alterations.

B-1273 11:43
Revealing the microstructure abnormalities of spinocerebellar ataxia by fMRI and DKI: from ROI based analysis to a VBA and TBSS study

Purpose: To investigate potential abnormalities in spinocerebellar ataxia (SCA) patients by fMRI and DKI and correlate them with the scores on the scale for the assessment and rating of ataxia (SARA) of SCA.

Methods and Materials: Prospectively involved 25 patients (male:10; mean age: 36.3y) with genetic diagnosis as SCAs (SCA1: 5; SCA2: 2; SCA3:13; SCA6:1; presymptomatic SCA3:4). All patients underwent whole brain fMRI and DKI examinations. DKI (FA, MD, MK, Ka and Kr) parameters in cerebellum and dental nucleus were obtained. Further analyzing the association between whole brain DKI parameters and SARA by TBSS and VBA. In addition, correlations between fMRI parameters (ALFF, fALFF and ReHo) and SARA were analyzed by VBA as well.

Results: Irrespective of SCAs types and duration, FA of cerebellum was negatively correlated with SARA (r = -0.419, P = 0.03) . Whereas, at VBA, the reduction of FA value was detected in left inferior frontal gyrus and inferior temporal gyrus (Pwe< 0.05) while the MK and Kr had significant decreases in the left anterior central gyrus (Pwe< 0.05). Furthermore, at TBSS, significantly decreasing FA, MK and Kr values were found in widespread white matter regions, especially in MK and more pronounced were demonstrated in callosum and cerebellar peduncle (Pscore< 0.05). However, there weren’t significant associations found among all fMRI parameter and SARA.

Conclusion: DKI, especially MK, was superior than fMRI for detecting the severity of SCA, and TBSS was the most sensitive way to reveal the white matter abnormality of SCA.

B-1274 11:51
Cerebral white matter structural integrity in patients with mild cognitive impairment: evaluation with diffusion tensor imaging and morphometric assessment on 3T MRI

Purpose: To investigate the differences in diffusion tensor imaging (DTI) metrics, morphometry assessment and white matter (WM) integrity between patients with mild cognitive impairment (MCI) and normal healthy control.

Methods and Materials: 33 subjects prospectively underwent brain MRI (17 MCI and 16 controls). Using template-based ROI technique to process the DTI, the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) values in 50 WM tracts were obtained. Visual rating for WM scoring , WM lesion volume and cerebral morphometric analysis were performed.

Results: The MCI group had significantly lower FA and higher MD, AD as well as RD in WM tracts predominantly involving corpus callosum, corona radiata and cingulate gyrus when compared to the normal controls (p<0.05). DTI parameter changes in these areas were also significantly associated with lower MoCA scores (p<0.05). The MCI group had significant higher lesion volume. With morphometry analysis, the MCI group had significantly smaller hippocampal volume (p<0.05). Smaller hippocampal volumes and increased WM lesion volumes were significantly associated with poorer MoCA scores (p<0.05). Although there were no significant differences in the Fazekas scores between the 2 groups, a higher Fazekas score was significantly correlated with a lower MoCA score (p<0.05).

Conclusion: DTI , morphometric analysis and WM lesion assessments are useful for detecting MCI . DTI is useful in detecting WM tracts compromise seen early on in MCI patients . Early therapeutic interventions could potentially halt the deterioration and prevent the onset of dementia.

B-1275 10:30
Advanced gastric cancer response to neoadjuvant chemotherapy: is CT texture analysis a reliable imaging biomarker? A multi-centre study from Italian research group for gastric cancer

Purpose: To evaluate the reliability of CT texture analysis (CT-TA) in predicting histological response to neoadjuvant chemotherapy (NAC) in patients with resectable advanced gastric cancer (AGC) before surgery.

Methods and Materials: 70 patients from five GIRCG centres, with a pre-surgical biopsy-proven diagnosis of GC, treated with NAC followed by surgery. All patients were classified as T3 or N+ (M0) at CT staging and underwent a pre-surgical restaging CT after NAC. The population was divided in two groups as follows: 29 internal patients (Siena University Hospital) and 41 from the other four GIRCG centres. Gross tumour volume (GTV) was segmented on pre- and post-NAC CT by the dedicated contouring software. Stationary and TA parameters were extrapolated through LifeX software. A correlation between preselected TA parameters and development of complete pathological response (TRG 1) was searched.

Results: TA parameters significantly related to the endpoint were the same for both groups, except for delta Grey-level co-occurrence matrix (GLCM) entropy (p=0.006 and 0.152) and included post-GLCM contrast (p=0.017 and 0.001), post-GLCM dissimilarity (p=0.027 and 0.001), delta entropy (p=0.002 and p=0.001), delta GLCM contrast (p<0.001), and delta GLCM dissimilarity (p<0.001). At multivariate analysis only delta GLCM contrast was significant (p= 0.001 and 0.014, Nagelkerke R²: 0.546 and 0.435). ROC curves were generated from the logistic regression of all the cohort of patients (AUC 0.763, standard error: 0.098; p: 0.006).

Conclusion: TA could be a reliable tool to select responder patients in a pre-surgical time. Further prospective studies are required to confirm our results.

B-1276 10:38
Diagnostic accuracy of CT for lymph node metastasis in gastric cancer: comparison of spectral parameters developed dual-energy CT and conventional CT

Purpose: To investigate the optimal diagnostic threshold and accuracy of spectral parameters for metastatic lymph nodes of gastric cancer with dual-energy CT and to compare with conventional CT parameters.

Methods and Materials: This study received institutional review board approval and all participants provided written informed consent. 86 patients with gastric cancer underwent preoperative enhanced CT in Discover GSI CT. The spectral parameters (iodine value) and the conventional parameters were measured. The diagnostic efficiency of each factor was assessed using t test and ROC.

Results: Among 552 lymph nodes found in CT images, 338 nodes were positive and 214 were negative with pathological results. The results of t test showed that the short diameter, the ratio of short to long diameter, the CT
number and iodine value in AP and VP of positive lymph nodes were higher than those of negative lymph nodes (all P < 0.05), the areas under curve were 0.600, 0.880, 0.832, 0.755, 0.864, 0.835, respectively. The diagnosis accuracies of iodine value in AP and VP were 86.9%, 82.2%, higher than the CT number in AP and VP (69.9%, 66.9%). Taking the ratio of short to long diameter over 7.25 as optimal diagnosis threshold, the diagnosis accuracy was 75.6%. Combined the ratio of short to long diameter with the iodine value in AP, the diagnosis accuracy was 89.2%.

Conclusion: The diagnosis accuracy of dual-energy CT parameters was higher than conventional CT for lymph node metastasis in gastric cancer and could be improved by combining size and spectral CT parameters.

B-1277 10:46
Applying extended texture features to identify quantifiable changes in gastrointestinal stromal tumours undergoing tyrosine kinase inhibitor (TKI) therapy
K. Ekert; Tübingen/DE (kaspar.ekert@med.uni-tuebingen.de)
Purpose: Applying extended texture features to identify quantifiable changes in gastrointestinal stromal tumours undergoing tyrosine kinase inhibitor (TKI) therapy. Our aim was to identify quantitative texture features which could be used complementary to modified Choi criteria or even as a substitute helping radiologist to determine response categories in GIST.
Methods and Materials: We identified 25 GIST patients with 124 scans, each examined with a standardized CT protocol at one scanner between 1/2014-7/2018. 92 texture features, based on pyramids library, were extracted and correlated to response categories as well as vitality of tumor lesions based on mCHOI criteria with inter-reader agreement was performed by a second experienced radiologist. Regression and AUC analysis was performed. First and second order features were included, higher order features were excluded due to the small patient number.
Results: Ten variables could be confirmed to be significantly associated with disease progression. Of them, four textural parameters were significantly positively associated with disease progression and negatively with progression free survival (Gclm Id, Gclm Idn, Glrlm and Ngtdm). Single variables were shown to be significantly inferior to the combination of all variables. Gclm Id, Gclm Idn and Glrlm non-uniformity were associated with the number of pre-treatments, Glrlm non-uniformity also with tumor vitality (enhancement) whereas Gclm Idn and Ngtdm coarseness were associated with the number of mutations.
Conclusion: CT-texture analysis seems to well work for both assessment of tumor vitality and response to treatment which could therefore be either additional to mCHOI criteria or even for automated (e.g. computer-aided) diagnosis.

B-1278 10:54
Small (<5cm) gastric sub-epithelial tumours: identification of gastrointestinal stromal tumours using CT with a practical scoring method
L. Liu; S. Rao, M. Zeng; Shanghai/CHN (llh9821@163.com)
Purpose: To determine significant CT features that can identify gastrointestinal stromal tumours (GISTs) among small (< 5cm) SETs and to explore a practical scoring method based on these features.
Methods and Materials: Forty-two patients with small (< 5cm) gastric SETs (31 GISTs and 11 non-GISTs) from hospital I were included for primary analyses, and then its performance for identifying GISTs was tested in a validation cohort (31 GISTs and 11 non-GISTs) from hospital II constituted a validation cohort. Pre-operative CT images were reviewed for imaging features: lesion location, growth pattern, lesion margin, enhancement pattern, dynamic pattern, attenuation at each phasic image and presence of necrosis, superficial ulcer, calcification and peri-lesion enlarged lymph node (LN). Clinical and CT features were compared between the two groups (GISTs vs non-GISTs) and a GIST-risk scoring method was developed at the step of primary analyses, and then its performance for identifying GISTs was tested in the validation cohort.
Results: Seven clinical and CT features were significantly suggestive of GISTs rather than non-GISTs: older age (> 46.5 y), non-cardial location, irregular margin, lower attenuation on unenhanced images (<45 HU), heterogeneous enhancement, necrosis and absent of enlarged LN (p<0.05). At validation step, the established scoring method with cut-off score dichotomised into ≥4 vs < 4 for identifying GISTs revealed an AUC of 0.86 with an accuracy of 92%, a sensitivity of 100% and a negative predictive value (NPV) of 100%.
Conclusion: With a simple and practical scoring method based on the significant CT features, GISTs can be accurately differentiated from non-GISTs.

Author Disclosures:
L. Liu: Research/Grant Support; National Natural Science Foundation of China (No. 81701656), Key research and development project of Shandong province, China (No. 2018GSF118153).

B-1279 11:02
Prediction of surgery requirement in mesenteric fibrosis on CT using a radiomics approach
M.P.A. Starmans; A. Blazevic, S.R. van der Voort, T. Brabander, J. Hofland, W.J. Niessen, W.W. de Herder, S. Klein; Rotterdam/NL (m.starmans@erasmusmc.nl)
Purpose: Mesenteric fibrosis (MF) surrounding a mesenteric mass is a hallmark feature of small intestinal neuroendocrine tumours. Since this can induce severe abdominal complications, prophylactic resection of the primary tumour and mesenteric mass is often recommended. However, there is a need for better prediction of abdominal complications to prevent unnecessary surgery. We present a radiomics approach to identify patients prone to develop complications due to MF.
Methods and Materials: CT scans were gathered for 43 patients who had MF, of which 20 required palliative surgery within one year. The resulting dataset originated from 17 different scanners and thereby showed heterogeneity in the imaging protocols. The mass and mesenterium were delineated by a clinician. Within both regions, radiomics features quantifying shape, intensity, texture and orientation were extracted. Patient age and gender were added as semantic features. Radiomics was performed using harmonised adaptive workflow optimisation including various feature selection, oversampling and machine learning approaches. Evaluation was implemented through a 100x random-split cross-validation, with 80% of the data used for training and 20% for independent testing. Performance was given in 95% confidence intervals (CIs).
Results: The AUC, sensitivity and specificity were, respectively (0.56, 0.92), (0.76, 0.80) and (0.43, 0.85). The positive class consisted of patients who required surgery.
Conclusion: Although the CIs of the performance measures are wide due the small sample size, the results suggest there is a relation between CT imaging features and the need for surgery. Hence, radiomics shows the potential to identify patients prone to develop complications due to MF.

B-1280 11:10
Assessment of metastatic GIST heterogeneity using texture analysis: ADC texture as a potential biomarker of 5-year survival
J. Fu; F. Mengjie, J. Li, X. Li, L. Tang, D. Dong; Beijing/CHN (18410259295@163.com)
Purpose: To determine if ADC texture features of metastatic GIST are related to 5-year overall survival.
Methods and Materials: The study was approved by the institutional review board. This retrospective study included 51 patients selected from 205 consecutive patients from 2006 to 2012. Texture features of the entire maximum metastatic GIST tumour were assessed with DWI (0, 1000 s/mm²) using in-house software. The features were divided into four groups: histogram features, grey-level co-occurrence matrix (GLCM) features and grey-level run-length matrix (GLRLM) features and were extracted from the ROI images in T2, DWI and ADC images. Patients were followed up until death and were censored at 5 years if they were still alive. Kaplan-Meier analysis was performed to determine the relationship. The curves of the high- and low-risk groups were compared using log-rank testing. The prognostic abilities of the predictors were assessed by calculating the concordance probability.
Results: All patients had more than five liver metastases. There were 35/56 (66.2%) deaths for five years. Four DWI texture features and three ADC texture features were statistically significant in univariate analysis (p<0.05). DWI_L_GLCM maximum probability (HR=0.6136-3.13) and ADC_H_GLRLM mean (HR=2.17,1.46-3.24) and ADC_O_GLCM_cluster shade (HR=1.86,1.32-2.67) were identified as representative prognostic indicators. The optimum threshold points of those were 1.19, 1.71 and 2.19, respectively.
Conclusion: Metastasis GIST imaging features were independently associated with survival. Worse heterogeneity is associated with poor prognosis.

Author Disclosures:
J. Fu: Speaker; Fujia.

B-1281 11:18
Lymphadenectomy of small intestine neuroendocrine neoplasms (si-NEN): testing the most recent preoperative classification with contrast-enhanced computed tomography (CT)
F. Zugni; L. Funicelli, E. Bertani, M. Bellomi; Milan/IT (fabio.zugni@unimi.it)
Purpose: To test the most recent classification for resectability of si-NENs in a retrospective series of patients operated in our centre (European Institute of Oncology, Milan).
Methods and Materials: We blindly analysed the pre-surgical CT of 40 consecutive patients that underwent abdominal surgery for si-NENs between 2008 and March 2018. We assessed the resectability of the lymph node metastases using the classification proposed by Lardière-Degoutte et al. based...
on the degree of involvement of the superior mesenteric artery (SMA). In addition, we evaluated the involvement of the superior mesenteric vein (SMV) and the presence of fibrosis, and retraction in the mesentery. We finally analysed the surgical reports to assess whether the primary tumour and all lymph node metastases had been completely resected.

Results: Of the three tumours classified as unresectable, none received a complete resection (conversion to explorative intervention). Out of the 37 classified as resectable, 32 received a complete resection. Among the five tumours classified as resectable that did not receive a complete resection, three had CT signs of mesenteric retraction, and two showed an involvement of the SMV that was more severe and proximal than the involvement of the SMA.

Conclusion: Using the classification based on the involvement of the SMA we correctly evaluated the resectability of 35 out of 40 tumours (87.5%). In five cases (12.5%), the tumours were incorrectly classified as resectable. Evaluating the severity of involvement of the SMV and the presence of mesenteric retraction might be helpful for improving the preoperative assessment of these patients.

B-1282 11:26
Newly appearing hepatic lesions on follow-up CT after curative-intent surgery for colorectal cancer: when and why should we order liver MRI?
D.K. Kim, C. An; Seoul/KR (kdk7118@yuhs.ac)

Purpose: To develop a prediction model to assess the likelihood of metastasis for newly appearing hepatic lesions found on computed tomography (CT) after colorectal cancer surgery, and to examine the added value of magnetic resonance imaging (MRI).

Methods and Materials: Of 1,876 patients who underwent curative surgery for colorectal cancer between Jan 2008 and Dec 2009, 89 patients with newly appearing hepatic lesions on follow-up CT after surgery (metastasis, n=64; benign, n=25) were included in this retrospective study. Two radiologists analysed the CT features of the hepatic lesions. Clinical information and prospectively written reports of CT and MRI were reviewed. Decision tree analysis and chi-square test were performed.

Results: Independent CT features associated with metastasis were spherical shape with circumscribed margin (P<0.001), heterogeneous attenuation (P=0.024), and bulging appearance (P=0.008). In the decision tree, 52 patients with at least one of the CT features or elevated CEA level belonged to the high-risk group. Of non-high-risk patients, 15 with stage 1 cancer or time interval (from surgery to finding new hepatic lesion on CT) > 3 years belonged to the low-risk group. The remaining 22 belonged to the intermediate-risk group. For high-, intermediate-, and low-risk groups, 92.3%, 63.6%, and 13.3% with at least one of the CT features or elevated CEA level belonged to the high-risk group. The subjective scores of the 50Kev, 55Kev, 60Kev, 65Kev groups was higher than other groups (P<0.05). The subjective scores of the 60Kev and 65Kev groups was the highest (P<0.05). Segmental SNR of the 60Kev and 65Kev groups was the highest (P<0.05).

Conclusion: Decision tree model using CT and clinical information, and subsequent MRI were useful in assessing the likelihood of liver metastasis after colorectal surgery.

B-1283 11:34
Effect of dual-energy CT single-energy imaging on image quality of mesenteric vessels and segmental thickening intestinal wall
J. Yang, B. He; Nantong/CN (75002213@qq.com)

Purpose: To evaluate the image quality of mesenteric vessels and thickened intestinal wall in a dual-energy CT single-energy image.

Methods and Materials: Retrospective analysis of 30 patients with dual-energy CT imaging data, using dual-energy mono to reconstruct eight single-energy images of arterial phase, small intestine phase (43keV, 50keV, 55keV, 60keV, 65keV, 70keV, 80keV), compared with 120 kv images, to analyse the SNR, CNR, and image quality subjective scores of mesenteric artery and thickened intestinal wall.

Results: The mesenteric artery: the SNR of the 120 kv group was the highest, the SNR of the 60Kev and 65Kev groups was higher than other groups (P<0.05). The CNR of the single-energy group was higher than 120Kvp group, and the CNR of the 60Kev and 45Kev groups was the highest (P<0.05). Subjective scores of all groups were above 4 points (P=0.05). Segmental thickening intestinal wall: the SNR of the 120 kv group was the highest, the SNR of the 60Kev, 55Kev, 60Kev, 65Kev groups was higher than other groups (P<0.05). The single-energy group CNR was higher than 120Kv group, and the 45Kev and 50Kev groups were the highest (P=0.05). The subjective scores of the 45Kev and 50Kev images were the highest (P<0.05).

Conclusion: The 120kv group image has obvious advantages in SNR, but the single-energy image has obvious advantages in CNR; the 60Kev group image has the best CNR in mesenteric vascular. The 50Kev group image can improve the SNR of the intestinal wall of the lesion without affecting the diagnosis.

B-1284 11:42
Peritoneal carcinomatosis extent evaluation: radiologic, laparoscopic and pathologic
S.A. Ahmed, D. Fouad, H.A. Taleb, D. Badary; Assiut/EG (doaafouada11@gmail.com)

Purpose: To evaluate preoperative categorization of peritoneal carcinomatosis by MDC and laparoscopy compared with pathology and to evaluate its impact on surgical decision-making.

Methods and Materials: Forty ovarian cancer patients who underwent preoperative CT and diagnostic laparoscopy were included in the study. Categorization of peritoneal carcinomatosis extent was done using Sugarbaker’s method and then peritoneal carcinomatosis extent was categorized into low, moderate and large. Agreement in general and in each category between CT, laparoscopy, surgery and pathology was assessed using kappa agreement.

Results: Complete CRS was performed in 35 and incomplete in 5 patients; preoperative peritoneal carcinomatosis extent categorization in general showed good agreement between CT and laparoscopy (kappa =0.79), between CT and surgery (kappa =0.80), and excellent agreement between laparoscopy and surgery (kappa =0.89) (p<0.001). Agreement between CT and pathology was good (ICC = 0.63) in low-category group and excellent (ICC = 0.93) in moderate and large group (ICC = 0.94) (p<0.02). Agreement between laparoscopy and pathology was excellent in all categories, in low-category group (ICC = 0.91), in moderate group (ICC = 0.90) and in large group (ICC = 0.92) (p<0.04). Agreement between CT and laparoscopy was moderate in low-category group (ICC = 0.60), and excellent in moderate group (ICC = 0.89) and large group (ICC = 0.91) (p<0.01).

Conclusion: Although both CT and laparoscopy generally correlate with surgery in preoperative categorization of peritoneal carcinomatosis extent, laparoscopy is more accurate in low category, both accurately reflect disease burden and can be helpful for surgical mapping.

B-1285 11:50
Using 2-mSv appendiceal CT in usual practice for adolescents and young adults: willingness survey of 579 radiologists, emergency physicians, and surgeons from 20 hospitals

Purpose: To survey care providers’ willingness to use 2-mSv CT in their usual practice for adolescents and young adults with suspected appendicitis.

Methods and Materials: An ethical committee approved this prospective study. We introduced a 2-mSv CT in 20 hospitals through a pragmatic clinical trial. At the final phase of the trial, we invited 688 potentially involved care providers in the survey regarding their willingness to use 2-mSv CT. Multivariable logistic regression analyses were performed to identify factors associated with the willingness. Nine months after the completion of the trial patient recruitment, we surveyed whether the hospitals were using 2-mSv CT in usual practice.

Results: The analyses included responses from 579 patients (203 attendings and 376 trainees; 221 radiologists, 196 emergency physicians, and 162 surgeons). Regarding the willingness to immediately change their standard practice to 2-mSv CT, 158 (27.3%), 375 (64.8%), and 46 (7.9%) participants responded as “yes” (consistently), “partly” (selectively), and “no”, respectively. The willingness varied considerably across the hospitals, but only slightly across the participants’ departments or job positions. The willingness was significantly associated with attendings (p = 0.004), intention to maintain the dedicated appendiceal CT protocol (p < 0.001), belief in compelling evidence on the carcinogenic risk of conventional-dose CT radiation (p = 0.028), and hospitals having more than 1,000 beds (p = 0.031). Fourteen of the 20 hospitals kept using 2-mSv appendiceal CT in usual practice after the trial.

Conclusion: Most of the care providers were willing to use 2-mSv CT selectively or consistently.
Musculoskeletal

Musculoskeletal interventions

Moderators:
A. Alcalá-Galiano; Madrid/ES
T. Kaya; Eskisehir/TR
M. Reijnierse; Heidelberg/DE
A. Alcalá-Galiano; Madrid/ES

Keynote lecture

K-31 14:00

Musculoskeletal multi-centre study on technical success and long-term clinical outcome of radiofrequency ablation for the treatment of spinal osteoid osteoma and osteoblastoma

T. Beyer; C. Rehnitz2, K.M. Thierfelder1, C.S.P. van Rijswijk4, J. Martel Villagráñ3, M. Muto1, C. van Faill1, J. Gieken1, M.-A. Weber1, T. Rostock1, M. Leiden1, M. Madrid/ES, 3Naples/IT, 4Hanover/DE, 5Edgem/B (thomas.beyer@med.uni-rostock.de)

Purpose: To evaluate technical success and clinical long-term outcome of CT-guided radiofrequency ablation (RFA) of spinal osteoid osteomas (OO) and osteoblastomas (OB) in six different European centres.

Methods and Materials: A total of 87 patients with the diagnosis of spinal OO (77) or OB (10) were treated with CT-guided RFA, after three-dimensional CT-guided access planning. Patient’s long-term outcome was assessed by clinical examination and questionnaire-based evaluation including 10-point visual analogical scales (VAS) regarding the effect of RFA on severity of pain and limitations of daily activities. Clinical success was defined as a reduction of >30% in the VAS score and patient’s satisfaction.

Results: Overall, RFA was technically successful in 82/87 cases (94.3%) with no major complications; clinical success was achieved in 78/87 cases (89.7%). The OO/OB were localized in the cervical (n=93), the thoracic (n=27/1), the lumbar (n=29/4) and the sacral spine (n=12/2). The RFA procedure was performed with a mean of 1.08±0.31 RF-electrode positions. A decrease in severity of pain after RFA was observed in 86/87 patients (98.9%) with a persistent mean reduction of overall pain score from 8.04±2.96 to 1.46±1.95 (p<0.001) after a median follow-up time of 29.35±35.59 months. VAS scores significantly decreased for limitations of both daily (5.70±2.73 to 0.67±1.61, p<0.001) and sport activities (6.40±2.58 to 0.67±1.61, p<0.001).

Conclusion: Even in a multi-centric setting, this trial proves that RFA is a safe and efficient method to treat spinal OO/OB and should be regarded as first line therapy after interdisciplinary case discussion.

B-1288 14:25

Long term efficacy of a dorsal indirect approach for CT-guided cervical nerve root injections

S. Billingsley1, C. O’Neill2, D. McKeen2, Aylesbury/UK, Oxford/UK (sarah.billingsley123@gmail.com)

Purpose: Catastrophic complications have been rarely reported for selective cervical nerve root via an anterolateral transforminal approach. We assess the short and long term efficacy of a dorsal indirect approach for CT guided cervical nerve root injection.

Methods and Materials: We performed a retrospective study of patients who had undergone CT guided nerve root injections for cervical radicular symptoms between March 2012 and July 2018 at our hospital. Spinal needles were advanced to the dorsal border of the facet joint under CT fluoroscopic guidance. Contrast was injected to demonstrate foraminal flow and a non-particulate corticosteroid dexamethasone preparation was gently instilled. The primary outcomes measures were pain before the procedure then 2, 4 and 8 weeks after the procedure, length of analgesic benefit and complications.

Results: Between March 2012 to July 2018, 90 patients underwent CT-fluoroscopic guided nerve root injections at the levels of C2-C8. Complete data was obtained from 23 patients. 54% were female and 46% were male. 76% of these patients reported analgesic benefit with the average duration of analgesic effect lasting 18 months. 3 patients underwent further procedures including discoscopy and acupuncture therapy. Patient satisfaction was high and 80% of patients would recommend this procedure to family or friends in a similar clinical situation. The only complication reported was pain on needle insertion.

Conclusion: A dorsal indirect approach to nerve root injections is a safe and well tolerated procedure. We report high rates of long term analgesic benefit for the treatment of cervical radicular symptoms.

B-1289 14:33

Morphological changes of disc herniation following CT-guided periradicular infiltration

S. Talaryczk1, D.F. Uhlenbrock1, P. Haage2, C.A. Stuckée3, Dortmund/DE, Witten/DE (sarah.talaryczk@rub.de)

Purpose: Aim of this study was to analyse volume reduction of disc herniation in patients with specific low back pain following CT-guided interventional therapy.

Methods and Materials: Between 5/2017 and 6/2018 volumetric MRI examinations of seven patients suffering from low back pain were compared before and after CT-guided periradicular infiltration therapy. Under CT control therapy a glucocorticoid, a local anaesthetic and a contrast agent were injected close to the affected nerve root. For the volumetric measurement, a volumetric 3D dataset was employed. The measurement itself was performed with Siemens SyngoVia either with the manual 3D tool by two experienced physicians or with the automated 3D-segmentation tool. The findings were paralleled to an age- and gender-matched control group with comparable disc herniations without therapy. Both got a control MRI with volumetric assessment 6 to 12 months after their first MRI. T testing was used to assess the significance of volume reduction, and a ROC analysis to compare the two measurement tools.

Results: Under CT-guided therapy, disc volume was significantly reduced compared to the control group (p<0.02). In the intervention group, disc volume was reduced by an average of 18% whereas the disc volume even increased in the control group by an average of 8%. The measured volume differed significantly between the automated segmentation tool and the manual 3D-segmentation (AUC= 0.5). Consequently, the manual 3D-tool was used for our volume analysis.

Conclusion: Periradicular CT-guided infiltration leads to significant volume reduction of herniated discs over time compared to non-treated patients.

B-1290 14:41

Lumbar needle block using MR: The effectiveness and safety of ultrasound/MRI fusion image guidance

D.J. Wilson, G.M. Allen, S.A. Bullock, J. Denton; Oxford/UK (wilsonrd@gmail.com)

Purpose: We compared the outcome of nerve root blocks using ultrasound/MRI fusion image guidance combined with needle tracking to fluoroscopic-guided blocks.

Methods and Materials: To assess the efficacy and safety for nerve root blocks in 112 patients using fluoroscopic guidance and 57 patients using fusion guidance. We compared the outcome scores at 24 hours and two weeks. We recorded use of analgesia and the patient’s perception of the value of the procedure. We recorded complications, adverse events and duration.

Results: Pain diaries were returned by 68% in the fluoroscopic group and 70% in the fusion group. The visual analogue pain score (0 to 10) was reduced at 24 hours by 3.29 (SD 2.35) for the fluoroscopic group and by 3.69 (SD 2.58) in the fusion group, p 0.399. At two weeks the pain reduction was 3.27 (SD 2.57).
for the fluoroscopic group and 4.21 (SD 2.95) for the fusion group p = 0.083. There was no significance different in pain response or in the use of analgesics between the two groups. The patient’s overall conclusions for fluoroscopic-guided procedures were “very helpful” 20.3%, “a little helpful” 50.6% and “no change” 29.1%. For the fusion-guided injections, they were “very helpful” 47.5%, “a little helpful” 40% and “no change” 12.5%. The fusion-guided procedures took slightly more time to perform. There were no serious complications recorded in either group.

Conclusion: Ultrasound/MRI fusion imaging with needle tracking is a safe and effective alternative technique compared to fluoroscopic image-guided injection.

Author Disclosures:

B-1291 14:49

Recovering from non-specific low back pain despair: ultrasound-guided intervention in iliolumbar syndrome

D.K. Singh, S.B. Grover, N. Kumar, B.K. Nayak, S. Tomar, S. Suman, A. Kalyan, H. Rajani, R.N. Misra; New Delhi/IN (dksinghirad@gmail.com)

Purpose: Patients with non-specific low back pain (NSLBP) are normally in despair due to discordance between distressing clinical symptoms and paradoxical normal imaging studies (radiograph and MRI). However, patients of iliolumbar syndrome (ILS) are a potentially recoverable group. This study was, therefore, aimed at assessing the therapeutic role of ultrasound-guided intervention in the latter.

Methods and Materials: Forty consenting patients with NSLBP revealing iliolumbar ligament (ILL) thickening >2mm on ultrasound were included in this Institutional Review Board-approved prospective interventional study. Two-stage ultrasound-guided interventions were performed under standard aseptic precaution. In primary diagnostic intervention, 4ml of 0.25% bupivacaine was infiltrated in the ILL. Clinical pain scoring was assessed both pre- and 72 hours post-procedure using visual analog scale (VAS). The respondents to the primary intervention were considered to have a confirmed diagnosis of ILS. The latter group was further managed with therapeutic platelet-rich plasma (PRP) injection, undertaken by the standard protocol. The VAS was assessed 6 weeks after the second procedure.

Results: Out of 40 patients, 31 (77.5%) were diagnosed with ILS on primary intervention. Of these 31 patients who underwent PRP therapy, 29 (93.5%) showed significant improvement on VAS scale.

Conclusion: Ultrasound-guided diagnostic and therapeutic intervention using bupivacaine and PRP, respectively, were found to result in remarkable recovery in ILS group of patients with NSLBP. The potential of further exploiting this management strategy in patients of NSLBP living a life in despair, needs no further emphasis.

B-1292 14:57

Prospective randomised controlled trial comparing a battery-powered and a manual drill in bone biopsy

C. Tsao, E.K.C. Law, R.K.L. Lee, A.W.H. Ng, J.F. Griffith; Hong Kong/HK (cantsito@gmail.com)

Purpose: To compare the diagnostic accuracy, pain score, radiation dose, procedure time and complications of a battery-powered drill versus the traditional manual drilling system in CT-guided bone biopsy.

Methods and Materials: This was a single-centre prospective randomised controlled trial approved by the institutional review board with signed informed consent obtained. Consecutive patients referred to our centre for CT-guided bone biopsy were recruited from November 2015 to July 2018. Patients were randomised into two groups, namely biopsy performed either with battery-powered drill or traditional manual drill performed or supervised directly by one of three experienced musculoskeletal radiologists. Primary outcomes included procedure time, pain score (visual analogue scale; 0-10), radiation dose metrics (CTDVol and DLP), diagnostic yield, specimen adequacy and complications.

Results: 173 patients were recruited and randomised into a battery-powered drill group (n=93) or manual drill group (n=80). Baseline demographics including age, sex, lesion characteristics and locations were similar between both groups. When compared with traditional manual drill, biopsy with battery powered drill was quicker to perform (12 vs. 19 minutes; p<0.05) with reduced radiation dose (DLP 102 mGy-cm vs. 147mGy-cm; P<0.05), and was less painful (visual analogue scale 2.6 vs. 5.8; p<0.05). Diagnostic yield and specimen adequacy were similar for both methods (battery: 89% vs. manual 83%). No major or minor complication was identified for either group.

Conclusion: Battery-powered drill was superior to manual drill for CT-guided bone biopsy with a shorter procedure time, reduced radiation dose and pain score, while achieving a similar diagnostic yield.

B-1293 15:05

Ultrasound-guided distension hydrotherapy with graded physiotherapy in primary adhesive capsulitis: a pilot study

D.K. Singh, N. Kumar, S. Tomar, B.K. Nayak, S. Suman, A. Katyan, M.K. Mittal, S.B. Grover, R.N. Misra; New Delhi/IN (drnishtikumar@rediffmail.com)

Purpose: Current treatment options for adhesive capsulitis of shoulder joint are associated with variable results. Our study was aimed to evaluate clinical efficacy of ultrasound-guided distension hydrotherapy followed by physiotherapy in patients with primary adhesive capsulitis.

Methods and Materials: 20 patients of primary adhesive capsulitis of shoulder joint consented for distension hydrotherapy were included in this prospective study. Under ultrasound-guided posterior approach, an intra-articular needle was placed in the glenohumeral joint and 4 ml of steroid mixed with local anaesthetic agent was instilled, followed by phasic capsular distension with 30 ml of normal saline. All patients received 4 weeks of physiotherapy 48 hours after distension hydrotherapy. Parameters evaluated before and at 4 weeks post-procedure included visual analogue scale (VAS) pain score and goniometer angle measurement of range of external rotation. Data analysis was done using SPSS version 21.0 and paired t test was applied to determine statistical significance.

Results: Mean VAS pain score was significantly reduced following 4 weeks of combined therapy. Pre- versus post-therapy mean (SD) VAS: 8 (0.79) versus 4 (1.16), respectively, p value less than 0.0001. Mean range of external rotation was significantly increased following 4 weeks of combined therapy. Pre- versus post-therapy mean (SD) external rotation angle: 16.05 (7.56) versus 49.20 (11.25) degrees, respectively, p value less than 0.0001. Mean duration time of procedure was 14 minutes (11 minutes senior versus 17 minutes junior, p > 0.05). No damage of the median nerve nor the vascular structure was observed. Mean size of the skin incision was 3mm.

Conclusion: Combined therapy using ultrasound-guided distension hydrotherapy followed by physiotherapy achieved encouraging short-term clinical improvement in our pilot study. Further trials are needed to substantiate long-term prognosis.

B-1294 15:13

Ultrasound-guided percutaneous release of the carpal tunnel: comparison between senior vs junior operator and learning curves: a cadaveric study

C. Dekimpe; Nice/FR (dekimpe.chloe@gmail.com)

Purpose: The purpose was to evaluate, on a cadaveric cohort, the feasibility and the learning curve of ultrasound-guided percutaneous carpal tunnel release.

Methods and Materials: Fourteen carpal tunnel releases were carried out on un-embalmed cadavers by a senior and a junior radiologist. Procedures were realized with an 18MHz linear probe. An ultrasonographic anatomic evaluation was first performed to detect any anatomical variant. After hydrosisolecision with lidocaine of the carpal tunnel, a 3-mm hook knife was introduced into the security zone to perform a retrograde section of the transverse carpal ligament (TCL) under ultrasonographic guidance. Anatomic dissection was performed for each wrist. The main evaluation criterion was the complete TCL section. The procedure duration (minutes), skin incision size (millimetres), the integrity of the median nerve, thenar motor branch, and palmar vascular arch were also evaluated.

Results: The senior operator was able to perform a complete release after training on 3 specimens and the junior operator after 4 specimens (p = 0.05). In most of the cases when complete release was not achieved, it was due to an incomplete section of distal TCL (10 mm missing section on average). Mean duration time of procedure was 14 minutes (11 min senior versus 17 min junior, p > 0.05). No damage of the median nerve nor the vascular structure was observed. Mean size of the skin incision was 3mm.

Conclusion: The ultrasound-guided percutaneous release of the carpal tunnel demonstrates to be a safe and efficient procedure with a rapid learning curve.

B-1295 15:21

Clinical response in hip osteoarthritis: comparison between intra-articular treatment with hybrid hyaluronic acid (HA) and combined therapy with Platelet-Rich Plasma (PRP) and HA

I. Capretti, P. Palumbo, S. Iafrate, F. Bruno, F. Arrigoni, S. Mariani, L. Zugaro, A. Banile, C. Maslocchi; L’Aquila/IT (ilaria_capretti@hotmail.it)

Purpose: To evaluate the clinical outcome in patients treated with intra-articular injection of hybrid HA or combining HA and PRP.

Methods and Materials: 52 patients (aged between 40 and 70) with moderate-severe grade of hip osteoarthritis, diagnosed by magnetic resonance (MR) exam on 3T MR scanner. Patients with recent trauma or rheumatic or systemic diseases were excluded. Patients received different intra-articular injection in a randomized way: group A (14 patients) were treated with US-guided intra-articular injection of a hybrid formulation of HA: group B (14 patients) treated with a combination of HA and PRP. Clinical outcome and functional evaluation were investigated by means of Visual Analog Scale (VAS) and Harris Hip Score (HHS), before treatment and at six and twelve months.
Interventional Radiology

SS 1509
Nonvascular interventions in oncology (including kidney)

K-32 14:00
Keynote lecture
N.N.

B-1296 14:09
Safety and efficacy of microwave ablation of stage T1 renal cell carcinoma
K. Mahmoud, A. Gunn, H. El Khudari, A. Salei, E. Bready, A. Salei, J. Winston, P. Patten, A.M.K. Abdel Aal; Birmingham, AL/US (akamel@uabmc.edu)

Purpose: To evaluate clinical and technical factors associated with treatment outcomes of microwave ablation (MWA) for renal cell carcinoma.

Methods and Materials: We retrospectively reviewed medical records of 29 patients with 31 tumours who underwent MWA for stage 1 RCC between 2008 to 2018 in our institution. Patient demographics, tumour characteristics, technical success defined as absence of residual tumour within 3 months of procedure and complications were reported. The recurrence-free, cancer-specific and overall survival rates were analysed. A univariate analysis was performed to identify any potential predictors of complications, local recurrence, or survival.

Results: Mean age of the patients was 64 ±10.6 years and 34.5% of the patients had chronic kidney disease stage 3 at baseline. The median Charlson comorbidity index was 5 (range: 5-12). The median tumour size was 2.7 cm (range: 1.0 - 6.1) with 18 (58.1%) posterior tumours. Stage T1a tumours were seen in 93.5% of patients. Median number of probes was 1 (range:1-3) and biopsy was performed in 22 (72.4%) tumours. Technical success rate was 93.1%. Minor and major complications were seen in 5 (17.2%) and 1 (3.4%) patients, respectively. No local recurrence was reported. The overall survival was 100%, 84.6% and 84.6% at 1, 3 and 5 years. Cancer-specific survival was 100% at 5 years. There were predictors for complications or survival outcomes.

Conclusion: Percutaneous MWA is safe and efficacious thermal ablation modality for treatment of stage 1 RCC with acceptable outcomes.

B-1297 14:17
Percutaneous management of Indiana pouch reservoir stones: a single-centre retrospective study
M. Ozturk, J.C. McDermott, P.F. Laseeke, S.Y. Nakada, S.P. Hedican, S. Best, M.G. Kleedeihn; Madison, WI/US (dr.mesutoturk@gmail.com)

Purpose: To present our experience treating reservoir stones in patients with Indiana pouch urinary diversions using a percutaneous approach.

Methods and Materials: Seven patients were treated percutaneously for Indiana pouch reservoir stones between 2008 and 2018. The Indiana pouch was filled with dilute water-soluble contrast and was punctured with an 18-gauge needle by an interventional radiologist under direct ultrasound guidance. A wire was inserted through the needle and a balloon set was used over the wire to dilate the tract. A 30 F sheath was placed over the fully inflated balloon into the pouch. A urologist inserted a nephroscope through the sheath and removed the stones. At the end of the procedure, a Foley catheter was left through the access sheath into the lumen of the pouch and was left open to drainage.

Results: Group A showed a mean VAS value of 8.5 with a reduction of 78.6% at six months and 58.2% after twelve months; mean HHS value was 69 before treatment and 84 and 80 respectively at the follow-up. Group B showed a mean VAS value of 8.7 before treatment and an improvement of 79.3% and 81% at the follow up; mean HHS value of 67 before treatment and 89.1 and 88 at the follow-up. In group B, patients, aged between 40 and 55, had a better result.

Conclusion: All patients had good clinical recovery, but younger patients achieved better clinical benefit with HA-PRP therapy; while the patients, aged over 55 years, had similar results in both groups.

B-1298 14:25
Predictors of outcomes of percutaneous cryoablation for renal cell carcinoma
K. Mahmoud, A. Gunn, H. El Khudari, A. Salei, E. Bready, J. Winston, E. Keasler, P. Patten, A.M.K. Abdel Aal; Birmingham, AL/US (akamel@uabmc.edu)

Purpose: To evaluate the clinical and technical factors affecting the outcomes of percutaneous cryoablation (PCA) of renal cell carcinoma (RCC).

Methods and Materials: The medical records of 128 patients who underwent PCA for RCC between 2004 and 2018 were retrospectively reviewed. The medical records included 29 patients (59.4%) with multiple tumours, 104 (59.4%) males, with a mean age of 64.7 (SD=11.5) years. The study included T1a (69.5%) and T1b (28.9%) tumours. The median number of probes used was 2 (range: 1-7) and 81 (63.3%) tumours were biopsied. Technical success was seen in 100%. Minor complications were seen in 26.6% and major in 6.3% of patients. On univariate analysis, tumour biopsy (p=0.019), endophytic/mixed location (p=0.026), nearness to collecting system (p=0.012) and renal sinus involvement (p=0.003) were associated with complications, and the latter two were associated with decreased overall survival (p=0.036 and p=0.051, respectively). None of the variables predict local recurrence. The recurrence-free, cancer-specific and overall survival at 3 years was 66.6%, 100% and 93.4%, respectively.

Conclusion: Tumour biopsy, tumour location, nearness to collecting system and renal sinus involvement were predictors of outcomes of PCA of RCC.

B-1299 14:33
Role of R.E.N.A.L. nephrometry and PADUA scoring systems in percutaneous ablation for renal cell carcinoma
K. Mahmoud, A. Gunn, H. El Khudari, A. Salei, E. Bready, J. Winston, E. Keasler, P. Patten, A.M.K. Abdel Aal; Birmingham, AL/US (akamel@uabmc.edu)

Purpose: The aim of the study is to investigate the ability of R.E.N.A.L. nephrometry and PADUA scoring systems to predict the complications and survival outcomes in patients with renal cell carcinoma (RCC) who underwent image-guided renal tumour ablation.

Methods and Materials: We retrospectively reviewed the medical records of 175 patients who had RCC that was treated with thermal or non-thermal ablation. The data on demographics, modality of ablation and tumour characteristics were reported. The RENAL and PADUA scores were calculated. Technical success and complications were analysed. Kaplan-Meier curves for recurrence-free, cancer-specific and overall survival were obtained.

Results: The study included 175 patients with 177 tumours, 104 (59.4%) males, with a mean age of 64.7 (SD=11.5) years. There were 53 (30.3%) patients with CKD stage 3. Mean tumour size was 3.04 (SD=1.3) cm, with 75 tumours (42.4%) located posteriorly. Technical success was seen in 159 (90.9%) patients. Thirty-day complications were 27.9%. Recurrence-free and overall survival at 1 year was 94.8% and 98.5%, respectively. There was no correlation between the RENAL and PADUA scores with the occurrence of complications, recurrence-free survival or overall survival. The nearness to the collecting system and biopsy before the procedure correlated with the occurrence of complications (p=0.03 and p=0.02, respectively). The RENAL and PADUA scores do not correlate with the occurrence of complications, recurrence-free or overall survival in patients with RCC treated with percutaneous ablation. The nearness to the collecting system and biopsy correlated with the occurrence of complications.
B-1300 14:41
Modified ABLATE-score (mABLATE): a specific nephrometric score to predict complications and relapses in percutaneous cryoablation of renal lesions
M. Papa, A. Lossa, N. Suardi, G. Agostini, T. Maga, F. Gaboardi, G. Cardone; Milano/IT (papa.maurizio@hsr.it)

Purpose: RENAL and mRENAL scores have been validated on predicting complications and relapses in percutaneous treatments of renal lesions. However, these scores remain of surgical origin. We aim to build a specific interventional score (mABLATE).

Methods and Materials: Taking inspiration from the paper “AJR2014;202:894-903” with some changes based on our practical experience, a score was built trying to take into account the real difficulties faced in our experience. The mABLATE was retrospectively assessed on 60 cryoablations to evaluate its predictive value for complications and relapses. Logistic regression was used to predict complications; Cox regression for relapses; ROC analysis for accuracy.

Results: Among 60 renal lesions treated with cryoablation we experienced 3 bleedings with anemia (5%). Among 51 malignant lesions (ML) we experienced 7 relapses (13.7%), with a mean FU of 19.3 months. Mean ML RENAL score: 7.2pts. Mean RELN score: 7.71pts. Mean ML mRENAL score: 7.26. Mean mRELN score: 8.07pts. Mean ML mABLATE score: 4.96. Mean mABLAT score: 8.07pts. The Cox regression analysis for Renal (p=0.35) and mRELN (p=0.29) showed a lack of predictive value for relapses. The mABLATE score was found to be an independent predictor of relapses(HR 1.56; p=0.001). The predictive accuracy based on the ROC analysis of the mABLATE showed an area under the ROC curve of 0.89 (95% CI 0.81-0.95 for mRENAL, and 0.88 for RENAL). In the logistic regression analysis none of the scores showed statistic significance in predicting complications(p>0.05) due to small numbers.

Conclusion: mABLATE score showed to be a better predictor of relapses than RENAL and mRENAL.

B-1301 14:49
Safety and outcomes of percutaneous cryoablation for large T1b renal cell carcinoma
A. Gunn, K. Mahmoud, H. El Khudari, A. Salei, E. Keassler, E. Bready, J. Winston, P. Patten, A.M.K. Abdel Aal; Birmingham, AL/US (akame@uabmc.edu)

Purpose: To describe the safety, technical results, and clinical outcomes of percutaneous cryoablation of stage T1b renal cell carcinoma (RCC). RCC.

Methods and Materials: A retrospective review of the medical records of 36 patients with RCC lesions measuring 4.1-7.0 cm who underwent percutaneous cryoablation from 2004-2018. Patient demographics, co-morbidities, tumour characteristics, technical parameters of the procedure, technical outcomes, complications, and local recurrence rates were recorded. Cancer-specific survivals were 100%, 100%, 100%, and 100% at 1, 2, 3, and 6 years, respectively. The most frequent complications were one abscess and an incidence of acute renal failure, both which were appropriately managed without long-term sequelae. No significant change in glomerular filtration rate was seen after ablation (p=0.95). Seven patients were recorded (18%), all grade 1 (p=0.85). A generalized linear mixed model adjusted for mRENAL score showed a protective effect against complications of 0.69 (95% CI 0.4-0.98), and a hazard ratio of 0.69 (p=0.074). Median procedural time was 106 minutes for Cryo, 41 minutes for MWA (p=0.0001). During follow-up, residual disease was found in 6/60 patients after cryoablation (10%) and in 3/34 nodules after MWA (9%); no significant difference was found between the two groups.

Conclusion: In our series, MWA has proven to be a safe and effective ablative technique and it could be considered not inferior to cryoablation.

B-1303 15:05
Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study

Purpose: Ablative neurosurgery has been used to treat Parkinson’s disease (PD) for decades. MRI-guided focused ultrasound allows focal lesions to be made in deep brain structures without skull incision. We investigated the safety and preliminary efficacy of unilateral subthalamotomy by focused ultrasound in PD.

Methods and Materials: We performed a prospective, open-label pilot study with ten patients with PD with markedly asymmetric parkinsonism. Enrolled patients underwent focused ultrasound unilateral subthalamotomy. The subthalamic nucleus was targeted with brain images acquired with a 3T MR system. The primary outcomes were safety and a change in motor status of the treated hemibody as assessed with part III of the Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) in both off-medication and on-medication states at 6 months. Adverse events were monitored up to 48 h after treatment and at scheduled clinic visits at 1, 3, and 6 months after treatment.

Results: The most frequent adverse events were transient gait ataxia (related to subthalamotomy) and transient high blood pressure during the procedure. Transient facial asymmetry and moderate impulsivity were also recorded. The mean MDS-UPDRS III score in the treated hemibody improved by 53% from baseline to 6 months in the off-medication state and by 47% in the on-medication state.

Conclusion: MRI-guided focused ultrasound unilateral subthalamotomy was well tolerated and seemed to improve motor features of Parkinson’s disease in patients with asymmetric parkinsonism. Large randomised controlled trials are necessary to corroborate these preliminary findings and to assess the potential of such an approach to treat PD.

B-1304 15:13
The effect of histogram parameters derived from quantitative T1- perfusion on predicting the high-intensity focused ultrasound outcome of uterine fibroids
N.M. Duc1, C. Li2, H. Quang Huy1, J. Yang2, B. Keeser2, Ho Chi Minh City/WV, Xi'an/CN, Kelantan/MY (banguyenminhduc@pnt.edu.vn)

Purpose: To investigate the effect of whole-tumor histogram parameters derived from quantitative dynamic contrast-enhanced MRI (DCE-MRI) on predicting magnetic resonance-guided high-intensity focused ultrasound (MRgHiFU) ablation outcome defined as non-perfused volume (NPV) ratio ≥ 80%.

Methods and Materials: Institutional review board approved this prospective study. 28 symptomatic uterine fibroid women (43.3 ± 4.5 years) were evaluated quantitative DCE-MRI prior to MRgHiFU ablation at the Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University. The population was divided into 2 groups: group 1 with NPV ratio ≥ 80% (n = 8) and group 2 with NPV ratio < 80% (n = 20). Mann Whitney U test was carried out to compare the histogram parameters: median, mean, skewness and kurtosis between group 1 and group 2. Multiple logistic regression was accessed independent factors in predicting NPV ratio ≥ 80%.

Results: Mean NPV ratio was 94.8% ± 4.8 for group 1 and 54.4% ± 12.8 for group 2, respectively (p < 0.05). Median histogram parameter derived from quantitative DCE-MRI which represented the asymmetry and shape of histogram regarding to whole tumor vascular perfusion of group 1 was significantly lower than group 2 (p < 0.05). Multiple logistic regression manifested that there was only median parameter had significant effect on NPV ratio ≥ 80% (p < 0.05).

B-1302 14:57
Comparison of cryoablation and microwave ablation in the treatment of small renal masses (SRM): technical success, complications and mid-term clinical outcome
M. Panzeri, M. Colombo, M. Papa, G. Cardone, M. Venturini, U. Capitanio, M. Montorsi, A. Del Maschio, F. De Cobelli; Milano/IT (panzeri.marta@hsr.it)

Purpose: To evaluate feasibility, safety, complication rate and mid-term results of MicroWave Ablation (MWA) with a new high-power system based on Thermosphere™ Technology in the treatment of SRM not eligible for surgery, and to compare these data with those of cryoablation (Cryo).

Methods and Materials: From 2014 to 2018, 78 patients with one or more SRM (total 94) underwent percutaneous ablation (Cryo with Gallil Medical or MWA with Thermosphere Emprint) under CT/US guidance. CT/MRI follow-up was performed at 1, 6, 12 and 18-24 months. MRENAL, procedural time, technical success, complications (according to the CIRSE classification) and follow-up data were recorded.

Results: 49 patients (60 nodules) underwent cryoablation, while 29 patients (34 nodules) were treated with MWA. The median mRENAL score was 7.5 in the Cryo group, 9 in MWA group. No significant difference was found between the two groups in tumour or patient’s characteristics. There were 22 complications in the Cryo Group (36%): 18/22 (81%) were grade 1, 2/22 (9%) grade 2, 1/22 (5%) grade 3 and 1/22 was 4. In the MWA group 6 complications were recorded (18%), all grade 1 (p = 0.85). A generalized linear mixed model adjusted for mRENAL score showed a protective effect against complications of 0.69 (p = 0.074). Median procedural time was 106 minutes for Cryo, 41 minutes for MWA (p = 0.0001). During follow-up, residual disease was found in 6/60 patients after cryoablation (10%) and in 3/34 nodules after MWA (9%); no significant difference was found between the two groups.

Conclusion: In our series, MWA has proven to be a safe and effective ablative technique and it could be considered not inferior to cryoablation.

Saturday
Conclusion: The achievement of NPV ratio ≥ 80% was feasible in MRgHIFU ablation of uterine fibroids. The median histogram parameter could be served as an effective factor in patient selection criteria for NPV ratio ≥ 80%.

B-1305 15:21

The role of magnetic resonance imaging parameters in predicting the treatment outcome of high-intensity focused ultrasound ablation of adenomyosis

N.M. Duc1, B. Kesser2, H. Quang Huy1, L. Van Phuoc1, L. Trong Khoan3, D. Duc Cuong1, B. Van Giang3, V. Dang Luu1, N. Duy Hue1,1 Ho Chi Minh/VN, 2Kelantan/MY, 3Hue/VN, 4Ha Noi/VN (banguyenminhduc@pnt.edu.vn)

Purpose: To investigate the role of magnetic resonance imaging (MRI) parameters in predicting the treatment outcome of high-intensity focused ultrasound (HIFU) ablation of adenomyosis defined as the immediate non-perfused volume ratio (NPVr).

Methods and Materials: 50 women (40.3 ± 6.0 years) with symptomatic adenomyosis underwent MRI-guided HIFU ablation. Multivariate linear regression analyses were carried out in (i) baseline parameter group, (ii) T2 signal intensity (SI) group and (iii) semiquantitative perfusion group to investigate the potential predictors of each group affected based on the NPVr. Based on all the significant screening MRI parameters acquired from the multivariate analyses, generalized estimating equation (GEE) was used to predict the immediate NPVr.

Results: The results of multivariate analyses revealed that there were four statistically significant predictors (p < 0.05): abdominal subcutaneous fat thickness, T2 SI ratio of adenomyosis to myometrium, relative enhancement ratio of adenomyosis to myometrium, time to peak enhancement ratio of adenomyosis to myometrium. GEE analysis generated linear equation for predicting the immediate NPVr (y) with four statistically significant predictors: abdominal subcutaneous fat thickness, T2 SI ratio of adenomyosis to myometrium, x3 = relative enhancement ratio of adenomyosis to myometrium, x4 = time to peak ratio of adenomyosis to myometrium.

Conclusion: The findings in this study suggest that the outcome of MRI-guided HIFU treatment of adenomyosis based on multivariate analyses and prediction model appears to be clinically feasible.

14:00 - 15:30 Room M1

Cardiac

SS 1503

Coronary calcium and plaques: diagnosis and prognosis

Moderators: P. Donato; Coimbra/PT, C. Lücke; Leipzig/DE

B-1306 14:00

Presence of coronary artery calcifications on CT is associated with PE-related mortality in patients with acute PE

B.H. Heidinger1, D.C. DaBreo2, B.J. Carroll3, S.A. Feldman3, D. Mohebali4, I. McCormick5, J.D. Matos6, W.J. Manning7, D. Litmanovich8, 9Vienna/AT, 10Kingston, ON/CA, 11Boston, MA/US (benedikt.heidinger@meduniwien.ac.at)

Purpose: To evaluate the association of coronary artery calcification (CAC) visualised on computed tomography pulmonary angiography (CTPA) at time of acute pulmonary embolism (PE) diagnosis with PE-related mortality.

Methods and Materials: We searched for all patients with an ICD-10 code of PE and included those with PE verified on CTPA in this IRB-approved retrospective study. CAC was visually graded by a cardio-thoracic radiologist into four categories: absent, mild, moderate, or severe. PE-related mortality was defined as death related to PE within 30 days of diagnosis. Logistic regression analysis was used to compare the PE-related mortality according to the presence of CAC.

Results: In the 479 patients who met inclusion criteria, mean age was 63±16 years, 53% were female, and 47% had a prior smoking history. 253/479 (53%) patients had CAC (mild: 143/479, 30%; moderate: 89/479, 19%; severe: 21/479, 4%). Overall, 19/479 (4%) patients died, with a PE-related mortality of 2% in those with absent CAC, 5% in mild CAC, 7% in moderate CAC, and 10% in severe CAC. PE-related mortality was higher in patients with any CAC than in those without CAC (OR 3.95; CI 1.10-10.7; P<0.028).

Conclusion: Among patients admitted for PE, CAC was associated with higher PE-related mortality. Evaluation of CAC on CTPA at the time of diagnosis may be utilized as an additional prognostic parameter and could be used to assist in early risk stratification in patients with PE.
Methods and Materials: We retrospectively evaluated 71 patients who underwent CCTA and were defined as CAD-RADS 3/4 because of the display of two or more morphological features (low attenuation plaque, spotty calcifications, napkin-ring sign, positive remodelling). Clinical and therapeutic follow up was performed.

Results: A first group of 15 patients was sent to ICA (Invasive Coronary Angiography with IVUS within three months after CCTA; a second group of 56 patients underwent functional evaluation (Cardiac Magnetic Resonance Stress Imaging with Adenosine) and ICA within a year. The first group displayed an excellent conformity between CCTA and ICA stenosis values ($\mu=1.03$, Coefficient of Variation=12%); in the second, we highlighted a significant discrepancy because of stenosis progression or overlaid thrombosis. A strong correlation was noticed between stenosis entity and morphological features, except for positive remodelling. In the first group, 8 patients underwent PTCA, 50 in the second, 17 of which experienced cardiovascular accident in the period of time between CCTA and ICA.

Conclusion: Our experience confirms the importance of a more effective approach to CAD-RADS 3/4 patients, for whom a functional evaluation risks to represent a therapeutic delay.

B-1310 14:32

Improving CAD-RADS score with new iterative model reconstruction algorithm in low dose CCTA: inter-observer agreement and comparison with hybrid iterative reconstruction algorithm

C. Talei Fransesi, L. Liva, D. Ippolito, C. Cangiotti, A. de Vito, C. Maino, M. Porta, S. Sironi, M. Monza/IT, Bergamo/IT (cttdoc@hotmail.com)

Purpose: To evaluate the inter-observer agreement of the CAD-RADS system and to compare image quality, CNR and SNR between new MBIR (IMR) algorithm and hybrid-iterative reconstruction algorithm (Dose4) of low dose cardiac-CAT angiography (CCTA).

Methods and Materials: Eighty patients were prospectively enrolled in this study. All patients were examined with a 256-slice scanner (CT-elite,Philips) using low-dose (80-kV, 70mL of CM) CCTA protocol combined with prospective or retrospective ECG-gated technique, reconstructed with iDose and IMR algorithm. Each study was evaluated by 2 readers using the CAD-RADS lexicon based on the degree of maximum coronary stenosis (vessel >1,5 mm in diameter). Coronary arteries and aorta contrast-enhancement(HU), standard deviation(SD), SNR and CNR were measured in the axial native images. Inter-observer agreement of CAD-RADS system and image quality scores(5-point Likert scale) was determined using weighted k-statistic. Inter-observer agreement of mean attenuation values(HU) of coronary arteries and aorta was assessed with linear regression analysis and Bland-Altman plots.

Radiation dose exposure:(DLP,mGy*cm) and effective dose(ED) were reported for all the examinations.

Results: For CAD-RADS agreement, the k-value was very good(0.90). Moreover we found a significant higher value of qualitative analysis, SNR and CNR with the IMR algorithm compared to the iDose4, due to a lower CNR level(p<0.5). The mean DLP measured was 191.44mGy*cm and the mean ED was 2.68mSv.

Conclusion: Inter-observer agreement of CAD-RADS was excellent confirming the importance of the feasibility of hybrid iterative reconstruction algorithm for CCTA. In addition, we showed a lower noise and higher image quality with IMR algorithm compared to Dose4.

B-1311 14:40

Reliability of coronary calcium scoring on low-dose chest CT: comparison with ECG-triggered cardiac CT based on third-generation dual-source CT

C. Xia, A. Alsarayshi, M. Vonder, G. Pelgrim, M. Rook, M. Oudkerk, R. Vliegenthart, Groningen/NL (c.xia@umcg.nl)

Purpose: To assess the reliability of low-dose chest CT-based coronary calcium scoring (CS), compared with dedicated electrocardiographically (ECG)-triggered cardiac scans using third generation dual-source computed tomography (CT).

Methods and Materials: In the Imaging in Lifelines (imaLife) study, 646 consecutive participants underwent an ECG-triggered cardiac acquisition immediately followed by a low-dose chest acquisition using CT Force (Siemens Healthineers, Germany). Both cardiac and chest scans were acquired with high-pitch spiral mode and reconstructed with dedicated coronary calcium scoring settings for the purpose of this analysis. Thirty cases were excluded due to cardiovascular interventions or technical issues. CS was measured in Agatston method on both scans using dedicated software (CAScoring, syngo.via, Siemens, Germany).

Results: The median age of the participants was 54 years (range 45-63) and 40% were male. A positive CS was observed in 37% of the cardiac acquisitions. Compared with dedicated cardiac scans, the accuracy, sensitivity, and specificity of chest acquisitions in identifying the presence of coronary calcium was 0.97 (95% CI 0.95-0.98), 0.92 (95% CI 0.87-0.95), and 0.99 (95% CI 0.98-1.00), respectively. The reliability of chest scans in CS risk categorization was very high (weighted kappa 0.95). Although the mean difference of CS between two acquisitions was 6.94, the reliability of chest acquisitions in quantifying CS was high (intraclass correlation coefficient 0.994-0.996). The CS correlation between chest scans and cardiac scans was strong ($r=0.933$).

Conclusion: Coronary calcium can be reliably detected on low-dose chest CT scanning based on third-generation dual-source CT with a sensitivity of 92%.

B-1312 14:48

Accuracy of calcium scoring calculated from contrast-enhanced coronary computed tomography angiography using a dual-layer spectral CT

Purpose: The objective of the present investigation was to evaluate the accuracy of virtual non-contrast CACS computed from spectral data in comparison to standard non-contrast imaging.

Methods and Materials: We consecutively investigated 20 patients referred to cardiac computed tomography angiography (CCTA) using a dual-layer spectral CT system (iQon; Philips Healthcare, The Netherlands). CACS was calculated from both, real- and virtual non-contrast images by certified software for medical use. Correlation analyses for real- and virtual non-contrast images and agreement evaluation with Bland-Altman-Plots were performed.

Results: Mean patient age was 57.7 ± 14 years (n=20); 13 patients (65%) were male. Inter-quartile range of clinical CACS was 0-448, the mean was 334. Correlation of CACS from real- and virtual non-contrast images was very high (r=0.94); p<0.0001. The slope was 2.3 indicating that values from virtual non-contrast images are approximately half of the results obtained from real non-contrast data. Visual analysis of Bland-Altman plot shows good accordance of both methods when results from virtual non-contrast data are multiplied by the slope of the logisitic regression model (2.3). The acquired power of this results is 0.99.

Conclusion: Determination of calcium score from contrast-enhanced CCTA using spectral imaging with a dual-layer detector is feasible and shows good agreement with the conventional technique when a proportionality factor is applied. Our data suggest that radiation exposure can be reduced through omitting additional native scans for patients referred to CCTA when using a dual-layer spectral system without the usual limitations of dual-energy analysis.

B-1313 14:56

Influence of image reconstruction parameters on cardiovascular risk recalcification by computed tomography coronary artery calcium score

C. Martini1, E. Maffei1, P. Gaudio1, F. Ricci1, A. R. Cotroneo1, F. Cadenati1, C. Maino1, F. Trevisio2, A. Palermo2, A. Rotterdam/NL (c.martini@rad.unich.it)

Purpose: To investigate the influence of different CT reconstruction parameters on coronary artery calcium scoring (CACS) values and recalcification of predicted cardiovascular (CV) risk.

Methods and Materials: CACS was evaluated in 113 patients undergoing ECG-gated 64-slice CT. Reference CACS protocol included standard kernel filter (B30f) with slice thickness/increment of 2.0/1.0 mm; field-of-view (FOV) of 150-180 mm. Influence of different image reconstruction algorithms (reconstructed slice thickness/increment 2.0/1.0 and 1.5/0.8 mm; slice kernel B30f-B45f; FOV 200-250 mm on Agatston score was assessed by Bland-Altman plots and concordance correlation coefficient (CCC) analysis. Classification of CV risk was based on the Mayo Clinic classification.

Results: Different CACS reconstruction parameters showed overall good accuracy and precision when compared with reference protocol. Protocols with larger FOV, thinner slices and sharper kernels were associated with significant CV risk recalcification. Use of kernel B45f showed a moderate positive correlation with reference CACS protocol (Agatston CCC = 0.67), and yielded significantly higher CACS values (p <0.05). Reconstruction parameters using B30f or B45f kernels, 250 mm FOV, or slice thickness/increment of 2.0/1.0 mm or 1.5/0.8 mm, were associated with significant recalcification of CV risk (p <0.05).

Conclusion: Kernel, FOV, slice thickness and increment are major determinants of accuracy and precision of CACS measurement. Despite high agreement and overall good correlation of different reconstruction protocols, thinner slices thickness and increment, and sharper kernels were associated with significant upward recalcification of CV risk. Larger FOV determined both upward and downward reclassification of CV risk.
B-1314 15:04
Coronary calcium screening with non-gated standard and low-dose chest CT in comparison with ECG-gated calcium scoring CT
K.N. Zhuravlev, V.E. Sinitsyn, A.V. Shepktor; Moscow/RU (Kir232@mail.ru)

Purpose: Coronary artery calcification (CAC) is a recognized marker of coronary atherosclerosis. It is frequently detected on chest CT. The purpose of this study was to evaluate the correlation between the coronary calcium scoring values obtained with gated CT and those obtained with non-gated standard and low-dose chest CT.

Methods and Materials: 425 consecutive patients were prospectively studied with non-gated chest CT. The standard CT protocol was used in 214 cases, and low-dose one in 211 cases. ECG-gated cardiac CT for CAC scoring was performed in the same patients. Agatston calcium score values and stratification of patients into five risk categories according to calcium score values were compared with the reference data from the gated cardiac CT group.

Results: Included in the final analysis were 398 patients. The mean calcium scores were 288.3 for the standard CT protocol and 267.7 for the low-dose CT. The correlation between CAC scores obtained with gated and non-gated CT was high (r=0.977 for standard CT and 0.988 for low-dose CT). It remained high after exclusion from analysis of CAC score values of 0 (r=0.975 and 0.986, resp.). Categorization of patients into the five risk groups according to the calcium score values was also high for both chest CT protocols (p<0.001) and 0.892, resp.

Conclusion: The study shows that analysis of CAC and the risk stratification of the screened patients is feasible with help of non-gated chest CT. These results could be used for combined screening of the lung cancer and coronary atherosclerosis.

B-1315 15:12
Association between coronary artery calcium score and cardiovascular magnetic resonance imaging parameters in patients with end-stage renal disease
Q. Xie, X. Zhou, L. Lin; Shenzhen/CN (15800011332@163.com)

Purpose: Whether coronary artery calcium score (CAC) is reliable for risk stratification of cardiovascular disease in patients with end-stage renal disease (ESRD) remains controversial. Our study aimed to investigate the associations between CACS, CMR and clinical parameters in ESRD patients.

Methods and Materials: 33 ESRD patients (18 males; mean age 45±11 years) and 43 healthy volunteers (24 males; mean age 43±10 years) underwent CMR examinations. All the ESRD patients underwent CACS scans. CACS, LV function parameters, global LV strains, LV myocardial native T1 and T2 of the mid-cavity slice of all the subjects were measured and compared. The ESRD group were divided into 3 subgroups according to tertiles of the CACS, and their clinical and CMR parameters were compared. Correlations between CACS and the CMR and clinical parameters in the ESRD group were analyzed, respectively.

Results: LV global longitudinal strain (GLS) was statistically impaired in ESRD group (-15.4±2.5%, p=0.023). CACS was correlated with LV GLS (r=0.58, p<0.001) and years of dialysis (r=0.53, p=0.002). There was no correlation between CACS and native T1, T2, LV GLS, LV MASS, LV EF (p>0.05).

Conclusion: ESRD patients demonstrated impaired LV GLS compared with healthy people. Increased CACS was associated with impaired LV GLS as well as long duration of the chronic kidney disease and dialysis in ESRD patients.

B-1316 15:20
Implications of incidental coronary artery calcification on thoracic computed tomography
V. Tilliridou, J. Murchison, E.J.R. van Beek, D.E. Newby, M.C. Williams; Edinburgh/UK

Purpose: Coronary artery calcification (CAC) can be identified on thoracic CT performed for non-cardiac indications. Although CAC is associated with increased mortality, we do not know the implications for management of reporting incidental CAC.

Methods and Materials: This audit assessed the images of all patients undergoing contrast or non-contrast CT of the thorax over a 1-month period. Information on cardiovascular risk factors and current medication were obtained from electronic patient records. Ten-year cardiovascular risk was assessed using the ASSIGN score, a cardiovascular risk tool validated for the Scottish population. The presence of coronary artery calcification was recorded and graded on a 4-point scale in each coronary artery, and summed to give a total CAC score (CAC5). The presence of aortic and mitral valve calcification was also assessed.

Results: The images of 326 patients were assessed (66±14 years, 51% male). CAC was identified in 216 patients (66%), and 47 patients (14%) had severe CACS. Patients with CAC had a higher 10-year cardiovascular risk score (27±15 versus 12±10, p<0.0001); 39 (12%) patients had a 10-year risk of <20% and 10 patients (3%) had a risk of <10%. Age, male gender and smoking were independent predictors of the presence of CACS (p<0.001). Although patients with CAC were more likely to be taking preventive medications (p<0.001), nearly a half (97/216, 45%) were not taking any preventative medication.

Conclusion: CAC is prevalent on thoracic CT performed for non-cardiac indications and can identify patients who may benefit from preventative medication despite low-cardiovascular risk scores.

Author Disclosures:
M.C. Williams: Consultant; GE Healthcare.

Paediatric

SS 1512
Paediatric radioprotection, techniques and forensic imaging

Moderators:
N.N. J. Piękeras; Barcelona/ES

B-1317 14:00
Evaluation of virtual grid post-processing for paediatric no-grid radiography in an unselected paediatric patient cohort
M. Beeres1, J.-E. Scholz2, D. Leithner1, A. Barakat1, T.-J. Vogl1, T. Gruber-Roug1, B. Kaltenbach2, C. Polkowski1, A.M. Bucher1

Author Disclosures:
M.C. Williams: Consultant; GE Healthcare.
Results: Area under the VGC curve with associated 95% confidence interval (CI) was 0.54 (0.45-0.62), 0.63 (0.55-0.71) and 0.56 (0.48-0.64) for readers 1, 2 and 3. Only one (experienced) reader scored image quality significantly higher for the small ps detector (i.e. CI excluded 0.5). Using the median score from all readers the AUC = 0.56 (0.48-0.64), i.e. no significant statistical difference existed between the detectors. Intra-class correlation coefficient was 0.64 (95% CI: 0.50-0.76), indicating reasonably good reader agreement. Absolute scores showed similar noise levels for both detectors, with 7 as median value (1-10 scale (10=best)). The three readers classified 98% of images as acceptable for diagnostic use.

Conclusion: Clinical IQ for the larger ps detector was not significantly different from the small ps detector in neonatal chest X-ray imaging applications.

B-1319 14:16
Post-mortem ultrasound-guided biopsy for perinatal death investigation: a pilot study
S.C. Shelmerdine, J.C. Hutchinson, N.J.J. Sebire, O.J. Arthurs; London/UK (susie_c_s@yahoo.co.uk)

Purpose: Minimally invasive autopsy methods are becoming more acceptable as they reduce the need for large disfiguring incisions. Laparoscopic approaches and percutaneous ‘blinded’ biopsies of organs have been trialled, without imaging guidance, with variable success. This study aims to assess tissue yield of post-mortem ultrasound-guided biopsies in a perinatal cohort.

Methods and Materials: All perinatal deaths consented for minimally invasive autopsy were included in this prospective study over a 1-year period. Ultrasound-guided biopsies of the liver, both kidneys, both lungs, spleen and myocardium were performed using a 14G cutting biopsy needle via either a periumbilical or subcostal route. A pathologist, blinded to the intended target organ, assessed samples for organ type, sufficient tissue volume for analysis and underlying abnormalities.

Results: 12 perinatal cases underwent image-guided organ biopsies, 6 via the periumbilical route and 6 via the subcostal route. Excluding the spleen, the intended target organ was obtained in 80-100% of cases via periumbilical route and 66.7-91.7% via subcostal route. Splenic tissue was obtained in 20% of samples via periumbilical route versus 16.7% subcostal route biopsies. All samples obtained via periumbilical route and 80-100% via subcostal route yielded sufficient tissue for analysis.

Conclusion: Post-mortem ultrasound-guided organ biopsies are a feasible technique for obtaining the majority of tissue samples in perinatal death investigation. A periumbilical route resulted in higher target organ yield than a subcostal route, and was assessed in a larger study for diagnostic accuracy. Splenic tissue remains difficult to sample using this method.

B-1320 14:24
Pediatric Computer Tomography (CT) Diagnostic Reference Levels (DRLs) by age and size
S. Yu, P. Zhu, R. Smith-Bindman; San Francisco, CA/US (philip.w.zhu@gmail.com)

Purpose: To contribute to the creation of pediatric (<15 years) CT radiation dose benchmarks by age and size. We report the distribution of radiation dose metrics based on CT scans submitted in 2017 from a large international dose registry comprised of 139 institutions from 7 countries. The registry was supported through the US National Institutes of Health (NIH) and Patient Centered Outcomes Research Institute (PCORI).

Methods and Materials: We describe mean pediatric doses for dose length product (DLP) across institutions in Europe and US. Pediatric age is split into four age categories and dose metrics were categorized by quintiles.

Results: We analyzed 3,007 European pediatric CT scans and found the following mean DLP values (in mGy-cm): youngest age group and smallest patient diameter: abdomen (50), chest (36), and head (270); oldest age group and largest patient size: abdomen (278), chest (149), and head (715). We analyzed 57,252 US pediatric CT scans and found the following mean DLP values (in mGy-cm): youngest age group and smallest patient diameter: abdomen (99), chest (42), and head (269); oldest age group and largest patient size: abdomen (514), chest (273), and head (704).

Conclusion: Dose among pediatric patients varies greatly by age and size in the United States and Europe. Within the same patient size category, mean DLP in the head, chest, and abdomen can double in dose comparing the highest age group to the lowest age group. A larger and more representative sample is needed to reliably confirm the result dose in European pediatric scans.
B-1323 14:48
CT chest under general anaesthetic: Is the degree of atelectasis improved by prone positioning?
A. Kirby, A.J. Quigley, J. Jones, S. McGurk; Edinburgh/UK (akirby3@nhhs.net)

Purpose: Anaesthesia-related pulmonary atelectasis is a common problem when performing paediatric CT imaging under general anaesthesia. This can make interpretation of pulmonary parenchyma more challenging and can lead to both false-positive and false-negative results. Anaesthetic techniques have been proposed to limit the degree of atelectasis but the use of a prone position rather than the standard supine position has not been explored. This study investigates prone positioning versus the standard of supine positioning. The primary outcome measure is the severity of pulmonary atelectasis encountered.

Methods and Materials: 109 cases were prospectively and randomly assigned to the comparison (prone n=43) and control (supine n=63) groups. Prone cases were rotated to the standard axial plane and were reviewed independently by two consultant radiologists. Concordance between the two assessors was measured by means of a weighted Cohen’s Kappa test. Superiority of comparison versus control group was investigated by means of a Mann-Whitney U test.

Results: Inter-observer concordance was found to be ‘very good’ with a Kappa of 0.808 (95% CI 0.84-0.90). There was found to be no statistical significance between prone and supine imaging in the severity of atelectasis with a p value of 0.57.

Conclusion: As no significant improvement was demonstrated between prone and supine positioning, the status-quo of standard supine positioning is suggested. This has both practical and anaesthetic benefits over prone imaging. Further investigation into other avenues of anaesthetic technique, positioning and scan technique may yet yield benefits over current best practice.

B-1324 14:56
PET-MRI is non-inferior to PET-CT in paediatric and adolescent Hodgkin’s lymphoma for staging and early response assessment
M.V. Verhagen, T.A. Watson, R. Nerman, S. Punwani, S. Taylor, S. Daw, A. Shankar, L. Menezes, P.D. Humphries; London/UK (mvverhagen@gmail.com)

Purpose: Treatment regimens for paediatric Hodgkin’s lymphoma (HL) depends on accurate staging and treatment response assessment, for which the reference standard is PET/CT. We hypothesised that PET/MRI is non-inferior to PET/CT for both staging and response assessment.

Methods and Materials: 24 patients (mean age 15.4 years, range 8-19.5 years) with histologically proven HL were prospectively recruited in 2015 and 2016. 3 patients did not undergo response assessment PET/MRI, resulting in 24 scans (720 nodal and extranodal sites) at staging, and 21 (630 sites) at response assessment. PET/CT was immediately followed by PET/MRI for both staging and response assessment. Anatomical MRI and PET/MRI were prospectively evaluated by blinded radiologists/nuclear medicine physicians and compared to PET/CT as reference standard. A multidisciplinary panel corrected for perceptual errors to create an enhanced PET/CT reference standard and corrected MRI and PET/MRI data.

Results: Corrected staging anatomical MRI sensitivity was 85.8% (95%CI 77.4%-89.9%), specificity 97.9% (95%CI 96.3%-98.9%). Corrected staging PET/MRI sensitivity was 100% (95%CI 96.7%-100%), specificity 99.5% (95% CI 98.36-99.87). Corrected response assessment anatomical MRI sensitivity was 0% (95%CI 0%-48.32%), specificity 99.7% (95%CI 98.7%-99.9%). Corrected response assessment PET/MRI sensitivity was 83.3% (95%CI 95.5%-99.9%), specificity 100% (95%CI 99.2%-100%) Modified Ann Arbor staging agreement was moderate (k 0.403) for PET/MRI and excellent (k 1.0) for PET/CT. MRI response assessment disagreed with PET/CT in 6 out 21 patients. Deauville grading agreement between PET/MRI and PET-CT was excellent (k 0.935).

Conclusion: PET/MRI is non-inferior to PET/CT for staging and early treatment assessment of HL in adolescents.

B-1326 15:12
Magnetic resonance imaging assessment of iron status in paediatric patients with hematologic disorders
E. Nazarova, D. Kupryanov, G. Tereshenko, N. Smetanina, G. Novichkova; Moscow/RU (evelina.nazarova@fccmo-moscow.ru)

Purpose: To introduce MRI T2*-method for iron assessment in parenchymal organs of translation-related paediatric patients with hematologic disorders.

Methods and Materials: MRI investigation was performed using a 3T MRI scanner in 85 paediatric patients aged from 2 to 18. For iron estimation we have used Radial T2*-mapping with free breath technique. T2* values were evaluated by special relaxation maps tools and for liver were correlated with iron concentration measured by liver biopsy immediately after MRI scan.

Results: For non-invasive assessment of LIC (liver iron concentration) we have received a calibration curve between the biopsy data and the R2* (R2*/1/T2*) values with correlation coefficient 0.95 (RT=0.89, confidence interval of 87% - 97% with CC= 95%). According to the grades of liver siderosis patients were divided into groups and we have obtained reference T2* values in ms for myocardium (M), pancreas (P) and pituitary gland (PG): non-iron overload - M > 15 ms, P > 11 ms, PG > 11 ms; mild - M = 11-20 ms, P = 4-25 ms, PG = 11-40 ms; moderate - M = 15-30 ms, P = 2-15 ms, PG = 9-20 ms; severe - M = 10-18 ms, P = 1-10 ms, PG = 7-30 ms.

Conclusion: Iron assessment by MRI is a good indicator of iron content in the parenchymal organs.

B-1327 15:20
Diffusion kurtosis imaging (DKI) utility in differentiating low- and high-grade gliomas in paediatric patients: further experience
I. Voicu, A. Napolitano, M. Vinci, F. Diomed-Camasse, C. Carducci, A. Carai, A. Mastronuzzi, P. Toma, G. Colafati, Rome/IT (paul.voicu@hotmail.it)

Purpose: To investigate whether diffusion kurtosis imaging (DKI) can differentiate low- and high-grade gliomas (LGG and HGG) in paediatric patients.

Methods and Materials: DKI sequences (3 directions, 3 b values: 0, 1000, 2000) acquired with simultaneous multislice technique (SMS) are part of the diagnostic neuro-oncologic protocol in use in our Institution, performed on a 3T magnet. Fifty consecutive children (median age 8.6 years, 27 males) affected by histologically confirmed gliomas were retrospectively studied. Mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated and the corresponding maps were obtained. The solid volume of the tumour (VOI) was segmented semiautomatically. Mean and highest 20 percentile (H20%) DKI values in tumour VOIs were calculated for each metric. Based on tumour location, patients were further categorized into brainstem location (bl) or non-brainstem location (nbl). Differences among DKI-derived metrics in VOIs of low and high-grade gliomas (LGG and HGG) in paediatric patients.

Results: after excluding three patients for motion artefacts, the scans of forty-seven children (32 LGG and 15 HGG) were analysed. MANOVA revealed significant differences between LGG and HGG (Pillai’s trace <0.0001). Post-hoc analysis revealed all metrics were significantly different between nblLGG and nblHGG, while AK and H20%AK were significantly lower in blHGG than in blLGG.

Conclusion: DKI metrics can differentiate low- and high-grade gliomas in paediatric patients with location-specific patterns.

Scientific Sessions

14:00 - 15:30 Room M3

Neuro

SS 1511
Neurocognitive impairment and psychiatric disorders
Moderators: N.N. J. Boban; Novi Sad/RS

B-1328 14:00
Determining the best leader nodes in Alzheimer networks
A. Moradi Amani, L. Meyer-Baese, A. Tahmassebi, K. Pinker-Domenig; Melbourne/AU, Atlanta, GA/US, Tallahassee, FL/US, Vienna/AT (lisameyerbaese@gmail.com)

Purpose: Fusing modern network theory and control strategies yields a novel transformational paradigm in dementia research. One research direction is determining the best driver nodes in Alzheimer networks that can be directly
manipulated via external inputs to influence the overall network trajectory and simulate the disease progression. Identifying the best driver set in these networks is an unsolved problem in brain connectomics.

Methods and Materials: We examine 249 subjects with FDG-PET and T1-weighted MRI images consisting of 68 control, 111 mild cognitive impairment (MCI) and 70 Alzheimer’s disease (AD). We consider only 42 out of the 116 from the AAL in the frontal, parietal, occipital and temporal lobes. Different from previous work on controllability of disease networks, we determine the best disease driver nodes based on a centrality measure in the connection graph.

Results: We demonstrate the precision of the proposed centrality for correctly determining driver nodes and compare it with heuristic methods including considering hub nodes with maximum degree, maximum betweenness, and maximum closeness. We show the differences in structural and functional brain networks reflecting the changes from controls over MCI to AD, and their locations in the frontal and temporal lobes.

Conclusion: We have established a new method to determine the best driver nodes that are influencing the dynamics of the dementia networks. Implicitly, we can gain an understanding of dementia evolution and the subsequent development of therapeutic solutions.

B-1329 14:08
Quantitative MR-phase information enables classification of Alzheimer’s disease stages
(170w0201@st.kumamoto-u.ac.jp)

Purpose: The purpose of this study was to show quantitative MR-phase corresponding to iron in the amyloid plaque (AP) could classify a group of Alzheimer’s disease (AD) patients with high Mini-Mental State Examination (MMSE) score from one of lower score, which would connect to noninvasive image diagnosis of AD.

Methods and Materials: AD patients (8 males, 9 females, 79 ± 5 y) with high MMSE score (≥ 25, 10 patients) and low score (≤ 20, 7 patients) were scanned by 3T-MRI with multi-echo GRE sequence (1st TE = 7.3 ms, ΔTE = 8 ms). Phase data was collected from typical cortices (Superior Frontal Gyrus: SFG, Superior Temporal Gyrus, Precuneus, Cuneus) and evaluated by Double Gaussian Analysis already reported (M. Tateishi et al., MRMS, in print) to define a phase corresponding iron in the amyloid plaque. We derived a proportionality coefficient (PC) of the phase with TE as a quantitative metric representing AP accumulation in the cortex we measured. The PC of two groups were statistically evaluated by Welch’s t-test (p < 0.01, significantly different) in all regions.

Results: Although subtraction of PC (SPC) between SFG and others were only statistically significantly different, that of other regions did not show it.

Conclusion: The SPC may represent difference of iron loading in the AP and relate to clinical evaluation MMSE score. Our study showed the SPC noninvasively and easily derived from MRI could be a quantitative metric correlating MMSE score and classify the AD stages.

B-1330 14:16
Altered cortical thickness related to single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) in antipsychotic-naive schizophrenia
B. Tao, Y. Xiao, W. Zhang, L. Yao, S. Lui; Chengdu/CN
(1945628646@qq.com)

Purpose: To explore the relationship between changes in cortical thickness and single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) in a group of antipsychotic-naive schizophrenia (AN-SCZ) patients.

Methods and Materials: Twenty-five AN-SCZ patients and 51 healthy controls (HCs) participated in the present study. General linear models were used to explore the associations between the average cortical thicknesses of each brain region (N=68) and each of the 11 SNPs in the MHC in the AN-SCZ patients and HCs, respectively. Next, we performed an independent-sample t-tests to investigate whether there were significant decreased cortices in the AN-SCZ patients compared with HCs in the brain regions that were significantly associated with the SNPs. Finally, we examined the correlation of clinical symptoms with cortical thickness in the above brain areas in the patients group using Pearson correlation tests.

Results: Seven of the 11 SNPs within the MHC regions exhibited significant associations with the cortical thickness in the AN-SCZ patients, including rs1635, rs1736913, rs2021722, rs204999, rs2523722, rs3131296 and rs672105. And the AN-SCZ patients exhibited significant reductions in cortical thickness in the above brain problem in brain connectomics, especially the frontal cortex. Furthermore, the left entorhinal region showed a negative correlation with PANSS activation scores in the AN-SCZs (r=0.601, P=0.03).

Conclusion: The present study provided evidence for the potential effect of MHC risk variants on cortical thickness deficits in AN-SCZ.

B-1331 14:24
Drug effects on brain structure in acute and chronic schizophrenia
J. Zeng, W. Zhang, Y. Xiao, J. Liu, B. Tang, G. Fu, S. Lui; Chengdu/CN (jiaxinzengscu@163.com)

Purpose: The study aims to reveal the effects of antipsychotics on brain structure in schizophrenia patients. We intend to find out the brain regions that are vulnerable to antipsychotics throughout the acute and chronic treatment stage in a large cohort of first episode drug-naive schizophrenia patients.

Methods and Materials: Diagnosis of schizophrenia were determined using the Structured Interview for the DSM-IV (SCID-P). T1 images were acquired from 170 first episode drug-naive schizophrenia patients (M/F=77/102), 41 six-week follow-ups (M/F=16/25), 71 one-year follow-ups (M/F=26/45) and 36 two-year follow-ups (F/M=14/22). Grey matter volume was obtained using voxel based morphometry. The FreeSurfer software package was performed to acquire the cortical thickness and surface area. General linear model was carried out through each comparison between first episode drug-naive schizophrenia patients and six-week, one-year and two-year follow-ups. After false discovery rate correction, common brain regions which differ in drug-naive schizophrenia patients and treated patients through the three comparison were extracted.

Results: Grey matter volume showed common altered brain regions in right and left thalamus in first episode drug-naive schizophrenia patients compared with six-week, one-year and two-year follow-ups, respectively. Besides, grey matter volume decreased in all treated groups compared with drug-naive schizophrenia patients at baseline in right and left thalamus. There are no overlap brain regions in cortical thickness and surface area between those groups after correction.

Conclusion: Thalamus is vulnerable to antipsychotics in not only acute phase but also chronic phase, which reveals the pharmacology and physiomechanism of drugs on schizophrenia.

B-1332 14:32
Heterogeneity of brain structure alterations in patients with never-treated first episode schizophrenia
Y. Xiao, J. Zeng, G. Fu, B. Tang, C. Yang, S. Lui; Chengdu/CN

Purpose: Although schizophrenia is a heterogeneous clinical syndrome, one important question that remains largely unanswered is whether the complex anatomy and pathophysiology reflected in MRI could be used as objective biomarkers to resolve neurobiological heterogeneity within this disorder.

Methods and Materials: To address this question, 163 drug-naive first-episode schizophrenia (FES) patients and a confirmation data set of chronic-treated patients (n=133) were recruited. High-resolution anatomic data were acquired and processed via FreeSurfer software to obtain cortical thickness, surface area and cortical volume measurements. Subsequently, a density peak-based clustering algorithm was employed to classify schizophrenia into subtypes with distinct neuroanatomical patterns.

Results: We found three subtypes of neuroanatomic alterations that were also observed in the confirmation sample. Subtype 1 showed mainly increased surface area and cortical volume in left inferior parietal, superior frontal, superior temporal and right fusiform cortex than healthy controls. Subtype 2 showed subtle cortical alteration. Subtype 3 showed mainly decreased surface area and cortical volume in left precentral, inferior temporal, right superior parietal and rostral middle frontal cortex.

Conclusion: Current findings, in a sample of never-treated FES patients, demonstrated three subtypes of patients with distinct patterns of grey matter alteration. Further, the three subtypes’ pattern were confirmed by another data set of chronic-treated patients, suggesting the subtyping defined by FES structural MRI are relatively stable after illness onset, which could help to compressively explain the complex and heterogeneous findings of schizophrenia.

B-1333 14:40
An amplitude of low-frequency fluctuation study in first-episode drug-naive patients with major depressive disorder
X. Hu, X. Hu, H. Li, L. Zhang, L. Lu, X. Bu, S. Tang, Q. Gong, X. Huang; Sichuan (820548310@qq.com)

Purpose: The purpose of the current study is first to investigate the alterations of amplitude of low-frequency fluctuation (ALFF) in first-episode drug-naive MDD patients with relatively short illness duration and then to explore whether these changes could be reversed by antidepressant treatment.

Methods and Materials: Thirty first-episode, drug-naive MDD patients (mean illness duration = 14 weeks) and 52 healthy controls (HC) were scanned with resting-state functional magnetic resonance imaging to obtain the ALFF within the whole brain. After MDD medication, antidepressant treatment was applied for all patients. After 6 weeks, 9 follow-up MDD patients were scanned again. Voxel-based analysis of ALFF maps were compared between pre-treatment MDD and HC using two-sample t-test. Correlations between ALFF and HAMD score or illness duration were conducted using multiple regression. Paired t
Role of MR functional connectivity in discriminating cognitive impairment in BD
M.M. Eid, M.H. Otthman, S. Abdelal, H.A. Hasan, H.E. Khakifa, S. Sayed; AsyutEG (Mido_eid1985@yahoo.com)

Purpose: Disorders in functional communication have been suggested for the cognitive contribution and emotion deficit observed in bipolar disorder (BD). Technical contact between cortical prefrontal cortex (mPFC) and other brain regions may be particularly abnormal. The aim of this study was to describe the dynamics of time to Default Mode network connection (DMN) status in BD and to study its association with perception.

Methods and Materials: Our study included, euthymic BD (n = 16) and sound healthy history (HC, n = 25) participants performed resting-state functional MRI, we used of high resolution sequences extracted from the human neural network project, and completed neural measures to address operational function. A dynamic functional connectivity approach was used to measure DMN correlations in each participant, with other brain areas of interest as mPFC, posterior cingulate cortex (PCC), and para hippocampal region. To do description of temporal dynamics between these regions and other DMN nodes using subsets of the time series.

Results: We found marked decreased (marked variability) dynamic functional connectivity between mPFC and PCC, in the bipolar group compared to healthy controls. On the other hand we found apparent connectivity between DLPCF, brainstem and right amygdala in the Bipolar group with more dynamic range in compare to the control group.

Conclusion: The fluctuation in the resting-state functional connectivity may be an index of the interlinkage flexibility that decreases in BD and link to ongoing cognitive disability during periods of euthymia.

Spectrum of autoimmune encephalitis: establishing imaging patterns on FDG PET/CT for specific antibody sub-types
V. Gupta, R. Verma, R. Ranjan, E. Rehbo, H. Mahajan; Delhi/IN (sheelbeho@gmail.com)

Purpose: To establish specific imaging patterns on 18FDG PET/CT in different antibody sub-types of autoimmune encephalitis.

Methods and Materials: A total of 35 serologically proven cases of autoimmune encephalitis that underwent F-18 fluoro-deoxy glucose (FDG) PET/CT scan were included. The patterns of FDG uptake in different antibody subtypes were recorded and compared with normalised data was attempted. The areas of hypo-hyper-metabolism that were two standard deviations from the mean were considered as abnormal. The patients were also analysed based on the Z score surface maps of the 3D stereotactic surface projections (SSP) image and regional Z scores were evaluated. Post-treatment follow-up scans were also acquired.

Results: All the patients had an abnormal pattern of 18FDG uptake, both on visual inspection and semi-quantitative analysis. Voltage-gated potassium channel (VGKC) complex receptor antibody encephalitis patients were found to have typical areas of hypermetabolism in bilateral medial temporal regions and bilateral basal ganglia with relative global hypometabolism in rest of the cortical and subcortical structures. The subjects with N-methyl-D-aspartate-receptor antibody (NMDAR-Ab) encephalitis showed variable degrees of focal hypermetabolism in bilateral fronto-temporal regions, basal ganglia, thalami and cerebellar hemispheres with inhomogeneous parieto-occipital hypometabolism. The post-treatment FDG PET/CT scans showed reversal to normal metabolism in the corresponding areas.

Conclusion: 18FDG PET/CT scan may serve useful as a non-invasive diagnostic modality in the early diagnosis and management of patients with clinical suspicion of autoimmune encephalitis.
Methods and Materials: 188 patients with surgically and histologically confirmed T3 rectal cancer who underwent preoperative MRI were enrolled in this study. Two blinded radiologists evaluated the maximum distance of mesorectal extension (mrDME) in T2-weighted image in MRI. The study population was sub-classified into T3a (<1 mm), T3b (1-5mm), T3c (5-15 mm) and T3d (>15 mm) according to the distance of mesorectal extension by tumour invasion. The inter-/intra-observer data were assessed statistically. Results: Inter-/intra-observer kappa (k) and intraclass coefficients (ICC) between the two groups were very distinct. In the individual group, the interobserver and intra-observer k for the mrDME were 0.700 and 0.718, respectively; the inter-observer and intra-observer ICC were 0.772 and 0.786, respectively. In the combined group, the inter-observer and intra-observer k for the mrDME were 0.819 and 0.883, respectively; the inter-observer and intra-observer ICC were 0.829 and 0.796, respectively.

Conclusion: There was a distinct increase in the kappa (k) and ICC value in the combined group compared with the individual group. This high reproducibility result suggested that it is more reliable to measure T3ab and T3cd combined together than individually. This finding may play a crucial role in the management of rectal cancer and clinical decision-making for non-expert radiologists in a non-academic setting.

B-1340 14:08 Preoperative MR restaging of rectal cancer in UKMCC: correlation with surgical and histopathologic findings
C. Lee, S. Osman, L. Mazlan, F. Mohammmed; Kuala Lumpur/MY (dr.leechingyuen@gmail.com)

Purpose: To determine the accuracy of restaging MRI in rectal cancer post-neoadjuvant chemoradiotherapy.

Methods and Materials: Between November 2016 and May 2018, we did a comparative cross-sectional analysis of 26 patients who underwent restaging MRI following neoadjuvant chemoradiotherapy. 3.0T MRI is used and images were evaluated by an experienced radiologist and on-table intraoperative tumour T staging is determined by an experienced colorectal surgeon. Both were blinded to the results from the other as well as histological results. Interobserver variability was determined. Accuracy of restaging MRI was assessed through the comparison of tumour characteristics on MRI with histopathologic outcomes.

Results: Restaging MRI correctly predicted tumour T staging in 18 cases, representing an accuracy of 69.2%. Overstaging was more common than understaging. Positive predictive values (PPV) for T0 is 100%. For T1/2, PPVs and NPVs were 66.7% and 94.1%, and for T3/4 they were 93.3% and 90.9%. MRI suggested tumour regression grade did not correspond with histopathologic tumour regression grade. Interobserver agreement is fair to moderate (κ=0.371-0.579).

Conclusion: Restaging rectal cancer MRI is inaccurate for prediction of tumour T staging, and the interobserver variability is significant.

B-1341 14:16 Magnetic resonance of rectal cancer response to therapy: comparison between 3.0 and 1.5 Tesla
E. Lucertini, D. Caruso°, M. Serunia, F. Landolfi, F. Penza, A. Di Chiara°, A. Palmisano, A. Esposito, P. Passoni, C. Fiorino, A. Del Maschio, F. De Cobelli; Milan/IT (zelkova0712@gmail.com)

Purpose: To evaluate Signal Intensity(SI) differences between 3.0T and 1.5T MRI for DWI and ADC before and after-CRT(14:16)

Methods and Materials: 22 patients with locally advanced rectal cancer were prospectively enrolled. All patients underwent T2w, DWI and ADC pre, during and post-CRT. Tumour volume was manually segmented on high contrast images and ADC and SI histogram-based texture analysis of ADC maps in the prediction of pathological response of locally advanced rectal cancer (LARC)

Results: There was a distinct increase in the kappa (k) and ICC value in the combined group compared with the individual group. This high reproducibility result suggested that it is more reliable to measure T3ab and T3cd combined together than individually. This finding may play a crucial role in the management of rectal cancer and clinical decision-making for non-expert radiologists in a non-academic setting.

Conclusion: According to mrTRG, 48 patients (7 for mrTRG1 and 41 for mrTRG2) were classified as good responders while 355 (130 for mrTRG3, 214 for mrTRG4 and 11 for mrTRG5) as poor responders. For mrTRG, ICC between the two radiologists was 0.273 (fair agreement) on MR without DWI and improved to 0.333 when DWI was added. Overall survival (OS) was significantly different according to the age, pre-CRT variables (EMD and NR), post-CRT variables (tumour size, T and N stages, EMD, extra-rectal node, EMD and post-CRT TRG). mrTRG better predicts OS than mrTRG. The addition of DWI on T2W MRI improves the interobserver agreement.

B-1343 14:32 Importance of tumour volume reduction rate on T2w and DWI during and after CRT for prediction of treatment response to CRT in locally advanced rectal cancer (LARC)
A. Di Chiara, A. Palmisano, G. Della Vecchia, A. Esposito, P. Passoni, C. Fiorino, A. Del Maschio, F. De Cobelli; Milan/IT

Purpose: A complete response to CRT improves patients' prognosis and may avoid overtreatment to patients that may achieve high pathological response rates. The aim of our study was to investigate volumetric imaging biomarker prior, during and after CRT derived from DWI and T2w images.

Results: According to TRG: 10 patients were NR,22 PR and 10 CR. TVR,T2w,1000 resulted significantly different among classes only after CRT (CR: -57%, NR: -59%, PR: -87%, P<0.0001). At multivariate analysis predictor of CR were TVRR2w (<40% Wilk's lambda=0.287) at mid-MRI and TVRR2w and TVRR1000 at post-MRI (Wilk's lambda=0.0287) with a sensitivity of 91%, 82% and 91% respectively.

Conclusion: Tumour volume modification on T2w and b1000 images is effective in the prediction of response to CRT; in particular early modification on T2 images seems useful to predict CR during treatment.

B-1344 14:40 Whole-tumour texture analysis of ADC maps in the prediction of pathological response of locally advanced rectal cancer (LARC)
A. Di Chiara, A. Palmisano, A. Esposito, P. Rancotta, P. Passoni, A. Del Maschio, F. De Cobelli; Milan/IT

Purpose: Tumour heterogeneity is an imaging biomarker of aggressiveness. Texture analysis allows to extract features of tumour heterogeneity from conventional images. Aim of our study is to evaluate the role of whole-tumour histogram-based texture analysis of ADC maps in the prediction of pathological response of LARC to chemoradiotherapy (CRT).

Methods and Materials: 43 pts with LARC underwent 1.5T MRI before and after CRT (post-MRI), and after CRT (post-CRT). Cancer volumes were segmented on ADC maps at each time-point using T2w-images as reference. The following histogram-based parameters were extracted: 25th, 50th, 75th percentile, mean, skewness and kurtosis and their role in the prediction of histopathological response was evaluated with multinomial
regression analysis.

Results: 11 patients resulted to be complete responders (CR), 22 partial responders (PR) and 10 non-responders (NR). Only at pre-MRI, 3D-ADCmean values were significantly different among the groups (median: NR 1.07±10-3 mm²/s, PR 1.14x10-3 mm²/s and CR 1.27±10-3 mm²/s; p=0.0079), resulting higher in CR than in PR and in NR (p=0.0042 and p=0.0029, respectively). At multinominal regression analysis the 75th percentile of 3D-ADCmedian at pre-MRI were positive predictor of response (p=0.0247 and p=0.0415, respectively). A 3D-ADC median cutoff-value of >1.198 x10-3 mm² at pre-MRI resulted best predictor of CR with a sensitivity, specificity and accuracy of 82%, 88% and 86%, respectively.

Conclusion: Pretreatment features of ADC distribution values might be an helpful tool in the prediction of tumour response to CRT.

B-1345 14:48
T2-weighted signal intensity (T2SI) textural analysis in an evaluation of neoadjuvant chemoradiotherapy (CRT) response in patients with locally advanced rectal adenocarcinoma
G. Della Vecchia, A. Di Chiara, M. Panzeri, A. Palmisano, A. Esposito, P. Passoni, A. Del Maschio, F. De Cobelli; Milan/IT

Purpose: Tumour response to CRT is often characterized by fibrotic evolution associated, however the sole visual assessment is characterized by low sensitivity. Aim of the study was to assess the value of histogram-based analysis of tumor T2SI in the assessment and prediction of complete pathological response in locally advanced rectal cancer (LARC).

Methods and Materials: 67 patients with LARC underwent 1.5 T MRI before, during and after CRT. High-resolution multiplanar T2w sequences were acquired. Cancer volume was manually segmented and the histogram analysis of T2SI in the entire lesion was performed with the extraction of the following parameters: 25th, 50th, 75th percentile, range,mean, standard deviation, skewness and kurtosis calculated.After surgery, patients were classified according to Rodel tumor regression grade (TRG) in Non-Responder (NR=TRG0-2), Partial Responder(PR=TRG3), Complete Responder (CR=TRG4).

Results: At histopathology 14 patients were NR, 37 PR and 16 CR. Any difference in T2SI texture parameters was found before and during treatment. After CRT, only T2SI mean value was different among classes of response, in particular it was significantly lower in CR compared to other groups (median, IQR: NR 530.7 +/-154.8, PR 526.9 +/- 233.7, CR 359.8 +/-195.4; p=0.008). Based on ROC analysis, at resting MRI, a T2SI cut-off value of 363.93 was able to predict CR with an AUC of 0.72, a sensitivity of 78% and a specificity of 63%.

Conclusion: Histogram-based analysis of whole tumour T2SI might provide a new insight in tumour heterogeneity and be a promising tool in the assessment of tumoural complete response after CRT.

B-1346 14:56
Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer
R. Fusco, V. Granata, B. Pecci, A. Petritoli; Naples/IT (rfusco@istitutotumori.na.it)

Purpose: To assess preoperative short-course radiotherapy (SCG) tumour response in LARC by means of Standardized Index of Shape (SIS) by dynamic contrast-enhanced (DCE-MRI) and diffusion imaging (DW-MRI) parameters derived from diffusion-weighted MRI (DW-MRI).

Methods and Materials: 34 patients who underwent MRI scans before and after SCG were enrolled. SIS, ADC, IVIM parameters (tissue diffusion (DT), pseudo-diffusion (DP), perfusion fraction (fp)) and DKI parameters (mean diffusivity (MD), mean of diffusional kurtosis (MK)) were calculated for each patient. IVIM parameters were estimated using two methods, namely conventional bi-exponential fitting (CBF-M) and variable projection (VARPRO). After surgery, the pathological TNM and tumour regression grade (TRG) were estimated.

Results: The best results to predict pCR were obtained by VARPRO fp mean value pre-treatment with AUC of 0.84, a sensitivity of 96.4%, a specificity of 71.4% and an accuracy of 91.2%. The best results to assess after treatment pCR were obtained by SIS with an AUC of 0.89, a sensitivity of 85.7%, a specificity of 92.6% and an accuracy of 91.2%. Moreover, the best results to differentiate among pCR responders vs. non-responders was obtained by SIS with an area under ROC of 0.94, a sensitivity of 93.3%, a specificity of 84.2% and an accuracy of 88.2%.

Conclusion: SIS is a hopeful DCE-MRI angiogenic biomarker to assess preoperative treatment response after SCG with delayed surgery. Furthermore, an important prognostic role was obtained by VARPRO Fp mean value pre-treatment.

Scientific Sessions

14:00 - 15:30 Sky High Stage

Radiographers

MY 15
Everyday challenges for radiographers and radiologists
Moderators: J. Santos; Coimbra/PT N.N.

B-1350 14:00
Impact of body mass index on set-up variations and treatment margins for patients receiving radiotherapy to the prostate
S. Farrugia, G. van Dijk, S. Mercieca; Msida/MT (sarah.farrugia.14@um.edu.mt)

Purpose: The aim of the study was to evaluate the impact of body mass index (BMI) on set-up variations and planning target volume (PTV) margins for patients receiving radiotherapy for prostate cancer to ensure accurate treatment delivery.

Methods and Materials: The mean random (RV) and systemic set-up variation (SV) in the lateral, supero-inferior and antero-posterior directions were calculated from daily variations of 49 patients, selected through exhaustive sampling. Spearman rank correlation (rc) was used to analyse the correlation between BMI and the SV and RV. The van Herk formula was used to calculate the PTV margin required.

Results: The mean SV was 1.4mm, 0.9mm and 1.4mm and the mean RV was of 1.7mm, 1.5mm and 1.8mm in the supero-inferior, lateral and antero-posterior directions, respectively. A significant correlation was calculated between patient BMI and overall set-up variations, with a negative correlation in the supero-inferior (rc = -0.137, p value <0.001) and the lateral directions (rc = -0.156, p value <0.001), and a positive correlation in the antero-posterior direction (rc = 0.065, p value: 0.020). Correlations between SV or RV and patient BMI were similar in direction, however, weaker and not statistically significant. The PTV margin for the new local protocol was 4.7mm in the supero-inferior direction, 3.4mm in the lateral direction and 4.9mm in the antero-posterior direction.

Conclusion: A uniform PTV margin of 5mm is suitable to treat prostate cancer. A positive correlation was noted in the antero-posterior direction for the BMI indicating that for patients with high BMI, reduction of margins needs to be more carefully evaluated.

B-1351 14:04
An augmented patient-specific approach to administration of contrast agent for CT renal angiography
C. Saade; Beirut/LB (charbel.saade@aub.edu.lb)

Purpose: Retrospective and prospective study performed on 200 consecutive patients undergoing renal CTA, investigates the opacification of renal vasculature, radiation dose, and reader confidence.

Methods and Materials: 100 patients were assigned retrospectively to protocol A and the other 100 were allocated prospectively to protocol B. Both protocols implemented a contrast material and saline flow rate of 4.5 mL/sec. Protocol A utilized a 100mL of low-osmolar nonionic IV contrast material (ioversol 350 mg I/ml) while protocol B employed a patient-tailored contrast media formula using iso-osmolar non-ionic (Ioxidanol 320 mg I/ml).

Results: Arterial opacification in the abdominal aorta and in the bilateral main proximal renal arteries demonstrated no statistical significance (p=0.05). Only the main distal renal artery of the left kidney in protocol B was statistically significant (p=0.046). In the venous circulation, the IVC demonstrated a significant reduction in opacification in protocol B (59.39 HU ± 19.39) compared to A (87.74 HU ± 34.06) (p<0.001). Mean CNR for protocol A (22.68 HU ± 13.72) was significantly higher than that of protocol B (14.75 HU ± 5.76 p<0.001). Effective dose was significantly reduced in protocol B (2.46 ± 0.75 mSv) compared to A (3.07 ± 0.68 mSv) (p<0.001). ROC analysis demonstrated significantly higher area under the ROC curve for protocol B (p< 0.0001), with inter-reader agreement increasing from moderate to excellent in renal arterial visualization.

Conclusion: Employing a patient-tailored contrast media injection protocol shows a significant refinement in the visualization of renal vasculature and reader confidence at reduced radiation dose during renal CTA.
B-1352 14:08
Improving technical quality in mammography
V. Riel, M. Zanardo, R.M. Trimboli, C.B. Monti, G. Di Leo, L.A. Carbonaro, F. Sardanelli, Lumezzane/IT, Milan/IT, San Donato Milanese/IT (verania1@gmail.com)

Purpose: To improve the technical quality of mammograms through personal information of radiographers.

Methods and Materials: Cranio-caudal (CC) and mediolateral oblique (MLO) views of both breasts were evaluated using criteria defined by European guidelines. Presence of the pectoral muscle, nipple in axis and in profile, presence of intramammary structures, and skin folds were evaluated. Each mammography examination was evaluated using a 5-point Likert scale, ranging from 1 (lowest quality) to 5 (highest quality). While the entire group of radiographers was informed about the general performance, each of them received her personal data through a non-public report. Thereafter, the performance of the group was re-evaluated with the same criteria. Data were reported using median and interquartile range (IQR). Mann-Whitney U test and χ² test were used.

Results: A total of 156 mammographic studies were evaluated (78 pre-audit and 78 post-audit). Pre-audit CC views had a median score of 4 [IQR 3-4], with 107 (69%) good (score 4) to excellent (score 5) quality examinations, while post-audit CC views had a median score of 4 [IQR 4-4], with 134 (86%) good to excellent quality examinations (p < 0.008). Pre-audit MLO views had a median of 4 [IQR 3-4], with 38 (24%) good to excellent quality examinations, while post-audit MLO views had a median score of 4 [IQR 3-4], with 93 (60%) good to excellent quality examinations (p < 0.001).

Conclusion: Technical performance in mammography was significantly improved for both views by a means of personal information of each radiographer about her performance. High-quality MLO views remain a more challenging goal.

B-1353 14:12
Reflective clinical portfolios as a tool to develop competence in radiography students
M. Morris, Limerick/IE (mikealamorris07@gmail.com)

Purpose: Reflective clinical portfolios are used in undergraduate health science degree programmes to prepare students for their professional careers by promoting reflective practice and critical thinking. The current study investigated the impact of reflective clinical portfolios on the development of competence in Radiography students and which elements of reflective clinical portfolios students valued most.

Methods and Materials: An online survey was disseminated to undergraduate radiography students and recent graduates to gather their opinions on the impact of reflective portfolios on competence development. Recent graduates were defined as those who had been working for less than one year. A stratified sampling approach of second, third and fourth year undergraduates and recent graduates from an Irish University was adopted to represent the population.

Results: Tutor feedback and competency assessments were reported to be beneficial in developing competence. Respondents who chose self-reflections as the most beneficial were all in Stage 4 or qualified. Those who ranked this as the least beneficial were in Stage 2 or Stage 3. Modality objective lists were considered unbeneficial by 45% of respondents. The online e-portfolio was chosen as the preferred portfolio format by 62% of respondents. Challenges outlined with portfolio use included lack of guidance and technical problems.

Conclusion: There was a general consensus that the reflective clinical portfolio is a valuable learning tool in developing competence during the Radiography degree programme, despite some respondents’ dissatisfaction with specific aspects of these tools. Areas for improvement of clinical portfolios have been identified for consideration by educators.

B-1354 14:16
A comparative analysis of local diagnostic reference levels for adult projection radiography of the chest, abdomen and pelvis in Irish centres
M. Malone, S.J. Foley, L.A. Rainford, R. Toomey; Dublin/IE (mariamalone16@gmail.com)

Purpose: Diagnostic reference levels (DRLs) are important tools for optimisation in identifying atypical doses for standard patients undergoing radiological examinations. This research aimed to determine why local diagnostic reference levels (DRLRs) for adult projection radiography of the chest, abdomen and pelvis vary significantly across Irish centres.

Methods and Materials: Stratified sampling was performed to select one site from each of four hospital categories (tertiary referral, regional, general and private). Dose-area product measurements, exposure factors, source-to-image distances and the use of filtration were retrospectively recorded in each site for chest (postero-anterior), abdomen (antero-posterior) and pelvis (antero-posterior) examinations. Systematic random sampling was employed to sample 30 patients from the total number of examinations performed three months prior to the date of data retrieval. The data were utilised to formulate local DRLRs based on the 75th percentile of the distribution of dose data. Kruskal-Wallis tests were performed to comparatively analyse the data.

Results: Significant variations were observed in DRLRs established for radiographic examinations of the chest (p < 0.002) and pelvis (p < 0.01), with differences of up to 86%, 85% and 100%, respectively, between the departments with the highest and lowest DRLR. The national diagnostic reference level (NDRL) for chest imaging was exceeded in the general department while the NDRLs for the abdomen and pelvis were exceeded in the regional department.

Conclusion: Imaging protocols, namely high mAs settings, low kVp settings and lack of additional filtration, can be attributed to the significant variations observed in DRLRs between the sites studied.

B-1355 14:20
Dose optimisation in CT for cocaine body packing: where is the limit of extensive dose reduction
J. Aissa, L.M. Sawicki, E. Appel, P. Heusch, C. Thomas, G. Antoch, J. Boos; Düsseldorf/DE (joel.aissa@med.uni-duesseldorf.de)

Purpose: To evaluate the detection rate and image quality in CT-body-packer-screening at different radiation dose levels and to determine a dose threshold that enables a reliable detection of incorporated body packs and incidental findings with a maximum of dose saving.

Methods and Materials: We retrospectively included 27 individuals who underwent an abdominal CT due to suspected body CT images were reconstructed at different radiation dose levels of 50%, 10%, 5% and 1%. All 135 CT reconstructions were evaluated by three independent readers. Reviewers determined the presence of foreign bodies and evaluated the image quality using a 5-point ranking scale. Additionally, visualization of incidental findings was assessed.

Results: A threshold of 5% (effective dose 0.11±0.07 mSv) was necessary to correctly identify all 27 patients with suspected body packing (p < 0.008). Extensive noise insertion to a dose level of 1% (0.02±0.01 mSv) led to false positive solid cocaine findings in three patients. Image quality was comparable between 100% and 50% (p < 0.024). The threshold for correct identification of incidental findings was 10% of the initial dose (effective dose 0.21±0.13 mSv).

Conclusion: A dose reduction to 0.11 mSv seems sufficient for detection of incorporated cocaine body packets. However, a minimum effective dose of 0.21 mSv seems to be required to properly identify incidental findings.

B-1356 14:24
Evaluation of radiology request forms
S. Kittaila, J. Sarkwa, E. Aswani, L. Kanamu; Nairobi/KE (sheilakitalia@gmail.com)

Purpose: Radiology request forms are essential communication tools used by doctors and clinicians referring patients for radiological investigation. Their importance, however, is highly underestimated.

Methods and Materials: Radiology request forms (RRF) formed the study sample. 295 request forms formed the sample size. 37 (12.54%) request forms were excluded because they entailed the use of unconventional papers. During data collection, systematic random sampling method was used and data were collected using observational checklist. The collected data were then analysed using statistical package of social sciences software and presented on pie charts, bar graphs and frequency tables for better understanding.

Results: The study revealed that radiology requesting practice is poor. In the 258 radiology request forms, none was completely filled. The least filled field was patients’ address (9.63%), referring department (5.12%) and the hospital number (27.04%). The best-filled field in the study was patients’ name at 97.33%. Age of the patient was filled in 67.00% of the forms. Date was blank in 25.00% of the forms. 97.33% of the forms had referring clinician’s signature.

Conclusion: There was a general consensus that the radiology request forms are often omitting relevant patient information. It is important that clinicians be educated on the value of filling radiology request forms to provide relevant information to aid in proper patient diagnosis.

B-1357 14:28
Obstetric ultrasound - knowledge and perception of pregnant women in Portugal
R.A. Santos, R. Fernandes; Coimbra/PT (rutemartinssantos@gmail.com)

Purpose: To evaluate the knowledge and perception of pregnant women on obstetric ultrasound of diagnosis performed during pregnancy.

Methods and Materials: The study will be conducted by means of a questionnaire to pregnant women whose pregnancy surveillance is being performed in the antenatal clinic in Coimbra Hospital, Portugal. Obstetric ultrasound is the best imaging modality for the evaluation of the fetus in pregnancy. However, there is a lack of knowledge about obstetric ultrasound among expectant mothers. The aim of this study is to measure the levels of knowledge and perceptions of pregnant women regarding obstetric ultrasound. The questionnaire will be distributed at the antenatal clinic and will be completed by the pregnant women during their trimester check-up visits. The questionnaire will consist of multiple-choice questions and open-ended questions. The data will be analysed using descriptive statistics and presented in tables and figures. The results will be interpreted and discussed based on the knowledge and perceptions of the pregnant women regarding obstetric ultrasound.
performed in Portugal. It will be carried out at national level in public and private health units.

Results: Pregnant women are expected to have some knowledge about the objective of diagnostic obstetric ultrasound but a lower level of knowledge regarding the parameters evaluated and safety of the examination and that the influence of the completion of an enlightenment/training session is results of the questionnaire response.

Conclusion: The perception and knowledge of Portuguese pregnant women about diagnostic obstetric ultrasound is not yet studied and fundamental for the effectiveness of diagnosis and follow-up of pregnancy, as well as it is essential that pregnant women have an active participation in the change of the National Health Plan in Portugal, revision and extension to 2020.

B-1358 14:32
Expectant mothers’ perception of prenatal sonography in southeastern population in Nigeria
H.C. Elnwaw: Nnewi/NG (elnwawemeke@yahoo.com)

Purpose: The study was conducted to assess the perception of pregnant women to prenatal sonography and to investigate the factors affecting maternal satisfaction to prenatal sonography in some tertiary institutions in south-eastern Nigeria.

Methods and Materials: The study was a cross-sectional study that involved 150 patients. It was conducted by administering semi-structured questionnaires. The questionnaire contained a total of 17 questions consisting of yes/no questions. The questionnaire was presented for 150 patients in 3 tertiary institutions.

Results: The results showed that 62.7% of patients considered the result of obstetric sonography to be reliable. Majority of the respondents (88.7%) considered the services rendered during their visit satisfactory by most women; however, most pregnant women did not know such as the health and well-being of the foetus (35.3%), foetal age (35.3%), sex (35.3%) and a maximum angle threshold of 30° were used. FA and apparent diffusion coefficient (ADC) of fibre tracts were measured and evaluated against age and sex. The physis was visually graded on the b0 images as open (14, 4F/10M), partly open (13, 4F/9M) and closed (13, 12F/1M) and compared to FA and ADC.

Results: FA increased linearly with age (increase 0.1/year from 0.4 to 0.7). For females, plateau was reached at 16. FA values for males were lower (<0.2 before reaching maximum). ADC decreased non-linearly from 0.8-10.3 mm²/s at age 14 to 0.5-10.3 mm²/s at 17. ADC for males was larger than average at all ages with decreasing gender difference with age. Plotting FA and ADC against the grading type showed a linear increase in FA and a linear decrease in ADC, with a smaller gender-related difference (<0.1).

Conclusion: FA increases and ADC decreases with progressing physis maturation, earlier for females than for males. FA and ADC correlate well with visual grading.

B-1361 14:44
Comparison of extremity cone beam-computed tomography and multidetector-computed tomography in injured children
S. Tschauer, R. Marteke, E. Nagy, A. Apfaltrer, G. Singer, R. Michicaboa, E. Sorantin; Graz/AT (Sebastian.Tschauer@klinikum-graz.at)

Purpose: To compare extremity cone beam-computed tomography (CBCT) and multidetector-computed tomography (MDCT) in injured children.

Methods and Materials: 61 CBCT examinations were prospectively acquired. 10 MDCT studies were completed in parallel, and 51 were retrospectively matched with MDCTs of the same region, age and sex. 7 study pairs were excluded due to differences in cast or metal implant presence. Optimized exposure protocols were used in both modalities to achieve a realistic comparison. Image quality assessment was performed quantitatively and qualitatively. Moreover, dose records were read out.

Results: Objective image quality measurements were superior in CBCT (noise and contrast-to-noise ratio, p<0.001). Subjective image quality ratings revealed more artefacts in MDCT (p<0.001), which degraded the CBCT image impressions with varying degrees. Overall, motion artefacts were infrequent, but only seen in CBCT. CT dose index (CTD) was significantly lower in CBCT (p<0.001).

Conclusion: CBCT was able to achieve better objective image qualities at lower doses than MDCT in paediatric extremity imaging. However, CBCT image impression was commonly degraded by streak artefacts, which made the modality’s advantages partly ineffective.

Author Disclosures:
- S. Tschauer: Equipment Support Recipient; Braincon GmbH & Co KG.
- R. Marteke: Equipment Support Recipient; Braincon GmbH & Co KG.
- E. Nagy: Equipment Support Recipient; Braincon GmbH & Co KG.
- A. Apfaltrer: Equipment Support Recipient; Braincon GmbH & Co KG.
- G. Singer: Equipment Support Recipient; Braincon GmbH & Co KG.
- M. Michicaboa: Equipment Support Recipient; Braincon GmbH & Co KG.
- E. Sorantin: Equipment Support Recipient; Braincon GmbH & Co KG.

B-1362 14:48
Artificial intelligence in bone age assessment: accuracy and clinical efficiency of a novel fully automated algorithm for bone age assessment in comparison to the Greulich Pyle method
C. Boczo, E. Yel, L. Lenga, A. Al Kamali, S. Boettger, J.L. Wichmann, T.J. Vogl, M.H. Albrecht, B. Bodelle; Frankfurt a. Main/DE (boozchristian@gmail.com)

Purpose: To evaluate the accuracy and clinical efficiency of a novel artificial intelligence (AI) system for bone age (BA) assessment compared with the Greulich Pyle (GP) method.

Methods and Materials: Radiographs of left hand and wrist of 414 patients (mean chronological age 10.3 years, range 3-17 years) were retrospectively analyzed. Total BA was assessed independently by three blinded radiologists using the Greulich method. In Prenpax automatically, calculated the total BA. Reference BA was determined by the consensus of two blinded experienced radiologists (28 and 32 years of experience in paediatric imaging) using the GP method. Root mean square deviation (RSMID), mean absolute
difference (MAD). Pearson product-moment correlation and Bland-Altman plot were calculated for statistical analysis.

Results: Reference mean total BA was 9.9 years. AI-derived mean total BA was 10.0 years, mean total BA calculated by the three reviewers was 10.2 years. RSMD and MAD were significantly lower between AI-derived BA and reference BA (p=0.09) than between BA assessed by the three radiologists and reference BA (p<0.001). Mean evaluation times were reduced by 87% using the AI system compared to reviewer-based BA assessments.

Conclusion: A novel AI system allows for accurate BA assessment and improves clinical efficiency by reducing evaluation times without compromising the accuracy compared with the GP method.

B-1363 14:52
High-resolution MR imaging of the orbit in patients with retinoblastoma: retrospective study correlated with histopathological results

Y.S. Habib, A. Youssf, H.A. ElKhlif, H.A. ElZomor, M.M. Rezk, Cairo/EG (yomnahabib85@gmail.com)

Purpose: To assess diagnostic accuracy of preoperative magnetic resonance (MR) imaging for the detection of tumour extent in patients with retinoblastoma.

Methods and Materials: Fifty-eight eyes in 30 girls and 27 boys with retinoblastoma (mean age at diagnosis was 23 months ±18.9) were reviewed on unenhanced T1-weighted, spin-echo T2-weighted, and gadolinium-enhanced T1-weighted MR images with and without fat suppression. MR imaging parameters such as anterior chamber hyperintensity, involvement of choroid, ciliary body, optic nerve, sclera, orbital fat, and pineal gland were determined.

Results: The accuracy of MRI in detection of choroidal invasion was 86.2% with sensitivity, 95.3% and specificity, 60%. Regarding detection of prelaminar optic nerve invasion, MRI has 60% sensitivity, 82.9% specificity, and 75.8% accuracy. Postlaminar optic nerve invasion was detected in 23 eyes with MRI accuracy, 80.9%; sensitivity, 85.2%; specificity, 87%. Of nine eyes with histologically proven scleral invasion, MRI has accuracy, 93%; sensitivity, 55.6%; specificity, 100%. Extracranial fat invasion was suspected on MRI in 5/56 eyes with accuracy, 88.3%; sensitivity, 100%; specificity, 98%. Anterior chamber enhancement correlated well with main MRI and histopathology findings. Tumour size (maximum diameter in mm) was statistically associated with postlaminar optic nerve invasion (p = .002) and choroidal invasion (p = .007).

Conclusion: MR imaging shows promising role for tumour staging and detection of metastatic risk factors.

B-1364 14:56
Should we still look for a correlation between ADC and SUV in lymphoma: a volumetric [18F]FDG-PET/CT study of paediatric Hodgkin's lymphoma

M.G. Ringa1, G. Orsatti1, A. Varotto1, F. Crimi1, M. Weber2, R. Stramare2, P. Zucchetta2, E. Quiaia1, C. Giraudo1, Padua/IT (mariagiovanna.riga@gmail.com)

Purpose: Previous studies showed controversial results about the correlation between metabolic activity and cellular density in lymphomas. Thus, our aim was to investigate the relationship between ADCs and SUVs simultaneously acquired in paediatric patients with Hodgkin's lymphoma (HL) at staging, using a volume-based histogram analysis.

Methods and Materials: Paediatric patients with histologically proven HL were enrolled in this prospective study and underwent a whole body integrated 3T [18F]-FDG-PET/MR, including DWI, for staging. PET images were re-sliced according to the ADC maps and, for each patient, the lesion with the largest volume was selected. A volumetric region of interest (vROI) has been then drawn on the DWI images along the margins of the tumour including the entire lesion. The same ROIs were copied on the corresponding PET dataset. Pixel-based SUVs and ADCs were collected from each vROI. The Pearson correlation coefficient was applied to assess the relationship between SUVs' and ADCs' mean, median, skewness, and kurtosis.

Results: Fifteen paediatric patients (eight female: mean age 13.33±3.53 yrs) have been enrolled. According to Ann Arbor, four patients were stage I, seven stage II and four stage III. The mean (±SD) lesion volume was 46.39±62.5cm³. No significant correlation between ADCs and SUVs' mean (r=0.003, p=0.990), median (r=0.039, p=0.890), skewness (r=0.116, p=0.682) or kurtosis (r =−0.065, p=0.763) emerged.

Conclusion: Our preliminary results showed that volumetric ADCs and SUVs simultaneously acquired are independent biomarkers in paediatric HL at staging. Future studies after chemotherapy are necessary to further assess this evidence and its clinical implications.

B-1365 15:00
Diagnostic value of C-reactive protein and the influence of visceral fat in patients with obesity and acute appendicitis

A.D. Do Amaral Castro1, F.A. Sulla Lupinacci2, S. P. Prieiro1, E. Kaisers Uruñahy Nunez Fonsceca3, M.R. Pievoto1, T. Larocca Skare4, A.T. Sakuma4, F. Yamauchi1, A. Tachibana1, 1São Paulo/BR, 2Curtiba/BR (felipesulla@gmail.com)

Purpose: The purpose of this study is to assess sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CRP in patients with AA and their correlation to body mass index (BMI) and body fat composition.

Methods and Materials: This is a retrospective study based on clinical records and imaging studies of 191 subjects with histopathologically confirmed AA compared to 249 controls who underwent abdominal computed tomography (CT). Clinical and epidemiological data, BMI, and CRP values were extracted from medical records. CT scans were assessed for AA findings and body composition measurements.

Results: CRP values increased according to patients' BMI, with varying sensitivity from 79.78% in subjects with normal or lean BMI, 87.87% in overweight, and 93.5% in individuals with obesity. A similar pattern was observed for NPV: an increase with increasing BMI, 69.3% in individuals with normal or lean BMI, 84.3% in overweight, and 91.3% in individuals with obesity. There was a positive correlation between CRP and visceral fat area in patients with AA.

Conclusion: Variations exist for sensitivity, specificity, PPV, and NPV values of CRP in patients with AA, stratified by BMI. An increase in visceral fat area is associated with elevated CRP across the BMI spectrum.

B-1366 15:04
Impact of added CT venography performed in combination with CT pulmonary angiography on the detection of deep venous thrombosis and relevant occult CT findings

P.I. Douek, D.C. Rotzinger, R. Meuli, V. Dumet, S. Schmidt Kobbe; Lausanne/CH (pauline.douek@gmail.com)

Purpose: To assess the additional diagnostic value of CT venography (CTV) simultaneously performed with CT pulmonary angiography (CTPA) in the context of thromboembolic disease for the detection of deep venous thrombosis (DVT) and other relevant CT findings.

Methods and Materials: Patients older than 49 years referred for suspected pulmonary embolism (PE) from January 2015 to December 2016 and undergoing CTPA combined with CTV were included in this monocentric retrospective study. While one radiologist reviewed clinical records of all patients, two other radiologists blinded to all results independently analysed the CTV images in view of DVT of lower extremities and/or other relevant pathological findings visible, which were registered and classified into non-relevant or major with therapeutic consequences (yet unknown pelvic tumours or inflammation). Interobserver agreement for the detection of DVT was evaluated using the Cohen's kappa coefficient.

Results: Among 696 patients, 119 had PE (17.1%) and 54 had DVT (7.8%), of which 16 (2.3%) occurred without concomitant PE. Interobserver agreement kappa between the two readers was substantial (κ=0.78). CTV examinations led to the diagnosis of major incidental findings in 40 patients, of which 8 had PE associated or not with DVT, and 4 had only DVT. Additional CTV lead to a change of therapeutic management in 30 patients (4.3%), consisting of 16 DVTs without PE and 14 relevant pelvic findings with therapeutic consequences.

Conclusion: In patients with suspected PE, additional CTV performed with CTPA rarely enables the detection of DVT without concomitant PE or relevant underlying pelvic lesions with therapeutic consequences.

B-1367 15:08
Reliability of on-call radiology residents' interpretations in detecting intracranial aneurysms on 640 slice multidetector computed tomography angiography

M.B.H. Chaudhry, M. Azemuddin, M.N. Ahmad, F. Mubarak, T.U. Haq; Karachi/PAK (mustafa.b.chaudhry@gmail.com)

Purpose: To assess interobserver agreement (IOA) between on call resident(OR) and neuroradiologist (NR) in detecting intracranial aneurysms(IA), on 640-MDCTA, in patients referred from emergency department (ED).

Methods and Materials: Prospective study was performed between June 2016 to July 2017. Patients with history of vascular pathology, prior intervention or acute head trauma were excluded. Sample size of 71 was calculated, taking previous Kappa(κ) value of 0.84 between NR, for 320-slice MDCTA. All MDCTA were interpreted by senior OR, year 3 to 5 (PGY3 to PGY5). MDCTAs were reinterpreted and finalised by NR, following morning.

Results: 77 patients, 39(52 %) males and 38(48 %) females were prospectively included. Mean age was 47.7 ±15.2 years. 24(31%) cases were read by PGY3, 32(41%) by PGY4 and 21(28%) by PGY5. 31(40%) cases were
finalised by assistant professor, 19(25%) by associate professor and 27(35%) by professor NR. 42 IA in 29(38%) patients were reported by RR, while NR finalised 35 IA in 25(32%) patients on following morning. Discordancy was noted in 4(14%) cases when OR over called 7(16.7%) IA. No IA was missed by OR on MDCTA. Mean height of IA is 8.3±7.3 mm and mean width is 6.9±6.5 mm. Strong IOA between OR and NR (k= 0.88, CI 95%, p-value <0.001). Stratified k-value for grade of OR(0.81(PGY3); vs. 1(PGY4)) vs. 0.64(PGY5)). Sensitivity of 640-MDCTA in detecting IA by OR is 1, specificity is 0.92, PPV is 86.2% and NPV is 100%.

Conclusion: 640-MDCTA is reliable in diagnosing IA, if read by OR, ruling out the need for DSA in ED.

B-1368 15:12
Forensic relevance and diagnostic impact of a novel 3D-reconstruction technique (cinematic rendering) of severe injuries in postmortem computed tomography
J. Böven, J. Boos, R.S. Lanzman, P. Kröppil, Y. Klosterkemper, C. Thomas, G. Antoch, J. Aissa; Düsseldorf/DE (judith.boeven@med.uni-duesseldorf.de)

Purpose: Performance and forensic relevance of a novel, photorealistic 3D-reconstruction method used for visualisation of traumatic injuries in comparison to conventional postmortem computed tomography (PMCT).

Methods: Total of 32 human cadavers undergoing whole-body PMCT after traumatic death were retrospectively analysed. PMCT was performed and all pathologies were reconstructed with 3D-cinematic rendering and CT slices in all 3 dimensions. Images were evaluated according to their expressiveness and judicial relevance by two forensic pathologists using a five-level scale (1: high expressiveness, 5: low expressiveness). In addition, readers decided whether cinematic rendering reconstructions are suitable for judicial reviews. Two radiologists analysed all images due to the detection rate of pathologies in cinematic rendering reconstructions by PMCT.

Results: Forensic estimation: mean expressiveness of cinematic rendering reconstructions: reader 1: 2.4±1.1 (range: 1-5); reader 2: 1.9±1.2 (range: 1-5); total: 2.1±1.2 (range: 1-5). Mean expressiveness of conventional PMCT: reader 1: 4.1±1.1 (range: 2-5); reader 2: 3.7±1.1 (range: 1-5); total: 3.9±1.1 (range: 1-5). Concerning forensic interpretation and demonstration aspects results showed that CR reconstructions were significantly more expressive than conventional PMCT (p<0.05). Regarding the radiologic detection rate of all pathologies the evaluation of both radiologists led to no significant difference between 3D reconstructions and original CT slices for all pathologies.

Conclusion: There is no significant difference concerning the detection of pathologies by radiologists between PMCT and cinematic rendering reconstructions. For forensic pathologists, CR reconstructions are more helpful than standard PMCT for correlation with autopsy results and judicial reviews.

B-1369 15:16
Neonatal chest X-ray
S. Johansen; Oslo/NO (safora.johansen@oslomet.no)

Purpose: To our knowledge, there is little known about radiation optimization in neonatal chest X-ray imaging. The aim of this study was to consider radiographic techniques, protocols, and radiation dose in four countries to assess possible learning outcomes.

Methods and Materials: Four protocols were collected from each of the four participating countries. Field of view (FOV) and radiation dose were measured with a survey meter.

Results: There were differences in protocols, field of view (FOV) and radiation dose. The highest and lowest median DAP (dose) belonged to Portugal and Norway, 13.7±0.9 and 1.50±0.24; C, 1.30±0.14; P<0.001) and RLE (Child-Pugh class A, 2.01±0.31; B, 1.50±0.24; C, 1.30±0.14; P<0.001) had significant differences between different liver function groups. Pairwise comparison showed visual score and RLE had significant difference between Child-Pugh class A and B (P<0.001, <0.001), A and C (P<0.001, <0.001). No significant difference between D, E and F (P=0.233, 0.447).

Conclusion: In Gd-EOB-DTPA-enhanced MRI, visual score of liver parenchyma and portal vein signal difference at hepatic phase can be easily used for liver function evaluation, and had similar value to RLE.
Purpose: To assess whether Gd-EOB-DTPA-enhanced MRI is useful to determine liver function in comparison to Child Pugh (CP), Model for End-stage Liver Disease (MELD) score and biochemical test.

Methods and Materials: We retrospectively reviewed all Gd-EOB-DTPA enhanced-MRI studies performed between May 2010 and September 2016. Patients were divided in study and control group according to the presence of absence of cirrhosis. Liver volume was calculated using the software Intellispace Portal (Philips) on hepatobiliary phase. The ratio of liver-to-muscle ratio was calculated on T1 sequence in portal (irPOR) and hepatobiliary phase (irHEP) and than normalized for liver volume (irPOR/LV and irHEP/LV).

Results: 303 Gd-EOB-DTPA-enhanced MRI studies were included in the study. Cirrhosis was present in 175 (57.8%) cases. irHEP was significantly lower in cirrhotic than in non-cirrhotic patients (0.54±0.28 vs 0.66±0.39, p<0.001). When considering only cirrhotic patients, irHEP significantly correlates with both CP and MELD score (R=-0.316, p<0.0001 and R=-0.170, p=0.01 respectively). The irHEP progressively decreased from CP-A to CP-C (0.59±0.29 to 0.25±0.19, p<0.0001) and from MELD10 to MELD 19-24 (0.58±0.29 to 0.45±0.41, p=0.030). Same results were observed when irHEP was normalized for liver volume. Among biochemical parameters total bilirubin, ALT and albumin had the strongest correlation both with irHEP and irHEPLV (R=-0.278 and -0.285, R=0.282 and 0.262 respectively).

Conclusion: Gd-EOB-DTPA-enhanced MRI studies significantly correlates with clinical score used to evaluate liver function. In clinical practice this imaging technique could be used to correctly characterize focal liver lesion.

Purpose: To investigate the contribution of pre and postcontrast T1 mapping with Gd-EOB-DTPA, obtained with different MOLLI sequences and T2 mapping in the evaluation of hepatic function in patients with chronic hepatitis B/C (CHB/C).

Methods and Materials: A total of 41 patients with CHB/C were included in this study. T1 mapping before (MOLLI(3)(3)(3)/MOLLI(2)(2)(2) and DMPA(3)/DMPA(2) for adjusted heart rate (ahr) and 20 min after administration of Gd-EOB-DTPA (MOLLI(1)(3)(1)/2, MOLLI(3)(3)(3)/MOLLI(2)(2)(2), MOLLI(4)(1)/3(1)(ahr)) and T2 mapping were performed. Pre- and postcontrast T1 relaxation times of the liver (T1 liver), changes pre-and postcontrast T1 liver (ΔT1liver) and shear wave dispersion slope (irHEP) were obtained from shear wave elastography. Relative enhancement (RE) and liver volume of the left and right liver were assessed using Mann-Whitney U Test and ROC curve analysis.

Results: Shear wave dispersion slope obtained by shear wave elastography could help detect allograft abnormality after liver transplantation.

Purpose: To evaluate whether shear wave dispersion slope could help detect allograft abnormality after liver transplantation.

Methods and Materials: From Jan 2018 to Sep 2018, we prospectively enrolled 93 patients who underwent liver transplantation. Before liver biopsy, shear wave elastography evaluation was done, and both stiffness (kiloPascal, kPa) and shear wave dispersion slope (m/s/kHz) were obtained. Allograft abnormality was diagnosed by histopathologic examination. Mann-Whitney U test and receiver operating characteristic analysis were used to evaluate relationship between shear wave dispersion slope and allograft abnormality.

Methods and Materials: We retrospectively reviewed all Gd-EOB-DTPA enhanced-MRI studies performed between May 2010 and September 2016. Patients were divided in study and control group according to the presence of absence of cirrhosis. Liver volume was calculated using the software Intellispace Portal (Philips) on hepatobiliary phase. The ratio of liver-to-muscle ratio was calculated on T1 sequence in portal (irPOR) and hepatobiliary phase (irHEP) and than normalized for liver volume (irPOR/LV and irHEP/LV).

Results: 303 Gd-EOB-DTPA-enhanced MRI studies were included in the study. Cirrhosis was present in 175 (57.8%) cases. irHEP was significantly lower in cirrhotic than in non-cirrhotic patients (0.54±0.28 vs 0.66±0.39, p<0.001). When considering only cirrhotic patients, irHEP significantly correlates with both CP and MELD score (R=-0.316, p<0.0001 and R=-0.170, p=0.01 respectively). The irHEP progressively decreased from CP-A to CP-C (0.59±0.29 to 0.25±0.19, p<0.0001) and from MELD10 to MELD 19-24 (0.58±0.29 to 0.45±0.41, p=0.030). Same results were observed when irHEP was normalized for liver volume. Among biochemical parameters total bilirubin, ALT and albumin had the strongest correlation both with irHEP and irHEPLV (R=-0.278 and -0.285, R=0.282 and 0.262 respectively).

Conclusion: Gd-EOB-DTPA-enhanced MRI studies significantly correlates with clinical score used to evaluate liver function. In clinical practice this imaging technique could be used to correctly characterize focal liver lesion.

Purpose: To investigate the contribution of pre and postcontrast T1 mapping with Gd-EOB-DTPA, obtained with different MOLLI sequences and T2 mapping in the evaluation of hepatic function in patients with chronic hepatitis B/C (CHB/C).

Methods and Materials: A total of 41 patients with CHB/C were included in this study. T1 mapping before (MOLLI(3)(3)(3)/MOLLI(2)(2)(2) and DMPA(3)/DMPA(2) for adjusted heart rate (ahr) and 20 min after administration of Gd-EOB-DTPA (MOLLI(1)(3)(1)/2, MOLLI(3)(3)(3)/MOLLI(2)(2)(2), MOLLI(4)(1)/3(1)(ahr)) and T2 mapping were performed. Pre- and postcontrast T1 relaxation times of the liver (T1 liver), changes pre-and postcontrast T1 liver (ΔT1liver) and shear wave dispersion slope (irHEP) were obtained from shear wave elastography. Relative enhancement (RE) and liver volume of the left and right liver were assessed using Mann-Whitney U Test and ROC curve analysis.

Results: Shear wave dispersion slope obtained by shear wave elastography could help detect allograft abnormality after liver transplantation.

Purpose: To evaluate whether shear wave dispersion slope could help detect allograft abnormality after liver transplantation.

Methods and Materials: From Jan 2018 to Sep 2018, we prospectively enrolled 93 patients who underwent liver transplantation. Before liver biopsy, shear wave elastography evaluation was done, and both stiffness (kiloPascal, kPa) and shear wave dispersion slope (m/s/kHz) were obtained. Allograft abnormality was diagnosed by histopathologic examination. Mann-Whitney U test and receiver operating characteristic analysis were used to evaluate relationship between shear wave dispersion slope and allograft abnormality.

Results: Allograft abnormality was detected in 43 patients (43/93, 46.2%): acute cellular rejection, n=27; cholangitis, n=9; reperfusion injury, n=1; reactivation of viral hepatitis, n=2; non-alcoholic steatohepatitis, n=1; alcoholic hepatitis n=1; and chronic rejection, n=2. Mean liver stiffness value with allograft abnormality was 4.0±5.8 kPa, and significantly higher than liver stiffness value without allograft abnormality of 6.4±1.7 kPa (P<0.0001). Mean shear wave dispersion slope was 15.7±5.6 [m/s/kHz] in 43 patients with allograft abnormality, and significantly higher than 10.9±2.3 [m/s/kHz] in 50 patients without allograft abnormality. The area under the curve for the prediction of allograft abnormality was 0.853 for shear wave dispersion slope, and significantly higher than 1.0.9±4.0 [m/s/kHz] in 50 patients without allograft abnormality.
B-1377 14:56
The extent of portosystemic collaterals depends on portal pressure and hepatic dysfunction rather than on PIGF-driven neoangiogenesis
K. Lampichler, I. Reider, B. Simbrunner, A. Stadtmann, M. Mandorfer, T. Bucic, R. Patenomstro, U. Asenbaum, T. Reiberger, Viena/AT (katharina.lampichler@meduniniewien.ac.at)
Purpose: Despite a growing body of evidence from experimental studies, the impact of hepatic dysfunction and neoangiogenesis on portosystemic collaterals/shunts (PSS) has yet to be systematically investigated. Placental growth factor (PIGF) is a pro-angiogenic factor that has been linked to liver fibrosis and portal hypertension in animal studies. We assessed the association of PSS with portal pressure, hepatic dysfunction and PIGF levels in patients with chronic liver disease (CLD).
Methods and Materials: 107 patients with CLD were prospectively enrolled. The severity of portal hypertension (PHT) was assessed by hepatic venous pressure gradient (HVPG). Hepatic dysfunction was evaluated by ALBI and Child-Pugh score (CPS). PSS were semiquantitatively classified as mild, moderate or severe on contrast-enhanced CT and MRI scans.
Results: The extent of PSS was significantly associated with HVPG (mild:12 vs. moderate:19 vs. severe:15 (median: min/max):p=0.0095), portal vein thrombosis (3.9% vs. 25.3% vs. 44%;p=0.0002), ascites (25.5% vs. 47.4% vs. 33.3%;p<0.0001), hepatic encephalopathy (13.7% vs. 34.2% vs. 11.1%;p=0.0337), FIB-4 score (3.9 vs. 5.2 vs. 8.6;p=0.0001) and ALBI score (-2.41 vs. -1.96 vs. -1.9;p=0.0021). There was no significant difference between PIGF levels and extent of PSS. PIGF levels showed positive correlations with HVPG (r=0.2348, p=0.0149) and ALBI (r=0.3144, p=0.001) and increased in parallel to CPS (A:22.09 vs. B:25.12 vs. C:38.9; p=0.0001). PIGF levels were higher in patients with NASH compared to those with NAFLD (22.36 ng/dL vs. 27.3 ng/dL;p=0.0163).
Conclusion: The extent of PSS is mainly determined by portal pressure, hepatic dysfunction and fibrosis/cirrhosis. PIGF-driven neoangiogenesis was not associated with PSS formation.

B-1378 15:04
A comparative study of sound touch elastography measurement on liver’s right lobe and left lobe for diagnosis of chronic liver disease using liver biopsy as gold standard
I. Gatos1, P. Drarzos2, S. Yarmenitis2, I. Theotokas1, A. Kanavaki2, E. Manesis1, P. Zoumpoulis1, 2Athens/GR, 1Kifissia/GR, 2Maroussi/GR (p.zoumpoulis1@echomed.gr)
Purpose: Chronic Liver Disease (CLD) is currently one of the major causes of death. Sound Touch Elastography (STE) that is available in Resona 7 Ultrasound system has been provided by Mindray in order to carry out this study. Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Mindray in order to carry out this study.
Methods and Materials: 360 patients with cirrhosis (26M and 22F) aged 43±1.5 years, weighing 65±3.5 kg were included. The control group without liver pathology comprised 10 people. All patients underwent volume low-dose (16-cm detector width) liver perfusion, a contrast medium content of 40 ml, KI 100/80, MA 200/150, effective radiation dose (E) of 17 mSv (20±1, 2). E was calculated using DLP (mGy*cm) multiplied by e; e is the dose coefficient for the corresponding anatomical region (0.015/mGy*cm).
Results: The parameters of hepatic arterial blood flow (HABF), portal vein blood flow (HPBF), hepatic perfusion index (HPI) in the control group were HABF 36 ml/min/100 ml (±5), HPBF 120 ml/min/100 ml (±15), HPI 39%±4%. Differences of HABF (±3%) and HPBF (±6%) before and after portosystemic shunting were statistically significant (P<0.05). The parameters of HPI after portosystemic shunting increased from 20% (±7.5) to 27% (±6), HABF from 34.9 ml/min/100 ml (±12.5) to 49.5 ml/min/100 ml (±15), HPBF decreased from 144.3 ml/min/100 ml (±17.5) to 128.3 ml/min/100 ml (±15). The width of portal vein before portosystemic shunting was reduced by 16-20% (±3mm), splenic vein increased by 16-20% (±3mm).
Conclusion: Volume low-dose (17mSv) CT perfusion of the liver is a non-invasive method that allows quantitative assessment of statistically significant changes (P<0.05) in liver perfusion after portosystemic shunting in patients with cirrhosis of the liver.

B-1380 15:20
Comparison of liver stiffness evaluation by shear wave elastography in morbidly obese patients prior to bariatric surgery with liver biopsy
F. Rajabzadeh, A. Jangjoo, T. Jamialahmadi, L. Goshayeshi, M. Nemat, K. Ghafarzadegan; Mashhad/IR (farhood@yahoo.com)
Purpose: Non-alcoholic fatty liver disease is a prevalent condition among severely obese patients. It can gradually progress to liver fibrosis. Shear wave elastography has been validated as a noninvasive diagnostic tool for liver stiffness measurement in a wide range of liver disorders associated with fibrosis. However, technical feasibility and accuracy of this method are still under debate in severely obese patients. We aimed to assess the diagnostic accuracy of shear wave elastography (SWE) as a non-invasive tool by comparing it with that of liver biopsy as the standard test in bariatric surgery candidates.
Methods and Materials: A total of 111 severely obese candidates for bariatric surgery were recruited. Liver stiffness was measured using SWE fourteen days before liver biopsy. Liver biopsy was taken on the day of surgery. The area under the receiver operating curve (AUROC) was calculated for the staging of liver fibrosis. Liver biopsy was considered as the gold standard.
Results: As the fibrosis stage progressed, the median liver stiffness measurement (LSM) increased on 2D-SWE. Patients with a higher fibrosis stage exhibited LSMs with markedly higher median values than those of subjects with less severe fibrosis (all p values <0.05).
Conclusion: Non-invasive LSM with SWE is a viable option in severely obese patients. Using SWE, patients with NASD could be distinguished from those with NAFLD. Finally, SWE may be considered as a diagnostic tool in clinical evaluation before bariatric surgery.
B-1381 14:00
MRI diagnostic accuracy of placental adhesion disorders and diagnostic impact on foetal-maternal outcomes in interventional radiology-assisted delivery
F. Morelli, F. Fiorici, A. Pecchi, F. Casari, E. Bertucci, E. Petrella, P. Torricelli; Modena/IT

Purpose: Assess accuracy and reproducibility of MRI and specific findings in the diagnosis of invasive placentation (IP) in high-risk patients and to evaluate the impact of interventional radiology (IR) assistance on delivery outcomes.

Methods and Materials: 21 patients (mean age 36.05) with clinical/echographic risk factors for invasive placentation underwent 1.5T MRI examination. Images were reviewed by two readers. Gold standard was histology or obstetric evaluation at the delivery. Sensitivity and specificity of MRI findings were calculated, and reproducibility was estimated with Cohen’s K-test. Impact of eventual IR assistance was evaluated regarding multiple maternal-child factors during and after delivery.

Results: Incidence of IP was 61.90% (of placenta percreta was 14.29%). MRI had sensitivity of 100% (0.7530-1.0000) and specificity of 87.5% (0.4735-0.9986). Gold standard was histology in 10 cases and obstetric evaluation in 11. MRI findings with higher sensitivity were placental heterogeneity, uterine bulging and thinning of the uterine-placental interface. Findings with higher specificity were uterine scarring, placental heterogeneity and myometrial interruption. MRI inter-rater agreement with Cohen’s K was 1 (1.0000-1.0000). IR assistance was performed on 11 of the 14 patients diagnosed with IP and it had a positive impact on almost every outcome evaluated with a statistical significance (p<0.05) in terms of blood loss, red cell transfusion, APGAR at 1st and 10th minute and risk of being transfused.

Conclusion: MRI is an accurate, reproducible and useful tool in prenatal diagnosis of IP in particular to plan a safe and appropriate delivery with eventual IR assistance, which positively affects delivery outcomes.

B-1382 14:08
Role of shear wave elastography of placenta in the prediction of preeclampsia in high-risk pregnancies
M. Singh1, T. Singh2, V. Singla3, V. Jain4; Kurukshetra/IN, Chandigarh/IN

Purpose: Aimed to compare placental elasticity values between normal pregnancies and preeclampsic pregnancies and evaluate the utility of shear wave elastography as a predictor for preeclampsia.

Methods and Materials: A prospective analytical study was performed with 90 singleton pregnancies. Patients having any of the 7 risk factors for developing preeclampsia (primigravida, past history of preeclampsia, family history of preeclampsia, h/o postgestational diabetes, chronic hypertension, advanced maternal age (≥40) and BMI ≥26) were enrolled in the study. Shear wave elastography was performed in all patients at 20-24wks gestation and at 34-36wks gestation, at two sites - center and edge of placenta. The patients were divided into two groups - normal pregnancies (group A) or developed preeclampsia (group B). Women with posterior placentation, obstetric disorders other than preeclampsia or multiple gestation were excluded from the study.

Results: Shear wave elasticity values at 20-24wks gestation for group B at centre of placenta (21.73 vs 9.72kPa) as well as at edge of placenta (21.69kPa vs 10.15kPa) were significantly higher than those for group A (P < .05). Similar results were seen at 34-36wks gestation. The best results were obtained with edge of placenta reading at 34-36wks gestation; using cut-off of 13.1kPa, we attained sensitivity of 95.2%, specificity of 92.8% and diagnostic accuracy of 93.3% for predicting the development of preeclampsia.

Conclusion: Patients with preeclampsia have significantly higher stiffness of the placenta. Shear wave elastography is useful to evaluate placental function. Elastography can be used as a supplementary tool to existing methods for prediction of preeclampsia.

B-1383 14:16
Imaging detection of placenta adhesion disorder in patients with placenta previa: comparison between US and MR findings
A. Volpe, V. Romeo, M.I. Ginocchio, S. Maurea, P.P. Mainenti, M. Petretta, L. Sarro, P. Martinelli, A. Brunetti; Naples/IT (valeria.romeo@unina.it)

Purpose: The diagnostic performance of ultrasound (US) and magnetic resonance (MR) in the detection of placental adhesion disorders (PAD) in patients with placenta previa (PP) is not currently established; the aim of this study was to compare US and MR imaging findings to detect PAD in patients with PP.

Methods and Materials: Fifty-one patients with PP underwent US and MR examinations. The presence of US and MR imaging findings suggestive of PAD was assessed. Penalized maximum likelihood logistic regression was performed in order to identify US and/or MR imaging findings independently associated to PAD, considering histology as standard of reference. Only variables statistically significant (p<0.05) at univariate analysis were considered for multivariate analysis. Receiver operating characteristic curve (ROC) analysis was performed and the area under the curve (AUC) was calculated to determine the predictive value of the significant identified variables on imaging studies.

Results: At univariate analysis, loss of retroplacental clear space, smallest myometrial thickness and placenta lacunar spaces on US as well as intraplacental dark bands, focal interruption of myometrial border and abnormal vascularity on MR were statistically significant (p<0.01); of these, only intraplacental dark bands at MR (p=0.002) was independently associated to PAD at multivariate analysis. ROC curve analysis showed an AUC value of 0.942 for MR significantly higher as compared to that (0.758) of US in PP.

Conclusion: MRI demonstrated a significantly higher diagnostic accuracy to detect PAD in patients with PP as compared to US with intraplacental dark bands being the most reliable imaging finding.

B-1384 14:24
MRI criteria and sequence evaluation for the diagnosis of placental adhesive disorder among radiologists with different reporting experience
J.P. Zawaiden1, J. Smith1, A. Bruring2, P.L. Moyle3, E. Sala4, H.C. Addiley5, S. Freeman6, Genoa/IT, Cambridge/UK, Amsterdam/NL, Chandigarh/IN

Purpose: To determine the most useful MR sequence to accurately diagnose placental adhesion disorders (PAD). To assess inter-reader differences in accuracy, sensitivity, and specificity for specific MRI characteristics, based on experience.

Methods and Materials: Retrospective review of placental MRI of 27 women (17 with PADs) was undertaken by 5 radiologists: 2 junior radiologists: 2- and 5-year MRI-reporting experience; 3 senior radiologists: >8-year experience (although 1 without obstetric-radiological background). All readers evaluated the presence of previously identified MRI features (dark T2W bands, placental heterogeneity, uterine bulging, abnormal vascularity, myometrial thinning, retroplacental dark zone loss, tenting of the bladder and direct invasion of adjacent pelvic structures), scored the overall degree of placental invasion (normal placenta, placenta accreta/increta or percreta) and chose the most useful diagnostic MRI sequence. For each reader overall accuracy, sensitivity and specificity were calculated.

Results: The senior radiologists’ accuracy was significantly higher than that of juniors, 83.3% and 67.9%, respectively. Presence of dark T2W bands was the most sensitive criteria for diagnosing PAD (92.9%), followed by uterine bulging (82.7%). Abnormal vascularity, myometrial thinning and loss of retroplacental dark zone manifested high sensitivity for the senior radiologists but demonstrated low sensitivity for the least experienced reader. All readers considered sagittal T2w SSFSE the most useful sequence. Steady-state sequence and DWI were of limited use in diagnosis.

Conclusion: The preferred MR sequence to assess PAD was sagittal SSFSE. Overall the most reliable imaging feature is the presence of T2w dark bands. However, the diagnostic value significantly depends upon the reader’s experience.

B-1385 14:32
Comparison of diagnostic accuracy between clinical risk factors and MRI to predict placental adhesion disorders in patients with placenta previa
S. Maurea, M.I. Ginocchio, F. Verde, V. Romeo, P.P. Mainenti, M. Petretta, L. Sarro, P. Martinelli, A. Brunetti; Naples/IT (valeria.romeo@unina.it)

Purpose: In patients with placenta previa (PP) clinical risk factors have been suggested to predict the occurrence of placental adhesion disorders (PAD). The aim of this study was to assess the diagnostic accuracy of clinical risk factors and magnetic resonance imaging (MRI) to predict PAD in PP.

Methods and Materials: Seventy patients with PP who underwent MRI on the basis of ultrasound suspicion of PAD were evaluated. The presence of clinical risk factors and MRI signs suggestive of PAD was assessed. Univariate analysis was performed to identify clinical risk factors and/or MRI signs
independently associated to PAD considering histology as standard of reference. Only variables statistically significant (p<0.05) were considered for multivariate analysis. Receiver operating characteristic (ROC) analysis was performed and the area under the curve (AUC) was then calculated.

Results: At univariate analysis, smoking, previous cesarean section (PCS), intraplacental dark bands (IDB), focal interruption of myometrial border (FIMB) and abnormal vascularity were statistically significant; of these, only IDB (p=0.001) and FIMB (p<0.05) were independently associated to PAD at multivariate analysis. ROC curve analysis showed an AUC value of 0.62 for smoking and PCS and of 0.90 when considering the presence of DB and FIMB at MRI (p<0.05). An ROC combination of MII signs along with smoking and PCS was considered (p = ns).

Conclusion: Clinical risk factors do not improve the diagnostic accuracy of MII to predict PAD in patients with PP.

B-1386 14:40

Epithelial ovarian cancer: tumour staging and detection of lymph node metastasis using ADC histogram parameters

F. Wang, J. Liu, Y. Wang, Y. Zhou, C. Liu, D. Liang, L. Xie; Beijing/CN

Purpose: The purposes of this study were to investigate the potential of ADC histogram parameters in epithelial ovarian cancer (EOC) for distinguishing different tumour stages and lymph node status, and to correlate ADC values with p53 and Ki-67 expression.

Methods and Materials: 43 patients with pathologically proven EOC underwent preoperative MRI (including DWI). Staging and lymph node status were determined postoperatively. ADC values were calculated using histogram analysis. The following histogram metrics were obtained: mean, median, 10th and 90th percentile. Ki-67 labeling index (LI) was defined as the percentage of positive cells, while p53 expression was categorised as wild-type and mutated p53. ADC parameters were compared among different tumour groups (staging and lymph node status) using one-way ANOVA test and independent sample t test. The latter was also used to compare ADCs between two p53 types, while Pearson correlation analysis was used to correlate Ki-67 LI with ADCs.

Results: ADC parameters differed significantly between stage I and II, I and IV (P<0.05). ADC parameters were significantly lower in lymph node-positive than in lymph node-negative group (P<0.05). There were significant negative correlations between ADC parameters and Ki-67 LI (r = -0.420, - 0.356, -0.446 and -0.436 for mean, 10th, 90th and median, respectively, P<0.001). ADCs were all significantly lower in mutated p53 than in wild-type p53 (P<0.001).

Conclusion: ADC histogram analysis can help discriminate stage I EOC from advanced stage EOC and detect lymph node metastasis. ADCs were well correlated with Ki-67 LI and may be indicate p53 expression.

B-1387 14:48

A mathematical descriptor of tumor mesoscopic structure from CT images annotates prognostic and molecular phenotypes of epithelial ovarian cancer

A.G. Rockall1, P. Lee2, H. Lu3, M.A. Arshad4, G. Avesani5, E. Curry6, A. Thornton7, F. Kanavaki8, T. Fotopoulos1, E.O. Abaoge9, London/UK, 1Mountova/IT (philippa.lee00@gmail.com)

Purpose: CT images can be quantitatively analysed to describe intuitive features such as shape and texture. The features generated from such analyses (i.e. texture analysis or radiomic data) have been associated with prognosis and cellular pathways in many cancer types. In this study, we aimed to use clinical data of radiomic data as a potential biomarker in serous ovarian cancer (OC).

Methods and Materials: Following ethical approval, we annotated 364 CT scans of women with OC including expert segmentation of disease, clinical and comprehensive molecular information (fresh frozen tissue and blood) with copy number profile, proteomic and molecular subtype of cases. Using TextLab 2.0, 657 quantitative mathematical descriptors were extracted. Using machine learning, we derived a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name ‘Radiomic Prognostic Vector’ (RPV).

Results: RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and the finding was validated in two independent, multi-centre cohorts. Genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumours, consistent with a biological correlate for RPV. RPV demonstrates a significant difference in outcome in patients undergoing complete cytoreductive surgery.

Conclusion: RPV and its associated analysis platform could be exploited to guide personalized therapy of OC and may help inform triage of patients for cytoreductive surgery and tailoring of surgical radicality. It is potentially transferable to other cancer types.

B-1388 14:56

Adnexal cystic lymphangioma in patients with massive leiomyomatous uterus: a not so uncommon finding

C. Bourgoit, K. Chatoupis, A. Antoniou, C. Tzavara, E. Panourgias, M. Vergelidou, L. Mepoulou; Athens/GR (kostas.chatoupis@bayer.com)

Purpose: To investigate any association between the presence of an adnexal cystic lymphangioma (ACL) and an enlarged leiomyomatous uterus.

Methods and Materials: A retrospective observational study was conducted by two expert radiologists with consensus using a 10-year MRI database (July 2008- June 2018); eighty-five patients (mean age: 45.5 years) were considered eligible for the presence of a single (n=31) or multiple (n=54) leiomyomas causing marked uterine enlargement. The association of specific leiomyoma features (maximum diameter, location, number) or uterine volume with the presence of ACL was statistically tested. Chi-square tests and Fisher’s exact tests were used for the comparisons of proportions; student’s t-tests and Mann-Whitney tests were used for the comparison of continuous variables between subjects with and without ACL.

Results: ACL (unilateral=9, bilateral=8) was recorded in 17/85 (20%) of the cases; it was more frequently observed when the largest leiomyoma was located in the uterine fundus (33.3%). Patients with ACL had significantly more leiomyomas (median=6vs2,p=0.001), greater maximum diameter of largest leiomyoma (median:13.3vs7.2cm,p<0.001) and larger uterine volumes (median=876.7vs223.1cm3,p<0.001) compared to patients without ACL. ROC curve analysis for number of leiomyomas showed that the optimal-cut-off for the prediction of ACL was the presence of 5 leiomyomas with 53.8% sensitivity and 84% specificity [area under the curve (AUC)=0.65, 95%CI:0.51-0.83, p<0.049]; for the uterine volume, the optimal-cut-off was 310cm3 with 71% sensitivity and 75% specificity (AUC=0.79, 95%CI:0.66-0.92,p<0.001).

Conclusion: The presence of ACL is significantly associated with increased number of leiomyomas and larger uterine volume; follow-up studies are needed to investigate its clinical significance.

B-1389 15:04

MRI correlates of molecular classification of endometrial cancer: a preliminary study

M. Bonatti1, R. Valletta2, F. Lombardo3, G. Avesani4, F. Erdini5, G. Negri6, G. Zamboni7, G. Schifferle1, G. Bonatti8, Bolzano/IT, 2Verona/IT, 3Mantova/IT (matteobonatti@hotmail.com)

Purpose: To evaluate the MRI features of the different molecular classes of endometrial carcinoma (EC).

Methods and Materials: IRB-approved retrospective study. We included 22 consecutive patients who underwent preoperative MRI and hysterectomy due to EC in our institution between Jan 2017 and Sep 2018. Two readers independently evaluated 15 qualitative MRI parameters of EC including growth pattern (polyoid/infiltrative), tumour margins (sharp/irregular) and tumoural T2-hyperintensity (yes/no); discrepancies were solved by consensus. A third reader manually segmented EC on para-axial T2-weighted images and ADC maps using commercially available software (LIFEx); neovasculature and radiomic features including first and second order textural parameters were calculated. MRI data were compared with the molecular subgroup (1-4) assigned by the pathologist according to p53 and POLE mutations and microsatellite instability.

Results: The pathologist classified 4 EC in group1, 7 in group 2, 8 in group 3 and 3 in group 4. Interobserver agreement in qualitative parameters evaluation was 0.79 for tumoural T2-hyperintensity, 0.63 for growth pattern. There was no significant correlation with the molecular subclass of EC. Group 2 ECs were significantly larger than others (median 30.5cc vs 21.0cc). Grey-level co-occurrence matrix homogeneity and grey-level run length matrix of T2-weighted images were significantly higher in group 2 ECs than in others; none of the other first- and second-order textural parameters reached statistically significant differences.

Conclusion: MRI showed promising results in differentiating molecular subgroups of EC; larger cohort studies must be performed to reach statistical significance.

B-1390 15:12

The potential of IVIM model as a marker of normal placental microstructural changes during pregnancy: a foetal MR study

A. Antonelli1, L. Mangano2, S. Capuani3, R. Grimm4, B. Kuehn4, A. de Rinaldis4, C. Catalano4, Rome/IT, 2Erlanger/DE (amanda.antonelli@hotmail.com)

Purpose: To investigate the potential of intravoxel incoherent motion (IVIM) model in the quantification of placenta micro-perfusion obtaining apparent diffusion coefficient D, perfusion fraction fp and pseudo-diffusion coefficient D*.

Methods and Materials: 35 normal placental MR examination using a clinical 1.5 T scanner (Siemens Healthcare, Erlangen, Germany) were enrolled. The study protocol included a diffusion-weighted spin echo-EPI prototype sequence
using 10 different b values (0, 10, 30, 50, 75, 100, 150, 400, 700, 1000 s/mm²). `Siemens MR Body Diffusion Toolbox` prototype software was used to obtain D, f and D* maps. For each placenta, ROIs were manually placed on both foetal and maternal side: central ROI (C-ROI), peripheral ROI (P-ROI) and umbilical ROI (U-ROI). Pearson test with Bonferroni correction was performed to study the correlation between D, f, and GA, body mass index (BMI) and basal glycemia (BG).

Results: The fraction of perfusion fp in foetal umbilical and in foetal peripheral ROIs are significantly higher (U: p <0.0000049; P: p<0.048) than in maternal umbilical and peripheral ROIs, reflecting that foetal placenta is richer in villi than the mother’s side. In the foetal side, there are statistically significant differences between umbilical and central ROIs and between umbilical and peripheral ROIs, D and D* showed significantly different values in foetal umbilical and peripheral ROIs. In the maternal side, umbilical fp is significantly higher than peripheral fp.

Conclusion: Results are in substantial agreement with physiological placenta micro-perfusion phenomena during gestation. IVIM parameters of non-pathological placenta are powerful and helpful tools able to quantify the physiological micro-perfusion of placental parenchyma, reflecting its physiological maturation during gestation. In clinical practice, those data will be helpful to better assess placental abnormalities.

B-1391 15:20

The role cerebroplacental ratio in prediction of foetal outcome among patients with pre-eclampsia

S.F. Kenis, J.B. Igashi, D. Ibe, A. Saliu, N.B. Adams, I. Alavy; Zaria/NG (shedrackkenis@yahoo.com)

Purpose: To evaluate the value of cerebroplacental ratio as predictors of foetal outcome among patients with pre-eclampsia and to determine the cut-off birth weight below which brain sparing response occurs.

Methods and Materials: Cross-sectional study involving ninety patients with pre-eclampsia. Patients underwent Doppler examination of the umbilical artery and middle cerebral artery. The foetal outcomes were also noted. The sensitivity, specificity, positive predictive value and negative value of the cerebroplacental ratio to predict adverse foetal outcome were computed. The relationship between the cerebroplacental ratio and the birth weight ratio (BWR: birth weight divide by mean birth weight for the same gestational age) was determined.

Results: The sensitivity, specificity, PPV and NPV of MCARI/UARI in predicting perinatal outcome were determined. The point of intersection of the curve of the relationship between MCARI/UARI and the BWR with the line for all normal foetuses >=30 weeks (MCARI1/UARI=1.08) corresponds to BWR = 0.78. Above this cut-off, the lower the BWR the lower the cerebroplacental ratio (i.e the severer the brain sparing response). The mean MCARI/UARI ratio of foetuses with birth weight ratio <0.78 (0.77±0.32) is significantly lower than the mean MCARI/UARI of foetuses with birth weight ratio of >=0.78 (1.29±0.33).

Conclusion: Cerebroplacental ratio shows good test performance in the prediction of perinatal outcome. It appears that birth weight ratio of less than 0.78 is the critical weight below which brain sparing response appears.

B-1394 16:16

Differentialiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT

G. Liu, G. Wu; Shanghai/CN (sdzclgq@126.com)

Purpose: To develop a radiomics model with all-relevant imaging features from multiphasic computed tomography (CT) for differentiating clear cell renal cell carcinoma (ccRCC) from non-ccRCC, and to investigate the underlying mechanism of the all-relevant imaging features by assessing their possible radiogenomics link with a key ccRCC driver gene, the VHL gene mutation.

Methods and Materials: In this retrospective two-center study, 255 patients (188 ccRCC and 67 non-ccRCC) were included. 156 radiomics features were extracted from standardized triphasic CT. Two radiomics models were built using random forest from a training cohort (170 patients), where one model was built with all-relevant features selected by Boruta algorithm and the other with features selected by minimum-redundancy maximum-relevance ensemble (mRMR) algorithm. The potential radiogenomics association that linked the selected imaging features with the VHL mutation were investigated. All models were tested on an independent validation cohort (85 patients).

Results: Correlation with gold standard volume measure was greatest for the automated algorithm (95 % confidence interval for R2 is 0.962 to 0.986), followed by measures of seeding (0.773 to 0.923), ellipse (0.755 to 0.916), area (0.645 to 0.872), diameter (0.491 to 0.803), and perimeter (0.491 to 0.803). Phantom studies on partial volume regions showed the accuracy of the partial volume measurement was 5% (c.f. 13% for repeated area measurements).

Conclusion: All-relevant radiomics features in corticomedullary phase CT can be used to differentiate ccRCC from non-ccRCC with high accuracy. These subtype-discriminative imaging features were found to be significantly associated with the VHL gene mutation.
B-1395 16:24

Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: an experimental radiomics study on renal clear cell carcinomas

B. Kocak, E.S. Memis Durmaz, E. Ates, M. Baykara Ulusan, O. Klikkesmez, Istanbul/TR (drburakkocak@gmail.com)

Purpose: To determine the influence of slight differences in segmentation margin on reproducibility of each step of the machine learning (ML)-based high-dimensional quantitative computed tomography (CT) texture analysis (qCT-TA).

Methods and Materials: For this retrospective study, 47 patients with renal clear cell carcinomas (RCCs) were included from a public database. Two segmentations were obtained by two radiologists for each tumour: (i) contour focused and (ii) margin shrinkage of 2mm. Using PyRadiomics, 828 texture features were extracted from filtered and non-filtered CT images. Interobserver reproducibility was assessed by intraclass correlation coefficient (ICC). Attribute selection was done using correlation-based feature selection. ML classification was done using Lasso and Random Forest. The mean AUC was calculated. The scores for the central-transitional gland, peripheral gland, seminal vesicles and background were 0.92±0.03, 0.96±0.05, 0.91±0.05, and 0.99±0.00, respectively.

Conclusion: Fully automated multiregional segmentation of the prostate gland and seminal vesicles can be addressed by deeply supervised CNN. This step will help localizing prostate lesions and characterizing the pattern of prostatic enlargement.

Author Disclosures:

B-1399 16:56

Deep learning with a convolutional neural network for predicting Fuhrman grade of clear cell renal cell carcinoma at MSCT

X. Li1, W. Li2, Nanjing/CN, 2 Shanghai/CN (lixiao19901020@yeah.net)

Purpose: To investigate diagnostic performance by using a deep learning method with a convolutional neural network for the prediction of histologic grade in clear cell RCC at dynamic contrast-agent-enhanced computed tomography.

Methods and Materials: Approved clinical retrospective study from January 2013 to July 2017. Patients with clear cell RCC were identified from the pathology database. 69 low grade ccRCC patients and 28 high grade ccRCC patients. All patients were examined with a 320-slice dynamic volume CT by using same four phase renal protocol (unenhanced phase, corticomedullary phase, nephrographic phase and excretory phase). The CNN was composed of four convolutional layers, four maximum pooling layers, a flatten layer and three fully connected layers. The process used in building models was consistent with section one. The diagnostic performance of CNN models in differentiating grade of ccRCC were evaluated.

Results: The mean AUC for distinguishing low-grade ccRCC and high-grade ccRCC in model unenhanced, model corticomedullar, model nephrographic, model excretory, model enhanced and model quadruple with the test data cohorts was 0.55 (95% CI: 0.49–0.61), 0.77 (95% CI: 0.74–0.81), 0.76 (95% CI: 0.74–0.79), 0.69 (95% CI: 0.66–0.72), 0.78 (95% CI: 0.76, 0.79), 0.75 (95% CI: 0.74, 0.77).

Conclusion: Our results show that maybe the CNN models except model unenhanced could be used to differentiate the Fuhrman grade of ccRCC at dynamic CT. This technique requires further validation on a larger scale prior to implementation into clinical practice.

B-1400 17:04

Feature rejection for radiomic analyses based on variations of tumour segmentation masks

B. Schachtner, M. Ingrisch, E. Gresser, M.J. Schneider, A. Schreier, O. Solyanik, G. Magistro, D. Nörenberg; Munich/DE (Balthasar.Schachtner@med.lmu.de)

Purpose: Radiomics tools as e.g. pyradiomics can easily produce more than 1000 features, some of which depend strongly on small variations to the boundary line of the segmentation of the region of interest. The approach presented rejects those without the need to specify the target class of the classification problem or using a test-re-test procedure.

Methods and Materials: A dataset of 86 patients with prostate carcinoma was used in a radiomic analysis. Segmentations of tumours were performed by expert radiologists and 1482 features were extracted with the pyradiomics package. Variations of these features were calculated using masks dilated and eroded by one pixel in the plane of high resolution. The impact of these variations on the features with respect to the distribution of the features was evaluated using the intraclass correlation coefficient (ICC). The impact on classification performance was tested using a simple machine learning setup with minimised redundancy and maximum-relevancy (mRMR) feature selection and a random forest in cross-validation.

Results: In a simple machine learning setup the auROC could be raised by 10 percentage points from not using the feature rejection to using a cut on ICC of 0.8.

Conclusion: Feature rejection based on variations of the segmented masks provides a target-class agnostic way to reject unstable features and may help to improve the performance of classification algorithms.

Scientific Sessions
B-1401 17:12
Deep convolutional neural network for histopathological classification of pancreatic neuroendocrine neoplasms (P-NENs) on contrast agent-enhanced computed tomography.

Purpose: To evaluate the efficacy of deep convolutional neural network (DCNN) for the pathological classification of pancreatic neuroendocrine neoplasms (P-NENs) on contrast agent-enhanced computed tomography.

Methods and Materials: 103 patients (poor differentiatied [G3], n=19; well differentiated [G1+G2], n=84) were preoperatively investigated with multispiral computed tomography (MSCT) and subsequently with histopathologically proven P-NENs were enrolled. The 103 datasets were normalised and augmented by multiple preprocessing techniques (rotated, contrast-enhanced and noise-added images), and were split into training (81.6%), validation (5.8%), and test set (12.6%) with 8-fold cross validation. The DCNN with the residual learning framework (ResNet) was used to classify the images as having manifestations of poor- or well-differentiated P-NENs. The DCNN was composed of 50 convolutional, one maxpooling, one global average pooling and two fully connected layers. Training and testing were performed eight times. Accuracy, sensitivity, and specificity for categorising poor- and well-differentiated P-NENs with DCNN model and the area under the receiver operating characteristic curve for poor- versus well-differentiated P-NENs were calculated.

Results: The accuracy, sensitivity, and specificity of classifying poor- and well-differentiated P-NENs were 80.6%, 79%, and 81%, respectively. The area under the receiver operating characteristic curve for differentiating histopathological grading of P-NENs was 0.79.

Conclusion: Deep learning with DCNN showed high diagnostic performance in differentiating histopathological classification of P-NENs at dynamic CT images.

B-1402 17:20
Comparison of automated quantitative ultrasound image analysis vs expert scoring systems for prediction of malignancy in thyroid nodules

A. Galimzianova, T.S. Desser, S. Siebert, S. Syed, A. Kamaya, D. Rubin; Stanford, CA/US (tdesser@stanford.edu)

Purpose: To develop a computational framework to predict malignancy in thyroid nodules seen on ultrasound (US) images, and compare it to existing expert scoring systems.

Methods and Materials: We collected retrospectively a dataset of US images of 92 biopsy-confirmed nodules. The nodules were manually delineated and two expert radiologists annotated them using the standardized TIRADS lexicon of American College of Radiology. As reference estimators, we implemented five expert scoring systems: ATA, ACR TIRADS, BTA, K-TIRADS and EU-TIRADS. Our automated quantitative method combined computer-extracted features for echogenicity, texture, edge sharpness and margin curvature of thyroid nodules in a regularized logistic regression model. A leave-one-out cross-validation was performed using area under the receiver operating characteristic curve (AUC), sensitivity and specificity metrics.

Results: The AUC of our automated method was 0.83 (0.70, 0.95), a performance result similar to the expert scoring systems, with AUC values from 0.68 to 0.83 (p=0.09, DeLong’s test). However, our method was superior in that it could spare the need for biopsy in 20 out of 46 benign nodules when following a curative strategy to triage (as sensitivity of 1.00, statistically significantly higher than three other expert systems), or identified 10 out of 46 malignancies when following a conservative strategy (as specificity of 1.00, statistically significantly higher than five other systems).

Conclusion: Our automated method predicted thyroid nodule malignancy at the level of five expert systems. It could thus be an objective tool for thyroid nodule triage and may reduce unnecessary thyroid nodule biopsies.

Author Disclosures: A. Kamaya: Author; Elsevier.
B-1405 16:16
To assess clinical and radiological disease severity in a population of IPF patients which differ for the presence of Diffuse Pulmonary Ossification (DPO) on HRCT.

M. Palermo, G. Sambataro, F. Tiralongo, C. Desiderio, D. Falsaperla, S. Torrisi, A. Basile, C. Vancheri, S. Palmucci; Catania/IT (monica.palermo91@gmail.com)

Purpose: To assess clinical and radiological disease severity in a population of IPF patients which differ for the presence of Diffuse Pulmonary Ossification (DPO) on HRCT.

Methods and Materials: This retrospective study was carried out on a 47 IPF patients - 25 with DPO on baseline HRCT (group A, average age 68.5) and 22 (group B, average age 66.3) with no calcifications detected on baseline HRCT. The quantification of lung fibrosis was obtained using a semiquantitative method, based on HRCT fibrosis score. Therefore, the overall extent (percentages) of normal attenuation, reticulations, honeycombing and traction bronchiectasis was quantified on three HRCT slices - selected at different levels (apex, mid-lung and base). Pulmonary Function Tests (PFTs) - acquired nearest to the baseline HRCT - were compared between the two groups, using a t-test; HRCT fibrosis scores were compared using a U-test of Mann-Whitney.

Results: PFTs values were not different among the two groups p> 0.22 for FVC and 0.59 for DLCO. Considering HRCT fibrosis scores, the Mann-Whitney U-test revealed no statistical difference (p value of 0.48) between group A and B with a median value of 216.5 for DPO patients and a median value of 241.5 for non-DPO patients.

Conclusion: Although literature shows that DPO is an important marker of fibrosis, in our preliminary study disease severity seems to be similar in IPF patients with and without DPO. A longitudinal analysis should be invoked to better investigate prognostic value of DPO.

B-1406 16:24
Combined pulmonary fibrosis and emphysema (CPFE): epidemiological and clinical features, visual scoring and quantitative CT assessment in 72 patients

A. Carnevale, A. Cossu, E. Cotti, M. Graziano, S. Chiarello, M. Giganti; Ferrara/IT (moni.graziano@gmail.com)

Purpose: To retrospectively evaluate epidemiological, clinical and radiological data of 72 patients exhibiting chest CT features consistent with combined pulmonary fibrosis and emphysema (CPFE); to compare two different quantification methods of lung fibrosis (LF) in these patients: a reader-based visual scoring system and a computer-aided one.

Methods and Materials: We retrospectively identified 72 consecutive adult patients (64m/8f) who exhibited CPFE features at chest CT. All patients' data, including smoking habits, professional exposure, autoimmune conditions, were collected. For each study, LF percentage extent was determined, using Horos open-source DICOM viewer, by comparing quantitative assessment (QCT) of LF volume and total lung volume. An experienced chest radiologist, blinded to QCT results, evaluated CT images for the extent of fibrosis, and emphysema separately, by visually estimating the percentage of parenchymal involvement as the mean of live anatomical sections' results. LF and emphysema patterns were also assessed. Statistical analysis was performed through dedicated software (MedCalc).

Results: CPFE patients were more frequently males, smokers or former smokers (n=66/56). Female patients were more frequently affected by a rheumatologic condition (p=0.0001). A strong correlation between QCT-based and reader-based assessment of LF extent was found (r=0.80; p<0.0001).

Conclusion: This work confirmed the relevant role of cigarette smoking in the pathophysiology of CPFE, and highlighted the importance of autoimmunity in female subjects. We demonstrated a strong correlation between a LF reader-based scoring system and a computer-based analysis, thus providing the hypothesis that the latter method may be a feasible tool for LF quantification even in CPFE patients.

B-1407 16:32
Can we reduce the radiation dose with wide-volume scan mode in a 320 detector-rows CT for interstitial lung disease?

A. Ahlo, E. Karam, S. Leygnac, T. Henry, K. Haioun, A. Khalil, M.-P. Debray; Paris/FR (ahlainabordy@gmail.com)

Purpose: Wide-Volume (W-V) mode is an alternative to helical mode to explore large anatomic zones with wide-area detector rows CT. Despite its ability to reduce the radiation dose, it is infrequently used for lung diseases. The purpose of this study is to compare image quality and radiation dose of W-V chest CT to those of standard helical CT in the setting of interstitial lung diseases (ILD).

Methods and Materials: We evaluated 53 patients referred for follow-up or screening of ILD, requiring prone scan in addition to the routine unenhanced scan. Each examination included both helical (W-V mode) and DLP with W-V (3.5 mGy and 93.2 mGy.cm) were significantly reduced (p<0.001, Wilcoxon rank test) as compared to helical mode (3.7 mGy and 124.4 mGy.cm), leading to a mean 16% (95% CI 11-20%) and 43.7% (95% CI 22-30%) reduction of CTDI and DLP, respectively. Image noise and quality were not significantly different between the two modes. Shifting artifact at the junction of two volumes was inconsistently seen in the W-V scans and, when present, did not impair diagnostic quality in 87% of cases.

Conclusion: W-V mode allows significant radiation dose reduction as compared to the standard helical mode and could be routinely used for diagnosis and follow-up of ILD.

Author Disclosures:
K. Haioun: Employee; Employee of Canon Medical Systems.

B-1408 16:40
Applying the low-dose protocol in high resolution computed tomography examination in patients with rheumatoid arthritis

B. Ziwerk, M. Dura, P. Zuchowski; Krakow/PL (p.zuchowski81@gmail.com)

Purpose: In the course of rheumatoid arthritis (RA), some of the most common complications are lung diseases. Presently, the gold standard in lung diagnostics is the high resolution computed tomography (HRCT). The aim of this study is to evaluate the utility of the low dose protocol in HRCT examination of the lungs in patients with RA.

Methods and Materials: 35 (28F/7M) patients with RA were enrolled. Average disease duration was 8.8 years. The study lasted 12 months. Only patients with previously diagnosed lung changes via HRCT were enrolled. All patients had already undergone standard HRCT lung examination at baseline and “low dose” protocol examination at 12 months. All exams were evaluated by two radiologists. A single tomograph was used in the study - GE Lightspeed Pro 32.

Results: Both radiologists noted a loss in image quality in every exam using the “low dose” protocol. It is the radiologists’ opinion that it had no negative impact on the diagnostic quality of the examination. The average value of the Dose-Length Product (DLP) index with the standard HRCT examination was 146 mGy.cm, while with the “low dose” protocol - 53 mGy.cm (significant difference, p < 0.05).

Conclusion: The use of the “low dose” protocol in HRCT examination allowed for a moderate reduction of DLP by 64% in comparison with the standard examination protocol. The “low dose” protocol adheres perfectly with the basic principle of patient radiation protection - ALARA.

B-1409 16:48
Feasibility of low-dose CT with spectral shaping and third-generation iterative reconstruction in evaluating interstitial lung diseases associated with connective tissue disease

X. Xu, X. Sui, L. Song, Y. Huang, Z. Jin, W. Song; Beijing/CN (xxllpositive@163.com)

Purpose: To investigate the feasibility of low-dose CT (LDCT) with tin-filtration and third-generation iterative reconstruction (IR) in evaluating interstitial lung diseases associated with connective tissue disease (CTD-ILD).

Methods and Materials: 53 consecutive adult patients with CTD-ILD underwent regular-dose chest CT (RDCT) at 110 kVp followed by LDCT with tin-filtered 100 kVp. RDCT was reconstructed with filtered back projection (FBP) and advanced modelled iterative reconstruction (ADMIRE), and LDCT with ADMIRE. Image noise, streak artefact, image quality and visualisation of normal and abnormal CT features were evaluated and compared among RDCT ADMIRE, RDCT FBP and LDCT ADMIRE groups.

Results: The mean radiation dose of LDCT was reduced to 20% of RDCT. Objective image noise of RDCT ADMIRE (58.08 ± 6.37 HU) and RDCT ADMIRE (51.68 ± 9.06 HU) and RDCT FBP (62.09 ± 10.95 HU) increased progressively (p < 0.001 in any two pairs). RDCT ADMIRE significantly improved subjective image noise, streak artefact and overall image quality compared with RDCT FBP and LDCT ADMIRE (ps < 0.001), while no significant difference was noted between the latter two groups. All abnormal lung structures were better scored in RDCT ADMIRE compared with RDCT FBP (ps < 0.001). LDCT ADMIRE was inferior to RDCT FBP in visualising peripheral bronchi and vessels as well as a rearticulation (ps < 0.001); other normal and abnormal structures were similar between the two groups.

Conclusion: LDCT with tin-filtration and third-generation IR was applicable in evaluating CTD-ILD. Image quality was significantly improved after applying ADMIRE algorithm to CT protocols.
B-1410 16:56

HRCT does not offer added discriminatory value for eosinophilic lung diseases in patients presenting to a severe asthma clinic

E. Robinson, M. McAs, D. Jackson, B. Kent, G. Santis, A. Nair; London/UK (lszemun mâski@gstt.nhs.uk)

Purpose: To assess the frequency and discriminatory ability of HRCT features and diagnostic sensitivity of radiologists for distinguishing allergic bronchopulmonary aspergillosis (ABPA), eosinophilic granulomatosis with polyangiitis (EGPA) and severe asthma only (SevA).

Methods and Materials: 64 patients (21 ABPA, 21 EGPA, and 22 SevA) HRCTs were analysed. Two blinded radiologists scored 30 features per lobe and specified a diagnosis (ABPA/EGPA/SevA). The frequency of variables was calculated. One-way analysis of variance and Chi-squared test were used to assess continuous and categorical variables, respectively. Logistic regression models for diagnosing ABPA and EGPA using potentially statistically significant HRCT variables (LR-CT), including clinically useful variables (LR-All), were assessed with area under the curve (AUC) analysis. Sensitivity and inter-observer agreement for diagnosis were calculated.

Results: Bronchial wall thickening was the most frequent finding. Bronchiectasis (Bxt) (upper or proximal) and consolidation distribution did not discriminate between the diagnoses. Serum IgE, Bxt extent and severity, HDP, volume loss, centrilobular nodules, distal mucus plugging, and FEV1/FVC were greater (p<0.05) in ABPA compared to EGPA and SevA. With LR-CT, only greater Bxt severity and HDP predicted ABPA (p<0.001, AUC=0.89, CI 0.78-0.96), only a lower Bxt extent (p=0.03, AUC=0.67, CI 0.53-0.78) predicted EGPA. With LR-All, no variable predicted ABPA, and only a lower serum IgE (p=0.005, LR=0.15, CI 0.07-0.34) predicted EGPA. Overall diagnostic sensitivity was low (53.1%) with only fair inter-observer agreement (k=0.29).

Conclusion: Traditional HRCT distributions of abnormality are not helpful in predicting ABPA or EGPA. No single HRCT variable is discriminatory when clinical variables are accounted for.

B-1411 17:04

Relevance of high-resolution computed tomography in diagnosis of infectious disease versus rejection reaction in patients after lung transplantation with acute respiratory symptoms

Purpose: Complications after lung transplantation (LTX) are still common. The diagnostic value of chest CT in LTX patients with respiratory symptoms and the possible differentiation between rejection reaction and infection were examined.

Methods and Materials: The included patients showed dyspnoea, signs of bronchopulmonary infection, worsening of the general condition or decrease of the forced expiratory pressure in 1 second (FEV1). Selected clinical parameters were compared with morphological changes in the HRCT.

Results: 60% (198) of patients showed a decrease of FEV1, 30% (94) showed no losses in FEV1. In 10% of patients no spirometry data were available. Comparing the FEV1 with pathologic changes in lung morphology the HRCT showed a sensitivity of 80% at a specificity of 95%, a LR+ of 14.90 and a LR- of 0.22 which indicates a high diagnostic evidence. In 50% (158) of patients a histological examination was performed. In 20% (63) pathological changes were found. In comparison to the histological results the morphologic changes in the HRCT showed a sensitivity of 86% at a specificity of 85%, a LR+ of 5,09 and a LR- of 0,17.

Conclusion: Morphologic changes in CT-scans showed in 16 of 20 examined clinical features at least high diagnostic evidence (LR+ 2.5, LR-0.2-0.5), giving HRCT-exams a high diagnostic value in diagnosis of acute dyspnoea in patients after lung transplantation. A specific differentiation between an infectious cause and an immune reaction against the graft associated with acute dyspnoea based only on the HRCT findings is not possible.

B-1412 17:12

Clusters of micronodules in active pulmonary tuberculosis: prevalence, patient characteristics, and natural history

J. Hong, S. Yoon, J. Goo, J.-Y. Kim, J.-G. Im; Seoul/KR (keke4@naaver.com)

Purpose: To evaluate the prevalence, patient characteristics, and natural history of clusters of micronodules (CM) in active pulmonary tuberculosis (TB).

Methods and Materials: From January 2013 through July 2018, we enrolled a total of 881 consecutive patients with bacteriologically or PCR-proven active pulmonary TB who had a diagnostic chest CT. Patients were categorized into three groups based on whether they have a typical radiologic bronchogenic spread of TB, CM, or both. Among the patients solely having CM, we analysed radiologic findings of incidental pre-diagnostic CT if available, along with those of diagnostic CT.

Results: CM was the sole radiologic finding in 23 patients (2.6%) and was in accompany with radiologic bronchogenic spread in 48 patients (5.4%). Compared with patients without CM (830 patients, 91.9%), patients with CM only were less smear or PCR-positive (29.9% vs 5.0%, p<0.01) and higher proportion of male (60.1% vs 82.6%, p<0.01). Mean diameter of CM at pre-diagnostic CT was 4.8±2.7 cm. CM only had paucity-segmental (median 2.0, IQR 1.0-3.0) involvement at diagnostic CT. During the progression, median time to change was 17.0 months (IQR, 8.1-39.4) and bronchial wall thickening (58.7 vs 83.3%), bronchiectasis (58.3% vs 100%), and lobular consolidation (33% vs 83.3%) were additionally found along with the increased extent of CM (median involved segment, 1.0 vs 2.0).

Conclusion: TB solely manifesting as CM was found in 2.6% of patients with active pulmonary TB and prevalent in male with less smear or PCR-positivity. During the progression, CM had a unique indolent nature and accompanied by bronchoconcentric changes.

B-1413 17:20

Correlation of USG diaphragm thickness measurements with pulmonary function and inspiratory strength tests in myotonic dystrophy type 1

S. Kose, F. Koç, I. Hanta; Adana/TR (sevgulkarakose@gmail.com)

Purpose: Myotonic dystrophy type 1 (DM-1) is the most common neuromuscular disease in adults and its prevalence is 1/8000. The aim of this study is to evaluate the correlation between diaphragm thickness measured by B mode ultrasound with pulmonary functions tests in DM-1 patients.

Methods and Materials: Total number of 31 patients diagnosed with DM-1 followed by the Hojukah, Department of the Neurology were included in this study. All patients had full laboratory and genetic confirmed diagnosis. The study designed as a prospective matched case control study. There were 18 healthy patients in control group. Diaphragm thickness was measured in B mode ultrasound with a high frequency linear transducer. Pulmonary function tests and inspiratory strength tests were measured onspue and sitting position.

Results: Mean diaphragm thickness in millimeters at end of the inspiration and expiration for DM-1 disease and control group were 2.16, 1.85, 3.47, and 2.72 consecutively. Diaphragm thickness at end of inspiration and expiration of DM-1 patient group was significantly thinner than control group with p values of <0.01 and <0.01, respectively. There was a positive correlation between diaphragm thickness and pulmonary function tests. Statistical analysis showed also a positive correlation between diaphragm thickness and inspiratory strength tests.

Conclusion: Diaphragm ultrasound is an easy, cheap method which strongly and significantly correlates with pulmonary function and inspiratory strength tests in DM-1 patients. Therefore, diaphragm ultrasound may be effectively used in the surveillance of respiratory function.

16:00 - 17:30 Sky High Stage

Neuro

MY 16

Neuro

Moderators:
P. Demaereel; Leuven/BE
M. Severino; Genoa/IT

B-1414 16:00

Correlation of cerebrovascular reserve assessed by acetazolamide-stress SPECT with intracranial collaterals on arterial spin-labeling MRI in patients with carotid occlusive disease

H. Kang, Y. Kim; Seoul/KR (gkmroo@gmail.com)

Purpose: We evaluated the correlation between cerebrovascular reserve (CVR) on acetazolamide-stress single photon emission computed tomography (SPECT) brain scans and intracranial collaterals on arterial spin-labeling (ASL) magnetic resonance imaging (MRI) in internal carotid artery (ICA) stenosis.

Methods and Materials: 86 patients with ICA stenosis (>70%) underwent cerebral blood flow (CBF) examinations by pulsed ASL brain MRI and SPECT imagings with Tc-99m HMPAO in the resting and after acetazolamide challenge. We observed the presence of intracranial collaterals, which are manifested by arterial transit artefact, on ASL brain perfusion scan. CVR based on rest-SPECT and acetazolamide-stress SPECT was calculated. With acetazolamide stress SPECT, the 82 patients were grouped as either showing or not showing evidence of decreased CVR. We assessed the relationship between reduced CVR and intracranial collaterals shown as ATA on ASL brain perfusion.

Results: In 61/86 (70%) of the ICA stenosis patients, ASL showed ATA in ipsilateral to the stenosis. With acetazolamide stress SPECT, the 27/82 (32%) patients showed evidence of decreased CVR. In 45/55 (81%) of the normal
CVR group and 16/27 (59%) of the reduced CVR from the SPECT results, pulsed ASL showed ATA in ipsilateral to the stenosis. Significant relationship was observed between CVR group and ATA showing group in ICA stenosis patients on ASL brain perfusion (p<0.035, chi-square test).

Conclusion: Our results suggest that ATA with pulsed ASL imaging represents intracranial collaterals and good CVR in the setting of chronic stenosis or occlusion of the ICA.

B-1415 16:04

Long-term neurodegeneration of substantia nigra secondary to ipsilateral infarction was quantified with iron-sensitive imaging and impacts motor outcome

Methods and Materials: 181 stroke patients (75 striatum infarcts, 106 other locations) were prospectively evaluated at 24-to-72h (baseline) and at one year (follow-up) clinically and with MRI to quantify iron within R2*. SN was segmented to measure an asymmetry index (SN-AI) of R2*. We focused on the 95th percentile as a metric of high iron content. SN-AI was compared according to infarct location with unpaired t test and also regressed with variables expected to influence iron accumulation. Voxel-based analysis was conducted on average R2* maps. We also identified individual voxels whose infarction was significantly associated with high SN-AI through voxel-based lesion-symptom mapping (VLSM). Multiple regression models were used to test the independent association between SN-AI and clinical scores.

Results: Visual inspection, SN-AI, and average maps consistently showed a delayed increase of R2* within SN that was significantly higher if ipsilateral stratum was involved than if not (p<0.0001). VLSM confirmed that striatum but also insula, internal and external capsules were associated with increased SN-AI. This association was independent of infarct volume, baseline SN-AI, and other confounders (β=+4.99 [2.94; 7.04], p< 0.0001). Such increase of SN-AI was an independent contributor of poor motor outcome (Box-and-Block, p=0.01) but not of cognitive or emotional outcomes.

Conclusion: Long-term neurodegeneration of SN remotely from an ipsilateral infarct can be quantified with R2* and independently impacts motor outcome at follow-up.

B-1416 16:08

Detection and prevalence of cerebral microbleeds in middle and old age groups: a clinical-based approach

Purpose: Cerebral microbleeds are increasingly recognized neuroimaging finding. Aim was to examine clinical determinants in middle and old age population (50 years and older).

Methods and Material: 210 individuals underwent brain MRI at 1.5T, including susceptibility weighted imaging (SWI). 36 persons were excluded due to the presence of neoplasms. Associations between hypertension, diabetes mellitus, cognitive impairment and history of ischaemic heart disease or prior cerebrovascular accidents with the presence of CMBs were assessed by logistic regression model.

Results: Two groups were enrolled according to the presence or absence of microbleeds; microbleeds group (n=177; 40.7%) (age, 66.8 ± 8.4) and control group (n=258, 59.3%) (age, 66.8 ± 8.4). No significant difference in age categories between the two groups was detected. However, for those aged 80 years or more, a higher proportion fell into microbleeds group (13.6% versus 3.5%). There was a statistically significant higher proportions of male gender (P = 0.005), hypertensives (P = 0.003) and history of CVA (P = 0.016) in the microbleeds group while there was no significant difference regarding history of DM (P = 0.629), IHD (P = 0.445) or cognitive impairment (P = 0.147). Binomial logistic regression was performed. HTN had 2.9 times and patients with history of CVA had 2.5 times higher odds to exhibit microbleeds. The most frequent site of CMBs was lobar.

Conclusion: CMBs' prevalence rises with ageing. Confounders including male gender, hypertension and history of CVA strongly correlated with CMBs.

B-1417 16:12

Carotid artery plaque detected on ultrasound is associated with impaired cognitive state in the elderly: a population-based study in Wakiso district, Uganda

Purpose: Carotid artery disease which includes carotid artery stenosis, plaques, clots and increased intra-territorial lesions has been reported by several studies to be associated with dementia. Dementia is an end stage of usually asymptomatic cognitive impairment. This study set out to determine the prevalence of normal carotid ultrasound findings and their association with cognitive function among the adults ≥60 years in Wakiso district, Uganda, in 2018.

Methods and Materials: This was a cross-sectional study which included 210 participants. Carotid artery stenosis, presence of plaque, stenosis and intramural media thickness were assessed by Doppler ultrasound. Cognitive status was assessed using a Mini Mental State Exam (MMSE) test.

Results: The prevalence of plaque was 21.4%. Plaque was associated with an abnormal cognitive function in both univariate and multivariate analyses, respectively, with OR=3.8 (95% CI=1.90-7.54, p value=0.0001) and OR=3.4 (95% CI=1.38-8.15, p value=0.007). The cognitive function was 43.8%, 19%, 34.3% and 2.9% for normal, mild, moderate, and severe status, respectively.

Conclusion: The prevalence of carotid artery plaque was high in this elderly population. Carotid plaque was associated with abnormal cognitive function.

B-1418 16:16

Are aneurysmal subarachnoid haemorrhage scales applicable to non-aneurysmal subarachnoid haemorrhage?

Purpose: Aneurysmal subarachnoid haemorrhage (aSAH) and non-aneurysmal subarachnoid haemorrhage (naSAH) are associated with different clinical evolution. The objective of this work is to analyze if a clinical scale used in the evaluation of patients with aSAH (Hunt and Hess (HH)) and a radiologic scale that estimates the risk of vasospasm in cases of aSAH (modified Fisher Scale (F)) is also applicable in cases of naSAH.

Methods and Materials: We reviewed the radiology database and medical records of all patients who presented to our hospital during an 8-year period. The inclusion criteria were patients with spontaneous SAH, negative ango-CT (aCT), and at least one digital subtraction angiography (DSA) of cerebral vessels without disclosed neurovascular pathology. We divided cases in perimesencephalic (pSAH) and aneurysmal type (aSAH) haemorrhages.

Results: One patient of the pSAH group and 14 with atSAH reached a score >2 in HH scale on admission. The commonest complication was hydrocephalus, observed in 1 patient of the pSAH group (mFs of Ill). 14 of the atSAH group, all of them mFs IV. Delayed cerebral ischaemia (DCI) was the second most frequent complication, detected in 1 case of pSAH (mFs of III) and 4 from the atSAH group, all of them mFs IV.

Conclusion: The rate and severity of cerebral complications in our cohort of naSAH is different than the reported incidence in aSAH. The categorization of these bleedings in pSAH and atSAH is a more helpful tool than mFs to predict neurological complications. Worst HH scores are related to the development of these complications.

B-1419 16:20

Lactate-weighted imaging of brain tumours using chemical exchange saturation transfer imaging

Purpose: Cancer cells exhibit up-regulated lactate dehydrogenase (LDH) resulting in increased levels of lactate production in tumours (Warburg effect). The purpose of this study was to investigate lactate levels in tumours of patients with newly diagnosed glioma using Lactate-weighted Chemical Exchange Saturation Transfer (Lactate-CEST) at 7 Tesla (7T).

Methods and Materials: Ten patients (5 female, 5 male) with newly diagnosed and histologically proven glioma (8 patients with glioblastoma WHO grade IV and 2 patients with glioma WHO grade II) were enrolled in this prospective IRB-approved study. Lactate-CEST MRI was performed at a 7T whole-body scanner (Magneton 7T; Siemens Healthcare, Germany) employing a centric reordered 2D-GRE-CEST sequence (resolution of 1.71x1.72x5 mm3) and a 24-channel head coil. Pre-saturation consisted of 10 Gaussian-shaped pulses (pulse length: tp = 90 ms, duty cycle: DC= 80%, and saturation power B1 = 471). Magnetization transfer asymmetry, defined as MTR asym = Z(Δω = 0.6 ppm) - Z(Δω = +0.6 ppm), yields the lactate-weighted MRI contrast. Lactate-water signals were investigated in three regions of interest (solid tumour, necrosis, contralateral white matter = CLWM) and compared using the Wilcoxon rank-sum test.

Results: Lactate values were significantly increased both in solid (3.94 ± 1.22) and necrotic (4.06 ± 1.29) tumour regions compared to CLWM (3.45 ± 1.21) overall patients (p<0.05). There were no statistically significant differences between the solid tumour and necrosis (p>0.05).

Conclusion: Lactate-CEST MRI could serve as an additional imaging biomarker providing complementary information about the heterogeneity of tumours, with implications for biopsy targeting, patient therapy and response monitoring.
Purpose: Muscle density is one of the important values in assessing sarcopenia, and closely related to skeletal muscle lipid content. We compared paraspinal muscle size and density to volume of variable compartments of brain in elderly, to find a correlation between sarcopenia and brain functions.

Methods and Materials: Total 1293 participants (M=F = 620:673, mean age = 63.52±7.16, range 53-82 yrs) were enrolled in the study, and went through visceral fat CT and brain MRI. Size and density of paraspinal muscles were measured at umbral level cut of visceral fat CT. Each volume of brain compartments was processed by BRAINS Auto-Workup tool. Pearson’s correlation and partial correlation were used to reveal the relationship between size and density of paraspinal muscle, and volume of the brain, while control, the covariates including age, sex, BMI, smoking, alcohol consumption, hypertension and diabetes.

Results: Pearson’s correlation showed positive correlation between paraspinal muscle size, density and virtually all of the volume of brain compartments. On partial correlation, positive correlations were found between paraspinal muscle size and supplementary motor cortex, inferior lat. Ventricile. Besides, positive correlations were found between paraspinal muscle density and grey matter, white matter, cerebrum, cerebellum, frontal lobe and parietal lobe.

Conclusion: There was positive correlation on both paraspinal muscle size and muscle density to brain volume, and muscle density is significantly more correlated. Several compartments of brain such as frontal and parietal lobes, which have the main role in executive and cognitive functions, and motor and sensory functions showed relationship with paraspinal muscle density.

B-1420 16:24
Analysing the impact of sarcopenia on brain: using correlation between paraspinal muscle and brain volume

H. Lee, H.S. Seo, Y.H. Lee; Ansan/KR (kkmmucu@naver.com)

Purpose: By applying the Fazekas scoring system (FS).

Results: A new imaging approach that we designed, delayed T2-weighted gadolinium-contrast-enhanced evaluation was performed on patients with high-grade astrocytoma (WHO grade IV), resulting in detection of glioblastoma (GB) in 2 cases (16, 28). The mean Laue's coefficient (1.16 ± 0.19) was significantly higher for GB cases than for non-GB cases (0.95 ± 0.17) (p < 0.05). The area under the ROC curve for Laue's coefficient was 0.96 (95% CI: 0.89-1.00), indicating high diagnostic accuracy.

Conclusion: Our findings suggest that delayed T2-weighted gadolinium-enhanced imaging can be a valuable tool for the detection of glioblastoma.

B-1421 16:28
Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted

Purpose: The “glymphatic system” (GS), a brain-wide network of cerebrospinal fluid microcirculation, supplies a pathway through and out of the central nervous system (CNS). The function of the GS is implicated in a variety of neurological disorders. In this exploratory study, we analysed the potential of a new imaging approach that we designed, delayed T2-weighted gadolinium-enhanced imaging, to visualize the GS in vivo.

Methods and Materials: Heavily T2-weighted fluid-attenuated inversion recovery MRI (hT2w-FLAIR) was obtained before, 3h and 24h after injection of GBCA. Delayed T2w-FLAIR showed GBCA entry into the CNS via the sheaths of cranial nerves, and along perivascular spaces of penetrating cortical arteries. In all sites, a significant SI increase was found 3h and 24h p.i., thereby might improve and facilitate clinical management of this highly frequent impaired awareness epilepsy.

Results: In HP+ group, the mean normalised CBF was 2.21±1.03 or 0.99±0.31 (p<0.001, AUC=0.965, cut-off=1.16) for patients with or without residual tumours, respectively. The mean normalised CBF was not discriminative for assessing residual tumours in HP- group (p=0.639). Visual CBF evaluation allowed classifying correctly 94.10% patients belonging to HP+ group (sensitivity 94.12%, specificity 96.67%, p<0.001). Visual CBF evaluation correlated with contrast-enhancement and deformation. The area under the mean normalised CBF values was 0.5458 and 0.5469, respectively.

Conclusion: Qualitative and quantitative ASL evaluation has high diagnostic performance in postoperative assessment of hyper-perfused tumours. In this case, postoperative pCASL may be useful, especially if contrast injection cannot be performed or when contrast enhancement is doubtful.

B-1423 16:36
Arterial spin-labeling and magnetic resonance spectroscopy as imaging biomarkers for the detection of epileptogenic zone in non-lesional focal impaired awareness epilepsy

R.E. Mohamed, R.M. Dawoud, A.A. Aboselafa; Tanta/EG (rany1997@yahoo.com)

Purpose: To recognise the epileptogenic zone in patients with non-lesional focal impaired awareness epilepsy (FIAE) by evaluating the interictal changes in rCBF and cerebral metabolic alterations using PASL-MRI and MV 1H-MRS, respectively.

Methods and Materials: 26 patients with non-lesional FIAE (14 females and 12 males) were subjected to PASL-MRI for estimating rCBF and MV 1H-MRS for measuring NAA/Cho, NAA/Cr, NAA/(Cho+Cr), Mi/NAA, Glx/NAA and Glx/Cr ratios, in addition to ASL asymmetry index percent (ASLA%) and percent asymmetry factor (%AF).

Results: For the identification of the epileptogenic zone; increased ASLA% assessed by PASL-MRI (at cut-off value ≥5.98% and AUC of 0.968) showed 98.01% sensitivity, 97.70% specificity and 99.76% accuracy, and increased %AF (at a cut-off value ≥ 9.98% with AUC of 0.983) showed 100% sensitivity, 97.65% specificity and 99.14% accuracy, while decreased NAA/(Cho+Cr) ratio estimated by MV 1H-MRS (at a cut-off value ≤0.59 with AUC of 0.977) showed 100% sensitivity, 98.90% specificity and 97.74% accuracy. Moreover, the combined use of PASL-MRI and MV 1H-MRS yielded 100% sensitivity, 98.45% specificity and 98.86% accuracy.

Conclusion: The combined use of PASL-MRI and MV 1H-MRS can be considered as in vivo biomarkers for the proper identification of epileptogenic zone in patients with non-lesional FIAE.

B-1424 16:40
Fully automated segmentation of meningiomas using deep learning on multiparametric MRI: automated segmentation yields accuracies as good as manual interreader variabilities

K.R. Laukamp, F. Thiele, L. Penning, R.P. Reimer, G. Shakirin, D. Zopfs, M. Timmer, M. Perkuhn, J. Borggreve; Cologne/DE (kai.laukamp@uk-koeln.de)

Purpose: Volumetric assessment of meningiomas is highly valuable for primary assessment and therapy/surgery planning. Further, it is more sensitive for detection of tumor growth than conventional diameter methods and thereby serves as an effective tool in meningioma monitoring. We used a state-of-the-art deep-learning-model (DLM) on routine multiparametric MR-data to investigate performance in automated detection and segmentation.

Methods and Materials: 56 MR-datasets (T1-T2-weighted, T1-weighted contrast-enhanced [T1CE], FLAIR; n=19 from local scanners and n=37 from BRATS-benchmark. Preprocessing included registration, skull striping, resampling, and normalization. DeepMedic-architecture (Kamnitsas, 2016) was used as basis, 3D-convolutional-neural-network for segmentation and a 3D-resampling, and normalization. DeepMedic-architecture (Kamnitsas, 2016) was used as basis, 3D-convolutional-neural-network for segmentation and a 3D-resampling, and normalization. DeepMedic-architecture (Kamnitsas, 2016) was used as basis, 3D-convolutional-neural-network for segmentation and a 3D-resampling, and normalization.

Results: In all sites, a significant SI increase was found 3h and 24h p.i., thereby might improve and facilitate clinical management of this highly frequent impaired awareness epilepsy.

Conclusion: Our findings suggest that delayed T2-weighted gadolinium-enhanced imaging, to visualize the GS in vivo.

Methods and Materials: Heavily T2-weighted fluid-attenuated inversion recovery MRI (hT2w-FLAIR) was obtained before, 3h and 24h after injection of GBCA. Delayed T2w-FLAIR showed GBCA entry into the CNS via the sheaths of cranial nerves, and along perivascular spaces of penetrating cortical arteries. In all sites, a significant SI increase was found 3h and 24h p.i., thereby might improve and facilitate clinical management of this highly frequent impaired awareness epilepsy.

Results: In HP+ group, the mean normalised CBF was 2.21±1.03 or 0.99±0.31 (p<0.001, AUC=0.965, cut-off=1.16) for patients with or without residual tumours, respectively. The mean normalised CBF was not discriminative for assessing residual tumours in HP- group (p=0.639). Visual CBF evaluation allowed classifying correctly 94.10% patients belonging to HP+ group (sensitivity 94.12%, specificity 96.67%, p<0.001). Visual CBF evaluation correlated with contrast-enhancement and deformation. The area under the mean normalised CBF values was 0.5458 and 0.5469, respectively.

Conclusion: Qualitative and quantitative ASL evaluation has high diagnostic performance in postoperative assessment of hyper-perfused tumours. In this case, postoperative pCASL may be useful, especially if contrast injection cannot be performed or when contrast enhancement is doubtful.
B-1425 16:44
Imaging the seizure onset zone and fast electrical circuit activity in epilepsy with electrical impedance tomography
A. Wilkowska-Wrobel, K. Aristovich, M. Faulkner, J. Avery, D. Holder; London/UK (anna.wrobel@ucl.ac.uk)
Purpose: Electrical impedance tomography (EIT) is a new method for imaging internal impedance changes within a subject using EEG electrodes. It could advance the management of epilepsy by imaging changes occurring over milliseconds due to ion channel opening or seconds due to cell swelling and so image seizure onset and propagation in epileptic patients. It requires the use of intracranial electrodes, already used in presurgical evaluation for epilepsy. The feasibility of its use in epilepsy has been evaluated in a modelling study based on intracranal patients.

Methods and Materials: The accuracy of seizure onset zone localisation was evaluated using 10M element patient-specific Finite Element Models (FEMs) created from frontal/mesial temporal lobe epilepsy patients with B-12 depth electrodes inserted. 30 seizures were simulated as resistance changes 1cm in diameter, for either ion channel opening or cell swelling (1/10% change respectively). EIT images were compared to EEG inverse source modelling (EISM) and visual spike recognition (SEEG).

Results: Seizure onset localisation was significantly improved with EIT compared to EISM/SEEG. EIT could detect seizures more accurately, independently of orientation, and with broader coverage whereas EISM/SEEG were blind to tangential and distant sources (15/15 vs. 8/15 detection EIT vs. SEEG respectively). The reconstructed localisation error was 46.2 ± 25.6mm (EISM) and 5.2 ± 1.8mm (EIT, n=30, p<0.01).

Conclusion: Results suggest EIT could provide a radically improved method for localising seizure onset by providing functional real-time information. Work is in progress to evaluate its accuracy in anesthetized pigs and in human epilepsy subjects.

B-1426 16:48
Meta-analytic investigations of grey matter alterations in patients with Tourette syndrome
S. Zhang, W. Wang, X. Su, H. Sun, Q. Yue, Q. Gong; Chengdu/CN (835408876@qq.com)
Purpose: Tourette syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and phonic tics. The neuroimaging studies revealed grey matter volume alterations in TS, but the previous findings have not found a common theme with respect to functionally important regions that could drive TS behaviour. The aim of this paper was to find consistent grey matter alterations in TS patients.

Methods and Materials: We searched PubMed, Embase and Web of Science for articles published from inception to October 2018, with the search terms “Tourette syndrome” or “TS” plus “VBM” or “voxel-based morphometry”. After excluding ineligible publications, we identified 10 relevant studies that investigated grey matter alterations in TS, then we performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with TS.

Results: We included 10 studies comprising 342 TS patients and 356 healthy controls in our meta-analysis. The meta-analyses showed robust GMV reductions in the bilateral inferior frontal gyrus (IFG) and increased GMV in the midbrain area in patients with TS.

Conclusion: Our findings suggested that the consistent GMV alterations in TS patients were decreased in IFG and increased in midbrain area. The IFG is involved in decision-making through its function in the representation of value and reward. Volume reduction in IFG could explain deficits in the flexible control of behaviour in TS patients. Besides, the midbrain GMV alterations may play a role in triggering specific vocal responses on the basis of the environmental and motivational information.

B-1427 16:52
Grey matter network changes with ageing in a large group of never-treated patients with schizophrenia
B. Yang, W. Zhang, B. Tao, J. Liu, S. Lui; Chengdu/CN (1045651481@qq.com)
Purpose: Abnormal structural brain networks are believed to be an important neuropathology of serious mental illness. The knowing of brain network changes with ageing could advance our understanding of these network disturbances and potential pathophysiology of schizophrenia. In the present study, we enrolled a large group of never-treated schizophrenia patients to investigate the pattern of network changes with ageing.

Methods and Materials: We stratified 152 never-treated schizophrenia patients into 4 subgroups A1-A4 by age (16-24, 25-34, 35-44,≥45), and matched controls for each subgroup were selected from 210 healthy subjects. High resolution T1 images of brain were obtained with a 3.0 T MR scanner (GE), and preprocessed by FreeSurfer. The gray matter network matrices were constructed by correlating the cortical thickness of every pair of regions within AAL brain segmentations across individuals. The network properties including nodal centrality and efficiency were then calculated.

Results: Compared to healthy controls, all patient subgroups showed some common network property changes while some distinct changes. The common changes along ageing were nodal centrality loss at regions mainly within default mode network (DMN), control network (CN). More importantly, the network deteriorates with ageing and more nodal centrality decreases at isthmus cingulate, right caudal anterior cingulate were showed at subgroups A2/4, and more abnormality of left subcuneous showed at A3-4. Conclusion: The alterations of topological properties within DMN and CN may represent trait-related structural network changes in schizophrenia, while the changes at later ageing may represent illness progression with more-wide spread brain abnormalities.

B-1428 16:56
Role of whole brain diffusion kurtosis neuroimaging in disentangling bipolar depression from unipolar depression
V. Gupta, M. Maralakunte, S. Grover, C.K. Ahuja; Chandigarh/IN (muniraj987@gmail.com)
Purpose: Depression is the most common morbidity affecting people worldwide. Fact to be noted is that not all depressions are same. Bipolar depression (BD) is frequently misdiagnosed as unipolar depression (UD), leading to inefficient treatment and worst clinical outcome. Purpose of the study is to identify novel neuroimaging markers in differentiating bipolar depression from unipolar depression in the context of depressive episode.

Methods and Materials: Depressed subjects with BD (n=21), UD (n=18) and healthy control (HC) (n=20) were subjected for diffusion kurtosis imaging (DKI) evaluation. The diffusivity and kurtosis metrics, such as mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) and fractional anisotropy (FA) measured at b1000, and mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK) and kurtosis fractional anisotropy (KF) measured at b2000 value, employing whole brain atlas-based analysis.

Results: Bipolar depression subjects exhibited significant diffusivity and kurtosis metric abnormalities involving right external capsule, left amygdala and right hemisephrum, as compared to UD and HC. Conclusion: Present study is a unique study which explored whole brain DKI technique to evaluate microstructural changes in BD, UD and HC. It has provided additional insights into the brain areas which might play central role in etio-pathogenesis of depression. Present study is able to find specific imaging markers which potentially differentiable BD from UD.

B-1429 17:00
Brain MRI characteristics in neuromyelitis optica spectrum disorders: a multi-center study in China
G. Cao, Y. Duan, W. Zhu, Y. Liu; Beijing/CN (caoguanm@163.com)
Purpose: To investigate the brain MRI features in neuromyelitis optica spectrum disorders (NMOSD) and its clinical relevance in China in a multi-center setting.

Methods and Materials: 238 NMOSD patients (202 females, age mean ± SD: 41.5 ± 13.7 years) were recruited from six centers in China, who satisfied the 2015 diagnostic criteria. The brain MRI manifestations were classified into 4 types: (1) normal; (2) NMOSD-specific lesions (high AQP-4 regions); (3) multiple sclerosis lesions (satisfying 2015 McDonald criteria); (4) nonspecific white matter change. The lesion probability map was calculated with SPM12 after drawing the ROI. Demographic and cognitive features were analyzed.

Results: Eighty-three (86/238, 36%) patients had normal MR imaging findings, and the others (152/238, 64%) had abnormal MRI findings: forty-two patients (18%) with NMOSD-specific lesions distribution in dorsal brainstem, corticospinal tract corpus, callosum and periependymal lesions surrounding the ventricular system; fourteen patients with MS-like abnormalities (6%); and ninety-six patients with nonspecific lesions (40%). Lesion probability map showed the distributions. The average age of patients with specific lesions was smaller than those with nonspecific lesions (36.8 years and 44 years respectively, P=0.005). Patients with abnormal MRI findings (type 2-4) performed worse cognitive performance [Montreal Cognitive Assessment (MoCA) test] than those without brain lesions (P=0.049).

Conclusion: In this relatively large NMOSD cohort, nonspecific lesions were the most common findings in NMOSD, and NMOSD-specific lesions were observed in 18% patients. Patients with lesions presented worse cognitive performance than patients with normal MRI.
B-1430 17:04
Less regulated, more segregated ventral visual network in patients with major depressive disorder
H. Chen, J. Yan, K. Liu, Y. Deng, X. Huang, R. Su, Z. Xiaojun; Guangzhou/CN

Purpose: Previous studies indicate that major depressive disorder (MDD) can profoundly modify the visual cortices as well as the visuo-attentional systems of brain. However, little is known on the specific pattern of the network-level abnormalities of brain visual system in MDD. In this study, based on a series of previous evidences of visual cortical hyperactivity, we hypothesize that the ventral/dorsal visual network in MDD is possibly characterized as a status of increased autonomy (i.e., a hyperinteractive intra-network configuration, while receiving less outside modulation from attention network).

Methods and Materials: RS-fMRI scans were collected from 148 participants, including 78 medication-free MDD patients and 70 matched healthy controls. The dorsal/ventral visual networks were defined based on our previously published brain coordinates from activation likelihood estimation analyses. The static and dynamic network properties were, respectively, calculated and compared between MDD and control groups. Moreover, the inter-network connectivity quantified using the multivariate distance correlation between the dorsal attention network (DAN) and visual/dorsal network was also assessed between two groups.

Results: Results indicated that both dorsal (p=0.019) and ventral visual (p=0.002) networks in MDD were found with significantly increased clustering coefficient. A higher mean variability of dynamic functional connectivity was found in both the networks (0.002, 0.003, respectively). Moreover, ventral visual network in MDD group showed a decreased inter-network connectivity to DAN compared with control group (p=0.018).

Conclusion: These evidences may reveal a hyperinteractive, while less regulated, network characteristic of the ventral visual system, thus reflecting an autonomous status under the pathological effect of depression.

B-1431 17:08
Extended memory network degeneration in Parkinson’s disease patients with lean muscle loss
Y.-N. Wu, W.-C. Lin, C.-H. Lu; Kaohsiung/TW

Purpose: Parkinson’s disease (PD) is a common neurogenerative disease associated with gray matter atrophy. Development of frailty and decrease muscle mass of the thigh in PD.

Results: Regression analysis was used to identify risk factors of decrease lean muscle percentage of bilateral thigh after adjusting for age and gender. Multiple linear analysis was performed to evaluate the changes between GMV and fatty percentage of thigh measured at level of 50% femur length. Voxel-based morphometry (VBM) was used to access regional GMV difference between groups. Further correlation analysis were, respectively, calculated and compared between MDD and control groups. Moreover, ventral visual network in MDD group showed a decreased inter-network connectivity to DAN compared with control group (p=0.018).

Conclusion: Our data suggest that ultrasound has prolonged effects on the morphology of differentiating cortical neurons.

B-1433 17:16
The relationship between cognitive function and magnetic resonance spectroscopy findings in Parkinson disease patients
M. Sanei Taheri, M. Arabahmadi, H. Haghighatkhah, M. Ranjbar, M. Amiri; Tehran/IR

Purpose: Cognitive impairment (CI) is one of the most notable disabilities of Parkinson’s disease that is associated with lower quality of life. Early detection of CI is, therefore, very important for these patients. The purpose of this study was to examine the relationship between cognitive function and the metabolic data from magnetic resonance spectroscopy (MRS) of the patient suffering from Parkinson’s disease.

Methods and Materials: We recruited 45 patients with Parkinson’s disease and subjects were divided into three groups based on scales for outcome from Parkinson cognition (SCOPA-COG) test. Patients were classified as non-cognitive impairment (NCI; n=15), mild cognitive impairment (MCI; n=15) and dementia (PDD; n=15). All subjects underwent MRI and 1H-MRS techniques and metabolic changes such as NAA/Cr and NAA/Cho ratios, which were measured in the left hippocampal area of the brain.

Results: The mean and standard deviation of the NAA/Cr ratio in the three cognitive groups (NCI, MCI, PDD) were (2.51±0.037), (2.50±0.033) and (2.47±0.025), respectively. ANOVA test showed a significant difference in the three groups. Furthermore, the Scheffe test showed a significant difference between patients in the MCI and PDD groups (p<0.01). There was no significant difference between the non-cognitive impairment and mild cognitive impairment groups (p=0.54). No significant difference was found in NAA/Cho ratio (p=0.91).

Conclusion: A decreasing NAA/Cr ratio has an influence on cognitive function and the development of severe cognitive dysfunction in Parkinson-suffering patients. Furthermore, H-MRS determinant can be useful to evaluate cognition in Parkinson patients.

B-1432 17:12
Dendritic growth and branching of the cortical neurons can be altered by ultrasound exposition
Z. Ferenczi, T. Papp, B. Szilagyi, P. Szucs, E. Berenyi, Z. Meszar; Debrecen/HU

Purpose: Ontogeny of the cerebral cortex requires complex spatial and temporal orchestration of postmitotic neurons for populating this highly organised laminated structure of the brain. After migration and lamination, appropriate dendritic growth and branching are essential for proper circuit formation and correct function of neurons. Coordinated dendritic growth is largely determined not only by intrinsic factors but also by environmental effects. Ultrasound (US) examination is one of the most important and commercial examinations during pregnancy worldwide. US stimuli can modify the number of proliferation of neurons in vivo, but we do not know exactly how this stimuli effects on dendritic differentiation. Thus, we investigated the effect of US stimuli on dendritic development in the frontal cortex and the hippocampus of prenatal mice.

Methods and Materials: We labelled cortical plate neurons at E14.5 with GFP by in utero-electroporation which was followed by ultrasound exposition for 10 minutes (frequency: 3.0 MHz, mechanical index 0.9, thermal index: 0.9) at E18 and then at P3 the newborn mice were sacrificed and their brains were processed for histology. Analysis of hippocampal and cortical pyramidal cells was performed with Imaris and Neurolucida software.

Results: During the examination of pyramidal cells, there seemed to be a higher branching frequency and there was an increase in spine density as well compared to the neurons of the nontreated animals.

Conclusion: Our data suggest that ultrasound has prolonged effects on the morphogenesis of differentiating cortical neurons.
Sunday, March 3
Interventional Radiology

SS 1709 Nonvascular liver interventions

Moderators:
T. Albrecht; Berlin/DE
T. Andrasina; Brno/CZ

B-1434 08:30 Percutaneous stereotactic CT-based microwave ablation for neuroendocrine liver metastasis
M.H. Maurer, A. Lachenmayer, G. Beldi, D. Candinas, J.T. Heverhagen, C. Kim-Fuchs; Berne/CH (martin.maurer@insel.ch)

Purpose: To analyse the success of CT-based percutaneous stereotactic microwave ablation (MWA) for liver metastases from neuroendocrine tumours (NET) in terms of local recurrences or reduction of symptoms in a palliative setting.

Methods and Materials: Between 01/2015 and 06/2018, 380 different hepatic tumours were ablated percutaneously in 203 patients. Of these, 18 (4.7%) ablations were done in seven patients with NET liver metastases. Median age was 69 years (54-75 years). Three primary tumours were in the pancreas, four in the small bowel and one of unknown primary. Ablations were either done in a curative setting or as a means of reducing tumour load to treat symptomatic patients.

Results: There were no peri- and postinterventional complications. The first follow up with an MRI was done three months after the intervention, with an overall median follow up of 19.9 months (4.2-33.1). There was no local recurrence in patients treated with curative intent. One out of six patients developed new metastases in the liver and received two further sessions (five lesions) and is now tumour free. The patient with palliative ablation had a significant reduction of symptoms in the follow up.

Conclusion: Percutaneous CT-guided MWA for patients with NET liver metastasis is a safe treatment option. Ablations can be used to treat metastasis in a curative setting or to reduce tumour load and symptoms in patients not amenable to definitive surgery. Especially patients with difficult to reach intrahepatic lesions profit from stereotactic guidance.

B-1435 08:38 Minocycline hydrochloride as a soft sclerosing agent for simple renal and hepatic cysts: our experience
A. Paladini1, D. Beomonte Zeebel2, M. Falcioni2, A. Borzelli3, C. Di Stasi3, A. Cina4, G.E. Vallati5, G. Pizzi6, E.M. Amodeo7, Novara/IT; 2Rome/IT; 3Naples/IT (andrea_paladini88@gmail.com)

Purpose: The aim of this paper is to retrospectively evaluate our ten years’ experience on the sclerosing procedure of simple hepatic and renal cysts. We used minocycline hydrochloride, an antibiotic drug from the tetracycline family, as sclerosing agent. Through ultrasound-guided percutaneous access, it was injected in the cysts. In conclusion we evaluated efficacy and safety of the procedure.

Methods and Materials: We analysed 75 patients (54 patients with 60 renal cysts and 21 patients with 24 liver cysts) with symptomatic cysts. Patients were treated with ultrasound percutaneous drainage of cystic formation and subsequent injection of minocycline hydrochloride into the cyst itself. In larger cystic formulations, the treatment was repeated twice. We performed follow-up with ultrasound 6 and 12 months after procedure.

Results: The success rate of this treatment is 100% - in case of liver cysts - and 86% for renal cysts. Among minor complications, 5 patients reported fever (<38 °C) in the 24 h following treatment, treated with paracetamol.

Conclusion: In conclusion, sclerosing treatment with minocycline hydrochloride is effective and safe, with a low level of complications. Symptoms disappeared in all patients with liver cysts (100% success rate) and 93% of patients with renal cysts.

B-1436 08:46 Reduced peribulbar anaesthesia for microwave ablation (MWA) compared to radiofrequency (RF) and irreversible electroporation (IRE)
M. Kas, N. Goldberg; Jerusalem/IL (dknakrakologist@gmail.com)

Purpose: To determine the extent of variable post-ablative inflammatory response in the peribulbar tissue when using microwave (MWA), radiofrequency thermal ablation (RF), and irreversible electroporation (IRE) methods.

Methods and Materials: Wild-type C57b 9-10-month old mice (n= 27) for MWA (total n=192) were anaesthetized and subject to laparotomy to enable direct liver ablation. For MWA (n= 27), 10 W were applied for 12 seconds [AMICOR MWA system]; data for RF and IRE collected from other researchers in our unit (Bulvik et al.). Mice were sacrificed at days 1, 3, 7, 14, and 21 to permit analysis of the dynamic inflammatory changes in the border zone. Activated inflammatory cell populations in the border zone were assessed to detect the inflammatory changes in MWA, RF and IRE, respectively. Additionally, cells entering G1 phase (CDC47) were measured, counted and compared among the three methods of ablation in both the peripheral and distant regions of the liver.

Results: Overall, the border zone was less extensive in MWA (37 μm) (stdev=10.4) than RF (82 μm) (stdev=8.6), and IRE (108 μm) (stdev=10.3) (p<0.01). There were fewer macrophages in the border zone and fewer percentage of hepatocytes in proximity to ablation. Additionally, these patients exhibit innumerable surgical-clips which might interfere with IRE. We report on our experience with IRE in this situation with regards to efficacy, safety, and liver-function.

Purpose: In patients with tumor recurrence in the liver remnant after liver-surgery, local ablation often is the procedure of choice. IRE is a non-thermal ablation-technique that has shown to avoid damage of vessels and bile ducts, crucial for patients left with a single draining vein, single portal-vein-branch or biliary ducts. IRE must remain patent to provide a liver function. Additionally, these patients exhibit innumerable surgical-clips which might interfere with IRE. We report on our experience with IRE in this situation with regards to efficacy, safety, and liver-function.

Methods and Materials: 16 patients were treated with CT-guided-IRE for recurrent primary or secondary liver-malignancies. 13/16 had undergone trisectorectomy, 3/16 had non-anatomic major liver-resection. Distances from the active-tip of the IRE-probe to the nearest surgical-clip were measured on CT-images acquired during IRE. Liver function was assessed by the MELD-score immediately before, 1 and 6 weeks after IRE. Wilcoxon-signed-rank-test was used to investigate changes in MELD-Score.

Results: All patients had titanium-surgical-clips in an average distance of 24±21 mm (range 0-65 mm) from the active tip of the probe. In 8/16 patients, surgical clips were located closer than 20 mm. Based on post-interventional-CT and follow-up-MRI, complete ablation was achieved in all cases. Presence of clips did not modulate the ablation zone. No patient exhibited vessel thrombosis. Average MELD-score before IRE was 4.4±2.9, 1 week after IRE 4.9±3.8 (p>0.05).

Conclusion: IRE is a safe local ablative method for patients after major liver surgery. Surgical clips close to the IRE probes do not interfere with the ablation.

B-1438 09:02 Stereotactic image-guided microwave ablation of hepatocellular carcinoma
M. Maurer, V. Banz-Wüthrich, G. Beldi, C. Kim-Fuchs, D. Candinas, P. Tinguely, J.T. Heverhagen, A. Lachenmayer, Berne/CH (martin.maurer@insel.ch)

Purpose: To assess the therapeutic success of CT-based percutaneous stereotactic microwave ablation in patients with hepatocellular carcinoma (HCC).

Methods and Materials: We retrospectively analyzed a cohort of patients treated with percutaneous stereotactic image-guided microwave ablation for HCC at our institution between 01/2015 and 12/2017. All interventions were performed using CT-guidance with needle trajectory planning by landmark-based registration and an aiming device for precise needle placement.

Results: In total 163 interventions were performed in 92 patients (mean age 66 (50-84) years, 81 (83.5%) men). Patients presented on average with one tumor (1-6), a maximum of four tumors were ablated per session. Forty-three patients (44.3%) had one or more previous HCC treatments, 14 (14.4%) were transplanted afterwards. Mean tumor size was 16 mm (5-43 mm), mean ablation time per lesion was 5 1/24 minutes. Within 30 days, no major or liver-specific complications occurred, six (4.6%) patients had minor (grade 1-2) complications after a total of 131 interventions. Of the 77 patients with a mean 6-month follow-up after intervention, mean overall survival was 13.9 months after ablation and 23.7 months after initial diagnosis. Local recurrence occurred in 20/131 (15.2%) lesions, but could successfully be re-ablated in 14 cases (12.2%). Tumor size > 3 cm was significantly correlated to local tumor recurrence (p<0.005).

Conclusion: Percutaneous stereotactic image-guided microwave ablation is safe and efficient for the treatment of HCC. It might offer a curative treatment approach especially for inoperable and conventionally unatableable lesions by an accurate and precise needle positioning in a minimally-invasive setting.
B-1439 09:10

Comparison between percutaneous and laparoscopic monitoring of hepatocellular carcinoma

A. Della Corte, P. Marra, F. Ratti, F. Giombi, S. Giusmini, M. Salvioni, M. Venturini, L. Aldrighetti, F. De Cobelli, M. Venturini, L. Aldrighetti, F. De Cobelli, Milan/IT dellacorte.angelo@hsr.it

Purpose: Based on patient and nodule characteristics, some authors favor laparoscopic over percutaneous HCC microwave ablation (MWA), however, data are controversial. We compared the two approaches in terms of technical success, complications and local tumor control rates.

Methods and Materials: From October 2014 to September 2018, 60 consecutive patients underwent percutaneous or laparoscopic MWA of 68 HCC nodules with a 2450MHz/100W Microwave generator (Emprint, Medtronic). Complete ablation (technical success) and LTP at follow-up were assessed by contrast-enhanced CT/MRI. Forty-five patients (51 HCC nodules) satisfied inclusion criteria (adequate follow-up, complete ablation), of which 27 (29 nodules) underwent percutaneous MWA and 18 (22 nodules) underwent laparoscopic MWA.

Results: Technical success and complication rates did not significantly differ between the two groups (p=0.27 and p=0.15, respectively). 6/45 patients (13.3%) suffered procedure-related complications (CIRSÉ classification grade-3): 2 cases (abcess, haemathoma) in the percutaneous group (7.4%) and 4 (pneumothorax, respiratory failure, fever, portal thrombosis) in the laparoscopic group (22.2%). 5/51 (9.8%) HCC nodules showed local progression with 1- and 2-year LTPFS rates of 93% and 83.6%, respectively. Four LTPs occurred in the percutaneous group (13.7%), while 1 LTP in the laparoscopic one (4.5%) (p=0.27). At logrank analysis, operative approach was not a statistically significant predictor of LTPFS (p=0.47). Subgroup analysis showed that subcapsular nodules had worse LTPFS after percutaneous procedures (1-year LTPFS 100% vs percutaneous, p=0.04).

Conclusion: No significant difference in complication rate was found between percutaneous and laparoscopic MWA. Perfusion of the GB wall was integrated in all 23 patients and technical success rate was 96% (23/23). According to the contrast-enhanced CT/MR one month after RFA, the technical efficacy rate was 100% (23/23). During the follow-up period (range: 12-23 months, median: 17 months), no local tumour progression occurred in the ablation zone and no complications arose in any patient. Overall survival at 1-year was 100%. Thickening of GB wall was detected in 12 patients. Five of them were restored.

Conclusion: CEUS-monitored RFA of liver cancers adjacent to GB without invasive auxiliary means was feasible, safe and effective.

B-1442 09:34

Stereotactic image-guided microwave ablation for malignant liver tumours: can computer-assistance broaden treatment eligibility?

M.H. Maurer, A. Lachenmayer, V. Banz-Wüthrich, S. Weber, D. Candinaz, J.T. Heverhagen, P. Tinguely; Bern/CH (martin.maurer@insef.ch)

Purpose: Treatment success of microwave ablation for liver lesions depends on tumor reachability and accurate ablation probe positioning. We investigated factors influencing targeting accuracy, procedural efficiency and technical success of percutaneous Stereotactic Image-guided Microwave Ablation (SIMWA) for malignant liver lesions.

Methods and Materials: Data from all patients treated with SIMWA from 2015 to 2017 were analyzed retrospectively. A computed tomography (CT)-based navigation system was used for needle trajectory planning, stereotactic needle positioning, validation of needle positions and validation of ablation zones and technical success. Factors potentially influencing target positioning errors (TPE) of positioned ablation needles were analyzed using univariable and multivariable linear generalized estimating equations (GEE).

Results: Overall 301 lesions (174 HCC, 87 CRLM, 17 NET, 23 other) were treated in 155 patients. In 25 (8%) lesions multiple parallel needles were placed to create larger ablation zones. Correction of needle position was necessary in 4 (1%) lesions. Median TPE per ablation needle was 2.9mm (0.2-14.1mm) (n=364). Factors significantly influencing TPE were underlying cirrhosis (Mean diff. 0.686, CI 0.212-1.161), trajectory length (0.202, 0.127-0.277) and trajectory angle (-0.085, 0.170-0.000). Subcapsular or superior dorsal lesion location (segments VII/VIII) did not influence TPE. Median time per intervention was 67min (20-253min), and technical success rate was 96% (290/301 lesions).

Conclusion: Due to precise trajectory planning and stereotactic needle positioning, SIMWA allows highly accurate and successful targeting of inoperable lesions, even for otherwise difficult-to-target tumors. This might allow a broader application of treatment eligibility for patients with malignant liver tumors not reachable with conventional image-guidance.

B-1443 09:42

Percutaneous cryoablation in early-stage hepatocellular carcinoma: analysis of local tumour progression factors

D.K. Kim, K. Han; Seoul/KR (kdk7118@yuhs.ac)

Purpose: To assess the efficacy and safety of percutaneous cryoablation for early- or very early stage hepatocellular carcinoma and evaluate risk factors for local tumour progression after percutaneous cryoablation.

Methods and Materials: In this retrospective study, 34 consecutive treatment-naive patients were treated with percutaneous cryoablation for three or fewer nodules smaller than 3 cm in size. The safety of percutaneous cryoablation was evaluated by assessing percutaneous cryoablation-related complications and comparing hepatic function before and after percutaneous cryoablation. The efficacy was evaluated by calculating technical success, local tumour progression rates, and disease progression rates. Furthermore, prognostic factors of percutaneous cryoablation for local tumour progression were analysed.

Results: The technical success rate was 100%, and complete response was achieved in all patients (100%) by 1 month after percutaneous cryoablation. During a mean 24.5 ± 12.0-month follow-up interval, the incidences of local tumour and disease progression were 11.8% and 38.2%, respectively. The respective cumulative local tumour progression-free and disease-free survival rates were 93.1% and 83.6% at 1 year and 84.0% and 60.7% at 2 years. Hepatic function was normalized within 3 months after percutaneous cryoablation. No major complications occurred other than one case of small hematomata. On multivariate analysis, a minimal ablative margin < 5 mm was a significant risk factor associated with local tumour progression.

Conclusion: Percutaneous cryoablation is an effective and safe therapy for patients with early- or very early stage hepatocellular carcinoma. A minimal ablative margin < 5 mm was a significant prognostic factor for local tumour progression.
B-1447 08:46
The intrinsic iodine content of the thyroid is correlated to the HU value of the thyroid on true non-contrast scans
A.M.J.L. van Kroonenburgh, S.M.J. van Kuijk, A.A. Jacobi-Postma; MaastrichtNL (anna.van.kroonenburgh@mumc.nl)

Purpose: Virtual non-contrast (VNC) scans from Dual energy CT are thought to reflect True non-contrast (TNC) images and could therefore be used as a substitute to lower radiation dose. The difference in thyroid imaging however exceeds the normally accepted 15 HU, this is thought to be due to the intrinsic iodine content of the thyroid. We investigated the correlation between Thyroid Stimulating Hormone (TSH) and the density measurements on TNC and VNC.

Methods and Materials: In the period from November 2016 until June 2018 we included forty-seven patients who underwent a DECT scan of the head neck region. The correlation of TSH values and density measurements on TNC and VNC, as well as the difference between VNC and TNC were calculated.

Results: TSH of patients: mean 2.3, range (0.14-7.1). 35 Patients were euthyroid, 1 hypothyroid and 4 hyperthyroid. 7 Patients did not have a TSH test prior to the CT scan. Density thyroid VNC: mean 52.2, range (27.8-77.5); Density thyroid TNC: mean 104.0 HU range (48.0-151.4); density TSH mean 51.8, range (6.7-110.5). The correlation between TSH and the HU value on TNC scan is 0.32 (p=0.050) and for VNC reconstructions -0.08 (p=0.64).

Conclusion: No correlation between TSH and VNC is found as expected, because the intrinsic iodine is subtracted from the images. The increased organisation of iodine due to higher TSH levels is reflected in the density measurements of the TNC. Therefore Δ HU measurements reflect the intrinsic iodine content of the thyroid.

Author Disclosures: A.M.J.L. van Kroonenburgh: Author; Institutional grant from Siemens. Speaker; Institutional grant from Siemens. A.A. Jacobi-Postma: Author; Institutional grant from Siemens.

B-1448 08:54
Additional diagnostic value of dynamic MRI sequences in patients with temporomandibular joint dysfunction compared to static imaging

Purpose: To evaluate the added value of a dynamic magnetic resonance imaging (MRI) sequence for the assessment of the temporomandibular joint (TMJ) compared to standard static MRI sequences in patients with TMJ dysfunction (TMD).

Methods and Materials: In this retrospective study 71 patients with TMD underwent MRI exam. We acquired 5 static T1- and T2-weighted sequences in parasagittal and paracoronal views and one dynamic sequence (FIEST) in parasagittal view for each TMJ. We evaluated morphology and function of intra-articular structures and rated dynamic images as (1) "more informative", "equal informative", and (3) "less informative" compared to static images.
Results: Mean age was 35±14.7 years and 50/71 (70.4%) were female. 127/142 (89.4%) TMJs were diagnostic. 42 (33.1%) TMJs had no disc displacement (DD), 56 (44.1%) had DD with reduction (DDwR), and 22 (15.8%) had DD without reduction (DDwO). In 38/127 (29.9%) TMJs, dynamic images were rated “more informative”, in 84/127 (66.2%) “equally informative”, and in 5/127 (3.9%) “less informative” compared to solely static images for intra-articular structures. Therefore, 27/71 (38.0%) patients benefited from dynamic sequences while dynamic and static sequences were “equally informative” in 44/71 (62.0%) patients. Dynamic images were “more informative” in 23/56 (41.1%) TMJs with DDwR (p<0.001) and in 13/24 (44.8%) TMJs with DDwO (p=0.007).

Conclusion: Dynamic MRI sequences are beneficial for evaluation of morphology and function of the TMJ in patients with disc displacement compared to static sequences.

B-1449 09:02
Pilot study of three-dimensional MRI in the evaluation of eye shape of high myopia and classification of posterior staphyloma
L. Zheng, L. Zhang, G. Zhang; Shanghai/IN

Purpose: To study the feasibility of quantitative measurement of shape of high-myopia eyes and classification of posterior staphyloma using 3D MRI.

Methods and Materials: The characteristics of high myopia (Diopeters -600 and axial length ≥26.0 mm) in 129 patients and 50 emmetropia (Diopeters -100 to 100, emmetropic eye group) were included in our hospital. Then using 3D-FIESTA sequence and MR scanner, we acquired 3D image data covering entire orbit and reconceived with 3D rendering on workstation. Next, we evaluated eye morphology, shape and extent of posterior staphyloma and relationship of posterior staphyloma with the optic nerve. In addition, length of anterior to posterior (AP), left to right (RL), and superior to inferior (SI) for every eye were measured and the ratios of RL/AP and SI/AP were calculated. Finally, we classified the posterior staphyloma as broad and narrow type according to shape and extent of staphyloma.

Results: Of the 246 high-myopia eyes, 100 eyes showed only axial elongation (axial elongation group), and 146 showed posterior staphyloma (posterior staphyloma group). There was a statistically significant difference in AP line length, ratio of RL/AP and SI/AP (reflected eye ball deformation) among the emmetropic eye group, the posterior staphyloma group and the axial elongation group (P<0.001). The age differences between these three different groups were statistically significant (P<0.001). Of the 146 posterior staphyloma, 111 were wide-type staphylomas and 35 were narrow-type staphylomas.

Conclusion: 3D MRI is a useful tool to measure quantitatively the morphology of high-myopia eyes, diagnose and classify the posterior staphyloma.

B-1450 09:10
Mineralisation patterns of laryngeal cartilages: normal variations and their clinical impact
R.H. Kshirsagar, N. Sable, A. Mahajan, M. Thakur; Mumbai/IN

Purpose: The aim of our study was to determine the variations in location, distribution, and sex predilection of laryngeal cartilage mineralization, particularly of sclerosis in a population of persons without laryngeal cancer as an aid to understanding the significance of this entity when seen in patients with laryngeal cancer.

Methods and Materials: This is a retrospective study of record-based cross-sectional type. A total of 185 subjects were included in the study after application of the inclusion and exclusion criteria. Two independent observers evaluated the CT images. In case of discrepancy, third radiologist evaluated these scans. The cartilages assessed were thyroid, cricoid and arytenoids. Mineralization was categorized as calcification, sclerosis, and ossification. When the cartilage demonstrated soft-tissue attenuation, it was considered as non-mineralized. The frequencies of total symmetric and asymmetric mineralization of these cartilages were calculated.

Results: Asymmetric mineralization of the thyroid, cricoid and arytenoid cartilages were seen in 45.4%, 15.7% and 21.1% of our study population, respectively. Asymmetric thyroid, cricoid and arytenoid sclerosis were seen in 4.3%, 1.6% and 7.6% of study population, respectively. Asymmetric thyroid and cricoid sclerosis was more commonly seen in women than in men while asymmetric arytenoid sclerosis was more commonly seen in men than in women, but the differences were not statistically significant. Unilateral arytenoid sclerosis was seen more frequently on the left side compared with the right.

Conclusion: Normal variations in mineralization patterns should be taken into consideration when evaluating CT scans of patients with laryngeal cancer for cartilage invasion to avoid false-positive reads.

B-1451 09:18
Orbital adnexal lymphoma: diagnosis and follow-up with combined [18F]FDG-PET-CT

Purpose: Combined whole-body [18F]fluorodeoxyglucose positron-emission tomography with computed tomography ([18F]FDG-PET-CT) demonstrates location, morphology and metabolism of FDG-avid tumours, such as, e.g., lymphomas. We tested for associations between the maximum of the standardized uptake value (SUVmax) for [18F]FDG and therapy status, lymphoma stage, and histological grading in orbital adnexal lymphoma (OAL).

Methods and Materials: With ethics-committee-approval, pre- and post-therapeutic whole-body-[18F]FDG-PET-CT-scans of 21 patients with OAL diagnosed by means of incisional biopsy between July, 2002, and November, 2018, were identified and re-evaluated for SUVmax in respective OAL tumours in a single-armed retrospective single-centre study. Two-tailed Fisher-exact-tests were statistically significant for p<0.05 in contingency tables with SUVmax as the dependent variable and status prior to or after systemic therapy, pre-therapy Ann- Arbor-classification-based lymphoma stage, and histological grading as the respective independent variables.

Results: [18F]FDG-PET-CT showed all OAL lesions. Histology identified 18 malignant B-cell-non-Hodgkin lymphomas, two malignant T-cell-lymphomas, and the systemic lymphoma with associated chronic polyoid sinusitis. SUVmax levels of OALs decreased significantly after systemic therapy (p<0.001). Higher-stage OALs showed significantly higher SUVmax levels (p<0.014). There were no statistically significant associations between histological tumour grade and SUVmax levels.

Conclusion: Whole-body-[18F]FDG-PET-CT in patients with OAL showed significant associations of SUVmax levels in orbital tumours with both tumour stage prior to therapy and therapy status, but not with histological tumour grade. Finally it imply that [18F]FDG-PET-CT can be reasonably applied for whole-body staging and follow-up in patients with OAL.

B-1452 09:26
Validation of exophthalmos MRI measurements in patients with Graves orbitopathy, compared to ophthalmometry results
E. Wnuk, E. Maj, A. Jabłońska-Pawlak, O. Rowinski; Warsaw/PL

Purpose: Although evaluation of the orbital structures using magnetic resonance imaging (MRI) is well described in literature, there is no consensus on which measurement method is the most useful in exophthalmos assessment. The aim of the study is to correlate two MRI methods of exophthalmos measurement with exophthalmometry results and to determine a proper technique of exophthalmos measurement.

Methods and Materials: Forty-four patients (108 orbits) with exophthalmos in the course of Graves orbitopathy were enrolled in the study. Two measurements on axial T2W orbital MRI images were performed by two independent radiologists: the distance from the interzygomatic line to the corneal apex (anterior distance) and to the sclera (posterior distance). Within four weeks an exophthalmometry was performed by ophthalmologist using Hertel exophthalmometer. The interobserver variation was assessed by the Pearson correlation coefficient. Values were analysed using mean and standard deviation and t-student test.

Results: On MRI images the mean anterior distance measured by the first observer was 2.06±0.3 cm and by the second observer was 2.06±0.29 cm. The mean posterior distance values were 0.29±0.28 and 0.34±0.28 cm respectively. The mean exophthalmometry result was 2.1±0.33 cm. There was a very high agreement between observers for the anterior (r=0.98, p=0.01) and high for the posterior (r=0.95, p=0.01) distance measurement. Exophthalmometry results strongly correlated with MRI anterior distance measurements (r=0.9, p=0.01).

Conclusion: The distance measurement between the corneal apex and interzygomatic line possesses better reproducibility and is directly correlated with Hertel exophthalmometry. This method is sufficient enough in routine practice.

B-1453 09:34
Evaluation of quantitative shear wave sonoeLASTography of major salivary glands in Sjögren’s syndrome

Purpose: To investigate the diagnostic performance of the quantitative elasticity values derived from shear wave elastography (SWE) of the involvement of major salivary glands in patients with Sjögren’s syndrome (SS).

Methods and Materials: A total of 134 patients with SS and 30 healthy volunteers were involved in this study. The same ultrasoundography device (Logiq E9, GE Healthcare, Milwaukee, WI, USA) with a linear transducer (9 MHz) was used for the SWE imaging of bilateral submandibular and parotid
glands in all patients. Mean shear wave velocity (SWV) in m/s was compared between the patients and healthy volunteers using Student’s t-test.

Results: The SWV values of parotid glands did not show a statistically significant difference between the patients with SS and the healthy volunteers (p>0.05). The SWV values of both submandibular glands showed statistically significant differences between two groups (p<0.001). The AUROC curves were 0.65 (95% CI: 0.55-0.75) for right submandibular gland and 0.64 (95% CI: 0.55-0.74) for left submandibular gland. The best threshold values were 1.7 and 1.8; sensitivity 63% and 57%, specificity 57% and 67% for the right and left submandibular glands, respectively. The mean SWV values of submandibular glands in both sides showed a moderate correlation with each other (r=0.46, p<0.001).

Conclusion: The steady inclination in technological advances of ultrasound elastography is promising to provide better diagnostic values in process. In current condition, our findings suggest that SWE have a moderate ability to the diagnosis of patients with SS.

B-1454 09:42

Visualisation of the maxillary nerve using a micro-surface coil and three-dimensional double-echo steady state with water excitation sequence

G. Hong, M. Zou, Z. Yang; Guangzhou/CN (zoumsh@mail2.sysu.edu.cn)

Purpose: To display the courses, divisions and lengths of main segments of the maxillary nerve using a small surface coil combined with three-dimensional double-echo steady state with water excitation (3D-DESS-WE) sequence.

Methods and Materials: The maxillofacial region of 49 volunteers were scanned by a small surface coil combined with 3D-DESS-WE sequence. All 77 nerves were evaluated by two neuroradiologists using a 5-point scale (4, excellent; 3, good; 2, fair; 1, poor; and 0, none). The intraobserver correlation coefficient (ICC) was used to assess interobserver variability. The lengths of the nerves and adjacent structures were analysed. SIR (signal intensity ratio of the nerve to superior rectus muscle) was calculated.

Results: In 49 volunteers (77 sides), all 77 maxillary nerve trunks were displayed (100%). Compared with muscles, nerves showed iso-signal intensity (SIR: 0.1-1.10) on 3D-DESS-WE images. Average subjective scores of all small coil 3D-DESS-WE images were close to 3 points (2.56 ±1.03), and intraobserver correlation coefficient (ICC) between two radiologists was 0.91 (p<0.01). The length of maxillary nerve in pterygopalatine fossa (between foramen rotundum and posterior wall of maxillary sinus) was measured. The signal characteristics of the nerves and adjacent structures were analysed. SIR was calculated.

Conclusion: Small surface coil combine with 3D-DESS-WE sequence performed high quality in maxillary nerves MR imaging using MPR, CPR post-processing technology, which are suitable for clinical application.

B-1455 09:50

An audit of the use of ultrasound scanning in investigation of paediatric inflammatory neck masses

P. Gammack, A. Harper, S. Alexander, J. Jones; Edinburgh/UK (pauline.gammack1@nhs.net)

Purpose: This audit was carried out to determine whether first-line ultrasound is necessary for diagnosis and management of children presenting with acute inflammatory neck masses, and aid development of a clinical protocol for such patients.

Methods and Materials: Data was collected regarding patient age, physical findings, symptom duration, ultrasound findings and management using the online 'TrakCare' patient record system.

Results: 73 patients were referred for ultrasound for inflammatory neck masses over 18 months, with an age range 1 month to 12 years 10 months and average age of 3 years 9 months. Of those, 5 (7%) showed an abscess on initial examination and a further 3 showed abscess on subsequent ultrasound. The remaining scans showed either uncomplicated lymphadenitis, lymphadenitis with necrosis/liquefaction, soft tissue inflammation or other non-inflammatory masses such as haemangiomas. Abscess had an average symptom history of 5 days, compared with complicated/uncomplicated lymphadenitis which was diagnosed after average 3 days of symptoms. Most had either fluctuate, erythema or heat on examination, 5 patients underwent subsequent incision and drainage, the remainder were treated either with antibiotics or no treatment. Patients aged 12 months or less were more likely to require incision and drainage.

Conclusion: Ultrasound may not be necessary for a large proportion of such cases, and particularly where symptoms have been present for less than 3 days, where there is absence of fluctuance, erythema and color and for older children. The new guideline could have a significant impact on the use of ultrasound in such cases.

08:30 - 10:00 Room M 3

Oncologic Imaging

SS 1716

Which whole-body exam should I choose?

Moderators: N. Bogveradze; Tblisi/GE
G. Cook; London/UK

K-33 08:30

Keynote lecture

M.E. Mayerhöfer; Vienna/AT

B-1456 08:39

Comparison of 68Ga-DOTATOC PET-MRI and MRI-DWI for whole body staging of patients with neuroendocrine tumours

A. Salem1, J. Grueenisel1, B.M. Schaarschmidt1, M. Chodyla1, O. Martin1, C. Rischpler2, M. Forsting3, K. Herrmann1, L. Umulı4, 1Essen/DE; 2Düsseldorf/DE; 3Munich/DE (ahmed.salem@uk-essen.de)

Purpose: To compare the diagnostic potential of integrated 68Ga-DOTATOC positron emission tomography (PET-MRI) and diffusion weighted imaging-MRI (DWI-MRI) for whole-body staging of patients with neuroendocrine tumours (NET).

Methods and Materials: A total of 43 patients with a histopathologically proven neuroendocrine tumour were included (50% G1, 30% G2 and 5% G3) underwent a whole-body 68Ga-DOTATOC PET-MRI examination 60 minutes after the injection of a mean activity of 60.2 MBq. The MR study comprised the acquisition of a T1w 3D VIBE sequence (pre- and post-contrast), a T2w HASTE and a diffusion-weighted EPI sequence. Two readers evaluated the following datasets 1. whole-body MRI including DWI, 2. 68Ga-DOTATOC PET-MRI without DWI regarding (1) lesion detection, (2) lesion conspicuity (4-point ordinal scale) and (3) diagnostic confidence (5-point ordinal scale). Winvoxon's signed-rank test was used to determine the significance of differences between the ratings.

Results: 68Ga-DOTATOC PET-MRI correctly detected 70 malignant lesions. Among them, MRI-DWI enabled correct identification of 59 malignant lesions. Additionally, 68Ga-DOTATOC PET-MRI exhibited a significant higher conspicuity (PET-MRI: 2.93 ± 0.75; MRI-DWI: 2.27 ± 0.99) and diagnostic confidence (PET-MRI: 4.59 ± 0.60; MRI-DWI: 4.09 ± 0.88) in the detection of malignant lesions (p<0.01). Furthermore, 68Ga-DOTATOC PET-MRI and MRI-DWI showed an equivalent performance in the detection of benign lesions.

Conclusion: Our results demonstrate the superiority of 68Ga-DOTATOC PET-MRI in detecting malignant lesions when compared to MRI-DWI alone, underlining its superior potential for whole-body staging of patients with NETs when compared to MRI-DWI.

B-1457 08:47

Whole body low-dose CT-study combined with model based iterative reconstruction algorithm for follow-up of oncologic patients: image quality and dose deduction

D. Ippolito1, I. Salemi1, C. Talei Franzesi1, C. Maino2, L. Riva2, A. de Vito2, C. Massimo2, T. Giandola2, S. Sironi2,3, Monza/IT, 2Misaglia/IT, 3Bergamo/IT (ahmed.salem@uk-essen.de)

Purpose: To compare radiation dose and image quality of low-dose CT protocol combined with iterative model-based reconstruction algorithm (iDose) for follow-up of oncologic patients.

Methods and Materials: Ninety-nine patients with known oncological diseases who underwent, during their clinical follow-up, both low dose CT performed on 256-row scanner, with 100 kV and automated mAs modulation (depending on patient weight), and standard-dose CT performed on 256-row scanner, with 120 kV and automated mAs modulation, were enrolled. Images were reconstructed with iMR for the first CT examination and iDose algorithm for the second CT examination. We evaluated density values in liver and spleen and signal-to-noise ratio (SNR), along with image noise, dose parameters and diagnostic quality with 4-point scale.

Results: Noise of images expressed as SD values, measured in liver and spleen, was significantly lower in iMR images (liver 12.09 vs 17.10, p<0.001) whereas SNR was statistically higher (liver 8.55 vs 4.99, p<0.001) compared to iDose reconstruction. Volumetric-Computed-Tomographic-Dose-Index (V-CTDIvol) and Dose-Length-Product (DLP) were significantly lower in iMR compared to iDose reconstruction (DLP 499.9 vs 872.55 mGy*cm, p<0.001), with overall dose reduction of 42.71%. 4-point scale qualitative analysis did not reveal any significant differences in terms of diagnostic quality (p>0.04).
Conclusion: Automatic tube-current modulation combined with IMR algorithm and low kV setting allows dose reduction of 45.72% in whole body CT imaging without loss of diagnostic quality, thus representing a useful diagnostic approach in reducing dose exposure in oncologic patients who undergo several follow-up studies.

B-1459 09:03
F-18 FDG PET/CT compared to Tc-99m MDP Bone scintigraphy in assessment of metastatic osseous disease in patients with breast cancer and the relation to serum CA15-3 and alkaline phosphatase.

Purpose: To assess F-18 FDG-PET/CT compared to Tc-99m MDP bone-scan in assessment of metastatic osseous disease in breast-cancer patients and the relation to CA15-3 or alkaline-phosphatase serum levels.

Methods and Materials: We reviewed PET/CT and concomitant bone-scans for 37 patients (age 55.38±13.08 years; 36 females) with known metastatic breast-cancer to bone. A visual semi-quantitative metastatic osseous-score was developed after dividing skeleton into 7-zones. Metastatic osseous-score (MS) was calculated for PET/CT (PMS) and bone-scans (BMS). McNemar-test was used to test which study is showing more lesions. ROC analysis used to define the cutoff-values for CA15-3 that best predict additional value for PET/CT over bone scan.

Results: Metastatic skeletal lesions were matched in 20 patients (54.1%). In 13 patients (35,1%) more metastatic burden were detected on PET/CT. In 4 patients (10.8%) more internal lesions were detected on bone-scan (p=0.103). Most of additional lesions on PET/CT were osteolytic/predominantly medullary (new lesions). Lesions with higher uptake on bone-scan were sclerotic with low FDG (non-active healed/healing). CA15-3 was positively correlated to PMS (r=0.368;p=0.018) but not to BMS (r=0.207;p=0.874). Differently alkaline-phosphatase was positively correlated to both PMS(r=0.389;p=0.017) and BMS(r=0.363;p=0.027).

Conclusion: FDG-PET/CT is more sensitive in detecting metastatic osseous lesions and tends to identify new osteomedullary lesions. Higher CA15-3 correlates to metastatic osseous burden on PET/CT but not on bone-scan and predicts the metastatic osseous involvement on FDG-PET/CT compared to bone-scan.

B-1460 09:11
Comparison of capability for TNM stage assessment among whole-body MRI and PET/MRI at different field strength and FDG-PET/CT in non-small cell lung cancer.

Purpose: To prospectively and directly compare TNM stage assessment capability among whole-body MRI and PET/MRI at 1.5 and 3T MR systems and FDG-PET/CT in non-small cell lung cancer (NSCLC) patients.

Methods and Materials: 104 consecutive pathologically diagnosed NSCLC patients (mean age 71 years) prospectively underwent whole-body MRI at 1.5T and 3T systems, integrated PET/CT, and surgical, pathological and/or follow-up examinations. Final diagnoses of T, N and M factors and clinical stage in each patient were determined according to all examination results. Then each factor and clinical stage were visually assessed on both whole-body MRIs, PET/MRIs and PET/CT with contrast-enhanced brain MRI. kappa statistics were used to determine agreements for assessment of all factors and clinical stage with final diagnoses, and McNemar’s test was used to compare each diagnostic accuracy among all methods.

Results: On each factor and clinical stage assessments, agreements between all methods and final diagnosis were substantial or almost perfect (0.60<x<0.98). Diagnostic accuracies of N factor and clinical stage on whole-body MRI as well as PET/MRI at both field strengths were significantly higher than those of PET/CT (p<0.05).

Conclusion: Whole-body MRIs and PET/MRIs at 1.5T and 3T systems have significantly better potential for N factor and clinical stage assessments than PET/CT in NSCLC patients.

Author Disclosures: Y. Ohno: Research/Grant Support; Canon Medical Systems Corporation.
K. Aoyagi: Employee; Canon Medical Systems Corporation.
M. Yui: Employee; Canon Medical Systems Corporation.
S. Seki: Research/Grant Support; Canon Medical Systems Corporation.
T. Yoshikawa: Research/Grant Support; Canon Medical Systems Corporation.

B-1461 09:19
Does PET/MR improve lesion detection in oncology: a prospective uncentre study in 1003 examinations.

Purpose: To investigate if positron emission tomography/magnetic resonance (PET/MR) imaging improves lesion detection and characterization and reduces radiation exposure in oncological tumour staging in comparison to PET/computed tomography (PET/CT).

Methods and Materials: A total of 1003 oncological whole-body examinations in 918 patients (mean age 57.8y, 400 female, 518 male) were included in this prospective single-centre study. In all patients, PET/CT was performed prior to PET/MR. A consensus reading was performed for both examinations by the detection nuclear medicine physician, radiologist and radiographers. Analyses of additional lesions and missed lesions in PET/MR compared to PET/CT as well as indeterminate findings in PET/CT that could be classified by PET/MR were performed. Furthermore, the effective dose of PET/MR as well as full- and low-dose PET/CT was analysed. Lesion detection between PET/MR and PET/CT was compared using McNemar’s test. Mean effective doses were analysed using paired t tests. p<0.001 indicated statistical significance.

Results: Additional lesions were detected in 26.3% (264/1003) of all examinations by PET/MR. This resulted in a TNM change rate of 9% (29/1003). Only in 2.9% (29/1003) cases, lesions were missed by PET/MR that were visible in PET/CT, resulting in a TNM change in 0.5% (5/1003). Indeterminate findings in PET/CT could be classified by PET/MR in 11.1% (111/1003). Radiation exposure could be significantly reduced by PET/MR by 83.2% compared to full-dose PET/CT and by 36.1% compared to low-dose PET/CT (p<0.001, respectively).

Conclusion: In comparison to PET/CT, PET/MR leads to improved lesion detection and reduced radiation exposure, which might be especially beneficial in paediatric patients.

Author Disclosures: B.M. Schaarschmidt: Shareholder; Benedikt M. Schaarschmidt is a stockholder for General Electric and was a stockholder for Bayer AG, Siemens AG, Siemens Healthineers AG, TEVA Pharmaceuticals till September 2018.

B-1462 09:27
Prospective comparison of whole-body MRI and 68Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer.

Purpose: To assess whole-body MRI (wb-MRI) for detection of biochemical recurrence of prostate cancer (PCa) after curative treatment in comparison to 68Ga-PSMA PET/CT.

Methods and Materials: 30 patients (mean age: 64.9±8.8 years) with newly documented biochemical recurrence of PCa (mean PSA 2.11±1.97 ng/ml) following curative therapy prospectively underwent both wb-MRI including a dedicated pelvic imaging protocol and PET/CT with 18F-FDG-Ga-PSMA within 10.4±9.6 days. PET/CT and MRI were separately evaluated regarding PCa lesion count, type, localization, and diagnostic confidence (3-point scale; 1-3) by two physicians. The reference standard was based on histopathology results, PSA following targeted salvage irradiation, and follow-up imaging. Lesion-based and patient-based detection rates were compared using chi-square test. Differences in diagnostic confidence were assessed by Welch test.

Results: A total of 58 PCa lesions were detected in 22/30 patients in the study cohort. 68Ga-PSMA PET/CT detected 57/58 (98.3%) lesions in 21/30 (70%) patients, while wb-MRI detected 15/58 (25.9%) lesions in 13/30 (43.3%) patients. The higher detection rate of 68Ga-PSMA PET/CT was statistically significant both on a per-lesion (p=0.001) and per-patient (p=0.039) basis. In 8/30 (26.7%) patients no relapse was detectable with both modalities. Except four bone local recurrences in the former prostate fossa that was exclusively detected by wb-MRI, all lesions detected by wb-MRI were also detectable on 68Ga-PSMA PET/CT. Additionally, 68Ga-PSMA PET/CT offered superior diagnostic confidence in identifying PCa lesions (2.7±0.6 vs. 2.3±0.8, p=0.011).

Conclusion: 68Ga-PSMA PET/CT significantly outperformed wb-MRI for the detection of biochemical recurrence in PCa patients after curative treatment.
Conclusion: WB-MRI were seen in follow-up of T-cell Lymphoma, in which MRI could show number of detected small lung metastases (<3 mm) on CT. Advantages for established imaging modalities

Methods and Materials: A prospective study of total of 35 patients with single nodular HCCs ≤3cm who underwent pre-treatment gadoxetic acid-enhanced MR followed by hepatic resection (n=143) or radiofrequency ablation (RFA) (n=230) were included. We analysed their clinicopathological and MR features to determine which features may help predict the presence of microvascular invasion (MVI) or recurrence-free survival (RFS). RFS was estimated using Kaplan-Meier analysis and significant predictive MR findings for RFS were evaluated using Cox-proportional hazard regression model.

Results: Non-smooth tumour margins on hepatobiliary phase (HBP) were significantly more (probable) cancer findings were identified on the spectral reading (six vs. one, p=0.03). Eight probable cancer findings on CE-CT were excluded as cancer on spectral CT. In thirty-four possible cancer findings, spectral added to the diagnosis in nineteen cases. For the possible cancer findings, spectral information was strongly correlated with a difference between the spectral and conventional reading (P<0.001). Hundred and four benign lesions were found on CE-CT and spectral datasets (multiple lesions per patient could be present). In the conventional readings, the radiologists were entirely certain about the benignity in 60% of the cases and in the spectral readings in 89% of the cases (p<0.0001).

Conclusion: In conclusion, we find that access to spectral data adds to find (probable) cancer or exclude the diagnosis. Furthermore, it increases the radiologists’ certainty about benign lesions.

Author Disclosures:

M.B. Andersen: Speaker; Philips, Roche, BMS. M. Kruis: Employee; Philips.

Abdominal Viscera

MY 17 Abdominal Viscera and Gastrointestinal Tract

Moderators:

L.K. Blomqvist, Stockholm/SE
T.C. Lauenstein; Düsseldorf/DE

B-1466 08:30
Gadoxetic acid-enhanced liver MR can predict tumour recurrence after curative treatment for small single hepatocellular carcinoma

D. Lee, J. Lee; Seoul/KR (dhlee.rad@gmail.com)

Purpose: To determine significant predictive factors of tumour recurrence after curative treatment for single nodular HCCs ≤3cm.

Methods and Materials: This retrospective study was approved by the institutional review board. A total of 373 patients with single nodular HCCs ≤3cm who underwent pre-treatment gadoxetic acid-enhanced MR followed by hepatic resection (n=143) or radiofrequency ablation (RFA) (n=230) were included. We analysed their clinicopathological and MR features to determine which features may help predict the presence of microvascular invasion (MVI) or recurrence-free survival (RFS). RFS was estimated using Kaplan-Meier analysis and significant predictive MR findings for RFS were evaluated using Cox-proportional hazard regression model.

Results: Non-smooth tumour margins on hepatobiliary phase (HBP) were significantly more (probable) cancer findings were identified on the spectral reading (six vs. one, p=0.03). Eight probable cancer findings on CE-CT were excluded as cancer on spectral CT. In thirty-four possible cancer findings, spectral added to the diagnosis in nineteen cases. For the possible cancer findings, spectral information was strongly correlated with a difference between the spectral and conventional reading (P<0.001). Hundred and four benign lesions were found on CE-CT and spectral datasets (multiple lesions per patient could be present). In the conventional readings, the radiologists were entirely certain about the benignity in 60% of the cases and in the spectral readings in 89% of the cases (p<0.0001).

Conclusion: In conclusion, we find that access to spectral data adds to find (probable) cancer or exclude the diagnosis. Furthermore, it increases the radiologists’ certainty about benign lesions.

B-1467 08:34
Radionics of gadoxetic acid-enhanced MRI: a predictive biomarker for CK19-positive hepatocellular carcinoma

W. Wang1, Y. Ding1, L. Yang1, M. Zeng1, S.-X. Rao1, J. Tian1,2; Shanghai/CN, Xi’an/CN (787356268@qq.com)

Purpose: To develop and validate a radionics signature-based model derived from gadoxetic acid-enhanced MR images to preoperatively identify cytokeratin (CK) 19-positive hepatocellular carcinoma (HCC).

Methods and Materials: A cohort of 227 patients with single HCC was classified into a training set (n=159) and a time-independent validated set (n=68). A total of 647 radionics features were extracted from multi-sequence MR images separately. The latest absolute shrinkage and selection operator regression and decision tree methods were utilized for feature selection and radionics signature construction. A further multivariable regression model was

clinical outcome. Two radiologists with 9 and 33 years of experience performed the readings in consensus. If disagreement, a third specialist radiologist with 11 years of experience determined the outcome of the reading.

Results: Significantly more (probable) cancer findings were identified on the spectral reading (six vs. one, p=0.03). Eight probable cancer findings on CE-CT were excluded as cancer on spectral CT. In thirty-four possible cancer findings, spectral added to the diagnosis in nineteen cases. For the possible cancer findings, spectral information was strongly correlated with a difference between the spectral and conventional reading (P<0.001). Hundred and four benign lesions were found on CE-CT and spectral datasets (multiple lesions per patient could be present). In the conventional readings, the radiologists were entirely certain about the benignity in 60% of the cases and in the spectral readings in 89% of the cases (p<0.0001).

Conclusion: In conclusion, we find that access to spectral data adds to find (probable) cancer or exclude the diagnosis. Furthermore, it increases the radiologists’ certainty about benign lesions.

Author Disclosures:

M.B. Andersen: Speaker; Philips, Roche, BMS. M. Kruis: Employee; Philips.
built incorporating clinical factors and the fusion radiomics signature with extracellular contrast agents during the early perfusion phases was never significant relation to CK19 expression.

Results: In the whole cohort, 57 patients were positive for CK19 and 170 patients were negative for CK19. Based on 11 and 6 radiomics features extracted in arterial phase and hepatobiliary phase images, a fusion radiomics signature achieved a satisfying performance with an AUC of 0.951 and 0.822 in training and validation datasets. The final combined model integrated serum a-fetoprotein levels, arterial rim enhancement pattern, irregular tumour margin and the fusion radiomics signature, with a sensitivity of 0.818 and specificity of 0.974 in the training cohort and that of 0.769 and 0.818 in the validated cohort. The nomogram based on the combined model showed satisfactory prediction performance in training (C-index: 0.959) and validation (C-index: 0.846) dataset.

Conclusion: The radiomics signature-based model derived from arterial phase and hepatobiliary phase images of gadoxetic acid enhanced MRI imaging can be a reliable biomarker for identifying CK19-positive HCC.

B-1468 08:38
Intra-individual comparison of the MRI contrast agents gadoxetic acid vs gadoteric acid in liver MRI of patients with HCC and underlying cirrhosis
M. Della Seta, F. Collettini, M. Schmelzle, N. Raschzok, B. Hamm, T. Denecke; Berlin/DE (marta.della-seta@charite.de)

Purpose: To the best of our knowledge, the ability of liver-specific contrast agents to produce enhancement characteristics analogous to those obtained with extracellular contrast agents during the early perfusion phases was never proven. Our endpoints were the evaluation of peak maximum enhancement between both contrast agents in patients with HCC and underlying cirrhosis.

Methods and Materials: Twenty-four patients with HCC diagnosis underwent two liver MR examinations at 3T, one with gadoteric acid and one with gadoxetic acid. Quantitative evaluation using regions of interest was performed. Our endpoints were the evaluation of peak maximum enhancement between both contrast agents in the lesions with reference to normal tissue, the evaluation of wash-out, with reference to the healthy liver, and the analysis of signal-to-noise and contrast-to-noise values.

Results: Twenty-three patients had adequate image quality. Relative peak enhancement was significantly higher (p < 0.001) for gadoteric acid (176.4±95.9; CI: 215.6-137.2) than for gadoxetic acid (101.7±100.8; CI: 142.9-80.6). The wash-out of gadoteric acid was significantly stronger compared to gadoxetic acid (20.5±17.1; CI:127.6-13.5 vs. 7.9±19.4; CI:15.9-0) (p=0.006). The CNR after administration of the liver-specific contrast agent and the extracellular contrast agent also showed a significant difference (p=0.005). The SNR between the two contrast media did not differ significantly (p>0.39).

Conclusion: Gadoteric acid shows a significantly higher relative peak enhancement and a significantly stronger wash-out compared to gadoxetic acid. After the administration of the two contrast media the CNR differs significantly as well. No significant difference in SNR was found between the two contrast agents.

Author Disclosures: F. Collettini: Advisory Board; Guerbet. B. Hamm: Grant Recipient; Guerbet.

B-1469 08:42
MRI of hepatocellular adenomas: is there an additional value of using Gd-EOB for subtype differentiation?
T.A. Auer, C. Grieser, D. Geisel, B. Hamm, T. Denecke; Berlin/DE, (timo-alexander.auer@charite.de)

Purpose: Morphologic and enhancement characteristics to differentiate among hepatocellular adenoma (HCA) subtypes evaluated with gadoxetic acid-enhanced MRI.

Methods and Materials: Sixty-four patients with 100 histopathologically proven HCA examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n=92; biopsy, n=7). Three radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. Histopathological subgroup analysis was based on the Bordeaux classification (including steatotic (H-HCA), inflammatory (I-HCA), b-catenin (b-HCA) and unclassified (U-HCA) adenomas).

Results: Overall, 29 H-HCA (29%), 41 I-HCA (41%), 6 b-HCA (6%) and 24 U-HCA (24%) were present. For differentiation of HCA subtypes, presence of intralesional fat (H-HCA, n=27; I-HCA, n=0; b-HCA, n=1; U-HCA, n=3), atoll sign (I-HCA, n=25) and a central scar (b-HCA) were significant (p<0.001). For hepatobiliary phase, most HCA were visually found being hypointense (overall: 71%; H-HCA = 96.5%; I-HCA = 53.5%; b-HCA = 80%, U-HCA = 66.6%). Relative enhancement was not significant between the different HCA subtypes (p=0.674).

Conclusion: Following the Bordeaux classification, typical morphologic MR appearances of the different HCA subtypes are present and reliable. On hepatobiliary phase, most HCA show hypointensity; however, I-HCA is the most heterogeneous subtype and some present with a characteristic patchy uptake pattern. Combining Gd-EOB BEV, the qualitative MR characteristics and predisposing risk factors increase sensitivity for a more accurate diagnosis. In our collective, sensitivity increased by combining atoll sign and heterogeneous Gd-EOB-uptake in the diagnosis of I-HCA.

B-1470 08:46
Quantification of hepatic steatosis: evaluation of 4 MRI techniques vs reference method by biopsy
C. Boudinaud, A. Abergel, M. Fontarensky, J. Joubert Zakey, L. Boyer, B. Magnin; Clermont-Ferrand/FR (claireboudinaud@msn.com)

Purpose: Given the growing prevalence of obesity and metabolic syndrome, the management of hepatic steatosis is a major issue. We assessed the quantification of hepatic steatosis using 4 different MRI methods, to determine which was the most correlated to the reference method, that is, histological measurement by liver biopsy.

Methods and Materials: Sixty patients requiring liver biopsy in non-tumour tissue, whatever the indication, were included prospectively at Clermont-Ferrand University Hospital between March 2017 and March 2018. In parallel, a liver MRI (1.5T) was performed using 4 different steatosis quantification techniques (3-echo MRIImaging, 6-echo MRIImaging, 11-echo MRImaging and MRSpectroscopy). Quantitative histological and imaging data were compared. In secondary analysis, the possible influence of alcohol drinking, hepatic iron overload, or the presence of liver fibrosis was assessed.

Results: All four MRI techniques were found to have an excellent correlation with histological measurement: 3-echo MRIImaging (r = 0.852, p < 0.001), 6-echo MRIImaging (r = 0.819, p < 0.001), 11-echo MRImaging (r = 0.818, p < 0.001), and MRSpectroscopy (r = 0.812, p < 0.001). The presence of alcohol, iron overload or fibrosis did not interfere with reliability, whichever technique was used.

Conclusion: In the evaluation of hepatic steatosis, our study showed a high correlation of the 4 MRI techniques with the histological standard; MRSpectroscopy appearing as the less reliable, 3-echo MRIImaging as the highest correlated (this, without compounding factor in a large population).

B-1471 08:50
The value of MRI-PDFF in detecting and grading hepatic steatosis in patients with nonalcoholic fatty liver disease: a meta-analysis
Z. Ye, X. Xiong, J. Chen, L. Cao, T. Duan, Z. Zhang, B. Song; Chengdu/CN (944808771@qq.com)

Purpose: To evaluate the diagnostic performance of magnetic resonance imaging-proton density fat fraction (MRI-PDFF) in detecting and grading hepatic steatosis (HS) in nonalcoholic fatty liver disease (NAFLD) patients.

Methods and Materials: A comprehensive literature search was conducted to identify studies on the diagnostic accuracy of MRI-PDFF for the assessment of biopsy-proven HS. The degrees of HS were histopathologically defined as mild (≤5% steatosis), moderate (≥5% and <33% steatosis) and severe (≥33% steatosis), according to nonalcoholic steatohepatitis clinical research network scoring system. Data were extracted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios, as well as the area under the summary receiver operating characteristic curve (AUC) in each group.

Results: 16 studies with 1277 subjects were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were estimated to be 0.87 (95% confidence interval [CI]: 0.84-0.90), 0.94 (95% CI:0.91-0.97), 12.93(95% CI:5.93-27.76) and 0.13 (95% CI:0.08-0.22) for the detection of mild HS with MRI-PDFF, 0.80 (95% CI:0.76-0.84), 0.91 (95% CI:0.88-0.93), 7.83 (95% CI:5.68-10.80) and 0.21 (95% CI:0.15-0.29) for the detection of moderate HS, and 0.74 (95% CI:0.67-0.80), 0.92 (95% CI:0.89-0.94), 7.05 (95% CI:4.96-10.04) and 0.29 (95% CI:0.18-0.47) for the detection of severe HS, respectively. The AUCs for mild, moderate and severe HS detection were 0.96(95%CI:0.95-0.97), 0.94(95%CI:0.92-0.95) and 0.92(95%CI:0.90-0.94), respectively. Substantial heterogeneity was observed. No publication bias was detected.

Conclusion: MRI-PDFF shows high diagnostic accuracy in detecting and grading HS and may serve as a noninvasive tool for evaluation of HS in NAFLD patients.
B-1472 08:54
Dual-energy CT in patients with fatty liver disease: improved assessment of hypoattenuating liver lesions using virtual monoenergetic imaging
L. Lengai1, I. Yel1, C. Booz2, S.S. Martin2, J.-E. Scholitz3, T.J. Vogl1, J.L. Wichmann1, M.H. Albrecht1; Frankfurt/DE, Charleston, SC/US

Purpose: To assess the impact of noise-optimized virtual monoenergetic imaging (VMI+) on delineation and measuring accuracy of hypoattenuating liver lesions in patients with fatty liver disease compared to standard reconstruction.

Methods and Materials: Twenty-eight patients with fatty liver disease and hypoattenuating liver lesions who had undergone unenhanced and contrast-enhanced portal-venous dual-energy CT were included in this retrospective study. In addition to standard linearly-blended M_0.6 reformats, noise-optimized virtual monoenergetic images (VMI+) were reconstructed in 10-keV intervals. Contrast-to-noise ratio (CNR) was assessed as the value at 10-keV compared to the value at 50-keV. Margins of demarcation of lesions were evaluated. Image quality and lesion margin demarcation were evaluated using two independent times. Inter- and intra-rater agreement was assessed using Intraclass correlation coefficient (ICC).

Results: The calculated CNR was greatest at 40-keV VMI+ (5.8±3.8 HU), significantly higher compared to standard reconstructions (3.5±1.5 HU) (P<0.001). Furthermore, 40-keV VMI+ provided the best subjective overall image quality (P<0.194). Margin demarcation of lesions was found to be superior for 40-keV VMI+ compared to standard linearly-blended image series (P<0.001). Inter-observer agreement for lesion measurements was higher for 40-keV VMI+ reconstructions (ICC, 0.87) vs standard images (ICC, 0.69). Intra-observer agreement was greater for 40-keV VMI+ (mean ICC, 0.94) than for standard images (mean ICC, 0.82).

Conclusion: Noise-optimized VMI+ reconstructions significantly improve contrast and demarcation of hypoattenuating liver lesions in patients with fatty liver disease compared to standard reconstruction, which translates into improved inter- and intra-rater agreement for quantitative size measurements.

Author Disclosures:
J.L. Wichmann: Other; Wichmann JL received speaker fees from GE and Siemens. M.H. Albrecht: Other; Albrecht MH received speaker fees from Siemens and Bracco.

B-1473 08:58
CT-based liver surface nodularity score for noninvasive assessment of clinically significant portal hypertension
A. Abou Elkassam1, A.M.K. Aboul Aal1, A. Gunn2, K. Mahmoud3, S. Lirette4, A. Smith1, 1Birmingham, AL/US; 2Jackson, MS/US; (akamel@uabmc.edu)

Purpose: To evaluate the accuracy of the CT-based liver surface nodularity (LSN) score to detect clinically significant portal hypertension (CSPH) in patients with chronic liver disease (CLD).

Methods and Materials: For this retrospective study, we identified 46 adult patients with HCV, alcoholic or NASH compensated CLD. The LSN score was calculated using custom software. Total liver volume, liver segmental volume ratio (segments I-III vs. IV-VIII), splenic length/volume, and portal vein width were measured from the CT images. The LSN score was used to define CSPH. The accuracy for predicting CSPH was assessed by receiver operating characteristics area under the curve (AUC).

Results: CSPH was present in 63% of patients. In patients with HVPGE<10 mmHg vs. CSPH, the average LSN scores were 2.23 vs. 2.55 (p<0.001), average splenic volumes were 426 vs. 736 cc (p<0.031), average splenic lengths were 12.8 vs. 14.9 cm (p=0.037), average FIB-4 indices were 3.17 vs. 5.83 (p<0.038), and average MELD scores were 12.0 vs. 16.0 (p=0.041). Other CT metrics did not have a significant difference (p=0.05). The accuracy for predicting CSPH was highest with the LSN score (AUC=0.80) as compared to splenic volume, splenic length, FIB-4 index, and MELD score (AUC=0.69 for each). The probability of having CSPH increased about livefolds for each standard deviation increase in LSN score (OR: 5.36, 95%CI: 1.69, 17.0; p<0.004).

Conclusion: The CT-based LSN score accurately detects CSPH in patients with CLD.

Author Disclosures:
A. Smith: Owner; Liver Nodularity LLC. Patent Holder; Liver Nodularity LLC.

B-1474 09:02
Clinical significance of pancreatic steatosis: association between pancreatic exocrine insufficiency and organ fat content
M.-L. Kromrey1, N. Friedrich1, R.-T. Hoffmann1, R. Bälow2, U. Motosugi3, J.-P. Köhn4, Greifswald/DE; 2Dresden/DE; 3Yamanashi/JP

Purpose: To investigate the relationship between pancreatic fat content and depression of pancreatic exocrine function.

Methods and Materials: In 1,458 volunteers (681 men, mean age 52.8 years) receiving whole-body MRI, pancreatic fat content was quantified by proton-density fat fraction (PDFF). Additionally, hepatic, visceral and subcutaneous fat volumes were determined. Association of organ fat content with exocrine pancreatic function measured by faecal elastase (normal function: >200 µg/g, n=1,319; moderate restriction:100-200 µg/g, n=110, manifest restriction: <100 µg/g, n=29) was performed using age, gender and BMI-adjusted linear regression models.

Results: Mean pancreatic fat content was significantly higher in subjects with decreased compared to normal faecal elastase levels (3.9±4.9% vs 7.3±0.59%, p<0.01, overall mean: 7.5±0.78%). An inverse association between pancreatic fat and enzyme levels was detected for the whole study population (beta: -7.19 [standard error: 1.39]; p<0.01) as well as in the subgroup with normal function (-4.26 [1.32]; p<0.01), whereas subjects with restriction in exocrine pancreatic function displayed just a trend towards an inverse relation (-1.28 [0.84]; p=0.13). Concerning other fat compartments, linear regression analyses showed no significant associations between hepatic, visceral or subcutaneous fat and faecal elastase.

Conclusion: An inverse relationship between pancreatic fat content and faecal elastase levels suggests an association of pancreatic steatosis with a restriction of pancreatic exocrine function.

Author Disclosures:
M.-L. Kromrey: Other; Kromrey ML received speaker fees from Siemens and Bracco. N. Friedrich: Other; Friedrich N received speaker fees from Siemens and Bracco. R. Bälow: Other; Bälow R received speaker fees from GE and Siemens. U. Motosugi: Other; Motosugi U received speaker fees from Siemens and Bracco. J.-P. Köhn: Other; Köhn JP received speaker fees from Siemens and Bracco.
DKI. A model with combined MRI variables was proposed for characterisation of intestinal strictures, and its performance was validated on 9 new CD patients.

Results: Histologic inflammation scores significantly correlated with T2WI hyperintensity ($r=0.477$, $P<0.001$), ADC ($r=-0.226$, $P=0.044$) but not with enhancement pattern ($r=0.037$, $P=0.746$). A strong correlation of histologic fibrosis scores with Kapp (0.604, $P=0.001$) was achieved. T2WI ($r=0.491$, $P<0.001$) and ADC ($r=-0.270$, $P=0.015$). Using T2WI hyperintensity as a predictor, conventional MRI could differentiate mild from moderate-to-severe inflammation with a sensitivity of 0.970 and a specificity of 0.479. Kapp enabled to identify non-mild from moderate-severe fibrosis with a sensitivity of 0.959 and a specificity of 0.781. The MRI stratified classification that combing of T2WI hyperintensity and Kapp moderately agreed with the pathological classification ($k=0.507$, $P<0.001$). In the validation set, there was a moderate agreement between the MRI and the pathological classification ($k=0.530$, $P<0.001$).

Conclusion: Combination of DKI and conventional MRI helps to characterise bowel strictures in CD patients.

B-1477 09:14

Perfusion fraction derived from IVIM-DWI may facilitate differentiation of moderate to severe inflammation in ulcerative colitis

J. Podgorška, K. Pasicz, E. Zagarowicz, A. Mrdz, B. Gołębiowski, P. Kus, J. Jasieniak, W. Skrzypski, A. Cieszanowski; Warsaw/PL (joogdo@gmail.com)

Purpose: To determine the efficacy of intravoxel-incoherent motion (IVIM) parameters in assessing the perfusion activity of ulcerative colitis in reference to histopathological examination.

Methods and Materials: In this prospective study 20 adult patients with ulcerative colitis underwent 3T magnetic resonance diffusion weighted imaging (DWI) with b-values of 0, 10, 30, 50, 100, 200, 500, 900 s/mm2 within 1-6 days of endoscopic evaluation with biopsies. The inflammatory activity of bowel segments (rectum, sigmoid, descending, transverse, ascending colon) was graded using a six-grade classification system for inflammation. IVIM-derived parameters (f, D and D*) calculated from ROIs placed within the bowel wall were correlated with the histopathologic score. T-test was used for comparison and ROC curve analysis was performed.

Results: In total 33 bowel segments were analysed. For comparison two data groups were created: inactive or mild activity (grade 0-2, n=23) and moderate to severe activity (grade 3-5, n=11). Statistically significant differences between both groups were found in f (mean = 0.19, SD = 0.09 and mean = 0.28, SD = 0.13, $P=0.024$; AUC = 0.723, specificity 0.82, sensitivity 0.67 for cut-off value 0.185) and D (mean = 1.34 x10$^{-3}$mm2/s, SD = 0.13 x10$^{-3}$mm2/s, $P=0.007$; AUC = 0.755, sensitivity 0.91, specificity 0.54, accuracy 0.66 for cut-off value 1.24x10$^{-3}$mm2/s). No significant difference was found in D*.

Conclusion: IVIM-derived perfusion fraction may facilitate distinguishing moderate to severe inflammation from less active or inactive disease in ulcerative colitis.

B-1478 09:18

Learning-based analysis of rectal cancer MRI radiomics for prediction of metachronous liver metastasis

M. Liang, X. Zhao; Beijing/CN (lm_1202@163.com)

Purpose: To use machine learning-based MRI radiomics to predict metachronous liver metastasis (MLM) of rectal cancer patients at baseline treatment.

Methods and Materials: This study retrospectively analysed 108 patients with rectal cancer (54 in the MLM and 54 in the non-metastasis group). Feature selection were performed in the radiomic feature sets extracted from images of T2WI and venous phase (VP) sequence respectively, and the combining feature set with 2058 combining features, respectively. Four-group models were constructed using the S optimal T2WI features (Model$_{S}$), the 8 optimal VP features (Model$_{VP}$), the combined 13 optimal features (Model$_{combined}$), and the 22 optimal features selected from 2058 features (Model$_{optimal}$). In Model$_{S}$, the LR was superior to the SVM algorithm ($P=0.0303$). The Model$_{combined}$ using the LR algorithm showed the best prediction performance ($P=0.001-0.0081$), with accuracy, specificity, sensitivity, and AUC of 0.80, 0.93, 0.67, and 0.87, respectively.

Conclusion: Radiomics models based on baseline rectal cancer MRI has high potential for MLM prediction, especially the Model$_{optimal}$ using the LR algorithm. Moreover, except for Model$_{VP}$, the LR was not superior to the SVM algorithm for model construction.

B-1479 09:22

MRI-detected extramural vascular invasion is a strong risk factor in predicting distant metastasis in rectal cancer

Purpose: Extramural vascular invasion (EMVI) has been recommended as an independent prognostic factor for poor overall survival rate in rectal cancer. We aimed to evaluate the MRI-detected EMVI (mEMVI) in predicting (synchronous) distant metastasis in T3 rectal cancer.

Methods and Materials: Histopathologically confirmed T3 rectal cancer patients who underwent preoperative MRI without previous treatment were enrolled for this study. Two blinded radiologists evaluated the location of the tumour, the degree of mesorectal extension and mEMVI. mEMVI was further categorized into EMVI positive and EMVI negative in T2-weighted image using mEMVI scoring system. The results along with other clinical characteristics (age, sex, tumour location, MRI detected the distance of mesorectal extension, lymphatic invasion, perineural invasion, mEMVI score and CEA) were then correlated with synchronous metastases to determine the risk factors.

Results: Among 180 patients, 38 patients were confirmed to be mEMVI positive, 142 patients mEMVI negative. There were a total of 34 patients with synchronous metastases in mEMVI positive and 9 were mEMVI negative. Three factors were significantly associated with synchronous metastasis: mEMVI ($P=0.001$; $OR=8.665$), histopathological lymphatic invasion ($P<0.001$; $OR=12.940$) and preoperative CEA ($P=0.026$; $OR=4.124$). mEMVI score 4 was more likely for synchronous metastasis ($P=0.044$; $OR=9.429$) than mEMVI score 3 in rectal cancer.

Conclusion: There is an intimate relationship between mEMVI and synchronous metastasis in rectal cancer. mEMVI positive is an independent risk factor for synchronous distant metastasis in rectal cancer. mEMVI score 4 is a strong risk factor for synchronous metastasis than mEMVI score 3 in rectal cancer.

B-1480 09:26

Deep and high-resolution T2WI-volumetry association with lymphovascular invasion and N-stages in resectable rectal cancer

X. Chen, H. Li; Chengdu/CN (20shtenbasei@163.com)

Purpose: To determine whether diffusion-weighted imaging (DWI)-volumetry and high-resolution T2-weighted imaging (T2WI) MR-volumetry could predict lymphovascular invasion (LVI) and N-stages in resectable rectal cancer.

Methods and Materials: 50 consecutive patients with rectal cancer who underwent radical surgery in 1-week after DWI and high-resolution T2WI were retrospectively identified. Gross tumor volume (GTV) was evaluated on DWI and high-resolution T2WI. Univariate and multivariate analyses were performed to determine whether GTV could predict LVI and lymph node metastasis (LNM). Mann-Whitney U test was performed to compare GTV among N-stages. Cutoffs of GTV were investigated using area under the receiver operating characteristic curve (AUC) analysis for predicting LVI and N-stages.

Results: DWI-GTV and T2WI-GTV increased with LVI ($r=0.750$ and 0.710, $P<0.001$ respectively) and increasing of N stage ($r=0.780$ and 0.755, $P<0.001$ respectively). Univariate analysis showed DWI-GTV and T2WI-GTV could predict LVI ($P<0.001$). Multivariate analyses indicated only DWI-GTV as an independent risk factor of LVI ($P=0.005$, odds ratio=1.207) and LNM ($P=0.005$, odds ratio=1.420). The Mann-Whitney U test showed DWI-GTV and T2WI-GTV could distinguish N0 from N1, N0 from N1-2, N0-1 from N2 ($P<0.001$). DWI-GTV could predict LVI (cutoff,11.05cm2 AUC=0.899) and distinguish N0 from N1 (cutoff,10.86cm2 AUC=0.865), N0-1 from N1-2 (cutoff,10.46cm2 AUC=0.934), N0-1 from N2 (cutoff,17.7cm2 AUC=0.932). T2WI-GTV could predict LVI (cutoff,13.74cm2 AUC=0.877) and distinguish N0 from N1 (cutoff, 12.25cm2 AUC=0.827), N0-1 from N2 (cutoff, 13.36cm2 AUC=0.911), N0-1 from N2 (cutoff, 20.43cm2 AUC=0.927).

Conclusion: High-resolution T2WI-GTV and DWI-GTV of resectable rectal cancer were correlated well with the LVI and LNM, but the latter is a potentially more promising non-invasive technique that can help predict the preoperative LVI and distinguishing N-stages.

B-1482 09:30

Prediction of gastric and esophageogastric junction cancer response to neoadjuvant treatment by functional imaging with PET

J. Kruk-Szafronko, W. Krupski, T. Skoczylas; Lublin/PL (siakruk@wp.pl)

Purpose: The Perfusion Computed Tomography (P-CT) exam has shown encouraging results for prediction of tumor response to chemotherapy (CHT) and radiochemotherapy (CRT) in gastric and esophageogastric junction cancer.

Scientific Sessions
We studied the course of perfusion parameters values changes in patients treated with neoadjuvant treatment (CHT and RCT). The aim of this study was to prospectively evaluate these findings by using functional perfusion parameters.

Methods and Materials: 59 patients with gastric cancer qualified for systemic treatment (36 patients received chemotherapy and 23 patients received radiochemotherapy) were involved in to P-CT exam. Study protocol involved baseline P-CT exam before neoadjuvant therapy and P-CT after neoadjuvant therapy before surgical treatment. Perfusion-CT exam examined the following parameters: Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT) and Permeability Surface (PS). Positive response to neoadjuvant treatment was defined as tumor size reduction 25% or more.

Results: Responders showed a higher baseline BF and BV value than non-responders and showed statistically significant (p<0.05) BF and BV decrease after therapy. Linear regression of tumor size reduction and perfusion parameters showed significant positive correlation between responders' PS (p<0.05) value and tumor size reduction after neoadjuvant therapy. Linear regression showed significant negative correlation between the baseline MTT value (p<0.05) and tumor size reduction after neoadjuvant therapy.

Conclusion: P-CT revealed a positive prediction value of P-CT in early responders and non-responders patients identification. A full evaluation of gastric cancer treatment should include P-CT exam as a standard procedure.

SS 1814
CT and professional issues in radiography
Moderators: N.N.
J.M. Nightingale; Sheffield/UK

B-1483 09:34
Add value of MRI to endoscopic and endosonographic response assessment after neoadjuvant chemoradiotherapy in oesophageal cancer: a pilot study
S.E. Vollenbrock, J.M. van Dieren, F.E.M. Vonken, S.T. van Turenhout, L.L. Peppelenbosch-Kodach, K.J. Hartemink, B.M.P. Aleman, R.G. Heits-Tean, A. Bartels-Rutten; Amsterdam/NL (s.vollenbrock@nikl.nl)

Purpose: In order to select oesophageal cancer patients after neoadjuvant chemoradiation (nCRT) for organ-preserving treatment instead of surgery, complete response (CR) assessment must be accurate. As endoscopic and endosonographic assessment with biopsies of the primary tumour area and fine needle aspiration (FNA) of lymph nodes is known to result in a number of false negatives, our aim is to determine the added value of MRI.

Methods and Materials: Twenty-two patients with locally advanced oesophageal cancer underwent MRI (1.5 T, T2W+DWI; b-values 0-200,800 s/mm²), endoscopy with biopsies and endosonography with FNA after nCRT. One radiologist scored MRIs using a 5-point score (1=definitely CR, 2-probably CR, 3=inconclusive, 4=probably residual tumour, 5=definitely residual tumour). Histopathology of the resection specimen was the reference standard (Mandard tumour regression grade 1=complete response, 2-5=residual tumour). Sensitivity and specificity of residual tumour detection were calculated for endoscopy-endosonography, and for endoscopy-endosonography including MRI.

Results: Three (14%) of 22 patients achieved a pCR. Endoscopy with biopsies and endosonography with FNA found residual tumour in 9 of 19 patients with residual disease (sensitivity 47%). After adding MRI, 17 of 19 residual tumours were assessed correctly (sensitivity 89%). All complete responders had negative endoscopic biopsies (specificity 100%); one was incorrectly assessed as residual tumour on MRI (specificity 67%).

Conclusion: The addition of MRI to endoscopic and endosonographic response assessment improves detection of residual tumour after nCRT in oesophageal cancer patients.

B-1484 09:38
Multiparametric combined FDG-PET/CT and MR imaging to predict response to chemoradiotherapy in rectal cancer: whole tumour versus sub-volume analysis
N.W. Schurink, M. Berbee, J.J.M. van Griethuysen, W. van Empt, M. Maas, M.J. Lahaye, F.C.H. Bakers, R.G.H. Beets-Tan, D.M. Lambregts; Amsterdam/NL, Maastricht/NL (n.schurink@nikl.nl)

Purpose: To assess the individual and complementary performance of quantitative parameters from pre-treatment multiparametric MRI and FDG-PET/CT to predict treatment response in rectal cancer.

Methods and Materials: A pilot group (n=20) underwent multiparametric MRI (T2W + DWI; b=0, 100, 500, 1000) and FDG-PET/CT before neoadjuvant treatment + surgery. Images were anatomically co-registered using rigid + non-rigid registration. Whole-tumour volumes were segmented on T2W-MRI and transferred to the other modalities/sequences; each tumour was additionally divided into 7x7x7mm³ sub-volumes. The following parameters were calculated per-tumour and sub-volume: T2-texture (uniformity/entropy), T2-signal intensity (SI), ADC (mean/max/median/10th and 90th percentile), SUV (mean/max/median), and CT-HU. Performance to predict poor response (Mandard TRG3-5) vs. good response (TRG1-2) was calculated using ROC analysis for [1] each individual parameter (whole-tumour), [2] multiparametric combination of the 5 best-performing parameters (whole-tumour), and [3] the proportion (%) of ‘poor-response’ sub-volumes within the tumour. Sub-volumes were defined as ‘poor response’ when ≥4 (out of 5) parameters within that sub-volume were indicative of TRG3-5, using a cut-off derived from dichotomisation by median split.

Results: Best single predictive parameters were T2-uniformity (AUC 0.78), T2-SI (AUC 0.70), ADCmax (AUC 0.76), SUVmax (AUC 0.78) and SUVmean (AUC 0.73). Combined multiparametric performance (whole-tumour) was AUC 0.91. The proportion of ‘poor-response’ sub-volumes resulted in AUC 0.74.

Conclusion: Multiparametric analysis of quantitative MRI and FDG-PET/CT data has potential added value to predict response to neoadjuvant treatment. If there is a potential benefit for performing sub-volume (or voxel-wise) analysis, this needs to be established by further and larger studies; with our current method, we have so far not demonstrated a clear added value.
B-1487 10:38
Physicians knowledge and perceptions of radiation dose and inherent risks in computed tomography examinations
M. Gharbi, F. Aouni, H. Lamoun; Tunis/TN (manel.gharbi88@yahoo.fr)

Purpose: Integrating CT into routine care has improved patient health care dramatically. Despite these great medical benefits, there is concern about the potential radiation-related cancer risk. Consequently, dose reduction and radiation protection is a topic of scientific concern. The purpose of this study was to evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients.

Methods and Materials: This descriptive study was performed from the 22nd January to the 12th February 2018 at the military hospital of Tunis. A questionnaire was distributed to all clinician on medical staff. Several questions related to their prescription pattern and their knowledge of radiation protection.

Results: We identified 94 physicians. 73 of them (77.7%) responded to our questionnaire. The mean of professional experience was 8 years. 42.5% of physicians prescribing CT examinations were interns and resident and 57.7% were senior doctors. While 80.8% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 16.4% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were vastly underestimated. Finally, only 19.2% of physicians had received training with regards to radiation protection.

Conclusion: In the present study, knowledge gaps concerning computed tomography radiation doses and associated health risks are evident. It seems that only the attendance of a radiation protection course has a positive influence on the physician’s level of knowledge.

B-1489 10:54
Adaptive statistical iterative reconstruction for computed tomography of the spine
M. Tsuda; Yokano/JP (joey.no.1@hotmail.co.jp)

Purpose: To evaluate the effect of adaptive statistical iterative reconstruction technique for sagittal CT of the spine.

Methods and Materials: An improved adaptive statistical iterative reconstruction algorithm (ASiR-V) was used in this study. Sagittal planes of all images were reformatted to 2.0 mm thickness, and were reconstructed using filtered back projection (FBP), blending 50%, and 100% levels of ASiR-V (ASiR-V_{0.5}, ASiR-V_{1.0}, respectively). Subjective image quality was assessed on a five-point scale by three radiographers. We assessed the images of 32 patients. For objective assessment, modulation transfer function (MTF) was measured using a custom phantom to estimate z-axis resolution. Noise power spectrum (NPS) was measured using a cylindrical water phantom and 2.0-mm thick axial images to evaluate image noise.

Results: There were significant subjective differences in each reconstruction; ASiR-V_{0.5} was scored the highest. There were no enhancements in the degradation of z-axis resolution using ASiR-V in all contrast images. NPS curves demonstrated that ASiR-V was less efficient for reducing image noise.

Conclusion: ASiR-V effectively improved image noise and image quality for sagittal CT of the spine.

B-1490 11:02
CT scan chest: a new approach to lung cancer
A. Bernardo, F. Gonçalves, M.O. Fernandes; Lisbon/PT (abernardo@hospitalaldaluz.pt)

Purpose: To evaluate the evolution of the radiation’s dose reduction with the use of new technologies. Compare radiation dose’s applied in TC Thorax screenings with the European Guidelines on Quality Criteria for Diagnostic Radiographic Images (EGQCDRI).

Methods and Materials: A sample of 157 cases was used - 122 performed with the SOMATOM Force CT (Siemens Healthcare AG) and 35 performed with the SOMATOM Emotion 16 TC (Siemens Healthcare AG); Synyo Plaza (Siemens Healthcare AG) was used to consult images and the radiation’s dose. Results were recorded on Excel sheets, as well as the respective means and the standard deviations. We compared the results obtained with the 1-Student statistical test between the TC low dose’s of SOMATOM Emotion 16 and SOMATOM Force using the SPSS program. Radiation dose values were compared between the TC SOMATOM Force and the reference values present in EGQCDRI.

Results: It was verified that there is a statistically significant difference between the parameters of radiation doses between the different equipment used (p <0.0001), within a reliable range of 95%, nonetheless maintaining diagnostic quality. When comparing the radiation doses of the CT SOMATOM Force with the ones of EGQCDRI, we can see that they are similar in value.

Conclusion: We concluded that new technological approaches about CT have brought a significant radiation’s dose reduction, being nowadays equated to the RX Thorax. Several parameters may have an influence on the final image quality and should be adjust to guarantee diagnostic quality on this type of study.

B-1491 11:10
Prophylaxis of contrast-induced nephropathy in computed tomography procedures by use of low-osmolality contrast media and good hydration
H.H. Mansour; Gaza/PS (husam-RT2007@hotmail.com)

Purpose: To settle the prophylaxis strategy for reducing the effect of IV contrast on the development of post-CT examination acute injury nephropathy.

Methods and Materials: Cross-sectional study for a total of 60 patients (32 males and 28 females) who received intravenous contrast agents during CT procedures over a period of one month. CIN was defined as a relative increase of >25% or an absolute increase of >0.5 mg/dL in serum creatinine levels 3 days post-CT procedure. Patients who undergo intravenous contrast CT procedures were included in this research to ensure good preparation and follow-up.

Results: Paired t test was used to study the differences between urea and creatinine pre- and post-contrast media. The test revealed no statistically significant differences between urea pre-exam (mean= 35.3, SD = 15.2) and post-CT with contrast media (mean= 33.5, SD = 25.4) with t = 0.52 and p value= 0.608. Moreover, the study shows that no statistically significant differences between creatinine pre-CT test and post-contrast media CT (mean= 0.96, p value = 0.48) and pre-CT test with contrast media (mean= 0.95, p value = 0.48) with t = 0.52 and p value= 0.608.

Conclusion: Low-osmolality contrast media and good hydration pre- and post-IV contrast administration are the preventive approaches to a declaration of CIN.

B-1492 11:18
Eye lens protection: new perspective
A.J.C.D. Cunha; Bragança/PT (atiincco@gmail.com)

Purpose: Cataract is, according to World Health Organization (WHO), an eye lens opacity which prevents clear vision, being responsible for 51% of world blindness, affecting 20 million people (2010). Most of the cases are related to aging and other chronic processes or may develop after ophthalmic surgeries. Each year, modern optometry shows the increase of cataract surgeries, being a dramatic consequence to the aging of population which may need this procedure. Cataract surgery is a time consuming and expensive procedure. It seems that there is a very important role on people daily routine, as they seek for a healthy way of life.

Methods and Materials: Ionizing radiation (IR) is an important source in the generation of free radicals such as superoxide radical and hydroxyl radical, among the various physical/chemical agents; interacts with cells and produces cytotoxic effects. So IR is a proven human carcinogen and cataractogen. The crystalline lens of the eye is one of the most radiosensitive tissues in the body. A literature review demonstrates that evidence and the antioxidant and radioprotective effects of several food components, such as Propolis and its component Cafeic Acid Phenethyl Ester (CAPE).

Results: What if we could merge eye lens radiation protection and food? Could it be possible to prevent or reduce radiation-induced cataract by changing food habits or introducing new kinds of foods on our daily routines? Studies shows that after irradiation, cataract rate drop 30 % in Propolis and 40 % in CAPE.

Conclusion: In a near future we will prevent the occupational exposure to ionizing radiation with not only individual protection equipment but also with individual protection food, changing the radiation protection as we know it.

B-1493 11:26
Development of 3D printed quality control tool for X-Ray beam alignment and collimation evaluation
M.V.L. Oliveira, J. Barros; Salvador/BR (marctusradiology@gmail.com)

Purpose: To develop a 3D printed low-cost tool for evaluation of X-ray beam alignment and collimation.

Methods and Materials: The study was divided in two phases: 1) 3D printed prototype development and 2) Comparison with commercial test object. A 3D printer was used for developing two objects, with 40% of infill and printed with two filaments: PLA (Polyactic acid) and ABS (acrylonitrile butadiene styrene). Two X-ray equipment (SIEMENS, model MULTIX B) were used for Beam Collimation and Beam Alignment tests. For validation, it was compared with a commercial Collimator / Beam Alignment Test Tool.

Results: The tests performed with the prototype and the standard tool showed deviation of ±1 cm between the light and radiation field. The Central Ray position was accurately found. The prototype was capable to prevent or reduce radiation between the rod and the metallic circle. The test of CR alignment held with a standard tool showed the axis perpendicularity of 1.5° while both prototypes presented less than 3°.

Conclusion: The prototypes proved to be an effective tool and easy to handle. The variety of printing materials and the ease on filament acquisition reflect the low cost of production.
B-1494 11:34
Methods and Materials: National survey was carried out in Portugal in order to establish national Diagnostic Reference Levels (DRL’s) per specific radiography and CT examinations involving all the societies and the government agency responsible for radiation issues.

Results: Data from 1590 standard patients submitted to radiography and CT was analysed. DRL’s for specific indications were defined for radiography: chest routine, pelvis arthroscopy, standing abdominal, lumbar spine without osteosynthesis material; and for CT: head, for stroke, chest routine, high resolution chest, abdomen for liver metastases and trunk. Significant differences were found for head CT trauma and stroke dose values. However no differences were founded in chest CT dose values for routine and high resolution CT.

Conclusion: The majority of Portuguese DRL’s are according to the literature.

B-1495 11:42
Purpose: The programme's main aim was to increase research capacity for Radiography in the UK by formal one-to-one mentoring of radiography practitioners/novice radiographer researchers by senior members of the radiography research community.

Methods and Materials: Twelve mentoring pairs were recruited, matched and supported by mentoring training and three networking and evaluation events. A steering committee facilitated this scheme. An action research qualitative methodology was used and purposive sampling. Written reflective accounts of all mentees and mentors at the end of the 9-month project were collected and focus group discussion notes were kept. Informed consent and research ethics approval was sought at the beginning of the project. Data was analysed using thematic analysis. Descriptive statistics was also used to highlight overall results on key outcomes. This was a pilot study funded by the Society of Radiographers.

Results: The majority of mentoring pairs met their agreed targets; This scheme was able to improve research capacity within radiography in all of the following categories: i) increase research outputs (abstracts, papers, presentations etc), ii) improve career prospects of Radiographer mentees and mentors discussed benefits, iii) enhance personal development. Mentees and mentors discussed benefits, presentations etc), ii) improve career prospects of Radiographer mentees and mentors. Findings were (1) people with dementia and carers can experience poor care in imaging departments and radiographers can find it difficult working with people with dementia. Radiographers need training about dementia, imaging services can improve their procedures and environment, and work in greater partnership with carers.

Conclusion: People with dementia and their carers can experience poor care in imaging departments and radiographers can find it difficult working with people with dementia. Radiographers need training about dementia, imaging services can improve their procedures and environment, and work in greater partnership with carers.

10:30 - 12:00 Room X

Vascular

SS 1815
Imaging of the thoracic aorta

Purpose: To report a new classification for aortic dissections (AD), based on a modified Stanford classification, to consider the aortic arch as a separate entity and integrate patterns influencing treatment strategy notably malperfusion syndrome (MPS). The proposed classification was evaluated in a large population of ADs.

Methods and Materials: All patients with proven de novo acute AD who were admitted to our hospital from 2005 to 2017 were included in this study. All pre-therapy CT angiographies were reviewed and reclassified using the new classification based on three types and four subtypes: Type: A, dissection involving at least the ascending aorta; Type B, dissection involving exclusively the descending aorta; and type C, dissection involving the aortic arch with/without descending aorta. Subtype: 0, absence of MPS; 1, dynamic MPS; 2, static MPS; 3, static and dynamic MPS.

Results: A total number of 228 consecutive patients were included in the study. According to the new classification, AD were distributed as 153 type A, 50 type B (38B0, 5B1, 6B2, 1B3) and 25 type C (18C0, 6C2, 1C3). The new type represented 11% of all ADs. MPS was present in 28% of type C. Treatment strategies in type C included endovascular interventions and surgery in 52% and 12%, respectively.

Conclusion: The new classification is easy to use and feasible in a large group population. It should be helpful driving the decision making process and especially in integrating the latest development in trans-catheter therapies.

B-1498 10:47
Application value of dual-source CT combined with intelligent modulation and iterative reconstruction in aortic dissection imaging

Purpose: To explore the clinical application value of second-generation dual-source CT combined with intelligent modulation and iterative reconstruction in emergency aortic dissection imaging.

Methods and Materials: 40 emergency patients with clinical suspected aortic dissection were included in this study. Conventional scanning was performed in the conventional group, and large-pitch intelligent modulation and iterative reconstruction were performed in the control group. The mean CT value, mean noise, signal noise ratio, contrast noise ratio, effective radiation dose, image quality and aortic root image quality were evaluated and analyzed.

Results: 40 patients successfully completed CT aortic dissection imaging. There was no difference in image quality between the conventional group and the control group (P=0.05). The quality of aortic root images in the control group was better than that in the conventional group, and the difference was statistically significant (P<0.05). The mean CT value and image quality of aorta in the conventional group were slightly higher than those in the control group. However, SNR and CNR in the control group were higher than those in the conventional group, and the difference was statistically significant (P<0.05). The radiation dose of the conventional group was significantly higher than that of the control group, the difference was statistically significant (P<0.05).
Methods and Materials: We retrospectively analysed 23 exams performed using cardio-synchronized CTA (retrogressive gating) in suspected acute aortic syndromes or in chronic thoracic dissections. We measured the total vessel areas (TOTA), and the areas of the true (TLA) and false lumen (FLA) at 2 levels below the isthmus and 3 cm above the diaphragm. We made measurements in 2 arterial phases (40% and 75% of the cardiac cycle) and in the venous one (no cardio-synchronized acquisition).

Results: In the venous acquisition the average TLA in mm2 (SD) was, respectively, 445 (278) and 410 (267) in the proximal and distal points (intermediate values compared to 40% and to 75% phases). The TLA average (SD) in the 40% and 75% phases was, respectively, 462 (283) and 419 (278) in the proximal site; 436 (269) and 388 (267) in the distal site. It was significantly greater in the 40% vs 75% phase both in the proximal site (mean difference 42.9, 95% CI: 23.8-62.0, p = 0.001) and in the distal point (mean difference 47.4, 95% CI: 30.7-64.0, p <0.0001). No significant differences emerged for the TOTA.

Conclusion: We demonstrated that intimal flap dynamics and luminal variations (essential aspects in the aortic dissection) are significantly affected by the various phases of the cardiac cycle. These data lead to think a possible role of caroot-synchronized CTA in follow-up of DTA dissection.

B-1500 11:03
Thoracic aortic fluid dynamics in bicuspid valve patients: correlations with valvular morphology using 4D-flow magnetic resonance imaging
G. Pambianchi, N. Gaia, L. Carbone, F. Cilia, F. Catapano, M. Franccone, C. Catalano; Rome/IT (giacomo.pambianchi@gmail.com)

Purpose: Evaluate the impact of bicuspid aortic valve (BAV) morphology on the transvalvular fluid flow pattern, aortic flow turbulence and wall shear stress (WSS), using cardiac magnetic resonance imaging (CMR) and 4D-flow imaging.

Methods and Materials: Eighteen healthy BAV patients (aortic diameters45mm, lack of severe valvular disease) were studied by CMR on a 3.0T unit (Discovery, GE Healthcare), including cine-MR sequences acquired orthogonal and parallel to the aortic root, contrast-enhanced MR angiography and 4D-flow imaging. In each patient we assessed, valvular morphology (valve phenotype, leaflet length, leaflet asymmetry index), valvular flow characteristics (peak flow velocity, flow jet angle, flow displacement), turbulent flow within the ascending aorta (systolic-to-diastolic reversal ratio, SFRR) and WSS (total, axial and circumferential) at four different levels of the ascending aorta. All data were correlated by bivariate correlation and linear regression analyses.

Results: RL-BAV patients (n=12), RN-BAV (n=4) and RN/RL-BAV (n=2) demonstrated peculiar phenotype-related flow patterns. Direct correlations between leaflets asymmetry index, flow jet angle (r=0.603, p=0.008) and flow displacement (r=0.712, p=0.001) were observed. Axial WSS was highly related to flow displacement (r=0.74, p=0.004) and SFRR (r=0.758, p=0.001). RN-BAV patients showed the greatest ascending aorta diameters (p=0.008), higher degree of flow displacement (p=0.022) and SFRR (p=0.009).

Conclusion: BAV phenotype and leaflets asymmetry are strongly involved in aortic root flow eccentricity generation, in particular, flow displacement and flow angle. These parameters are also correlated to the downstream flow pattern, WSS, SFRR and aortic diameter. A deeper knowledge of the relationship between valve morphology and aortic flow dynamics could ameliorate risk stratification strategy in BAV patients.

B-1501 11:11
Follow-up of thoracic aortic diseases with concurrent evaluation of coronary arteries using wide-detector-coverage CT with low-dose protocol
A.D. Annoni, M.E. Mancini, A. Formenti, G. Mucoggiuri, M. Guglielmo, S. Musihaq, G. Pontone, M. Pepi, D. Andreini; Milan/IT (andrea.annoni@cm.it)

Purpose: To assess evaluability, image quality, radiation exposure and coronary evaluability of a submillisievert CT angiography (CTA) scan protocol of thoracic aorta in follow-up of patients with thoracic aorta diseases.

Methods and Materials: We enrolled 80 patients (32F; BMI 25.4±2.97 kg/m²) referred to our hospital for CTA of the thoracic aorta that underwent CT with 80 kVp (retrogressive iterative reconstruction were 80mm and 40ml of contrast medium). Image quality was assessed using a semi-quantitative four-point Likert scale, by two independent readers. For each patient, attenuation, image noise, contrast-to-noise ratio (CNR) were measured at different aortic levels and at the level of the proximal coronary arteries. Mean effective dose (ED) was calculated.

Results: Mean aortic attenuation for ascending aorta, aortic arch and descending aorta were above 600HU. Mean image noise and CNR for ascending aorta, aortic arch and descending aorta were 38.5±6.2, 35.0±5.7, 1 and 36.9±5.1, respectively, and 17.1±3.3, 18.6±2.0 and 16.8±2.5, respectively. Mean luminal attenuation of proximal coronary arteries was above 360 HU. 459 out of 960 coronary segments were classified as good image quality. Coronary evaluability (number of coronary segments evaluable/total number of coronary segments) in a segment-based model was 83% (790/960 segments). Mean ED was 0.81±0.29mSv.

Conclusion: 80kV CTA of the thoracic aorta using 160mm detector coverage and ASIR-V allows low-dose image quality exams with complementary coronary tree evaluation. Our results gain in importance considering the use of CT for serial follow-up of aortic diseases.

B-1502 11:19
EEG-gated MR angiography at 3T for follow-up after aortic surgery involving the ascending aorta
A. Busse, C. Neßelmann, A. Hoffman, P.M. Dohmen, M.-A. Weber; F.G. Meinel, Anke.Busse@med.uni-rostock.de

Purpose: To evaluate the feasibility, image quality and diagnostic yield of EEG-gated MR angiography in the post-surgical follow-up of patients after aortic surgery involving the ascending aorta.

Methods and Materials: In this study, we retrospectively analyzed a cohort of 19 patients (median age 60 years, range 38-79 years), who underwent MR angiography for follow-up imaging after replacement of the ascending aorta. Our MRI protocol consisted of an EEG-gated contrast-enhanced MR angiography performed at 3T. Mean examination duration was 24 minutes. All examinations were analyzed by two readers in consensus for image quality at various levels of the aorta on a five-point scale ranging from 1 (non-diagnostic) to 5 (excellent). Diagnostic findings were recorded. We also analyzed whether additional down-stream imaging was performed within one month of the MRI examination.

Results: Subjective image quality was rated as “sufficient” (score 3.1 ± 1.0) for the aortic root and as good to excellent for the ascending aorta (score 4.6 ± 0.7), the aortic arch (4 ± 0.8), supra-aortic branches (4.7 ± 0.6) and descending aorta (4.6 ± 0.7). In eight cases (42%), a clinical relevant or new pathology was detected. One patient of this study population underwent re-evaluation with CT within one month of the MRI examination after a repeat surgical procedure.

Conclusion: EEG-gated MR angiography at 3T is feasible and yields good image quality for the detection of post-operative complications after replacement of the ascending aorta. This technique may serve as alternative to CT particularly in younger patients with repeated follow-up.

B-1503 11:27
Real-time patient-specific scan initiation for CT of the thoracic aorta: impact on image quality
F.R. Schwartz, J.C. Ramirez Giraldo, R. Gutjah, D. Boll, D. Marin, L. Hurwitz, Durham, NC/US; Nürnberg/DE; Basle/CH (thodesiginatoriotheaann.schwartz@duke.edu)

Purpose: To assess impact of real-time modulation of scan initiation based on patient-specific haemodynamics on contrast in the thoracic aorta on MDCT.

Methods and Materials: This is a HIPAA-compliant, IRB-approved GI project. Exams were performed on a DS-MDCT scanner (120 kVp, 65-75 mL at 4 ml/sec). Contrast administration was monitored in the ascending aorta (thoracic aorta, TA) and descending aorta (thoraco-abdominal aorta, TAA). The delay prior to initiation of diagnostic scan was modulated by a real-time patient-specific (RTPSM) software, incorporating time to threshold and the slope of the enhancement curve. 120 patients (cohort 1) were scanned using RTPSM triggering of scan delay for TA and TAA exams. A reference cohort of 30 patients (cohort 2) was identified from the same scanner (preceding 12 months), using a fixed diagnostic delay (FD). Patient demographics, average aortic HU values and coefficients of variance (COV) at 1-mm increments from the aortic valve through the diaphragm were collected. Descriptive statistics and Student’s t-tests were applied.

Results: Protocol distribution was 61 and 39% (TAA/TA) in cohort 1 and 60/40% (TAA/TA) in cohort 2. Average scan delay was significantly longer for TAA (12.4 vs 11 sec; p<0.01) and TA (12 vs 9 sec; p<0.01) exams using RTPSM. Average HU values were significantly higher in the RTPSM cohort (403± 31.8 vs 372± 38.1 HU; p<0.01) and COV was significantly reduced using RTPSM (8.1 vs 11.6%; p<0.01).
B-1504 11:35

A preliminary study of CT spectral imaging on patients with aortic dissection using revolution CT

B. Wen; Beijing/CN (wwwyynet@163.com)

Purpose: To study the application of CT spectral imaging on patients with aortic dissection.

Methods and Materials: 30 aortic dissection patients were studied: 15 patients were scanned by spectral imaging protocol and 15 patients by routine protocol. The final systole and diastole phases were determined for each study and the maximum aortic diameter (d) and cross-section area (S) of the aorta were evaluated. Distensibility (D) in d1-2, concentration 300 mg/ml. The final systole and diastole phases were reconstructed using CTA spectral imaging data and were compared with real non-contrast-images. Then the subjective evaluation of image quality between the best non-contrast images and routine datasets was performed by two radiologists independently, and the radiation dose was compared in the two groups.

Results: 480 aortic segments were evaluated with good consistency of two radiologists. In the spectral imaging series, the 40-70 keV reconstruction showed superior SNR levels (+44.3, +33.7, +22.3, +9.1 %) and CNR levels (+365.5, +248.8, +116.1, +1.2%) compared to routine scans. Combined with the subjective evaluation of true and false lumen displays, the 70 keV reconstruction image was considered as the best monochromatic image. The image quality between spectral imaging and routine scans at nearly all aortic segments had no significant difference. The virtual non-contrast images were comparable to the real non-contrast images. The DLP for spectral imaging was lower than the comparison group.

Conclusion: The CT spectral imaging on aortic dissection patient has good clinical application value with reduced radiation dose.

B-1505 11:43

ECG-gated CTA of thorax aorta with extended data postprocessing in ascending aorta aneurysm diagnosis

A. Skripnik, D. V. Pokin, R. Khromchuk, G. E. Tufanov, O. Mozeeva, O. Irtyug, V. Uspenskiy, E. Malev, P. Murtazalieva; St. Petersburg/ RU (skripnikalexey@mail.ru)

Purpose: To develop a computed tomography angiography (CTA) scanning protocol with extended data postprocessing for the evaluation of the aortic wall elongation in patients with an expansion of the ascending aorta (AA) of varying degrees.

Methods and Materials: 43 patients (26 men) aged 42 to 76 years with a pre-established diagnosis of AA aneurysm were examined. ECG-gated CTA was performed after bolus intravenous injection of 100 ml of contrast agent (iodine concentration 300 mg/ml). The final systole and diastole phases were determined for each study and the maximum aortic diameter (d) and cross-sectional area (S) of the aorta were evaluated.

Results: The patients were divided into three groups, according to the AA diameter, measured during the diastole phase. The 1st group included 20 patients with d<45 mm (mean 41.0±1.9 mm), the 2nd group - 9 patients with d 45-50 mm (mean 47.0±1.16 mm); 3rd group - 14 patients with d 50-55 mm (mean 52.78±2.67 mm). Mean values of S in the 1st, 2nd, and 3rd groups were 1289±116, 1703±75, and 2096±249 mm², respectively. Distensibility (D) in d and S were calculated as: 1. D=(S1-S0)/S0; 2. D=(D1-D0)/D0; 3. D=(D1-D0)/S0; 4. D=(D1-D0)/S1; where D0 = D(1), D1 = D(2), S0 = S(1), S1 = S(2), D2 = D(3), S2 = S(3), D3 = D(4), S3 = S(4).

Conclusion: There were no significant differences between volunteer and patient for neither the characteristics nor the PWV. Correlations were found between age and PWV in both aortic segments (proximal AO: r=.322, p=.042; descending AO: r=.361, p=.022). For tricuspid aortic valve (TAV) patients, a correlation was found between age at reconstruction and descending AO PWV (r=.796, p=.010).

Conclusion: The absence of significant PWV difference between volunteers and patients indicates that curative reconstruction does not result in AO wall stiffening. However, the correlation within TAV patients between the age at curative reconstruction and descending AO PWV suggests that a prolonged period of abnormal haemodynamic exposure may result in increased AO wall stiffening.

10:30 - 12:00 Room O

Musculoskeletal

SS 1810

Knee and muscle imaging

Moderators:
M. Nevalainen; Oulu/FI E. Springer; Vienna/AT

B-1507 10:39

Medial meniscal ossicle is associated with medial posterior root tear and ACL tear: a case-controlled multivariate SIMS study of 42 cases

A. Caudal1, G. Lefebvre2, D. Guenoun3, G. Corcos4, J.-F. Nisolle5, V. Vuillermi-Bodagh1, B. Vande Berg5,1, Nice/FR, 2Lille/FR, 3Marseille/FR, 4Paris/FR, 5Brussels/BE (caudalmaradine@yahoo.fr)

Purpose: To test the hypothesis that medial meniscal ossicle is associated with a posterior root tear.

Methods and Materials: The MRI and available radiographs of knees with a medial meniscal ossicle and of a sex- and age-matched control group were collected from 17 imaging centres. Two readers assessed only all SE T1-weighted images and available radiographs to detect the presence of a medial meniscal ossicle. Consensus reading was used as reference standard for the presence of a meniscal ossicle. Two other readers blinded to the presence of a meniscal ossicle by reading only the fat-saturated MR images assessed the presence of meniscal, ligament and cartilage lesions.

Results: After consensus reading, there were 42 knees with a medial meniscal ossicle in 39 men (43.77 yrs +/- 13.59) and 7 women (40.8 yrs +/- 6.1). The frequency of posterior root tear in the study group (62% and 78% for R1 and R2, respectively) was higher than that in the control group (11% and 4%, respectively) (p<0.04). There was no difference in frequency of medial posterior horn and body lesions. The frequency of ACL but not of MCL/PCL lesions was higher in the study group (p<0.007 and 0.003). The degree of cartilage degradation of the medial compared to the lateral femoro-tibial joint was higher in the study than in the control group (p=0.04 and 0.02).

Conclusion: There is a statistically significant association between medial meniscal ossicle and posterior root tear of the medial meniscus, ACL lesions and medial femoro-tibial cartilage degradation.

B-1508 10:47

Rupture of the anterolateral ligament in complete acute traumatic anterior cruciate ligament tear: new insights into acute pivot shift trauma to the knee

M.T. Mastio1, A. Duarte Vallejo2, J. Raya3, L. Jazrawi4, J.T. Bencardino5,1, Great Neck, NY/US, 2Bogota/CO, 3Great Neck, NY/US (masto@me.com)

Purpose: To evaluate the prevalence and association of anterolateral ligament (ALL) rupture with other meniscal and ligamentous injuries in patients with complete acute traumatic ACL tears.

Methods and Materials: 57 patients M45/F12, mean age 21 (range:13-34) with acute post traumatic ACL rupture who underwent ACLR between 2011 and 2015 were enrolled in this cohort. Preoperative MRI was reviewed by an experienced (20 years) MSK radiologist for: ALL rupture, MM tear, LM tear, posteromedial corner (PMC) injury, posterolateral corner (PLC) injury, MCL tear, and LCL tear. Odds ratios and their 95% confidence interval were used to
assess the associations of ALL with other injuries in the knee. To rule out confounding factors we used the Cochran Mantel Haenszel method in an analysis stratified by gender and BMI (normal, overweight).

Results: Most commonly reported lesions were of MM 63% and PLC 64%; ALL partial or complete tears and Segond avulsion fracture were reported in 63% of patients (49%). Anterolateral lesions were associated with a 10 fold decreased risk of MM tear (OR = 0.10, 95% CI[0.028, 0.39]) and a 4.6 fold increased risk of LCL tear (OR =4.68, 95% CI[1.28 17.1]). Neither gender nor BMI were confounding for the associations of ALL with MM and LCL tears. No other statistically significant associations were found.

Conclusion: Failure of the ALL during acute traumatic ACL rupture is often associated with tear of the LCL. This may have a protective effect over the MM minimizing the risk for early ACLR failure. Preserving the integrity of the MM during ACLR procedure may be crucial in reducing the risk for early ACLR failure.

Purpose: To identify and investigate the quantitative impact of confounders in muscle shear wave elasticity (SWE), a challenging field due to anisotropy and nonlinear viscoelasticity of muscle.

Methods and Materials: The influence of region of interest (ROI) size and location, excitation pulse, phantom stiffness, muscle fibre orientation and activation state on shear wave velocity (SWV) was assessed with a GE Logiq E9 in three different test objects: an isotropic elasticity phantom with four certified stiffness values (elasticity phantom), ex vivo porcine muscle (ex vivo porcine muscle) and stretched and relaxed calf muscles of healthy volunteers (volumetric measures) in parallel and transverse probe direction to the fibres. Regression analysis was performed to estimate the impact of examined confounders.

Results: For the elasticity phantom, SWV increased with greater stiffness (p<0.001), yet underestimated the true stiffness of all four nominal stiffness values. In healthy volunteers, the main variance-contributing factors were ROI location and size, software choice, muscle fibre orientation and activation state on shear wave velocity (SWV) was assessed with a GE Logiq E9 in three different test objects: an isotropic elasticity phantom with four certified stiffness values (elasticity phantom), ex vivo porcine muscle (ex vivo porcine muscle) and stretched and relaxed calf muscles of healthy volunteers (volumetric measures) in parallel and transverse probe direction to the fibres. Regression analysis was performed to estimate the impact of examined confounders.

Results: For the elasticity phantom, SWV increased with greater stiffness (p<0.001), yet underestimated the true stiffness of all four nominal stiffness values. In healthy volunteers, the main variance-contributing factors were ROI location and size, software choice, muscle fibre orientation and activation state on shear wave velocity (SWV) was assessed with a GE Logiq E9 in three different test objects: an isotropic elasticity phantom with four certified stiffness values (elasticity phantom), ex vivo porcine muscle (ex vivo porcine muscle) and stretched and relaxed calf muscles of healthy volunteers (volumetric measures) in parallel and transverse probe direction to the fibres. Regression analysis was performed to estimate the impact of examined confounders.

Results: For the elasticity phantom, SWV increased with greater stiffness (p<0.001), yet underestimated the true stiffness of all four nominal stiffness values. In healthy volunteers, the main variance-contributing factors were ROI location and size, software choice, muscle fibre orientation and activation state on shear wave velocity (SWV) was assessed with a GE Logiq E9 in three different test objects: an isotropic elasticity phantom with four certified stiffness values (elasticity phantom), ex vivo porcine muscle (ex vivo porcine muscle) and stretched and relaxed calf muscles of healthy volunteers (volumetric measures) in parallel and transverse probe direction to the fibres. Regression analysis was performed to estimate the impact of examined confounders.
Consecutive patients (26 male; mean age, 63 ± 15 years) who underwent abdominal multislice-CT for diagnostic purposes between 06/2017 and 07/2018. Multislice-CT acquisitions included total volumes of SM, VAT, and SAT with area-based measurements at eight predefined anatomical landmarks (levels B12/L1 to LS5/S1; level of the umbilicus; U; level of the radix of the superior mesenteric artery, MS) were studied using correlation coefficients.

Results: Statistical analysis revealed a strong association of area-based measures of adipose tissue compartments obtained at all studied landmarks with total VAT and SAT volume (VAT: all r>0.89, P<0.0001; SAT: all r>0.95, P<0.0001). The strongest associations with total SM volume were found for area-based measurements obtained at L2, L3, and MS (r>0.87, P<0.0001) and were further improved by normalization of volume to interest height (r>0.92, P<0.0001).

Conclusion: Area-based measurements of SM, VAT, and SAT at several anatomical landmarks are strongly associated with total compartment volumes and, therefore, allow for easy and simultaneous assessment of skeletal mass as well as amount of adipose tissue compartments from a single-slice image.

B-1514 11:35
Distribution patterns of intra- and extra-myocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from a population-based cohort

L.S. Kiefer1, J. Fabian1, S. Rospieszcz2, C. Storz2, C.L. Schlett2, F.W. Roemer1, K. Nikolaou3, F. Bamberg2, Tübingen/DE, Munich/DE, Heidelberg/DE, Erlangen/DE, Freiburg/DE (lena.kiefer@med.uni-tuebingen.de)

Purpose: To determine distribution patterns of total, intra- and extramyocellular lipids (IMCL and EMCL) by magnetic resonance imaging (MRI) in subjects with type 2 diabetes mellitus (T2DM), prediabetes and healthy controls.

Methods and Materials: Asymptomatic subjects from the general population were classified with T2DM, prediabetes or healthy controls and underwent multi-echo Dixon MRI (TR 8.90ms, six echo times, flip angle 4°). Total myosteatosis, IMCL and EMCL were quantified as proton-density fat fraction (PDFF) in abdominal skeletal muscle compartments using a standardized segmentation algorithm. Cardiometabolic risk factors were prospectively obtained in a comprehensive health assessment.

Results: Among 337 included subjects (mean age: 56.0years, 56.4% males, 14.5% T2DM, 23.4% prediabetes) intramuscular fat content was highest in obese subjects with T2DM (PDFF: 14.5% T2DM, 23.4% prediabetes) intramuscular fat content was highest in obese subjects with T2DM (PDFF: 14.5% T2DM, 23.4% prediabetes) intramuscular fat content was highest in obese subjects with T2DM (PDFF: 14.5% T2DM, 23.4% prediabetes) intramuscular fat content was highest in obese subjects with T2DM (PDFF: 14.5% T2DM, 23.4% prediabetes). Distribution patterns of fat content were the lowest in non-obese females and the highest in obese males.

Conclusion: IMCL and EMCL were measured before and several times after storing in a deep freezer (-20°C). The opposite hint legs (control group: n=7) were kept at room temperature and repeatedly measured. A clinical Tesla MR scanner was used to perform 1H-MRS. Single voxel measurements and spectroscopy-based relaxation time measurements in the muscle tissue and bone marrow were conducted. The Shapiro-Wilk test was used to determine if the data sets were normally distributed. The t-test was used to test whether the study group differs significantly from the control group. The same protocol was applied on humans (n=4), who was stored in the deep freezer during the identification process.

Results: Significant alterations in the relaxation times of lipids in the bone marrow were observed in the study group after freezing and thawing. The peak area ratio between lipids in the bone marrow allowed for a clear identification of a previous frozen state. These post-thawing effects were also indicated in human bone marrow. Alterations in relaxation times of water and peak area ratios were also observed in the muscle tissue, which described the thawing process in accordance to previous investigations in meat science.

Conclusion: Non-invasive in-situ 1H-MRS in yellow bone marrow indicates an approach for the objective detection of a previous frozen state in a meanwhile thawed body.

10:30 - 12:00 Studio 2019

Imaging Informatics

SS 1805a
Machine learning in breast imaging

Moderators: U. Bick; Berlin/DE
O. Diaz, Girona/ES

B-1517 10:30
Autodetection of mass and lymph node in breast mammography images with deep learning method

S. Liang1, J. Ma2, C. Xia3, Y. Deng1, R. Zhang1, Z. Yu2, 1; Beijing/CN, 2Zhengzhou/CN (13673666621@126.com)

Purpose: High-density breast is associated with increased risk of breast cancer and makes lesion detection difficult in mammography images. We developed a deep learning algorithm to automatically detect masses and lymph node abnormalities in mammography and investigated the influence of breast density on algorithm performance.

Methods and Materials: A total of 12,510 mammography images were collected from 3,669 patients with both CC and MLO views, of which 2,762 patients came from collaborating hospitals (630 studies for testing, 2,132 for training, and 50 patients from the INBreast open dataset for testing). Our algorithm mainly built upon Faster R-CNN. To gain better detection performance, four tricks were applied: image normalisation, data augmentation by flipping, alternating training, and transfer learning.

Results: In the hospital testing dataset, mass detection sensitivity and false-positive rate (FPR) were 83.7% and 13.4%, sensitivities across different breast densities (ACR A to D) were 95.9%, 78.7%, 83.9%, and 77.1%, respectively; lymph node detection sensitivity and FPR were 86.4% and 30%, and sensitivities across different breast densities were 83.3%, 90.5%, 87%, and 86.7%. On the INBreast dataset, mass detection sensitivity and FPR were 94.5% and 48% and sensitivities across different breast densities were 97.6%, 92.7%, 100%, 75%, respectively.
Conclusion: Our deep learning algorithm achieved sensitive mass and lymph node abnormality detection in mammography, especially for mass detection on unenhanced images. The algorithm can assist radiologists with breast cancer screening more precisely in future.

Author Disclosures: S. Liang: Employee; Employee of Infervision. J. Ma: Employee; Employee of Infervision. C. Xia: Employee; Employee of Infervision. Y. Deng: Employee; Employee of Infervision. R. Zhang: Employee; Employee of Infervision.

B-1518 10:38
Integration of AI into the breast MRI assessment enables objective and accurate diagnosis even by an unexperienced reader
S. Eilamann, M. Dietzel, E. Wenkel, C. Bielowski, R. Schulz-Wendtland, M. Uder, T. Bäuerle; Erlangen/DE
Purpose: Interpretation of breast MRI requires high level of training. It is further limited by observer-related bias, among particularly less experienced readers. We investigated, whether integration of artificial intelligence (AI) into the breast MRI assessment enables objective and accurate diagnosis even by an unexperienced reader.

Methods and Materials: 173 consecutive patients showing 176 suspicious breast lesions (BI-RADS IV/V: n=100/76) upon complementary assessment (clinical examination, mammography, ultrasound) received standardized breast MRI prior to histological verification. Six agnostic, semi/quantitative MRI parameters were independently assessed by two observers (R1/R2: intermediate/no experience in breast MRI). Interobserver variability was studied by ICC (intraclass correlation coefficient). Consisting of a polynomial kernel function support vector machine was applied to differentiate benign vs. malignant lesions based on the agnostic MRI parameters. Results were verified by tenfold cross validation. Diagnostic accuracy was evaluated (benign vs. malignant: area under the ROC curve (AUC), alpha=5%).

Results: There were 107 malignant lesions (50.8%). The agnostic parameters showed excellent interobserver variability (ICC: 0.81-0.98) with variable diagnostic accuracy (AUC: 0.65-0.82). Overall performance of AI to differentiate benign from malignant lesions reached AUC=90.1%. Results were integrated into an open-access web application and published online (input: agnostic criteria, output: likelihood of malignancy).

Conclusion: Integration of AI into the breast MRI assessment enabled objective and accurate diagnosis even by an unexperienced reader. Results can be easily validated based on our open-access web application.

B-1519 10:46
Texture features from mammography may predict the characterisation of breast tumours
Y. Li, Y. Cui, J. Zhu, W. Li; Jinan/CN (13631697@qq.com)
Purpose: To explore the feasibility and accuracy of extracting texture features from digital mammograms for predicting benign and malignant breast masses using Radiomics.

Methods and Materials: 192 patients who diagnosed as breast masses (Benign: 92 Malignant: 100) by mammography were enrolled. All breast masses were classified as BI-RADS 3, 4, and 5, and at last confirmed by histopathology. Lesion area was marked with a rectangular frame on the Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) images at the 5M workstation. The rectangular regions of interest (ROI) was segmented and 456 radiomics features were extracted from every ROI. Extracted features were dimensioned by Lasso algorithm. Post-dimension features were classified using Support Vector Machine (SVM). 70% of the data as a training set and the other 30% as a testing set. The reliability of the Classifier was evaluated by the 10-fold cross-validation. The classification accuracy was evaluated by the accuracy and sensitivity.

Enrol criteria: breast masses classified as BI-RADS 3, 4, and 5 and at last confirmed by histopathology. Lesion area was marked with a rectangular frame on the Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) images at the 5M workstation. The rectangular regions of interest (ROI) were segmented and 456 radiomics features were extracted from every ROI. Extracted features were dimensioned by Lasso and Maximum Relevance Minimum Redundancy (MRMR) algorithm. Post-dimension features were classified using Support Vector Machine (SVM). 70% of the data as a training set and the other 30% as a testing set. The reliability of the Classifier was evaluated by the 10-fold cross-validation. The classification accuracy was evaluated by the accuracy and sensitivity.

Results: Both the Lasso and MMRM screened 20 radiomics features respectively. 10-fold cross-validation show their accuracy were 92.54% and 87.31%, respectively. In testing sets, Through the lasso dimension reduction algorithm, the classifier achieves an accuracy of 91.44% and a sensitivity of 96.70%. Through the MMRM algorithm, the classifier achieves an accuracy of 91.37% and a sensitivity of 90.00%.

Conclusion: Radiomics texture features from digital mammograms may be used for benign and malignant prediction. This method offer better accuracy and sensitivity. It is expected to provide an auxiliary diagnosis for the imaging doctors.

B-1521 11:02
Can image registration support radiologists in breast tomosynthesis image reading?
M. Costa1, D. Ermacora2, S. Pesente1, G. Simonetti1, E. Belladonna2, M. Tontoni1; 1Udine/IT, 2Trieste/IT (matilde.costa@tecnologieavanzate.com)
Purpose: This work proposes an image registration approach able to correlate corresponding positions between digital breast tomosynthesis (DBT) images and evaluates its effectiveness for simultaneous and synchronized navigation of multiple images.

Methods and Materials: The proposed registration method supports the correlation between the following images: 2D-synthesized image and 3D image (2D-DBT), where the corresponding depth of a 2D point is identified by an out-of-plane pattern (OPP) detector; 3D image and prior (DBT-priors), where corresponding locations are found matching couple of OPPs with an anisotropic feature descriptor; 3D images of different projections (2-view DBT), where corresponding regions in ipsilateral views are matched combining the OPP detector/descriptor with an elastic breast compression model. The target registration error (TRE, expressed as the average distance with reference positions annotated by experts) is evaluated as registration accuracy estimate.

Results: The estimated mean TRE and the percentage of cases below a tolerance (success rate) defined by experts are respectively: 3.4 mm and 97% below 10 mm tested on 215 datasets with a total of 2887 markers for 2D-DBT; 6.7 mm and 96% below 10 mm tested on 120 datasets with 980 markers for DBT-priors; 18.3 mm and 96% below 40 mm tested on 101 datasets with 295 markers for 2-view DBT.

Conclusion: We showed that the proposed registration algorithms for DBT images lead to a stable synchronization (success rate of 96%) among multiple images with an acceptable average TRE between corresponding regions. This suggests the feasibility of an interactive synchronization tool between images for a straightforward simultaneous multi-view and multi-image DBT reading.

B-1522 11:10
Machine learning can combine B mode ultrasound and strain elastography features to better characterise BIRADS 3 & 4 lesions
A. Prakash; Jaipur/IN (dr.aparnaprakash@gmail.com)
Purpose: Machine learning uses knowledge from previous dataset and tries to predict future outcome without assuming the usual statistical distribution patterns in data. We evaluate the feasibility of combining the strain ratio and strain elastography score with b mode ultrasound descriptors in predicting a benign or malignant outcome of BIRADS 3 & 4 lesions.

Methods and Materials: IRB approval was obtained and 200 consecutive patients undergoing breast biopsy prospectively included to undergo strain elastography. Of these 37 cases were characterised as BIRADS 3 and 32 as BIRADS 4. A random forest algorithm was trained using the b mode ultrasound descriptors of shape, margin, echogenicity, calcification, acoustic shadowing, surrounding tissue distortion, the final BIRADS description and the Elastography score and Elastography ratio as the predictors and final benign or malignant outcome as the target. A 10 fold cross validation was used because of the small sample size.

Results: The machine learning model was able to predict a malignant outcome in BIRADS 3 & 4 lesions with a sensitivity of 91.30% and specificity of 93.33%. The positive likelihood ratio of the lesion turning out as malignant was 15.50 when the model predicted a malignant outcome for BIRADS 3 lesion.

Conclusion: Machine learning algorithms can combine b mode and sonoelastography imaging finding to predict outcome with a high degree of accuracy. However, predictivity in the functioning of these algorithms need to be removed before their implementation in clinical utilization.
B-1523 11:18
Computer-aided detection of breast masses in dedicated breast CT images using adaptive parenchyma local search and deep learning
M. Caballo, J. Teuwen, R.M. Mann, I. Sechopoulos; Nijmegen/NL (Marco.Caballo@radboudumc.nl)

Purpose: To develop an automated detection system for mass-like lesions in unenhanced breast CT images.

Methods and Materials: The proposed system is composed of four main steps. First, the breast parenchyma (including any suspicious mass) is identified using automatic segmentation. Second, a multi-scale candidate selection algorithm based on second-order features is used to discretize the search space. The algorithm identifies possible centers of masses, generating around each center a candidate region whose dimensions adapt to the local size of the parenchyma. Then, a multi-view convolutional neural network extracts texture and shape-related features and classifies these candidate regions (scaled to the same dimensions) as either masses or normal tissue. To handle the skewness in class proportion, the network was trained iteratively by dividing the dataset into multiple batches, each always containing the whole set of masses, and as many different normal examples. Finally, fusion of multi-view information from the detected regions is used for false positive reduction.

Results: The developed computer-aided detection system has an average detection sensitivity of 90% at 3 false positives per scan.

Conclusion: Results indicate that the combination of second-order features and deep learning is a promising approach for breast mass detection in unenhanced breast CT images, and will be further evaluated in future with a larger image dataset.

B-1524 11:26
Artificial intelligence CAD system capability to classify breast density by mammography
E.F. Fleury, P.E.Z. de Assis, F.A. Azevedo, R. Lotufo; Sao Paulo/BR (edufleury@hotmail.com)

Purpose: Determine an artificial intelligence CAD system capability to classify breast density by mammography.

Methods and Materials: The breast density (BD) pattern of 1,000 mammograms from a retrospective screening setting were determined. The BD was classified using an artificial intelligence CAD system with machine-learning technologies, which classified the breast density according to the BI-RADS 5th edition lexicon, which adopts criteria for evaluating the histogram of fibroglandular density rather than its distribution. The breast density patterns are: a. Almost entirely fat; b. Scattered areas of fibroglandular density; c. Heterogeneously dense; d. Extremely dense. Craniocaudal incidence was opted for analysis because it presented a better contrast due to the breast compression compared to the mediolateral-oblique view, and to have fewer structures that contaminate the images, like pectoral muscle. An observer with 16 years of experience in breast imaging has previously classified the mammograms visually, adopting the same criteria used by the software. Agreement between the CAD and the observer was determined.

Results: The results show good agreement between the CAD system and the observer to classify the BD according to the BI-RADS lexicon, with agreement of 78.3%.

Conclusion: The use of an artificial intelligence CAD system has the potential to be used in clinical practice to classify the BD pattern by mammograms according to the lexicon BI-RADS 5th edition.

B-1525 11:34
Automatic deep learning-based denoising filter for 4D dedicated breast CT perfusion imaging of breast cancer
M. Caballo, R.M. Mann, I. Sechopoulos; Nijmegen/NL (Marco.Caballo@radboudumc.nl)

Purpose: To develop a 4D denoising filter for perfusion contrast-enhanced dedicated breast CT imaging.

Methods and Materials: Twenty 4D software phantoms were generated from different real 3D patient dedicated breast CT scans using a previously developed algorithm that simulates dynamic contrast enhancement patterns within the different breast tissues and tumours. All phantoms had a temporal resolution of 10s over 5-min scanning, and were corrupted with noise less corresponding to acquisitions resulting in average glandular doses per 3D scan of 0.95mGy, 0.7mGy and 0.5mGy. A 4D image denoising deep learning algorithm was developed that first removes the quantum noise from the baseline scan (time zero) using a convolutional neural network, and then recovers the noisy perfusion curves using deep pattern recognition networks which recognize and average similar enhancement patterns throughout the image. The algorithm was trained using 8,000 image patches and 50,000 perfusion signals extracted from 13 pairs of 4D phantoms (noisy and noise free), and tested on the remaining 7 on a global basis. Signal-to-noise ratio was calculated both in the baseline scan and on perfusion curves, within homogeneous regions.

Results: On average, the signal-to-noise ratio of the baseline scan and of the perfusion curves increased after the filtering (+11.46±1.14dB, +24.34±1.96dB, respectively).

Conclusion: The filter was able to increase the signal-to-noise ratio both spatially and temporally. Future work includes evaluating additional perfusion patterns, incorporating more realistic noise and spatial resolution loss models deriving from 4D breast CT image-acquisition simulations, scatter correction, and testing with real patient 4D images.

B-1526 11:42
Ability of an artificial intelligence CAD system to determine quality control of the mammographic study
E.F. Fleury, P.E. de Assis, F.A. Azevedo, R. Lotufo; Sao Paulo/BR (edufleury@hotmail.com)

Purpose: Evaluate the ability of an artificial intelligence CAD system to determine quality control of the mammographic study.

Methods and Materials: Retrospectively evaluation of mammographic quality pattern of 1,000 consecutive screening mammograms in the crano-caudal and oblique medio-lateral incidences. The mammograms were classified using an artificial intelligence CAD system with the technology of deep-learning that automated classified the quality of the acquired images according to the following criteria: I. Bad Quality; II. Acceptable Quality; III. Good Quality. An observer with 16 years of experience in breast previously classified the images; the other observer, classified the quality of the acquired images according to the following criteria: I. Bad Quality; II. Acceptable Quality; III. Good Quality. An observer with 16 years of experience in breast previously classified the images; the other observer, classified the images using the MOSA (Mammographic Quality Standards Act), which assesses: 1. Positioning; 2. Contrast; 3. Artifacts; 4. Blurring. The agreement was determined between the CAD system and the observer.

Results: The agreement between the CAD system and the observer to classify the mammograms quality was good, with 70.0% agreement.

Conclusion: The artificial intelligence CAD system has the potential to be used in clinical practice to determine the quality control of the breast mammograms at screening settings.

B-1527 11:50
Scatter radiation correction in digital breast tomosynthesis with a deep learning convolutional neural network
A. Rodriguez Ruiz1, C. Fedon1, K. Michielsen2, I. Sechopoulos1; 1Nijmegen/NL, 2KU Leuven/BE

Purpose: To develop a deep learning convolutional neural network (CNN) that can model the scatter signal in digital breast tomosynthesis (DBT) projections.

Methods and Materials: Homogeneous software phantoms representing different compressed breasts undergoing a crano-caudal DBT exam were implemented in a Monte Carlo (MC) simulation of a 15° wide / 15 projection DBT scan with 10^7 photons, yielding the scatter fraction (SF) image estimate of each projection. A CNN was trained to predict these SF images using the MC-simulated SF images of 180 phantoms as ground truth. The mean absolute error (MAE) between the MC-simulated SF and the CNN-predicted SF was computed in 20 other phantoms. The method was evaluated on 140 patient DBT scans (including 20 masses, 22 calcification clusters) by comparing original and scatter-corrected volumes in terms of the signal-difference-to-noise-ratio (SDNR) of the lesions and the area under the receiver operating characteristic curve (AUC) of a commercially-available artificial intelligence CAD system for DBT.

Results: The MAE between the CNN-predicted and the MC-simulated scatter images was less than 1%. The CNN generated scatter images up to 10^7 times faster than MC simulations (0.01 s versus 130 s). After scatter correction, the SDNR of calcifications increased (+25%, P=0.016), while the SDNR of masses (+6%, P=0.459) and the detection accuracy (+0.03 AUC, 95% CI = [0.12, 0.17]) remained similar.

Conclusion: A deep learning CNN can predict the scatter image in DBT projections as accurately as a Monte Carlo simulation but in a significantly lower amount of time.

Author Disclosures: A. Rodriguez Ruiz: Employee; ScreenPoint Medical.
SS 1801a
Diffuse liver disease: fibrosis, steatosis and inflammation

Moderators:
T. Denecke; Berlin/DE
M.M. França; Porto/PT

B-1528 10:30
Prospective comparison of transient elastography (1D-TE), shear wave elastography (2D-SWE) and magnetic resonance elastography (MRE) for assessment of liver fibrosis in HCV patients

J. Matos, I. Mussetto, F. Paparo, S. Perugini Bernardi, M. De Cesari, L. Cesvasco, G. Cenderello, L. Bacigalupo, G.A. Rollandi; Genova/IT

Purpose: To assess the agreement among three different stiffness imaging techniques for fibrosis staging in HCV patients. To understand which factors may influence the concordance between the different techniques.

Methods and Materials: This was a prospective study. 93 HCV patients were enrolled from March 2017 to September 2018. Each patient was subjected to three techniques performed by blinded operators on the same day. 77 patients had reliable liver stiffness measurements on 1D-TE, 2D-SWE and MRE. Patients were assigned to three different fibrosis groups using kPa cutoffs recommended in a 2015 consensus statement (group 1: no fibrosis, group 2: moderate fibrosis, group 3: advanced fibrosis or cirrhosis). Techniques were confronted (1D-TE vs MRE, 1D-TE vs 2D-SWE, MRE vs 2D-SWE) to assess agreement (kappa Cohen) and kPa value correlation (Spearman’s test).

Results: Agreement among all three techniques was observed in 64.9% of patients. Complete disagreement was seen in just 2.6% Inter-rater agreement in assigning correct fibrosis group was good for all three pairs of techniques (1D-TE vs MRE 0.81, 1D-TE vs 2D-SWE 0.66, MRE vs 2D-SWE 0.70). Strong correlation of kPa values was observed for all three pairs of techniques. BMI was the only feature associated with disagreement (OR: 1.17; p: 0.02).

Conclusion: Tested techniques correctly assign patients to the same fibrosis group in the majority of cases. Good agreement and strong correlation was demonstrated between the different techniques in non-invasive assessment of liver fibrosis in HCV patients.

Author Disclosures:
G.A. Rollandi: Grant Recipient; QE Healthcare.

B-1529 10:38
Liver stiffness quantification in patients with non-alcoholic steatohepatitis: comparison of shear wave elastography and transient elastography with liver biopsy correlation

G. Caruana, A. Taibi, S. Petta, R. Cannella, G. Buset, G. Cutaia, D. Giambelluca, V. Di Marco, T.V. Bartolotta; Palermo/IT

Purpose: To assess the accuracy of liver stiffness quantification in patients with non-alcoholic steatohepatitis (NASH) using shear wave elastography (SWE) in comparison with transient elastography (TE).

Methods and Materials: This is a prospective study performed in a single institution, including 49 patients with histological diagnosis of NASH. The stiffness of the right liver lobe was measured on the same day with two techniques: TE (FibroScan, Echosens), and SWE (RS80A ultrasound system, Samsung Medison). In the SWE evaluation, 11 patients were excluded due to high ultrasound attenuation. 38 patients were included in the final population. 24 (63%) patients had significant fibrosis and 17 (45%) had advanced fibrosis. TE and SWE showed an AUROC of 0.711 (95% CI: 0.543-0.877, p=0.032) and 0.729 (95% CI: 0.582-0.896, p=0.020) for the diagnosis of significant fibrosis. The AUROC for the diagnosis of advanced fibrosis were 0.803 (95% CI: 0.649-0.9580, p=0.002) and 0.811 (95% CI: 0.667-0.955, p=0.001) for TE and SWE, respectively. There was a significant correlation between TE and SWE measurements (r=0.455, p=0.004).

Conclusion: SWE and TE have both a good accuracy, with a significant correlation, for the diagnosis of advanced fibrosis in NASH-patients.

Author Disclosures:
I. Theotokas: Equipment Support Recipient; Mindray is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 ultrasound system has been provided by Mindray in order to carry out this study. P. Drazinos: Equipment Support Recipient; Mindray is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 ultrasound system has been provided by Mindray in order to carry out this study. Α. Soultatos: Equipment Support Recipient; Mindray is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 ultrasound system has been provided by Mindray in order to carry out this study. P. Zoumpoulis: Equipment Support Recipient; Mindray is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 ultrasound system has been provided by Mindray in order to carry out this study.

B-1530 10:46
Comparison of sound touch elastography (STE) and shear wave elastography (SWE) using liver biopsy as ‘gold standard’ for chronic liver disease assessment

I. Gatos, P. Drazinos, S. Yarmenitis, I. Theotokas, A. Soultatos, E. Panteleakou, P. Zoumpoulis; Athens/GR, SIFISSA/GR, MAROSSI/GR (p.zoumpoulis@echomed.gr)

Purpose: Chronic liver disease (CLD) is currently one of the major causes of death and the major cause of hepatocellular carcinoma development. sound touch elastography (STE) (that is available in Resona 7 Ultrasound (US) device) and is similar to shear wave elastography (SWE), seems promising for CLD diagnosis but needs to be validated. The aim of this study is to compare the diagnostic performance between the STE and SWE for CLD assessment, using Liver Biopsy (LB) as “gold standard”.

Methods and Materials: 290 subjects, 68 normal (F0) and 222 with CLD (F1- F4), were included in the study. A B-Mode and Elasticographic examination was performed on each patient with Resona 7 and Axiplorer US devices. The STE (Resona 7) and SWE (Axiplorer) measurements were performed on the Right Liver Lobe of each patient and were compared to LB results according to the Metavir Classification System (F0-F4). Receiver Operating Characteristic (ROC) analysis was then performed for each of the two methods to obtain best cut-off stiffness values.

Results: ROC analysis showed AUCSTE=0.9741 and AUCSWE=0.9854 for F=F4 (Cirrhosis), AUCSTE=0.9723 and AUCSWE=0.9755 for F=F3, AUCSTE=0.9675 and AUCSWE=0.9662 for F=F2, AUCSTE=0.8889 and AUCSWE=0.9288 for F=F1 Fibrosis Stages. Best cut-off stiffness values for each method (STE/SWE) were: F=F4: 12.2±13.5 kPa, F=F3: 9.5±5.7 kPa, F=F2: 9.1±5.5 kPa, F=F1: 6.5±5.0 kPa respectively.

Conclusion: Both STE and SWE can differentiate between all Metavir fibrosis stages. SWE seems more reliable in differentiating normals from patients with F=F1 and Cirrhotic patients (F=F4) but less accurate in diagnosing intermediate stages (F=F2, F=F3).

B-1531 10:54
Volumetric iodine density using dual-layer spectral CT for liver fibrosis staging and histopathological correlation

L. Weise, R. Li, F. Yan, J. Cang, Q. Han, X. Chen; Shanghai/ CN (15216572203@163.com)

Purpose: To investigate the value of volumetric iodine density (VID) using dual-layer spectral CT for liver fibrosis staging and correlated with histopathological results.

Methods and Materials: Twenty rabbit models of CCl4-induced liver fibrosis were established and four untreated rabbits served as controls. All of rabbits underwent four-phasic (noncontrasts, arterial phase [AP], venous phase [VP], and equilibrium phase [EP]) enhanced CT using dual-layer spectral CT (IQON). Volumetric iodine density of the liver (VIDLiver) and aorta (VIDaorta) were derived based on whole-liver and whole-aorta volume measurement. Normalized volumetric iodine density (VID) were determined as ΔVIDLiver/ΔVIDaorta. Fibrosis stage, percentage of sinusoidal area (SA%) and α-SMA staining microvessel area (MVA) were quantified at histopathology. Correlation analysis was performed between NVID and fibrosis stage, SA%, and MVA. Receiver Operating Characteristic (ROC) analysis was performed for assessing...
diagnostic performance of NVID in detection of clinical significant fibrosis (≥F2) and advanced fibrosis (≥F3).

Results: No significant correlation was identified between either NVID or NVIDρ, and fibrosis stage (P>0.05). NVIDρ showed significant positive correlation with fibrosis stage (r=0.667, P=0.0004) and SA% (r=-0.603, p<0.001). There was no significant correlation between NVIDρ and MVA (r=0.2666, P=0.2079). NVIDρ had a sensitivity, specificity, and AUROC of 92.9%, 70.0%, and 0.796, respectively, for the diagnosis of ≥F2 fibrosis; and 100%, 73%, and 0.870, respectively, for the diagnosis of ≥F3 fibrosis.

Conclusion: Whole-liver volumetric iodine density using dual-layer spectral CT may be a potential biomarker for liver fibrosis staging.

B-1532 11:02
Reproducibility of shear wave dispersion imaging for evaluation of nonalcoholic fatty liver disease
J. Yoo, J. Lee, H.-J. Kang, S. Ahn; Seoul/KR (jeongin527@gmail.com)

Purpose: To evaluate the intraobserver and interobserver reproducibility of shear wave dispersion imaging (SWDI) for noninvasive evaluation of nonalcoholic fatty liver disease (NAFLD).

Methods and Materials: This prospective study was approved by our institutional review board and informed consents were obtained from all subjects. In group I, 71 patients with suspected or alleged NAFLD underwent grey-scale ultrasound (US) imaging and two sessions of dispersion imaging by one abdominal radiologist. In group II, 19 asymptomatic volunteers underwent grey-scale US and three independent sessions of dispersion imaging by three abdominal radiologists. The visual grade of parenchymal stiffness was scored as 0 (absent) to 3 (severe) by two independent reviewers. Intra-observer (group I) and inter-observer (group II) reproducibilities of dispersion imaging were assessed using intraclass correlation coefficient (ICC). Independent association of variables with dispersion slope was analysed using a multivariate linear regression model.

Results: For intraobserver reproducibility, ICC was 0.955 (95% CI, 0.926-0.973). In the subgroup analysis of group I, higher BMI, higher grade of steatosis on US, presence of LFT abnormality were not associated with reduced ICC values. ICC for inter-observer agreement of three radiologists was 0.800 (95% CI, 0.572-0.916). There were no significant differences in dispersion slope among different visual grades of hepatic steatosis. In the multivariate analysis, elastic, ALT, and AST were significantly related to the dispersion slope as independent variables (p<0.001, p=0.02, and p=0.03, respectively).

Conclusion: Shear wave dispersion imaging showed excellent intraobserver and inter-observer agreement.

B-1533 11:10
Are there different cut-off values for staging liver fibrosis using 2D-SWE implemented on different systems from the same manufacturer?
I. Spores, F.B. Bende, A.S. Popescu, R. Sinti, M. Danila; Timisoara/RO (laptimis@ro)

Purpose: To evaluate the range of liver stiffness (LS) cut-off values for predicting different stages of liver fibrosis (LF) for 2D-SWE GE implemented on 3 different systems from GE Healthcare (LOGIQ E9,LOGIQ S8,LOGIQ P9).

Methods and Materials: We re-evaluated three studies performed in our Department evaluating the performance of 2D-SWE GE using different systems (LOGIQ E9,LOGIQ S8,LOGIQ P9) for predicting different stages of LF, using Transient Elastography (TE) as the reference method. 1.LOGIQ E9 study: included 331 subjects with or without chronic hepatopathies; reliable LSM were obtained with both methods in 303/331 (91.5%) subjects; LF distribution was: LF<2: 51(29.8%); F2=24/131(18.3%); F3=22/131(16.8%); F4=45/131(34.4%). 2.LOGIQ S8 study: included 179 consecutive subjects, with or without chronic hepatopathies; reliable LSM were obtained in 144/179(80.3%) subjects; LF distribution was: LF<2: 65(36.4%); F2=24/131(18.3%); F3=21/131(16.8%); F4=45/131(34.4%). 3.LOGIQ P9 study: included 234 consecutive subjects, with or without chronic hepatopathies; reliable LSM were obtained in 205/234(87.6%) subjects; LF distribution was: LF<2: 40/131(30.5%); F2=24/131(18.3%); F3=32/131(16.8%); F4=45/131(34.4%).

Results: The best cut-off values for 2D-SWE GE for predicting F2, F3 and F4 were: 1.For LOGIQ E9: 6.7 kPa (AUC=0.95, Se=92.7%, Sp=85.5%); 8.2 kPa (AUC=0.97, Se=95%, Sp=89.3%); 9.3 kPa (AUC=0.96, Se=91.7%, Sp=77.1%); 3.For LOGIQ S8: 6.8 kPa (AUC=0.93, Se=83.5%, Sp=91.2%); 7.6 kPa (AUC=0.94, Se=86.5%, Sp=92.7%); 9.3 kPa (AUC=0.91, Se=75.5%, Sp=92.5%).

Conclusion: The LS cut-off values for 2D-SWE GE implemented on different systems for predicting F2, F3 and F4 are quite similar.

B-1534 11:18
Differentiating mild and substantial fibrosis from normal subjects: comparison of diffusion-kurtosis imaging and conventional diffusion-weighted imaging
S. Xie, Q. Li, H. Qi, Y. Cheng, W. Shen; Tianjin/CN (xies1989_happy@163.com)

Purpose: To compare the diagnostic accuracy of liver diffusion-kurtosis imaging (DKI) and conventional diffusion-weighted imaging (cDWI) for differentiating mild and substantial fibrosis from normal subjects.

Methods and Materials: Twenty-seven healthy volunteers (S0) and forty-five patients with pathological proved mild (S1) or substantial (S2) liver fibrosis underwent DWI with multiple b values (b=0, 1,000, 1,500, 2,000 mm²/s). Mean apparent diffusion (MD), mean kurtosis (MK) and apparent diffusion coefficient (ADC) of liver parenchyma were measured and compared between patients with mild or substantial fibrosis and normal subjects. The discriminative abilities of DKI and cDWI parameters were analysed and compared by receiver operating characteristic (ROC) curve analysis.

Results: There were significant differences in MD and ADC values between patients with mild or substantial fibrosis and normal subjects (all P<0.05). Moreover, MD value was statistically different between S0 and S1 (P=0.028). S0 and S2 (P=0.005). ADC value was statistically different between S0 and S2 (P=0.012). There was no significant difference in MK for all groups (P=0.466).

Conclusion: MD value derived from DKI is feasible to differentiate mild or substantial fibrosis from normal subjects, and offer better performance than ADC derived from cDWI.

B-1535 11:26
Liver fibrosis and inflammation: influence on the 3D multi-echo Dixon parameters in patients with chronic liver diseases
F. Hu, B. Song, R. Yang, M. Wang; Chengdu/CN (yingxianghu_cmc@163.com)

Purpose: To evaluate the influence of liver fibrosis and inflammation on the 3D Multi-Echo Dixon (3D ME Dixon) parameters in patients with chronic liver diseases and to determine the diagnostic performance of 3D ME Dixon for the simultaneous assessment of liver steatosis and iron overload.

Methods and Materials: 99 consecutive patients with chronic liver disease underwent contour-finder-corrected 3D ME Dixon scan at 3.0T MR scanner. Liver biopsy was reviewed in all cases, grading liver steatosis, siderosis, fibrosis, and inflammation. Spearman correlation and multiple regression analysis were performed to determine the relationship between 3D ME Dixon parameters and histopathological features. Receiver operating characteristic analysis was performed to determine the diagnostic performance.

Results: At multivariate analysis, only liver steatosis independently influenced ME-DIX value (R²=0.800, P<0.001). Liver iron overload and fibrosis influenced R² value (R²=0.631, P=0.001). Liver R² value were moderately correlated with fibrosis stages (r=0.668, -0.341; all P<0.01), and MK have no correlation with fibrosis stages (r=0.180, P=0.130). AUC for MD and ADC were 0.937 and 0.707 for characterisation of S1-2, 0.817 and 0.658 for characterisation of S2. MD performed better than ADC for the characterisation of S1-2 and S2 (all P<0.05).

Conclusion: MD value derived from 3D ME Dixon can be used to simultaneously evaluate liver steatosis and iron overload in patients with chronic liver diseases, especially for quantification of liver steatosis. However, liver R² value may be affected by the liver fibrosis in the setting of chronic liver diseases with the absence of iron overload.

B-1536 11:34
2D MRE liver stiffness values are nearly equivalent for three sequence types across four multi-centre drug-development clinical trials

Purpose: To demonstrate equivalence of 2D MRE sequences in four multi-center drug-development clinical trials.

Methods and Materials: MRE liver stiffness is an endpoint in many multi-center drug-development clinical trials. Equivalence across sequence types (GRE, SE, SE-EPI) at 3T has been reported in single-center, single-scan studies. However, to justify interchangeable use in clinical trials, validation of equivalence is needed across different sites and MR scanner types. To accomplish this, 2D MRE sequence results were reviewed for four multi-center drug-development nonalcoholic fatty liver disease (NAFLD) clinical trials (Gilead NCT02854605, NCT02761984, NCT02565555, and NCT02466516).

Sunday
Liver stiffness differences across these sequences were compared to region-of-interest (ROI) analysis areas, and correlation analysis of liver stiffness differences and analysis values was performed.

Results: GRE, and either SE or SE-EPI sequences were compared for 58 MRs, for two MR manufacturers and four scanner types. Mean GRE liver stiffness was 0.06 kPa less than the mean for SE and SE-EPI sequences (p=0.74). Absolute differences in liver stiffness were weakly correlated with total ROI areas. Absolute differences were greater between GRE and the other sequences for smaller total ROI areas (0.52, 0.41, and 0.29 kPa for <700 Px, 700-2000 Px, and >2000 Px, respectively), but statistical significance was not reached for those comparisons (p=0.05).

Conclusion: Liver stiffness values for three 2D MRE sequences show near equivalence for different types of scanners in four large multi-center NAFLD drug-development clinical trials. These data support using these sequences interchangeably in future multi-center clinical trials.

Author Disclosures:

B-1537 11:42
Comparison of sound touch elastography (STE) and vibration-controlled transient elastography (VCTE) using liver biopsy as a reference for diagnosis of chronic liver disease

I. Gatos1, P. Drazinos2, S. Yarmenitis3, I. Theotokas4, A. Kanavaki1, E. Manesis1, P. Zoumpoulis5, Athens/GR, Kifissia/GR, Marcus/GR (p.drazinos@echomed.gr)

Purpose: Chronic Liver Disease (CLD) is one of the major causes of death nowadays and the major cause of Hepatocellular Carcinoma development. Vibration Controlled Transient Elastography (VCTE), commercially available via Fibroscan ultrasound (US) device, is a well-established imaging method in CLD diagnosis, while Sound Touch Elastography (SWE), similar to that the Shear Wave Elastography (SWE), seems promising but needs to be validated. The aim of this study is to compare the diagnostic performance between STE and VCTE using Liver Biopsy (LB) as "Gold Standard".

Methods and Materials: 210 subjects, 60 normal (F0) and 150 with CLD (F1-F4), were included in the study. A B-Mode and Elastographic examination was performed on each patient with Resona 7 and Fibroscan US devices. STE and VCTE measurements were performed on the RL and each patient and measurements were compared to LB (Metavir Stage: F0-F4). Receiver Operating Characteristic (ROC) analysis was then performed for both methods to obtain best cut-off stiffness values.

Results: ROC analysis showed AUCSTE=0.9747 and AUCCSTE=0.9808 for F=F4 (Cirrhosis), AUCSTE=0.9790 and AUCCSTE=0.9792 for F=F3, AUCSTE=0.9631 and AUCCSTE=0.9641 for F=F2, AUCSTE=0.9185 and AUCCSTE=0.9185 for F=F1 Fibrosis Stages. Best cut-off stiffness values calculated were: F4=13.7/11.3 kPa, F3=9.5/8.7 kPa, F2=9.1/5.82 kPa, F1=6.1/5.1 kPa respectively.

Conclusion: Both VCTE and STE can differentiate between all Metavir fibrosis stages. STE is more reliable in differentiating CLD patients with intermediate stages. STE is more reliable in differentiating CLD patients with intermediate stages.

Author Disclosures:
I. Gatos: Equipment Support Recipient; Mيدand is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Midand in order to carry out this study. P. Drazinos: Equipment Support Recipient; Midand is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Midand in order to carry out this study. S. Yarmenitis: Equipment Support Recipient; Midand is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Midand in order to carry out this study. I. Theotokas: Equipment Support Recipient; Midand is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Midand in order to carry out this study. A. Kanavaki: Equipment Support Recipient; Midand is cooperating with Diagnostic Echotomography SA in relation with a Clinical Study. A Resona 7 Ultrasound system has been provided by Midand in order to carry out this study.

B-1538 11:50
Liver fibrosis staging with Cannon shear wave elastography: comparison with three other non-invasive tools using histologic criteria as a reference standard

S. Byun, J. Lee, J. Min, K. Shin, S. You, K. Cheon, I. Song, K. Kim; Daejeon/KR (pureyes111@chnu.co.kr)

Purpose: To investigate the value of Cannon shear wave elastography (C-SWE) in the assessment of liver fibrosis and to compare the diagnostic performance of C-SWE with that of other noninvasive tools.

Methods and Materials: Sixty-eight patients with chronic liver disease underwent liver stiffness (LS) measurements with C-SWE and elastography point quantification (ElastPQ) in the same session by two observers, respectively. All patients were examined using transient elastography (TE) and serologic test. The inter-observer agreements of both techniques were assessed with intraclass correlation coefficients (ICCs). The diagnostic performance in significant fibrosis (F≥2) and cirrhosis was evaluated using the receiver operating characteristics curve (AUC) analysis with histologic criteria as reference standard.

Results: The values with C-SWE were significantly greater than those with ElastPQ (p < 0.001). The LS measurements with C-SWE (r = 0.663 and 0.651) and ElastPQ (r = 0.790 and 0.668) significantly increased as liver fibrosis progressed. The inter-observer agreement was excellent for C-SWE (ICC = 0.842) and ElastPQ (ICC = 0.879). The estimated cut-off values with C-SWE for both observers were 8.88 kPa and 9 kPa to detect significant fibrosis and 13.3 kPa and 10.4 kPa to detect cirrhosis; these were higher than those with ElastPQ. For the prediction of liver fibrosis, C-SWE, ElastPQ, and TE showed comparable high diagnostic performance (range of AUC: 0.802-0.958) and significantly better than that of the serologic fibrosis marker test.

Conclusion: C-SWE is a promising noninvasive US-based technique for assessing liver fibrosis and shows high diagnostic performance comparable to that of ElastPQ and TE.

10:30 - 12:00 Room E1

Breast

SS 1802a
Radiation dose, quality assurance, and safety in breast imaging

Moderators:
M. Koutalonis; Colchester/UK
I. Kralik; Zagreb/HR

L. Cockmartin, K. Lemmens, A. Jacobs, J. Binst, H. Bosmans; Leuven/BE (lesley.cockmartin@uzleuven.be)

Purpose: To propose a method for improved high dose alerts using breast thickness and density driven diagnostic reference levels (DRLs).

Methods and Materials: Screening mammograms were collected on 4 DM systems: Siemens Inspiration, Hologic Selenia Dimensions, Fuji Innovality and GE Essential. A fixed value DRL (2mGy for 60mm) as well as a DRL curve based on the 95th percentile of the MGD obtained from large patient samples on 71 systems tested in the Belgian breast screening, are plotted on these data. Additionally, data were color-coded for their Volpara Density Grade (VBD) and a curve fit was applied to the four VDG groups separately. Outliers were defined as exceeding the 95th percentile DRL curve, and then also as > 1mGy distance to the density-determined curve fit.

Results: Compared to the use of traditional DRL curves that created 778 (9%) outliers on Siemens, present approach showed only 43 (0.5%) outliers. For Hologic this number dropped to 2 (0.7%), for Fuji Innovality to 4 (0.3%) and for GE Essential to 2 (0.1%). This dose monitoring approach pointed to occasional problems in the high density groups.

Conclusion: Multiparameter dose alerting, using both thickness and density, results in improved selection of cases that need further verification and makes dose monitoring more efficient and relevant.

Author Disclosures:
H. Bosmans: Founder; Co-founder Qaelum NV. Research/Grant Support; The medical physics team has research agreements with Siemens-Healthineers and GE Healthcare.
B-1540 10:38
Accuracy of mammography dosimetry in the era of the European Directive 2013/59/Euratom transposition
G. Gennaro1, S. Bigolaro1, M. Hill2, R. Stramare3, F. Caumo3, Padua/IT
1Wellington/NZ (gisella.gennaro@lv vene.to)

Purpose: To evaluate the parameters affecting mammography mean glandular dose (MGD) in the era of the European Directive 2013/59/Euratom transposition, where accurate and personalised dose estimates are of heightened importance.

Methods and Materials: 4028 women who had a mammography examination by one of five mammography units using different detector technologies were included. 16,558 images were processed by a software algorithm that determines breast density (BD) and uses BD to estimate patient-specific MGD. Entrance dose values and half value layers were measured for each mammography system within 6 months of imaging were collected to calibrate MGD for equipment performance. Mean MGD values considering BD, without and with calibration data, were compared with manufacturer-reported MGD.

Results: MGD estimated using BD is mostly higher than MGD provided by manufacturers for the studied systems, leading to relative mean MGD differences of 6.6%, 15.3%, 4.4%, 13.5%, -1.7%, for the five mammography units. The average differences between measured and manufacturer-provided entrance doses are small for the five units (-1.3%, -1.4%, -2.61%, 1.2%, 2.6%, respectively), so the additional effect of system calibration is minimal. The inclusion of system calibration in patient-specific MGD estimation results in relative mean differences of 1.0%, 9.7%, 5.9%, 10.6%, and -6.7%, compared to manufacturer-reported MGD respectively, although individual MGD differences were large as 44% were observed, which illustrates the importance of ensuring dose accuracy at the patient level.

Conclusion: Increasing levels of accuracy in mammography dosimetry is possible in the era of the European Directive 2013/59/Euratom transposition, taking into account patient-specific BD and equipment calibration.

Author Disclosures:
M. Hill: Consultant; Volpara Solutions Europe.

B-1541 10:46
First clinical application of spiral breast CT with photon-counting detector: patient-specific radiation dose assessment
N. Saltvbøvea1a, M. Marçon1, N. Berger1, D. Kolditz1, C. Steiding1, A. Boss1, H. Alkadhi1, Zurich/CH, 2Erlangen/DE (Natalia.Saltvbøvea@usz.ch)

Purpose: Dedicated breast CT (BCT) has demonstrated superior image quality compared to digital Mammography (DM) and breast tomosynthesis (BT), however the radiation dose from BCT was higher than the one from DM and BT, especially when referring to the screening settings. The novel BCT scanner equipped with photon-counting detector (PCD) allows for more efficient dose utilization. The aim of the study is to assess the radiation dose from the first clinical application of the BCT with PCD.

Methods and Materials: This study included 17 patients underwent breast CT examination on the first clinical BCT equipped with CdTe detector (Nu-view, Erlangen, Germany). Fixed tube voltage of 60kV and tube current of 25mA were used based on preliminary studies. The individual patient Dicom data together with patient-specific scan parameters were used as an input for Monte Carlo (MC) simulations. The accuracy of the MC simulations was validated against the measurements performed on the same BCT system using ionization chamber in 16-cm CTDI phantom. For each patient the average glandular dose (AGD) was calculated based on the individual 3D dose distribution obtained from MC simulations.

Results: The MC simulation has shown high accuracy comparing to the direct dose measurements, with the mean difference of 4.4%. The average glandular dose ranged from 4.8 to 6.1 mGy, depending in the breast size. The mean AGD was found to be 5.2 mGy.

Conclusion: BCT system with photon-counting detector allows performing breast examinations with full 3D imaging capabilities using the dose comparable to that from two-view DM.

Author Disclosures:
D. Kolditz: Employee; AB-CT. C. Steiding: Employee; AB-CT.

B-1542 10:54
Gadolinium deposits in healthy women undergoing repetitive GBCA-enhanced breast MRI in the context of high-risk breast cancer screening
S. Bennani-Baiti1, K.B. Krug2, D. Giese2, K. Weiss3, T.H. Helbich4, 1Wellington/NZ (gisella.gennaro@lv vene.to), 2Barbara.Bennani-Baiti@mea1;wbwien.ac.at)

Purpose: To assess, whether women undergoing contrast-enhanced breast MRI exams in the context of high-risk screening exhibit signal alterations in the dentate nucleus.

Methods and Materials: In this IRB-approved prospective study, 41 healthy women (16 with no previous gadolinium-based contrast agent (GBCA) exposure and 25 that had >5 GBCA administrations (range 6-25) in the context of high-risk breast cancer screening) underwent 3T MRI of the brain, with a dedicated head coil, including T1 mapping and mpRAGE sequences. T1 times and T1 signal intensity were measured for dentate nucleus (ND) andpons, employing Horos software. Ratios of ND to pons were calculated and further statistical analyses were carried out with SPSS and Medcalc.

Results: Spearman’s rank correlation revealed no correlation between number of cumulative GBCA doses and either quantitative T1 times of ND (P=0.4457) or T1 signal intensity ratios of ND to pons (P=0.2885). Similarly, no correlation was found for age and either quantitative T1 times of ND (P=0.1855) or T1 signal intensity ratios of ND to pons (P=0.1653). Multiple regression analysis confirmed these results (P>0.05 for all potential associations of age and cumulative number of GBCA doses with ND T1 times and ND to pons T1 signal ratios).

Conclusion: The dentate nucleus does not exhibit altered T1 signals after high-cumulative dosages of macrocyclic GBCAs in healthy women. This indicates that currently employed macrocyclic GBCAs do not result in Gd deposits in the brain of healthy women participating in a high-risk screening programme for early breast cancer detection.

B-1543 11:02
Mammography positioning errors: a multi-centre study
N. Sharma1, S. Schoefield1, M. Fletcher1, R.L. Hammond2, A. N. Larson3, A.S. Bakken4, E. Handberg5, N.-M. Hopland6, S.E. Iles7, 1Leeds/UK, 2Halifax, NS/CA, 3Oslo/NO (mo@dal.ca)

Purpose: The objectives of this study are to evaluate agreement between radiographers and radiologists in assessing mammography positioning errors.

Methods and Materials: 672 FFDM studies rejected due to positioning errors were independently reviewed by nine radiographers and one radiologist from three breast imaging centres in Canada, Norway, UK. Readers were provided with a PGMI score and trained on the use of the image quality review tool (Densitas Inc.). Reviewers evaluated studies for positioning errors including PNL, CC exaggeration, nipple position, skin folds, portion cut-off, patient related artefacts, posterior tissue, pectoralis muscle (position, shape, and thickness), IMF, sagging, positioning on image receptor. Inter-rater agreement overall and by centre was evaluated using weighted Fleiss’ Kappa.

Results: Agreement between readers on individual positioning errors across all centres was slight to moderate (kappas ranging from 0.09 to 0.49), and was only slight for PGMI score (kappa=0.176). Positioning errors with highest agreement between readers within centres included pons cut-off, patient related artefacts, PNL length difference <10mm, portion cut-off, skin folds (kappa=0.88, 0.61, 0.53, 0.52); other positioning errors generally showed slight to fair agreement (kappas < 0.5).

Conclusion: Agreement amongst readers on mammography positioning criteria within and between centres ranges widely; automated image quality assessment may help to improve standardization.

B-1544 11:10
Post-contrast cone-beam breast-CT without the prior pre-contrast scan: can we reduce radiation exposure while maintaining diagnostic accuracy?
S. Wienbeck1, U. Fischer, J. Lotz, J. Uhlig, Göttingen/DE (susanne.wienbeck@med.uni-goettingen.de)

Purpose: To evaluate whether post-contrast Cone-Beam Breast-CT (CBBCT) alone is comparable to the current standard of combined pre- and post-contrast CBBCT regarding diagnostic accuracy and superior regarding radiation exposure.

Methods and Materials: This IRB-approved study included 49 women (61 breasts) with median age 57.9 years and BI-RADS 4/5 lesions diagnosed on mammography/ultrasound in density types c/d breasts. 2 radiologists rated post-contrast CBBCT and pre- and post-contrast CBBCT with subtraction images on the BI-RADS scale separately for calculation of inter- and intra-rater agreement and in consensus for diagnostic accuracy assessment. Sensitivity, specificity and area-under the curve (AUC) were compared via McNemar test and DeLong method, respectively. Subtraction imaging misregistration were measured from 1 (no artefacts) to 4 (artefacts with width >4mm).

Results: A total of 100 lesion (51 malignant; 6 high risk; 43 benign) were included. AUC, sensitivity and specificity showed no significant differences comparing post-contrast CBBCT alone versus pre- and post-contrast CBBCT (AUC: 0.84 vs. 0.83, p=0.643; sensitivity: 0.89 vs. 0.85, p=0.158; specificity: 0.73 vs. 0.76, p=0.655). Inter- and intra-rater agreement were excellent (intraclass correlation coefficient ICC=0.76, ICC=0.83, respectively). Radiation dose was significantly lower for post-contrast CBBCT alone versus pre- and post-contrast CBBCT (median AG 5.9 mGy vs. 11.7 mGy, p<0.001). High-degree misregistrations were evident in the majority of subtraction images (level 1/2/3/4: 16.9%/27.1%/16.9%/39%), in particular for bilateral exams (3.2%/29.2%/8.3%/58.3%).
Conclusion: Diagnostic accuracy of post-contrast CBCT alone is comparable to pre- and post-contrast CBCT in type c/d breasts, while yield a significant twofold radiation dose reduction.

B-1545 11:18
Local diagnostic reference values in mammography: setting a maximum/alarm dose in a diagnostic mammography unit using dose monitoring software

Purpose: To show feasibility of a dose monitoring software to set an alarm level guided by the local DRLs used in mammography above which it will give a red flag so radiation monitoring team will be alerted to a need for revision of the mammography technique.

Methods and Materials: This is a retrospective study comprising mammographic imaging data for 300 consecutive breasts of variable compositions randomly selected. Data were collected using "DoseWatch™" by GE. Mean glandular dose (MGD) was recorded in relation to patient age, compressed breast thickness (CBT), percentage of glandular tissue (FG), projection views and skin entrance dose among other imaging parameters. The formula mean±1.96 SD was used to calculate the MGD range for all patients. The maximum calculated dose was rounded to the nearest whole number. The resultant value was used as an upper threshold above which the dose monitoring software gives a red flag.

Results: MGD was calculated for breast thickness above 50 mm in CC, MLO and 3D mammography and was found to be 1.2±1.4 and 1.62 mGy, respectively. Local DRLs for breast imaging was calculated as follows: average MGD CC view=1.32 minimum=0.74; maximum=2.42; alert level=2 mGy. Average MGD MLO view=1.4 minimum=0.92; maximum=2.42; alert level=2 mGy. Average MGD TomoCC view=1.62 minimum=0.88; maximum=3.75; alert level=3 mGy. Data found were well comparable to internationally established values.

Conclusion: A dose monitoring software is an easy and reliable tool to set local DRLs in a busy mammography unit. This can be used to establish local and then national DRLs and to compare with published literature worldwide.

B-1546 11:26
A new technique in mammography: self-compression-survey of patient contentedness

S. Ulus, O. Kovan, A. Arslan, P. Elpen, M.E. Arıbal; Istanbul/TR (silautilus@hotmail.com)

Purpose: Senographe Pristina (GE Healthcare,Chicago, IL) is a next-generation mammography technology that features a self-compression tool allowing patients to manually adjust the degree of breast compression. Purpose of this study is to evaluate the experience of this technology compared to previous examinations with a survey study.

Methods and Materials: The survey studies (12-item questionnaire) subsequent to mammography examinations of 365 patients who underwent screening/diagnostic mammography between April-July 2017 at our centre were reviewed retrospectively. Women who never had a mammography before, who had a previous mammography examination ≥2 years ago or who didn't want to use the self-compression device were excluded. 106 women were included.

Results: Patient contentedness was high. 70.8% said it was a better experience compared to previous ones. 84.9% of the participants found the examination comfortable; 75.5% of the participants found the examination more comfortable compared to previous ones. 52.8% of the participants declared they were less anxious compared to previous examinations. 68.6% of the participants declared they found the new design attractive; when compared to previous examinations, 39.7% found it more attractive. 27.3% said the new design decreased anxiety. In the evaluation of impact of patient-assisted compression (PAC) on comfort 80.2% said they found it more comfortable. In the evaluation of impact of PAC on anxiety 64.2% said it decreased anxiety. 72.6% of the participants said the exam was shorter.

Conclusion: Self-compression is a useful technique for decreasing pain during mammography examinations resulting in compliance of women with screening guidelines.

B-1547 11:34
Impact of a radiological consultation on the surgical management of breast cancer patients: a retrospective study of 1114 cases

C. Dratwa; Paris/FR (chloe@dratwa@gmail.com)

Purpose: Evaluate the impact of a radiology image consultation on the surgical strategy in patients with a newly-diagnosed breast cancer.

Methods and Materials: During 2014, 1114 patients with breast cancers (invasive: 87.5%, in situ: 12.5%) underwent an imaging-surgery consultation. Following the consultation, the parameters were evaluated: missing data in the initial imaging report, number and pathological results of additional breast lesions detected during this consultation, effects on surgical management, impact on treatment delay and second breast surgeries. Uni- and multivariate analyses were done to identify parameters (clinical, radiological and pathological data) with a significant impact on surgical changes (p<0.05).

Results: BI-RADS category was missing in 4.6% of patients. Cancer size was not evaluated in 126 (11.3%, 63.2% of califications vs 3.7% for masses). At consultation, at least one additional lesion was detected in 238 patients (26.8%). Among the 236 patients with percutaneous samplings, 102 lesions were malignant (60 invasives, 42 in situ), 16 at high risk, 114 benign and 4 non-contributive. On 1081 patients with primary surgery, surgical management was modified in 147 (13.6%). Delay for surgery was respected in 95%. Reoperation rate was 7% versus 12.9% in 2013. At univariate analysis, “calcification”, BI-RADS categorization omission, unknown size, in situ and lobular subtypes were associated with modified surgical strategies. At multivariate analysis, masses with califications and lobular subtype were significantly associated with surgical changes (OR=1.92 95% CI[1.1-3.24]).

Conclusion: In breast-cancer patients, imaging consultation modified the surgical management in 13.6% without increasing delay for surgery and with a less re-excision rate.

B-1548 11:42
Improving quality assurance in DBT breast screening by visual search monitoring

Y. Chen1, E. Michalopoulou1, A.G. Gale1, D. Bernard2, Loughborough/UK, Trento/IT (Y.Chen@lboro.ac.uk)

Purpose: The current research investigates how experienced DBT radiologists visually inspected FFDM cases.

Methods and Materials: Seven radiologists interpreted 40 normal, benign or malignant cases. Each case comprised FFDM or C-view, and DBT views. The cases were presented on a workstation with dual 5 MP monitors and a remote eye tracker positioned underneath the workstation recorded the participants’ visual search behaviour. Participants used their normal breast screening reporting procedure of examining the cases, together with prior mammographic images, and then examined breasts as FFDM and DBT views. Diagnostic reporting data, visual gaze position data and DBT slice scrolling behaviour data were recorded.

Results: Examination of the visual search data indicated that radiologists tended to visually examine large areas of the FFDM views to locate potential suspicious areas and then use the DBT views to ‘drill down’ across image slices to examine their details. Out of 119 total examinations, 25 cancers were missed on the malignant cases. Scrolling behaviour data demonstrated that individuals who correctly recalled a malignancy spent 56s whilst a missed cancer was evidenced by quickly scrolling through the range of slices where the abnormality existed for only 22 seconds. Participants spent on average 1:10s on successfully recalled malignant cases and 1:08s on malignant cases which were not successfully recalled (two-tail paired t test, p=0.294, n.s.).

Conclusion: FFDM images were searched to establish initial areas of interest which were then examined in detail using DBT slices. This strategy could improve quality assurance in breast cancer screening trainees.

B-1549 11:50
Diagnostic performance of low dose contrast-enhanced dual energy mammography in comparison to contrast-enhanced MRI

P. Clauser1, P.A.T. Balzer1, P. Kapetas1, R.A. Woi1, E. Leone2, K. Franke-Dormeng1, M. Weber1, M. Bernathova2, T.H. Helbich1, Vienna/AT, Trento/IT (paola.clauser@meduniwien.ac.at)

Purpose: To compare the diagnostic performance of a low-dose contrast-enhanced dual energy mammography (CEDEM) system with breast contrast-enhanced magnetic resonance imaging (CE-MRI) in women with unclear or suspicious findings on conventional imaging.

Methods and Materials: The ethics committee approved this prospective, monocentric study and all patients gave written informed consent. Women with unclear or suspicious findings on conventional imaging and no contraindications for CEDEM or CE-MRI were invited to participate in the study. Included in the final analysis were women with a histological diagnosis (standard of reference). Three off-site, blinded readers evaluated the images according to BI-RADS lexicon in a randomized order, each in two separate reading sessions. Detection rate, specificity, sensitivity, negative and positive predictive values (NPV, PPV) were calculated and compared with multivariate statistics.

Results: Included were 80 patients (mean age 54.3 years, standard deviation 11.2) with 93 lesions (32 benign, 61 malignant). Detection was higher with CE-MRI (92.5%-94.6%) than with CEDEM (79.6%-91.4%, P<0.038). This was related to a higher detection for benign lesions with CE-MRI. No differences in sensitivity (CEDEM 65.6%-92.0%; CE-MRI 83.6%-93.4%, P=0.086) and NPV (CEDEM 59.6%-71.4%; CE-MRI 63.0%-76.5%, P=0.780) were found. Specificity was higher with CEDEM (46.5%-96.9%) than with CE-MRI (37.5%-50.0%, P<0.001). PPV (CEDEM 73.9%-77.3% P=0.007). Accuracy of CEDEM was as good as CE-MRI (75.3%-76.3% P=0.072).

Sunday A B C D E F G SS13
versus 72.0%-75.3% respectively, P=0.514).

Conclusion: CEDEM showed high detection rate for malignant lesions. Sensitivity and accuracy of CEDEM were as good as CE-MRI, with a higher specificity. CEDEM shows the potential to reduce unnecessary biopsy.

Author Disclosures:
- **P. Clauser:** other; invited talks for Siemens Healthcare.
- **M. Bernathova:** other; invited talks for Siemens Healthcare.

T.H. Helbich: research/grant support; the current study was supported by Siemens Healthcare and Guerbet.

10:30 - 12:00 Room E2

Neuro

SS 1811a

Parkinson and related disorders

Moderators:
S. Cocozza; Naples/IT
M.F. Vasco Aragão; Recife, PE/BR

B-1550 10:30

Advanced imaging technique in diagnosis of Parkinson’s disease: quantitative MRI mapping of substantia nigra

M.V.M. Micelli¹, A. Corrêdo², S. Torlonie³, L. Panebianco⁴, P. Cerrone⁵, M. Martino⁶, P. Sucapanie⁷, A. Splendiani⁸, C. Masciocchi⁹, L’Aquila, IT

¹Rome (micelli.mv@gmail.com)

Purpose:
Parkinson’s disease (PD) is characterised by a degeneration of the dopaminergic neurons in the substantia nigra (SN). Susceptibility-weighted imaging (SWI) shows an abnormal signal intensity inside SN-compacta/SNpc in PD patients. The aim of the study is to assess T1- and T2-values inside SNpc in PD patients.

Methods and Materials:
35 PD patients and 20 sex- and age-matched subjects, without movement disorders, underwent HR-SWI and a synthetic sequence using a 3.0T MRI scan and a 32 phased-array head coil. MRI software automatically generated quantitative maps and T1-, T2- and proton density values were obtained using a manual region of interest (ROI) on SNpc by two-blinded neuroradiology. Analysis of covariance was conducted to analyse the T1-, T2- and proton density values and interobserver agreement was evaluated by calculating the kappa coefficient from the mean kappa pairwise scores.

Results:
HR-SWI showed a loss of the swelling-tail sign in all PD patients (15 cases were monolateral); no degenerations were identified in control group. Quantitative MRI mapping showed T2 (ms) and T2 (1/s)-values to be statistically different between PD and controls (p<0.002), in detail (mean ±SD): R2-values (1/s): 5.7 ±1 vs. 5.6 ±1 (PD vs controls), T2-values: 67.3 ±7.5 vs 76.8 ±5.1 (PD vs controls). Proton density- and T1-values were not statistically different. Interobserver agreement was higher in quantitative MRI mapping (100%) than HR-SWI (85%).

Conclusion: T2-mapping is an objective method in quantifying the hypointensity inside SN. It could discriminate patients affected by Parkinson’s disease due to the capability to assess pathological changes inside nigral neurons.

B-1551 10:38

Executive network integrity predicts sarcopenia in patients with Parkinson’s disease

(rose80113@hotmail.com)

Purpose:
Sarcopenia in Parkinson’s disease (PD) patients is significantly associated with morbidity and mortality as disease progression. However, an analysis of clinical severity and brain change, such as white matter (WM) alteration in PD patients with sarcopenia (PDSa), is still limited. A better understanding of associated factors with sarcopenia could provide a focused screen and early intervention in PD patients.

Methods and Materials:
S2 PD patients and 19 healthy participants accepted dual-energy X-ray absorptiometry to measure the body composition. Using diffusion tensor imaging, the difference of WM integrity was measured between PDSa and without sarcopenia (PDNSa). Multivariate analysis was performed to explore the relationship between clinical factors, WM integrity and sarcopenia in PD patients.

Results:
21 PD patients (40.4%) exhibited sarcopenia. Compared to PDNSa, PDSa had lower fractional anisotropy accompanied by higher radial diffusivity and/or higher mean diffusivity in fronto-striato-thalamic circuits including bilateral cingulum, left superior longitudinal fasciculus, left genu of corpus callosum, and right anterior thalamic radiation, which prominently participate in the executive function. In addition, decreased muscle mass was associated with worse WM integrity in these regions. Further multiple linear regression analysis revealed that worse WM integrity in left cingulum, right anterior thalamic radiation, together with gender (male) were independent risk factors for predicting sarcopenia in PD patients.

Conclusion: WM alterations in the executive functional network, such as fronto-striato-thalamic circuits, might be an important risk factor for ongoing sarcopenia in PD. These patterns of WM damage imply the underlying aetiology and provide a marker to predict the development of sarcopenia for comorbidity early prevention.

B-1552 10:46

Treatment of essential tremor (ET) and Parkinson disease (PD) tremor with MRgFUS: preliminary results from 21 patients in a single centre

F. Bruno, M. Micelli, L. Panebianco, F. Arrigoni, M. Varrassi, A. Catalucci, P. Sucapanie, A. Ricci, C. Masciocchi; L’Aquila/IT
(federico.bruno.1988@gmail.com)

Purpose:
To report our experience in the treatment of ET and PD tremor using MRgFUS thalamotomy.

Methods and Materials:
In the period February-September 2018, we enrolled 21 patients (12 males, mean age 64.8 years) with disabling and refractory tremor (11 ET, 10 PD tremor, mean duration of symptomatology 10.4 years) who were subjected to unilateral Vim ablation using MRgFUS. Clinical evaluation was performed using the Fahn-Tolosa-Marin scale (FTM) for tremor and the QUEST score for quality of life, assessed before treatment, immediately after treatment and with follow-up at 1 month and 3 months. Instrumental MRI follow-up was performed at the same follow-up periods. Satisfaction parameters were recorded in all procedures.

Results:
Treatment was effective (substantial and immediate reduction of tremor) in 20 out of 21 patients (95.2%). FTM scores decreased from mean values of 33.4 before treatment to 14.7 immediately after treatment. In patients followed-up at 1 month (10 patients), the clinical evaluation showed a minimal increase in the mean FTM values due to the reappearance of tremor in 4 patients (mean FTM 16.4 vs. 14.7). At 3 months (6 patients), we found a substantial stability of treatment effects. Quality of life evaluation showed substantial improvement (73.2% reduction of the QUEST scores). Temporary side effects and complications (dysarthria, perioral paresthesias, limb weakness) occurred in 3 patients.

Conclusion:
In our experience with a relatively small number of patients and a short follow-up, MRgFUS thalamotomy resulted in a safe and effective treatment option for tremor in ET and PD patients.

B-1553 10:54

Functional connectivity alterations of dorsal premotor cortex subregions in Parkinson’s disease

M. Sigl¹, C. Jockwitz², C. Mathysz², S. Eickhoff², C.J. Hartmann¹, C. Rubbert¹, B. Turowski³, S. Caspers³, J. Caspers³, D. Düsseldorf/DE, J. Jülich/DE, Oldenburg/DE (benjamin.sigl1988@gmail.com)

Purpose:
Parkinson’s disease (PD) is associated with impairments in motor and cognitive function. Areas of the dorsal premotor cortex (PMD) “6d1-3” are mediators between motor and cognitive networks. We used resting state functional connectivity (RSFC) to investigate PD-related changes of these areas.

Methods and Materials:
RSFC was assessed in 40 PD patients under dopaminergic medication (“ON”) and after >12h withdrawal (“OFF”) and in 40 matched healthy controls (HC). Microstructurally defined areas 6d1-3 within PMd were used as seed regions. We tested for group differences in whole-brain RSFC (PD-OFF/ON vs HC) and for correlations with UPDRS-III score.

Results:
There was RSFC-decline in PD-OFF compared to HC for left area 6d2 with bilateral dorsolateral prefrontal cortex respectively. The latter normalized under medication. Connectivity increase was found for right area 6d3 with bilateral pre- and postcentral regions in PD-ON. We found negative correlation of UPDRS-III with RSFC of right areas 6d2 and 6d3 with left 6d1 in PD-OFF, and of left area 6d2 with bilateral dorsolateral prefrontal cortex in PD-ON, and a positive correlation for RSFC between right 6d3 and bilateral central region.

Conclusion:
Distinct RSFC-changes of PMd areas in PD reveal their differential involvement in PD pathology. Connectivity loss within the premotor cortex and with dorsolateral prefrontal cortex are probably directly related to PD symptoms such as motor planning, sensorimotor transformation and cognitive motor control. RSFC-increase of right 6d2 with sensorimotor areas in PD-ON might indicate a dopamine-induced compensation for motor impairment through increased cognitive motor control.
B-1554 11:02
DMN-neuronal activity pattern in patients with PD in early stages
E. Seliverstova, Y. Seliverstov, R. Konovalov, M. Krotenkova, S. Illaroshkin; Moscow/RU (eselivers@yahoo.com)

Purpose: To assess pattern of neuronal activity within default mode network (DMN) in patients with Parkinson's disease (PD) in early stages comparing to healthy controls.

Methods and Materials: We have examined and compared 3 independent right-handed groups (25 patients with PD in early stage, 15 females, mean age 60.2, in pharmacological treatment; 16 newly diagnosed PD patients, 9 females, surrounded age 55.3; 21 healthy volunteers, 14 females, mean age 48.9) underwent 1.5 T resting-state fMRI scanning; data were calculated using software GIFT and SPM.

Results: We have observed multidirectional changes in neuronal activity within DMN in examination groups of patients, reduction and extension of activation in different DMN areas. But we observed unique equal pattern - significantly greater areas of spontaneous neuronal activity in right/left precuneus [pFWEcorr<0.05; T>3.5] and significant reduction of activation in the right inferior parietal lobe in both groups of PD patients (in pharmacological treatment and newly diagnosed PD patients) versus healthy volunteers [pFWEcorr=0.037; T=4.7]. This area is involved in visual-spatial perception (disturbed in PD patients); area changes correlated with decrease in MoCa score and increase in UPDRS (p<0.05).

Conclusion: DMN-neuronal activity pattern in patients with PD in early stages is of multidirectional changes, reduction and extension of activation in different DMN areas. But we observed unique equal pattern - significantly greater areas of spontaneous neuronal activity in right/left precuneus and significant reduction of activation in the right inferior parietal lobe in both groups of PD patients versus healthy volunteers; area changes correlated with decrease in MoCa score and increase in UPDRS.

B-1555 11:10
Resting state functional MRI connectivity comparison between Alzheimer’s disease and Parkinson’s disease dementia: a sub-analysis
P.A. Harman1, C. Law’, M. Johnson2, S. Pardhan1, I.Q. Grunwald3, K. Ramavathu4, Chelmshford/UK, 1Stanford, CA/US, 2Southend-on-Sea/UK, 4Westcliff on Sea/UK (Kumar.Ramavathu@southend.nhs.uk)

Purpose: Resting state functional MRI (RS fMRI) has been suggested as a potential biomarker for Alzheimer’s Disease (AD). However, there is little research into the functional connectivity (FC) patterns of Parkinson’s disease dementia (PDD) and no study has sought to directly compare the two. We present a sub-analysis on a set of patients from a larger study which aims to evaluate the use of RS-fMRI in clinical routine, on a 1.5T MRI.

Methods and Materials: As part of an on-going, prospective, observational study, sub-analysis was performed on a small subset of patients. Confirmed PDD patients were age and gender matched to confirmed AD patients. Participants underwent a RS-fMRI scan on a standard 1.5T clinical care MRI and also undertook a neuropsychological battery assessing various areas of cognition. Functional connectivity in regards to clinical characteristics was evaluated along with cognitive profiles.

Results: Analysis showed characteristic differences between the PDD and AD group, specifically regarding the retrieval region in the left executive control network. The AD group had increased levels of connectivity between the retrieval region to left insula and prefrontal cortex regions.

Conclusion: To date we believe this is the first comparison of FC in AD and PDD. A reduction of connectivity from a seed in the left executive control network could represent a distinguishing feature for PDD groups in RS-fMRI data. It seems feasible to incorporate RS fMRI scanning into clinical routine scanning, even on a 1.5T scanner.

B-1556 11:18
3T susceptibility-weighted imaging and Parkinson’s disease: new fields in neuroimaging
A. Corridore1, S. Torlone1, M. Micelli1, M. Martino2, L. Panebianco1, P. Cerrone1, P. Sucapan1, A. Splendiani1, C. Masciocchi1, 1L’Aquila/IT, 2Home/IT (antonella.corridore@gmail.com)

Purpose: Aim of the study was to evaluate the morphological features of the Substantia Nigra (SN) in Susceptibility-Weighted Imaging (SWI) sequences in order to assess its reliability in Parkinson Disease (PD) diagnosis and its correlation with neurodegeneration severity.

Methods and Materials: We prospectively evaluated 60 consecutive patients with PD diagnosis, who had been admitted at the Neurological Movements Disorders Ambulatory of our Institution in L’Aquila. Patients underwent standardized brain 3T-MRI examination supplemented by SWI sequence for the Nigrosome-1 evaluation; a control group of 20 healthy patients was also provided. Two expert neuroradiologists analysed the SWI images in blind and defined a SN degeneration severity score (mild, moderate and severe). A complete evaluation of the motor function by UPDRS, a cognitive evaluation by MoCA and an analysis of non-motor disorders by NMSs were performed.

Results: SWI sequences showed accuracy in the disease detection in patients with PD compared to control group (χ2=10.31; p<0.001). A statistically significant correlation (χ2=8.2; p=0.016) between laterality of symptoms and contralateral degeneration of SN pars compacta was depicted. Rigidity and bradykinesia showed a non-statistically relevant association with the contralateral SN degeneration degree. The presence of hallucinations and their severity seem negatively related to the SN hypointensity measured through SWI sequence (p<0.015).

Conclusion: SWI sequence performed in patients with PD represents an efficient support in the differential diagnosis and, potentially, in the monitoring of the disease progression.

B-1557 11:26
Structural integrity impact of focused ultrasound thalamotomy and correlation to behavioural outcomes for tremor disorder
G. Zur1, O. Lesman-Segev1, I. Schlesinger1, A. Eran1, I. Kahn2; Haifa/IL (gil.zur@yahoo.com)

Purpose: To evaluate white matter changes following MRI-guided focused ultrasound (MRFUS) ablation of the thalamus and correlate it with treatment success in essential tremor (ET) and Parkinson’s disease (PD) patients.

Methods and Materials: 22 ET and 17 PD patients, candidates for MRFUS treatment for medication refractory tremor, were recruited and scanned with diffusion tensor imaging (DTI) (2×2×2 mm³ resolution, 25 gradients) before the ablation and a day, a week, one-three months, and four months-to-one year following ablation. Diffusivity parameters and fiber tractography measures were extracted. Tremor was evaluated (CRST and UPDRS) at baseline, one month and six months post-ablation.

Results: We found a pattern of decline and recovery in diffusivity measures and fiber tractography in the motor thalamus and throughout the dentato-rubro-thalamo-cortical pathway. The ablation core and the pathway between the red nucleus and motor thalamus did not show full recovery in late follow-up scans (P<0.005). Inverse correlation was found between fractional anisotropy (FA) measured in the motor thalamus a day before or a day following ablation and tremor relief (R²=0.26, P<0.02, and R²=0.37, P<0.005, respectively). Long-term tremor relief was seen following the treatment.

Conclusion: Long-term white matter damage was found in the ablation core, and in the tract between the thalamus and red nucleus that is in line with the long-term tremor relief, suggesting it may play a role in tremor pathogenesis. Pre-ablation FA values in the motor thalamus correlated with treatment success thus implying its value as a possible biomarker for patient selection.

B-1558 11:34
Lewy body dementia and posterior cortical variant of Alzheimer’s disease: distinguishing imaging patterns on FDG PET/CT and 18F-TRODAT SPECT scan
V. Gupta, R. Verma, R. Ranjan, E. Belho, H. Mahajan; Delhi/IN (ethelbelho@gmail.com)

Purpose: To establish differences in imaging patterns of posterior cortical atrophy (PCA), and dementia with Lewy bodies (DLB) on 18F-FDG PET/CT using 123I-TRODAT scan as the scintigraphic gold standard. This study aims to identify areas of similarities and differences on 18F-FDG PET imaging between the two.

Methods and Materials: A retrospective analysis of 70 patients clinically suspected of having posterior dementia was done. All patients underwent 18F-FDG PET/CT scan of the brain and dopamine transporter imaging with 123I-TRODAT-1 SPECT scan on two consecutive days. The studies were analysed both visually and semi-quantitatively. The patients were divided into possible PCA with TRODAT scan normal (n=38) and possible DLB with TRODAT scan abnormal (n=32). The FDG PET/CT uptake patterns were recorded and areas of hypometabolism that were two standard deviations from the mean were considered as abnormal.

Results: All patients had abnormal pattern of FDG uptake on PET. Significantly reduced metabolism was found in parieto-temporal and occipital association cortices and cingulate cortices in PCA patients. DLB patients showed significantly reduced uptake in the visual cortex with variable involvement of parieto-temporal cortices, with significant difference in the regional z scores between PCA and DLB patients. No significant difference was found between z score of occipital association cortex, which showed hypometabolism in both groups.

Conclusion: FDG PET may be useful as a non-invasive diagnostic modality in differentiating the two posterior cortical dementias, despite significant clinical and imaging overlap, with or without additional TRODAT scan.
B-1559 11:42
Analysis the changes of white matter structure with tract-based spatial statistics according to diffusion tensor imaging in Parkinson’s disease
C. Chen, J. Cheng; Zhengzhou/CHN (chnmni812@163.com)

Purpose: To assess the white matter structural changes in patients with Parkinson’s disease (PD), using tract-based spatial statistics (TBSS) approach.

Methods and Materials: A total of 88 PD patients and 45 healthy volunteers matched by age and sex were enrolled. DTI were performed on a 3T MAGNETOM Prisma. Data were processed using FSL software. TBSS technique was used to extract the dispersion index values of cellulosic skeleton in abnormal white matter, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (L23). Independent sample t-test was performed to compare the differences between the two groups. Pearson correlation analysis was applied to reveal the correlation between dispersion index values and clinical indicators.

Results: Compared with healthy volunteers, PD patients presented decreased FA and increased MD, L1 and L23, in the following regions: genu and body of corpus callosum, anterior limb of internal capsule, posterior limb of internal capsule anterior corona radiata, superior corona radiata, left posterior corona radiata and thalamic radiata, right sagittal stratum, external capsule, and superior longitudinal fasciculus. The FA decreased at fornix, while the MD and L23 increases at the anterior limb of internal capsule increased. These findings were positively correlated with disease duration. The L23 of the right anterior limb of internal capsule increased, and it was positively correlated with the unified PD rating scale score.

Conclusion: Extensive structural changes in the white matter of PD patients can be characterised by disruption of projection fibres in the descending pathway, mainly descending from the corpus callosum and posterior thalamic radiata.

B-1560 11:50
The value of MR neurography in the differential diagnosis between amyotrophic lateral sclerosis and multifocal motor neuropathy

Purpose: Differential diagnosis between amyotrophic lateral sclerosis (ALS) and multifocal motor neuropathy (MMN) may be difficult, which has a strong impact on adequate therapy. The purpose of this study was to assess diagnostic accuracy of MR neurography in differential diagnosis of ALS and MMN.

Methods and Materials: Twenty-two patients with ALS and eight patients with MMN underwent MR neurography of upper and lower extremity nerves using high-resolution T2-weighted sequences. MR neurographies of 15 matched healthy subjects served as a control group. Images were independently read by two readers, who rated fascicular lesions and muscle denervation signs and made a final, image based diagnosis while being blinded to the clinical diagnosis. Results were compared with the reference standard of diagnosis according to standard clinical and electrophysiological criteria.

Results: Nerves of patients with ALS either appeared normal or showed mild T2w-hyperintensities without fascicular enlargement, whereas nerve lesions in MMN were characterized by fascicular swellings. Muscle denervation signs were more prominent in ALS compared to MMN. By imaging, 19 of 22 patients with ALS, 7 of 8 patients with MMN and all of the 15 healthy controls were correctly diagnosed, implying a sensitivity of 0.86 (95% CI: 0.67 - 0.95) and a specificity of 1.00 (95% CI: 0.86 - 1.00) for the diagnosis of ALS, as well as a sensitivity of 0.88 (95% CI: 0.53 - 0.99) and a specificity of 1.00 (95% CI: 0.91 - 1.00) for the diagnosis of MMN.

Conclusion: MR neurography may assist differential diagnosis of ALS and MMN.

B-1562 10:47
Diffusion-weighted imaging with background suppression in detection of breast malignancies: a non-invasive, non-contrast and non-radiation technique
P. Yadav1, V. Kulkarni1, Y. Patil2, S. Harit1, Pune/IN, Manipal/IN (yadavpratiksha@hotmail.com)

Purpose: To evaluate the utility of non-contrast MRI sequences with use of 3-D diffusion-weighted imaging and background suppression in differentiating malignant and benign breast lesions. To evaluate the sensitivity and specificity of the non-contrast MRI and DWI in detection of breast malignancies.

Methods and Materials: This study was IRB and IEC approved and included 68 breast lesions of 57 cases, suspicious for malignancies on mammography and breast ultrasound. All the cases underwent for breast MRI on 1.5 Tesla machine using dedicated breast coil. Multiplanar localizer was applied with 3mm slice thickness. T1WI, T2WI and STIR in axial plane, STIR coronal and breast ultrasound. All the cases underwent for breast MRI on 1.5 Tesla machine using dedicated breast coil. Multiplanar localizer was applied with 3mm slice thickness. T1WI, T2WI and STIR in axial plane, STIR coronal and sagittal plane. DWI was done with b value 1500 sec/mm². Post-processing was done and ADC calculations were also obtained. All the cases were correlated histopathologically.

Results: The lesions which showed diffusion restriction considered positive whereas lesions did not show restriction considered as benign. DWI with increased b value demonstrates lesions better with background suppression. In 68 breast lesions, 35 (51.4%) were malignant and 33 (48.5%) benign on DWI. Histopathology revealed 37 lesions (54.4%) were malignant and 31 (45.5%) benign. Sensitivity of DWI was 91.6% (95% CI= 77.5, 98.25), specificity 90.62% (95% CI =74.9, 98.02), PPV 91.6% and NPP 90.6%. Mean ADC of malignant lesions was 0.609 ± 0.35×10-3 mm²/s and benign lesions was 1.792 ± 0.53 × 10-3 mm²/s.
Conclusion: When b value increases, signal intensity of the normal breast decreases which demonstrates improved contrast resolution between malignant lesion and normal breast tissue. It is a very useful non-contrast, non-radiation, non-invasive MRI technique.

B-1563 10:55
Diffusion with very high b-value in breast MRI: preliminary results
H. Hamri1, E. Weiland2, M. Scholer1, Z. Jolibois1, C. de Bazelaire1, E. Weiland3, Paris/FR, *Erlangen/DE (hamri.hajar@yahoo.fr)

Purpose: To evaluate the diagnostic yield of very high b-value DWI combined with a T2-weighted sequence in breast MRI.

Methods and Materials: In this retrospective study approved by our IRB, breast MRI was performed at 1.5T with an 18 channel breast coil (MAGNETOM Aera, Siemens). Protocol included 2D-T1-FSE, 2D-single-shot-EPI-diffusion-SPAIR with a single b-value of 2500s/mm² (prototype), 3D-T2-SPAIR, and 3D-T1-VIBE-SPAIR dynamic contrast enhanced (DCE) sequences. T1-w, T2-w and T1-w DCE sequences were first analyzed and findings were classified according to the BI-RADS lexicon. All findings with high Diffusion signal associated with low T2 signal were classified as suspicious regardless of morphology. All suspicious lesions were biopsied, BI-RADS 1-3 lesions had 2 years follow-up. Diagnostic yields were compared using ROC curves.

Results: One hundred and twenty-seven patients (mean 53 yo, range 20-93) with 36 breast cancers and 101 benign lesions or normal breast were included. Higher sensitivity but lower specificity were found with the T1-w, T2-w and T1- w DCE sequences compared with DWI and T2-w sequence (0.972, 0.842 versus 0.689, 0.921 respectively). However, the comparison of ROC curves showed no significant difference (AUC T1-T2-T1 DCE=0.907 and AUC DWI-T2=0.905, p=0.952). DWI and T2-w sequences missed 4 large cancers (>20mm) because of their intensity in the T2-w signal.

Conclusion: Combined analysis of DWI using very high b-value with T2-w sequences reached similar diagnostic yield than standard breast MRI protocol with contrast injection. Further studies combining morphological features and tumor sizes from T1-w and T2-w unenhanced sequences are mandatory.

Author Disclosures:
E. Weiland: Employee; Employee Siemens Healthcare GmbH

E. Weiland: Employee; Employee Siemens Healthcare GmbH

B-1564 11:03
Evaluation of breast lesions with simultaneous multi-slice DWI in comparison to routine read-out segmented DWI
W. Sanderink1, J. Teunen2, I. Sechopoulos1, N. Karssemeijer1, L. Appelman1, E. Weiland2, R.M. Mann2, *Nijmegen/NL, *Erlangen/DE (wendelien.sanderink@radboudumc.nl)

Purpose: To compare conventional read-out segmented diffusion weighted imaging echo-planar imaging (sDWI-EPI) to a prototype Simultaneous Multi-Slice single shot-DWI-EPI (SMS-ss-DWI-EPI) at 3T using b-values of 0 and 800 s/mm², in terms of image quality (IQ), lesion conspicuity, and lesion description.

Methods and Materials: From September 2017 to August 2018, 15 women with known breast cancer or suspicious breast lesions were scanned with the conventional rs-DWI-EPI (resolution: 1.2x1.2x5 mm, TA: 4:23 min) and the SMS-ss-DWI-EPI (resolution: 0.9x0.9x4 mm, TA: 2:45 min) during the same clinical examination on a 3T system. In total, 33 lesions (26 malignant, 5 benign and 2 unknown) were detected on the contrast enhanced series. Two dedicated breast radiologists (4 and 10 years of experience with breast MRI), independently scored both sequences for overall IQ: 1 (extremely poor) to 9 (excellent). All lesions were also independently evaluated for conspicuity: 1 (not visible) to 3 (visible) and a BI-RADS score per lesion (1 to 5) was given.

Results: IQ was significantly higher for conventional rs-DWI-EPI (mean 5.3 ± 1.9), than for SMS-ss-DWI-EPI (mean 3.6 ± 1.7) (p=0.001). Benign lesions had a similar visibility in both sequences. Malignant lesions were significantly better visible in the SMS-ss-DWI-EPI (11/52 reads) (p=0.015). There was no significant difference in BI-RADS scores (p=0.0228) between the two sequences.

Conclusion: Despite the perceived poorer image quality of the SMS-ss-DWI-EPI sequence, malignant lesions are better visualized using this sequence. The technique might therefore enable lesion detection on unenhanced breast MRI.

Author Disclosures:
E. Weiland: Employee; Siemens Healthcare

B-1565 11:11
Diagnostic performance of region of interest methods in diffusion-weighted imaging of breast lesions: a systematic review and meta-analysis
M. Wielema1, M. Dorius1, G.H. De Bock1, R.M. Pijnappel2, M. Oudkerk1, P.E. Siens1, *Groningen/NL, *Utrecht/NL (m.wielema@umcg.nl)

Purpose: The purpose of this systematic review and meta-analysis was to assess the accuracy of different region of interest (ROI) methods in the discrimination of benign from malignant breast lesions in diffusion weighted imaging (DWI) using the apparent diffusion coefficient (ADC), in terms of sensitivity, specificity and area under the ROC curve (AUC).

Methods and Materials: PubMed and EMBASE were searched for studies applying ADC in breast lesions, up to 24-10-2017 (n = 2154). Data were pooled based on 4 ROI method categories: ROI1: whole lesion, ROI2: subtracted whole lesion, ROI3: selected circular regions and ROI4: lowest diffusion selection. The more subjective ROI methods (ROI2, ROI3) excluded necrotic, cystic and hemorrhagic areas. Pooled sensitivity, specificity and AUC of ROIs were calculated. To explore heterogeneity, the following covariables were considered: field strength, lowest b-value, image of ROI drawing, pre- or post-contrast DWI, slice thickness and ADC threshold.

Results: Forty-nine studies (4958 lesions) were included. Pooled sensitivity, specificity and AUC were: 0.85(0.75-0.91), 0.77(0.60-0.89), 0.89(0.86-0.91) for ROI1; 0.92(0.89-0.94), 0.86(0.82-0.88), 0.92(0.89-0.94) for ROI2; 0.90(0.85-0.93), 0.90(0.83-0.94), 0.95(0.93-0.97) for ROI3 and 0.89(0.83-0.93), 0.83(0.70-0.86), 0.87(0.83-0.89) for ROI4, respectively. Significant heterogeneity was found between studies (p<0.001). None of the co-variables could explain the heterogeneity.

Conclusion: Using ADC as an indication of global diagnostic performance, ROI3 exceeded ROI1 and ROI4 (no overlap between ranges). Due to the non-uniformity of the data, however, no single ROI method significantly outperformed in the use of ADC to differentiate benign from malignant. Further standardization of ROI methods is needed to optimize the breast DWI protocol.

B-1567 11:19
Feasibility study of synthetic diffusion-weighted MR imaging in patients with breast cancer by qualitative and quantitative assessment
B. Choi; Changwon/KR (awy82@gmail.com)

Purpose: To investigate the clinical feasibility of breast synthetic diffusion-weighted imaging (DWI) in patients with breast cancer by assessing diagnostic image quality in comparison with conventional DWI.

Methods and Materials: Thirty-two patients with breast cancer were assessed using both synthetic and conventional DWI with b values of 100, 800 s/mm² (cDWI1000 and cDWI800) before surgery. Synthetic DWI with b value of 1,500 s/mm² (sDWI1500) were generated from conventional DWIs at b values of 100 and 800 s/mm². Image quality assessment was performed using 4-point Likert scale for comparison of sDWI1500, cDWI1500 and cDWI800. For quantitative analysis, contrast of cancer and glandular tissue were calculated on each DWI. Interobserver agreement was assessed using weighted kappa statistics and intraclass correlation coefficient.

Results: Both sDWI1500 and cDWI1500 showed better normal glandular tissue suppression and lesion conspicuity than DWI800 (P<0.05). Although cDWI1500 showed better image quality than sDWI1500 (P=0.005), sDWI1500 and cDWI1500 showed no significant difference of sensitivity for detecting cancer. CRs of cancer and glandular tissue was greater on sDWI1500 than on either conventional DWI (P<0.001).

Conclusion: sDWI of the breast using b value 1500 s/mm² is a feasible option for diagnostic use which can improve conspicuity of cancer with better CRs and background breast tissue suppression compared with cDWI.

B-1568 11:27
MR mammography of suspicious lesions: Influence of residual fat signal on diffusion kurtosis imaging

Purpose: In diffusion-weighted imaging of breast, not fully suppressed fat can lead to distortion of the quantitative parameters due to the low diffusion coefficient of fat. This work aims to evaluate various fitting models accounting for contamination from residual fat signal.

Methods and Materials: 198 patients with suspicious mammography findings and indication for breast biopsy were involved. DWI scans, before the biopsy, were acquired in one of two study centres (Group A - 1.5T Philips Ingenia, 105 patients; Group B - 1.5T Siemens Aera, 93 patients) using 4 b-values (0, 100, 750 and 1500 s/mm²). ROIs were segmented on the highest b-value slice where the lesion was visible. Fat ROIs were segmented on the contralateral breast. The following curve-fitting models have been compared: 1) diffusion kurtosis equation, describing non-Gaussian distribution; 2) empirically adjusted diffusion kurtosis model with inclusion of unsuppressed fat signal; 3) modified
kurtosis model, with additional factor accounting for signal from fatty area; 4) mono-exponential Gaussian diffusion.

Results: We demonstrated that the analysis of ROC curves, based on logistic regression, that the AUC values obtained for Model2 [0.86 (95% CI 0.80 to 0.91)] and Model3 [0.86 (95% CI 0.80 to 0.91)] are significantly higher (p < 0.03) than AUC values of Model1 [0.79 (95% CI 0.72 to 0.86)] and Model4 [0.77 (95% CI 0.70 to 0.84)].

Conclusion: Kurtosis-based fitting models, adapted to account for residual fat signal, show the potential to better discriminate between benign and malignant lesions than classical kurtosis-based and pure Gaussian diffusion models.

B-1569 11:35
Characterisation of breast parenchyma and cancer during lactation using diffusion tensor imaging
N. Nissan1, E. Furman-Haran2, T. Alweiss2, T. Menes3, O. Halhotok Neiman4, R. Faerman1, A. Shalmon1, M. Gotlib5, M. Sklar1,6, Tel Hashomer/IL, 2Tel Aviv/IL, 3Kiryat Ono/IL, 4Ramat Gan/IL (noam_nissan@hotmail.com)

Purpose: To investigate the utility of DTI parametric maps in characterization of the normal and malignant transformations of the lactating breast.

Methods and Materials: This prospective study was IRB approved and all participants signed an informed consent. Since January 2017, 28 lactating patients (median age and lactation duration: 36y and 6m, respectively) were scanned by diffusion tensor imaging (DTI) together with conventional dynamic contrast-enhanced (DCE) breast-MRI protocol at 1.5T. Indications included newly diagnosed breast cancer (n=11) and screening of high-risk patients (n=17). DTI was acquired using 32 directional diffusion gradients with 0.700ms/mm2 b values. DTI parametric maps of the principal diffusion coefficients (λ1, λ2, λ3), mean-diffusivity (MD), fractional-anisotropy (FA) and maximal-anisotropy index (λ3) were generated and analysed at pixel resolution using a dedicated software granted by permission. Based on the DCE subtraction images, DTI’s normal and malignant regions-of-interest (ROIs) were delineated and were statistically evaluated.

Results: The normal fibro-glandular tissue exhibited bi-modal distribution, characterized by a sub-areolar central area with increased diffusivity and reduced anisotropy as opposed to the peripheral areas with relatively lower diffusivity and increased anisotropy, possibly reflecting the respective changes in lactiferous ducts’ diameter. All 11 cancers were detected by DTI maps of λ1, λ2, λ3 and MD in agreement with DCE, exhibiting substantial contrast compared with the ROIs of the apparently normal tissue of the contralateral breast and fibroglandular tissue of healthy high-risk patients (p<0.001, for all).

Conclusion: DTI maps enabled the characterization of physiological lactation-induced parenchymal changes as well as malignant transformations, with substantial parametric contrast, improving the tumour’s conspicuity as revealed by DCE alone.

B-1570 11:43
Breast 1H-MR-spectroscopy to distinguish benign from malignant breast lesions: an updated systematic review and meta-analysis with clinical implications
C. Sodano1, R. Clauser, P. Kapetas, T.H. Helbich, P.A.T. Baltzer; Vienna/AT (claudiasodano@hotmail.it)

Purpose: To investigate the diagnostic performance of breast 1H-MR-spectroscopy to distinguish benign from malignant breast lesions and factors influencing sensitivity and specificity by meta-analytic methods.

Methods and Materials: A comprehensive database search using predefined search terms was performed for all articles listed till June 2018. Eligible for this study were publications investigating >10 patients at either 1.5T or 3T for the purpose of distinguishing benign from malignant breast lesions. Both single-voxel and multivoxel techniques were eligible. A reference standard by either histopathological examination or follow-up of >12 months was required. Statistical analysis included pooling of sensitivity and specificity and subgroup analyses based on several covariates including acquisition parameters, field strength and publication date.

Results: Thirty-three studies, including 1404 malignant and 770 benign lesions were included. Most publications reported only diagnostic indices of the choline resonance and not on other metabolites. Pooled sensitivity and specificity were 81.7% (95%-CI: 76.86-3.83) and 82.5% (95%-CI: 78.3-86.1), respectively. While neither publication date nor field strength had an effect on diagnostic performance estimates (P=0.05), echo time (TE) had: studies applying TEs≤144 ms reported higher sensitivity (85.6%, 95%-CI: 78.4-90.6%) compared to studies using TEs>144ms (74.9%, 95%-CI 63.4-83.8%) while specificity did not differ.

Conclusion: The diagnostic performance of 1H-MR-spectroscopy to distinguish benign from malignant breast lesions using the choline resonance seems to be higher using shorter echo times. Whether consideration of multiple metabolites increases the diagnostic performance of 1H-MR-spectroscopy has not sufficiently been investigated yet.
Interventional urethral realignment to posterior urethral rupture accompanied by complex pelvic fracture
C.M. Lee, C.H. Jeon, C.W. Kim, H. Kwon, H.M. Cho; Busan/KR (mooyaa369@gmail.com)

Purpose: Primary realignment of complete posterior urethral injury is a difficult procedure because of the pelvic bleeding and haematoma formation that occur during complex pelvic fracture. In this article, we report the result of the treatment of posterior urethral rupture by interventional primary urethral realignment performed with fluoroscopy guidance.

Methods and Materials: This retrospective study included 10 patients with traumatic posterior urethral injuries who were treated with urethral realignment from November 2016 to May 2018. All 10 patients were men with the median age of 46.0 years. Technical success rate of urethral realignment, required procedure time, duration of urethral catheterisation, and complications after procedure were investigated.

Results: Urethral realignment was technically successful in 8 of 10 patients (80%). In 2 of 8 patients, Snare catheter was used for passing through the urethral injury site. The median procedure time was 46 minutes (range, 32-69 min). The mean duration of urethral catheterisation after urethral realignment was 63 days (range, 48-94 d). There were no immediate procedure-related complications, although all 10 patients developed varying degrees of symptomatic urethral stenosis after procedure.

Conclusion: Interventional primary urethral realignment is a safe and minimally invasive procedure that can be performed in a patient with posterior urethral rupture accompanied by complex pelvic fracture. Thus, it can be viewed as an effective treatment method that can reduce the frequency of invasive surgical procedures by maintaining urethral continuity early on.

B-1574 10:54 Percutaneous stabilisation of humeral metastatic lesion
A. Al Raaisi, E. Cormier, E. Shotar, M. Drir, F. Clarencon, J. Chiras; Paris/FR (alraisi_am@hotmail.com)

Purpose: Bony metastases are very common in patients with advanced cancer and pathologic fractures may occur within either lytic or blastic foci. A pathologic fracture of the humoral neck or shaft is commonly treated surgically employing nails, rods, or plate and screws combined with immobilization using an external brace support. Some patients are treated conservatively because of their poor clinical condition and comorbidities. Percutaneous cementoplasty alone is insufficient for stabilization of the fracture. Percutaneous stabilization using dedicated spindles in the management of hip joint lytic lesions demonstrated its effectiveness. In this study, we thought to evaluate the effectiveness of reinforced cementoplasty with spindles for painful and unstable lesions involving the humerus in terms of pain relief and functional recovery.

Methods and Materials: We describe four cases (3 males and one female) of bone malignancies involving the humerus (3 patients with fractures and one patient with no fracture) which were treated by percutaneous insertion of metallic nails through an 8-gauge cannula followed by PMMA bone cement injection in our department from 2016-2018. Procedures were performed under general anaesthesia in all patients and the other two were performed under conscious sedation.

Results: All patients gained full restoration of functionality and pain relief without need for further analgesic therapy. No complications were observed during or after the procedures.

Conclusion: Percutaneous stabilization of humeral fractures is an original minimally invasive technique providing pain relief and effective bone stability was shown to be safe and effective in the treatment of painful bone metastases refractory to conventional therapy.

B-1575 11:02 Percutaneous intervertebral disc coagulation therapy (PDCT) by plasma light: a new method for the treatment of lumbar and cervical disc herniation
C. Zini1, D. Notaro2, G. Sadotti2, M. Bellini2;1Finole/T;2Siena/IT (zini.chiara@gmail.com)

Purpose: To evaluate the effectiveness, to describe the technique and the advantages of percutaneous intervertebral disc coagulation therapy based on plasma thermal reaction (PDCT).

Methods and Materials: 44 patients (age range: 16-87 years, mean: 62.7) with contained and extruded symptomatic lumbar (n.48) and cervical (n.6) disc hernias in the absence of free fragments causing radiculopathy and without improvement after 6-week of conservative therapy were enrolled. Pre-treatment discography was performed in all the patients. The PDCT system (PLASMA MODELLING Corporation, Seoul, South Korea) was equipped with a diode laser module and 0.4 cm plasma optical fiber; all the treatments were performed under local anesthesia and preamedication with antibiotics therapy using fluoroscopic guidance (Innova 3131ag, General Electric Healthcare, CT, USA). Before the procedure and 3 months later, the MIR of spine and Visual Analog Scale (VAS) and Oswestry disability index (ODI) were accomplished.

Results: Most patients (n. 36) showed great improvement in symptoms with relevant post-operative VAS score reduction (p<0.001) and ODI reduction. No major complications occurred. 16 patients referred mild pain or heartburn when the plasma fiber close was to the annulus, symptoms disappeared immediately after treatment.

Conclusion: PDCT can be effective, safe and convenient minimally-invasive decompression methods in selected patients.

B-1576 11:10 Percutaneous CT guided RFA: treatment of osteoid osteoma in children and adults: it has high success rate in children too
C. Sahin, Y. Oc, A. Hasanefendioglu Bayrak; Istanbul/TR (cennetsahin2@hotmail.com)

Purpose: Efficacy and safety of Radiofrequency Ablation (RFA) of osteoid osteoma (OO) are demonstrated in many studies. However, there is a hesitation about the use in the pediatrics. Our purpose is to investigate the efficacy and safety of RFA of OO in both pediatrics and adults. We think that RFA can safely be used as first choice treatment method in pediatrics too.

Methods and Materials: A total of 114 patients (81 male and 33 female; mean age of 17.9 years; age range 13 month-42 years) had 115 CT-guided RFA between May 2015 and August 2018 with the diagnosis of OO. Of the 114 patients, 53% were children and 37% were adults. The clinical and technical success of the treatment were evaluated by assessing the pain symptom, complication rates and follow-up radiological findings.

Results: All the patients had a favorable immediate pain relief in 24 hours after the procedure. Only one patient (15 year old male) had pain relapse in 3 months after RFA and a second RFA was performed. During 19 months follow-up he had no pain. The technical success of the procedure was recorded as 100%. The clinical success was 100% in adults and was 99% in pediatric population. No major complication occurred during neither treatment nor recovery period. Seven minor complications (2 were in pediatrics) were noted which were treated successfully.

Conclusion: The rapid relief of the pain symptoms, low relapse rate and low complication rates demonstrate the efficacy and safety of RFA of OO in both pediatrics and adults. We think that RFA can safely be used as first choice treatment method in pediatrics too.

B-1577 11:18 Vesselplasty vs percutaneous vertebroplasty in chronic compression fractures of the dorsolumbar spine
D.N. Srivastava, A. Monga, K. Madhusudhan, S. Malla; New Delhi/IN (drdeepsrivastava@gmail.com)

Purpose: To evaluate the efficacy of percutaneous vesselplasty in non-traumatic vertebral fractures of the thoracolumbar spine and compare it with percutaneous vertebroplasty.

Methods and Materials: 50 patients with chronic vertebral compression fracture (>12 weeks), severe pain (VAS: more than equal to 7) and disability attributable to the vertebral fracture were included and underwent vertebral augmentation procedure out of which 27 underwent vertebroplasty and 23 underwent vesselplasty. Clinical and imaging follow-up was done for two groups and evaluated for pain, disability scores, increase in anterior vertebral body height and volume of cement injected. Complication rate was also compared in the two groups.

Results: Mean decrease in pain score was 4.27 in vertebroplasty group and 4.45 in the vesselplasty group. The mean increase in the physical functionality scores was 27.4 in the vertebroplasty group and 35.9 in the other group which was statistically significant (p<0.005). The mean amount of cement injected was 3.84 ml in vertebroplasty group and 4.68 ml in the other group which was significantly higher (p<0.008). The mean change in anterior vertebral height was 0.63 mm in the vertebroplasty group and 2.47 mm in the vesselplasty group which was significantly higher (p<0.001). There was cement leak seen in 34% patients in the vertebroplasty group which was minor and mainly involved the paravertebral and intradiscal regions. In the other group, no intradiscal leak was seen.

Conclusion: Vesselplasty is superior to vertebroplasty in terms of disability scores, increase in anterior vertebral body height, volume of cement injected with low complication rate.

B-1578 11:26 “SpineJack®” percutaneous placement in magerli A2 and A3 traumatic vertebral compression fractures of the thoracolumbar spine
G. Sadotti1, D. Notaro1, C. Zini2, M. Bellini2; 1Siena/IT, 2Finole/T (florence17@finance.it)

Purpose: To prospectively evaluate safety and effectiveness of SpineJack® device (SJ) (VEXIM SA Balma - France) to achieve anatomical restoration of traumatic vertebral compression (VCFs) in Magerli A2 and A3 thoracolumbar fractures .
Methods and Materials: 18 patients (16 male; mean age 57 years, age range 27-83 years) with traumatic thoracic (N=12) and the lumbar VCFs (N=7) within 3 weeks after the time of injury classified as Maggip type A2.2 (N=2), A2.3 (N=11) and A3.1 (N=6) were enrolled; exclusion criteria were spontaneous/osteoporotic and neoplastic vertebral fractures, posterior wall involvement of more than 1/3 than of the spinal canal. Visual analogue scale (VAS) scores, and CT and MRI has been performed before and 48 hours, 1 and 6 months after procedure. Technical success was defined as correct placement of SJ implant.

Results: A total of 11 VCFs has been treated with 100% technical success. 1 patient performed at 2 levels in the same session. No major complications related to procedure were registered; asymptomatic cement leakages occurred in 4 patients along fractures lines. All cases showed relevant improvement of symptoms with preoperatively mean VAS score of 7.4 dropped to 1.05, 0.22 and 0.11 within 48 hours, 1 and 6 months respectively. Mean height lift of 11 mm has been registered after procedure; 5 VCFs presented height lifting greater than 11 mm.

Conclusion: SJ placement can be effective and safe in traumatic VCFs, leading to immediate and lasting relief of pain and vertebral height recovery.

B-1579 11:34
Intraarticular lumbar facet joint steroid injection vs. medial branch block: which technique ensures better clinical outcome for managing lumbar back pain? A single-centre experience
A. Izzo, M. Varrassi, F. Bruno, G. Bianchi, F. Cobiabianchi Bellissari, S. Carducci, A. Giordano, E. Di Cesare, C. Masciocchi; L’Aquila/IT (izzo@live.it)

Purpose: To compare the clinical outcome of intraarticular lumbar facet joint (LFJ) steroid injection and lumbar medial branch block (MBB) in the management of LFJ pain.

Methods and Materials: Fifty-seven patients with LFJ pain were recruited on the basis of clinical evaluation and MR-findings and randomly assigned to one of two groups. Twenty-seven patients (Group A) underwent intraarticular LFJ steroid injection. Thirty patients (Group B) were assigned to lumbar MBB. In both procedures, we injected 1.5ml of Lopivacaine with 2ml of Triamcinolone.

We assessed the severity of LFJ pain by VAS Score and the disability grade by RMOQ Score, before and at 1, 3, 6 months after treatment.

Results: Average values of VAS and RMOQ before treatment in Group A were 8.1 and 16.6. The treatment was effective (VAS reduction >50%, RMOQ score <5) in 85.2% of patients after 3 months, 86.6% after 6 months. Average values of VAS and RMOQ before treatment in Group B were 7.8 and 16.1. The treatment was effective in 86.6% of the patients after 1 month, 70% after 3 months, 50% after 6 months.

Conclusion: In this study, both intraarticular LFJ steroid injection and MBB significantly relieved LFJ pain and the positive effects of these techniques persisted for at least 6 months after the procedure. Both procedures showed similar effectiveness in the treatment of LFJ pain at 1 and 3 months, however, intraarticular LFJ steroid injection guaranteed a better clinical outcome after 6 months. We believe that both the techniques are strongly effective in LFJ pain treatment.

B-1580 11:42
Fusion imaging of US and MRI coupled with electromagnetic virtual navigation for periradicular infiltrations of steroids in low back pain: pilot experience of a radiation-free procedure
F. Arrigoni, G. Bianchi, P. Palumbo, S. Mariani, F. Bruno, L. Zugaro, A. Barile, C. Masciocchi; L’Aquila/IT (arrigoni.francesco@gmail.com)

Purpose: Low back pain is a disabling condition affecting an increasing number of population. If the source of pain is radicular, it can be decided to proceed to an effective symptomatic treatment, the periradicular steroid injection, which requires the accurate positioning of the needle usually obtained by means of CT or fluoroscopy.

Methods and Materials: Fifteen monolateral periradicular (L4-L5 or L5-S1) injections were performed using a virtual navigation system able to fuse imaging of the lumbar spine obtained by an isotropic volumetric MRI with a real time US. The system couples the imaging obtained with an electromagnetic guide that allows visualising the needle on MR imaging. Prior to drug injection, final position (FP) of the needle’s tip (obtained using virtual navigation) was verified with a single CT slide centred on the needle. FP was correct when the needle’s tip was in or strictly close to the neural foramen. An operator trained for using the system performed all procedures.

Results: Twelve (80%) FPs were judged correct. Two (13%) FPs were judged inaccurate (incorrect co-registration of MR-US imaging). In one case, it was not possible to reach a correct FP using virtual navigation. No complications occurred.

Conclusion: This pilot study demonstrates the feasibility of this innovative technique for spinal infiltrations. Although additional studies are needed, this technique has multiple advantages that include absence of radiation exposure, excellent imaging guidance (MRI virtually navigated system), multiple infiltrations without need for repeat imaging, and no need for CT suite.
B-1583 10:47
In-house automatic liver segmentation from CT based on a deep convolutional neural network with data augmentation
J. Witkowski, A. Zlahoda-Huzior, M. Stanuch, A. Grochowska, M. Pędiwiatr; Krakow/PL (jwitowski@gmail.com)

Purpose: To develop and evaluate deep convolutional neural network (CNN) for automatic liver parenchyma segmentation and test differences in training accuracy based on different normalization and augmentation parameters.

Methods and Materials: 21 computed tomography (CT) studies including 11,966 slices of patients qualified for laparoscopic liver resection for oncological purposes were used to develop the network. Ground truth segmentation was performed by experienced radiologist. Data was divided in a ratio of 70% to 30% for training and test data sets, respectively. A standard 2D U-Net architecture was employed to the network. We conducted a series of experiments with the same data, modifying z-score normalization range and data augmentation methods. Batch size of 1; 15% validation data split and 70 epochs were consistently used throughout the study.

Results: Highest Dice similarity coefficient (DSC) of 0.931 on a test set was achieved for a CNN with normalization in range from -200 to 500 HU and 21 augmented CT volumes created with elastic deformations. CNN with no augmentations or normalization scored 0.799 DSC, while CNN with normalization only improved DSC to 0.895. Augmentations based on rotation and translation only did not improve CNN accuracy.

Conclusion: State-of-the-art CNNs are feasible to develop in-house solutions for accurate liver segmentation. Both normalization and elastic transformations were required to achieve best results, with normalization being the most important factor.

Author Disclosures:

B-1584 10:55
Development and validation of a dual-energy CT-based radiomic nomogram in patients for preoperative prediction of lymph node metastasis in gastric cancer
J. Li; Zhengzhou/CHN (lijingqingqing@163.com)

Purpose: To develop and validate a dual-energy CT-based radiomic model for the preoperative prediction of lymph node metastasis (LNM) in patients with gastric cancer (GC).

Methods and Materials: A total of 193 pathologically confirmed gastric adenocarcinoma patients who underwent biphasic enhanced scans on a rapid kV-switching DECT were retrospectively enrolled and divided into a training set of 97 patients and a test set of 96 patients. Radiomic features, containing deep learning features and hand-crafted features, were extracted from biphasic and three energy levels (40, 65, 100 keV) images. Quantitative iodine concentration, overall survival (OS) and progression-free survival (PFS) were used as endpoints. Radiomic features and hand-crafted features, were extracted from biphasic and three energy levels (40, 65, 100 keV) images. Quantitative iodine concentration, overall survival (OS) and progression-free survival (PFS) were used as endpoints.

Results: The classifiers using the deep learning algorithm performed with the highest AUC for tumor growth and one-year survival over prediction based on RECIST diameters of liver metastases or Radiomics (0.662/0.691 with deep learning vs. 0.621/0.587 for RECIST and 0.567/0.562 with Radiomics, respectively) while preserving the highest-coefficient (tumor growth: 0.225 vs. 0.157/0.089; survival: 0.236 vs. 0.221/0.167).

Conclusion: This study demonstrates a deep learning model for predicting tumor growth and one-year overall survival in metastatic colorectal cancer patients using semiautomatic tumor segmentations of liver metastases derived from contrast-enhanced CT images.

B-1587 11:19
Development of a MRI radiomics model for pre-therapeutic evaluation of lymph node metastasis in rectal cancer
S. Hu; C. Xia, W. Peng, Z. Li; Chengdu/CN

Purpose: To establish and validate a radiomics model using MRI data for preoperative assessment of lymph node (LN) metastasis in patients with rectal cancer.

Methods and Materials: A database consisted of 139 patients suffered rectal cancer with/without LN metastasis was divided into training set (41 patients with LN metastasis) and validation set (18 patients with LN metastasis), using 10-fold cross-validation with proportion 7:3. Surgical histopathologic analysis was the reference standard for LN metastasis. Radiomic features were extracted from MRI T2 weighted imaging (T2WI) by Artificial Intelligent Kit (A.K.). One-way ANOVA, rank-sum test, GLM, Spearman, Lasso model were used for feature selection, data redundancy and dimension reduction. The remaining features were included in the model developed by logistic regression analysis and presented with a radiomics nomogram. The receiver operator characteristics (ROC) analysis was performed to validate the radiomics model curves.

Results: In total, 396 features were extracted and 17 selected features was significantly associated with LN status (p<0.05). After data redundancy and dimension reduction, 3 features including ClusterShade_angle135_offset7, LongRunLowGrayLevelEmphasis_AllDirection_offset1_SD and SurfaceVolumeRatio were used to derive the radscore and develop the prediction model. A nomogram for predicting pathological lymph nodes metastases , with an AUC of 0.769 on the training set and 0.684 on the validation data was successfully plotted.

Conclusion: In this study, we established and validated a radiomics model to diagnose LN metastasis in patients with rectal cancer, which can be a useful and convenient tool to facilitate the preoperative individualized assessment.

B-1588 11:11
Deep learning based radiomics and its usage in prediction for metastatic colorectal cancer
D. Nörenberg, T. Huber, S. Maurus, N. Jäger, A. Katzmann, A. Mühlberg, J. Moltz, V. Heinemann, J. Holch; Munich/DE, En lifecycle, Bremen/DE (Dominik.Noerenberg@med.uni-muenchen.de)

Purpose: To compare machine learning techniques for predicting tumor growth and one-year overall survival in patients with metastatic colorectal cancer.

Methods and Materials: We employed deep convolutional sparse autoencoder or DCSAE to the deep features for 847 tumor (tumor volume: 847) and 84 tumor patients (survival) lesion segmentations of 250 / 192 liver metastases at multiple timepoints in 113 / 104 computed tomography images with contrast of 59 / 45 colorectal cancer patients under first-line therapy after semiautomatic tumor segmentations of colorectal cancer liver metastases and trained a deep convolutional neural network (DCNN) to predict tumor growth and short-term survivors using grouped cross-validation. Metrics were determined using bootstrapping with single lesion segmentations for each patient.

Results: The classifiers using the deep learning algorithm performed with the highest AUC for tumor growth and one-year-survival over prediction based on RECIST diameters of liver metastases or Radiomics (0.662/0.691 with deep learning vs. 0.621/0.587 for RECIST and 0.567/0.562 with Radiomics, respectively) while preserving the highest-coefficient (tumor growth: 0.225 vs. 0.157/0.089; survival: 0.236 vs. 0.221/0.167).

Conclusion: This study demonstrates a deep learning model for predicting tumor growth and one-year overall survival in metastatic colorectal cancer patients using semiautomatic tumor segmentations of liver metastases derived from contrast-enhanced CT images.
B-1588 11:27
Development of a multiparametric radiomics combined T2WI and DWI to staging rectal cancer
D. Wen, C. Xia; Chengdu/CN
Purpose: To explore whether radiomics analysis in T2-weighted imaging and Readout-segmented echo-planar diffusion-weighted imaging can help to predict the pathologic staging in rectal cancer.
Methods and Materials: This study prospectively enrolled 324 patients with rectal cancer, which underwent 3.0T MR examinations with both T2WI and DWI sequences. Patients were graded into staging I-II or III-IV in accordance with histopathologic findings after surgery. According to 10-fold cross-validation, 70% of this cohort (367 patients) was set as the training cohort, and the others (157 patients) was set as the validation cohort. 396 radiomics features were extracted from T2WI and DWI. The Spearman, Lasso and PCA regression model was exploited for dimension reduction and selection of the feature space. The multivariable logistic regression analysis was adopted to identify the radiomics signature of pathologic staging. The discriminating performance was assessed with the area under receiver operating characteristic curve. The Mann-Whitney U test was adopted for testing the potential correlation of the radiomics signature and the response in training cohorts, and decision curve analysis (DCA) was used for comparing three models.
Results: 14 radiomics features were selected to create the radiomics signature significantly associated with response (P<0.001) after feature dimension reduction. AUC of radiomics signature performance in the training cohort was 0.856, and in the validation cohort was 0.779.
Conclusion: Multiparametric radiomics of rectal cancer, which combined T2WI with DWI, showed a fairly high accuracy in staging of I-II or III-IV rectal cancer.

B-1589 11:35
CT texture analysis in liver fibrosis shows a strong correlation with portal phase enhancement and can predict cirrhosis in decision tree model
P.N. Kaposi, B. Budai, V. Frank, S. Shariati, A. Folhoffer, M. Abonyi, V. Bérczi; Budapest/HU (kaposipai@gmail.com)
Purpose: CT texture analysis (CTTA) has been successfully used to assess tissue heterogeneity and it may facilitate the diagnosis of liver cirrhosis when utilized in machine learning models.
Methods and Materials: Patients with liver diseases were retrospectively collected from twenty-seven patients with chronic hepatitis. Examinations were performed with either a 16 (11 cases) or a 64 slice (16 cases) scanner (Philips Healthcare, the Netherlands). The stage of liver fibrosis was determined with shear-wave ultrasound elastography. Contrast-enhanced series in the portal venous phase (PVP) were reconstructed to 5 mm slice thickness with no gap. Anatomical liver segments were labeled manually, and 1112 texture parameters (TP) were calculated for each. TPs were used in a hierarchical cluster analysis (HCA), group comparisons, and in a binary tree prediction model (BTM).
Results: CTTA was performed on 319 anatomical liver segments. A comparison between the two scanners found a significant difference (p<0.05) in 305 TPs, HCA revealed a uniform pattern, which divided segments into two groups. PVP variables showed a significant difference between the two groups. 391 TPs in both the 16 (mean±SEM= 108.9±1.69 HU vs. 96.6±1.16 HU, p<0.001) and the 64 slice (mean±SEM= 101.1±1.24 HU vs. 85.2±1.83 HU, p<0.001) sets. Meanwhile, liver stiffness was not significantly different. A BTM was trained on the 16 slice set, and it could predict cirrhosis in segments of the 64 slice set with 92% accuracy.
Conclusion: Contrast enhancement and scanning parameters have a strong influence on TPs. CTTA-based artificial intelligence may achieve success in the detection of liver cirrhosis.

B-1590 11:43
MR imaging of rectal cancer: radiomics analysis to predict hepatic metastases
S. Hu; W. Peng, C. Xia, Z. Li; Chengdu/CN
Purpose: To investigate the value of T2-weighted-based radiomics for prediction of hepatic metastases in patients with rectal cancer.
Methods and Materials: 180 patients with rectal cancer underwent magnetic resonance imaging between March 2016 and February 2018 were prospectively included. 98 patients were confirmed to hepatic metastases from rectal cancer and 82 patients were eventually selected to create the radiomics signature significantly associated with response (P<0.001). The radiomics signature showed a good accuracy with an AUC of 0.701 on the training set and 0.652 on the validation data.
Conclusion: T2-weighted-based radiomics for prediction of hepatic metastases from rectal cancer was successfully developed and validated. With a good discrimination performance, this radiomics model could play an important role in the preoperative prediction of liver metastases from rectal cancer.

B-1591 11:51
MR imaging radiomics textures for predicting the gene expression in related to recurrence risks of HCC given by GOLM1, RND1 and SETD7
X. Hu; Chongqing/CN (xianling_hu@foxmail.com)
Purpose: To investigate whether the combination of radiomics and regression model-based classification can predict gene expression signatures of GOLM1, RND1 and SETD7 of HCC preoperatively.
Methods and Materials: 114 pathology confirmed early-staged HCC patients treated with surgical resection were included. All of these patients underwent Gd-EOB-DTPA enhanced MRI examinations. ROIs of the largest slice of each protocol (one unenhanced and 5 enhanced T1-WI MR images) were segmented by graph-based semi-automatic segmentation algorithm using MATLAB. A total of 1650 textures were extracted for each ROI. Three gene expression signatures, GOLM1, RND1 and SETD7 were evaluated using immunohistochemistry. PCA densities combined with Holm t test was applied to determine the optimal subsets. Logistic regression and ROC were conducted to assess the predictive ability.
Results: The multiple linear regression analyses demonstrated significant associations (R² = 0.14-0.22, P < 0.0006) between features subsets and gene signatures. The yield ROC curves of each gene signatures with all AUC values (0.76, 0.74, 0.90, 0.90, 0.79, and 0.71) show statistical difference from chance. The prediction models for gene signatures SETD7 tumour and ANTL had the best statistical difference with AUC 0.90, positive predictive values (PPV) 100% and true negative rate (TNR) 100%. Models to predict SETD7 tumour achieved the best classification accuracy (ACC) and negative predictive value (NPV) of both 84%, and RND1 ANTL achieved the best true positive rate (TPR) of 93%.
Conclusion: The study revealed that quantitative HCC MR imaging radiomics could predict gene signatures for preoperatively assessing the risk of HCC recurrence.
Author Disclosures: X. Hu; Author; Chuanming Li, Jian Wang.

10:30 - 12:00 Room G

Physics in Medical Imaging

SS 1813
Radiation dose optimisation in CT
Moderators: K.N. Bolstad, Bergen/NO
G. O‘Reilly; Dublin/EI
B-1592 10:30
Influence of arm positioning on radiation dose during combined thorax and liver CT imaging: a phantom study
O.V. Ivashchenko, J.J. Roelofs, A. van der Most, W.J.H. Veldkamp, I. Hernandez Giron; Leiden/NL (o.ivashchenko@lumc.nl)
Purpose: Impaired shoulder movement is a common morbidity related to various causes. If required, thorax or liver CT of these patients will be performed with ‘arms_down’, instead of the standard ‘arms_up’ setup. Only a few studies investigated the influence of arms position during thorax-abdominal CT, partially due to the high cost of fully articulated anthropomorphic phantoms. Here, the effect of arms positioning on patient dose is investigated using affordable in-house-developed arm extensions for the RANDO-phantom.
Methods and Materials: Two anatomically correct phantom arms were constructed as an extension of the RANDO-phantom. Bony parts were created with acrylic-based clay, manually shaped to a typical bony anatomy of the upper limb. Soft tissue was cast on industrial silicon. The attenuation of the phantom materials (Hounsfield units, HU) was compared to patient tissue in CT images. Subsequently, acquisitions were performed selecting the available clinical protocol ‘thorax_tumour+liver’ in two CT systems: Aquilion-One and Aquilion-Genesis (Canon Medical Systems), with two arm configurations (‘arms_up’, ‘arms_down’) and doses were compared in terms of CTDIvol and dose-length-product(DLP).

11:51
MR imaging radiomics textures for predicting the gene expression in related to recurrence risks of HCC given by GOLM1, RND1 and SETD7
X. Hu; Chongqing/CN (xianling_hu@foxmail.com)
Purpose: To explore whether radiomics analysis in T2-weighted imaging and Readout-segmented echo-planar diffusion-weighted imaging can help to predict the pathologic staging in rectal cancer.
Methods and Materials: This study prospectively enrolled 324 patients with rectal cancer, which underwent 3.0T MR examinations with both T2WI and DWI sequences. Patients were graded into staging I-II or III-IV in accordance with histopathologic findings after surgery. According to 10-fold cross-validation, 70% of this cohort (367 patients) was set as the training cohort, and the others (157 patients) was set as the validation cohort. 396 radiomics features were extracted from T2WI and DWI. The Spearman, Lasso and PCA regression model was exploited for dimension reduction and selection of the feature space. The multivariable logistic regression analysis was adopted to identify the radiomics signature of pathologic staging. The discriminating performance was assessed with the area under receiver operating characteristic curve. The Mann-Whitney U test was adopted for testing the potential correlation of the radiomics signature and the response in training cohorts, and decision curve analysis (DCA) was used for comparing three models.
Results: A total of 396 features were extracted and two of them were eventually selected to create the radiomics signature significantly associated with response (P<0.001). The radiomics signature showed a good accuracy with an AUC of 0.701 on the training set and 0.652 on the validation data.
Conclusion: T2-weighted-based radiomics for prediction of hepatic metastases from rectal cancer was successfully developed and validated. With a good discrimination performance, this radiomics model could play an important role in the preoperative prediction of liver metastases from rectal cancer.
Results: Attenuation of the arm phantoms [bone: (224±213)HU, soft tissue: (16±29)HU] closely mimicked values of the human arm [bone: (402±359)HU, soft tissue: (12±48)HU]. On the thoracic part of the clinical protocol and ‘arms down’ configuration, dose increase of 36.5% (DLP↑=23mGy·cm; CTDIvol↑=0.7Gy; AquilionONE) and 19.6% (DLP↑=18.1mGy·cm; CTDIvol↑=0.6mGy; AquilionONE GENESIS) was observed, compared to the ‘arms up’ setup. For the liver part, corresponding dose increases were 26.6% (DLP↑=25.0 mGy·cm; CTDIvol↑=1.0mGy) and 22% (DLP↑=21.3 mGy·cm; CTDIvol↑=0.9mGy).

Conclusion: In this phantom study, arms positioning during combined thorax-liver CT significantly influenced patient dose (up to 36%).

Author Disclosures:
I. Hernandez Giron: Research/Grant Support; CLUES research project (Project Number 13592) funded by the NWO Dutch Organization inside the Open Technology Programme; Research project related to Ultra-low dose thorax CT, funded by Canon Medical Systems.

B-1593 10:38
The effect of scout view length on patient dose from thoracic CT examinations performed with tube current modulation
K. Perisinakis, A. Tzedakis, N. Ntoufas, M. Velivasaki, J. Stratakis, J. Damilakis; Iraklion/GR (kostas.perisinakis@med.uoc.gr)

Purpose: To investigate the effect of altering the scanogram boundaries, with respect to a standard region to be imaged, on the modulated mA values in thoracic CT examinations.

Methods and Materials: The body region typically imaged in thoracic CT was defined on one adult and four pediatric physical anthropomorphic phantoms. The mean mA per each of the rotations required to image the prescribed image volume was recorded for a modern 128-slice CT system keeping the imaging volume unchanged but altering the scanogram boundaries symmetrically up to ±10 cm in steps of 2 cm. Monte Carlo methods and live mathematical anthropomorphic phantoms were employed to quantify dose differences between helical CT acquisitions resulting to the same image volume but involving scanograms of different length.

Results: mA modulation was found to be significantly affected when scanogram length was altered with respect to the preset imaged volume. The difference in modulated mA was up to 15% with the highest values recorded for regions close to the imaged volume boundaries. The difference in dose to the radiosensitive organs of thorax was found up to 12% with higher and lower value recorded for thyroid and lung, respectively.

Conclusion: Scanogram length in thoracic helical CT scans performed with mA modulation should cover the entire volume to be imaged plus the overscanning regions at either side to avoid increase of dose to organs close to image volume boundaries such as thyroid.

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755523.

B-1594 10:46
Investigation the causes of overscanning in z-axis in thorax, abdominalinopelvic and thoraco-abdominopelvic CT examinations
O. Yar, M.R. Onur, I. Isdimm, E. Apkinar, D. Akata; Ankara/TR (drozanyar@gmail.com)

Purpose: The aim of this study was to determine the frequency of excessive z-axis coverage of single-phase thorax CT, abdomino-pelvic CT, thoraco-abdominopelvic CT, stone protocol abdomen CT and pulmonary CT angiography examinations and evaluate the factors that may be associated with overscanning in CT.

Methods and Materials: Between March 1 and April 1, 2018, 2032 CT examinations performed in 1531 cases were included in our study. According to accepted reference points determined for CT examinations, the lengths of over-scanned z-axis were measured. Excessive scan frequency; the ratio of over-scanned length to the acceptable scan length were evaluated according to the gender, age, type of examination, indication of examination, time of acquisition of the examination, the presence of some factors that may affect the determination of the scan range in topogram, the throughput of CT equipments and the experience of the CT technicians.

Results: While the frequency of over-scanning in z-axis was not significantly different between genders (p = 0.433), statistically significant differences in terms of over-scanning in z-axis were obtained between the age groups (p < 0.001), types of examinations (p < 0.001), indications for examination (p<0.009), conditions that may affect determination of the scan range in topogram (p<0.05), acquisition time (p=0.042) and technician’s experience (p=0.001).

Conclusion: Overscanning in z-axis is a preventable cause of increased radiation dose in CT. Taking measures for preventable causes of high overscanning will reduce the effective radiation dose of exposed cases.
Conclusion: Similar scanner settings may not provide similar doses. Image quality results are largely influenced by convolution kernel and image reconstruction technique. A phantom-based ALADA image quality approach may facilitate protocol optimisation and ensure that patients receive CT examinations with the lowest diagnostically acceptable radiation dose.

B-1600 11:34
Clinical diagnostic reference levels for CT examinations: a prospective multicentre study

Purpose: To establish clinical DRLs (CDRLs) according to BMI in a Swiss multicentre setting.

Methods and Materials: After protocol harmonization and optimization according to clinical indications and BMI (<25; ≥25), 5310 abdomen and 1058 chest CT examinations (5 Philips scanners) were prospectively collected from February 2017 to June 2018. Local CDRLs were allocated based on the median dose values of each CT modality were calculated and compared to the new national DRLs (NDRLs). Mann-Whitney tests and Wilcoxon test were used as appropriate (significant difference: p<0.05).

Results: No chest or abdomen examination satisfied the P50 NDRLs. For BMI<25, patients were more likely to exceed the P75 NDRLs for chest CT examinations (5 Philips scanners) were prospectively collected from February 2017 to June 2018. Local CDRLs were allocated based on the median dose values of each CT modality were calculated and compared to the new national DRLs (NDRLs). Mann-Whitney tests and Wilcoxon test were used as appropriate (significant difference: p<0.05).

Conclusion: Addressing patient size is relevant when defining DRLs for both chest and abdomen examinations, as clinical indication seems relevant only for abdomen.

Author Disclosures: F. Zanca; Employee; Former GE employee. S. Montandon; Employee; Philips Medical Systems.

B-1601 11:42
Interactive Carlo simulation of dual-energy CT systems: initial validation of radiation dose measurements
Y. Toufigue, O. Bouhal, J.O. Doherty, J. Goracy, I. Delakdis; Doha/QA (toufigue.yassine@gmail.com)

Purpose: Patient dose measurement and diagnostic reference levels are based on computed tomography dose indices (CTDI), a quantity that can be measured using an ion chamber. The aim of this work is the validation of a computational Monte Carlo (MC) model of the Definition Flash (Siemens) CT scanner using the GATE (GEANT4 application for tomographic emission) toolkit by the simulation of the measurement process. In addition, a MC model of the x-ray tube, within the CT system was validated by comparing the simulated GATE energy spectrum with a calculated spectrum via SpekCalc software.

Methods and Materials: Experimental CTDI measurements were made in a PMMA body phantom (32 cm) and head phantom (16 cm) using a 100-mm-long pencil chamber, which represents the absorbed dose along the longitudinal z-axis of the scanner measured during a single rotation of the x-ray source. Measurements were performed at five different positions in the phantom (center, 90°, 180°, 270°, 360°).

Results: The comparison between simulated x-ray spectrum and the calculated spectrum shows good agreement. A difference in the K-characteristic x-ray intensity was observed. The relative difference between simulated and measured CTDI values at 70, 80, 100, 120 and 140 kVp was less than 5%. The relative difference between simulated and measured CTDI values at 70, 80, 100, 120 and 140 kVp was less than 5%.

Conclusion: In this study, we demonstrated that GATE can model a complete CT scanner from the x-ray tube to the absorbed dose (CTDI). Future simulation work will investigate CT dose reduction techniques as well as advanced acquisition methodologies.
B-1602 11:50
Radiation burden of patients with hepatocellular carcinoma from multiple TACE and CT procedures
L. Sukupova; Prague/CZ (lucie.sukupova@gmail.com)

Purpose: The transarterial chemoembolization (TACE) is a high-dose therapeutic procedure, sometimes performed repeatedly, which is accompanied by multiple CT exams during the treatment and follow-up. The aim of this study was to estimate organ and effective doses from TACE and CT procedures for patients who underwent TACE repeatedly.

Methods and Materials: 166 patients underwent 210 TACE during 06/2012-06/2018. 109 patients underwent TACE only once, 40 patients underwent TACE repeatedly (2-5 times). These 40 patients underwent 241 abdomen CT exams (2-11 CT exams) during the treatment and follow-up. The follow-up period lasted up to 4.2 years, median 1.3 years.

The dose estimate of organ and effective doses was performed in PCXMC for TACE and in ImpactDose for CT exams. The actual size, anatomic and dose information was taken from archived images and RDSR or from DICOM headers.

Results: The median/maximum/minimum values of the cumulative organ doses from TACE and CT procedures to the most exposed organs were 1.1/0.3/3.2 Gy to adrenals, 1.7/0.5/5 Gy to kidneys and 1.1/0.3/2.7 to the liver. The highest organ doses in a single procedure were 2.8 Gy to kidneys and 1.2 Gy to the liver. The cumulative effective doses were between 80 and 513 mSv, median 210 mSv.

Conclusion: Organs from a single TACE can reach 2.8 Gy for some organs, but this is still remote from the tolerance doses known from radiotherapy. Higher organ and effective doses increase the risk of stochastic effects, but they may be of lower importance in patients with life-threatening HCC.

10:30 - 12:00 Room K

Chest

SS 1804
Thoracic imaging: new approaches and techniques

Moderators:
N.N.
G. Chassagnon; Paris/FR

K-38 10:30
Keynote lecture
E.J. Stern; Seattle, WA/US

B-1605 10:55
Using relationship between pulmonary veins and pulmonary nodules to distinguish benign intrapulmonary lymph nodes from lung cancer on CT
J.L. Barnett1, I. Pulzato2, R. Wilson3, S. Padiev4, A.G. Nicholson1, A. Devaraj1; 1London/UK, 2Belfast/UK (ilaria.pulzato@gmail.com)

Purpose: Accurately distinguishing benign intrapulmonary lymph nodes (IPLNs) from small lung cancers is highly desirable in lung cancer screening and for incidentally detected nodules. We aimed to test our hypothesis that IPLNs were more frequently connected to pulmonary veins, compared to lung cancer, and that this could be used to distinguish the two types of nodules.

Methods and Materials: Two radiologists reviewed 62 pathologically confirmed benign intrapulmonary lymph nodes and 61 pathologically confirmed small sized (<15mm) lung cancers and assessed the number and type of pulmonary blood vessels arising from, or terminating within, these nodules. Nodule location and outline and shape were also reviewed.

Results: Connection to a pulmonary vein was significantly more frequent in IPLNs (93.5%) compared to lung adenocarcinomas (21.3%); p<0.0001). IPLNs were never (0%) associated with pulmonary arteries, but identified in 55.7% of lung cancer nodules. [p<0.001]. The connection to a cortical surface was present in both IPLNs (38.7%) and lung adenocarcinomas (37.7%); [p=1.0].

Conclusion: Connection to a pulmonary vein as opposed to a pulmonary artery can be used in conjunction with other CT signs to identify IPLNs in the setting of small indeterminate pulmonary nodules.

B-1606 11:03
Application of computer-aided diagnosis system based on 3D deep convolutional neural network in lung cancer screening
Q. Meng, J. Ding; Zhengzhou/CH (mengke436@163.com)

Purpose: To evaluate the application value of CAD system based on the novel deconvolution rapid residual CNN lung cancer screening model.

Methods and Materials: The LDCT imaging data of 8850 lung cancer screening volunteers with 1111 nodules of lung from November of 2013 to December of 2017 were evaluated through visual detection (VD) method, CAD method and VD combined with CAD method. The detection rate, missed diagnosis rate and the number of false-positive rate of nodules were observed.

Results: Compared with the VD method, the detection rate of nodules in CAD and VD combined with CAD was significantly increased (80.1% vs 94.2%; 19.9% vs 6.8%; χ2=101.65, P=0.00); the detection rate of nodules in CAD combined with CAD method was higher than that of CAD. The number of false-positive nodules detected by CAD method was highest among the three methods. Compared with the VD, the detection rate of lung-RADS classification by CAD and VD combined with CAD was significantly increased (χ2=25.083, 23.449, P=0.000, 0.000). Compared with the VD, the detection rate of types of nodules by CAD or the VD combined with CAD was statistically significant (χ2=6.955, 6.821, P=0.031, 0.033). Compared with VD and VD combined with CAD, the positive prediction rate of lung cancer by CAD was significantly improved.
significantly reduced, the rate of missed diagnosis and the false-positive rate were significantly increased, and the difference was statistically significant (89.2% vs 94.1%, 94.1%, 9.2% vs 2.1%, 2.1%, χ²=14.605, 14.693, p=0.002, 0.002).

Conclusion: The CAD combined with VD method is the preferred method to use in the large-scale LDCT lung cancer screening of urban China.

B-1607 11:11
Deep learning-based CAD may improve detection of pulmonary nodules while preserving a low false-positive rate
J. Lieman-Sifry1, S. Brouha1, A. Yen1, E. Weihe1, K. Jacobs2, M. Horowitz1, D. Mottuk1, A. Hsiao1,1, San Francisco, CA/US; San Diego, CA/US, 2La Jolla, CA/US (jesse@arterys.com)

Purpose: We investigate the rate at which false positives (FP), defined as a nodule detected by deep learning-based computer aided detection (DL-CAD) not noted by any of four general radiologist readers, are overturned upon sub-specialty secondary read to be true nodules.

Methods and Materials: We train and validate a DL-CAD system on standard-dose and low-dose CT scans. The system consists of a high-sensitivity 2D-U-Net-based network and a 3D-VGG-based classifier to reduce the FP rate. To test the DL-CAD system, nodules were identified on 100 scans selected from the NSLT dataset independently by four general radiologists. 3/4 consensus defines a true nodule. Intermediate confidence nodules predicted by the DL-CAD algorithm that were not detected by any of the four general radiologists, which would otherwise be considered "false positives," were presented to five dedicated thoracic radiologists and two fellows as secondary readers. Each FP was reviewed and radiologists assigned their confidence level (0-10) that the nodule was worth further investigation in a web-based survey. We define FP with average scores of 5 and above as "overturned false positive" nodules.

Results: At operating points of 1.7FP/scan and 0.5FP/scan, 38% of FPs (26/48) were overturned, respectively. With 260

Conclusion: A substantial fraction of intermediate confidence lesions from DL-CAD may constitute nodules worth further follow-up.

Author Disclosures: J. Lieman-Sifry: Employee; Arterys. A. Hsiao: Founder; Arterys.

B-1608 11:19
Analysis of pleural effusion dynamics in patients with pulmonary infarction
M. Kastelic1, J. Vidmar1, K.K. Sifer1, I. Kocjančič2, C. Čejetič1,2, Ljubljana/SI (marko.kastelic@gmail.com)

Purpose: There is a lack of studies about pleural effusion dynamics in patients with pulmonary infarction. The aim of this study was to investigate the relationship between possible factors contributing to the development of pleural effusion, its size and time course in patients with pulmonary infarctions.

Methods and Materials: CTPA studies from 103 patients with pulmonary infarction were retrospectively analyzed along with the following data: patient comorbidities, size of pulmonary infarction, location and size of pleural effusion and the time between the onset of clinical symptoms of pulmonary infarction and CTPA study.

Results: A highly statistically significant difference (p < 0.005) was found in the mean size of pulmonary infarction in patients with effusion (34.5 cm³) compared to those without it (14.3 cm³). The size of the effusion peaked between 4th and 5th day after the onset of clinical symptoms of pulmonary infarction. In the first 5 days after the onset of clinical symptoms, a highly significant correlation (p = 0.001) was found between the size of the effusion and time with an approximate rate of increase in effusion layer of 1.3 mm/12 h.

Conclusion: Patients with a pleural effusion are more likely to have a larger pulmonary infarction than those without it. If present, the effusion can be expected to increase in a relatively slow linear fashion in the first 5 days after the onset of clinical symptoms of pulmonary infarction.

B-1609 11:27
Pulmonary arterial enlargement predicts long-term survival in COPD patients
A. Esperón Casagüés1, J. De Torres, A. Alcaide, A. Campo, J. Bertó, J. González, A. Zulueta, G. Bastarrica Alemán, Pamplona/ES (aeponzona@unav.es)

Purpose: Pulmonary artery enlargement (PAE) is associated with exacerbations in chronic obstructive pulmonary disease (COPD) and with survival in moderate to severe patients. The potential role of PAE in survival prediction has not been compared with other clinical and physiological prognostic markers.

Methods and Materials: In 188 patients with COPD, PA diameter was measured on a chest CT. The following clinical and physiological parameters were registered: age, gender, smoking status, pack-years, dyspnoea, lung function, exercise capacity, body mass index, BODE index and history of exacerbations in year prior to enrolment. Proportional Cox regression analysis determined the best predictor of all-cause survival.

Results: During a mean follow-up of 83±42 months, 43 patients died. Age, pack-years history, smoking status, BMI, FEV1%, six-minute walking distance, Modified Medical Research Council dyspnoea scale (MMRC), BODE index, exacerbation rate prior to enrolment, PA diameter and PAE (diameter ≥30mm) were correlated with survival in the multivariate analysis, age (HR 1.08; 95% CI 1.03±1.12, p<0.001) and PAE (HR 2.78; 95%CI 1.35±5.75, p = 0.006) were the most powerful parameters associated with all-cause mortality.

Conclusion: In this prospective observational study of COPD patients with mild to moderate airflow limitation, PAE was the best predictor of all-cause survival along with age.

B-1610 11:35
Synchrotron phase-contrast imaging of lung nodule: a proof-of-concept study on porcine lungs in a human-scale chest phantom
W. Wagner1, F. Wuenenmann1, J. Biederer2, P. Konietzke3, W. Stiller3, M.O. Wielpitz4, H.-U. Kauczar5, G. Tromba5, C. Dullin5,1, Heidelberg/DE, 2Selheim-Jugenheim/DE, 3Trieste/IT, Götingen/DE (willi.wagner@med.uni-heidelberg.de)

Purpose: To prove the applicability of in-line free propagation phase-contract synchrotron tomography on a human scale using a chest phantom with 3D CT image data.

Methods and Materials: Freshly excised heart and lung explants were positioned in an ARTIChest chest phantom. Artificial lung nodules were induced by injection of 3% agarose gel, containing 0.5% or 1.0% of a clinical contrast agent with an iodine content of 300 mg/ml. Local areas of interest were imaged with a pixel size of 100 micrometer at the SRMPE beamline of the Italian synchrotron light source Elettra and compared to standard imaging using a clinical Philips ICT 256 CT scanner.

Results: Synchrotron phase-contrast lung imaging yields a high-resolution depiction of anatomical hallmarks of healthy lungs and artificial lung nodules. Interallobular septa, margins of subsegmental bronchi and pulmonary blood vessels can be visualized in superior detail compared to clinical CT scanners. 33 mGy air kerma were measured using the clinical scanner compared with 13 mGy in synchrotron acquisitions (or 4 mGy with a third of the projections). We achieved a dose reduction by 60 to 88%, respectively.

Conclusion: We demonstrate that synchrotron-based local-area free propagation phase-contract lung imaging can be performed on a human-scale chest phantom prepped with fresh porcine lungs. Moreover, we demonstrated that improved image quality by PBI allows for a more detailed characterization of anatomical landmarks of healthy lungs and the assessment of artificial lung nodules.

B-1611 11:43
Preoperative multi-detector CT scoring criteria for assessing pericardial, lung, and phrenic nerve invasion of thymoma
S. Lee, S. Yoon; Seoul/KR (keesangyud@gmail.com)

Purpose: To devise new preoperative multi-detector CT (MDCT) criteria for pericardial, lung, and phrenic nerve invasion of thymoma.

Methods and Materials: We retrospectively reviewed 224 consecutive patients with resected thymoma who underwent a preoperative MDCT scan. Morphologic and ancillary CT findings were evaluated for the invasion of pericardium, lung, and phrenic nerve. Multivariate logistic regression analyses were performed for identifying significant CT findings, and we devised CT scoring criteria for each structural invasion.

Results: On multivariate logistic regression, pericardial invasion was associated with pericardial crossing sign (OR, 60.3 [95%CI, 8.3-438.7]; p<0.001), pericardial tail sign (OR, 42.3 [95%CI, 9.6-187.4]; p<0.001), and pericardial thickening (OR, 5.2 [95%CI, 1.3-20.4]; p<0.019). 2 or higher pericardial invasion score provided the sensitivity/specificity of 76.2%/96.6%. Lung invasion was associated with microlobulation (OR, 33.6 [95%CI, 9.8-114.7]; p<0.001), ground-glass opacity at surrounding lung (OR, 11.0 [95%CI, 1.4-88.8]; p=0.024), and calcification (OR, 3.4 [95%CI, 1.0-11.6]; p=0.048), 3 or higher lung invasion score provided the sensitivity/specificity of 69.8%/95.8%. Phrenic nerve invasion was associated with microlobulation (OR, 16.2 [95%CI, 4.5-58.3]; p<0.001), tumour coverage along the course of pericardiovenic vein (OR, 8.0 [95%CI, 2.2-29.1]; p=0.002), mediastinal fat infiltration (OR, 5.3 [95%CI, 1.7-16.9]; p=0.005), and calcification (OR, 3.9 [95%CI, 1.1-13.3]; p=0.030) or 3 or higher phrenic nerve invasion score provided the sensitivity/specificity of 65.2%/94.0%.

Conclusion: Our preoperative MDCT scoring criteria offered reasonable diagnostic accuracies for pericardial, lung, and phrenic nerve invasion of thymoma, which can help accurate assessment of T2 and T3 descriptors.
B-1612 11:51
A reader study in postmortem x-ray dark-field chest radiographs and correlation with conventional x-ray and CT
A.A. Fingerle, F. De Marco², K. Willer, P.B. Noel¹, A. Sauter¹, D. Pfeiffer¹, E.J. Rummenger¹, J. Herzen³, F. Pfeiffer², Munich/DE, Garching/DE (alexander.fingerle@tum.de)

Purpose: To describe imaging features in x-ray dark-field radiographs, we performed a reader study on postmortem chest x-ray dark-field images to quantify dark-field signal strength, address intra- and interobserver agreements, grade image quality and correlate dark-field signal changes with findings in conventional x-ray and CT images.

Methods and Materials: IRB approval was obtained. 9 human bodies (3 female, 6 male, age range 52-88 years) were imaged with an experimental three-grating asymmetric imaging setup at 70 kVp. Chest x-ray dark-field radiographs and conventional x-rays were simultaneously acquired. CT imaging was performed on a 256-slice MDCT (Brilliance iCT) at 120 kVp. 3 readers evaluated dark-field signal strength in 6 lung regions by visual assessment on a 6-point ordinate scale. Intra- and interobserver agreements were assessed. Image quality was graded. Dark-field signal changes were correlated with findings in conventional x-ray and CT images.

Results: Dark-field signal increases from the apex to the base of the lungs, correlating with the amount of lung tissue. Intra- and interobserver agreement was substantial to very good for grading of both dark-field signal (r=0.793-0.910) and conventional signal (r=0.772-0.947). Image quality was graded. Correlation of dark-field signal changes with conventional CT findings was performed in all patients. Dark-field signal correlated with findings in conventional CT images. Pulmonary infiltrates correlated with areas of reduced dark-field signal.

Conclusion: Our results demonstrate that the dark-field signal shows significant differences depending on lung region and existing pathologies. Furthermore, the dark-field signal can be quantitatively correlated to visual assessment, providing further impetus for clinical studies addressing specific diseases of the lungs.

10:30 - 12:00 Room M 1

Cardiac

SS 1803
Advanced cardiac MR for evaluation of left ventricular structure and function
Moderators:
N.N.
R.G. Chelu, Rotterdam/NL

B-1613 10:30
Comparison of signal intensity ratio, extent and transmurality between a novel LGE black-blood and standard LGE bright-blood sequences in patients with ischaemic heart disease
G. Muscogiuri¹, M. Gatti², S. Dell’Aversana², M. Guglielmo², A. Baggiano², A. Guaricci², D. Andreini³, F. Alamanni³, A. Sauter³, M. Guglielmo, F. Pfeiffer², Munich/DE, Garching/DE (alexander.fingerle@tum.de)

Purpose: To assess the reliability of a novel dark-blood LGE (DBLGE) technique compared to standard bright-blood LGE (SBBLGE) sequence in patients with ischaemic cardiomyopathy.

Methods and Materials: This prospective study included 78 patients (63.1 ± 12.6 years, 62 males) with clinical history of ischaemic cardiomyopathy who underwent CMR at 1.5T (Discovery MR450w, GE Healthcare, Waukesha, WI) with postcontrast SBBLGE and DBLGE acquisition. Two observers performed the imaging analysis in a double-blinded fashion. The endpoints were a) quantitative analyses of signal intensity ratio (SIR); b) n° segments involved; c) transmurality index (i.e., 0-25%; 25-50%; 50-75% and 75-100%); d) papillary muscle enhancement; e) microvascular occlusion (MVO). A cut-off p-value 0.05 was considered statistically significant.

Results: There were no interobserver variability (all p>0.05). Subjective image quality in DBLGE compared to SBBLGE was higher for the discrimination between LGE and blood signal (p<0.001), inferior (p>0.001) between LGE and myocardium and similar between blood and myocardium (p=0.56). DBLGE provided higher SIR between LGE and blood signal (1.16±1.15 vs 0.18±0.42; p<0.001), lower SIR between LGE and myocardium (0.91±1.45 vs 1.90±1.64; p<0.001) and between blood and myocardium (-0.26±0.71 vs 1.57±1.26; p<0.001). The n° segments involved was similar (p=0.08). The transmurality index was superior for DBLGE (3.09±1.02 vs 3.30±1.11; p=0.007). DBLGE was superior in identifying papillary muscle hyperenhancement (25 vs 17 cases; p<0.001) and inferior in MVO detection (7 vs 12 cases; p<0.001).

Conclusion: The DBLGE sequences when compared to SBBLGE provided better contrast between LGE and blood pool, seemed to be superior in identifying papillary muscle hyperenhancement, whereas underestimated the transmurality extension of LGE and the presence of MVO.

B-1614 10:38
Diagnostic accuracy of single-shot two-dimensional multislice late gadolinium enhancement in ischaemic and non-ischaemic cardiomyopathy
G. Muscogiuri¹, M. Gatti², S. Dell’Aversana², S. Pica², M. Guglielmo², A. Baggiano², A. Guaricci², G. Pontone¹, M. Pepi³, M. Guglielmo, F. Pfeiffer², Munich/DE, Garching/DE (alexander.fingerle@tum.de)

Purpose: The aim of this manuscript is to assess the reliability of single-shot two-dimensional multi-slice late gadolinium enhancement (2D-MS_LGE) compared to standard single slice two-dimensional inversion recovery segmented gradient echo (2D-SRSEG).

Methods and Materials: Sixty-seven patients who underwent clinically indicated cardiac magnetic resonance imaging (CMR) were enrolled. Image quality was assessed using a 4-point scale. Segments positive for LGE were classified as ischaemic or non-ischaemic for 2D-MS_LGE and 2D-SRSEG. Interobserver and intraobserver variability was assessed with both sequences. The endpoints were a) detection of myocardial segments involved by LGE; b) classification of LGE as ischaemic and non-ischaemic pattern. Sensitivity, specificity, positive predictive value and negative predictive and diagnostic accuracy values were calculated for the two endpoints.

Results: 2D-MS_LGE and 2D-SRSEG were successfully performed in all patients with comparable image quality (1.56 ± 0.59 vs. 1.54 ± 0.58; p=0.84). For the overall population, 2D-MS_LGE correctly identified 1109 out of 1139 myocardial segments involved by LGE [96%; CI95: 95%-97%] as compared to 2D-SRSEG. Similarly, 2D-MS_LGE correctly identified 1128 out of 1139 [99%; CI95: 98%-99%] and 1108 out of 1139 [97%; CI95: 96%-98%] of non-ischaemic and ischaemic LGE pattern. Interobserver and intraobserver variabilities for quantification of LGE using 2D-MS_LGE were, respectively, 0.98 and 0.99. The acquisition time was shorter for 2D-MS_LGE as compared to 2D-SRSEG (2.0±0.5 min vs. 6.6±2.0 min; p=0.01).

Conclusion: 2D-MS_LGE seems to be a reliable tool in both ischaemic and non-ischaemic cardiac disease as compared to 2D-SRSEG with the advantage to require lower scan time and breath-hold.

B-1615 10:46
Left ventricle volumes and function assessment with cardiac magnetic resonance four-dimensional flow imaging
M. Guglielmo¹, A. Baggiano², G. Muscogiuri¹, A.I. Guaricci², D. Andreini³, F. Alamanni³, A. Sauter³, M. Pepi³, G. Pontone¹, M. Guglielmo, F. Pfeiffer², Munich/DE, Garching/DE (g.muscogiuri@hotmail.it)

Purpose: Aim of this study is to compare 4D flow, echo and CMR quantification of LV volumes and LVEF using CMR SSFP cine sequences as the reference standard.

Methods and Materials: 10 consecutive patients (age: 59 ± 10) with indication to mitral valve plasty (MVP) for severe mitral regurgitation were enrolled. All patients underwent a presurgical assessment of LV end-diastolic (LVEDV), end-systolic (LVESV) volume and LVFR with CMR SSFP cine, 4D flow imaging and TTE. 3 to 5 months after the surgery all the measurements were repeated. Datas were analysed using Student’s t test, Bland-Altman plots, and intraclass correlation coefficient (ICC).

Results: Subjective image quality was lower for CMR 4D imaging compared to SSFP cine imaging. There was a good correlation between CMR SSFP imaging and both TTE and CMR 4D imaging measurements. However, higher LVEDV and higher LVESV were found with CMR SSFP imaging as compared to CMR 4D imaging and TTE both at presurgery and post surgery evaluations. LVFR was comparable between CMR SSFP imaging, CMR 4D imaging (mean difference with CMR SSFP imaging 2.4%) and TTE (mean difference with CMR SSFP imaging 3.5%). Reproducibility for CMR SSFP imaging was excellent. Reproducibility for echocardiography and 4D imaging was moderate.

Conclusion: CMR 4D flow imaging without contrast media is a new technique that provides an accurate evaluation of LV ejection fraction with a good correlation with CMR SSFP measurements. However, our data show an underestimation of LV volumes with CMR 4D imaging compared to CMR SSFP assessment.

B-1616 10:54
Comparison of standard 3D LGE imaging with novel short inversion time 3D LGE Imaging in patients after myocardial infarction
M. Polacin, M. Gasti, I. Kapos, A. Gotschy, J. von Spiczak, H. Alkadih, R. Manka, Zurich/CH (Malgorzata.Polacinn@uzz.ch)

Purpose: Late gadolinium enhancement (LGE) visualizes myocardial scar and fibrosis. After myocardial infarction (MI), subendocardial infarcts can be missed due to poor contrast between the blood pool and subendocardium. The aim of
this study was to evaluate the benefit of 3D LGE imaging using an inversion recovery sequence with a fixed, short inversion time (TI = 100 ms) (short 3D LGE) over the standard 3D LGE imaging (3D LGE).

Methods and Materials: 3D LGE and short3D LGE (same spatial resolution 1.2 x 1.2 mm², slice-thickness 8 mm; field of view, 350 x 350 mm²) were acquired in 27 patients with MI (8 female, mean age 64.8 ± 12 years) at 1.5T (Achieva, Philips, Best, the Netherlands). Two independent, blinded readers evaluated 459 segments (AHA 17-segment model) using a 5-point Likert scale in terms of scar visibility. Contrast-to-noise ratio (CNR) between scar and blood pool was calculated.

Results: 3D LGE showed 98 infarcted segments out of 459 (21.4%), short3D LGE revealed 107 segments (23.3%). Short3D LGE demonstrated a better scar visibility (4.3 vs 2.8, P < 0.01) and better CNR between scar and blood pool (806.7 ± 256 vs. 209.5 ± 149, P < 0.01). Agreement between the readers was moderate for 3D LGE and excellent for short3D LGE (weighted k = 0.52 vs. 0.78).

Conclusion: Short3D LGE provided a very good scar visualization and could be used additionally to standard 3D LGE imaging, especially in patients with subendocardial scarring and suboptimal nulling of the myocardium.

B-1611 11:02

Cardiac magnetic resonance for response prediction to Levosimendan treatment in patients with acute decompensated heart failure prior to cardiac surgery

A. Wielandner, F. Gremmel, R. Laggner, D. Senn, A. Zuckermann, C. Loewe, D. Bitzke; Vienna/AT, alice.wielandner@medunivien.ac.at

Purpose: Levosimendan may be used in patients with chronic heart failure and acute left ventricular dysfunction to improve left ventricular (LV) function and reduce LV size. So far, the impact of the myocardial composition on therapy response has not been investigated. Cardiac magnetic resonance (CMR) is a well-established method to assess both LV function and composition and therefore may be used to predict treatment response to Levosimendan. This retrospective analyses is aimed to evaluate the impact of myocardial scar burden on the therapy response to Levosimendan in patients with acute decompensated heart failure prior to cardiac surgery.

Methods and Materials: Forty-one patients underwent CMR scan before and immediately after administration of Levosimendan. LV ejection fraction (LVEF), LV end-diastolic and end-systolic volumes (LVEDV/LVESV), normalized to body surface, stroke volume (SV), late gadolinium enhancement (LGE) in % of LV mass as well as proBNP levels were obtained. Patients were additionally grouped regarding presence and absence of scar burden. Patients were divided into 2 groups: 1) without and 2) with scar burden of ≥ 35%.

Results: There were no differences in baseline characteristics between the groups. In the group with a scar burden ≥35%, a significant increase in LVEF was observed compared with the group without scar burden (58.6±17.9 vs. 26.2±17.1, p<0.01). Furthermore, a significant increase in SV and a significant decrease in LVESV and LVEDV were observed (p<0.01). ProBNP levels were also significantly lower in the group with a scar burden ≥35% (10,275±7,666 vs. 37,336±30,088 pg/mL, p<0.01).

Conclusion: CMR provides valuable information on myocardial composition and can be used to predict response to Levosimendan in patients with acute decompensated heart failure prior to cardiac surgery.

B-1617 11:07

Noninvasive assessment of myocardial oxygenation after acute myocardial infarction with breath-hold-induced blood oxygen level-dependent imaging

K. Shi, Z.-G. Yang, Y.-K. Guo, S. Huang, X. Li; Chengdu/CN, kshih010@icq.com

Purpose: Blood oxygen level-dependent (BOLD) imaging is a noninvasive MR technique for determining myocardial oxygenation. In recent years, the safety profile when performing stress status has raised serious concerns in clinical practice. The purpose of this study was to investigate feasibility of breath-hold (BH)-induced BOLD imaging without adenosine administration in acute myocardial infarction (AMI).

Methods and Materials: Seven healthy rabbits were treated with different hypoxia-inhaled gases and adenosine administration, whereas the other seven healthy rabbits with different intervals of BH and adenosine administration. Subsequently, nine AMI rabbits received an optimal interval of BH and compared the diagnostic performance with adenosine administration. Myocardial signal intensity (SI) alterations were monitored when inhaled hypoxia gases, BH and adenosine, as well as BH and adenosine administration, respectively.

Results: Myocardial BOLD SI increased with inhaled oxygen concentration decreased. BOLD imaging performed for 30 s to 60 s seconds showed similar BOLD SI increase (ranged from 0.40 to 0.62; all P < 0.05) as compared with adenosine administration. Moreover, BH lasted for 30 s seemed to be optimal to achieve the diagnostic performance with minimal interval (after 10 s, P < 0.05). When applied 30 s BH in AMI rabbits, it showed significant effectiveness for assessing myocardial response among infarcted, salvaged and remote myocardium, as compared with adenosine administration (r = 0.89; P < 0.05).

Conclusion: BH-induced BOLD imaging achieves similar diagnostic performance for assessing myocardial oxygenation compared with adenosine administration. It is likely a safer and more tolerable alternative method for AMI patients.

B-1619 11:18

Alterations of the mitral valve vortex ring in ischaemic heart disease: an explorative 4D-flow study

C. Kräuter1, U. Reiter2, C. Reiter3, A. Schmidt1, A. Greiser2, M. Masana1, M.H. Fuchsänger1, R. Stollberger1, G. Reiter2; Graz/AT, Erlangen/DE, Barcelona/ES (corina.kraeuter@medunigraz.at)

Purpose: Blood flow into the left ventricle is accompanied by formation of a three-dimensional (3D) vortex ring at the mitral valve leaflets, which is considered to support ventricular filling and diastolic function. The aim of this study was to compare vortex ring properties of patients with chronic ischaemia heart disease (IHD) and healthy controls derived from cardiac magnetic resonance four-dimensional phase-contrast (4D-flow) measurements.

Methods and Materials: 10 subjects (3 IHD patients and 7 age-matched healthy controls) underwent left heart 4D-flow imaging at 3T. Pre-processing of velocity data as well as automated Q-criterion-based extraction and evaluation of 3D mitral valve vortex rings were performed by prototype (4Dflow, Siemens Healthcare) and in-house software. Vortex ring properties in patients and controls were compared by t-test.

Results: In all subjects, vortex rings were present during early and late diastolic filling and dissolving during diastasis. Duration of existence of early diastolic vortex rings was longer in patients compared to controls (226±50 ms vs. 150±37 ms, p=0.03), whereas their duration of existence did not differ in late diastole (132±27 ms vs. 139±20 ms, p=ns). Early diastolic peak mean vorticity was lower in patients compared to controls (364±14 vs. 89±14, p<0.01), while its delay to mitral valve opening was longer (170±13 ms vs. 96±15 ms, p<0.01). Late diastolic peak mean vorticity did not reveal differences (61±7 s vs. 74±12 s, p=ns).

Conclusion: Early diastolic mitral valve vortex ring formation differs between IHD patients and healthy controls. Vortex ring properties derived from 4D-flow imaging might represent new metrics of diastolic function.

Author Disclosures:

G. Reiser: Employee; Siemens Healthcare GmbH. C. Reiter: Siemens Healthcare Diagnostics GmbH.

B-1620 11:26

4D vs 2D-flow imaging in the evaluation of transmitral velocity profiles: comparison with echocardiography

C. Reiter1, C. Kräuter2, E. Kolesnik1, G. Reiter1, A. Greiser2, A. Schmidt1, D. Scherrer1, M.H. Fuchsänger1, U. Reiter1; Graz/AT, Erlangen/DE (clemens.reiter@medunigraz.at)

Purpose: Transmitral peak velocity profiles assessed by Doppler-echocardiography represent important markers of diastolic left ventricular function. The purpose of the present study was to evaluate if cardiac magnetic resonance (CMR) four-dimensional phase-contrast imaging (4D-flow) provides better estimates for transmitral velocities than standard two-dimensional phase-contrast measurements (2D-flow) compared with echocardiography, respectively.

Methods and Materials: 53 subjects without signs of heart failure (male/female, 22/31; age, 62±8 years) underwent echocardiography as well as CMR whole-heart 4D-flow imaging and prototype navigator-gated through-plane velocity-encoded 2D-flow imaging in a plane positioned at the tips of opened mitral leaflets. Peak early (E) and late (A) diastolic transmitral velocities were evaluated in compliance with the guidelines for echocardiography, with routine software in case of 2D-flow measurements, and with prototype software from maximum velocities within the transmural inflow tract in case of 4D-flow measurements. Comparisons of CMR derived E, A and E/A ratios with corresponding echocardiographic parameters were performed by means of correlation and Bland-Altman analysis.

Results: Echocardiographic peak velocities (E=76±15 cm/s; A=73±16 cm/s) were underestimated more severely by 2D-flow (E=65±12 cm/s, p<0.01; A=55±12 cm/s, p<0.01) than by 4D-flow measurements (E=73±14 cm/s, p<ns; A=67±13 cm/s, p<0.01). Echocardiographic E/A ratio (1.08±0.28) differed from 2D-flow E/A ratio (1.26±0.41, p<0.05), the correlation was strong (r=0.61), and the standard deviation of errors was large (SD=0.33). 4D-flow E/A ratio did not exhibit a bias to echocardiography (1.12±0.27, p<ns), the correlation was very strong (r=0.81), and the standard deviation of errors was smaller (SD=0.17).

Conclusion: Compared with echocardiography, CMR 4D-flow is superior to 2D-flow imaging in assessment of transmitral velocity profiles.

Author Disclosures:

B-1622 11:42
Evaluation of the prognostic value of visually detected cardiac MRI findings in asymptomatic diabetics and healthy volunteers
N. Panagiotopoulos1, N. Fechtner2, T.H. Oechtering3, U. Roggenbuck4, K. Naassenstein1, J. Barkhausen1, P. Hunold1, I. Lubbecke1, E. Essen1
(nikolaos.panagiotopoulos@uksh.de)
Purpose: To evaluate the prevalence and prognostic value of wall motion abnormalities (WMA), late gadolinium enhancement (LGE), and perfusion defects (PD) in cardiac MRI (CMR) in asymptomatic diabetics (D) and non-diabetics (ND).
Methods and Materials: CMRs of 44 diabetics and 228 non-diabetics (64±7y, 32% female, comparable cardiovascular risk) of the Heinz-Nixdorf Recall Study were screened for pathological findings. Primary endpoints (PEP: myocardial infarction, sudden cardiac death) and secondary endpoints (SEP: mortality, other vascular disease) were defined. Distribution of pathologies between diabetics and non-diabetics, and their association with endpoints were analysed using Mann-Whitney-Wilcoxon, Fisher’s exact test, and Cox regression.
Results: Diabetics showed more often LGE (D=18%, ND=6%; p<0.01), PD (D=23%, ND=9%; p<0.01), and WMA (D=14%, ND=9%; p=0.12) than non-diabetics. During the observation period of 10 years, 8/228 non-diabetics, and 3/44 diabetics reached PEPs, while 40/228 non-diabetics, and 11/44 diabetics reached SEPs. A higher percentage of individuals reaching PEP had LGE than those not reaching PEP (D: 33% vs 17%, p=0.08, ND: 12% vs 6%, p=0.32). Individuals reaching SEPs had more often LGE than those not reaching SEPs (ND: 13% vs 4%, p=0.02; D: 33% vs 10%, p=0.06). In diabetics, PD were accompanied by a higher incidence of SEP (p<0.03). In non-diabetics, baseline hazard ratio (HR, [confidence interval]) for SEP was increased if LGE or WMA were present (HRLGE=2.2 [0.84;5.70], p=0.11; HRWMA=1.4 [0.51;3.70]).
Conclusion: Diabetics presented significantly more pathological CMR findings than non-diabetics. Despite a follow-up period of 10 years and a sizeable cohort of 272 individuals, the small number of reached endpoints did not permit a precise evaluation of the prognostic value of CMR findings.
Author Disclosures:
N. Panagiotopoulos: Research/Grant Support; DFG: GZ: PA 2878/1-1 AOBJ: 628779.
B-1623 11:50
Prognostic validity of stress cardiac magnetic resonance (CMR) in the intermediate-long term outcome assessment of known-CAD patients
P. Palumbo1, E. Cannizzaro, A. Corridore, C. De Cataldo, S. Torlone, M. Di Luzio, A. Di Sibio, E. Di Cesare, C. Masciocchi; L’Aquila/IT
(palumbo pierpaolo89@gmail.com)
Purpose: The need for a prognostic assessment of CAD patients is continuously increasing. The purpose of our study was to assess the prognostic role of Adenosine Stress CMR compared to CCTA in the outcome of heart patients.
Methods and Materials: 116 known-CAD patients who underwent first Coronary CTA and then stress CMR were selected retrospectively, with an average interval of 2.26 ± (1.35) months between the two examination. Two group analysis was performed according to the imaging-findings (stenosis severity, perfusion defect and LGE) and to the patient history (moderate-to-severe atherosclerotic plaques, stenting or CABG). Primary and secondary end-point was defined (MACE and clinical worsening respectively). The mean follow-up was 38.96 ± (19.35) months.
Results: Among the imaging-findings, a positive logistic regression association between LGE and MACE (Odds ratio 2.26, p = 0.048) was detected. A significant Log-Rank test was found between positive CCTA and stress MRI findings patients with MACE. Only perfusion defect showed a significant correlation with clinical worsening (Odds Ratio 5.43, p = 0.032), as confirmed by the Log-Rank test which evidence a correlation between clinical worsening with the positive stress MRI alone. No correlation was found between MACE or clinical worsening and patient history.
Conclusion: Our study demonstrates the prevalent role of Stress CMR as a predictive prognostic factor in the outcome of heart patient. Stress CMR may be useful in identifying patients at risk of clinical worsening, even in the absence of major events due to an OMT, and in patients with a non-severe CCTA stenosis.
B-1624 10:30
Value of CT image texture analysis in the differential diagnosis of benign and malignant parotid tumours
L. Yang, T. Jiang; Beijing/CN (36584269@163.com)
Purpose: To investigate the value of multi-slice spiral CT image texture analysis in differentiating adult benign and malignant parotid gland tumour.
Methods and Materials: Retrospective analysis was carried out in 33 patients with pathologically confirmed parotid gland tumour from August 2013 to April 2016. All patients were proven by pathological findings and underwent conventional and contrast-enhanced CT scan before therapy. According to the pathological findings the patients were divided into benign and malignant groups (22 and 11 cases, respectively). Texture features of the lesions were extracted by manually drawing ROI on the maximum level of tumour in conventional and enhanced CT imaging. The CT texture parameters between BPT and MPT groups were compared. ROC curve analysis was performed regarding the statistically significant parameters and the areas under curve (AUC) were calculated.
Results: CT texture parameter Cluster Shade, Sum entropy, Gray Level Non Uniformity, Large Area High Gray Level Emphasis, Contrast, Zone Entropy, Gray Level Variance, Sum Entropy, Entropy, IDMN, Sum Entropy, Difference Entropy, Gray Level Non Uniformity Normalized, Small Area Low Gray Level Emphasis were significant difference between BPT and MPT group (P<0.05). The best CT texture parameter that differentiated the benign and malignant parotid gland tumour was Sum Entropy of CT venous phase (AUC=0.88, P<0.05). With Sum Entropy≥1.53 as diagnosis threshold in differentiating benign parotid gland tumour, the sensitivity and specificity were 100% and 72.70%, respectively.
Conclusion: There was significant difference in CT texture analysis parameters between benign and malignant parotid gland tumours. CT texture analysis has certain clinical application values in differentiating parotid tumours.
B-1625 10:38
Virtual non-contrast reconstructions derived from DECT cannot replace true native scans in head and neck imaging
A.M.J.L. van Kroonenburgh, S.M.J. van Kuik, A.A. Jacobi-Postma; Maastricht/NL (anna.van.kroonenburgh@nymc.nl)
Purpose: Virtual non-contrast (VNC) scans from Dual energy CT are thought to reflect True non-contrast (TNC) images and could therefore be used as a substitute to lower radiation dose. The general accepted difference in HU measurement between VNC and TNC is 15 HU points in order to accept VNC as a substitute for TNC. We investigated whether VNC reflects TNC in the head and neck region.
Methods and Materials: From November 2016 until June 2018 forty-seven patients underwent a DECT scan as part of their regular diagnostic work up for primary hyperparathyroidism with TNC, 30 s and 50 s postcontrast DECT scan of the neck. VNC images were calculated from postcontrast scans. Best fit ROIs were placed in thyroid tissue, parathyroid adenoma, lymph node, carotid artery, jugular vein, fat and sternocleidomastoid muscle. VNC densities were compared to TNC. Also difference in VNC 30sec densities and VNC 50sec densities were compared.
Results: Differences in mean density between TNC and VNC of the organs were as follows: Thyroid 54.1 HU (p<0.001); parathyroid adenoma 20.2 HU (p<0.001); Lymph node 22.3 HU (p<0.001); Carotid artery 15.5 HU (p<0.001); Jugular vein 14.4 HU (p<0.001); Fat 61.2 HU p<0.001; Muscle 11.8 HU (p<0.001). The mean HU value between 30 sec and 50 sec did not differ more than 5 HU.
Conclusion: The mean difference in density measurements exceeds far the limit of 15 HU in thyroid tissue, this possibly reflects the intrinsic iodine of the thyroid. Thus VNC cannot replace TNC in head and neck imaging.
Author Disclosures:
A.M.J.L. van Kroonenburgh: Author; Institutional grant from Siemens. Investigator; Institutional grant from Siemens. Speaker; Institutional grant from Siemens. A.A. Jacobi-Postma: Author; Institutional grant from Siemens.
B-1626 10:46

Machine learning analysis in the prediction of tumour grade and nodal involvement in oropharyngeal and oral cavity squamouscellular carcinoma using CT-derived texture features
V. Romeo, R. Cuocolo, L. Uga, S. Coccozza, F. Verde, S. Dell'Aversana, A. Elefante, S. Staibano, A. Brunetti; Naples/IT (valeria.romeo@unina.it)

Purpose: To assess the diagnostic accuracy of CT texture analysis (TA) features in predicting tumour grade and nodal involvement in oropharyngeal (OP) and oral cavity (OC) squamouscellular carcinoma (SCC) using a machine learning approach.

Methods and Materials: Forty patients with histologically proven OP (n=7) and OC (n=33) SCC were retrospectively evaluated. Lesions were segmented on contrast-enhanced CT images to extract first, second and higher order TA features. Different feature selection methods and machine learning algorithms were tested to obtain the highest percentage of correctly classified instances for prediction of tumour grade (G2 or G3), nodal involvement (presence/absence of metastatic lymph nodes) and N stage (N1 or N2).

Results: The feature selection method that performed better was k-nearest neighbor algorithm (k-NN) for all groups. Selected features were 1) root mean square and long run emphasis; 2) cluster prominence, dissimilarity, long-run low-gray-level emphasis (LRLGLE) and LRHGLE for prediction of tumour grade, nodal involvement and N stage, respectively. The k-NN algorithm performed best in all evaluated tasks, with an accuracy of 91.6 ± 14.04% for grade prediction, 85.5± 19.19% for nodal involvement and 90 ± 19.82% for N stage.

Conclusion: Machine learning analysis using CT TA may be reliable in predicting tumour grade and nodal involvement in OP and OC SCC, possibly playing a significant role in defining clinical and surgical strategies.

B-1627 10:54

Added prognostic value of pre-treatment MRI texture analysis in patients with primary nasopharyngeal carcinoma
J. Fang, J. Mao; Guangzhou/CN (197284131@qq.com)

Purpose: To determine the prognostic value of pretreatment MRI texture analysis for progression-free survival (PFS) in patients with primary nasopharyngeal carcinoma (NPC).

Methods and Materials: Ethical approval by the institutional review board was obtained for this retrospective analysis, and the need to obtain informed consent was waived. This study consisted of 79 patients with primary NPC. Texture analysis of the primary tumour was performed on pretreatment T2-weighted images (T2WIs) and contrast-enhanced T1-weighted images (CE-T1WIs). The Cox proportional hazards model was used to determine the association of texture features, tumour volume and the tumour-node-metastasis (TNM) stage with PFS. Survival curves were plotted using the Kaplan-Meier method. The prognostic performances were evaluated with C-index.

Results: Tumour volume (hazard ratio, 1.054; 95% confidence interval [CI]: 1.016-1.093) and CE-T1W-based uniformity (hazard ratio, 0.95; 95% CI: 0.903-1) were identified as independent predictors for PFS (P=0.005; P=0.001). Kaplan-Meier analysis showed that smaller tumour volume (less than the cutoff value, 1.016-1.093) and CE-T1WI-based uniformity (hazard ratio, 0; 95% CI: 0-0.001) are associated with improved PFS (P=0.005; P=0.001). The combination of CE-T1WI-based uniformity with tumour volume and the overall stage estimated PFS better (C-index, 0.794; 95% CI: 0.641-0.947) than the tumour volume (C-index, 0.616; 95% CI: 0.463-0.769) or the overall stage (C-index, 0.627; 95% CI: 0.500-0.754) did (P=0.006; P=0.005).

Conclusion: A texture parameter of pretreatment MRI, CE-T1W-based uniformity, can be used to improve the estimation of PFS in NPC patients. Texture analysis of pretreatment MRI has added prognostic value for NPC patients.

B-1628 11:02

Application of the IEC3.1 standard of CTDIwr to a supine CBCT device
B. Keelson1, D. Buylaert2, G. Van Gompel3, J. Casselman3, K. Bacher4, Y. De Brucker4, N. Buis5, Brussels/BE; Gent/BE; Brussels/BE (bkeelson@etorvub.be)

Purpose: To investigate the feasibility of extending the IEC 3.1 CTDIwr as defined by the IAEA to CBCT and compare with device indicated CTDI and an approximation of the “true” CTDI.

Methods and Materials: Weighted CTDI (CTDIw) measurements of a 16cm diameter dosimetry phantom were obtained on a NewTom 5G (NewTom, Verona, Italy), CBCT using a 16x5cm and 15x12 cm field-of-view (indicated as diameter by height). CTDIw following the IEC 3.1 definition was computed by multiplying the CTDIw of a reference collimation (15x5) with the quotients of free-in-air CTDI measurements at the collimation of interest (15x12) and the reference collimation. In addition, to approximate CTDIw (“true” CTDI), CTDI measurements were performed in a 32 cm long phantom, constructed as a longitudinal combination of two 16 cm diameter phantoms. For the latter measurements, referred to as CTDI300, an interaction length of 300 cm was used i.e. integrated dose over three adjacent positions with the pencil chamber.

Results: True CTDIw values were 22mGy/100mAs and 25.8mGy/100mAs for the 15x5 and 15x12 protocols respectively. These values corresponded to an underestimation by the device indicated CTDI values of 57% and 31% for the 15x12 and 15 x 5 protocols respectively. The IEC 3.1 definition however resulted in underestimations of 18 and 14 % for the 15x12 and 15x5 protocols respectively relative to the true CTDIw.

Conclusion: CTDI using the IEC 3.1 method resulted in reasonable deviations from the “true” CTDI and is recommended to allow for comparison of doses between conventional CT and CBCT.

B-1629 11:10

Texture analysis for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma on unenhanced CT

Purpose: To investigate a usefulness of texture features in differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma (ML) on unenhanced CT.

Methods and Materials: Thirty nasopharyngeal tumours including 17 nasopharyngeal cancer and 13 nasopharyngeal ML were identified on 18F-FDG PET/CT. All nasopharyngeal cancer and 7 of 13 nasopharyngeal ML were confirmed by endoscopic biopsy. All 13 nasopharyngeal ML were diagnosed by lymph node biopsy on unenhanced CT. 36 texture features were calculated following lesion segmentation on the maximum area. Student's t-test and the area under the curve (AUC) were measured to compare values for SUVmax, SUVmean, and 36 texture features. Support vector machine (SVM) was constructed to evaluate a combination of texture features with 50 repetition of 5-fold cross validation.

Results: Significant differences of SUVmax and SUVmean were not found between nasopharyngeal cancer and nasopharyngeal ML. There were significant differences of texture features as follows: 1 histogram feature (p = 0.0236), 4 grey-level co-occurrence matrix features (p = 0.008-0.03), 2 grey-level run-length matrix features (p = 0.008 and 0.01), 1 neighborhood grey-level different matrix feature (p = 0.006), 2 grey-level zone length matrix features (GLZLM) (p = 0.009-0.012), Maximum AUC of 0.624 were identified from zone-length non-uniformity in GLZLM. The highest accuracy of the combined texture features using SVM was 79.1% with the AUC of 0.80.

Conclusion: Texture features would provide useful information to discriminate between nasopharyngeal cancer and nasopharyngeal ML on unenhanced CT while SUVmax and SUVmean by PET/CT cannot differentiate them.

B-1630 11:18

Dose optimisation in dual-energy CT imaging of the neck: evaluation of acquisition parameters using a 3D-printed patient phantom
P. Jahnke, B. Hamm, T. Diekhoff; Berlin/DE (paul.jahnke@charite.de)

Purpose: To evaluate acquisition techniques for dual-energy computed tomography (DECT) of the neck and to deduce optimal scanning parameters for acceptable image quality at minimal dose.

Methods and Materials: DECT of the neck was performed with 80 and 135 kVp tube voltage on a 320-row CT, using a radiopaque 3D printed phantom for realistic simulation of a patient contrast CT. Tube currents were varied between 40 and 400 mAs for 80 kVp and 5 and 160 mAs for 135 kVp. Virtual blended images (VBI) and virtual monochromatic images (VMI) were reconstructed with all possible pairings (186 in total). Single energy CT (SECT) was performed with 80, 100, 120 and 135 kVp. Hounsfield units (HU), signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were compared between VBIs, VMIs and SECT. Non-linear regression analysis was performed to deduce optimal DECT settings.

Results: 100 and 120 kVb VBI reconstructions overestimated HU slightly (31.68 ± 1.18 HU and 22.03 ± 0.75 HU, respectively). HU of 75 keV VMIs did not differ significantly from 120 kVp SECT. SNR and CNR of VBI were inferior to the corresponding SECT images at similar dose levels. VMI SNR and CNR were highest at 65 keV, but inferior to SECT values at similar dose. Non-linear regression indicates that DECT can achieve approximately 80% SNR and CNR with 120% exposure of the corresponding SECT.

Conclusion: Sequential DECT results in significantly inferior image quality per radiation dose compared to clinical standard SECT. Tube currents should be adapted to the desired DECT information.

Author Disclosures:
B-1631 11:26
Dose reduction in CT imaging of the neck - individual performance and synergetic effects of dose reduction techniques in a clinical context

P. Jahnke, F.-B. Schwarz, M. Ziegert, B. Hamm, M. Scheel, T. Diekhoff; Berlin/DE (paul.jahnke@charite.de)

Purpose: To systematically evaluate the clinical performance of automated tube potential selection (ATPS), automated tube current modulation (ATCM), iterative reconstruction (IR) and pitch variation for dose reduction in CT imaging of the neck.

Methods and Materials: A radiopaque 3D printed patient head and neck phantom was used for realistic simulation of clinical neck imaging. 54 CT acquisitions were performed (80-row CT). Three ATCM settings and three fixed tube currents, ATPS and fixed 120 kVp and three pitch settings were systematically combined. Images were reconstructed with filtered back projection (FBP) and IR. In a first reading session, images were rated by three radiologists with an absolute grading. In a second session, a relative grading was performed by ten radiologists with a five-step rating scale. Dose efficiency of the selected acquisition techniques and synergetic effects were analyzed.

Results: Inter-rater reliability was excellent. The highest dose efficiency at acceptable image quality was achieved with ATCM Quality, ATPS, pitch 0.813 and IR. Compared with a clinical standard protocol, the combinations of (ATCM Quality, ATPS, pitch 0.837, IR) and (ATCM Standard, 120 kVp, pitch 0.837, IR) yielded 6% and 58% lower dose at not-different image quality. ATPS decreased dose more at higher tube currents and was more efficient with IR. FBP required higher tube currents than IR for optimal dose efficiency. Pitch increase added value for IR reconstructed images at fixed tube currents.

Conclusion: Optimal acquisition settings depend on the available dose reduction techniques, which contribute unequally to dose reduction in neck CT imaging.

B-1633 11:34
Dual-layer detector CT angiography in preoperative assessment of carotid body tumours: comparison of virtual monoenenergetic and polyenergetic images

Y. Chen, Y. Zhu, H. Liu, K. Xu, S. Yu, T. Su, Z. Zhang, Y. Wang, Z. Jin; Beijing/CN (bjchenyu@126.com)

Purpose: The aim was to investigate the ability of dual-layer CT angiography (DLCTA) in assessment of carotid body tumour (CBT), and comparison of virtual monoenenergetic and polyenergetic images.

Methods and Materials: Patients with suspected CBT referred to cervicocerebral CTA were retrospectively reviewed. All examinations were performed using a dual-layer detector CT. Polyenergetic images (120keV) and virtual monoenenergetic images (40keV to 120keV with a 10 keV increment) were reconstructed. The feeding arteries, Shambin type were evaluated based on polyenergetic images. Signals (+SD) of the CBT were measured to calculated the SNR. Subjective image quality including visualization of feeding arteries as well as carotid arterial wall were evaluated, using a 4-point Likert scale. Student’s t-test and Wilcoxon test were used to determine statistical significance.

Results: 17 patients were included into the study. Feeding arteries included external carotid arteries (ECA, n=1), internal carotid arteries (ICA, n=6) and both (n=8). Shambin type included I (n=3), II (n=5) and III (n=9). SNR in the virtual monoenenergetic images were superior to polyenergetic images at kiloelectron volt levels ranging from 40 keV to 50 keV (P<0.05). Visualization of carotid arterial wall was perceived significantly higher at kiloelectron volt levels of 40 keV to 70 keV (p<0.01). Visualization of carotid arterial wall was perceived significantly higher at kiloelectron volt levels of 40 keV to 50 keV (p<0.05).

Conclusion: Compared to polyenergetic images, virtual monoenenergetic images reconstructed from DLCTA at low keV ranging from 40 to 50 keV improve the objective and subjective image quality of CBT.

B-1634 11:42
Are pre-MRI orbital radiographs always necessary in patients with suspected foreign bodies?

A. Foran, M. Lee; Dublin/IE (foranat@tcd.ie)

Purpose: To review indications for performing pre-MRI orbital radiograph, to ensure compliance with international guidelines, and to review our protocol for suspected intra-orbital foreign bodies.

Methods and Materials: An audit was performed of all pre-MRI orbital radiographs performed between July 2014 and July 2018, positive findings were recorded as well as patients who proceeded to MRI.

Results: Between July 2014 and July 2018, 286 patients had pre-MRI orbital radiographs. Reasons included occupational exposure (36), a documented history of foreign body (161) and otherwise unspecified history (89). Only 3 patients overall did not proceed to MRI due to the presence of a radiopaque foreign body within the orbit, all of whom had a documented history of foreign body within the eye.

ACR guidelines recommend pre-MRI orbital radiograph only for patients who have had a history of orbital foreign body for which they sought medical attention. We edited our MR questionnaire to reflect these guidelines. Based on our review of the radiographs of the patients who did not proceed to MRI, we deemed that our radiograph protocol was suboptimal, prompting us to change our radiograph protocol. Our plan following implementation of these changes is to re-audit in 3 months time to assess the number of radiographs performed in the interim.

Conclusion: Orbital radiographs were performed in 286 patients, only 3 patients who had an intraorbital foreign body did not proceed to MRI. A new MRI questionnaire reflecting ACR guidelines has been implemented to decrease unnecessary radiographs.

10:30 - 12:00
Room M 3

Oncologic Imaging

SS 1816
Improving the prediction of head and neck malignancies

Moderators: B. Verbist; Leiden/NL
G. Zanirato Rambaldi; Bologna/IT

B-1635 10:30
Microflow and resistance index in suspicious lymph nodes

P. De Koeckzoek-Boll, M.W.M. van den Brekel, W. Vogel, L. Smit, R.G.H. Beets-Tan, M. Maas; Amsterdam/NL (petra.dkd@gmail.com)

Purpose: Ultrasound-guided fine needle aspiration cytology (FNAC) is one of the most important modalities for nodal staging in head and neck cancer. The US vascularity in metastatic lymph nodes (LN) was reported as a sensitive feature. We aim to improve the sensitivity using non-contrast-enhanced slow tissue flow measurement clinical techniques.

Methods and Materials: Prospective study including 123 patients with 217 suspicious nodes. Mean age 62 years (23-87 yrs.). The eL18-4 transducer (Philips) was used for conventional ultrasound (B mode) nodal assessment. Presence of increased peripheral vascularity with microflow imaging (MI) and measurement of resistance index (RI) values was assessed. FNAC was performed in all nodes and served as the reference standard. Sensitivity and specificity were calculated for capsular vasculation and the absence of a fatty hilum. Cut-off values for RI were defined.

Results: 100/217 nodes were malignant at cytology. 86/106 (86%) of LN with significant MI were malignant (sensitivity 86%, specificity 83%, PPV 81%, NPV 84%). Absence of a hilum indicated nodal involvement in 83% (80/96) (sensitivity 80%, specificity 86%, PPV 83%, NPV 83%). Combining an absent hilum and presence of MI correctly predicted 73/81 (90%) malignant nodes (sensitivity 92%, specificity 75%). The RI yielded a sensitivity of 91% and specificity of 50%, with a cut-off of 0.71. In case of RI<0.6, none of the nodes were malignant.

Conclusion: Extra-capsular vasculation (microflow) combined with the absence of a fatty hilum has a high diagnostic performance to predict metastatic nodes.

B-1636 10:38
Ability of computed tomography (CT) radiomic features to differentiate lymphomas from thymic masses in the anterior mediastinum

M. Kiriniko, G. Ninatti, L. Cozzi, N. Gennaro, F. Ricci, C. Carlo Stella, P. Zucali, A. Chiffi, M. Sollini, Milan/IT (gaia.ninatti@st.unimed.eu)

Purpose: The present study aimed at evaluating the ability of computed tomography (CT) radiomic features to classify anterior mediastinal masses as lymphomas or thymic neoplasms.

Methods and Materials: A cohort of 110 patients diagnosed with either thymic neoplasia or lymphoma with at least one mediastinal localization >4 cm in size, and with a non-contrast-enhanced CT imaging available at our institution, was retrospectively studied. The cohort was divided into a training and a validation group. Radiomic textual features (n=41) were extracted from manually segmented CT images using LIFEx software. Statistical analysis was performed using the R platform. Combinations of imaging features were used as predictors in linear discriminant analysis (LDA) with backward stepwise variable insertion to classify the lesions as lymphomas or thymic neoplasms. Pathology was used as reference standard. Scoring metrics included analysis
B-1637 10:46
Role of diffusion MRI in differentiation of residual/recurrent neck malignancies and post-treatment changes in comparison with histopathology findings
A. Jadidi, D. Aggarwal, A.S. Rao, R. Aggarwal; New Delhi/IN (ankush@iai.org)

Purpose: Role of diffusion-weighted (DW) MR imaging and ADC mapping in differentiating residual or recurrent malignancies from post-operative/post-radiation changes with histopathological/cytological correlation and comparison with PET-CT.

Methods and Materials: Prospective observational study for a year in 62 post-radiation/post-operative patients suspected to have residual/recurrent tumour of neck with lesion diameter more than 5mm measured on MRI.

Results: Mean ADC for recurrent/residual tumours: 1.008 ± 0.220 x 10-3 mm²/s - significantly lower than mean ADC value for post-treatment changes of 1.69 ± 0.40 x 10-3 mm²/s (p < 0.0001). The overall diagnostic accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the qualitative assessment for the use of DWI in differentiating tumour recurrence from post-treatment changes were 96.6%, 96% and 83.3%, respectively. Upon quantitative analysis of the DWI data, a threshold ADC value of 1.3 x 10-3 mm²/s used for differentiating between post-treatment changes and recurrent cancers showed the highest combined sensitivity of 94%, specificity of 83.3%, accuracy of 93.6%, positive predictive value of 95.9%, and negative predictive value of 83.3%.

Conclusion: DW MRI is a promising non-invasive MRI technique used to differentiate recurrent/residual head and neck malignancies from post-treatment changes based on ADC values. Advantage short scanning time; safely added to standard MRI protocol with minimum patient discomfort. Complementary use of DW and PET/CT imaging may increase diagnostic confidence for differentiating recurrent disease from radiation therapy-induced changes after 6-12 months in post-treatment cases.

B-1638 10:54
MRI-based radomic to assess lipomatous soft tissue tumours malignancy: a pilot study
A. Bouhamaama, B. Leport, F. Lame, C. Bihane, M. Sdika, J.-Y. Blay, O. Benf, F. Pilleul, L. Lyon/Fr, L. de Goslier/Fr (amine.bouhamaama@lyon.unicancer.fr)

Purpose: To develop and validate a MRI-based radomic method to evaluate lipomatous soft tissue tumours malignancy.

Methods and Materials: 81 subjects with lipomatous soft tissue tumours including 40 lipomas and 41 atypical lipomatous tumours or well-differentiated liposarcomas with fat-suppressed T2w contrast enhanced MR images available were retrospectively enrolled to constitute the database. For each tumour, 87 radomic features were extracted. A reduction of learning base dimension was performed from relevancy and reproducibility criteria. Next, to predict malignant lesions, a model was prototyped using a linear support vector machine.

Results: After combination with relevancy criteria, 35 features were integrated in the model. To predict malignant tumours, model diagnosis performances were as follow: AUROC = 0.96; sensitivity = 100%; specificity = 90%; positive predictive value = 0.97; negative predictive value = 100% and overall accuracy = 95.0%.

Conclusion: This work demonstrates that it is possible to assess soft tissue lipomatous malignancy with a routinely used MRI acquisition in clinical oncology. These encouraging results need to be further confirmed in an external validation population.

B-1639 11:02
MRI histogram and texture analysis as predictors of response to therapy in head and neck malignancies
R. Batel, V.K. Anand, G. Krishnamurth; Chennai/IN (ravikanthbalaji@gmail.com)

Purpose: To evaluate the use of histogram and texture analysis of metastatic neck nodes from head and neck squamous cell carcinoma (SCC) using fat-suppressed T2-weighted (Fs-T2WI) and diffusion (DW) imaging for the prediction of response to therapy.

Methods and Materials: Fifty patients with primary squamous cell carcinomas of head and neck region with metastatic nodes (24 well-, 17 moderately and 9 poorly differentiated SCC) were retrospectively analysed. Quantitative parameters with histogram features (relative mean signal, coefficient of variation, kurtosis and skewness) and grey-level co-occurrence matrix (GLCM) features (contrast, correlation, energy and homogeneity) were calculated using Fs-T2WI and DW data with a manual tumour region of interest (ROI).

Results: Relative mean signal and contrast were significantly lower in poorly differentiated SCC (2.3±0.63, 50.1±12.9) compared to both the moderately (4.6±0.81, 79.5±9.8) and well-differentiated SCC (3.1±0.69, 8.7±1.45). The homogeneity in poorly differentiated SCC (2.8±0.1510-1) was higher than that in moderately (2.4±0.1810-1) and well-differentiated SCC (1.9±0.1710-1).

Conclusion: Parameters obtained by histogram and texture analysis of Fs-T2WI and DW may be useful for non-invasive prediction of prognosis in metastatic SCC head and neck malignancy.

B-1640 11:10
Lymph node measurement on serial imaging in clinical trials
M. Bagheri, A. Shafiei, F. Lameh, A.B. Apolo, E.C. Jones, R.M. Summers; Bethesda, MD/US (mohammad.bagheri@nih.gov)

Purpose: To optimize target node measurement using RECIST-1.1, when they merge or split.

Methods and Materials: We identified target nodes either separated from conglomerate nodes (split node) or merged with other nodes (merged node) over time on serial CT in 261 cancer patients enrolled in clinical trials. Average of short axis diameter changes of three other well-circumscribed nodes was measured as ground truth (surrogate nodes). Merged nodes were grouped: One target node merged with adjacent nodes (Group-1) either linearly(1-A), or non-linearly(1-B). Two target nodes merged (Group-2). Correction factors were calculated based on surrogate changes for merged nodes. Short axis of the largest nodal fragment was compared with RECIST and surrogate for split nodes.

Results: We identified 46 merged (29 group-1, 17 group-2) and 28 split nodes. Nodal size change per RECIST was similar to surrogates in group 1-A, while there was a significant difference in groups 1-B, 2, and split nodes with surrogates (p<0.001). While all surrogate nodes in group 2 enlarged, RECIST indicated a decreased size in 76% of cases. Furthermore, RECIST indicated an increase in the size for 63% of split nodes while their surrogates showed a decrease. Calculated correction factors for merged lesions in groups 1-A, 1-B, and 2 were 1, 0.75, 1.5 respectively. No significant difference was noted between surrogate measurements and our proposed method of applying a correction factor for merged nodes and measuring the largest fragment when node splits.

Conclusion: Our proposed method can improve the accuracy of nodal assessment when they merge or split.

Author Disclosures: L.R. Follo: Other; Research agreement with Carestream Health and two unrelated issued patents on image processing/ quantification. R.M. Summers: Research/Grant Support; PingAn, NVIDA. Other; Royalties; iCAD, PingAn, ScanMed, Philips.
underwent image-guided biopsy and histopathological confirmation.

Conclusion: Relapse in testicular cancers almost always involves the retroperitoneal or pelvic nodes. Shortened MR imaging protocols for surveillance in such patients can help replace CT imaging with its attendant radiation hazards.

B-1642 11:26
Conventional ultrasound and ultrasound elastography in non-Hodgkin lymphoma: ultrasound prognostic index compared with the international prognostic index
J. Jiang, M. Chen, Shanghai/CN (kxkk12340@163.com)

Purpose: To explore the predictive value of prognosis for conventional ultrasound (US) and ultrasound elastography (UE) in patients with non-Hodgkin lymphoma (NHL). Ultrasonic prognostic index was developed to compare with IPI in complete response (CR) rate.

Methods and Materials: A total of 168 patients with NHL were divided into two groups by IPI. The US and UE features of enlarged lymph node in these patients were analysed retrospectively. Ultrasonic prognostic index was developed to compare with IPI in complete response (CR) rate.

Results: 68 patients with IPI 0, 1, 2 were divided into good prognosis group, while others with IPI 3, 4, 5 into poor prognosis group. Correlation analysis indicated significant correlation between IPI and several US and UE features: long axis diameter (L), short axis diameter (S), hilar status, vascular pattern, elasticity score (P<0.05). These features were statistically different between two groups (P<0.05). Ultrasonic prognostic index score was assessed by summing these features (L, S, 3-2cm, 5-1.2cm, absent hilar, peripheral, or mixed vascular pattern, elasticity score 3 or 4. The sensitivity, accuracy and AUC value were 80.6%, 72.6% and 0.781 when ultrasonic prognostic index 3 was determined to be the cutoff for poor prognosis. CR rate assessed by ultrasonic prognostic index in the low-risk range (ultrasonic prognostic index 0 or 1) was better than that assessed by IPI in the low-risk range (IPI 0 or 1).

Conclusion: This study suggests the predictive value of US and UE in the prognosis of NHL. Compared with the IPI, ultrasonic prognostic index may have a better predictive value in the patients with good prognosis.

B-1643 11:34
Strain elastography ultrasound for lymph node characterisation
A. Malich, C. Kurrat, D. Preda, N. Bang, I. Papageorgiou; Nordhausen/DE (anjasa.malich@shk-nord.de)

Purpose: To evaluate the diagnostic accuracy of strain elastography (SE) in differentiating benign from malignant lymph nodes.

Methods and Materials: The study was retrospective for n=53 patients investigated with ultrasound in B-mode and SE in a single session. All patients received either an image-guided staccio biopsy or surgical resection, n=30 were found with benign inflammatory changes and n=23 with a neoplastic condition. Applied elastographic metrics: (1) average tumour strain, (2) average reference fat (REF) strain, (3) ratio tumour/REF (strain ratio) and (4) Tsukuba-Ueno scale.

Results: The Tsukuba-Ueno class of the malignant lymph nodes was on average score above 3/5 compared to lower 2 of the benign lesions, p=0.003. Mann-Whitney rank-sum test. The tumour strain and the strain ratio did not differ significantly between benign and malignant lymph nodes, p=0.05, Mann-Whitney rank-sum test. The sensitivity/specifity (Se/Sp) of the Tsukuba-Ueno scale was 61/73% for a cut-off value of 3, and 87/50% for a cut-off of 2. The strain ratio showed a low prognostic value with an area under curve = 0.56. For a cut-off strain ratio 1.63, the Se/Sp was 65/57% (ROC analysis with Youden statistics).

Conclusion: Strain elastography is a weak surrogate marker to differentiate between inflammation and lymph node malignancy. The Tsukuba-Ueno scale is the only metric that showed a moderate sensitivity.

B-1644 11:42
Absence of vascularisation in thyroid nodules: new ultrasound feature for stratifying their malignancy risk
M. Minotti, F. De Pianò, L. Tofanelli, G. Giugliano, F. Maffini, G. Mauri, M. Bellomi, L. Preda, E. De Fiori, F. Maffini, G. Giugliano; Milan/IT, Pavia/IT, Shanghai/CN (laura.tofanelli@unimi.it)

Purpose: To determine if the absence of vascularisation in thyroid nodules is an ultrasound feature significantly associated with malignancy.

Methods and Materials: This retrospective study evaluated 155 thyroid nodules (46 benign, 109 malignant) in 110 patients according to the following inclusion parameters: solid thyroid nodules, pre-operative US with colour-Doppler evaluation available, surgery performed at our Institution (November 2012- July 2018). One radiologist with 20 years’ experience scored the nodules according to TI-RADS 2017. Vascularity was also evaluated with colour-Doppler as an additional criteria and classified as: absent, peripheral, mixed, or fribrous. The association of the absence of vascularity with the risk of malignancy was assessed by sensitivity (SE), specificity (SP), positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy (DA).

Results: Thyroid nodules without vascularity were 40/155, 2/46 were benign and 38/109 were malignant. The SE, SP, PPV, NPV and DA values related with the absence of vascularity were respectively 35%, 96%, 95%, 38%, and 52.9%.

Conclusion: This study demonstrated the absence of vascularity, in addition to TI-RADS classification, could be an useful US feature for better stratify the risk of malignancy in thyroid nodules.

10:30 - 12:00
Room M 4

GI Tract

SS 1801b
Inflammatory bowel disease: what now?
Moderators:
N.N.
N.N.

B-1646 10:39
Clinical application of 640 slice spiral CT double low enterography in inflammatory bowel disease
X. Pan, M. Guo; Guangzhou/CN (wfbba@163.com)

Purpose: To investigate the clinical application of 640-slice spiral CT enterography combined with low tube voltage, low contrast injection rate and dye technique in inflammatory bowel disease.

Methods and Materials: Forty patients diagnosed as Crohn’s disease were randomly divided into two groups. Both groups were scanned by 640-slice CT spiral mode. Double low dose group (group A) was scanned by low dose (100KV), contrast injection rate 2.3 ml/s and low contrast volume 0.8 ml/kg. Routine dose group (group B) was scanned by routine dose (120KV), contrast injection rate 3.5 ml/s and contrast volume 1.2 ml/kg. Computed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Image quality (bowel wall CT value, noise, SNR and CNR), radiation dose and contrast dose were compared and analyzed between the two groups.

Results: All patients in double low dose group received volume CT index (CTDIw) about 3.9-8.6 mGy, with an average of 6.3 mGy, significantly less than 25 mGy, and radiation dose significantly reduced (p < 0.05). The radiation dose and dose of contrast medium in group A were significantly lower than those in group B (P < 0.05). There was no significant difference in image quality scores between the two groups (P > 0.05).

Conclusion: In CT enterography, spiral scanning combined with low tube voltage, low flow rate and low contrast agent dosage can clearly display the small bowel and its surrounding structures, and reduce the radiation dose and contrast agent dosage (33%) and adverse reactions without significantly reducing the image quality.

B-1647 10:47
Magnetic resonance enterography: is routine administration of gadolinium-based IV contrast really needed for the assessment of Crohn’s disease?
S.J. Sammut, N. Cook, M. Mahmood, R. Balasubramaniam, B. Thomas, A. James; Stoke-on-Trent/UK (stephen.sammut@uhnm.nhs.uk)

Purpose: MR enterography (MRE) is well established for diagnosing and monitoring Crohn’s disease (CD). Standard protocol includes dynamic contrast-enhanced sequences using gadolinium-based contrast agents (GBCAs). GBCAs have recently come under scrutiny for retention in the brain tissue and hence avoidance is desirable. The purpose of this study was to explore if there was a diagnostic benefit of contrast-enhanced MRE (CEMRE) sequences.

Methods and Materials: We identified 50 cases for retrospective review performed over 3 months (Dec 2017 – Feb 2018) at our University Teaching Hospital. 10 cases were excluded leaving 40 cases. Initial review only included non-CEMRE sequences. Cases were read independently by radiology fellows and then double-read by consultant GI radiologists. The primary outcome was whether the conclusion differed based on CEMRE. A third radiologist arbitrated differences in opinion.

Results: CEMRE added some diagnostic benefit in 5 cases (12.5%). In one case, a third skip lesion was identified. In 3 cases, findings were more conspicuous on CEMRE but the overall conclusion did not change. The final case was felt to be due to poor quality of T2 and DWI sequences. Thus, only in 1 case (2.5%), did the final conclusion change significantly.
Conclusion: In most cases CEMRE added no diagnostic value, though more junior radiologists more often found them useful. AVOIDING GBCAs increases patient safety, in addition to a cost-benefit and reduced scan time. It is suggested that routine use of GBCA is not required for MRE, but can be used in selective circumstances.

B-1648 10:55
Can diffusion-weighted imaging (DWI) in MR enterography discriminate inflammatory strictures from fibrotic strictures in Crohn’s disease? M. Travali, P. Foll, N.M.G. Ognibene, S. Palmucci, L. Puzzo, G. Inserro, L. Zanolii, S. Parisi, A. Basile; Catania/IT (marino.travali.a34@gmail.com)

Purpose: Differentiation between inflammatory and fibrotic bowel strictures has relevant implications in therapeutic management of patients with Crohn’s disease. The aim of our study is to retrospectively evaluate the capability of magnetic resonance enterography (MRE) conventional and DWI sequences to differentiate fibrotic strictures from inflammatory ones in Crohn’s disease.

Methods and Materials: 21 patients with Crohn’s disease that underwent surgical resection with pathological confirmation within 3 months from preoperative MRE were retrospectively selected. Two radiologists blinded to histopathology in consensus evaluated the following bowel wall MRE qualitative and quantitative biomarkers at level corresponding to pathological specimens: mural thickness, maximum calibre of pre-stenotic upstream bowel, T1 ratio, pattern of wall enhancement, DWI apparent diffusion coefficient (ADC). A blinded pathologist scored strictures histological specimens as “inflammation” or “fibrosis” score. The aim of our study is to retrospectively evaluate the capability of MRE to noninvasively differentiate fibrotic strictures from inflammatory ones in Crohn’s disease.

Results: Quantitative ADC measurements correlated significantly with fibrosis score (P<0.001), whereas no significant correlation was observed between ADC values and inflammation score (P=0.64). Maximum calibre of pre-stenotic upstream bowel correlated significantly with fibrosis score (P=0.0086), but not with inflammation score. T1 ratio correlated significantly with both fibrosis (P=0.023) and inflammation score (P=0.0048). T1 ratio, mural thickness and pattern of wall enhancement showed no significant correlation neither with inflammation nor with fibrosis score.

Conclusion: Quantitative ADC measurements from DWI sequences could improve the ability of MRE to noninvasively differentiate fibrotic strictures from inflammatory ones likely to respond to medical therapy, therefore requiring surgical treatment, from inflammatory strictures liable to undergo pharmacological treatment.

B-1649 11:03
MRI quantitative parameters of small-bowel perfusion for early diagnosing and assessing activity of Crohn’s disease: a preliminary study Z. Xiangying, W. Yinchen; Fuzhou/CN (1571476087@qq.com)

Purpose: To explore the relationship between MRI quantitative parameters such as the volume transfer constant (Ktrans), the reflux constant (Kep), and the extravascular space volume fraction (Ve) and the change of blood perfusion and permeability of Crohn’s Disease (CD), and evaluate the value of small-bowel perfusion for early diagnosing and assessing activity of CD.

Methods and Materials: 21 patients who underwent bowel examination with magnetic resonance enterography (MRE) were recruited. Ktrans, Kep, and Ve of normal and terminal small-bowel were collected and compared. According to Crohn’s disease activity index (CDAI), all patients were divided into three groups such as remission group, mild group and moderate-severe group. The differences of Ktrans, Kep, Ve among the three groups were compared. The correlations between quantitative parameters and CDAI and small-bowel wall thickness were, respectively, evaluated.

Results: In 48 patients, Ktrans, Kep and Ve of terminal small-bowel were higher significantly than that of normal bowel (P<0.05) with the most remarkable increase in Ve. There were 13 cases of remission group, 20 cases of mild group and 15 cases of moderate-severe group. Ktrans, Kep and Ve of remission group were lower than active group (P<0.05). With the progress of CD, Ktrans, Kep and Ve also increased (P<0.001). All quantitative parameters had significant positive correlation with CDAI (P<0.05). However, it was not statistically significant in correlation between Ktrans and small-bowel wall thickness.

Conclusion: MRI quantitative parameters of small-bowel perfusion can reflect the change of blood perfusion and permeability of CD, and have a certain value for early diagnosing and assessing activity of CD.

B-1650 11:11
High spatiotemporal resolution free-breathing quantitative bowel perfusion imaging V.C. Obmann, K. Yang, N. Seyfried, M. Stopchinski, K. Wright, S. Ghodsasara, A. Pandu, Y. Chen, V. Gulani, B. Berne/CH (verena.obmann@insel.ch)

Purpose: To use a free breathing 3D ultra-fast DCE-MRI exam (spiral GRAPPA) for the acquisition of high spatial and temporal resolution imaging to provide quantitative perfusion modelling of the entire bowel in patients with Crohn’s Disease enabling objective assessment of disease status.

Methods and Materials: In this IRB approved prospective study, 11 patients with Crohn’s disease, at least one inflamed bowel segment were included. 50 coronal free-breathing DCE volumes covering the abdomen (temporal resolution 1.6 s, acquisition time 1.5 min) were acquired over a time course of 1.5 min with 1.5 mm in-plane resolution and 4 mm uninterpolated slice thickness. Mural multislice ROI were drawn in different segments of the bowel. The single input, single compartment Tofts model was utilized to calculate Ktrans and Vc. A Mann-Whitney-U test was performed to compare Ktrans and Vc of different segments.

Results: Median patient age was 31 years (range 19-77 years). M:F=7:5. Ktrans and Vc values for segments with inflammation were significantly higher compared to unaffected segments (ΔKtrans = +133% and ΔVc = +106%, p=0.007 and 0.004, respectively). Between active and chronic inflammatory changes there were no significant differences (both, p>0.05).

Conclusion: A free-breathing 3D quantitative perfusion assessment of the bowel which enables high temporal resolved evaluation of the crucial early arterial portions of the bowel contrast enhancement is presented. This technology should be explored for the assessment of early response to therapy.

Author Disclosures:
K. Wright: Research/Grant Support; Siemens Healthineers. V. Gulani: Research/Grant Support; Siemens Healthineers.

B-1651 11:19
Ability of diffusion-weighted magnetic resonance imaging to characterise bowel fibrosis depends on the degree of bowel inflammation X. Li, S. Huang, B. Lu, L. Huang, Z. Li, J. Du, Y. K. Zhang; Guangzhou/CN (zyingku@163.com)

Purpose: The ability of diffusion-weighted imaging (DWI) to assess bowel fibrosis in patients with Crohn’s disease (CD) remains unclear. Another knowledge gap is whether bowel inflammation could have a confounding impact on the apparent diffusion coefficient (ADC) when detecting fibrosis, given that bowel inflammation and fibrosis are always coexistent. This study assessed the role of DWI in characterisation of bowel fibrosis using surgical histopathology as reference standard.

Methods and Materials: Abdominal DWI was performed before elective surgery in 30 consecutive patients with CD. The ADCs in pathologic bowel walls were calculated. Region-of-interest correlations between DWI and the surgical specimens were performed to determine the histologic degrees of bowel fibrosis and inflammation.

Results: The ADCs correlated negatively with bowel inflammation (r=-0.499, P<0.001) and fibrosis (r=-0.484, P<0.001) in 90 specimens; the ADCs in regions of non-fibrosis and mild fibrosis were significantly higher than those in regions of moderate-severe fibrosis (P<0.008). However, there was a significant correlation between the ADCs and bowel fibrosis (r=-0.641, P<0.001) in mildly inflamed segments but not in moderately (r=-0.274, P=0.255) or severely (r=-0.225, P=0.120) inflamed segments. In the mildly inflamed segments, the ADCs had good accuracy with an area under the receiver-operating characteristic curve of 0.867 (P=0.004) for distinguishing normal and mild fibrosis, and moderate-severe fibrosis.

Conclusion: The ADC only enables accurate detection of the degree of bowel fibrosis in mildly inflamed bowel walls. Therefore, caution is advised when using ADC to predict the degree of intestinal fibrosis.

B-1652 11:27
ADC values of DWI and DWIBS in bowel imaging: when they are consistent and when not? I. Apine, M. Baduna, R. Pitura, G. Krumina; Riga/LV (dr.lize.apine@gmail.com)

Purpose: To assess consistency between ADC-DWI and ADC-DWIBS in different bowel filling degree and bowel content in MRE examinations.

Methods and Materials: Patients with no evidence of IBD were scanned with 1.5T MRI system to assess ADC-DWI and ADC-DWIBS in high SI bowel walls at b=800: 1) in small bowel (54 patients) before and after filling with 2.5% manitol solution, 2) in large bowel (65 patients) at presence of intraluminal faeces, filled with manitol afterwards. Bowel distention was maintained with 1.5 I of 2.5% manitol solution orally. Differences between ADC-DWI and ADC-DWIBS were assessed with two-sample t-test.

Results: No statistically significant difference was found between ADC-DWI and ADC-DWIBS in small bowel walls filled with manitol being 1.95×10^-3 mm^2/s (SD 0.41) and 1.91×10^-3 mm^2/s (SD 0.52), respectively (P=0.7255) but statistically significant difference of 25.4% was found in empty bowel loops, in DWI being 1.28×10^-3 mm^2/s, SD 0.48, and in DWIBS being 1.02×10^-3 mm^2/s, SD 0.29, respectively (P=0.0011). No statistically significant difference between ADC-DWI and ADC-DWIBS was found in large bowel in presence of manitol being 2.15×10^-3 mm^2/s (SD=0.42) and 2.06×10^-3 mm^2/s (SD=0.64) (P=0.3842) whereas statistically significant difference of 23.4% was found in bowel walls in presence of faeces being 1.05×10^-3 mm^2/s (P=0.0046) for DWI and 1.37×10^-3 mm^2/s (SD=0.4323) for DWIBS (P<0.0001).

Scientific Sessions
Conclusion: ADC-DWI and ADC-DWIBS differ in presence of media of short T1 value (fat around collapsed bowel and high-viscosity faeces) whereas in abundance of long T1 value background (large amount of marnntol) ADC-DWI and ADC-DWIBS are consistent.

B-1653 11:35
Validation of the simplified magnetic resonance index of activity (sMaRIA) for Crohn’s disease without using gadolinium
N. Capozzi1, A. Fernandez-Clotet2, I. Alfaro3, I. Ordas3, J. Panes4, J. Rimola2; 1Bologna/IT, 2Barcelona/ES (nunziacp@gmail.com)

Purpose: To validate a simplified Magnetic Resonance Index of activity (sMaRIA) based on Magnetic Resonance Enterography (MRE), which does not include gadolinium enhanced sequences, for assessing disease activity and therapeutic response in patients with Crohn’s disease.

Methods and Materials: We prospectively included patients with active CD and at least one intestinal segment with severe inflammation at endoscopy (CDEI>8.5 or presence of ulcers), requiring treatment with a biological TNF-inhibitor. Patients were evaluated by both MRE and ileo-colonoscopy at baseline and at week 46 (wk-46) of therapy with TNF-inhibitor. Ileo-colonoscopy (CDEIS) was considered the gold standard. The sMaRIA was read using T2-w sequences. Comparison between sMaRIA and CDEIS for detecting active/severe lesions and therapeutic response was performed.

Results: Data from 43 patients (236 segments; 51 with ulcers) at baseline and from 37 patients (191 segments; 44 with ulcers) at wk-46 were available. The sensitivities and specificities of sMaRIA for detecting active disease at segment level (sMaRIA1) were 80% and 95% (AUC 0.88), and for detecting severe inflammation (sMaRIA2) were 80% and 93% (AUC 0.88) respectively. The sensitivities and specificities of sMaRIA for detecting mucosal healing at segment level (sMaRIA-2) were 73% and 93%. There were statistical significant changes (p<0.001) in sMaRIA score between baseline and post-treatment in patients with mucosal healing. The correlation of magnitude of changes between CDEIS and sMaRIA was moderate and significant (r=0.72; p<0.001).

Conclusion: The sMaRIA is a reliable tool that would avoid the use of gadolinium to detect inflammation and assess therapeutic response in luminal CD.

B-1654 11:43
Correlation analysis between magnetisation transfer ratio with collagen area fraction in the surgical specimen of Crohn’s disease
S. Huang1, X. Li1, Z. Fang1, J. Lin2, Z. Zhang2, C.C. Sun1, S. Feng1, Z. Li1; 1Guangzhou/CN, 2Florida/FL (codesy@foxmail.com)

Purpose: We aimed to establish a new index in histology, collagen area fraction, to quantify the amount of collagen and to reflect the severity of bowel fibrosis in patients with Crohn’s disease (CD), meanwhile for assessing the correlation between magnetization transfer ratio (MTR) and collagen area fraction in the surgical specimen of CD.

Methods and Materials: We analysed the histopathological data and MT imaging of 31 patients with CD undergoing surgical resection. The MTR were measured and the most representative sections of resected segments were stained with Masson trichrome. The collagen area fraction derived from image segmentation using Image J software and semi-quantitative histological fibrosis staining with Masson trichrome. The collagen area fraction derived from image segmentation using Image J software and semi-quantitative histological fibrosis staining with Masson trichrome. The collagen area fraction derived from image segmentation using Image J software and semi-quantitative histological fibrosis staining with Masson trichrome.

Results: The collagen area fraction strongly correlated with the histological fibrosis score (r=0.733, P<0.001). It proved to be more accurate for diagnosing Crohn’s disease strictures (AUC =0.815, P<0.001) compared with the histological fibrosis score (AUC=0.771, P<0.001). High repeatability was observed for the collagen area fraction, with an intraclass correlation coefficient of 0.915. A good correlation between MTR and collagen area fraction was found (r=0.643, P<0.001). Moderate accuracy of MTR was shown (AUC=0.766, P<0.001) for differentiating a collagen area fraction>0.5 from a collagen area fraction<0.5 in bowel walls.

Conclusion: The collagen area fraction is a reliable index to quantify the severity of bowel fibrosis in the surgical specimen. MTR can be a noninvasive imaging technique to evaluate the collagen area fraction in bowel walls.

B-1655 11:51
Magnetic Resonance Fingerprinting (MRF) enables simultaneous T1 and T2 mapping of the bowel wall in patients with Crohn’s disease
V.C. Obmann1, W.C. Lo2, N. Seyfried3, Y. Jiang1, A. Pandda1, K. Wright2, K. Ropella-Panagis1, V. Arnold2, G. Sandbækk3, E. Rud4, C.W. Langberg5, E. Baco6, G. Gulani7, K. Ropella-Panagis1, V. Obmann1, K. Wright2, V. Gulani7, K. Wright2, V. Gulani7

Purpose: Magnetic Resonance Fingerprinting (MRF) provides simultaneous mapping of T1 and T2 relaxation times in a single acquisition. To evaluate the feasibility of MRF-derived T1 and T2 measurements in the bowel for the evaluation of inflammatory bowel disease.

Methods and Materials: 33 patients (19:14 M:F) undergoing MR enterography exams at 1.5T were included in this IRB approved study. 3 axial and 3 coronal 2D-MRF slices were acquired through the bowel using a single breath-hold (24s) MRF-FISP sequence (in-plane spatial resolution 1.6x1.6 mm²). Information from weighted clinical images and endoscopy were used to identify affected segments. On T1 and T2 maps, regions of interest (ROIs) were drawn in the wall of small bowel and colon to assess T1 and T2 relaxation times in the bowel wall for each patient. Mann-Whitney-U and Kruskal-Wallis-Test with Dunn-Bonferoni post-hoc-tests were used to assess differences in T1 and T2 values between unaffected, acutely inflamed, and chronically inflamed bowel.

Results: Average age was 32 years (range 12-77 years). There were 11 segments with chronic disease and 16 with acute inflammation. T1 relaxation times allowed differentiation between unaffected segments (1468 ± 314ms, n=47) and inflamed segments (active 1386.0 ± 349.2ms and chronic 1296.8 ± 281ms), p = 0.028. T2 relaxation times further allowed distinction between segments with active (67.5 ± 48.4ms) and chronic fibrotic changes (48.4 ± 21.5ms), p < 0.001.

Conclusion: Initial application of MR Fingerprinting to evaluate the bowel wall in Crohn’s disease shows promising results for quantitative differentiation of normal, chronically diseased, and acutely inflamed bowel.

Author Disclosures:
W. Lo: Research/Grant Support; Siemens Healthineers. Y. Jiang: Research/Grant Support; Siemens Healthineers. K. Wright: Research/Grant Support; Siemens Healthineers. V. Gulani: Research/Grant Support; Siemens Healthineers.

10:30 - 12:00 Room M 5

Genitourinary

SS 1807
Testicular, renal and bladder tumours
Moderators:
F.M. Drudi; Rome/IT
O.W. Kozak; Gdansk/PL

B-1656 10:30
Testicular cancer follow-up: less is more
E. Rud1, C.W. Langberg1, E. Baco2, G. Sandbaek3; Oslo/NO (erik.rud@ous-hf.no)

Purpose: Patients are routinely monitored for relapse after primary treatment for testicular germ cell cancer. The Swedish and Norwegian Testicular Cancer Group recommends abdominal MRI instead of CT to reduce the radiation dose. The current MRI protocol is designed to screen retroperitoneal lymph nodes, abdominal organs, and the bony structures from the diaphragm to proximal femur. The aim of this study was to evaluate the rate and location of relapse in patients with testicular cancer.

Methods and Materials: We included all patients that underwent abdominal MRI after treatment of testicular germ cell cancer during the calendar year 2012 and 2017. MRI reports were classified as negative or positive. All positive reports were cross-checked with follow-up imaging and biopsy results. The location of true positive findings was registered according to anatomical site.

Results: During 2012 and 2017, we performed 2315 MRI examinations. Sixteen patients (0.7%, 95% CI: 0.4-1.1) with relapse were detected of which 12 were seminomas and four were non-seminomas. Fourteen (87%) were located in the retroperitoneal lymph nodes, and two occurred in pelvic and inguinal lymph nodes. No metastases occurred in parenchymatous organs or bony structures.

Conclusion: All cases of abdominal relapse occurred in retroperitoneal or pelvic lymph nodes. For this reason, a simpler MRI protocol containing fewer sequences can be used instead of screening all the abdominal organs as well as the bony structures.

B-1657 10:38
Diagnostic performance of contrast-enhanced ultrasound (CEUS) in unclear testicular pathology
M.H. Lechbaumer1, S.R. Maritocorea Garcia1, M. Kallenbach1, B. Hamm1, T. Fischer2; Berlin/DE (markus.lechbaumer@charite.de)

Purpose: Contrast-enhanced ultrasound (CEUS) has been used as an additional imaging technique to conventional ultrasound in order to clarify acute and chronic testicular pathologies. CEUS is easy and fast to perform, overcomes the limitations of gray-scale ultrasonography. The aim of this retrospective single-center analysis is to evaluate the diagnostic performance of CEUS in the assessment of unclear testicular pathology.
Methods and Materials: CEUS examinations of patients with unclear testicular pathologies between 2012 and 2018 were retrospectively analysed. Examinations were performed using B-mode, colour Doppler and CEUS after injection of a second-generation blood pool agent (SonoVue®, Bracco, Milan, Italy). Results were interpreted by an experienced radiologist (EFSUMB level 3).

Results: 43 patients were examined without any adverse reaction, where out 16 patients presented with a tumour lesion (benign and malignant). Median tumour size measured by ultrasound was 17.0 mm (IQR, 9.0-44.8) with a correlation coefficient of 0.917 compared to the tumour size in histopathological reports (median size: 22.5 mm; IQR, 14.0-41.8). When matched to the histopathological report and clinical follow up, CEUS represented a sensitivity of 92% (95%-CI, 67-97), a specificity of 90% (95%-CI, 74-97), a positive predictive value (PPV) of 80% (95%-CI, 55-93) and a negative predictive value (NPV) of 95% (95%-CI, 81-99).

Conclusion: CEUS is a feasible tool to differentiate between traumatic and inflammatory testicular pathologies. While differentiation between malignant and benign lesions using CEUS due to enhancement is currently difficult, patients with contraindications to other imaging modalities benefit from this method in the daily clinical routine.

B-1658 10:46
The added value of scrotal palpation during testicular ultrasound (US): a technical note
J.P. Zawaideh1, C. Trambaiolo Antonelli1, A. Olivero1, M. Bertolotto2, L.E. Derchi3, Genoa/IT, Trieste/IT (jeniesp289@gmail.com)

Purpose: Guidelines on performance of scrotal US indicate that “If a palpable abnormality is the indication for the study, this area should be directly imaged”. However, a small lesion may be difficult to identify, even when the patient is asked to indicate where it is located. We hereunder underline the beneficial role of scrotal palpation carried out by the radiologist during US examination for scrotal masses.

Methods and Materials: We reviewed the US findings in a series of 7 patients in whom US and simultaneous palpation allowed to identify an otherwise non-visible lesion and/or help to recognize its nature.

Results: In 2 patients an extratesticular lesion was not detected during the “normal” US and could be seen only through the combination of US and simultaneous palpation. In 5 patients palpation gave more information on the lesion, leading to its characterization: in 3 it could be displaced during palpation and recognized as a normal appendix testis (2) or as a pedunculated nodule arising from testicular surface (1); in 2 lesions were seen as freely mobile inside the tunica vaginalis, and recognized as “scrotoliths”.

Conclusion: Scrotal palpation carried out by the radiologist during US examination for scrotal masses can increase the diagnostic accuracy of the examination, especially in difficult small lesions.

B-1659 10:54
Focal testicular lesions: multiparametric US features and association with histopathology
I. Campo1, C. Sachs, R. Bussani, M. Bertolotto, M.A. Cova; Trieste/IT (irenecampo11@gmail.com)

Purpose: Ultrasound features of solid scrotal tumours are often non-specific. US, however, identifies the lesion in the largest number of cases. To illustrate the histopathologic features which determine echogenicity, echotexture, stiffness, and vascularity of different testicular masses.

Methods and Materials: 116 testicular lesions investigated with colour Doppler US for which histological specimens were available for review were considered. 68 lesions had also CEUS, 39 elastography. Imaging features were correlated with histological characteristics.

Results: Most testicular cancers were hypervascular at colour Doppler interrogation (65/116) and with increased consistency at elastography (24/39). 14/23 hypovascular lesions with small vessels at colour Doppler interrogation were hypervascular at CEUS. Seminomas presented with lower echogenicity compared to other cancers (29/35), mixed tumors were heterogeneous. Irrespective of histotype, abundance of stroma was the main factor determining increased echogenicity. Other factors were hyalization, interlaced necrotic areas and tumor nests, atrophic changes of the surrounding parenchyma. Heterogeneous appearance was observed in presence of different histotypes, calcifications, necrotic or fibrotic areas. Lesions were avascular at colour Doppler interrogation if vessels were lacking or were very small. In the latter case, they were vascularized at CEUS. Lesions with abundant stroma were hard at elastography, while necrotic changes caused soft or mixed appearance.

Conclusion: The different histological features of testicular lesions determine their sonographic appearance. US is highly sensitive for detection of testicular lesions, but specificity is low. The different US modes, if taken individually, are non-specific but if used together improve lesion characterization.

B-1660 11:02
Apparent diffusion coefficient and magnetization transfer ratio in predicting successful sperm retrieval after mTESE
A.A. Norkoou1, A. Tsili, A. Goussia, L.G. Astrakas, A. Katsas, N. Sofikitis, M.I. Argyropoulos, Ioannina/GR (alex REGION@hotmail.com)

Purpose: To assess any probable correlation between apparent diffusion coefficient (ADC) and magnetization transfer ratio (MTR) with the presence of spermatozoa retrieved after microdissection testicular sperm extraction (mTESE) in non-obstructive azoospermia (NOA).

Methods and Materials: This retrospective study included 49 consecutive NOA patients (mean age: 36.9 years) who underwent scrotal 1.5 T MRI, a day prior to mTESE. Forty five age-matched men (mean age: 35.4 years) were used as controls. The MRI protocol included diffusion-weighted imaging and magnetization transfer imaging. Based on the more advanced histopathologic pattern, NOA testes were classified as follows: group 1, testes with higher Johnsen score (hJS) ≥8; and group 2, testes with hJS <8. The testicular volume (TV), the mean testicular ADC and MTR were measured. Non-parametric statistical tests were used to assess differences in TV, ADC and MTR between: a) NOA men and controls, b) NOA groups and c) NOA testes with positive and negative sperm retrieval.

Results: TV (P < 0.001) was reduced and both ADC (P < 0.001) and MTR (P = 0.013) were increased in NOA testes compared to controls. TV (P < 0.001) was reduced and ADC (P = 0.015) and MTR (P = 0.003) were increased in group 2 compared to group 1. TV (P < 0.001) was reduced and both ADC (P = 0.011) and MTR (P = 0.045) were increased in NOA testes with failed sperm retrieval.

Conclusion: This preliminary study showed that TV, ADC and MTR may be useful for predicting the outcome of mTESE.

B-1661 11:10
MRI diffusion-weighted and shear wave elastography in testis

Purpose: The purpose was to evaluate ultrasound shear wave elastography in combination with the diffusion MRI in testicles with different tissue characteristics.

Methods and Materials: A prospective study, with a total of 132 patients. All patients underwent b-mode ultrasonography including shear wave elastography measurements and an MRI diffusion examination of the scrotum.

Results: 53 patients with normal testicular tissue, 53 patients with testicular microcystosis and 23 patients with malignant testicular tumours and 3 patients with benign testicular tumors were included.

There was a significant difference in stiffness between patients with testicular microcystosis (0.78 m/s), normal testicular tissue (0.77 m/s) and patients with a testicular cancer (0.92 m/s) (p<0.001). Similar, there was a statistical significant difference in MRI diffusion values between patients with testicular microcystosis (0.978) and normal testicular tissue (0.929) and testicular cancers (0.743) (p<0.01).

Conclusion: Patients with testicular microcystosis had no malignant characteristics measured with shear wave elastography or MRI diffusion. Testicular tumours had higher elastography values, and higher MRI diffusion restriction compared to normal testicular tissue. MRI in combination with shear wave elastography may be a useful tool to differentiate benign from malignant testicular lesions.

B-1662 11:18
Percutaneous ablation of renal cancer: radiofrequency vs. microwave
I.J. Dominguez Paillasch1, J. Mesa Quesada, L.J.J. Zureera Tendero, C. Pujido Carmen, M. Lombardo Galera, M.E. Perez Montilla, J.J. Espejo Herrero; Córdoba/ES (davko61988@gmail.com)

To compare the efficacy and safety of renal percutaneous thermoablation of renal cancer by radio frequency (RF) and microwave (MWs).

Methods and Materials: We retrospectively reviewed the malignant renal tumours treated with RF (RITA system) and MWs (AMICA system) in our centre in the last 15 years. One patient underwent one month after treatment to check if there was a tumour remnant and follow-up each 6 months to detect recurrence.

Results: We identified 54 lesions in a total of 44 patients. 26 patients had histological confirmation by biopsy and in 29 the diagnosis was clinical/radiological. 37 lesions were treated with RF and 17 with MWs. The mean tumour size in the group of MWs was greater than the RF group (36 mm vs 26 mm, respectively, p = 0.001). Tumour rest was identified in 8 lesions treated with RF (for which a second intervention was performed), while all ablations were complete with MWs (p = 0.03). The mean time of follow-up was 24.7 ± 22 months and no tumour recurrence was detected. 4 patients (9%) developed one or more complications: 3 in the RF group (urinary tract lesion, hepatic subcapsular haematoma, wall abscess and intracystic haemorrhage).
B-1664 11:26

In vitro and in vivo quantification of urinary stone volume using attenuation threshold-based optimized ultra-low-dose CT method

N. Rasouly1, B. Kaster1, O. Héloné1, B. Habib Gregyes2, A. Comte2,3,4,5
Kabul/AF, 6Paris/FR, 6Besançon/FR (nrasouly@gmail.com)

Purpose: To assess in practical clinical settings if an optimised ultra-low-dose protocol is able to follow-up kidney stones of different chemical composition in daily practices using variable threshold-based computed tomography methods.

Methods and Materials: 17 stones of different chemical compositions, sizes and shapes were scanned in an anthropomorphic phantom using ultra-low-dose protocol with variable threshold CT method (30%, 40%, 50%, 60% and 70% of stone attenuation), segmented with 0.625-mm-thick sections, tube voltage of 100 KV and tube current of 75 mAs. A statistical analysis was performed to assess bias and precision of this method in comparison with fluid displacement method as a reference standard.

Results: The ultra-low-dose CT protocol with variable attenuation threshold and 3 different reconstruction algorithms (standard, soft and bone) is an accurate and precise method in stone volume measurement to compare with fluid displacement method as a reference standard. However, notable differences were only observed between the ‘Bone’ reconstruction algorithm with a threshold of 30% and the ‘Standard’ reconstruction algorithm with a threshold of 30% as well as the ‘Soft’ reconstruction algorithm with a threshold of 30%. However, all methods are equivalent in bias and precision.

Conclusion: Variable threshold-based CT method which is derived from attenuation of each stone can be used to quantify urinary stone volume even at ultra-low-dose protocol (equal to one abdominal radiograph) with high level of accuracy and precision which is comparable with the fluid displacement method as a reference standard in estimation of kidney stone volume.

B-1665 11:34

Bladder perivascular epithelioid cell tumour: dynamic CT and MRI analyses of 8 cases with 2-year follow-up

D. Kuesing, Chongqing/CN (duxx1966@126.com)

Purpose: To evaluate the dynamic computed tomography (CT) and magnetic resonance imaging (MRI) characteristics of bladder perivascular epithelioid cell tumour (PEComa) and to improve the diagnosis of bladder PEComa.

Methods and Materials: A retrospective analysis was undertaken of the dynamic CT, MRI characteristics of 8 PEComas diagnosed at histopathology. Results: The age of the patients ranged from 27 to 50 years (mean 36.3 years). There were more women in this group (5/8). Dynamic CT (8 cases) and MRI (4 cases) demonstrated tumours that were of low density or hypointense on T1-weighted imaging (WI) and hyperintense on T2WI; some were isodense with fat (CT: 3/8; MRI: 2/8). The tumours usually had well-defined borders and were of a regular shape (CT: 8/8; MRI: 8/8). Tumour diameters ranged from 1.5 to 12 cm (mean 4.7 cm). Most tumours (CT: 6/8, MRI: 5/8) enhanced heterogeneously and significantly on arterial and venous phases. Tumours appeared slightly hypodense on delayed CT imaging, although some (4/8) had delayed enhancement. HMB-45 (human melanoma black monoclonal antibody) was 100% (8/8).

Conclusion: Knowledge of dynamic CT, MRI, and clinicopathological characteristics could help improve the diagnosis of PEComa.

B-1666 11:42

Comparative study of MR urethrography, sonourethrography and RGU with VCUG for diagnosis of male urethral strictures

P. Joon1, R. Rastogi2, A. Agarwal3, Y. Gupta1, A. Pushkarna1, 1Gurugram/IN, 2Greater Noida/IN, 3Moradabad/IN, 4Faridabad/IN (dr.pawanjoon@gmail.com)

Purpose: The aim of study is to evaluate the role of MRU as the potential imaging tool for evaluation of patients with urethral stricture disease and to compare its efficacy to Sonourethrography and RGU with VCUG.

Methods and Materials: The study included 50 men who were referred to Radiology department with history suggestive of urethral stricture disease. All patients underwent RGU/VCUG followed by Sonourethrography and MRU prior to the surgical intervention. The length of the strictures, their site, presence or absence of spongiosis and any other associated periurethral pathologies were looked for in all the modalities and results were compared.

Results: The mean length of short and long segment strictures was 0.96cm +/- 0.42 and 3.57cm +/-1.99 respectively on MRU, 0.90 +/- 0.38 and 3.60 +/- 2.00 respectively on Sonourethrography and 0.84cm +/- 0.42 and 3.69cm +/- 2.03 respectively on RGU/VCUG (p<0.05). Four patients of anterior urethral strictures were wrongly diagnosed as short segment strictures on RGU but were correctly diagnosed on MRU and Sonourethrography. In cases of anterior urethral strictures, no discordance was found between MRU and Sonourethrography.

Conclusion: The study showed that MRU and Sonourethrography were more sensitive to RGU/VCUG in both for the stricture length and associated periurethral pathologies like urethral diverticula and sinus tracts. Also, we were able to have information about presence or absence of spongiosis on MRU and Sonourethrography. However, MRU scores over Sonourethrography in that the latter cannot be used to evaluate posterior urethral pathologies, though both being radiation free imaging modalities.
increased mean left ventricular mass (+29%), decreased mean relative amount of scar volume of the left ventricular wall (-21%), and increased mean cardiac output (+37%).

Conclusion: The delivery of UA-ADRCs four weeks after MI as performed in this study significantly improves myocardial function and structure.

Author Disclosures:
C. Schmitz: Consultant; SciCoTec. E. Alt: Board Member; Isar Klinikum, InGeneron, Inc.

B-1670 10:38
Prevalence of asymptomatic pacemaker and ICD lead perforation on computed tomography
F.F. Aloufi; Riyadh/SA (faisal-aloufi@hotmail.com)

Purpose: The aim of this retrospective study is to measure the frequency of the pacemaker and ICD lead perforation demonstrated on multidetector computed tomography (CT) that was performed for wide varieties of clinical indications.

Methods and Materials: This study included 500 patients with (285) pacemaker and (215) ICD implants who were referred for different clinical indications over the last 5 years. CT was reviewed by 2 cardiothoracic radiologists for device and tip position. Perforation is considered when the star artefact within presents the tip is outside the cardiac silhouette.

Results: 500 patients had right ventricular leads. 17 (3.4%) patients out of 500 patients had a lead perforation. The ICD lead perforation was more common than pacemaker lead perforation. 11 (5%) patients out of 215 versus 6 (2%) patients of 285, respectively. 10 (59%) subjects out of 17 cases of lead perforation were noted in noncardiac CT indications, 7 (12%) subjects out of 17 cases of total lead perforation were noted in CT that were performed for suspected lead perforation, and 5 (30%) subjects in whom CT was performed for coronary assessment.

Conclusion: Ventricular ICD leads perforated more frequently than ventricular pacemaker leads. The interpreting physicians must be familiar and report it. The treating physicians should know this incidental finding of lead perforation is common and no further workup is to be requested, especially if the patient is asymptomatic.

B-1672 10:46
Hybrid 123I-mIBG SPECT/CT cardiac imaging for identification of left atrial ganglionic plexi in patients with atrial fibrillation
N.A. Nikitin, S.M. Minin, I. Mikheenko, D.V. Losik, S.V. Shiaikhmetova, A.B. Romanov; Novosibirsk/RU (n_nikitin@outlook.com)

Purpose: Addition of ganglionic plexi (GP) radiofrequency ablation (RFA) to pulmonary vein isolation (PVI) increases the effectiveness of atrial fibrillation (AF) interventional treatment. Solid-state gamma camera, using radiolabelled noradrenaline analogue 123I-metaiodobenzylguanidine (123I-mIBG), has the potential to image small cardiac sympathetic innervation structures located in left atrium (LA) epicardial surface and corresponding to anatomical locations of GP. The purpose of this study is to image and assess the influence of RFA on cardiac sympathetic innervation patterns in AF patients.

Methods and Materials: 15 paroxysmal AF patients scheduled for PVI underwent 123I-mIBG SPECT imaging using a cardiac dedicated solid-state gamma camera. SPECT tomograms were co-registered with cardiac CT tomograms. Discrete 123I-mIBG uptake areas (DUAs) were identified and marked according to location towards LA walls and RVs ostia. 3D SPECT/CT images with marked DUA sites were imported into CARTO and tested during interventional treatment by high frequency stimulation (HFS). Follow-up 123I-mIBG SPECT imaging was acquired 5-7 days after interventional treatment.

Results: A total of 40 DUAs in LA were identified in 12 patients (3.3±1.49 per patient). Positive HFS response at DUA sites was achieved in 8 (67%) patients. In follow-up images 3 DUAs in the LA were identified (0.25±0.62 per patient; p<0.001 vs baseline). In 10 patients (83%) DUAs were not visualized compared to baseline images.

Conclusion: The cardiac sympathetic innervation patterns in LA can be visualized by discrete 123I-mIBG uptake areas using hybrid SPECT/CT cardiac imaging. RF catheter ablation can precisely and effectively target the identified sympathetic innervation structures in AF patients.

Author Disclosures:
N.A. Nikitin: Research/Grant Support; Russian Science Foundation (project # 17-75-20118). S.M. Minin: Research/Grant Support; Russian Science Foundation (project # 17-75-20118). I. Mikheenko: Research/Grant Support; Russian Science Foundation (project # 17-75-20118). D.V. Losik: Research/Grant Support; Russian Science Foundation (project # 17-75-20118).

B-1673 10:50
Assessment of ventricular deformation in end stage renal disease patients by cardiac magnetic resonance tissue tracking
Y. Zhang, Z.-G. Yang, Y.-K. Guo, H. Xu, W. Peng, C. Xia, Z. Li; Chengdu/CN (yjzhang254@qq.com)

Purpose: To investigate myocardial deformation of right ventricle and its ability to predict heart failure (HF) in End stage renal disease (ESRD) patients evaluated by cardiac magnetic resonance (CMR) tissue tracking.

Methods and Materials: Fifty-seven consecutive patients with ESRD and 21 age- and sex-matched health controls were prospectively recruited and underwent 3.0T CMR examination. A series of SSFP cine sequence, including 8-12 slices of short axis and horizontal 4-chamber were scanned. The global right ventricle (RV) myocardial strain variables were measured. Then, all patients were followed to assess the HF as a cardiac outcome during 11-30 months.

Results: ESRD patients with reduced right ventricle ejection fraction (RVEF≤45%) (n=6), global peak longitudinal strain (GLS) was significantly decreased comparing with patients with preserved RVEF (RVEF>45%) (n=51) and normal controls (-14.39±5.99% vs. -20.88±4.83%, -14.39±5.99% vs. -23.56±3.65%; respectively, all P<0.05). After the follow-up, there were 15 patients suffered from HF and 25 free from. Patients suffered from HF, had decreased GLS compared with normal controls (-20.24±6.55% vs. -23.56±3.65%, P<0.05). In patients free from HF, GLS were lower than that in normal controls but without significant difference (-21.71±4.50% vs. -23.56±3.65%, P=0.301).

Conclusion: ESRD patients demonstrated myocardial strain reduction early before they suffer HF, even without change in RVEF. Myocardial strains could work as auxiliary indices to predict RV myocardial deformation in ESRD.

Author Disclosures:

B-1674 10:54
Left ventricular global strain analysis in arrhythmogenic right ventricular cardiomyopathy with or without syncope; a cardiac magnetic resonance imaging study
M.-T. Shen, Z. Yang, K. Diao, L. Jiang, S. Huang, B. Hu, Y. Guo; Chengdu/CN (smt2002@qq.com)

Purpose: To clarify the diagnosis value of left ventricular (LV) strain on feature tracking cardiovascular magnetic resonance (FT-CMR) for arrhythmogenic right ventricular cardiomyopathy (ARVC) patients and to explore the correlation between LV systolic function change with syncope in ARVC patients.

Methods and Materials: CMR was performed in 24 with definite ARVC (11 with syncope, 13 without syncope), 18 with borderline ARVC and 28 healthy controls. Feature-tracking analysis was applied to cine CMR images on a commercial post-processing image station. LV global longitudinal strain (GLS), circumferential strain (GCS) and radial strain (GRS) were defined as the peak strains and syncope (GRS: r=-0.41, GCS: r=0.382, GLS: r=0.41; all p<0.001).

Results: LV GLS of patients with definite ARVC (-13.05±3.02%), with borderline ARVC (-15.46±2.22%) and the controls (-17.35±2.39%) were different among these three groups (all p<0.05). Additionally, in patients with definite ARVC, LV GRS (-51.25±8.11%) vs. 35.89±11.83%) and GCS (-13.32±2.30% vs. 16.35±3.65%), LV GLS (-12.92±2.40% vs. 14.81±2.56%) was statistically significant lower in patients with syncope than those without (p<0.05, respectively), whereas left ventricular ejection fraction (LVEF) (50.14±11.53% vs. 53.49±10.35%, p=0.46) and other heart function indexes showed no difference. There was a moderate correlation between the global strains and syncope (GRS: r=-0.41, GCS: r=0.382, GLS: r=-0.41; all p<0.001). LV GLS < -13.4% exhibited 79% specificity and 83% sensitivity for predicting the presence of syncope (AUC=0.77).

Conclusion: For definite ARVC patients, syncope was correlated with the reduction of LV systolic function. Global strain could differentiate between controls, definite and borderline ARVC, and predict the presence of syncope.

B-1675 10:58
Quantitative T2 mapping for detecting myocardial oedema and its association with myocardial injury biomarkers in acute myocardial infarction swine models
L. Zhang, Y.-K. Guo, Z.-G. Yang, X.-S. Li, C. Fu, H. Xu, M.-X. Yang, R. Xu, L. Xie; Chengdu/CN (zhangli_scu2018@163.com)

Purpose: To investigate the ability of T2 mapping for detecting myocardial oedema in swine models with acute myocardial infarction (AMI), and determine the relationship between T2 mapping and myocardial injury biomarkers.
B-1677 11:02
Comparison of the incidence of in-stent restenosis and the newly developed plaques after stenting between diabetic and non-diabetic patients: evaluation with DSCT angiography
R. Shi, Z.-G. Yang, Y.-K. Guo, Q. Zhao, Y. Gao, P.-I. Han; Chengdu/CN

Purpose: To evaluate the stents in diabetic mellitus (DM) and non-DM patients and compare the incidence of newly developed plaques in originally plaque-free segments between the two groups after coronary stenting by dual-source CT.

Methods and Materials: Thirty-eight coronary artery disease patients, 21 DM patients and 17 non-DM patients, who scheduled for stenting were consecutively included. The patency of the stent, and the distribution, number and types of newly developed plaques in originally plaque-free segments showed on the preoperative and follow-up coronary CT angiography (CCTA) data were determined.

Results: A total of 375 originally plaque-free coronary segments and 81 stents (DM vs. non-DM: 51 vs. 30) were analyzed. At the follow-up images, 72 stents were patent. 9 stents (DM vs. non-DM: 7 vs. 2, P<0.05) had in stent restenosis (ISR) of less than 50%, and no stent had ISR more than 50%. Thirty-one newly-developed plaques (DM vs. non-DM: 23 vs. 8, P<0.05) were identified, including 10 calcific plaques, 11 non-calcified plaques, and 10 mixed plaques. There is no statistical difference in the type of new plaques in the two cohorts (P>0.05). But it showed a mild correlation between the presence of plaques and DM (r=0.106, P>0.05).

Conclusion: The application of lipid lowering and antithrombotic therapy after stenting may reduce the incidence of ISR both in diabetic and non-diabetic patients, but diabetes may be associated with the incidence of newly developed plaques in originally plaque-free segments, suggesting that these segments in diabetic patients need to be paid more attention to in follow-up period.

B-1677 11:06
The correlation between coronary artery stenosis and myocardial perfusion indexes: a prospective “one-stop” 256-row detector computed tomography study
K. Liu, Z. Li, K. Diao, W. Peng; Chengdu, Sichuan/CN (634270986@qq.com)

Purpose: To investigate the effect of different degrees of coronary artery stenosis on the transmural perfusion ratio (TPR) in different segments of the left ventricle using combined CT myocardial perfusion imaging (CTP) and CT angiography (CTA) on 256-row detector CT.

Methods and Materials: Ninety-four participants (MF: 58/36, 63.7±6.7 years) were prospectively enrolled and underwent “one-stop” CT examination, from which CTA and CTP imaging were automatically derived. Patients with CAD were further stratified into mild, moderate and severe stenosis group. TPR was calculated using CTP on Zostation2 (Minato-ku, Tokyo, Japan). One-way analysis of variance was used to compare TPR between the healthy control and CAD patients of different stenosis severity. Spearman correlation was used to assess the relationship between the degrees of coronary artery stenosis and the TPR of relevant segments.

Results: Totally, 1504 myocardial segments were identified using standardized 17 AHA segments model (except the apex). TPR values of segments subtended by relevant artery were significantly decreased in CAD groups compared with the healthy control group (P<0.05). There was a negative correlation between left anterior descending artery (LAD) stenosis degree and TPR (basal anterior segment: r=-0.486, p<0.009; basal anteroseptal segment: r=-0.519, p<0.003; apical anterior segment: r=-0.439, p=0.015; apical septal segment: r=-0.375, p=0.041).

Conclusion: The TPR acquired through the “one-stop” CT protocol was correlated with the corresponding coronary artery stenosis, making this combined CT scan a promising assessment tool for CAD patients to simultaneously quantify the diseased artery and myocardium.
B-1680 11:18
Left ventricular function impairment and deformation assessment of post-transcatheter aortic valve implantation (TAVI): a systematic review and meta-analysis
M.-T. Shen, Z. Yang, K. Diao, Q. Zhao, L. Jiang, S. Huang, Y. Guo; Chengdu/CN (smt1020@qq.com)

Purpose: The purpose of this study was to elucidate changes in LVEF and left ventricular global longitudinal strain (LV GLS) at different follow-up durations after TAVI by a systematic review and meta-analysis.

Methods and Materials: Studies that provided both pre- and post-TAVI LVEF and LV GLS were included. The rate of change was defined as the absolute difference of post- and pre-TAVI divided by the pre-TAVI. The pooled LVEF, LV GLS, and rate of change were computed using a fixed- or random-effect model.

Subgroup analysis was performed to find possible sources for heterogeneity.

Results: Data were included from 17 studies with a total of 11,027 patients, and the follow-up durations ranged from discharge to one year. The LVEF and LV GLS improved significantly post-TAVI (LVEF: WMD = 0.048, 95% CI = 0.026 to 0.070; LV GLS: WMD = 0.022, 95% CI = 0.003 to 0.041) in both short-term (<10 days) and long-term (1-6 months) follow-up assessments (LVEF: SMD = 0.048, 95% CI = 0.022 to 0.073; LV GLS: SMD = 0.022, 95% CI = 0.003 to 0.042). LV GLS was more sensitive and could serve as a potential assessment tool for the efficacy of therapeutic interventions and for predicting patient prognosis and clinical outcomes.

B-1681 11:22
Assessment of left ventricular deformation in restrictive cardiomyopathy with preserved ejection fraction by cardiac magnetic resonance tissue tracking
S. Huang, Z.-G. Yang, K. Diao, K. Shi, Y. Gao, M.-T. Shen, Y.-K. Guo; Chengdu/CN (huangshan82833@163.com)

Purpose: To determine left ventricular (LV) deformation in restrictive cardiomyopathy (RCM) using tissue-tracking strain analysis on cardiac magnetic resonance (CMR) imaging and further investigate the relationship between strain parameters and myocardial injury.

Methods and Materials: Forty RCM patients (61.6 ± 1.6 years) with preserved LV ejection fraction (LVEF ≥50%) and 35 normal controls (51.0 ± 1.6 years) were included. Systolic global radial strain (sGRS), circumferential strain (sGCS), longitudinal strain (sGLS) and diastolic global radial strain rate (dGRSR), circumferential strain rate (dGCSR), longitudinal strain rate (dGLSR) were compared between RCM patients and the normal controls. New York Heart Association functional classes (NYHA) and plasma troponin T levels were recorded for clinical reference.

Results: Diastolic strain rates decreased significantly in RCM patients compared with the normal controls (dGRSR: -0.095 ± 0.10 vs. -0.214 ± 0.10; dGCSR: 0.64 ± 0.06 vs. 1.10 ± 0.04; dGLSR: 0.540 ± 0.04 vs. 0.922 ± 0.04; all p < 0.001). And despite with preserved EF, RCM patients demonstrated distinctly lower systolic strains (sGRS: 16.78 ± 1.13 vs. 34.61 ± 1.37; sGCS: -11.42 ± 0.59 vs. -19.5 ± 0.45; sGLS: 7.81 ± 0.53 vs. 17.27 ± 0.45; all p < 0.001). Contraction in diastolic strain was correlated with more severe NYHA classes (r = 0.628, p < 0.001) and strain parameters including sGRS (r = 0.600, p < 0.001), sGCS (r = 0.560, p < 0.001), sGLS (r = 0.410, p = 0.05) in RCM patients. In addition, the presence of atrial fibrillation was associated with enlarged atrial volume (r = 0.563, p < 0.001) in RCM.

Conclusion: CMR-based strain imaging can detect both systolic and diastolic dysfunction in RCM patients before LVEF decreased. Impaired systolic strain indices are significantly correlated with myocardial injury.

B-1682 11:26
Diastolic dysfunction in competitive triathletes following a strenuous endurance sports event

Purpose: The purpose of this study was to analyse left ventricular (LV) diastolic function by cardiac magnetic resonance (CMR) following an endurance competition in triathletes with (LGE+) and without fibrosis (LGE-).

Methods and Materials: Thirty asymptomatic male triathletes (45 ± 10 years) underwent CMR before and 2.1 ± 1.1 hours after competition. To detect fibrosis, late gadolinium enhancement (LGE) imaging was included in the baseline CMR. Diastolic LV function was determined by early peak-filling rates (EFPFR) and atrial peak-filling rates (APFRR) using cine CMR in baseline and post-race studies.

Results: Focal myocardial fibrosis was detected in 10 triathletes. At baseline, APFRR was higher in LGE+ compared to the LGE- triathletes (161 ± 34 vs. 121 ± 30 ml/s/m², P < 0.01). While APFRR in LGE+ triathletes showed a significant increase (121 ± 30 vs. 163 ± 57 ml/s/m², P < 0.001), APFRR in LGE+ triathletes remained unchanged before and after competition (161 ± 34 vs. 169 ± 50 ml/s/m², P > 0.75). EFPFR remained unchanged in both groups. There were no significant post-race differences regarding LVEF, LV and RV volumes. However, LGE+ triathletes had higher post-race left atrial volumes (43 ± 9 vs. 39 ± 9 ml/m², P < 0.01).

Conclusion: Post-race diastolic function in LGE- triathletes was characterised by a significant increase of APFRR. In contrast, the LGE+ group did not show any relevant changes coming from already increased baseline values. This suggests exhaustion of left atrial compensatory mechanisms most likely related to impairment of diastolic function in LGE+ triathletes.

B-1683 11:30
Evaluation of coronary arteries with prospectively-ECG-triggered-High-Pitch-CT in patients undergoing TAVI-planning
P. Seitz, S. Gottschling, M. Abdel-Wahab, H. Thiele, M. Borger, D. Holzhey, R.F. Gohmann, C. Krieghoff, M. Gutterlet; Leipzig/DE (patrick.seitz@helios-gesundheit.de)

Purpose: To assess image-quality and grade of stenosis of coronary arteries in preprocedural prospectively-ECG-triggered-High-Pitch-CT in patients referred to transcatheter-aortic-valve-implantation (TAVI) in comparison to invasive coronary-angiography (ICA).

Methods and Materials: In 100 patients (54 males, mean age 79±5 years) a Dual-Source-CT-Scan (Siemens, Definition FLASH) and an ICA was performed. The cardiac scan was performed in prospectively-ECG-triggered High-Pitch-Mode after application of 70 ml Imeron400 (Flow 3.5 ml/s). Grade of stenosis was evaluated per patient and per segment with Syngo.via. (Siemens, VB10B) and was performed by one and in 1/3 of the patients by two blinded observers. Image quality was assessed using a 4-point-(0-3) and grade of stenosis using a 5-point-scale (0-4).

Results: 22% of patients had known coronary heart disease (CHD), in 2 cases a coronary anomaly was detected. Diagnostic image quality (Grade 1-3) could be achieved in 30.3% of segments. Sensitivity (75%), specificity (80.5%), and especially the negative predictive value (NPV) with 98.5% were good in comparison to ICA, but the positive predictive value (PPV) was only 16%. A coronary stenosis >50% could be ruled out completely in all segments for 3 patients, with an excellent NPV and sensitivity (100%), but low PPV (43.6%) and specificity (8.82%). The inter-rater-agreement per patient was excellent (Kappa=1.0), and moderate (Kappa=0.405) per segment.

Conclusion: Even within the limitations in patients referred to TAVI (high heart rate, coronary calcifications, etc.), a valid evaluation of coronary arteries was possible in 30.3% of segments using prospectively-ECG-triggered-High-Pitch-CT with a high sensitivity and NPV, and should always be performed, if the image quality is feasible.

B-1684 11:34
Relationship between epicardial adipose tissue and coronary vascular function in patients with normal myocardial perfusion by 82Rb PET/TC
S. dell’Aversana, A. Ponsiglione, C. Nappi, A. Stanzione, M. Puglia, L. D’Acierno, G. Lassandro, A. Cuocolo, M. Imbriaco; Naples/IT (deliversansanera@erasing.net)

Purpose: We assessed the relationship between epicardial adipose tissue (EAT) and coronary flow reserve (CFR) in patients with suspected or known coronary artery disease (CAD) and normal myocardial perfusion imaging (MPI).

Methods and Materials: We retrospectively evaluated 272 subjects referred for suspected or known CAD to stress-rest 82Rb PET/TC, showing normal MPI. CAC score was measured according to Agatston method; EAT volume (EATv) was measured in cm³ on unenhanced CT. The ln(CAC+1) score and lnEAtv transformation were used to reduce heteroesedasticity. Semiquantitative perfusion scores (SSS, SRS, and SDS) were automatically calculated. Myocardial perfusion was considered normal when the SSS was 3. Absolute myocardial blood flow (MBF) was computed from rest and stress imaging. CFR was defined as the ratio of hyperemic to baseline MBF and considered reduced if <2.

Results: 95 (35%) patients showed reduced and 177 (65%) normal CFR. Compared to patients with normal CFR, those with reduced CFR were older (60±11 vs. 67±9, P<0.05) and showed higher ln(CAC+1) (3.9±3 vs. 4.7±3, P<0.05) and lnEAtv (4.5±1 vs. 4.7±1, P<0.05). At univariable logistic regression analysis, age, ln(CAC+1) and lnEAtv resulted significant predictors of reduced CFR. At multivariable analysis, only age and lnEAtv were independently associated with reduced CFR (HR: 1.05 and 1.89 and 95%CI: 1.02-1.08 and 1.01-3.54, respectively, P<0.005).
Conclusion: In CAD and normal MPI, age and EAT are associated with reduced CFR confirming that cardiac visceral fat may influence coronary vascular function. EAT evaluation may play an important role in identification of coronary vascular dysfunction in patients with normal myocardial perfusion.

B-1685 11:38 Imaging carotid artery-vulnerable plaque with ultrasound and contrast-enhanced ultrasound: correlation of cerebrovascular symptoms with quantitative and multi-parametric indexes

V. Rafailidis, I. Chryssogonidis, E. Grisan, G. A. Cheimariotis, T. Tegos, D. Rafailidis, P. Sidhu, A. Charantilou-Kouridou, Thessaloniki/GR, London/UK (billraf@hotmail.com)

Purpose: To investigate the diagnostic accuracy of quantitative carotid plaque features and a multi-parametric vulnerability index (VI) for the detection of symptomatic plaques, using ultrasound (US) and contrast-enhanced ultrasound (CEUS). Methods and Materials: This is a cross-sectional observational study of 54 patients (72.2% male; median age 61 years) and 62 carotid plaques (50% symptomatic) examined with US and CEUS. The study lasted for two years (July 2016-July 2018). A VI combined degree of stenosis (DOS), greyscale median (GSM) and a quantitative surface irregularity index (SII) were calculated using both colour Doppler imaging (CDI) and CEUS, thus leading to two VI (VI-CDI and VI-CEUS). The SII was based on manual delineation of plaques with specific software. Mann-Whitney U and T tests were used to compare variables and receiver operating characteristic curves (ROC) analysis for diagnostic accuracy comparison. Level of significance was set at 0.05.

Results: Mean DOS of plaques was 68.9% (SD 12.8%). Symptomatic plaques showed significantly higher DOS (p<0.001), lower GSM (p<0.001), higher SII (both with CDI and CEUS - p<0.05) and higher VI calculated both with CDI (p<0.001) and CEUS (p<0.001). The area under the curve (AUC) for the detection of symptomatic plaques was 0.656 for SII-CDI, 0.690 for SII-CEUS, 0.772 for DOS alone, 0.783 for VI-CDI and 0.802 for VI-CEUS. No allergic reaction to contrast agent was noted.

Conclusion: The VI has superior diagnostic accuracy to DOS alone for the detection of symptomatic plaques, with best accuracy achieved with the SII calculated using CEUS, thanks to improved plaque surface delineation.

Author Disclosures: V. Rafailidis: Grant Recipient; V.R. has received a scholarship for his PhD studies on “Imaging of the carotid vulnerable plaque with contrast-enhanced ultrasound and multi-detector computed tomography angiography” from the Alexander S. Onassis Public Benefit Foundation. P. Sidhu: Grant Recipient; Author P.S. has received lecture fees from Bracco, Siemens, Samsung, Philips, and Hitachi.

B-1686 11:42 Cardiac magnetic resonance with 4D flow imaging for mitral regurgitation severity assessment

M. Guglielmo, G. Muscoquari, A. Baggianno, A. I. Guaricci, D. Andreini, F. Alamanni, M. Pepli, G. Pontone, Milan/IT, Barli/IT (g.muscoquari@hotmail.it)

Purpose: The purpose of this study was to compare CMR 4D flow and SSFP imaging for the assessment of MR severity using the degree of left ventricular (LV) remodeling after surgery as the reference standard.

Methods and Materials: 10 consecutive patients (age: 59 ± 10) with indication to mitral valve plasty for severe mitral regurgitation were enrolled. Mean regurgitation was assessed using both CMR SSFP-PC imaging and CMR 4D flow imaging without the use of contrast agents. The pre-surgical estimate of regurgitant volume was correlated with the postoperative decrease in LV end-diastolic volume.

Results: Agreement between CMR SSFP-PC imaging and CMR 4D flow imaging for MR regurgitant volume (RV) was excellent for both pre- (r=0.88, p<0.05) and post-surgery (r=0.9, p<0.05) evaluations. There was a strong correlation between post-surgical LV remodeling and MR severity as assessed by CMR 4D flow imaging (r=0.81, p<0.005) that was comparable to CMR SSFP-PC (r=0.78, p<0.005). The average time for MR assessment with CMR SSFP and PC imaging evaluation was 10 minutes, and 2 minutes with CMR 4D flow imaging.

Conclusion: CMR 4D flow imaging without contrast agents allows an accurate and quick evaluation of MR regurgitant volume. There is a strong correlation between MR severity assessed with CMR 4D flow imaging and post-surgical LV remodeling. Indeed, CMR 4D flow imaging may represent an alternative method for MR severity assessment.

SS 1811b Neuroradiology: miscellaneous

Neuro

Moderators:
N.N.
L. Haider; Vienna/AT

B-1687 10:30 White matter hyperintensities volumetric burden in healthy adults: a systematic review and meta-analysis

L. Melazini, M. Codani, M. Zanardo, M. Bolchini, G.D. Papini, F. Sardanelli, Milan/IT, San Donato Milanese/IT (marina.codani@grupposandonato.it)

Purpose: To perform the first systematic review and meta-analysis of available studies reporting volumetric WMHs burden in healthy adults. Methods and Materials: A systematic search on the available literature on this topic published between 2008 and 2018 was performed in September 2018. From each study, data about sample size, patients’ age and WMHs burden were retrieved. Using the random-effect model, we calculated the pooled WMH burden, with 95% confidence interval (CI) and modelled standard deviation (SD). Subgroup/meta-regression analyses for assessing age factor and Egger test for publication bias risk were performed.

Results: Twenty-eight studies comprising 30 study parts were included in this systematic review and meta-analysis. Final samples comprised 6998 healthy subjects: mean age 44.7 ± 8.1 years. Mean WMHs volume ranged from 0.27 ± 0.51 cm3 to 15.85 ± 14.57 cm3, resulting in high heterogeneity (I2 = 99.9%, p < 0.001). Meta-analysis produced a pooled WMHs volume of 6.494 cm3 (95% CI 5.246-7.722 cm3). Meta-regression analysis between WMHs volume and age showed a positive correlation between WMHs volume and subjects’ age (β = 0.286 - 11.2; R2 = 0.41). Visual inspection of funnel plot showed low risk of publication bias, confirmed by the Egger-test (p = 0.59) and by Kendall’s tau (p = 0.089).

Conclusion: Results of our meta-analysis showed high heterogeneity in WMHs burden across the analysed studies. Supporting the impact of age as the main unmodifiable risk factor for WMHs development, a positive correlation between WMHs and age was proved by meta-regression analysis.

B-1688 10:38 Prevalence of incidental intracranial vascular findings in a tri-ethnic population-based study

R. Rehwald, S. Moriconi, L. Smith, M.J. Cardoso, J.H. Gillard, E. Jäger, Cambridge/UK, London/UK (rs538@cam.ac.uk)

Purpose: This study aims to present the prevalence, clinical relevance and updated epidemiology of incidental vascular findings on high-resolution brain magnetic resonance angiography (MRA) in a tri-ethnic UK population-based cardiovascular cohort.

Methods and Materials: The trial was approved by the institutional research ethics committee and all participants gave written informed consent. In the prospective inter-ethnic community-based setting of the Southall and Brent Revisited (SABRE) trial, European, South Asian and African-Caribbean study participants were recruited for 3T high-resolution cerebral time-of-flight MRA (visit 3, 2014-2018). All scans were centrally reviewed for incidental vascular abnormalities by two neuroradiologists independently. The population prevalence with 95% CI was then calculated for the incidental findings overall and for each ethnicity, followed by multigroup comparisons.

Results: A total of 766 subjects (348 female, 45.4%, aged 37-90 years (mean: 72.2±6.8), had an adequate MR scan performed (European: 326, 42.5%; South Asian: 257, 33.6%; African-Caribbean: 179, 23.4%; Other: 4, 0.5%). In 97 of 766 study participants (12.6% [95% CI: 10.5%-15.2%]) incidental vascular findings have been found, of which cerebral aneurysms (37/766; 4.8% [95% CI: 3.5%-6.6%]) and intracranial antherosclerotic stenoses (ICAS) (35/766; 4.6% [95% CI: 3.3%-6.3%]) were most frequently observed, followed by arteriovenous malformations (15; 2.0% [95% CI: 1.2%-3.2%]). ICAS were significantly more frequently observed in South Asians than in Europeans and African-Caribbean (p = 0.035).

Conclusion: The prevalence of incidental cerebral aneurysms in a community-based cohort is higher than previously expected. ICAS prevalence significantly differs by ethnicity and might be targeted by population-specific primary risk factor prevention.
B-1689 10:54

Automated detection of enlarged perivascular spaces on brain MRI

F. Dubost, H.H. Adams, P. Yilmaz, G. Bertsova, M. Ikrar, W.J. Niessen, M.W. Vermeij, M. De Bruijne; Rotterdam NL (gerdabortsova@gmail.com)

Purpose: Enlarged perivascular spaces (PVS) are an emerging biomarker for cerebral small vessel disease. Annotation of PVS is a tedious and error-prone task. An automatic method to detect PVS locations is introduced.

Methods and Materials: T2 weighted MR images (voxel size 0.49 x 0.49 x 0.8 mm3) were acquired from 2200 subjects from a population-based study. An expert rater quantified PVS in the centrum semiovale and basal ganglia (both on a single slice) and hippocampus and midbrain (whole volume). A weakly supervised deep learning algorithm based on convolutional network regression and multivariate GLMs was developed. The algorithm was trained to predict PVS locations.

Results: The agreement between PVS detections and manual annotations reached sensitivity/FPavg of 0.71/1 for midbrain, 0.70/1 for hippocampus, 0.57/1.9 for basal ganglia, and 0.51/5.2 for centrum semiovale. Intra-rater reliability for a smaller subset reached sensitivity/FPavg of 0.77/0.4, 0.79/1.1, 0.72/2.1, and 0.65/4.3, respectively.

Conclusion: For each region, the automated detection of PVS performs only slightly worse than the level of intra-rater agreement. By integrating PVS detections in the analyses, this method may strengthen large clinical studies of enlarged perivascular spaces.

Author Disclosures: W.J. Niessen: Other; Quantib's Chief Scientific Officer.

B-1690 11:02

Preliminary study of hypoxic exposure effect on cerebral blood perfusion of pilots using 3D ASL

J. Liu1, W.-S. Zhang2, J.L. Cheng2; 1Zhengzhou/CN, 2Beijing/CN (tongnuo@yeah.net)

Purpose: The objective of this study was to investigate how the cerebral blood perfusion changed in pilots with hypoxic exposure through the measurement of resting cerebral blood flow (CBF) using a 3D pcASL technique.

Methods and Materials: In our study, 35 healthy male pilots were subjected to MRI examinations separately. The oxygen mixed gas inhaled by participants during breathing mask was approximate to the air composition at the altitude of 3000m. The oxygen concentration of 14.5% 3D pcASL images were acquired at both pre-oxygen gas inhalation (pre-OL) and post-low oxygen mixed gas inhalation (post-OL).

Results: Compared with pre-OL, 3D pcASL scan for pilots post-OL showed lower CBF values in various regions, including bilateral superior temporal gyrus, middle temporal gyrus, lingual gyrus, left inferior frontal gyrus, right middle occipital gyrus, inferior occipital gyrus, fusiform gyrus, cuneus and cerebellum.

Conclusion: The cerebral blood perfusion after hypoxic exposure is decreased mainly in the temporal and occipital lobe for the right side, and arterial apinlabelling technique can monitor CBF changes of the pilots in hypoxic exposure.

B-1694 11:26

Evaluating the diagnostic value of different imaging modalities in cerebral venous thrombosis

O. Shahsaat1, F. Faeghi2, A. Bagheri1, M. Rabbani1, K. Jabbari1; 1Isfahan/I/R, 2Tehran/I/R (omid.shafaat@yahoo.com)

Purpose: Cerebral venous thrombosis (CVT) is a rare condition which is hard to diagnose because it has nonspecific symptoms. It can be potentially fatal if it remains undiagnosed and if the treatment is not started promptly. This study was designed to compare different MR sequences with susceptibility weighted imaging (SWI) for visualization and evaluation of CVT.

Methods and Materials: Eighteen patients with CVT and eleven control patients without CVT were analyzed using different imaging modalities including MRI, SWI, and Phase-contrast- magnetic resonance venography (PC-MRV). The MR sequences included: T1-weighted spin echo (SE) imaging, T2-weighted turbo spin echo (TSE), T2-weighted SWI and three-dimensional phase contrast MRV.

Results: SWI showed the highest sensitivity, positive predictive value, and negative predictive value for the detection of cortical veins thrombosis (100%) and specificity of all sequences in the diagnosis of cortical veins thrombosis was 100%. The sensitivity of PC-MRV, SWI, T2W, and T1W sequences in the diagnosis of venous sinus thrombosis were 100%, 75%, 50%, and 8.3% respectively. Specificity and positive predictive value of all sequences in the diagnosis of the venous sinus thrombosis were 100%. The negative predictive value of PC-MRV, SWI, T2W, and T1W sequences in the diagnosis of venous sinus thrombosis were significantly increased after hypoxic exposure.

B-1692 11:10

A resting-state functional magnetic resonance imaging study of hypoxic exposure in pilots

J. Liu1, W.-S. Zhang2, J.L. Cheng2; 1Zhengzhou/CN, 2Beijing/CN (tongnuo@yeah.net)

Purpose: The objective of this study was to evaluate the basic changes in brain activity in pilots after hypoxic exposure using resting-state functional magnetic resonance imaging (rs-fMRI) method.

Methods and Materials: Thirty-five healthy male pilots were subjected to rs-fMRI scans, and fractional amplitude of low frequency fluctuation (fALFF) and regional homogeneity (ReHo) approaches were used to analyze their brain functions before and after hypoxic exposure.

Results: Compared to pre-hypoxia conditions, the fALFF was decreased in the bilateral superior temporal gyrus and the right frontal gyrus, and increased in the left precuneus, while ReHo was decreased in the right frontal gyrus after hypoxic exposure.

Conclusion: Hypoxic exposure significantly affected the brain functions of pilots, which may have an impact on their cognitive ability. Furthermore, the sensitivity of ReHo was poorer than fALFF for this set of data.

B-1693 11:18

Preliminary study of hypoxic exposure effect on cerebral blood perfusion of pilots using 3D ASL

J. Liu1, W.-S. Zhang2, J.L. Cheng2; 1Zhengzhou/CN, 2Beijing/CN (tongnuo@yeah.net)

Purpose: The objective of this study was to investigate how the cerebral blood perfusion changed in pilots with hypoxic exposure through the measurement of resting cerebral blood flow (CBF) using a 3D pcASL technique.

Methods and Materials: In our study, 35 healthy male pilots were subjected to MRI examinations separately. The oxygen mixed gas inhaled by participants during breathing mask was approximate to the air composition at the altitude of 3000m. The oxygen concentration of 14.5% 3D pcASL images were acquired at both pre-oxygen gas inhalation (pre-OL) and post-low oxygen mixed gas inhalation (post-OL).

Results: Compared with pre-OL, 3D pcASL scan for pilots post-OL showed lower CBF values in various regions, including bilateral superior temporal gyrus, middle temporal gyrus, lingual gyrus, left inferior frontal gyrus, right middle occipital gyrus, inferior occipital gyrus, fusiform gyrus, cuneus and cerebellum.

Conclusion: The cerebral blood perfusion after hypoxic exposure is decreased mainly in the temporal and occipital lobe for the right side, and arterial apinlabelling technique can monitor CBF changes of the pilots in hypoxic exposure.
sinus thrombosis were 100%, 78.6%, 64.7%, and 50%, respectively.

Conclusion: SWI had a high diagnostic value for diagnosing cortical vein thrombosis. PC-MRV was the superior MRI sequence for detecting venous sinus thrombosis. Besides PC-MRV, only SWI reached a sensitivity of over 50% for venous sinus thrombosis, followed by T2W, and T1W.

B-1605 11:34

Radial diffusivity role in classification of patients with antiphospholipid syndrome and “normal” radiological exams

S. Sandiramaroty, H. Nguyen Truong Thanh, J. Greffier, A. Labri, J. Frandon, J.P. Beregi, J.-C. Gris, F. Perea; Nimés/FR

Purpose: Automatically classify patients with Antiphospholipid Syndrome (APS) without neuroradiological manifestations.

Methods and Materials: Antiphospholipid Syndrome is defined as an autoimmune disease which is associated to thrombosis with common impact on MRI. However non-thrombolytic APS patients usually present “normal” routine MRI findings. So there is an interest to find a way to diagnostic these. Diffusion-Tensor MRI (DT-MRI) was performed on 30 women with recurrent pregnancy loss (15 controls [C]: 15 antiphospholipid syndrome patients [APS] with high blood titre of Lupus Anticoagulant or Anti-B2-GlIongoprotein-I antibodies). Acceded with Radial Diffusivity (RD), preceding study has demonstrated microstructural brain disruption in APS patient. Here, RD values were extracted within the Significant clusters, in which voxels were considered attributes to perform Hoeffding tree classification. This is an incremental decision-tree learning model that assumes the distribution of data don’t change over time. Thus, small samples may be enough for optimal splitting attribute.

Results: A total of 5225 attributes were found significant to produce 96.67% of accuracy (29 instances). Kappa statistics was 0.93, mean absolute error was 0.03 and the relative absolute error was 6.59%. All but one control subject accuracy (29 instances). Kappa statistics was 0.93, mean absolute error was 0.03 and the relative absolute error was 6.59%. All but one control subject accuracy (29 instances).

Conclusion: Radial Diffusivity index is an efficient attribute to classify patients with Antiphospholipid Syndrome by means of Hoeffding tree algorithms.

B-1696 11:42

MRI alterations in the brachial plexus of ALS patients

S. Gerevini, F. Agosta, E. Spinelli, P. Scamarcio, N. Riva, E. Pagani, A. Quattrini, A. Falini, M. Filippi, Milano/IT (gerrevini.simonetta@hsr.it)

Purpose: To investigate brachial plexus MRI abnormalities in a large cohort of patients with amyotrophic lateral sclerosis (ALS).

Methods and Materials: Steady-state-free MRI scans were obtained from 43 ALS patients and 12 healthy controls. Nerve roots and limb girdle muscles were evaluated for the presence of signal alterations (T2, T1 and STIR) and volume changes. C5, C6 and C7 roots were delineated on axial, T2-weighted, T1-weighted and T1-coronal images. Nerve root volumes and T2-signal intensities were measured. Adipose tissue thickness between trapezius and supraspinatus muscles was measured on T1-weighted images. Quantitative measures were compared using Mann-Whitney U tests. Correlations between clinical and MRI features were assessed using the Pearson correlation test.

Results: At visual inspection, T2 hyperintensity and volume alterations of C5, C6, C7 nerve roots were observed in ALS patients. Muscle signal alterations and bilateral fat infiltration were also observed. The quantitative analysis showed increased T2-signal intensity in C5, C6 (p<0.001) and C7 roots (p<0.001, bilaterally) of ALS patients compared with healthy controls. Patients also showed increased C6 and C7 root volumes (p ranging 0.001-0.02). Adipose tissue thickness between trapezius and supraspinatus muscles was increased in patients (p<0.001, bilaterally). Disease progression rate measured using ALS Functional Rating Scale correlated with T2-signal intensity of left C6 and right C7 (r=0.45, p=0.03; and r=0.50, p=0.02, respectively).

Conclusion: T2 hyperintensity and increased volume of brachial plexus root likely reflect lower motor neuron and axial degeneration in ALS, and might represent a tool to monitor disease evolution. Muscle structural abnormalities are consistent with denervation atrophy.

B-1697 11:50

Magnetic resonance imaging evaluation of arthritis and other complications in tuberculous meningitis

S.U.K. Khan; Gulbarga/IN (mskadaquat@gmail.com)

Purpose: To evaluate the pattern of infarction and arthritis in tubercular meningitis.

Methods and Materials: Fifty patients with intracranial tuberculomas were subjected to MRI and MRA evaluation. Clinical signs and symptoms, focal deficits and CSF findings were recorded. Presence of exudates, infarction, tuberculomas and hydrocephalus were noted. Sites of exudates and infarction were noted. On intracranial MRA narrowing of middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA) were recorded. MRA findings were correlated with clinical and MRI findings.

Results: Fifty patients of aged 2-65 yrs were included. Meningitis was seen in 24 (48%) cases, tuberculomas in 28 (56%), hydrocephalus in 10 (20%) and arthritis in 7 (14%) cases. Majority of cases (70%) of infants in our study were located in MCA territory. Basal ganglia was the most common location 5 (71%) followed by cerebral cortex, parietal 4 (57%), frontal region 3 (43%) and temporal region 3 (43%). On MR angiography MCA was involved in 5 cases, ACA in 4 cases and PCA in 3 cases.

Conclusion: MR imaging plays an important role in detection, localisation and characterisation of artery and infarction in tuberculous meningitis. Majority of infants (71%) were seen in basal ganglia region. MCA territory was involved in majority (70%) of cases. MR angiography demonstrated narrowing due to vasculitis.

14:00 - 15:30 Room B

Radiographers

SS 1914a Educational issues in radiography

M. García Santos; Murcia/ES

Purpose: Diagnostic student radiographer attrition is approximately 36%; however, little research has been undertaken on this subject. This study explored risk factors for attrition and strategies that enabled these to be overcome.

Methods and Materials: This was a two-phase study. Phase one: data for 579 student diagnostic radiographers (468 completers and 111 non-completers) from three UK universities were analysed. Logistic regression was used to estimate completion based on individual characteristics. Phase two: content analysis of data from an online survey of 168 current UK student diagnostic radiographers.

Results: Phase one: attrition was 19% in these data. Increased age, non-A-level entry qualifications and poor academic performance were discriminators for attrition (p<0.005). Phase two: the challenges reported by the groups identified as being ‘at risk’ showed that for mature students, external responsibilities/pressures and financial pressures were likely to be the greatest cause of attrition and for younger students academic difficulty and workload were most significant.

Conclusion: Increased age appeared to the greatest risk factor for attrition. The majority of non A-level entry students were mature and different challenges were reported by mature students and younger students. For mature students, study may be compromised to accommodate external pressures. For the younger students, the qualifications may be a factor as many reported academic struggles. Poor academic performance may result in both of these situations, increasing the risk of attrition. For the majority, appropriate support was a factor in students’ decisions to continue.

B-1699 14:09

Understanding diagnostic student radiographer attrition in the UK

S.J. McNaula, K.M. Knapp, S. Ball; Exeter/UK (S.J.McNaula@exeter.ac.uk)

Purpose: Diagnostic student radiographer attrition is approximately 36%; however, little research has been undertaken on this subject. This study explored risk factors for attrition and strategies that enabled these to be overcome.

Methods and Materials: The sample population (n=30) chosen from a group of European radiography students was divided evenly into a quality control and intervention group. Every participant from each group was administered a questionnaire was re-administered to each participant. For attrition (p<0.005). Phase two: the challenges reported by the groups identified as being ‘at risk’ showed that for mature students, external responsibilities/pressures and financial pressures were likely to be the greatest cause of attrition and for younger students academic difficulty and workload were most significant.

Conclusion: Increased age appeared to the greatest risk factor for attrition. The majority of non A-level entry students were mature and different challenges were reported by mature students and younger students. For mature students, study may be compromised to accommodate external pressures. For the younger students, the qualifications may be a factor as many reported academic struggles. Poor academic performance may result in both of these situations, increasing the risk of attrition. For the majority, appropriate support was a factor in students’ decisions to continue.

B-1699 14:17

Impact of a CT scan simulator on student learning

G. Photopoulos; R. Santos; Coimbra/PT

Purpose: Radiographers who have a satisfactory understanding of computed tomography (CT) scan parameters positively impact patient dose and image quality. This study aims to assess the effectiveness of an interactive CT simulation tool on student radiographer learning regarding the relationship between CT scan parameters, patient dose, and image quality.

Methods and Materials: The sample population (n=30) chosen from a group of European radiography students was divided evenly into a quality control and intervention group. Every participant from each group was administered a questionnaire, designed to measure understanding of different scan parameters’ effects on image quality and radiation dose. The intervention group underwent interactive CT training using a CT simulation tool; the quality control group was a baseline and did not receive any teaching. The next day, the questionnaire was re-administered to each participant.

Results: T test results demonstrate a statistically significant improvement in mean questionnaire scores for the intervention group from 58.00% to 67.78% (P=0.00009617), while the quality control group’s scores did not change from 61.56% (P=1.00). Further analysis demonstrated that the use of the intervention task significantly improved CT questionnaire scores (P<0.05) in both understanding of image quality and patient dose concepts. There was some correlation between time taken to complete the intervention task and...
Methods and Materials: The CT simulation tool demonstrates improved student understanding on how CT scan parameters affect patient dose and image quality.

Conclusion: The CT simulation tool has the potential to become an integral part of curricula of programmes including clinical training. Due to the advantages evident from the results, the implementation of PAL in radiography curricula and other health science programmes could assist in enhancing success for currently struggling students.

B-1704 14:57

Factors influencing student radiographers' assessment of chest radiograph image quality

S. Heitmann1, R. Toomey2, M. Chen2, P. Pettka2, M. Molehe3, M. Selau Junior3, K. Fernandes4, K. Davies5, J. Pires Jorge6, Oslo/NO, 2Dublin/IE, 3Bloemfontein/ZA, 4Florianopolis/BR, 5Lausanne/CH, 6Prosperous/E (soheitmann@gmail.com)

Purpose: Image quality assessment is a critical part of radiology, with the potential to influence patient radiation dose and outcome. Previous studies have shown cultural influences on image quality assessment. This study aimed to determine whether country of education, percentage of degree completed, or weeks of clinical experience influence student radiographers' decisions to accept or reject chest radiographs, with the goal of understanding what influences might shape attitudes to image quality.

Methods and Materials: 23 radiography students from Ireland, Netherlands, Norway and Switzerland were timed while accepting or rejecting 30 chest radiographs on the basis of image quality. Each participant then gave reasons for any rejections. The total time taken, reject rate and reasons for rejection were compared between students in earlier/later stages of their degrees, with more/less clinical experience, and from different countries using Mann-Whitney U and Kruskal-Wallis tests.

Results: None of clinical experience completed, percentage of degree completed or country of education influenced time taken to view the images (p>0.05). Participants with more clinical experience rejected more images than those with less (p=0.03). Swiss students rejected significantly fewer images on the basis of “exposure” than Irish (p=0.04) or Norwegian (p=0.03) students, although overall rejection rates did not differ significantly between countries (p>0.05).

Conclusion: Clinical experience influences student radiographers' assessment of chest x-ray image quality in terms of both rejection rates and reasons for rejection of images. Country of education also influenced reasons for rejection. This implies that cultural differences in clinical practice may shape students' behaviours.

B-1703 14:49

Peer-assisted learning to improve educational performance in radiography training

J.G. Du Plessis; Bloemfontein/ZA (duplessis@cut.ac.za)

Purpose: During a visit to Sweden in 2017, peer-assisted learning (PAL) was identified as an ideal strategy to address the shortcomings of supervision during CT training. The purpose of this study was to investigate the impact of implementing PAL as an academic advising tool, and the potential for PAL to improve educational performance in radiography training.

Methods and Materials: To explore the impact of PAL, the first cycle of an action research project was implemented in two undergraduate radiography modules at the University College Dublin and the Western Norway University of Applied Sciences. This project was implemented during pre-scheduled sessions after each assessment and prior to the next cycle of assessments. The performance of mentors and mentees for each consecutive assessment was compared with the performance of the previous assessments to measure the impact of PAL.

Results: The results from the implementation of PAL revealed a significant increase in the students’ combined average year-end results when compared to the mid-year results. These results also delivered a p value <0.05, showing a significant difference between mid- and year-end results. Surprisingly, all mentors also showed an increase in their own year-end results.

Conclusion: It is evident from the results that PAL, as an academic advising tool, holds the potential to become an integral part of curricula of programmes including clinical training. Due to the advantages evident from the results, the implementation of PAL in radiography curricula and other health science programmes could assist in enhancing success for currently struggling students.

B-1702 14:41

Integrating CT simulation into radiography undergraduate training

J.G. Stowe, C. O’Halloran; Dublin/IE (caomhe.o’halloran@ucdconnect.ie)

Purpose: The research will investigate the efficacy of integrating a new open-source CT scan parameter simulator into an undergraduate training programme as an active learning tool. Learning will be assessed across the themes of CT image quality and dose in the context of scan and reconstruction parameters. The use of the CT simulator will allow students to investigate the effects of scan parameter manipulation in a safe environment with no risk to patients.

Methods and Materials: A CT scan parameter simulator has been developed through a collaboration effort involving University College Dublin and the Western Norway University of Applied Sciences. This simulator has been successfully piloted as part of the OPTIMAX Research School 2018 in University College Dublin. A statistically significant improvement in student performance was found in the pilot study and ethical approval was given to trial it as part of an overall CT training module in an undergraduate Radiography programme. This semester will see the pilot tested on a cohort of over 50 students where its efficacy as part of an overall training module will now be assessed.

Results: Data from the results of the simulation active learning intervention will be assessed at the end of November using a paired sample T-test to assess if using the CT scan parameter simulation can generate a significant difference in the learning of CT image quality and dose topics.

Conclusion: Results will be available by December 2018 and it is envisaged that this will lead to pan-European trials in 2019.
B-1706 15:13
The opinions of American radiography educators on lead shielding use in conventional radiography
A. Wall, S.R. Kucharszyk, W. Hennessy, M. O’Connor, J. McNulty; "Dublin/IE, "Limerick/IE, "Hamden, CT/US (alyson.wall@ucdconnect.ie)

Purpose: The requirement for lead shielding in conventional radiography has been questioned in recent years with varying protocols employed across clinical sites. A recent European-based study found lack of consensus in radiography educators’ opinions concerning lead shielding use. The current work investigates the standpoint held by American educators on the matter.

Methods and Materials: An online survey was distributed to 608 radiography programme directors across the United States to investigate their opinions on lead shielding use in conventional radiography. Topics covered included: the literature influencing their teachings; whether shielding use is incorporated into student assessments; and observed practice regarding patient shielding in affiliated clinical sites.

Results: From a total of 130 respondents, 122 believed shielding provides the patient with an overall dose reduction with these opinions based on textbooks (60%), journal articles (31.5%), and professional experience (26.9%). Interestingly, 26% (n=34) felt shielding of patients over the age of 50 was unnecessary. Most respondents (73.9%; n=96) place equal importance on breast and gonadal shielding. 70.8% (n=92) indicated that protocols in affiliated clinical sites met the American Registry of Radiologic Technologists and American Society of Radiologic Technologists radiation protection practices, however, 84.6% (n=110) are of the opinion that more emphasis should be placed on breast shielding. 53.8% (n=70) reported that failure to use shielding resulted in automatic failure in clinical assessments while for the remainder, omission is not as severely penalised.

Conclusion: There is general consensus amongst American radiography educators that lead shielding of patients is important, which is reflected in their student assessments to varying degrees.

B-1707 15:21
Simulation-based learning to facilitate clinical readiness in diagnostic radiography: a metasynthesis
L. Hazell, H. Lawrence, H. Friedrich-Neu; "Johannesburg/ZA, 1Blomfontein/ZA (lynneh@uj.ac.za)

Purpose: The aim of this presentation is to present a metasynthesis to identify the attributes for facilitation of simulation-based learning for clinical readiness in a diagnostic radiography programme in South Africa.

Methods and Materials: A qualitative, meta-synthesis was undertaken from the existing literature in English, which was retrieved from databases (Medline, CINHAL, Google Scholar and ScienceDirect). The keywords used were simulation-based learning in radiography, simulation-based education in radiography and simulation-based learning in nursing. The large volume of data was reduced to units of meaning. The metasynthesis used the following steps: develop a review question, develop a search strategy, extraction of themes from the literature, and metasynthesis of themes.

Results: Themes and categories were developed from the literature. Theme 1: an authentic and realistic situation which is relevant to the development of a professional in the context of the profession. Theme 2: building confidence in a safe, reliable and nurturing environment. Theme 3: active participation in a collaborative process.

Conclusion: The metasynthesis revealed three major themes that can be used as a framework to motivate for the use of simulation-based learning in a diagnostic radiography programme to facilitate clinical readiness. The strategies would need to stay true to the framework developed so that simulation-based learning can be designed to fit the contextual needs of this dynamic and unique profession.

B-1708 14:00
Radiation risk from digital breast tomosynthesis screening: a comparison with full-field digital mammography

Purpose: To compare the radiation risk from digital breast tomosynthesis (DBT) screening with that from full-field digital mammography (FFDM) screening.

Methods and Materials: To simulate compressed breasts, two perspex-polyethylene breast phantoms were used, one phantom for compressed breast in cranio-caudal position and the other for compressed breast in mediolateral oblique. An adult ATOM dosimetry phantom was loaded with high-sensitivity thermoluminescence dosimeters; the phantom was then positioned on Hologic Selenia Dimensions mammographic machine to imitate DBT and FFDM screening. Organ radiation doses were measured from 4-view DBT screening and 4-view FFDM screening. Organ radiation doses were used to calculate effective dose from one screening session and the effective risk that could arise from a range of national screening programmes.

Results: Mean glandular dose (MGD) for DBT was 3.6mGy; MGD for FFDM was 2.8mGy. For DBT, other organ (e.g. thymus, lungs, salivary glands, thyroid, contralateral breast and bone marrow) radiation dose was also higher than for FFDM. The use of DBT for breast cancer screening increases the effective dose (E) of one screening session by 22%. E for DBT was 0.44mSv; E for FFDM was 0.34mSv. Similarly, the total effective risk during female’s lifetime of different screening programmes was increased by 23%.

Conclusion: The use of DBT for breast cancer screening may increase the screening programme achievement and it also increases the radiation dose to screening clients.

B-1709 14:08
What criteria should be considered by radiographers while assessing the image quality of breast implant mammograms?
C. Sa dos Reis, I. Gremion, K. Schmidt, N. Richil Meystre; 1Perth/AU, 2Lausanne/CH (claudia.sadosreis@curtin.edu.au)

Purpose: To identify the most relevant image criteria that can be applied in the analysis of mammography exams performed in patients with breast implants (BI).

Methods and Materials: The study was conducted in 2 phases: i) literature review to find critical imaging criteria used to assess mammography exams; ii) assessment of 1207 BI mammograms to identify the appropriate criteria. A threshold of 75% of achievement was the cut-off to consider each criterion as applicable to CC, MLO and ML images. Descriptive statistics, chi-square test, independent t test, Pearson correlation were performed.

Results: 24 criteria considering positioning, exposure, sharpness and artefacts were identified during the literature review for normal mammograms. Applying those to BI mammograms, for 37.3% of CC images retroglanuldar fat was not included. Considering MLO and ML images, the “Pectoral-Nipple-Line” criterion was achieved in 35% of the images. The placement of the implant (retropectoral or retroglanuldar) or performing Ecklund manoeuver had significant influence on the visible anatomy (p=0.005). The alignment of the breast in the middle of detector and the detector height (h=0.001) were considered highly relevant, having also impact on the amount of tissue displayed.

Conclusion: Part of the criteria used to assess normal mammograms is not applicable to BI imaging due to implant overlap. The alignment of the image in relation to detector’s centre seems to have an impact on the amount of tissue visible to assess. Further studies are necessary to define how many projections, best technique to acquire the images and suitable quality criteria to adequately assess BI mammograms.

SS 1914b
Mammography quality assessment
Moderators: N.N.
D. Mizzi; Malda/MT

Radiographers

Scientific Sessions
B-1710 14:16
The use of different angulation in mediolateral oblique view based on patient anatomy in mammography
A. Bedene, E. Aluko, J. Zibert, N. Mekis; Ljubljana/SI (ema.aluko@z.fni.si)

Purpose: The purpose of this research was to investigate if the quality of imaging in mammography can be maximized for patients with specific anatomy with the use of alternative (35° or 55°) angulation in mediolateral oblique (MLO) projection instead of standard projection with 45° angle.

Methods and Materials: 491 women were included in the study of different constitutional type, who underwent screening mammography at angle of 55° and 35°, and additional imaging (tomography) at an angle of 45°. Slovenian criterion (classification) were used to assess the quality of mammographic images. Three measurements were performed on the mamograms: the width of the pectoral muscle, the retro mammary space (fatty tissue) and inframammary part of the breast.

Results: When comparing 45° and 55° angle all three measurements (the width of the pectoral muscle, the retro mammary space and inframammary part of the breast) were statistically significant in favour of 55° angulation. 35° angle showed more retromammary and inframammary part of breast compared to the standard angle of 45°, both results were statistically significant. There was no statistically significant difference regarding the display of pectoral muscle related further examinations as well as on quality assessment. To achieve these objectives, the learning material package was developed based on the evidence provided by expert opinion and research results.

Conclusion: Teaching multifaceted health care processes such as the diagnostic process of breast cancer interprofessional education is as means of ensuring client-centred high-quality services to the patient. The core benefit of open access E-learning is easily accessible material, regardless of time zone and geography, creating the opportunity for equity in education and harmonized health care practices in Europe.

B-1713 14:40
Acceptable quality dose for mammography: a guide for practitioners in developing countries
D.Z. Joseph; Kang/NG (josephdlama@gmail.com)

Purpose: Acceptable quality dose (AQD) is a reference dose value or suggested standard dose that is used as an optimisation tool capable of producing good quality images in diagnostic radiological examination. The purpose of the study is to evaluate the AQD for mammography in a Nigerian Hospital.

Methods and Materials: The study is a prospective cross-sectional study conducted in a Nigerian teaching hospital, 30 patients who came for mammography examination were enrolled in the study. Thermoluminescent (TLD-LiF) dosimeter chips were used for dose assessment for crano-caudal and mediolateral oblique views while image quality was assessed using European guidelines. Analysis was carried out using Statistical Package for Social Sciences version 23.0, Chicago, USA.

Results: The result shows an average mean glandular dose (MGD) of 0.63mGy and a mean CBT of 1.95mm. The range of MGD for crano-caudal view and mediolateral oblique (MLO) were 0.88mGy and 1.67mGy, respectively, and the range ESD for CC and MLO were 0.01-6.03mGy and 0.01-3.47mGy, respectively. Most patients’ examinations were within acceptable quality doses with percentage score from 60% to 80% for doses and image quality assessment using European guidelines. Patient dose increased with increase in compressed breast thickness (CBT).

Conclusion: AQD has a number of inbuilt advantages because it considers crucial parameters in radiation dose estimation and useful for the formulation of optimisation guidelines and etiquette for countries and regions globally.

B-1711 14:24
Indications and the outcome of the mammography at Douala General Hospital
N. Narcisse Fidele; Douala/CM (nana_nar6@yahoo.fr)

Purpose: This study aimed to list indications and results of mammography and/or breast ultrasounds at Douala General Hospital to determine the proportion of routine mammographic screening.

Methods and Materials: This descriptive cross-sectional study was carried out at Douala General Hospital using pre-established data sheets. The study recruited all patients who met the selection criteria and reported to the radiology and medical imaging department for breast screening using physical examinations, mammography and/or ultrasounds.

Results: The study recruited 372 patients, 96.8% of whom were between 40 and 50 years old. The reasons given for the medical consultation were systematic screening (33.01%), pain (27.18%) and lumps (25.24%). Suspicious lesions (AGR 4 and 5) were discovered in 7.6% of cases by mammography and 8.51% of cases by ultrasound. The results indicated that there was no significant association between the use of clinical examination and mammography (p = 0.754). The use of clinical examination alone for breast screening may not be sufficient.

Conclusion: Our findings indicate that in Cameroon, the routine screening mammography accounts for less than one-third (33.1%) of all indications. Benign lesions were most common; however, 7.6% and 8.51% of suspicious malignant lesions were observed using mammography and ultrasound, respectively.

B-1712 14:32
Early detection of breast cancer education via interprofessional E-learning: the EBreast project
E. Metsälä1, T. Kuikas2, K.M. Rannisto3, J. Pires Jorge, A. Henner1, B. Strøm1, E. Metsälä1, Helsinki/FI, Tartu/EE

Purpose: The project “Education and training in early detection of breast cancer for health care professionals” (the EBreast project) funded by EU was started in 2015 with the goal of studying and developing health care staff competencies related to early detection of breast cancer.

Methods and Materials: An evidence-based developmental method was applied for education and training in early detection of breast cancer for health care professionals (the EBreast project). The learning modules were evaluated according to the relevance of the content, technical quality and achievement of learning outcomes by health care studies and professionals in the five European countries.

Results: Health care staff (biomedical laboratory scientists, midwives, nurses, public health nurses, radiographers) competency needs related to breast cancer diagnostic chain focused on an interprofessional way of working and patient communication, on technical performance of mammography, and on related further examinations as well as on quality assessment. To achieve this, the learning material package was developed based on the evidence provided by expert opinion and research results.

Conclusion: Teaching multifaceted health care processes such as the diagnostic process of breast cancer interprofessional education is as means of ensuring client-centred high-quality services to the patient. The core benefit of open access E-learning is easily accessible material, regardless of time zone and geography, creating the opportunity for equity in education and harmonized health care practices in Europe.
members. Euroma guidelines indicate the Radiographer as a core-team member. Actually, due to the lack of a common European training standard, dedicated breast radiographers don't exist in Italy as in many other European countries. These premises have led to the establishment of the Senonetwork's Radiographers Working Group, in order to contribute to the development of breast radiographers and to support their role in the Italian Breast Units.

Methods and Materials: Review of the literature. The aim was to identify radiographers' pain management competencies and educational needs in mammography and, also to find information to make a local pain management model of care.

Results: Screening radiographers (mammographer) are distinguished from diagnostic breast radiographers. However, in the perspective of Breast Centres where converge first-second level screening, diagnostic, staging and follow-up, this distinction may be overcome, recognizing a single professional to fit this set-up: the breast radiographer.

Conclusion: Core curriculum of breast radiographers must be ensured after the basic training through courses to be carried out at Breast Centres or Regional Reference Centres, which programme is defined according with the EUSOMA recommendations. Senonetwork's Radiographers Working Group, with the Training WorkingGroup and the Senonetwork's representative of radiology, proposes to harmonise the different proposals in order to promote a homogeneous training for the breast radiographers.

Purpose: Breast cancer is the most common cancer among women. Mammography is the most widespread method in diagnosing breast cancer and it is usually a screening technique. It is widely known that mammography can cause pain, fear and anxiety and that can lead to patients avoiding the examination. The aim of this study was to identify radiographers' pain management competencies and educational needs in mammography and, also to find information to make a local pain management model of care.

Methods and Materials: The data for the thesis was collected with an electronic theme writing form from the radiographers (n=12) of the department of interest. Radiographers participating in the study were selected with discretionary sample. The data was analyzed with inductive content analysis. During the analysis was found such information that there was a need for an additional research question.

Results: Based on the analysis radiographers' are aware that mammography can cause pain and they know how to decrease that pain, fear and anxiety. Nevertheless, they don’t always associate their competencies with pain management because of non-medical aspect of care. Radiographers’ feel that they have limited possibilities of pain-relieving during mammography due to the limited time for each patient. The results suggest that radiographers' knowledge about pain management methods should be improved.

Conclusion: Based on the analysis there can be found many educational needs and challenges too. Both educational institution and organization must increase the volume of mammography courses and education.

Purpose: Scanxiety is the fear of medical examinations. This fear is not only related to the examinations, but also to patient's approach and lack of information. Scanxiety might not be entirely known. However, scanxiety might not be entirely related to the examinations, but also to patient's approach and lack of information. Scanxiety might not be entirely related to the examinations, but also to patient's approach and lack of information. The aim of this study was to prospectively detect, categorize and describe women's experience of pain and unpleasant feelings during screening mammography.

Methods and Materials: A questionnaire was given after examination to all women participating in screening mammography in one hospital mammography unit during two weeks: one week in November 2017 (older group was invited to screening) and one week in February 2018 (those coming first time). Data were analysed in Excel.

Results: Totally 167 (61%) women returned the questionnaire, 45% aged 49 to 54 years and 43% 65 to 69 years. 21% participated first time to screening program and more than half of them were afraid of pain in advance. Half of the participants found the examination to be slightly painful and 10% rather painful. Women want to discuss with the radiographer during the examination: what is happening in examination, importance of the compression, impact to the compression force used and about possible feelings of pain. Discussion and friendliness/politeness decreases women's experience of pain. Women prefer counseling for breathing during the compression and kind words from the radiographer instead of pain medication.

Conclusion: Professional radiographer in screening mammography is empathic, peaceful, and kind, listens to the woman and explains the examination process and possibilities of pain. It is also important to allow the possibility to ask and tell woman's own opinions and feelings.
(n=257) and CEUS (n=133). CEUS was performed blinded to the results of CTA using an Acuson S2000 or S3000 (Siemens Healthcare, Germany) and i.v. application of sulphuric (SonoVue, Bracco, Italy). Corresponding pairs of CTA/CEUS examinations were reviewed retrospectively a second time by two experienced radiologists. Results: 55 patients (9 females; mean age 72.5±8.4) had 97 simultaneous CT-A/CEUS examinations. Artifacts were seen in 59% of cases: 22% contrast agent related, 22% post-interventional, 9% attenuation artifacts, 3% ultrasound scanner- and 3% stent graft-specific artifacts. Endoleaks were detected by CEUS in 56% and by CTA in 48% of cases. Mismatch in detection of endoleaks was observed in 9%, in 4% related to artifacts in CEUS (1 true-negative and 3 false-positive). In 5%, CEUS proved advantageous over CTA through dynamic assessment of late endoleaks or beam hardening artifacts in CTA caused by embolization materials.

Conclusion: CEUS has a high ability to detect endoleaks after EVAR, comparable or even superior to CTA. However knowledge of possible artifacts is essential to interpret imaging during CEUS correctly.

B-1721 14:16
Quantitative analysis of dynamic CTA for the detection of endoleaks after abdominal aorta aneurysm endovascular repair: a feasibility study
M.J. Bauer 1, F. Lavra, M. Scaravello, M. van Assen, L. Saba, C.N. De Cecco, U.J. Schoepf 1, Charleston, SC/US, 2Cagliari/IT, 3Milan/IT, 4Groningen/NL (email=bauermaximilian.de)

Purpose: To assess the feasibility of quantitative analysis of dynamic computed tomography angiography (dCTA) for the detection of endoleaks in patients who underwent endovascular repair of abdominal aortic aneurysms (EVAR).

Methods and Materials: Twenty patients scheduled for contrast-enhanced CT angiography (CTA) of the abdominal aorta post-EVAR were prospectively enrolled. All patients received a standard triphasic CTA protocol followed by a dCTA acquisition. In addition to visual assessment of time-resolved images, the dCTA acquisition enabled reconstructions of color-coded maps depicting blood perfusion (dynamic CT perfusion, dCTP). Observers assessed the dCTA and dCTP images for the detection of endoleaks and indicated their diagnostic confidence based on a modified 5-point Likert scale (1 - certain absence, 5 - certain presence of endoleaks).

Results: In total, 9 endoleaks were detected in 7 patients using triphasic CTA as the reference standard. There was complete agreement for endoleak detection between the two techniques on a per-patient basis. Both dCTA and dCTP identified an additional potential endoleak in one patient. Moreover, dCTP demonstrated superior diagnostic confidence for endoleak exclusion compared to dCTA (1.0 [1-1] vs 1.5 [1.5 - 1.5], respectively; p<0.01).

Conclusion: Quantitative analysis of dCTA data in form of dCTP is feasible and can aid in the detection of endoleaks demonstrating a strong correlation with visual assessment of dCTA images. Moreover, our findings suggest that analyzing dCTP imaging data allows the potential to increase the endoleak detection rate compared to the assessment of triphasic CTA images as the current clinical standard method.

AuthorDisclosures:
C.N. De Cecco: Consultant; Guerbet. Research/Grant Support; Siemens. U.J. Schoepf: Consultant; Bayer. Guerbet. Research/Grant Support; Siemens. Bayer, Astellas, GE.

B-1722 14:24
Flow volume of the abdominal visceral arteries increase after EVAR treatment
M. Sugiyama 1, Y. Takehara, M. Alley, N. Unno, K. Katakashil, I. Wakayama, A. Nozaki 2, S. Nagarnawa, H. Sakahara 1, Hamamatsu/JP, 2Stanford, CA/US, 3Hino/JP (m-sugiyama@gmail.com)

Purpose: Endovascular aneurysm repair (EVAR) is widely performed to prevent abdominal aortic aneurysm (AAA) from rupture. EVAR may also repair deformed blood pathway and relieve blood flow energy loss caused by non-laminar flow. This may provide more efficient blood delivery to the visceral arteries. In the present study, we aimed to evaluate the hemodynamic changes of the abdominal visceral arteries after EVAR treatment within AAA patients using 3D cine PC MR imaging (4D-Flow).

Methods and Materials: 10 patients (67 to 80 y.o.) with AAA underwent 4D-Flow covering whole abdominal aorta within the period of 1 year before and after EVAR treatment. All the MR studies were conducted on 3.0T MR imagers. Time resolved contrast enhanced 3D MR angiography was performed for the segmentation of the aorta. The acquired 4D-flow data was postprocessed using an flow analysis software (Flova II, Rtech, Japan). The flow volume were measured at the cross sections of the following arteries; celiac artery (CA), superior mesenteric artery (SMA), and renal arteries (RA). Each datasets consisted of flow volume data of 20 phases per cardiac cycle. The flow volume of the visceral arteries at each cardiac phase between pre- and post-EVAR condition were statistically analyzed using Wilcoxon’s signed-rank test.

Results: Significant increase of the flow volume in CA and SMA were observed at mid-diastole. Conclusion: Flow volume of the SMA and CA increased after EVAR treatment for the AAA patients. This may be reflecting the repair of blood flow passage by EVAR and more efficient blood delivery.

AuthorDisclosures:

B-1723 14:32
Cumulative radiation dose from contrast-enhanced CT in follow-up after EVAR
S. Magnani, G. Mauri, G. Di Leo, R.M. Trimoli, D. Porteti, L.M. Sconfinenza, F. Sardanelli; Milan/IT (dr.smagnani@gmail.com)

Purpose: To estimate the average cumulative radiation dose deriving from contrast-enhanced computed tomography (CT) examinations in patients treated with endovascular aneurysm repair.

Methods and Materials: After Ethics Committee approval, records of 110 patients (105 males, 5 females; age 75±7 years [mean±standard deviation]) who underwent EVAR between March 2000 and May 2008 were retrospectively analyzed. The number of CT scans performed in each patient from March 2000 to May 2015 was retrieved. The mean effective dose deriving from abdominal, thoracic or thoraco-abdominal CT scan was derived from another sample of 30 patients. The patient cumulative effective dose was calculated by summing up all radiation doses from each single examination.

Results: During a mean period of 14:16 (IQR 10-69 months), these patients underwent a median of 7 CT scans overall; 4 (IQR 2-8) abdominal scans, 2 (IQR 1-4) thoracic scans, and 4 (IQR 2-5) thoraco-abdominal scans. The median cumulative effective dose was 205 mSv (IQR 128-387 mSv) overall; 18 mSv (IQR 9-38 mSv) for thoracic scans, 132 mSv (IQR 66-264 mSv) for abdominal scans, and 160 mSv (IQR 80-200 mSv) for thoraco-abdominal scans. The maximal cumulative effective dose was 1,166 mSv in a patient who underwent 38 CT examinations during a 54-month follow-up.

Conclusion: Patients treated with EVAR underwent multiple serial CT follow-up examinations, thus receiving a very high cumulative radiation dose.

B-1724 14:40
Low tube voltage and low contrast medium volume multidetector CT angiography in evaluation of abdominal aorta in EVAR follow-up: a comparison study
E.G.M. Antonenburg, S.J. Vasquez Cuadra, S.P. Pirillo, L. Tipaldi; Rome/IT (dr.gabrieleantonuccio@gmail.com)

Purpose: To compare ionising radiation dose delivered, image quality and diagnostic performance of Multidetector CT Angiography (MDCTA) of the abdominal aorta after EVAR and arterial splanchnic vessels in two different acquisition protocols: low tube voltage plus low contrast medium (CM) protocol (A) versus conventional protocol (B) in the same patients.

Methods and Materials: 40 Patients (26 M; 14 F) referred to MDCTA of the abdominal aorta in follow-up after EVAR, who had undergone conventional protocol (64-slices scanner; 120-kVp, automatic mA, 100mL iopromol [400mg iodine/ml] @4mL/sec i.v.- A)., were enrolled in our single-center prospective randomized study in order to compare conventional protocol to low dose protocol (64-slices scanner; 80-kVp, automatic mA, 40mL iopromol [400mg iodine/ml] @4mL/sec i.v.- A).

Results: No significant differences were noted in terms of image quality with either axial source images, multiplanar reconstructions or volume rendering images; no significant differences were found among the two protocols in terms of noise throughout aortic stent or vessels ramifications features, moreover DLP in protocol B (531,3±67,9 mGy-cm) was about 1/3 compared to protocol A (1536,1±253,1 mGy-cm) (p=0.005).

Conclusion: Reducing simultaneously tube voltage and CM volume determines significative dose reduction to the patient without compromising images quality and diagnostic performance of MDCTA in EVAR follow-up.

B-1725 14:48
Spectral imaging on a 60 mm wide-detector CT with fast kV switching for follow-up CT angiography after EVAR planning: image quality, radiation dose and ultra-low volume contrast medium
P. Hou; Zhengzhou/CH (houping12316@163.com)

Purpose: To investigate the feasibility of reducing radiation exposure and CM dose in follow-up CTA after EVAR through the joint application of spectral imaging and ASIR-V.

Methods and Materials: The conventional protocol with kV Assist scan and CM volume of 0.6 ml/kg was utilized in study group A. A ultra-low dose protocol which performed GSI scan with CM volume of 0.6 ml/kg was utilized in study group B. Group A included TUE images, arterial phase. While in group B,
VUE images and 60 keV data with 50%ASIR-V set were automatically reconstructed from AP, CT values and CNR of aorta and its branches for TUE and VUE images and AP images were obtained and compared.

Results: No significant difference in image quality was found between TUE 4.32 ± 0.53 and VUE 4.21 ± 0.51 images (P = 0.05). VUE images had higher image noise than TUE images (P < 0.001). For AP images, group B had equivalent detectable scores and CT values as Group A, whereas they had higher or equivalent CNR values. Group B had 30.3% and 21% reductions on CM volume and injection rate, respectively, than Group A. The effective dose for group A was 20.5 mSv ± 4.2 and that for group B was 12.6 mSv ± 2.7.

Conclusion: Imageonochromatic images of 60 keV in spectral aortic CT can minimize the amount of CM and injection rate but without sacrifice image quality, and VUE images as an alternative to TUE images, can provide comparable image quality and reduced the radiation dosage.

B-1726 14:56
Split-filter dual-energy CT: value of advanced monoenergetic reconstructions for the assessment of vessel stents
E. Appel, C. Thomas, Y. Klosterkemper, J. Alisa, G. Antoch, J. Boos; Düsseldorf/DE

Purpose: To assess the effect of split-filter dual-energy CT advanced virtual monoenergetic reconstructions (VMI) on in-stent lumen visibility and image quality.

Methods and Materials: Nine different peripheral vessel stents were placed in a phantom, filled with iodine and examined using a split filter dual-energy CT scanner. Image reconstructions of imageonochromatic images (SnOdSn) for 120 keV were performed using three different kernels (I46f, Q33f, D33f). VMI and advanced VMI for ten different virtual photon energy levels (40-130 keV) were reconstructed. In-stent lumen diameter, artefact width, image noise and lumen density for all reconstructions were assessed using a semiautomatic software tool. Image quality was assessed through signal-to-noise ratio (SNR) and a 5-point Likert scale (1=poor, 5=excellent). Digital angiography served as reference standard for diameter measurements. Standardization with Z-scores was performed to assess the optimal VMI virtual photon energy level.

Results: Advanced VMI led to the highest overall in-stent lumen diameter at 130 keV which was significantly higher than AuSnSn/46f (3.7±0.5 vs. 3.4±0.4; p<0.002). SNR was comparable between AuSnSn/46f at 120 keV and advanced VMI at 70 keV (11.4±1.0 vs. 11.6±1.3). Averaged over all reconstructions, both readers reported significantly higher image quality for advanced VMI compared with conventional VMI reconstructions (3.8±1.1 vs. 2.3±1.1; p<0.005) with optimal subjective image quality for advanced VMI at 80 keV (4.6±0.6). Overall, advanced VMI reconstructions at 70 keV were found to be optimal as determined by the Z-score analysis.

Conclusion: Advanced VMI reconstructions at 70 keV are optimal for the imaging of vessel stents in split-filter dual-energy CT.

B-1727 15:04
Comparison of automated software diameter/square detection with radiologist visual assessment for 70% stenosis on coronary CT angiography
S. Hu, W. Peng, Z. Li; Chengdu/CN

Purpose: To explore the feasibility of software automated detection of coronary 70% stenosis using diameter/square-method in comparison of manual evaluation.

Methods and Materials: Fifty adult patients with known abdominal aortic aneurysms underwent contrast-enhanced CT examinations on a 6th generation dual-source-CT (SOMATOM Force, Siemens Healthcare). Blood pressure was measured on admission as per the standard protocol, during imaging procedure and at same hours at home following discharge. The mean average arterial pressure difference were submitted to a finite element analysis to model the changes predicted by the analytical estimate.

Results: The average difference between MAP readings during scanning and at home was 9.1 mmHg (10.8%) with a maximum of 31.2 mmHg (23.7%). This resulted in an averaged arterial pressure difference of 0.08-0.22% (0.19-0.63% for the maximum MAP difference).Comparing MAP during the imaging process and at hospital admission, the average relative difference was 10.6% (9.4mmHg), with a maximum of 29.5% (27.7mmHg). The difference in the aortic aneurysmal diameter was 0.07-0.21% (0.18-0.60%) for the maximum MAP difference.

Conclusion: CTA images of abdominal aorta aneurysms for measurement of its diameter and data from mechanical simulations such as finite elements analysis is insensitive to the timepoint of blood pressure measurement.
SS 1910a
Spine imaging

Moderators:
T. Akinci D’Antonoli; Basel/CH
A. Feydy; Paris/FR

B-1730 14:00
Machine learning classification of spinal lesions: compared accuracy of texture parameters extracted by different software
V. Chiapp1, D. Albano1, R. Cuocolo1, C. Messina1, S. Gatto1, A. Corazza2, I. Meiri3, A. Brunetti3, L.M. Scorfeni1,1; Milan/IT, Naples/IT, Genoa/IT (vitochia@hotmail.it)

Purpose: To compare the accuracy of machine learning (ML) algorithms for classification of spinal lesions based on texture analysis (TA) parameters extracted by different software from unenhanced Magnetic Resonance images (MRI).

Methods and Materials: We retrospectively enrolled 146 patients with 146 spinal lesions (49 benign, 57 metastatic and 40 primary malignant lesions) imaged using MRI. Of them, 117 were histopathologically confirmed after surgery while 29 benign lesions were confirmed by follow-up. Patients were randomly divided in training (n=100) and test groups (n=46), respectively, for classification model development and testing. Lesions were manually segmented on T1-weighted and T2-weighted images by drawing a bi-dimensional polygonal region of interest. These were used for first order and texture feature extraction on two software, 3D-Slicer heterogeneity CAD module (hCAD) and Pyradiomics. For each of them, different data subsets obtained by four feature selection methods were analyzed by 9 ML classification algorithms to evaluate their accuracy in identifying benign vs. malignant lesions and benign vs. primary malignant vs. metastatic lesions.

Results: In the test group, a random forest algorithm correctly classified 89% of lesions as benign or malignant, based on hCAD TA, while a Support Vector Machine could achieve an accuracy of 87% from Pyradiomics TA. For the classification of benign, primary malignant and metastatic lesions, RF models accurately classified 70% of lesions for both TA software.

Conclusion: ML algorithms show good accuracy in spinal lesion classification based on non-contrast MRI exams. Furthermore, feature extraction performed using different software has shown consistent results at subsequent ML analysis.

B-1731 14:08
A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumour, and metastatic tumour of sacrum based on magnetic resonance imaging
P. Yin, N. Hong; Beijing/CN (yinppling915@pku.edu.cn)

Purpose: To develop and validate a triple-classification radiomics model for the preoperative differentiation of sacral chordoma (SC), sacral giant cell tumour (SGCT), and sacral metastatic tumour (SMT) based on T2-weighted fat saturation (T2w FS) and contrast-enhanced T1-weighted (CE T1w) magnetic resonance imaging (MRI).

Methods and Materials: 120 pathologically confirmed sacral patients were retrospectively analysed and divided into a training set (n=83) and a validation set (n=37). Morphology, intensity and texture features were assessed based on formfactor, Haralick, grey-level co-occurrence matrix (GLCM), grey-level run-length matrix (GLRLM) and histogram. Analysis of variance (ANOVA), least absolute shrinkage and selection operator (LASSO), Pearson correlation, random forest (RF), area under the receiver operating characteristic curve (AUC) and accuracy analysis were used to build and validate our model.

Results: The median age of SCGCT (33.5, 25.3-45.5) was significantly lower than those of SG (58.0, 48.8-64.3) and SMT (59.0, 46.3-65.5) groups (χ²=9.00, P<0.05). For the differential value, features extracted from joint T2w FS and CE T1w images outperformed those from T2w FS or CE T1w images alone. Compared to CE T1w images, features derived from T2w FS images yielded higher AUC in both training and validating set. The best performance of radiomics model based on joint T2w FS and CE T1w images reached an AUC of 0.773 and an accuracy of 0.711.

Conclusion: Our 3.0T MRI-based triple-classification radiomics model is feasible to differentiate SC, SGCT, and SMT, which may be applied to improve the precision of preoperative diagnosis in clinical practice.
and SW-MRI were performed. The presence of FS was assessed in all sequences. Sensitivity and specificity were calculated and differences in detection rate and severity scoring of FS were tested. CT was used as reference standard for all analysis.

Results: 56 of 58 FS could be correctly identified on SW-MR magnitude images. SW-MRI achieved a sensitivity of 96.6% and specificity of 99.5% for the identification of osseous FS. Conventional T1-weighted MRI sequences achieved a sensitivity and specificity of 43.1% and 100% and T2-weighted MRI sequences a sensitivity and specificity of 65.5% and 99.1%, respectively. The overall detection rate was significantly (p<0.05) higher on SW-MRI. There was no significant difference (p>0.05) in severity scoring compared to CT. T1- and T2-weighted MRI underestimated the degree of osseous FS. Intermodality and interobserver agreement were highest for SW-MRI.

Conclusion: SW-MRI enables the detection of osseous FS of the vertebral spine in patients with spinal deformity with a higher sensitivity compared to conventional T1- and T2-MRI sequences, with CT as a reference standard.

Author Disclosures:
G. Engst: Research/Grant Support: Siemens Healthineers AG provided financial and technical support for conducting the study. Siemens Healthineers AG did not have control over the study conduct or data analysis.

B-1735 14:40
Advantages of T2* relaxation time using ultra-short TE on intervertebral disc degeneration
H. Takashima1, M. Yoshimoto1, R. Imamura2, Y. Akatsuka2, M. Nakashishi2, M. Yoneyama3, M. Hatakenaka3, T. Yamashita4; 1SapporoJP, 2TokyoJP (takashima@sapmed.ac.jp)

Purpose: To investigate the association of intervertebral disc (IVD) degeneration with T2* relaxation time using ultra-short TE (UTE).

Methods and Materials: This study included 50 patients (mean age, 52.5 ± 21.8 years) who underwent lumbar routine MR examination using a 3-T MR system (Ingenia, Philips Healthcare). A 3D UTE sequence with fat suppression was used, which was acquired using a phase-encoded stack of spiral trajectory as the first TE and four gradient echoes. TEs were set at 0.16, 4.6, 9.2, and 13.8 ms. Scanning was performed around the lumbar spine using a sagittal slice orientation. We classified the grade of disc degeneration as I-V for the midsagittal section according to the Pfirrmann classification, and T2* was calculated from all TE images at the level of L2/3-L5/S1. We also evaluated the correlation between the T2* of IVDs and Pfirrmann classification.

Results: The T2*-weighted image-based Pfirrmann classification for our patients was as follows: grade I, 62 discs; grade II, 43 discs; grade IV, 15 discs; and grade V, 28 discs. The T2* of grades II, III, IV, and V was 44.9 ± 17.4 ms, 30.6 ± 13.0 ms, 23.3 ± 10.8 ms, and 15.1 ± 13.6 ms, respectively. T2* RT decreased with increasing grade (r = -0.724, p < 0.01) and was significantly different between grades II-V (p<0.05). The T2* RT decreased with increasing grade (r = -0.724, p < 0.01) and was significantly different between grades II-V (p<0.05).

Conclusion: The T2* of IVDs using UTE enabled to identify high IVD degeneration and may, therefore, be useful as a new technique for the MR evaluation of IVD degeneration.

Author Disclosures:
M. Yoneyama: Employee; Philips.

M-1736 14:48
Molecular lumbar intervertebral disc alterations in patients with leg length discrepancy
M. Frenken, C. Abrar, M. Knautz, D. Latz, A. Lijmani, G. Antoch, C. Schleich; Düsseldorf/DE (mirjam.frenken@med.uni-duesseldorf.de)

Purpose: Leg length discrepancy (LLD) is a frequent incidental finding during orthopaedic physical examination and could be a predisposing factor for early degenerations of lumbar intervertebral discs or vertebral facet joints. The purpose of this study was to elucidate the effect of LLD on glycosaminoglycan content (GAG) in lumbar discs.

Methods and Materials: 11 patients (25.6 ± 4.3 years) with LLD greater than 10 mm and 14 control subjects (23.9 ± 3.5 years) without LLD were examined using a 3T MR scanner. Morphological T2-weighted sequences in sagittal and transversal orientation and Glycosaminoglycan chemical exchange saturation transfer (gagCEST) sequence were performed. Subjects with bulged or herniated discs were excluded.

Results: Nucleus pulposus-gagCEST values of LS/S1 disc were significantly lower in patients with LLD compared to control group (p = 0.0008). For all other disc levels, no significant difference was found.

Conclusion: This study supports the hypothesis that LLD greater than 10 mm could be a predisposing factor for early molecular alterations of lumbar intervertebral discs of LS/S1. Remarkably, we observed lower gagCEST values of the lumbar disc of L5/S1 caused by LLD even before any morphological pathology could be found.

B-1737 14:56
MR imaging of transitional lumbarosacral junction: co-incidental or causative factor for the disc degeneration and herniation
K.A. Bhagwat1, V. Mahadevappa2, D. Lanjere3 (bhagwatvikas@gmail.com)

Purpose: To identify MR imaging findings and to know the causal relationship between transitional lumbo-sacral junction and degeneration of the lumbar disc. To identify the significance of the transitional lumbarosacral junction.

Methods and Materials: The retrospective study was carried out at teaching hospital. 600 cases, over a period of 18 months, who were referred to the department of diagnostic radiology for MRI of Lumbosacral spine, from the department of Orthopaedics, Neurosurgery and other departments, were included in the study. Inclusion Criteria: 1. Patients of all age groups. 2. Patients with history of low back pain. Exclusion Criteria: Patients with metallic implants, cardiac pacemakers, cochlear implants; who are claustrophobic.

Results: In our review of 600 cases, 180 cases were having transitional lumbarosacral junction. Out of 180 cases, 91 were male population and 89 were females (M:F Ratio - 1:1.1). 30 out of 180 cases were of age less than 30 years and the remainder were more than 30 years of age. 128 cases showed sacralization and 52 cases showed lumbarisation.50% of the disc herniations were found to be at L5-S1 intervertebral disc level. In non-lumbosacral transitional vertebral cases, about 53%, 27% and 20% of the disc herniations were found to be at L4-L5, L5-S1 and L3-L4 cases respectively.

Conclusion: We conclude that there is a causal relationship between the transitional vertebra and degeneration of the disc immediately cephalad to it, whereas non-lumbosacral transitional vertebral cases, disc herniations were common at L-4-L5 disc levels.

B-1738 15:04
Dual-energy computed tomography detects disc injuries in patients with vertebral fractures: a prospective diagnostic accuracy study
M. Pumberger, M. Fuchs, N. Englund, K.-G.A. Hermann, M. Putzier, M.R. Makowski, B. Hamm, T. Diekhoff; Berlin/DE (torsten.diekhoff@gmail.com)

Purpose: To evaluate the diagnostic accuracy of dual-energy computed tomography (DECT) in the assessment of disk injury in patients over the age of 50 with vertebral fractures using magnetic resonance imaging (MRI) as the standard of reference.

Methods and Materials: The prospective study was approved by the local ethics committee (EA1/372/14), and all patients gave written informed consent. Patients with suspected fracture underwent DECT and MRI of the spine. Three readers scored the DECT collagen maps for the presence vs. absence of disk injury and MR images according to the Sander classification (0-3). Only disks at risk (target disks) were included in the analysis. Sensitivity and specificity were calculated. Fleiss’ k was used for interrater agreement. Attenuation in Hounsfield units (HU) in DECT was compared between affected and unaffected disks. MRI was used as the standard of reference.

Results: A total of 295 disks in 67 patients were analyzed. DECT had .85 sensitivity and .75 specificity. Sensitivity varied with the severity of disk damage (1: .80, 2: .85 and 3: .98). Fleiss’ k was .41 for MRI and .51 for DECT. HU values measured in the DECT collagen maps were lower for disks with injury compared to normal disks (80.3 ± 35.2 vs 97.9 ± 41.0, p= .0002).

Conclusion: DECT collagen maps allow identification of disk injury in elderly patients with vertebral fractures and can yield additional diagnostic information compared with conventional CT.

B-1739 15:12
Dose optimisation in spinal computed tomography for planning of scoliosis surgery
Y. Klosterkemper, M. Konieczny, T. Hesper, J. Aissa, G. Antoch, J. Boos; Düsseldorf/DE (Yan.Klosterkemper@med.uni-duesseldorf.de)

Purpose: To assess the potential for dose optimisation in patients with adolescent idiopathic scoliosis (AIS) undergoing preoperative spinal CT.

Methods and Materials: Ten patients with AIS (3 male, 7 female, 18±11 years) were included in this prospective study. CT examinations were performed using a dedicated reconstruction software. Two spinal surgeons blinded to the dose level independently and randomly measured the size of each pedicle for screw size selection. Additionally, the confidence in the measurements was assessed (1=very confident in the measurement, 1=measurement cannot be performed with any confidence). Two radiologists rated the image quality for the assessment of bone and soft tissue structures (5=excellent, 1=non-diagnostic). Bonferroni was used for multiple testing (p<0.0125).

Results: Pedicle length rate was 88% with no significant differences between 100% and 50% reconstructions (36.4mm/4.1mm vs 36.6mm/4.1mm) whereas both measurements decreased with further dose reduction (20%: 36.1mm/4.1mm; 10%: 35.5mm/4.0mm; 5%: 34.6mm/3.9mm). Confidence in the measurements was excellent at 100% and 50% (all ratings of 5) and
decreased with further dose reduction (20%: 4.7; 10%: 3.7; 5%: 2.5). Image quality decreased with decreasing dose (4.9±0.4 for 100% to ±1:0 for the 5% reconstructions; p<0.001, respectively). For bone assessment, the image quality was comparable between 100% and 50% reconstructions (4.9±0.4 vs 4.7±0.5).

Conclusion: Dose of preoperative spinal CT in AIS patients can be reduced to 50% without impairment of pedicle size measurements or surgeons' confidence in planning the operation.

B-1740 15:20
Radiation exposure during radiographic and computed tomography lumbar spine imaging for adults
C. Gernhardt, N. Guberina, M. Burggraf, U. Dietrich, J. Theysohn, M. Forsting; Essen/DE

Purpose: The purpose of this study was to examine radiation dose levels and image quality of important lumbar spine imaging techniques of major clinical concern.

Methods and Materials: In a retrospective study design 41 patients received both (A) radiographic and (B) computed tomography of the lumbar spine. Patients were examined at the single-source CT-scanner SOMATOM Definition AS+, dual-source SOMATOM Definition Flash and SOMATOM Force between March 2015 and March 2018. Important CT parameters and dose descriptors like CTDIvol, DLP and DAP were examined. Additionally, effective and organ doses were calculated using estimated patient factors by Monte Carlo simulation, following IRCP 103 recommendations. Intermodality comparison of radiation exposure and image quality was performed in this ideally matching patient collective.

Results: The mean effective dose [median, CI] for a standardised lumbar spine imaging is summarized as follows: (A) 0.27 mSv [0.21 mSv, CI 0.15 - 0.36] and (B) 5.56 mSv [4.90 mSv, CI 3.34 - 6.30]. Image quality on a five-pointed Likert scale is rated as follows: (I) delineation of spinal disc herniation (A) 0.8 and (B) 3.6; (II) delineation of spinal canal stenosis (A) 2.8 and (B) 4.1; (III) postoperative control, spinal fusion assessment and exclusion of vertebral body sintering (A) 3.1 and (B) 4.2.

Conclusion: This is the first data acquisition of radiation exposure during important lumbar spine imaging techniques in an ideally matching patient collective. The assessment of radiation exposure is crucial for the determination of diagnostic reference levels and choosing the best imaging protocol for clinical questions.

Musculoskeletal

SS 1910b
Spine and peripheral nerve imaging

Moderators:
N.N.
G. Bodner; Vienna/AT

K-41 14:00
Keynote lecture
C. Martonelli; Genoa/IT

B-1741 14:09
Spinal osseous lesions in tuberculosis
F. Düzgün, G. Yılmaz Ovali, I.S. Örgüc; Manisa/TR (fatihdzgn@yahoo.com)

Purpose: To characterize bone lesions incidentally detected in abdominal and thorax computed tomography (CT) and magnetic resonance imaging (MRI) scans in tuberculosis patients.

Methods and Materials: Twenty-three patients were examined retrospectively for the presence of spinal, thoracic and abdominal CT or MRI scans performed for other components of tuberculosis. Only 7 patients had at least one of the above mentioned studies.

Results: All of six adult patients had sclerotic bone lesions on thoracic, lumbar vertebra, sacrum and iliac bones, which distributed around the subchondral bone surrounding the spinal canal in a specific pattern. No sclerotic bone lesion was determined in the pediatric patient. Lesions were mostly located in posterior elements and sacrum was involved in all patients.

Conclusion: Recognition of sclerotic bone lesions is useful for supporting the clinical diagnosis of tuberculosis and differing from osteoablast change as well.

B-1742 14:17
Application of 3.0T magnetic resonance diffusion tensor imaging in diagnosis of discogenic low back pain
S. Tian, H. Yuan; Beijing/CN (ts@bjmu.edu.cn)

Purpose: The aim of our study is to observe the morphology and integrity of annulus fibrosus by diffusion tensor imaging (DTI), and quantitatively analyse the annulus fibrosus by measuring the apparent diffusion coefficient (ADC) and fractional anisotropy (FA).

Methods and Materials: Patients with recurrent low back pain and healthy volunteers were enrolled in the study over a continuous period of time. The ADC and FA values at the posterior margin of the annulus fibrosus were measured by conventional lumbar MR sequence and axial DTI of L3-S1 levels (3.0T). The responsible intervertebral discogenic low back pain segment was determined by discography. The ADC and FA values were measured at the posterior margin of the annulus fibrosus of the segment.

Results: 30 subjects in the experimental group and 24 subjects in the control group were included in the study. There was no significant difference in demographic parameters and the area of region of interest (ROI) measured manually between the two groups. The ADC value of ROI in the experimental group was significantly higher than that in the control group (9.84±4.01 vs. 6.10±3.17, p=0.0002), and the FA value was significantly lower than that in the control group (0.23±0.150 versus 0.34±0.201, p=0.007).

Conclusion: This is the first data acquisition of radiation exposure during interventional discogenic low back pain.

B-1743 14:25
Diffusion tensor imaging with quantitative evaluation of sciatic nerve within the pelvis in patients with non-contributory lumbar spine magnetic resonance imaging in radiculopathy
M. Catania1, G. Follì, A. Beltramello2, G. Carbognin3,1, Verona/T, 2Negrar/IT (id634atta@student.univr.it)

Purpose: Diffusion tensor imaging with quantitative evaluation of sciatic nerve within the pelvis in patients with non-contributory lumbar spine MRI in radiculopathy.

Methods and Materials: 32 consecutive sciatica patients with negative lumbar MRI were studied between October 2016 and February 2018 with DTI sequence of the pelvis (TR/TE 5800/97 ms; b=1000; slice thickness 3.5 mm; directions=20) using a 1.5T scanner (Siemens Aera). DTI data were post-processed by two radiologists blinded to clinical data. Each radiologist placed two ROI on the nerve roots at three different levels within the pelvis on both sides and the mean value was used for further analysis. Clinical findings served as the standard of reference. Diagnostic accuracy values of the FA numbers using ROC curves and relative AUC were calculated. Inter-observer and intra-observer agreements and continuous and categorical variables were calculated. A value of p<0.05 was considered statistically significant.

Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. The FA values were significantly different between suffering nerve roots (178± 48; range 146-285) and spared side (296±52; range 221-412) with a p value <0.001. The ROC curve analysis revealed an AUC of 0.816 (95% confidence interval: 0.682-0.874). Using a FA of 220 as cutoff to identify suffering nerve roots, the sensitivity, specificity, PPV, NPV and accuracy were 81.8, 95.4, 90.0, 91.3 and 90.9%. The inter-observer and intra-observer agreements were near perfect.

Conclusion: DTI can quantitatively demonstrate the presence of suffering sciatic nerve roots within the pelvis.

B-1744 14:33
Preoperative and postoperative strain elastography, and shear wave elastography findings of the sciatic nerve in patients with unilateral lumbar disc herniation
V. Sundadi, Y.O. Çeçen1, M. Ogden1, M.H. Akgül1, A. Dogan2, M.F. Ozveren1,2, Kirikkale/TR, 1Kirkam, 2Karaman Maras/ (vedoctor@hotmail.com)

Purpose: The aim of this study was to compare preoperative and postoperative findings of the sciatic nerve using B-mode ultrasound (US), strain elastography (SE), and shear wave elastography (SWE) in patients with unilateral lumbar disc herniation.

Methods and Materials: This prospective study was conducted with a pre-test and post-test design. Preoperative and postoperative (one month after surgery) B-mode ultrasound, SE, and SWE findings of the patients who underwent unilateral spinal decompression surgery were compared. The cross-sectional area (CSA) was measured with the direct tracing method using an electronic caliper.

Results: A total of 20 patients (9 males, 11 females) with a mean age of 46.2±13.1 years were included. The CSA, diameter, SWE values of the sciatic nerve were significantly higher in the involved side compared to those of the non-involved side (p<0.05). Blue and blue-green were the most common
B-1745 14:41
Pilot study on radiomics of peripheral nerves: feasibility of quantitative imaging phenotyping on magnetic resonance imaging
A. Tagliafico, F. Ross, F. Valdora, M. Grandis, L. Benedetti, B. Bignotti, A. Schenone, C. Martinoli; Genoa/IT (federossi0590@gmail.com)
Purpose: To study radiomics features of the peripheral nerve MRI in normal and pathological peripheral nerves.
Methods and Materials: We retrospectively reviewed clinical 1.5T MRI data from January 2016 to January 2018 of 20 adult patients (11 men and 9 women; mean age 54.2±3.7) with peripheral neuropathy and 20 age- and sex-matched controls (12 men and 8 women; mean age 56.4±3.9). Radiomic analysis was done on fast spin echo axial T1-weighted images. Regions of interest (ROIs) were done by two radiologists in consensus. N=104 radiomics features were extracted and evaluated. Mann-Whitney U test for unpaired data with 1000 bootstraps samples was used to compare radiomics features of normal and pathological peripheral nerves. Reading time was also estimated.
Results: The pathological group included systemic neuropathies (n=8/20), Schwannomas (n=2/20), diabetic neuropathies (n=2/20), entrapments (n=5/20), post-traumatic/post-surgical neuropathies (3/20). Statistically significant differences (p<0.05) were found in n=22/104 (21%) features. N=5/22 features were shape based, n=7/22 were first-order features, n=10/22 features were grey-level run length matrix (GLRLm). Mean time to perform radiomics analysis was 3±45 minutes hours per patient.
Conclusion: Radiomics analysis in MRI of peripheral nerves is feasible and found differences between normal and pathological nerves in n=22/104 features.

B-1746 14:49
Diffusion tensor imaging and tractography acquired with magnetic resonance imaging for preoperative assessment of benign peripheral nerve sheath tumours
Purpose: To assess the diagnostic potential of fibre tractography and diffusivity analysis based on diffusion-weighted (DW) sequences for preoperative differentiation of benign peripheral nerve sheath tumours.
Methods and Materials: In 17 patients with histologically confirmed schwannomas and 5 patients with neurofibromas (mean age 41.8±17.1, 13 women) 3T MR imaging was performed including a fat-suppressed 3D DW-TSE sequence (TR/TE=1800/33ms; b-values=0,400) comprising 6 diffusion directions for diffusion tensor (DT) imaging analysis. DT were computed from iso-DW imaging using a bi-exponential fit, and fibre tracts were determined. Mean diffusivity was computed from derived Eigenvalues. Fascicle visualization was graded using a four-point scale ranging from poor to very good. Tumour location in relation to nerve fascicles and the number of fascicles were noted. MR imaging findings were compared to analogous intraoperative findings. Agreement of MR and intraoperative findings was calculated using Cohen's kappa.
Results: Fascicle visualization was graded as very good/good in 82%. Schwannomas were significantly more often located eccentrically (94.1%) than neurofibromas (0%; P<0.01). Tactography revealed fascicles to be significantly more often continuous in schwannomas (88.9%) than in neurofibromas (0%; P=0.014). Mean diffusivity in schwannomas (1.94±0.40 x10^-3 mm²/s) was significantly higher than in neurofibromas (0.89±0.21 x10^-3 mm²/s; P<0.001). Fascicle courses around the tumour as graded on MR and intraoperatively showed a substantial agreement (k=0.78).
Conclusion: Preoperative diffusion-weighted imaging-based fibre tractography and diffusivity analysis accurately differentiated between schwannomas and neurofibromas and showed a high agreement with intraoperative findings and thus could support individual treatment and surgical planning.

B-1747 14:57
Sonographic mapping of brachial plexus and comparison with magnetic resonance imaging and electrophysiological studies
A. Agarwal; New Delhi/IN (ayushagarwal8.9@gmail.com)
Purpose: To compare ultrasonography (USG) with MRI and electromyography/nerve conduction studies (EMG/NCV) for evaluating the brachial plexus pathology.
Methods and Materials: Thirty patients with clinical suspicion of brachial plexus involvement underwent sonography of brachial plexus on both sides.

B-1748 15:05
High-resolution ultrasound of the superficial sensitive nerves of the arm and the forearm: anatomy, scanning technique and clinical relevance
R. Piccasso1, F. Zaatini2, F. Pistola1, M. Miguel Perez1,2, C. Martinoli1,2; Genoa/IT, 1Barcelona/ES (riccardo.picasso@gmail.com)
Purpose: The aim of this study was to describe the potential role of high-resolution ultrasound (US) for evaluation of superficial sensitive nerves of the arm and forearm.
Methods and Materials: After US-guided percutaneous lateral injection, n=3 cadaveric limbs were dissected to identify the course of the medial cutaneous nerve of the arm (MCNA) and the medial (MCNf), lateral (LCNf) and posterior (PCNf) cutaneous nerves of the forearm and determine whether US is able to localize these small nerves. A consecutive series of n=11 patients who had sensory disturbances in the territory of the MCNA, MCNf, PCNf and LCNf were examined with US using a 17-5MHz transducer. One patient had prolonged arm compression by a plaster cast, n=3 underwent a penetrating injury along the nerve course and n=1 had a history of repeated cannulations of a forearm vein. USS was performed with symptoms of superficial neuropathy in absence of any history of trauma.
Results: Cadaveric dissection confirmed that US-guided injections placed lateral into and around the MCNA, MCNf, PCNf and LCNf in all patients. In 10/11 patients, US allowed detection of defined nerve abnormalities. Pathological findings included n=4 fusiform neuromas and/or fibrous encasement, n=3 schwannomas, n=1 neurofibroma, n=1 intraneuronal ganglion cyst arising from the radiocarpal joint and n=1 mechanical instability at the superficial level.
Conclusion: High-resolution US can identify the MCNA, MCNf, PCNf and LCNf and characterize their abnormalities providing unique information about these small nerve branches.

B-1749 15:13
Therapeutic implications of ultrasound of peripheral nerves in leprosy
Y. Aswani1, S. Saifi2; 1Udaipur/IN, 2Mumbai/IN (aswanyashant@gmail.com)
Purpose: Leprosy and lepra reactions have the same treatment regimen except steroids in the latter. Lepra reactions may be identified on clinical and histopathological grounds. However, they may be clinically silent as well. Neuritis as a result of lepra reactions may cause permanent disability within 24 hours of its onset. The aim of this study is to determine ultrasound criteria to distinguish involvement of peripheral nerves due to leprosy from lepra reactions.
Methods and Materials: It was a retrospective analysis of all new leprosy cases between September 2014 and August 2015 at a tertiary care institute. Leprosy was diagnosed on clinical findings and histopathological skin lesions. However, lepra reactions were diagnosed on clinical basis only. Nerve ultrasound findings of these patients were analysed (transducer: 6.8-8.4 MHz). Pathological findings included n=4 fusiform neuromas and/or fibrous encasement, n=3 schwannomas, n=1 neurofibroma, n=1 intraneuronal ganglion cyst arising from the radiocarpal joint and n=1 mechanical instability at the superficial level.
Conclusion: USG has the potential to detect nerve abnormalities in leprosy patients and may determine the etiology of the nerve thickening.

Sunday
B-1750 15:21
Time to replace T2-STIR with diffusion-weighted imaging for visualisation of nerve disorders?
S. Raja, H. Mahajan, M. Bamwai, V. Mahajan, V. Venugopal; New Delhi/IN
drharshmahajan@gmail.com

Purpose: To determine if diffusion-weighted imaging of nerves can provide additional information or change the diagnosis compared to T2/STIR imaging.

Methods and Materials: 88 MRI scans (48 lumbar plexus, 24 brachial plexus, 16 peripheral nerves) performed on a 3.0T MR750w (GE Healthcare, USA) to assess nerve damage/disease were extracted from PACS, anonymised and segregated into scans with T2w STIR (2.5-5mm/0-1mm gap; TR 5150ms, TE 48ms, T1 187-188ms, bandwidth 62.6 kHz, FOV 24x24, matrix 28x128), structural nerve imaging (SNI) and diffusion-weighted (4mm/1mm overlap, TR 8743, TE 63.5, T1 249.5, bandwidth 250kHz, FOV 40x40cm, matrix 64x128), functional nerve imaging (FNI). Scans were read by a senior specialist radiologist (16 years’ experience). Visibility of focal signal abnormality, diffuse signal abnormality, nerve fibre continuity and muscular changes were recorded in each scan (present vs absent). Results from both sets of images were compared and the value of functional nerve imaging was evaluated.

Results: Overall, FNI changed the diagnosis in 58 (66%) cases compared to SNI. The number of cases where the diagnosis changed in lumbar plexus, brachial plexus and peripheral nerves were 36 (75%), 16 (67%) and 5 (31%), respectively. Findings visualised on FNI but not on SNI were focal signal abnormalities (24/27%) and diffuse signal abnormalities (39/45%). Nerve fibre continuity and muscular changes appeared similar on both with no change reported in 82 (93%) and 85 (97%) scans.

Conclusion: Diffusion-weighted imaging of nerves, especially for visualisation of the lumbar and brachial plexus, on 3.0T MR, adds to the diagnosis and could replace T2-STIRw structural imaging.

14:00 - 15:30 Studio 2019

Imaging Informatics

SS 1905a
Machine learning in chest radiology
Moderators: N.N.
A. Farchione; Rome/IT

B-1751 14:00
Evaluation of deep learning software tool for CT-based lung nodule classification
J.T. Murchison, G. Ritchie, D. Senszak, E.J.R. van Beek; Edinburgh/UK
edwin-vanbeek@ed.ac.uk

Purpose: A new fully automatic deep learning software tool (CAD) was developed to facilitate pulmonary nodule management on chest CT. This study was aimed to assess the clinical performance of the tool for classifying pulmonary nodules.

Methods and Materials: A total of 314 Chest CT scans from unique subjects were selected from the NHS Lothian database. A panel of experienced thoracic radiologists reviewed the CT scans for the presence of pulmonary nodules and subsequently determined the composition (solid or sub-solid). A reference standard for the classification of pulmonary nodules was created based on the majority consensus of the panel.

Results: A total of 325 solid nodules and 57 sub-solid nodules were included in the reference standard. The sensitivity, specificity, positive predictive value and negative predictive value of CAD for determining the composition of solid nodules were 98.8%, 68.4%, 90.7% and 94.7%, and 68.4%, 98.8%, 94.7% and 90.7% for sub-solid nodules, respectively. The accuracy and kappa of CAD for determining the composition (solid vs sub-solid) of a pulmonary nodule was 94.2% and .77.

Conclusion: The CAD software yielded a high accuracy of 94.2% and a kappa score of .77 for determining the composition (solid, sub-solid) of a pulmonary nodule.

Author Disclosures:
E.J.R. van Beek: Advisory Board; Aidence, IMBIO, CEO; QCTIS, Consultant; Mentholatum. Founder; QCTIS. Research/Grant Support; Siemens.

B-1752 14:08
Improved pulmonary nodule malignancy prediction with surrounding tissues
K. Liu1, W. Tang2, C. Xia3, Y. Deng4, R. Zhang1, L. Fan1, Y. Xiao5, S. Liu1; 1Shanghai/IN, 2Beijing/CN (469844216@qq.com)

Purpose: In this paper, we examined the influence of surrounding tissues on nodule malignancy classification.

Methods and Materials: The method combined ResNet and U-Net to predict nodule malignancy. Chest CT images containing 942 nodules (325 benign, 617 malignant) were used for training, and another 200 nodules (78 benign, 122 malignant) were collected separately as testing set. The malignancy of nodule was pathology proven. We resampled the images into 0.6 mm pixel space in all dimensions and processed the images in three ways: (1) small tissue condition, cubes (64³x64³x64³) with target nodules in the centre; (2) large tissue condition, cubes (96³x96³x96³) which contained a larger scope of surrounding tissues; (3) without tissue condition, nodules only with no surrounding tissues. We trained and tested three different models with the above data, respectively, and used chi-squared test to compare the results.

Results: The presence of surrounding tissues significantly affected prediction accuracy, χ² = 8.61, p = .013. Specifically, the large tissue condition produced the highest accuracy of 86%, which was significantly higher than the without tissue condition, χ² = 8.34, p = .004. Moreover, including surrounding tissues significantly improved malignant nodule sensitivity (κ² = 19.37, p < .001). Yet, whether surrounding tissues were included or not did not affect specificity (κ² = 1.29, p = .52).

Conclusion: Our study showed that including surrounding tissues could improve pulmonary nodule classification, especially the sensitivity of malignant nodules. This could provide new directions to radiomics research, where conventional methods segment nodules only.

Author Disclosures:

B-1753 14:16
Automated classification of chest x-rays as normal/abnormal using a high sensitivity deep learning algorithm
V. Venugopal1, M. Tadeppalli1, B. Reddy2, A. Modi3, S. Gupta1, P. Warier1, P. Rao1, H. Mahajan1, V. Mahajan1; 1New Delhi/IN, 2Mumbai/IN (drharshmahajan@yahoo.com)

Purpose: Majority of Chest X-Rays (CXRs) performed globally are normal and radiologists spend significant time ruling out these scans. We present a Deep Learning (DL) model trained for the specific use of classifying CXRs into normal and abnormal, potentially reducing time and cost associated with reporting normal studies.

Methods and Materials: A DL algorithm trained on 1,150,084 CXRs and their corresponding reports was developed. A retrospectively acquired independent test set of 430 CXRs (295 abnormal, 145 normal) was analysed by the algorithm, classifying each X-Ray as normal or abnormal. Ground truth for the independent test set was established by a sub-specialist chest radiologist with 8 years’ experience by reviewing every Chest X-ray image with reference to the existing report. Algorithm output was compared against ground truth and summary statistics were calculated.

Results: The algorithm correctly classified 376 (87.44%) CXRs with a sensitivity of 97.19% (95% CI - 94.54% to 98.78%) and specificity of 68.28% (95% CI - 62.04% to 75.75%). There were 46 (10.70%) false positives and 8 (1.86%) false negatives (FNs). Out of the 8 FN s, 3 were designated as clinically insignificant (mild, inactive fibrosis) and 5 as significant (rib fractures, pneumothorax).

Conclusion: High-sensitivity DL algorithms can potentially be deployed for primary read of CXRs enabling radiologists to spend appropriate time on abnormal cases, saving time and thereby cost of reporting CXRs, especially in non-emergency situations. More in-depth prospective trials are required to ascertain the overall impact of such algorithms.

Author Disclosures:

B-1754 14:24
Efficacy and clinical and radiological influencing factors on bone suppression by deep learning algorithm in digital chest radiograph
H. Moon, G.S. Hong, Y. Byeon, C. Lee; Seoul/KR (ashey86@gmail.com)

Purpose: To determine the efficacy and influencing factors on bone suppression by deep learning algorithm (DLA) in the digital chest radiograph (CXR).

Methods and Materials: Among 4551 patients who underwent CXR and had bone suppression image (BSI) generated by DLA from 2017 to 2018, 400 patients were randomly selected. Two radiologists rated the bone suppression
at each of 2400 lung regions in consensus using 5-point scales from no bony change (score 1) to definite bone removal (score 5). Technical success of DLA on bone suppression was 116/168 (69%). The per-patient efficacy of DLA was correlated with patient’s clinical and radiological factors (i.e., patient’s age, sex, position, rotation degree, inspiration degree, cardiothoracic ratio [CT ratio], presence or absence of lung lesion, and body mass index [BMI]) using multiple logistic regression model and the per-regional efficacy in 6 regions was compared using ANOVA.

Results: The per-patient efficacy of DLA on bone suppression was 67% (n=268/400). Bone suppression of DLA was significantly influenced by patient’s position (OR: 1.55, 95% CI 1.14-2.15) and presence of lung lesion (OR: 0.51, 95% CI 0.33-0.80), not by patient’s age, sex, rotation degree, inspiration degree, CT ratio, and BMI. Per-regional efficacy was significantly differed according the lung regions (P < 0.0001).

Conclusion: Patient’s position and presence of lung lesion are significant independent influencing factors for BSI generation using deep learning. The efficacy of DLA on bone suppression varies significantly with location.

B-1754 14:32

3D computer-aided CT texture analysis with machine learning: capability to play as second reader for radiological finding assessment in interstitial lung disease patients

Purpose: To evaluate the capability of a 3D computer-aided CT texture analysis with machine learning to play as second reader for radiological finding assessment in patients with interstitial lung disease (ILD).

Methods and Materials: 3D computer-aided CT texture analysis software developed by means of machine learning method was tested by thin-section CTs in 81 ILD patients. In each patient, thin-section CT findings were divided into 7 different radiological findings as follows: 1) normal lung, 2) ground-glass opacity (GGO), 3) reticulation, 4) emphysema, 5) nodular lesion, 6) consolidation and 7) honeycomb. Then total 350 lesions were randomly selected, and classified by 2 radiologists who were not involved in the study. To determine the inter-observer agreements among both readers and software, kappa statistics were performed. In addition, agreement accuracy for radiological finding evaluation were also evaluated between software and consensus results.

Results: Inter-observer agreement among both readers and the software were determined as substantial (reader 1 vs. reader 2: \(\kappa = 0.73, p<0.0001\); reader 1 vs. software: \(k = 0.70, p = 0.0001\)); reader 2 vs. software: \(k = 0.64, p = 0.0001\)). Agreement between consensus result and the software was also evaluated as almost perfect (\(k = 0.84, p = 0.0001\)). Accuracy of this software was determined as 79.4%.

Conclusion: 3D computer-aided CT texture analysis with machine learning has a potential to play as second reader for radiological finding assessment in interstitial lung disease patients.

B-1755 14:42

Towards a deep learning model for exhaustive chest x-ray pathology classification

Purpose: Despite increasing volume of other imaging techniques, chest x-rays (CXRs) still make up a large subset of all radiological studies. Thus, increasing accuracy and productivity of radiologists reading CXRs remains of paramount importance. However, CXRs constitute a stark challenge for computer-aided diagnosis. This is because (i) CXRs are two-dimensional projections of three-dimensional data; (ii) at least three major different types of CXRs exist (i.e., AP/PALAT); (iii) many different radiological findings of the lungs, heart, and the spine are observed from a single CXR; (iv) in clinical practice, additional information besides the image is used to make radiological conclusions. In this work, we attempt to tackle challenges (i)-(iii) by creating a deep learning (DL) model which takes AP/PA/LAT images as input, and outputs scores pertaining to 76 different radiological features and their localizations. We leave (iv) for future work.

Methods and Materials: A database of CXR images (n = 301 255) was used. The data was divided into a training set (70%), a testing set (20%), and a validation set (10%). A single convolutional neural network (CNN) based on Inception was used to construct a model for CXR pathology classification.

Results: Our model achieves average area under receiver operating curve (AUC) of 93%.

Conclusion: We have created a Deep Learning model that covers 76 chest x-ray radiological findings with an AUC value of 93%. This model shows promise for various applications, such as patient triage and pre-generating structured reports.

B-1756 14:56

CT-based radiomics predict immune-iherapy response in patients with non-small-cell lung cancer

S. Wang, J. Gong, H. Yu, W. Peng; Shanghai CN

Purpose: To predict the disease control rate (DCR) to immune-checkpoint inhibitors (nivolumab) therapy for non-small-cell lung cancer (NSCLC) patients, we developed a radiomics analysis approach based on computed tomography (CT) images.

Methods and Materials: Twenty-seven staged IV NSCLC patients after failed platinum-based chemotherapy were included. First, the enhanced CT images of these patients were divided into baseline group and one cycle therapy group. Second, we applied a segmentation method to segment the targeted lung nodules and computed 842 quantitative imaging (QI) features from each segmented nodule from CT images. Third, two random forest (RF) classifiers were built using QI features extracted from baseline and therapy CT images, respectively. Then, a Relief feature selection method was used to remove redundant QI features from the initial feature pools. Finally, a leave-one-case-out (LOCO) cross-validation method was applied to train and test the classifiers by using selected features.

Results: Areas under receiver operating characteristic curves (AUC) generated by using baseline and one cycle therapy CT scans were 0.81±0.08 (95% CI: [0.60, 0.94]) and 0.68±0.11 (95% CI: [0.44, 0.86]), respectively. The AUC value yielded by baseline group data was significantly higher than one cycle therapy group data.

Conclusion: This study demonstrates (1) feasibility of predicting the DCR to immune-therapy by using CT-based radiomics analysis and (2) higher performance by applying baseline group CT scans than using one cycle therapy data.
B-1759 15:04
Evaluation of deep learning software tool for CT-based lung nodule detection
J.T. Murchison, G. Ritchie, D. Senyszak, E.J.R. van Beek; Edinburgh/UK
(jedwin-vanbeek@ed.ac.uk)

Purpose: A fully automatic deep learning software tool (CAD) was assessed for the clinical performance of detecting pulmonary nodules.

Methods and Materials: CT studies of 273 patients were selected from the NHS Lothian database based on the inclusion criteria for lung screening (age 50-74 years, current or past smokers). A panel of experienced thoracic radiologists was evaluated for the presence of pulmonary nodules, alternatively reading without (UNAIDED) and with (AIDED) CAD results. Majority consensus served as the reference standard. One-tailed Welch’s t test was used to compare UNAIDED vs AIDED mean sensitivity at p<0.05.

Results: 269 nodules with largest axial diameter between 25mm and ≤30mm were included. The sensitivity of UNAIDED and AIDED radiologists was 71.9% (95% CI: 66.0%, 77.0%) and 80.3% (95% CI: 75.2%, 85.0%) (p < 0.01) at an average number of false positives per scan (FPPR) of 0.11 and 0.16, respectively. In a stand-alone test, the sensitivity of CAD was equivalent to that of UNAIDED radiologists at a FPPR of 0.62 and was equivalent to AIDED radiologists at a FPPR of 0.88. At a FPR of 1.0 per scan the sensitivity was 82.3%, outperforming both UNAIDED and AIDED radiologists.

Conclusion: The use of CAD yielded a nearly 10% higher sensitivity, compared to readings without CAD, with minimal increase of the false-positive rate. In a stand-alone performance, the CAD system outperformed radiologists reading with and without the CAD system at an average false-negative rate of 1.0 per scan.

Author Disclosures:
E.J.R. van Beek: Advisory Board; Aidence, IMBIO. CEO; QCTIS. Consultant; Mentholatum. Founder; QCTIS. Research/Grant Support; Siemens.

B-1760 15:12
A new architecture of the computer-aided system for lung cancer diagnostics
A.A. Meido, L.V. Ulkin, V.M. Moiseenko, M.A. Ryabinin; St. Petersburg/RU (Anna.getDeclared@yandex.ru)

Purpose: To develop a new architecture for computer-aided system in lung cancer diagnostics.

Methods and Materials: Open datasets LIDC, LUNA16 for training the system, own dataset LIRA (lung images resource annotated) for testing the system. A new classification approach based on dimension reduction by means of histograms of chord lengths and radiodensities for every segmented lung nodule. A new approach based on applying the Siamese neural network for non-typical lung nodules. Data processing and training the computer-aided system were carried out using a Supercomputer of Peter the Great, St.Petersburg Polytechnic University.

Results: The following accuracy measures are obtained by applying the first approach (histograms): sensitivity is 93%, specificity is 97% and accuracy is 95%. Accuracy measures by applying the Siamese neural network are recently investigated. A new dataset LIRA is collected, which contains a set of "typical", “non-typical” lung cancer nodules and “non-cancer” lung nodules.

Conclusion: The developed system is effective for detecting the lung nodules. An advantage is the ability of functioning independently on CT equipment. The use of the dimension reduction improves the training and the usage of the system. The proposed Siamese neural network is a perspective tool for differential lung disease detection and allows us to apply small datasets for training.

B-1761 15:20
Fully automatic detection and segmentation of thoracic lymph nodes in MSCT scans of the chest using deep learning
H. Carolus1,2, A.I. Iuga1, T. Brosch1, R. Wiemker1, T. Klinder1, D. Maintz2, A. Hönik1, M. Püsken1,*; Hamburg/DE, 2Cologne/DE (heike.carolus@philips.com)

Purpose: Detection of malignant lymph nodes (LN) in CT examinations of cancer patients is indispensable for the correct TNM staging, directly impacting therapeutic decisions. Nevertheless, especially mediastinal and hilar LNs can be easily overlooked due to their small size and comparatively low contrast. To overcome this diagnostic challenge, we propose a deep learning algorithm for LN segmentation in chest CT images.

Methods and Materials: 89 CT scans from a public CT lymph node database (http://doi.org/10.7937/K9/TCIA.2015.AO1DCCM) were analysed. Available landmark annotations of 388 LNs were extended to obtain a significantly more comprehensive and high-quality database suitable for algorithmic training. All visible LNs with a short-axis diameter (SAD) of ≥ 5 mm were segmented semi-automatically yielding a set of 4276 mediastinal, hilar and axillary LNs, i.e. 48 LNs per patient on average. Using these data, a fully convolutional net based on 3D fovea patches was trained with 4-fold cross-validation for automatic detection and segmentation of thoracic LNs.

Results: For enlarged, clinically relevant LNs (SAD ≥ 10 mm), 78% sensitivity was achieved and 60% for small LNs with 11.8 false-positive detections per volume. No significant performance differences between mediastinal and hilar area were found. In 94.1% of the cases with enlarged LNs, at least one LN is detected as enlarged.

Conclusion: Based on the extensive and rigorous annotations, the proposed 3D deep learning approach achieves state-of-the-art performance for enlarged, potentially malignant LNs. This allows this CAD system to support the radiologists, increasing their detection rate of thoracic LNs and accelerating the diagnostic process.

Author Disclosures:

14:00 - 15:30 Coffee & Talk 2
Abdominal Viscera

SS 1901a
Diagnosis of hepatocellular carcinoma: the LI-RADS perspective
Moderators: A. Ba-Ssalamah; Vienna/AT D. Christodoulou; London/UK

B-1762 14:00
Diagnostic accuracy of CEUS LI-RADS in characterisation of small liver nodules in patients at risk for hepatocellular carcinoma
J. Huang1, A. Lyschik1, J.-W. Li1, Y. Luo1, J.-B. Liu2, Q. Lu1, Chengdu/ CN, 1Philadelphia, PA/US (51867689@qq.com)

Purpose: To evaluate diagnostic accuracy of the Contrast Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS) on hepatocellular carcinoma (HCC) in small focal liver lesions (FLL) in patients at risk for HCC.

Methods and Materials: Patients at risk for HCC presenting with FLLs≤20mm were enrolled in this study. Each FLL was characterised according to the CEUS LI-RADS and American Association for the study of Liver Disease (AASLD) 2005 criteria with histology or CE-CT/CE-MRI or more than 12 months’ follow-up as reference standard.

Results: Totally 175 nodules in 172 patients were included. The mean nodule size was 16.1±3.4mm. Totally, 106 nodules were proved HCC by histology. The sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratio (+LR) of CEUS LR-5 and AASLD criteria for the diagnosis of HCC were 73.3% vs. 88.6% (P<0.05), 95.7% vs. 85.7% (P<0.05), 96.3% vs. 90.9% (P<0.05), 17.1 vs. 6.2 (P<0.05), respectively. The rate of HCC in CEUS LR-4 and CEUS LR-M was 50.0 % and 75.0 %, respectively. All cases of intrahepatic cholangiocarcinoma were characterised as LR-M by CEUS LI-RADS while classified as HCC by AASLD criteria.

Conclusion: CEUS LI-RADS performed well in characterisation of small FLLs in patients at risk for HCC. CEUS LR-5 demonstrated exceptionally high specificity, PPV and +LR compared to AASLD criteria for diagnosis of HCC with slightly lower sensitivity. CEUS LR-4 and CEUS LR-M categorisation is highly suspicious for malignancy, but not specific enough for HOC.

B-1763 14:08
Non-invasive imaging diagnosis of hepatocellular carcinoma in patients with both chronic liver disease and a history of extrhepatic primary cancer
M. Cho, C. An, K. Aljoqimian, M.-J. Kim; Seoul/KR (chom974@yuhs.ac)

Purpose: To evaluate the accuracies of the diagnostic criteria and various features for differentiating between hepatocellular carcinoma (HCC) and liver metastasis in patients at risk for both of them.

Methods and Materials: The study subjects were 59 HCCs and 45 metastases pathologically confirmed between 2008 and 2017 at a single institution. On 104 patients with both chronic liver disease (i.e., cirrhosis and chronic hepatitis B) and history of extrahepatic primary cancer. Dynamic contrast-enhanced magnetic resonance imaging or computed tomography images were retrospectively reviewed in consensus by two radiologists, based on Liver Imaging Reporting And Data System (LI-RADS) v2.08. Serum tumour markers, tumour multiplicity, and suspicious lymph node metastasis were also evaluated.

Results: Major features had sensitivities of 33.9-88.1% and specificities of 76.3-97.8% for HCC. LR-M features had sensitivities of 76.6-80% and specificities of 68.4-93.2% for metastasis. Elevation of tumour markers for metastasis, tumour multiplicity, and suspicious lymph node were more
frequently observed in metastasis than HCC (P <0.034). The sensitivity and specificity were 69.5% and 95.6% for HCC diagnosis by LR-5, and 85.1% and 89.1% for metastasis by LR-M. One of the two metastases categorized as LR-5 was smaller than 2 cm, and the other was accompanied by tumour multiplicity.

Conclusion: LI-RADS features and diagnostic criteria showed high accuracies in patients at risk for both HCC and metastasis. Radiologic and clinical ancillary findings suggestive of metastasis as warning signs may help minimize the risk of misdiagnosis of metastasis as definitely HCC in this patient group.

B-1764 14:16

A radiomics-clinical model to diagnose hepatocellular carcinoma: prospective comparison with the EASL and LI-RADS (2018) criteria

H. Jiang, X. Liu, J. Chen, L. Cao, Y. Wei, B. Song; Chengdu/CN (hanyr_jiang@foxmail.com)

Purpose: To develop a multidisciplinary radiomics-clinical diagnostic model for hepatocellular carcinoma (HCC) and to compare its accuracy with the 2018 version of European Association for the Study of the Liver (EASL) and liver imaging-reporting and data system (LI-RADS) criteria.

Methods and Materials: Ethical approval by the institutional review board and informed consent were obtained for this prospective study. From July 2015 to April 2018, consecutive patients with chronic liver diseases and suspected liver lesions were enrolled and underwent gadoteric acid-enhanced magnetic resonance imaging. We constructed a three-dimensional whole-lesion-based radiomics-clinical nomogram with the least absolute shrinkage and selection operator model and multivariate logistic regression analysis. The diagnostic accuracy of the radiomics-clinical model was validated in an independent cohort and compared with the EASL and LI-RADS criteria, as reviewed by two independent radiologists, with receiver operating characteristic analysis.

Results: A total of 164 nodules in 161 patients were included (mean size 5.4±2.67 cm, 129 HCCs). The sensitivity and specificity of the radiomics-clinical nomogram were 88% and 92% in the training cohort and 89% and 96% in the validation cohort, respectively. These measures were 96% and 60% for the EASL criteria and 92% and 89% for the LI-RADS criteria, respectively. The areas under the ROC curves of the radiomics-clinical model (0.890) and LI-RADS criteria (0.804) were significantly higher than that of the EASL criteria (0.781) (p<0.05 for both).

Conclusion: The radiomics-clinical model demonstrated similar overall accuracy to the LI-RADS criteria with markedly high specificity for HCC in high-risk patients.

B-1765 14:24

Value of targetoid appearance on T2-weighted imaging and signs of tumour vascular involvement for differentiating hepatocellular carcinoma (HCC) from other non-HCC liver malignancies

R. Cannella 1, T.J. Fraum 2, D.R. Ludwig 3, A.A. Borhani 1, K.J. Fowler 1, A. Furlan 4, Palermo/IT, 2 Saint Louis, MO/US, 3 Pittsburgh, PA/US, 4 San Diego, CA/US (rob.cannella@libero.it)

Purpose: To evaluate sensitivity and specificity of targetoid appearance on T2-weighted imaging and features of tumour vascular involvement for differentiating HCC from other non-HCC primary hepatic malignancies.

Methods and Materials: This is an IRB-approved retrospective study performed at two large liver transplant centres. The final population included 401 pathologically-proven lesions imaged between 2007 and 2017 with liver protocol contrast-enhanced CT or MRI. The cohort consisted of 172 intrahepatic cholangiocarcinoma and 91 combined hepatocellular-cholangiocarcinoma, with addition of 138 HCCs for control. Two abdominal radiologists (R1; R2) independently reviewed the imaging studies (119 CT, 282 MRI), recording the presence of the appearance on T2-weighted images and features of tumour vascular involvement including: encasement, attenuation, tethering, obstruction, and tumour in vein (TIV). Sensitivity and specificity of each feature were calculated for the diagnosis of non-HCC malignancy. The Cohen k test was used to assess the inter-reader agreement.

Results: The sensitivity and specificity of targetoid appearance on T2-weighted images for the diagnosis of non-HCC malignancy were 25.3% and 92.5% (R1; R2) and 98.3% and 97.4% (R1; R2), respectively. Among the features of tumour vascular involvement, those providing the highest sensitivity for non-HCC malignancy were vascular encasement (R1: 33.8%; R2: 38.0%) and obliteration (R1: 26.2%; R2: 32.3%). The highest specificity for non-HCC malignancy was provided by tethering (R1: 100%; R2: 97.1%) and occlusion (R1: 99.3%; R2: 99.3%). The inter-reader agreement was moderate to substantial (k=0.430-0.765).

Conclusion: Targetoid appearance on T2-weighted, vascular tethering and occlusion demonstrated strong inter-reader reliability and high specificity for non-HCC malignancy.

Author Disclosures:

A.A. Borhani: Consultant; Guebert; Other; Elsevier/Amirsys.
A. Furlan: Research/Grant Support; General Electric; Other; Elsevier/Amirsys.

B-1766 14:32

Imaging features of hepatocellular carcinoma: qualitative and quantitative comparisons between hepatobiliary and extracellular contrast-enhanced MRI

J. Song 1, S. Hwang 1, M.-S. Park 2, S. Park 2, M.-J. Kim 3, Y.-J. Choi 1, K. Han 1; 1 Seoul/KR, 2 Goyang/KR (hiwson@yuhs.ac)

Purpose: To compare the major imaging features of HCC on MRI with gadoxetate disodium (hepatobiliary agent, HBA) and gadobetate meglumine (extracellular agent, ECA).

Methods and Materials: Among surgically proven 185 HCCs in 169 patients with underlying liver dynamic MRI with either HBA (n=120) or ECA (n=49), 55 nodules for each of the two contrast media were matched according to the tumour size, Edmonson grade (major and worst), and gross type on pathologic specimen. For qualitative analysis, two board-certified radiologists independently reviewed dynamic enhancement patterns and capsule appearance. For quantitative analysis, the third radiologist measured signal intensity at each phase by placing the region of interest (ROI) for tumour and normal liver parenchyma. The lesion-to-liver contrast (LLC) and lesion-to-liver contrast enhancement ratio (LLCER) were calculated.

Results: On qualitative analysis, delayed phase (DP, 3 min) washout was more frequently seen with HBA (mean=90%, 49.5/55) than ECA (mean=73.6%, 40.5/55) (p=0.026). Capsule appearance was less frequently seen with HBA (mean=37.3%, 20.5/55) than ECA (mean=75.5%, 41.5/55) (p<0.001). On quantitative analysis, the LLC on AP was better with ECA (p<0.003) whereas LLC on DP was better with HBA (p=0.001). The LLCER from unenhanced to AP was higher with ECA (p=0.022) whereas LLCER from PVP to DP was higher with HBA (p=0.001).

Conclusion: The detection of DP washout, LLC on AP, and LLCER from PVP to DP was better with HBA, whereas detection of capsule, LLC on AP, and LLCER from unenhanced to AP was better with ECA.

B-1767 14:40

Radiologic-pathologic correlation of non-hypervascular hypointense nodules on gadoxetic acid-enhanced MRI: a multi-centre retrospective observational study

I. Joo 1, S. Kim, T. Kang, K. Lee, J. Lee; Seoul/KR

Purpose: To assess the distribution of pathologic diagnosis of non-hypervascular hypointense nodules (NHHNs) on gadoxetic acid-enhanced MRI (Gd-EOB-MRI) and to determine useful clinical and imaging features for differentiating histologic grades of NHHNs.

Methods and Materials: This multi-centre retrospective study included 334 NHHNs of <30 mm that were pathologically diagnosed as hepatocellular carcinomas (HCCs) or benign cirrhosis-associated nodules in 298 high-risk patients. Histologic slides of NHHNs were reviewed by central pathologic review to determine the final pathologic diagnosis. Two independent radiologists analysed imaging features, and any discrepancies were resolved by a third reviewer. Clinical and radiologic features were compared according to histologic diagnoses. Logistic regression analysis with generalized estimated equation was performed to find prediction factors to differentiate HCCs from benign nodules.

Results: By central pathologic review, NHHNs were confirmed as progressed HCCs in 147, early HCCs or dysplastic nodules (DNs) with HCC foci in 68, high-grade DNs in 92, and low-grade DNs or regenerative nodules in 27. According to the histologic categories, nodules were different in clinical and radiologic features: elevation of serum alpha-fetoprotein (210 ng/mL) was more frequently found in patients with HCCs than those with benign nodules, and MR imaging features including hypointensity on precontrast T1-weighted imaging, hypointensity on portal venous phase, hyper-intensity on T2-weighted imaging, restricted diffusion, and well-defined margin were suggestive of HCCs than benign nodules (Ps<0.05).

Conclusion: NHHNs on Gd-EOB-MRI correspond to the wide spectrum of pathologic diagnoses from RNs to progressed HCCs. Ancillary imaging findings are helpful to differentiate HCC from benign cirrhosis-associated nodules.

Author Disclosures:

J. Lee: Research/Grant Support; Grants from Bayer Korea Ltd.

B-1768 14:48

Diagnostic performance of hepatobiliary phase hypointensity and major imaging features for the diagnosis of HCC in lesions between 10 and 19 mm, and arterial phase hypervascularity

F. Vernuccio 1, R. Cannella 1, M. Meyer 2, K.R. Choudhury 2, M.R. Bashir 2, A. Furlan 4, D. Marin 3, Palermo/IT, 2 Durham, NC/US, 3 Pittsburgh, PA/US (federicavernuccio@gmail.com)

Purpose: To determine the diagnostic performance of hepatobiliary phase (HBP) hypointensity and major imaging features for the diagnosis of hepatocellular carcinoma (HCC) in lesions with arterial phase hypervascularity (APHE) between 10 and 19 mm categorised as LR-3 or LR-
B-1776 14:56
Predicting progression to hypervascular HCC in hypovascular hypointense nodules on gadoxetic acid-enhanced MR images in patients with chronic liver disease
W.S.R.V. Teerasamit; Bangkok/TH (mojamp@gmail.com)

Purpose: To identify the patient characteristics and MR imaging features of hypovascular hypointense nodule on hepatobiliary phase gadoxetic acid-enhanced MR imaging in patients with chronic liver disease associated to progression to hypervascular hepatocellular carcinoma (HCC).

Methods and Materials: The institutional review board approved this retrospective review of total 40 patients with 60 hypovascular hypointense nodules on hepatobiliary phase gadoxetic-enhanced MR images. Univariate and multivariate Cox regression analysis for the hypervascular HCC development were used to define the variables including initial nodule size, cause of cirrhosis, history of locoregional therapy of HCC, fat-containing, signal intensity on T1W, T2W, portal and equilibrium phases of dynamic phase, and DW images. Furthermore, cumulative percentage incidence of hypervascularity and growth rate was calculated by using receiver operating characteristic (ROC) curve.

Results: The prevalence of progression to hypervascular HCC was 45% (27 out of 60). Multivariable Cox analysis of developing hypervascularization was initial nodule diameter more than 1 cm (P=0.027; HR 2.52; 95% CI: 1.11-5.74) The mean growth rate was significantly higher in subsequent hypervascular nodules than in those without hypervascularization (P < 0.001). Cumulative risk incidence of hypervascularization at 3, 6, 12, 24 months were 5%, 20%, 35%, 44%, respectively.

Conclusion: Initial nodule diameter more than 1 cm is an independent risk factor for progression to hypervascular HCC in hypovascular hypointensity on hepatobiliary phases in patients with chronic liver disease.

B-1777 15:12
Liver imaging reporting and data system v2018: visualisation rate and diagnostic value of ancillary features favouring malignancy in observations at intermediate and high risk for HCC
R. Cannella1, F. Vernuccio, D. Marin, A. Furnari1, V. Palermo1, T. Palermo1, T. Durham, NC/US, T. Pittsburgh, PA/US (rob.cannella@libero.it)

Purpose: To assess visualisation rate and diagnostic accuracy of LI-RADSv2018 ancillary features (AFs) favouring malignancy in LR-3 and LR-4 observations on gadoxetate-enhanced MRI.

Methods and Materials: In this IRB-approved retrospective dual-institution study, we included consecutive patients at risk for HCC imaged with gadoxetate-enhanced MRI between 2009-2014 fulfilling the following criteria: i) at least one LR-3 or LR-4 ≥ 1 cm; ii) non-rim arterial phase hyperenhancement; iii) confirmation of benignity or malignancy by pathologic proof or imaging follow-up. Four readers recorded the LI-RADSv2018 AFs favouring malignancy. We compared difference in visualisation rates of AFs between benign lesions and HCCs and calculated sensitivity and specificity of each AF for the diagnosis of HCC. Significance was set at P-value <0.05.

Results: 205 observations were selected in 155 patients including 167 (81.5%) LR-3 and 38 (18.5%) LR-4. There were 126 (61.5%) HCCs and 79 (28.5%) benign lesions. A significantly larger number of AFs favouring malignancy was found in LR-3 and LR-4 that progressed to HCC compared to benign lesions (P <0.01 at LR-3 and P<0.001 at LR-4). The most common AFs favouring malignancy in HCCs included hepatobiliary phase hypointensity (P<0.001) and mild-moderate T2 hyperintensity (P<0.001). Sensitivity and specificity of AFs for the diagnosis of HCC were 2.4%-76.2% and 70.0%-100.0%, respectively. Hepatobiliary phase hypointensity yielded the highest sensitivity but the lowest specificity.

Conclusion: LR-3 and LR-4 progressing to HCC have a significantly higher number of AFs favoring malignancy compared to benign lesions. Among all AFs, hepatobiliary phase hypointensity yields the highest sensitivity for the diagnosis of HCC.

Author Disclosures:
A. Furlan: Research/Grant Support; General Electric. Other; Elsevier/Amirsys.

B-1772 15:20
Response assessment of HCC after locoregional therapy on gadoxetic acid-enhanced MRI: performance of the LI-RADS TR categorisation and added value of ancillary features
S. Kim, I. Joo, H.-C. Kim, S. Ahn, H.-J. Kang, S. Jeon, J. Han; Seoul/KR (shrimpkim90@gmail.com)

Purpose: To determine the performance of the liver imaging reporting and data system (LI-RADS) treatment response (LR-TR) categorization on gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) and to investigate the added value of ancillary features (AFs) to the conventional enhancement-based criteria for detecting viable tumours.

Methods and Materials: This retrospective study included 207 patients with Gd-EOB-MRI after locoregional treatment for hepatocellular carcinoma (HCC) and a reference standard for marginal recurrence (viable, n=107; non-viable, n=100). For each treated observation, two independent radiologists assigned treatment response categories (TR-nonviable, TR-equivocal, or TR-viable) according to different criteria: i) LR-TR, ii) TP-included: including transitional phase (TP) for determining washout, iii) AF-applied: applying AFs on hepatobiliary phase, diffusion-weighted imaging, and T2-weighted imaging for the category adjustment. Diagnostic performances of imaging criteria were compared using the McNemar test.

Results: For detecting viable tumours, LR-TR-viable resulted in sensitivities of 64.5% and 39.3%, specificities of 98.0% and 98.0%, and accuracies of 80.7% and 67.6% in reviewers 1 and 2, respectively. TP-included viable and AF-included viable showed significantly higher sensitivities (77.6% and 55.1%; 88.8% and 86.0%) than LR-TR in both reviewers (P<0.001), while their specificities (98.0% and 96.0%; 97.0% and 96.0%) were comparable to LR-TR (P>0.05). In addition, TR-equivocal was less frequently assigned on AF-applied (1.4% and 7.2%) than LR-TR (18.4% and 35.3%) or TP-included (7.7% and 25.7%) in both reviewers.

Conclusion: LR-TR on Gd-EOB-MRI provides specific diagnosis of viable tumours but shows limited sensitivity. By applying ancillary features in the category adjustment, more sensitive and confident diagnosis of recurrent HCC can be achieved.

Scientific Sessions

Neuro

SS 1911a

Contrast media and advances in neuro MRI
Moderators:
N.N.
D. Stoianov; Nis/RS

B-1773 14:00
Comparison of contrast-enhanced modified T1-weighted 3D TSE black blood and 3D MP-RAGE sequences for detection of meningeal enhancement
M.F. Froelich, R. Pons Lucas, E. Coppenrath, W. Sommer, K.M. Treitl, T. Saam, N.N. Sommer; Munich/DE

Purpose: To compare a contrast-enhanced modified T1-weighted 3D TSE black blood (T1-mVISTA) with a 3D gradient echo sequence (MP-RAGE) for the detection of meningeal enhancement in patients with suspected meningitis or meningiosis carcinomatosa.

Methods and Materials: We consecutively selected subjects with known meningeal affection from 10/2013 to 10/2017 for this retrospective study. All patients underwent T1-mVISTA (0.75-mm isotropic resolution) and MP-RAGE (0.8-mm isotropic resolution) at 3-Tesla after application of contrast agent in random order. Presence of dural and leptomeningeal enhancement, supra- and infratentorial location, side, visual contrast enhancement (VCE), image quality and diagnostic confidence were assessed by an experienced radiologist for both sequences in separate reading sessions three weeks apart. Results were compared utilizing chi-square and Wilcoxon tests for paired two-tailed samples. A p<0.05 was considered statistically significant.
Results: A total of thirty patients (12 female, mean age 22 years) were included in the analysis. 11 patients (36.67%) had a suspected infectious aetiology. The mVISTA detected either dural or leptomeningeal enhancement in 30 patients (100% sensitivity), while MP-RAGE showed any meningeal enhancement in 24 patients (80% sensitivity). Diagnostic confidence did not differ significantly in patients with previous exposure to gadobutrol. The suspension of linear gadolinium chelates has restricted the use of gadobutrol in patients with impaired kidney function and to recall selected individuals for assessment of gadolinium brain retention.

Methods and Materials: Thirty-three patients with known cancers and brain metastasis underwent pre- and post-contrast sequences including: i) ½-dose CE-T2-FLAIR, ii) ½-dose CE-T1WI, and iii) full-dose 3CE-3D-BRAVO sequence scan. The optimum scanning time for ½-dose CE-T2-FLAIR was analyzed, and we compared contrast ratio (CR) and the number of parenchymal metastases on three sequences above.

Results: One hundred and forty-one ½-dose CE-T2-FLAIR, 88 ½-dose CE-T1WI, and 123 full-dose CE-BRAVO sequence-enhanced lesions were classified as metastases. When metastases were ring-enhanced or solid-enhanced with a diameter of <5 mm, the number of metastases detected in ½-dose CE-T2-FLAIR was higher than that in ½-dose CE-T1WI and full-dose CE-BRAVO. However, if solid-enhanced metastases were ≥5 mm, the number of metastases detected in ½-dose CE-T2-FLAIR was less than that in ½-dose CE-T1WI or full-dose CE-BRAVO. In 77 metastatic lesions which both displayed in three sequences, the median CR was significantly higher using optimized ½-dose CE-T2-FLAIR (in phase 2, CR=71.6) than ½-dose CE-T1WI (CR=11.7, P<0.001) or full-dose CE-BRAVO sequence (CR=18.9, P<0.001).

Conclusion: Half dose CE-T2-FLAIR has distinct advantage in detecting brain metastases, especially ring-enhanced or small solid-enhanced lesions.

B-1774 14:08
Application of half-dose contrast-enhanced T2-fluid-attenuated inversion recovery sequence in brain metastasis

T. Jin; Shanghai/CN

Purpose: To assess the detection rate and image quality of ½-dose CE T2-fluid-attenuated inversion recovery (FLAIR) in intracranial metastases, compared with CE-T1-weighted imaging (T1WI).

Methods and Materials: Thirty-three patients with known cancers and brain metastasis underwent pre- and post-contrast sequences including: i) ½-dose CE-T2-FLAIR, ii) ½-dose CE-T1WI, and iii) full-dose 3CE-3D-BRAVO sequence scan. The optimum scanning time for ½-dose CE-T2-FLAIR was analyzed, and we compared contrast ratio (CR) and the number of parenchymal metastases on three sequences above.

Results: One hundred and forty-one ½-dose CE-T2-FLAIR, 88 ½-dose CE-T1WI, and 123 full-dose CE-BRAVO sequence-enhanced lesions were classified as metastases. When metastases were ring-enhanced or solid-enhanced with a diameter of <5 mm, the number of metastases detected in ½-dose CE-T2-FLAIR was higher than that in ½-dose CE-T1WI and full-dose CE-BRAVO. However, if solid-enhanced metastases were ≥5 mm, the number of metastases detected in ½-dose CE-T2-FLAIR was less than that in ½-dose CE-T1WI or full-dose CE-BRAVO. In 77 metastatic lesions which both displayed in three sequences, the median CR was significantly higher using optimized ½-dose CE-T2-FLAIR (in phase 2, CR=71.6) than ½-dose CE-T1WI (CR=11.7, P<0.001) or full-dose CE-BRAVO sequence (CR=18.9, P<0.001).

Conclusion: Half dose CE-T2-FLAIR has distinct advantage in detecting brain metastases, especially ring-enhanced or small solid-enhanced lesions.

B-1775 14:16
Is synthetic MRI of the brain feasible in a clinical setting? A comparison with standard protocol

G. Corrias, A. Balestrieri, L. Saba; Cagliari/IT

Purpose: To investigate Radiologist’s satisfaction and image quality using an alternative synthetic MRI (sMRI) protocol in Brain imaging.

Methods and Materials: 30 patients were examined using an MRI scan with a field of 3 Tesla and a 32-channels coil. On the top of the standard brain MRI protocol, two additional sMRI sequences were added: [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D). From these two sequences FLAIR, DIR and fat sat images have been reconstructed on the dedicated workstation with a commercially available software (OLEAnova+, Olea Medical, Paris). One radiologist with 6 years of experience graded T1, T2, DIR and FLAIR from the standard and the experimental protocol on a 5 points scale voting image quality, lesion detection and overall satisfaction. Intra-class correlation coefficient (ICC) and repeatability coefficient (RC) were estimated to evaluate agreement between every pair of sequences.

Results: The results were grouped in two categories (score 1-3; sufficient; score 4-5; insufficient). Concordance between these two groups of scores was above 80% for almost all sequences analyzed except from FLAIR images.

Conclusion: Syntetic MRI would the reduce the acquisition time of a brain MRI protocol, two additional sMRI sequences were added: [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D). From these two sequences FLAIR, DIR and fat sat images have been reconstructed on the dedicated workstation with a commercially available software (OLEAnova+, Olea Medical, Paris). One radiologist with 6 years of experience graded T1, T2, DIR and FLAIR from the standard and the experimental protocol on a 5 points scale voting image quality, lesion detection and overall satisfaction. Intra-class correlation coefficient (ICC) and repeatability coefficient (RC) were estimated to evaluate agreement between every pair of sequences.

Results: The results were grouped in two categories (score 1-3; sufficient; score 4-5; insufficient). Concordance between these two groups of scores was above 80% for almost all sequences analyzed except from FLAIR images.

Conclusion: Syntetic MRI would the reduce the acquisition time of a brain MRI protocol, two additional sMRI sequences were added: [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D). From these two sequences FLAIR, DIR and fat sat images have been reconstructed on the dedicated workstation with a commercially available software (OLEAnova+, Olea Medical, Paris). One radiologist with 6 years of experience graded T1, T2, DIR and FLAIR from the standard and the experimental protocol on a 5 points scale voting image quality, lesion detection and overall satisfaction. Intra-class correlation coefficient (ICC) and repeatability coefficient (RC) were estimated to evaluate agreement between every pair of sequences.

Results: The results were grouped in two categories (score 1-3; sufficient; score 4-5; insufficient). Concordance between these two groups of scores was above 80% for almost all sequences analyzed except from FLAIR images.

Conclusion: Syntetic MRI would the reduce the acquisition time of a brain MRI protocol, two additional sMRI sequences were added: [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D). From these two sequences FLAIR, DIR and fat sat images have been reconstructed on the dedicated workstation with a commercially available software (OLEAnova+, Olea Medical, Paris). One radiologist with 6 years of experience graded T1, T2, DIR and FLAIR from the standard and the experimental protocol on a 5 points scale voting image quality, lesion detection and overall satisfaction. Intra-class correlation coefficient (ICC) and repeatability coefficient (RC) were estimated to evaluate agreement between every pair of sequences.

Results: The results were grouped in two categories (score 1-3; sufficient; score 4-5; insufficient). Concordance between these two groups of scores was above 80% for almost all sequences analyzed except from FLAIR images.

Conclusion: Syntetic MRI would the reduce the acquisition time of a brain MRI protocol, two additional sMRI sequences were added: [T2]-multi-TE-FSE2D and [T1]-MP2RAGE-(3D). From these two sequences FLAIR, DIR and fat sat images have been reconstructed on the dedicated workstation with a commercially available software (OLEAnova+, Olea Medical, Paris). One radiologist with 6 years of experience graded T1, T2, DIR and FLAIR from the standard and the experimental protocol on a 5 points scale voting image quality, lesion detection and overall satisfaction. Intra-class correlation coefficient (ICC) and repeatability coefficient (RC) were estimated to evaluate agreement between every pair of sequences.
Conclusion: For the first time, T1Eavg was used for functional MRS of glutamate. It allowed to confidently observe the growth of Glu at 3 Tesla during continuous visual stimulation, which is in agreement with published data obtained at 7 Tesla. The stability of NAA in this study (that is often reported to be decreased in neuroactivation) might be the manifestation of neuronal adaptation.

B-1779 14:48
Two postprocessing method of diffusion kurtosis imaging in glioma grading
A. Gao1, J. Bai1, Y. Zhang1, J. Cheng1, Y. Hong1, Z. Zhengzhou/CN, H. Zhangzhou/CN (annygao456@163.com)

Purpose: To compare histogram analysis and DKE in glioma grading.

Methods and Materials: DKI and conventional sequence at 3.0T MR scanner. DKI acquires data with six b values (0-2500 sec/mm2) and uses diffusion encoding in 30 directions, scanned using a SE-EPI sequence. DKE software was used to calculate diffusion parameters FA, MK, and RK and AK. Histogram analysis was based on Matlab platform, which was used to calculate diffusion parameters Kapp and Dapp value based on TRACEDW parameter image. Independent-samples T test or Mann-Whitney-Wilcoxon test was used to distinguish glioma grades. The parameters with the best percentile was identified by analysis of the AUC of the receiver operating characteristic ROC analysis.

Results: Grade II(n=21), III(n=13) and IV(n=39) glioma were observed. There were significant difference between high and low grade glioma groups by histogram analysis of the Dapp value of maximum, mean, standard deviation 75th percentile, 95th percentile, and the Dapp value of minimum, mean, 25th percentile, 50th percentile, 75th percentile, 95th percentile, skewness coefficients. According to the ROC, the highest AUC was found at Dapp minimum value (AUC=0.829), Kapp 75th percentile value (AUC=0.819). However, DKE method proved that MK value is significant higher in III grade glioma than in I grade glioma. When it comes to II and IV grade glioma, MK was significant higher in IV grade glioma than III grade glioma(AUC=0.953).

Conclusion: MK value, calculated by DKE software, is a helpful parameter for identifying glioma II, III and IV grade.

B-1780 14:56
Open-source software multimodal neuroimage processing for presurgical assessment: benefits and comparison to proprietary software
P. Donnelly-Kehoe, A.A. Ojeda, G. Pascariello, P.A. Acevedo, M.B. Nallino, A.L. Rodriguez Musso, J. Gomez; Rosario/AR (ojedaheleg@hotmail.com)

Purpose: Multimodal neuroimage processing allows an optimum presurgical assessment. Structural sequences are used as anatomical guides, fMRI reveal the underlying structural connectivity. Proprietary software exhibit several limitations in the processing of each modality and also in the multimodal integration. This work introduces an open-source based toolbox for the multimodal presurgical assessment with state-of-the-art methods.

Methods and Materials: We developed pipelines to process structural, functional and diffusion MRI. The structural pipeline included an automatic segmentation of neuroanatomic regions; fMRI included the remotion of movement and non-neural signals based on independent component analysis. The tractography pipeline removed movement and eddy currents and the neuroanatomical segmentation was used for a standardized tract segmentation. Four clinical cases were processed to compare results with the available proprietary software.

Results: Results obtained by the proposed method showed to be superior to the ones obtained by the proprietary software. Main advantages were: (i) structural segmentation automatically delimits anatomical structures; (ii) noise and artefacts from fMRI and DWI were successfully removed, improving signal to noise ratio; (iii) anatomical and functional information was included in the segmentation of tracts; (iv) multiples fMRI protocols were combined within the same space.

Conclusion: The application in clinical cases showed that our methods allow a more effective presurgical assessment than proprietary software that are commonly used in the clinical practice. In this context, the usage of open-source packages is a better alternative for the neuroimage processing, allowing to know the processes and to improve them.

B-1781 15:04
Clinically-implemented, CAD-assisted decision support system to limit gadolinium injection in patients with multiple sclerosis
M. Bielelo, R. Mattay, A. Mammourian; Philadelphia, PA/US (Miche1.Bielelo@uphs.upenn.edu)

Purpose: The growing concern about deposition of free gadolinium in the brain among patients that undergo serial contrast-enhanced MRI studies needs to be addressed. We have implemented a clinical decision support system to limit contrast injections in patients with multiple sclerosis (MS).

Methods and Materials: The main idea is to inject only when scans indicate a 5% or a higher increase of new lesions from a study that was recently conducted, which revealed that 1) 50% of scans with new lesions had enhancing lesions, 2) 100% of scans with enhancing lesions had new lesions, and 3) 24% of all scans had new lesions. A major component of the system is a CAD program that detects new brain lesions. Here is the workflow: the 3D FLAIR image sequence used by the CAD program is acquired first. Immediately after completion, our clinical 3D lab runs the CAD program, and calls the MR technologist with the results: if there is at least one new lesion, the technologist must perform a complete contrast-enhanced scan. If not, only the non-contrast part of the scan gets done.

Results: We expect to limit the use of gadolinium injection to about 25% of all our follow-up MS brain scans. With more than 100 such scans per month, we expect to avoid about 25 unnecessary gadolinium injections each month.

Conclusion: Our system limits the use of unnecessary gadolinium injections in MS brain scans. This will address the growing concern of patients, who now receive such injections for all their surveillance scans.

B-1782 15:12
Machine-learning based exploration of extracranial determinants of grey matter volume in the KORA-MRI study
F. Schöpp1, S. Rospieszcza2, F. Bamberg3, C.L. Schlett4, W. Rathmann5, K.-F. Ladwig1, A. Peters1, B.B. Ent-Wangen6, S. Stecklen1, Munich/DE, Freiburg/DE, Heidelberg/DE, 1Düsseldorf/DE, 2Toronto, ON/CA (Franziska.Schoeppe@med.uni-muenchen.de)

Purpose: The aim of this data-driven exploratory study was to identify potential extracranial determinants of grey matter volume (GMV) using a machine learning algorithm.

Methods and Materials: From the prospective cohort from the Cooperative Health Research in the Region of Augsburg, Germany (KORA FF4 study), extracranial variables (n = 58) were obtained in a standardized way and whole-brain GMV (ratio-corrected for intracranial volume) was derived from magnetic resonance imaging (ST, FLAIR). Using a machine-learning approach, we evaluated an elastic net on 1000 splits of training and testing data to identify the most important extracranial factors of GMV.

Results: 293 participants (59.5,±49.1 years, mean whole-brain GMV 20.5±1.3) were included in the analysis. 11.9% of the subjects had type 2 diabetes mellitus, 23.2% prediabetes and 24.8% were normoglycemic. From 58 different extracranial variables, four variables were identified to be the most important determinants of whole-brain GMV: age (selected in 1000/1000 splits), glomerular filtration rate (794 splits), diabetes (323 splits) and diabetes duration (122 splits). GMV was lower in participants with diabetes compared to normoglycemic subjects (19.7±1.6 vs 20.6±1.2, p<0.001) and decreased with increasing diabetes duration (r = -0.15, p = 0.009). The elastic net model showed better performance compared to a constant linear regression (mean squared error = 1.10 vs 1.06, p<0.001).

Conclusion: Applying a machine learning approach, elastic net identifies extracranial determinants of GMV and provides information on their relative importance. Our results underline the importance of assessing extracranial variables such as diabetes status upon inclusion of subjects in imaging studies.

B-1783 15:20
Virtual monoenergetic images from spectral detector CT (SDCT) enable radiation dose reduction in unenhanced cranial CT
P.P. Reimer, T.E. Lichtenstein, D. Platten, D. Maintz, J. Borggreve, N. Grosse Hokamp; Cologne/DE (robert.reimer@uk-koeln.de)

Purpose: Recent studies demonstrated that grey-white-matter-differentiation is improved by means of 65 keV-virtual monoenergetic images (VMIs) as compared to conventional images (CI). Our study evaluated, if this enables a reduction of radiation-dose.

Methods and Materials: 115 consecutive patients receiving SDCT of the head between 2/2017 and 6/2017 (age: 55±19yrs, M/W: 56%/44%) were retrospectively included. For routine protocol adjustment, tube current time product was reduced by 10% during the study period, resulting in 60 and 55 patients examined with 290 mAs and 290 mAs, respectively. All other scan parameters were kept identical (including tube voltage 120 kVp). Regions-of-interest were placed in grey and white matter on CI and copied to identical positions in VMIs. Contrast-to-noise ratio (CNR) was calculated. Two radiologists, blinded to the reconstruction technique evaluated grey-white-matter-differentiation on a 5-point Likert-scale. Statistical assessment was performed using ANOVA adjusted for multiple comparisons and Wilcoxon test.

Results: Irrespective of mAs, noise was significantly lower in VMIs as compared to CI. (VMIs/CI, to e.g. grey-matter with 290 mAs: 3.1±0.6HU/4.6±0.9HU, p<0.0001). In CI, noise was slightly higher in 290 mAs protocols as compared to 320 mAs (e.g white-matter: 4.9±0.6HU/4.6±0.8HU, p<0.05). Overall, CNR in VMIs was superior to CI irrespective of mAs (p<0.0001). Particularly, VMIs with 290 mAs showed a higher CNR than CI with 320 mAs. Subjective analysis confirmed better grey-white-matter-
B-1784 14:00
The accuracy of contrast-enhanced mammography: a retrospective multireader study
M. Calvo Iririazadu, I. González de la Huébra Rodríguez*, A. Ezponda Casajús, J. Etxand, A.M. Elizalde Pérez, L.J. Pina Insauti, P. Pamplinga ES, Vitoria ES (igonzalez.6@unav.es)
Purpose: To compare the accuracy of Digital Mammography (DM) and Titanium Contrast Enhanced Mammography (TiCEM).
Methods and Materials: IRB approved study. From October-2017 to June-2018, 80 patients with 120 histologically confirmed lesions were recruited. All of them underwent DM and TiCEM. This is a new technique to perform contrast enhanced mammography using a titanium filter. Three readers, blinded to the final diagnosis, retrospectively evaluated the lesions and classified them into the BI-RADS categories. Reader 1 was an expert with 20-years of experience, Reader 2 was a resident with 3-months of experience and Reader 3 was an intermediate level (3-years). For every case readers assessed the DM images and immediately the TiCEM images. Statistical analysis: ROC curves (STATA 12.0 software) for the complete database and for subgroups (dense and non-dense breasts).
Results: Out of the 120 lesions, 41 were benign and 79 malignant (12 DCIS, 5 ILC, 62 IDC). The AUC’s of DM vs TiCEM for Reader 1 were: 0.72 vs 0.86; p<0.001. For Reader 2 were: 0.63 vs 0.80; p<0.001. For Reader 3 were: 0.70 vs 0.79; p<0.001. These data were similar for dense and non-dense breasts. Comparison between the AUC of DM for Reader 1 (expert) vs AUC of TiCEM for Reader 2 (Resident) found significant differences (0.72 vs 0.80; p=0.04).
Conclusion: The accuracy of TiCEM was significantly better for all the readers, in dense and non-dense breasts. The accuracy of a Resident reading a TiCEM study was even better than that of an expert radiologist reading DM.

B-1785 14:08
Contrast-enhanced digital mammography, magnetic resonance imaging and mammography alone: a comparison of diagnostic performance in symptomatic women
W. Tang; Shanghai/CN (tangwei12@fudan.edu.cn)
Purpose: To compare the diagnostic efficiency of contrast-enhanced digital mammography (CEDM), digital mammography (DM) and magnetic resonance imaging (MRI) in symptomatic women.
Methods and Materials: Between March and December 2017, 246 patients with 282 histologically proven lesions all underwent DM, CEDM and MRI. Two radiologists were interpreting all images. The diagnostic performance of each method was assessed by receiver-operating characteristic (ROC) curve. The sensitivity, specificity and accuracy were compared using McNemar’s and Fisher’s exact test. A Kappa test was used to assess the interobserver agreement.
Results: The area under the ROC curve was lower in the group that underwent DM (Radiologist 1 [R1], 0.829; Radiologist 2 [R2], 0.862) than CEDM (R1, 0.927, P<0.001; R2, 0.910, P<0.002) and MRI (R1, 0.939, P<0.0006; R2, 0.925, P<0.0009). However, the difference between CEDM and MRI was not significant (P=0.2262; R2, P=0.2843). The accuracy (R1, 73.8%; R2, 72.4%) and sensitivity (R1, 74.9%; R2, 74.2%) of DM were lower than CEDM (accuracy: R1, 89.7%, P<0.001; R2, 90.8%, P<0.001; sensitivity: R1, 92.1%, P<0.001; R2, 90.8%, P<0.001) and MRI (accuracy: R1, 91.3%, P<0.001; R2, 92.7%, P<0.001; sensitivity: R1, 94.7%, P<0.001; R2, 95.4%, P<0.001). In contrast, no significant difference was observed between CEDM and MRI (accuracy: R1, P=0.744; R2, P=0.660; sensitivity: R1, P=0.602; R2, P=0.759). The interobserver agreement of each method was excellent (κ=0.896, 0.929 and 0.882 for DM, CEDM and MRI, respectively.
Conclusion: The diagnostic performance of CEDM and MRI is superior to that of DM in symptomatic women; MRI is slightly better than that of CEDM, but without statistical significance.

B-1787 14:16
Evaluation of single-view contrast-enhanced mammography as potential strategy for screening of patient with high breast cancer risk: a non-inferiority retrospective study
Purpose: Many guidelines recommend screening of high-risk women using breast MRI. Contrast-enhanced mammography (CEM) might be an alternative strategy. However, its radiation dose is higher than mammography. As an alternative reading strategy, evaluation of single-view (1V) CEM exams might be considered instead of double-view (2V) readings to lower total radiation dose used per exam.
Methods and Materials: This retrospective observational non-inferiority study evaluates whether use of 1V does not result in an unacceptable worse sensitivity for detecting breast cancer (non-inferiority margin: -10%). All CEM images from May 2013 and December 2017 were included. 1V readings were performed by consensus opinion of three radiologists, with 2V readings being performed after six weeks. Cases were considered ‘malignant’ if the final score was BI-RADS ≥4, enabling us to calculate sensitivity, specificity and AUC under the ROC curve. Histopathological results or a minimal follow-up of six months served as gold standard.
Results: 368 cases were evaluated. Sensitivity decreased with 9.6% from 92.9% to 83.3% when only 1V was used for evaluation (p=0.0009). The lower limit of the 90% CI around the difference in sensitivity between 1V and 2V readings was -15% and lies below the predefined non-inferiority margin of 10%, and non-inferiority of 1V to 2V reading cannot be concluded. AUC for 1V was 0.861 versus 0.889 for 2V (p=0.0174).
Conclusion: 1V evaluations as an alternative reading strategy to the standard 2V evaluations have a worse overall diagnostic performance and it cannot be recommended as an alternative reading strategy to lower CEM-associated radiation exposure.
Dedicated breast CT may prevent unnecessary biopsies in women recalled from mammographic screening

R.M. Mann, G. van Spijker, M. Caballo, I. Sechopoulos; Nijmegen/NL
(Rits.mann@radboudumc.nl)

Purpose: To assess the potential of dedicated unenhanced breast-CT (BCT) in the clinical work-up of women recalled from mammographic screening.

Methods and Materials: 51 women recalled from screening participated in this ethics board-approved study. All women underwent unilateral unenhanced BCT using a dedicated breastCT system (Koning Corp., NY, USA), in addition to the regular clinical work-up (tomosynthesis, and ultrasound for soft tissue findings). BCT images were evaluated by an independent radiologist (BI-RADS ≥3 positive). The potential impact of BCT on sensitivity and positive predictive value for biopsy (PPV3) was assessed using the McNemar test. Subgroup analyses were performed for different types of mammographic findings.

Results: Clinical work-up led to biopsy for 26 lesions, (6 malignant, 20 benign, PPV3 23%; TP rate was positive in 5 patients (mean size 11.8 mm, range 3-51 mm), (5 malignant, 34 benign, sensitivity 83%, ns). The missed cancer was located in the axillary tail and therefore outside the BCT field of view. BCT had no impact on the indication to biopsy or not for mass lesions (n=23, 7 biopsy, 4 malignant), with findings consistent with those from mammography. In patients presenting with calcifications (n=21, 18 biopsied, 2 malignant) BCT was negative in 7 patients with benign lesions, potentially improving the PPV3 for calcifications from 11% to 18% (p=0.023). In women with architectural findings. BCT images were evaluated by an independent radiologist (BI-RADS ≥3 positive). The potential impact of BCT on sensitivity and positive predictive value for biopsy (PPV3) was assessed using the McNemar test. Subgroup analyses were performed for different types of mammographic findings.

Conclusion: This pilot study suggests that unenhanced breast-CT may be used to prevent unnecessary biopsies in women recalled for benign calcifications.

Author Disclosures: R.M. Mann: Grant Recipient; Siemens Healthineers, Bayer healthcare.
Medtronic, Screenpoint medical, Identification solutions I. Sechopoulos: Grant Recipient; Koning.

B-1791 14:48
Influence of different examination settings on the imaging of microcalcifications in CBCT C. Neubauer, J. Wolf, J. Neubauer; Freiburg/DE

Purpose: The aim of the study was to evaluate the influence of different examination settings on the imaging of microcalcifications in CBCT.

Methods and Materials: 9 imaging phantoms, each with a different number of microcalcifications, were examined in CBCT with 243 different examination protocols. The kV, the mA and the slice thickness were varied. 27 radiologists evaluated 9 examinations of different examination protocols with regard to the number of delimitable microcalcifications and the subjective assessment of image quality. Reference standard for the number of microcalcifications was a consensus reading by two radiologists of mammography and tomosynthesis of the phantoms. A p-value of 0.05 was assumed to be statistically significant.

Results: Examination protocols with a slice thickness of 0.1 and 0.2 were associated with more accurate imaging of the microcalcifications and were rated higher in image quality compared to examination protocols with a slice thickness of 0.4 mm. All other parameters showed no influence.

Conclusion: For a most accurate representation of microcalcification in CBCT, a slice thickness of at least 0.2 mm should be chosen. The adjustment of kV and mA is not essential.
Conclusion: Many patients are inappropriately referred for staging CT following diagnosis of breast cancer, generating additional imaging in a third of cases, thus increasing the workload of the radiology department.

B-1801 14:08
Can breast MRI aid in predicting high burden axillary disease in patients diagnosed with breast cancer?
N. Healy, F. Kilburn-Toppin, M. Wallis; Cambridge/UK (nualahealy@gmail.com)

Purpose: In cases of low volume axillary disease in breast cancer sentinel node biopsy can be offered over axillary lymph node dissection. The aim of this study was determine if preoperative breast MRI can predict high burden axillary disease on histology (3 or more abnormal nodes) and compare with US findings.

Methods and Materials: A search of hospital records retrieved all breast MRIs performed from Jan 2015 - Dec 2017. All MRIs performed for local staging of new diagnosed breast cancer with positive axillae were included. A retrospective review of imaging for all patients with a positive axillary status was performed to determine nodal status on MRI and correlate it with sonographic and pathology results.

Results: Of the 1217 breast MRIs, 434 with complete data were performed for local staging of breast cancer. 179 had disease in the axilla, 110 detected pre-operatively and 69 on axillary sampling. 105 of 179 had neo-adjuvant treatment. 23 in 8 surgery group had 13.2% abnormal lymph nodes on histology: MRI axilla was abnormal in 16/23 (70%) and US abnormal in 13/23 (56%). In the neo-adjuvant group 46 had 3 or more abnormal nodes; MRI was abnormal in 39/46 (85%) and US abnormal in 44/46 (96%) cases. These included 19 that had greater than 3 nodes based on fibrosis and MRI predicted axillary disease in 18/19 (95%) cases.

Conclusion: MRI can aid in detection of high axillary nodal burden and may be useful in combination with US at identifying a positive axilla pre-operatively.

B-1796 14:16
Clinical value of 18F-FDG PET/CT for staging elderly and young women with preoperative breast cancer
K. Kubota, T. Fujikawa, M. Mori, J. Tsuchiai, U. Tateishi; Tokyo/JP (kbtmrad@tmd.ac.jp)

Purpose: The purpose of this study was to investigate the clinical value of routine 18F-FDG-PET/CT staging for primary breast cancer in the elderly and young patients.

Methods and Materials: Preoperative breast cancer patients under 35 y.o. (young group) and over 75 y.o. (elderly group) who underwent FDG-PET/CT from 2005 to 2017 were recruited. Image findings, clinical stage, the status of lymph node metastasis, the status of distant metastasis and detection of other malignancies were examined.

Results: There were 22 patients (stage 0: 3, I: 7, II: 8, III: 3, IV: 1) in the young group and 107 patients (stage 0: 12, I: 58, II: 33, III: 2, IV: 2) in the elderly group. SUVmax of the breast cancer was significantly higher in the young group than the elderly group (6.4 ± 5.9 vs 3.3 ± 3.1, p =0.0005). The sensitivity, specificity, PPV, and NPV for detecting lymph node metastasis in the elderly group were 85.7%, 100%, 100%, and 90.9%, respectively. The sensitivity, specificity, PPV, and NPV for detecting lymph node metastasis in the elderly group were 31.8%, 98.8%, 87.5%, and 84.8%, respectively. No other malignancy was found in the young group, whereas other malignancies (2 colon cancer, 1 oesophageal cancer, 2 lung cancers) were identified in 5% (5/107) in the elderly group.

Conclusion: FDG uptake of the young breast cancer was high, and PET/CT showed a high ability to diagnose lymph node metastasis in young patients. Incidental cancer was found in elder patients. Management of PET/CT according to age may be necessary.

B-1797 14:24
Comparative evaluation of strain ratio on sonographic elastography and T2* values on 3Tesla MRI in differentiating malignant from benign axillary lymph nodes in breast cancer
S. Sharma, R. Bansal, S. Jain, P. Sethi; New Delhi/IN (dr.princysethi06@gmail.com)

Purpose: To assess whether strain ratio and T2* values can improve the sensitivity and specificity of differentiating metastatic from benign axillary lymph nodes in breast cancer patients taking histopathology as reference standard.

Methods and Materials: The study was done on 43 patients. A multi-echo transverse T2*W MR sequence was obtained with TE= 0.9- 1.5 ms, TR=37.2 ms and flip angle=25°. Sonographic elastography was done using high frequency linear probe (L3-16 MHz). Manual selection of the region of interest was done on suspicious lymph nodes for calculation of T2* values and strain ratio. ROC curves were obtained for various T2* and strain ratio values in...
B-1799 14:32
Biopsy-proven ductal carcinoma in situ radiographic features and upgrade rates

Purpose: To review the radiographic presentation of biopsy-proven ductal carcinoma in situ (DCIS) by ultrasound-guided core biopsy or stereotactic-guided vacuum-assisted biopsy and their upgrade rates to invasive carcinoma at surgical excision.

Methods and Materials: 142 image-guided core biopsies with the diagnosis of DCIS of 83 patients referred from surgical breast clinic to the single centre from March 2004 to March 2014, were reviewed. 83 (58.5%) were sonographically visible lesions with or without associated mammographic abnormality and ultrasound-guided biopsy performed. 59 (41.5%) were mammographic detected microcalcification but sonographically occult groups and stereotactic-guided vacuum-assisted biopsy done. Their radiographic features, the biopsy and surgical histopathological results were reviewed.

Results: Majority of the sonographically visible DCIS were seen as a mass lesion (94.0%). They were shown on ultrasound mainly as irregular (78.2%), non-circumscribed (71.8%), hypoechoic (91.0%) masses. A small proportion presented as ductal (2.4%) or microcalcification groups (3.6%). The mammographic detected and sonographically occult microcalcification groups were predominantly fine pleomorphic (40.7%) or amorphous (55.9%) microcalcification, ranging from 3 to 25 mm (mean: 8.9 mm) in size. There was no significant difference in the DCIS histologic grades between sonographically visible lesions and mammographic detected only microcalcification groups (p=0.90). The subsequent upgrade rate upon surgical excision compared with the sonographic guided core biopsy was significantly higher than of stereotactic-guided vacuum-assisted biopsy (26.7% vs 10.5%, p=0.027).

Conclusion: DCIS exhibits various radiological appearance. Upgrade from DCIS to invasive cancer especially based on ultrasound-guided biopsy should be considered in subsequent surgical management.

B-1799 14:40
MRI assessment of axillary lymph nodes after neoadjuvant chemotherapy based on the breast cancer subtype
V. Ruggeri, G. Mariscotti, M. Durando, C. Costanza, L. Bergamasco, I. Castellano, P. Fonio; Turin/IT

Purpose: Breast MRI is routinely used to determine residual breast disease after neoadjuvant chemotherapy (NCT) in locally advanced cancer; however, its role in predicting axillary nodal response is controversial. We investigated the role of breast MRI in predicting residual nodal disease after NCT based on cancer subtype.

Methods and Materials: A retrospective review was conducted using our institutional database, including all patients who underwent NCT from January 2011 to May 2018. Patients underwent breast MRI before, during and after NCT. MRI images were reviewed by two dedicated breast Radiologists, blinded to clinical and pathological results. At MRI post-NCT, lymph nodes reported as larger than 1 cm, exhibiting loss of fatty hilum, thickened cortex, or irregular contour were considered pathological. Lymph node MRI characteristics were compared with surgical pathological findings.

Results: Axillary MRI images after NCT and pathological findings were available for 83 patients. Residual nodal disease was present in 43 patients (51.8%), 40 (48.2%) had a complete nodal pathologic response. Sensitivity, specificity and positive and negative predictive values of MRI were 62.8%, 80.0%, 77.1% and 66.7%, respectively. A subset analysis by cancer phenotype demonstrated that, for triple negative subtype, MRI had the highest specificity (100%) and positive predictive value (100%). MRI showed a significantly higher sensitivity in HER2 positive than in HER2 negative cancers (90.0% vs.54.4%, p=0.04), as well as a higher negative predictive value (91.7% vs.58.3%, p=0.03).

Conclusion: Our preliminary results could support the use of MRI post-NCT for assessing axillary nodal response, considering that its reliably might vary based on cancer subtype.

B-1800 14:48
Which factors affect the accuracy of MRI in predicting response and estimating residual disease after neoadjuvant chemotherapy?
H. Ahn, Y. An, J. Baek, Y. Suh, H. Choi; Suwon/KR

Purpose: To evaluate the diagnostic accuracy of breast magnetic resonance imaging (MRI) in predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC), and to determine the factors affecting the accuracy of MRI in evaluation of residual tumour.

Methods and Materials: A total of 88 breast cancer patients who underwent breast surgery after NAC were included in this study. A pCR was defined as the absence of invasive cancer in pathologic specimen, and a clinical CR as the absence of enhancing lesion on post-NAC MRI. The maximal diameter of the residual tumour on post-NAC MRI was compared with the pathologic tumour size. We analysed the accuracy of MRI in predicting pCR, and the factors affecting the size discrepancy of residual tumour between MRI and pathology.

Results: The residual tumour size on MRI strongly correlated to the pathologic tumour size (r=0.9, p=0.001), and showed greater accuracy in the patients with concentric reduction pattern (r=0.918, p=0.0001) than the patients with scattered reduction pattern (r=0.816, p=0.0004). The sensitivity, specificity, diagnostic accuracy and area under the curve (AUC) for predicting pCR with MRI were 93.67%, 66.67%, 90.91% and 0.817, respectively. The size discrepancy was significantly greater in patients with luminal type (P=0.0226), multifocal tumours and non-mass enhancement on pre-NAC MRI (P=0.0467).

Conclusion: MRI is an accurate tool for determining pCR and evaluating residual tumour in breast cancer, especially in patients with concentric reduction pattern during NAC. The molecular tumour subtype and lesion morphology on pre-NAC MRI influence the accuracy of MRI in evaluating residual tumour.

B-1802 14:56
Response of breast cancer to neoadjuvant treatment assessed using hyperpolarised 13C MRI
R.A. Woelet, M.A. McLean, J. Grist, A. Gill, J. Abraham, F. Gilbert, C. Caldas, K. Brindle, F.A. Gallagher; Cambridge/UK (nw585@cam.ac.uk)

Purpose: Carbon-13 magnetic resonance imaging (13C-MRI) following injection of hyperpolarized [1-13C]pyruvate was used to determine early response of breast cancer to neoadjuvant treatment.

Methods and Materials: Six patients with treatment naïve breast cancers (4TNBC, 1IDC, 1ILC) underwent dynamic 13C-MRI at 3T (MR750, GE Healthcare) using an 8-channel C breast coil following injection of hyperpolarized [1-13C]pyruvate using IDEAL encoded spiral chemical shift imaging. One patient with TNBC was resected after 21 days of neoadjuvant chemotherapy (NACT) and another one after eight days of NACT plus a PARP inhibitor (NACT+P).

Results: At 21 days of NACT, the summed lactate to pyruvate ratio (LAC/PYR) decreased by 53% alongside a 68% decrease in tumour volume whereas in the patient under NACT+P for 8 days, LAC/PYR increased on spectral (0.068 vs. 0.103) and imaging data (0.038 vs. 0.045) despite stable tumour volume. After seven cycles of chemotherapy, both patients showed complete pathological response. Among all six patients, the summed lactate to pyruvate ratio (LAC/PYR) was significantly correlated with tumour volume (rH=0.810, p=0.022; Spearman’s correlation).

Conclusion: This study showed that hyperpolarized 13C-MRI can be used to assess response to NACT alone but might be limited in detecting very early response to NACT+P. With PARP inhibitors, this depletion may be impaired, preserving the NAD(H) pool which can limit the hyperpolarized label exchange between [1-13C]-pyruvate and [1-13C]-lactate. With PARP inhibitors, this depletion may be impaired, preserving the NAD(H) pool maintain a high LAC/PYR ratio at early time points during treatment.

B-1803 15:04
Longterm review of recurrence after breast cancer treatment: data from breast cancer/tumour type analysis
M. Lavens, H. Wildiers, P. Neven, I. Nevelsteen, A. Smeets, M. Keupers, P.A. Prevo, A. Laenen, C. Van Ongeval; Leuven/BE (matthias.lavens@telenet.be)

Purpose: Imaging follow-up after breast cancer treatment includes a yearly mammography (MG) and according to the European guidelines an ultrasonography (US). Recurrence rates are useful as a predictive value, but could also serve as data for new guideline recommendations.

Methods and Materials: 8038 women were reviewed (Jan 2000–Jan 2016) on long-term breast cancer and local lymph node metastasis and contralateral (breast only) recurrence. Women were excluded after detection of distant metastasis. Our pathologists used the St-Gallen-tumour type classification to determine BC subtypes.

C-MRI at 3T (MR750, GE Healthcare) using an 8-channel C breast coil following injection of hyperpolarized [1-13C]pyruvate using IDEAL encoded spiral chemical shift imaging. One patient with TNBC was resected after 21 days of neoadjuvant chemotherapy (NACT) and another one after eight days of NACT plus a PARP inhibitor (NACT+P).

Results: At 21 days of NACT, the summed lactate to pyruvate ratio (LAC/PYR) decreased by 53% alongside a 68% decrease in tumour volume whereas in the patient under NACT+P for 8 days, LAC/PYR increased on spectral (0.068 vs. 0.103) and imaging data (0.038 vs. 0.045) despite stable tumour volume. After seven cycles of chemotherapy, both patients showed complete pathological response. Among all six patients, the summed lactate to pyruvate ratio (LAC/PYR) was significantly correlated with tumour volume (rH=0.810, p=0.022; Spearman’s correlation).

Conclusion: This study showed that hyperpolarized 13C-MRI can be used to assess response to NACT alone but might be limited in detecting very early response to NACT+P. With PARP inhibitors, this depletion may be impaired, preserving the NAD(H) pool maintain a high LAC/PYR ratio at early time points during treatment.

B-1803 15:04
Longterm review of recurrence after breast cancer treatment: data from breast cancer/tumour type analysis
M. Lavens, H. Wildiers, P. Neven, I. Nevelsteen, A. Smeets, M. Keupers, P.A. Prevo, A. Laenen, C. Van Ongeval; Leuven/BE (matthias.lavens@telenet.be)

Purpose: Imaging follow-up after breast cancer treatment includes a yearly mammography (MG) and according to the European guidelines an ultrasonography (US). Recurrence rates are useful as a predictive value, but could also serve as data for new guideline recommendations.

Methods and Materials: 8038 women were reviewed (Jan 2000–Jan 2016) on long-term breast cancer and local lymph node metastasis and contralateral (breast only) recurrence. Women were excluded after detection of distant metastasis. Our pathologists used the St-Gallen-tumour type classification to determine BC subtypes.
Results: Sixteen year cumulative incidence of local recurrence was 3.83% for luminal A primary breast cancer subtype, 3.38% for luminal B, 4.78% for Her 2 and 9.73% for Triple Negative (TN) subtype. Extended analysis of TN versus luminal A showed a four-year hazard ratio (HR) of 4.77 for TN versus 0.51 for luminal A (p<0.001) and an eight-year hazard ratio of 5.14 versus 1.14 (p=0.003). Twelve-year-HR and sixteen-year-HR showed no Triple Negative versus luminal A difference. Sixteen-year-cumulative-incidence of contralateral recurrence was 5.91% for luminal A subtype and 7.36% for TN (p<0.09). In a sample analysis 88 % of all relapses were detected with the combination of clinical examination, MG and US.

Conclusion: A remarkable higher local recurrence rate of primary Triple Negative and Her2 breast tumours should questioning a dedicated imaging surveillance protocol (MG, US, MRI), particularly the first eight year after diagnosis.

B-1804 15:12
Contrast-enhanced mammography screening women after breast-conserving therapy
D. Avendano, M.S. Jochelson1, K. Pinker-Domenig3, M.A. Marino3, J. Gluskin, J.S. Sung1, New York, NY/US, Vienna/AT, Messina/IT (diallah1@gmail.com)

Purpose: To investigate the added value of contrast-enhanced mammography (CEM) compared to low-energy mammography in routine imaging of breast cancer patients after breast-conserving therapy (BCT).

Methods and Materials: In this HIPAA compliant IRB-approved retrospective single-institution study 427 consecutive asymptomatic breast cancer patients treated with BCT who underwent screening CEM between January 2013 and March 2018 as part of their routine follow up were included. Histopathology was used as the standard of reference.

Results: Ten (2.3%) of 427 patients (854 breasts) were diagnosed with breast cancer during follow-up with 10 lesions: eight with an ipsilateral recurrence and two with contralateral cancer. All 10 (100%) cancers were detected with CEM whereas only 5/10 cancers (50%) were seen with mammography. Sensitivity, specificity, and accuracy of CEM was 100%, 98% and 98% compared to low-energy mammography alone which was 50%, 98% and 97%. The combined interpretation of CEM and low-energy mammography achieved sensitivity and specificity of 100% and 98.7% with an improved accuracy of 98.7%.

Conclusion: Data indicate that CEM is more sensitive than low-energy mammography for breast cancer detection after BCT in the screening setting. Best results are achieved with the combined interpretation of low-energy mammography and CEM.

Author Disclosures: D. Avendano; Grant Recipient; BCRF Breast Cancer Research Foundation. M.A. Marino; Grant Recipient; BCRF Breast Cancer Research Foundation.

B-1805 15:20
Does internal mammary artery irradiation for breast cancer make significant difference in diameters of internal mammary artery?
Correlation with computed tomography
G. Durham, A. Erdemir, S. San, M. Gülticken, J. Karakaya, M. Akpinar, F. Yildiz, F. Demirkazik; Ankara/TR (agurkan.erdemir@gmail.com)

Purpose: Internal mammary nodal irradiation improves loco-regional control and decreases rates of distant metastasis. However, irradiation accelerates atherosclerosis and may cause stenosis of non-coronary arteries but also internal mammary artery (IMA). IMA has two major importance in patients diagnosed as breast cancer. First, IMA is an excellent conduit for coronary bypass grafting (CABG). Second, IMA is the most common recipient vessel used in free flap breast reconstruction. The aim of study is to investigate radiation effects on internal mammary arteries via computed tomography (CT).

Methods and Materials: Between January 2010 and December 2016, 3612 patients with breast cancer treated with radiotherapy (RT) were reviewed. 239 patients who have appropriate imaging and nodal irradiation were included to the study. Bilateral IMA diameter were assessed via thin-section contrast-enhanced CT. The results of ipsilateral IMA with nodal irradiation compared with the results of contralateral non-irradiated IMA via "independent-samples t test" analysis.

Results: Diameters of "irradiated IMA" were significantly smaller than "non-irradiated IMA" regardless of right or left (p<0.0001). All vascular calcifications were found in irradiated side. Radiation dose was not correlated with vessel calibres and calcifications. Although presence of calcification was found in patients having longer time interval between RT and CT, it did not reach statistical significance. Also, time interval between RT and CT was not correlated with calibre.

Conclusion: Calibres of IMA are decreased due to RT regardless of radiation dose and time interval. Evaluation of vessels via CT before CABG and flap reconstruction can help surgeon to select proper vessel.
B-1809 14:33
CT-guided lung biopsy: a simplified classification and scoring system to assess appropriateness of indication according to nodules’ 18-FDG uptake, dimension and localisation
M. Tipaldi1, G. Orgina1, F. Laurindo2, E. Ronconi3, M. Krokidis4, A. Zolovkins1, A. Laghi1, M. Rossi1,1, Rome/IT, 2Eoblo/IT, 3Cambridge/UK, 4Latina/IT (tipaldi.andrea@gmail.com)
Purpose: To develop a simplified classification and scoring system to predict risk of technical failure in patients undergoing CT-guided transthoracic core needle biopsy (TTNB) according to nodules’ characteristics and 18-FDG uptake.
Methods and Materials: CT-guided lung biopsies, performed in our institution from January 2014 to January 2017, were reviewed retrospectively. Lesions were classified into 3 clusters of low (n=72), intermediate (n=118) and high (n=58) technical difficulty on the basis of nodule diameter, distance from the pleural needle access and basal localisation. Technical success, length of procedure, delivered radiation dose and complications were investigated in each cluster and compared with 18-FDG uptake.
Results: Overall technical success was 83% (n =306), 71% (n=196) malignant and 12% (n=30) benign. PET-negative nodules had significant longer procedures (p=0.0001) and delivered dose (p=0.0436) despite fewer successful results (50% vs 92%, p=0.0001) then positive one. Technical failure showed a growing trend from 11% (n=8) in low-difficulty group, 14% (n=16) in the intermediate and 31% (n=18) in the high one, resulting statistically significant (p=0.0043) as well as the increase of procedure length (p=0.0007) estimated delivered dose (p=0.0115) and rate of complications (p=0.0055).
High-difficulty PET-negative nodules had the highest technical failure rate amongst all groups (80%), significantly worse than middle- and low-difficulty PET-negative group (p=0.0008).
Conclusion: TTNB of high-difficulty PET-negative nodules is associated with very poor technical success rate and, in this group of patients, other strategies should be considered.
B-1810 14:41
Fusion imaging technique in lung biopsy to demonstrate the correlation between standardised uptake value (SUV) and specimen’s diagnostic value
A. Muollo1, A. Beneventi2, E. Macchi1, F. Placentino3, C. Floridi1, F. Fontana1, G. Carratello1, G. Fugazza1, Busto Arsizio/IT, 2Varese/IT, 3Perugia/IT, 4Milan/IT (alessandra.muollo29@gmail.com)
Purpose: In the context of a large study about PET/CT-CBCT-guided percutaneous lung biopsies, ten selected patients underwent double biopptic sampling, respectively in the SUV maximum and in the SUV minimum zone of the lesion. Aim of this study was to demonstrate the correlation between SUV value and specimen’s diagnostic value.
Methods and Materials: Ten patients with voluminous pulmonary masses (diameter-30mm), characterized by homogeneous uptake of 18-FDG at PET/CT scan, underwent double percutaneous biopptic sampling (SUV maximum and SUV minimum zone) using PET/CT-CBCT guidance. Diagnostic efficacy was calculated. The pathologist reported the percentage of neoplastic cells/flogosis/fibrosis for each sample analysed; furthermore, he evaluated the possibility to draw up a biomolecular profile researching antigens and genetic mutations of lung cancer in the two group.
Results: 9 lesions were malignant, one case benign (flogistic). Diagnostic efficacy was equal to 100% (10/10) for the SUV maximum group and 70% (7/10) for the SUV minimum group (p=0.21). In the first group the pathologist found major percentage of neoplastic cells, while in the second group flogosis and fibrosis were predominant. The biomolecular profile was obtained in 100% (9/9) of cases for the first group and in 33,3% (2/6) of the second group (p=0.011).
Conclusion: Correlation between SUV value and specimen’s diagnostic value was demonstrated. In addition, using fusion imaging PET/CT-CBCT technique for lung lesions biopsy admit to obtain more helpful information from tissue sampling.
B-1811 14:49
The value of core-biopsy of nodules less than 10 mm
P.S. Sánchez1, Atibasia/BR (penelope.san@hotmail.com)
Purpose: The objective of our study is to determine the value of core-biopsy of nodules less than 10 mm. The diagnostic accuracy, complication rates with haemoptysis, haemoptysis, thoracic drainage and the impact on patients will be reported.
Methods and Materials: Retrospective, unicentric study, through the review of charts, images and chest tomography reports in an oncology reference centre. Will be analyzed 40 biopsies per fragment, of pulmonary nodules measuring up to 9 mm (ranging from 5 to 9 mm) guided by computed tomography, using needle 18 or 20 G conducted between January 2014 and December 2016. Consent was completed by all patients or their caregivers. At tomographic images at the time of biopsy were retrospectively reviewed in the standard pulmonary window (width 1500 HU, level 600 HU).
Results: The anatomicopathological results will be collected and classified as positive or negative for malignancy, of primary or secondary origin and if they were compatible with the histopathology of the surgical piece when feasible. Negative results will be considered as true negatives when there are histological or microbiological confirmations, or if the lesion disappears or reduces in size and remains stable for at least 2 years of follow-up. Growth of the malignant nodule or surgical confirmation of the malignancy will be considered false negative results. The sensitivity, specificity, and accuracy of the core biopsies will be calculated. The positive and negative predictive values will be calculated for nodules with positive and negative results, respectively. Indices of pneumothorax, haemothorax and pleural drainage will be calculated.
Conclusion: The study showed that the complication rate was similar to that of nodules larger than 10 mm and the biopsy effectiveness rate was equal to that of the larger nodules.
B-1812 14:57
Percutaneous radiofrequency thermal ablation (RFA) of lung neoplasms using a new 15 G internally cooled jet-tip electrode: preliminary results
F. Carcchio1, R. Iezzi2, A. Posa3, T. Congedo4, G. Velti4, S. Margarotta1, R. Manfredi1, Rome/IT (francesca.carcchio@gmail.com)
Purpose: Aim of our study was to assess the safety and feasibility of CT-guided RFA in unetectable lung neoplasms, using a new 15 G internally cooled jet-tip needle.
Methods and Materials: 14 consecutive patients with lung neoplasms (<4 cm), both primary and secondary, unsuitable or refusing surgery, underwent percutaneous CT-guided RFA using a 15G electrode with 3-cm exposed tip. Primary endpoints were the incidence and grade of adverse events and technical success; secondary endpoint was complete response determined using CT and/or FDG-PET performed 6 months after procedure.
Results: A total of 14 nodules were treated (mean diameter: 28mm; range: 12-38mm). All patients underwent technically successful procedure without neither major complications nor intraprocedural death. Mild pneumothorax not requiring a tube drainage placement was reported in 40% of patients while a mild perilesional haemorrhage was registered in all cases. During the follow-up period, a complete response was obtained in 13 of 14 nodules with one partial response requiring a repeated procedure in one patient.
Conclusion: Percutaneous RFA using a 15G internally cooled J-Tip electrode is a safe and feasible treatment for unetectable lung lesions, with a high rate of complete response obtained.
B-1813 15:05
Leaving-tail microcoil localisation for small pulmonary nodules prior thoracoscopy
T. Su1, L. Jin2, Beijing/CN
Purpose: To describe standardised interventional protocols of CT-guided localising lung nodules with leaving-tail microcoil prior to video-assisted thoracoscopic surgical (VATS) resection.
Methods and Materials: This study retrospectively included ninety-six patients who underwent preoperative microcoils localisation towards small pulmonary nodules. The location of pulmonary nodule and proper patient’s position for microcoil implantation have been documented. The head of microcoil was pinpointed adjacent to the target nodule while its end tail remained above the visceral pleura. After the implantation, CT scan was conducted to assess the depth of the microcoil and its length outside the pleura. The results of CT were compared with observation by VATS within 24 hours. The complications and success rate of implantation were recorded.
Results: CT-guided microcoil implantations were performed targeting 105 pulmonary nodules. The planning access route and implantation site were determined based on the location of the pulmonary nodule, and were followed by an appropriate body position on the CT table. After implantation, CT scan showed the intra-pulmonary depth and extra-pleural length of microcoil were 18.0±6.2 mm (2 to 36 mm), 8.1±6.0 mm (-13 to 26 mm), respectively. During VATS, localisation microcoils from 95 cases (90.5%, 95/105) were visualised that their front-ends were partially inserted and their end tails remained above the visceral pleura. Finally, 104 (99.0%, 104/105) localising pulmonary lesions were successfully resected by VATS and no serious complications occurred in the localisation.
Conclusion: According to the location of lesion in the lungs, the standardised microcoil implantation method is the key to successful preoperative localisation.
B-1814 15:13
Retrospective analysis of the role of intraparenchymal blood patching and the rate of pneumothorax after percutaneous CT-guided core lung biopsy
R.M. Perl1, J. Hetzel1, H. Bösmüller1, C. Kloth2, M. Horger1; 1 Tübingen/DE

Purpose: To assess the rate of biopsy-related pneumothoraces after percutaneous CT-guided lung puncture and to evaluate the impact of intraparenchymal blood patching (IPB) and of other tumour and operator-related risk factors.

Methods and Materials: Retrospective analysis of CT-guided lung biopsies performed at our institution between 01/2003 and 08/2018. The image data of 868 patients were evaluated, of whom 419 received an IPB. The data were analysed for pneumothorax rates, need for thoracic drainage, other risk factors such as lesion size, lesion depth, location within the lungs, needle calibre, number of samples taken and operators’ experience.

Results: The pneumothorax rate was significantly lower in the IPB group (10.74%) than in the non-IPB group (15.37%). In both groups, lesions < 3 cm showed a significantly higher rate of pneumothorax (p < 0.05); furthermore, pneumothorax rate increased with increasing lesion depth (p < 0.001). The rate of pneumothorax was significantly lower (p < 0.05) for 17G needles in the IPB group, but not for other calibres. When sampling from the lower lobe, the rate of pneumothorax was significantly reduced by IPB (p < 0.001). Only in less experienced operators pneumothorax rate differed from 11.1% with IPB to 24.8% without IPB. When taking >3 samples pneumothorax rate was 24.8% without IPB. When taking >3 samples pneumothorax rate was 29.6% (1.84 µm²/ms; 2.04 µm²/ms) and ECV ≥ 29.6% (1.84 µm²/ms; 1.69 µm²/ms; 1.97 µm²/ms) group than LGE- (1.63 µm²/ms; 1.56 µm²/ms; 1.73 µm²/ms) and ECV < 29.6% (1.61 µm²/ms; 1.84 µm²/ms; 1.68 µm²/ms) group. Compared to LGE- and ECV <29.6% group, D* (34.9 ± 5.5 µm²/ms vs 55.2 ± 11.4 µm²/ms, p < 0.001; 37.5 ± 6.9 µm²/ms vs 59.6 ± 9.2 µm²/ms, p < 0.001, respectively) and f values (10.8 ± 1.29% vs 12.5 ± 1.26%, p < 0.001; 10.9 ± 1.1% vs 13.0 ± 1.00%, p = 0.021, respectively) were significantly decreased in both LGE+ and ECV ≥ 29.6% group. Moreover, significant correlations were demonstrated between IVIM-derived parameters and ECV, as well as strain and strain rate.

Conclusion: IVIM DW-CMR is sensitive to detect myocardial fibrosis and has potential of characterizing the extent fibrosis in HCM patients.

B-1815 15:21
Gelfoam slurry tract embolisation after computed tomography-guided percutaneous lung biopsy: does it prevent major pneumothorax?
R. Sum, K.K. Lau; Clayton/AU (rm.sum@gmail.com)

Purpose: To assess the efficacy of biopsy tract embolisation using an absorbable gelatin sponge slurry (Gelfoam) in the prevention of major pneumothorax.

Methods and Materials: A retrospective analysis was conducted on 273 patients who underwent computed tomography-guided percutaneous lung biopsy over a 9-year period. Smoking status, underlying medical condition, radiological evidence of emphysema, location and size of the lesion, length of biopsy tract, and presence of a post-biopsy pneumothorax on CT and plain radiograph were recorded.

Results: Gelfoam was used in 166 patients (mean age 71, range 20-96) and not used in 107 patients (mean age 69, range 27-96). Proportions of patients with radiological evidence of emphysema were similar (63.6% and 67.5% in the non-Gelfoam and Gelfoam groups, respectively). The most commonly used needle size was a 20-gauge coaxial needle. There was no significant difference in pneumothorax complications in either group on immediate post-biopsy CT (p=0.06) and 4 hour post-biopsy plain radiograph (p=0.24). The need for an intercostal catheter to treat a major pneumothorax was significantly higher when Gelfoam was not used (OR=0.3328, p=0.01) - 9 patients (8.4%) in the non-Gelfoam group required an intercostal catheter while only 2 patients (1.2%) required this in the Gelfoam group.

Conclusion: There is no significant difference in the rates of developing a pneumothorax when a gelatin sponge slurry was used for biopsy tract embolisation. However, gelfoam reduced the likelihood for necessitating an intercostal catheter for the treatment of a major pneumothorax.
B-1818 14:16
MRI characteristics and clinical outcomes of hypertrophic cardiomyopathy with infarct-like late enhancement
L. Li, S. Zhao; Beijing/CN (lyyxlwl@126.com)

Purpose: The purpose of our study is to evaluate the prevalence, cardiac magnetic resonance (CMR) features and prognostic value of infarct-like LGE in HCM.

Methods and Materials: From 1411 HCM patients confirmed by CMR, 57 patients in group A (age 47.70±13.29 years; 71.9% males) and 413 patients in group B (age 45.65±13.43 years; 68.1% males) were compared in terms of clinical and CMR findings. Event-free survival and Cox regression analyses were also performed in this study.

Results: The prevalence of infarct-like LGE was approximately 11.61% (57/491). LVEF was lower in group A than in group B (55.77±16.07 vs 66.90±6.50, p<0.001). Compared to group B, group A had larger LVEDVi (73.28±27.61 vs 64.77±16.79 ml/m², p=0.027), LVEFSVi (26.27±18.35 vs 20.52±15.80, p<0.001) and more extensive LGE extent [18.20% (73.28±27.61) vs 64.77±16.79 ml/m², p=0.027] and more extensive LGE extent [18.20% (73.28±27.61) vs 64.77±16.79 ml/m², p=0.027].

Conclusion: Infarct-like LGE was not rare in HCM. If confirmed in further studies, presence of infarct-like LGE can be used for risk stratification in cardiovascular events of HCM.

B-1819 14:24
Sudden cardiac death (SCD) risk stratification in hypertrophic cardiomyopathy (HCM) patients with late gadolinium enhancement (LGE)
E. Mershina, N. Krylova, V.E. Sinitsyn, N. Potechkina, M. Balaeva, A. Pylev; Moscow/RU (elena_mershina@mail.ru)

Purpose: To study the relationship between the functional heart parameters of HCM patients and the extent of LGE.

Methods and Materials: 144 HCM patients and 50 normal subjects (age 20-59 years; females 39.9%) were included in the analysis. CMR images were obtained with a 1.5T scanner and analyzed. The maximal LV mass showed no significant difference between the two groups (HCM 112±5.4g vs HCM 122.5±5.0g; p=0.16). CA patients had preserved LVEF (56.6±1.01%) but slightly lower than HCM patients (62.5±1 0.72%) (p=0.05). MCF showed the best performance to discriminate CA from HCM (AUC=0.87, 95%CI [0.80-0.94], followed by EFSSR (AUC=0.86, 95%CI [0.82-0.89]). Infarct-like LGE was associated with the increase of the LV and RV cavity volumes (p<0.05) and EFSR (all p<0.05).

Conclusion: MCF and EFSSR, two useful indices derived from non-contrast cine images, manifest excellent diagnostic performance in differentiating CA from HCM.

B-1821 14:40
Cardiac magnetic resonance in myotonic dystrophy type 1: a contribution to risk assessment
M. Ali, C.B. Monti, L. Melazzini, B. Fossati, M. Cavalli, R. Cardani, G. Meola, S. Färdaneli, F. Secchi; Milano/IT (marco.ali90@gmail.com)

Purpose: To evaluate left ventricular extracellular volume (ECV) and strain on cardiac magnetic resonance (CMR) as potential imaging-biomarkers of subclinical cardiac pathology in myotonic dystrophy type-1 (DM1) patients.

Methods and Materials: We retrospectively analyzed CMR examinations of DM1 patients with preserved ejection fraction performed between 2014 and 2016. ECV was calculated by native post-processing T1-mapping, referring to normal values reported in literature. Global circumferential strain (CS) was calculated and negative non-contrast CMR scans in age- and sex-matched subjects without history of cardiac disease were used as controls.

Results: Nine patients and nine controls without significant difference for age (p=0.931) and sex (p=1.000) were analyzed. Global CS was -19.1% (interquartile range [IQR] -20.9%, -15.3% in patients and -21.7% (IQR -22.7%, -21.3% in controls (p=0.011). Patients had a median global ECV of 32.3% (IQR 28.4%, 37.6%). A positive significant correlation between global ECV and CS (p=0.03) was found. LV myocardial LGE was 24% in men (11/45) and 25% in women (4/16).

Conclusion: Infarct-like LGE was not rare in HCM. If confirmed in further studies, presence of infarct-like LGE can be used for risk stratification in cardiovascular events of HCM.

B-1822 14:48
Cardiac magnetic resonance (CMR) in patients with Fabry disease
E.A. Mershina, S.V. Moiseev, V.E. Sinitsyn, P.S. Pilius, A.S. Moiseev, V.V. Fomin; Moscow/RU (polishtka1903@gmail.com)

Purpose: To perform an analysis of the imaging biomarkers found with CMR with late gadolinium enhancement (LGE) in patients with Fabry disease.

Methods and Materials: 61 patients (19-69 years, median 53.7; m/f - 45/16) with confirmed diagnosis of Fabry disease who underwent CMR were included in the analysis. CMR images were obtained with a 1.5T scanner before and after gadolinium injection. The images were acquired in cardiac short-axis and in 4, 3 and 2-chamber orientations. The total mass of the myocardium was calculated in global and trabecular layers. The indexed values of ECV, ESV, SV, and EF were obtained. Patterns of LGE were analysed.

Results: The patients were divided into 3 subgroups based on their imaging phenotypes: 1) without LV wall thickening; 2) with concentric LV wall thickening; 3) with asymmetric septal hypertrophy (ASH). Hypertrophy of the LV myocardium was detected in 35 patients (59%), 23 of 35 patients had ASH. In 15 of 35 patients (4%) with myocardial hypertrophy, intramyocardial fibrosis was identified with LGE. Most frequently the fibrosis was found in the interfollicular (n=6) and anterolateral segments (n=6). The frequency of myocardial LGE was 24% in men (11/45) and 25% in women (4/16).

Conclusion: The results of the study demonstrate that Fabry disease has a number of different phenotypic expressions which are manifested on CMR images both in extent and location of hypertrophy and pattern of myocardial LGE. Combination of radiological and genetic assessments of patients with suspected Fabry disease brings the optimal results.

B-1823 14:56
Role of cardiac magnetic resonance (CMR) imaging for early detection of myocardial involvement in patients affected by Anderson Fabry disease (AFD)
S. De Guardo, R. Ammendola, A. Bracci, F. Catapano, F. Cilia, G. De Ruibeis, N. Galea, M. Fraccone, C. Catalano; Rome/IT (simona.cocco@uniroma1.it)

Purpose: Cardiomyopathy is a complication of Anderson-Fabry Disease (AFD) with dramatic impact on morbidity and mortality; medical therapy is...
B-1824 15:04
Feature tracking allows detection of diminishing wall motion disturbances in Takotsubo cardiomyopathy
R.M. Brumberg, T. Emrich, P. Wenzel, S. Benz, R. Kloeckner, M.C. Halfmann, C. Düber, K.-F. Kreitner; Mainz/DE

Purpose: Wall motion disturbances in Takotsubo cardiomyopathy (TTCM) are often rapidly decreasing in days between diagnosis via videomicroscopy and CMR imaging. The purpose of this retrospective study was to illuminate the diagnostic performance of cardiac magnetic resonance imaging feature tracking in fading wall motion abnormalities in TTCM.

Methods and Materials: We compared cardiac magnetic resonance imaging (CMR) and videomicroscopy of 41 consecutive patients with TTCM. TTCM-involved regions were defined as regions with wall motion disturbances in videomicroscopy. With a dedicated cardiovascular software (Circle CVI®, Calgary, Canada), left and right ventricular strain values from TTCM-involved and non-involved region were analysed and recorded.

Results: In all patients, there was a mild or marked normalisation of regional wall motion between videomicroscopy and CMR. Nevertheless, even in the CMR presence of only mild wall motion disturbances, feature tracking parameters (the left ventricle could easily discriminate between TTCM-involved and non-involved segments (e.g. circumferential strain in TTCM-involved region: -14.0 ± 7.9 vs. TTCM-non-involved: -19.2 ± 4.4; p < 0.0001). Interestingly, right ventricular strain values did not differ between involved and non-involved segments (e.g. RV radial strain: p = 0.069).

Conclusion: CMR feature tracking is a powerful tool for detection of fading left ventricular wall motion abnormalities in TTCM. Further research in larger cohorts is needed to establish the time relation between diminution of wall motion disturbance and feature tracking parameters.

B-1825 15:12
Functional assessment and prognostic value of cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy
M.-T. Shen, Z. Yang, K. Diao, L. Jiang, B. Hu, S. Huang, Y. Guo; Chengdu/CN

Purpose: To assess left ventricular (LV) global systolic function using feature tracking cardiovascular magnetic resonance (FT-CMR) in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients and investigate if the LV systolic function abnormalities and clinical characteristics predict adverse outcome in ARVC patients.

Methods and Materials: CMR was performed in 40 ARVC patients and 32 healthy controls. Feature-tracking analysis was applied to cine CMR images on a commercial post-processing image station. LV global longitudinal strain (GLS), circumferential strain (GCS) and radial strain (GRS) were defined as the peak strain value within a cardiac cycle. The end-point was a composite of cardiac death, sustained ventricular tachycardia, ventricular fibrillation, and appropriate ICD discharge.

Results: LV GRS (55.11 ± 11.30% vs 50.84 ± 12.08%), LV GCS (15.78 ± 3.45% vs -20.18 ± 1.88%), LV GLS (12.79 ± 2.70% vs -18.15 ± 1.93%), p < 0.001 for respectively) were lower in ARVC patients compared with healthy controls. Twenty-seven with Late Gadolinium enhancement (LGE) (67.5%), eight with myocardial fatty infiltration (20%), eleven patients occurred syncope (27.5%), nine with heart failure (22.5%) and nine had Implantable Cardioverter Defibrillator (ICD) (22.5%). Thirteen patients met the end-point over a mean follow-up of 3.6 ± 1.7 years. Univariate analysis showed LV GS, clinical and imaging diagnostic parameters (including the presence of LGE, syncope, heart failure and ICD) correlated with adverse outcome (p < 0.005).

Conclusion: Feature tracking by FT-CMR can objectively quantify global left ventricular dysfunction in ARVC patients and can also provides important prognostic information. LV GCS and syncope were independent predictors of cardiac events in ARVC patients.

B-1826 15:20
Magnetic resonance first-pass perfusion imaging for assessment of myocardial microvascular dysfunction in pediatric patients with acute leukemia
Q. Zhao, R. Xu, Z.-G. Yang, Y.-K. Guo; Chengdu/CN (zhaoqin626@foxmail.com)

Purpose: Daunorubicin-induced cardiotoxicity remains an important concern in patients with acute leukemia. This study aimed to clarify the segmental coronary microvascular dysfunction in paediatric leukaemia patients with daunorubicin therapy using cardiac magnetic resonance (CMR) first-pass perfusion imaging.

Methods and Materials: Thirty-six patients with leukaemia (25 in treatment group and 11 in non-treatment group) and 9 healthy volunteers (control group) underwent CMR at rest. Perfusion parameters including maximal slope (Slope_max), time to peak (T_peak) and peak signal intensity, late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF) were evaluated and compared by independent-sample t-test or ANOVA test. The spearman correlation test was used to calculate the relationships between perfusion parameters, LVEF, LGE, and cumulative dose of daunorubicin.

Results: A total of 720 myocardial segments were analyzed. Compared with non-treatment group, T_peak increased in basal segments (24.86±7.29 s vs. 31.27±8.18 s, p < 0.05) and mid-ventricular segments (27.70±6.62 s vs. 30.39±6.81 s, p < 0.05) in treatment group. Slope_max, peak signal intensity and LVEF were not shown significant difference in the three groups. LGE was identified in 12 patients with daunorubicin therapy. Cumulative dose of daunorubicin (mean 129.25±60.31 mg) was moderately associated with the degree of LGE (r = 0.36, p < 0.05).

Conclusion: The segmental myocardial microvascular dysfunction could be early identified by CMR resting first-pass myocardial perfusion, which may contribute for the prevention or timely treatment of daunorubicin-induced cardiotoxicity in paediatric patients with acute leukaemia.

Author Disclosure: Z. Yang: Research/Grant Support; the National Natural Science Foundation of China (81771887, 81471722). Y. Guo: Research/Grant Support; the National Natural Science Foundation of China (81471721, 81771897).
Results: The K SVM results were compared with the histological specimen results: sensitivity: 92.80%; specificity: 97.00%.

Conclusion: The great advantage is that this method, compared to the traditional reporting, does not require gastro-intestinal expertise and allows an easier differential diagnosis from non-CD ileitis.

B-1828 14:08
CT texture analysis to predict response to target therapy of hepatic metastases from colorectal cancer
L. Vassallo, V. Giannini, A. Defeudis, S. Mazzetti, G. Cappello, D. Regge; Cardioli/IT (lorenzovassallo1987@gmail.com)

Purpose: To identify specific imaging biomarkers of hepatic metastases using CT texture analysis (CTTA), able to predict patient’s response to therapy and overall survival.

Methods and Materials: We exploited the imaging dataset of HERACLES trial (NCT0325937); 23 patients with amplified HER2 mCRC were included in the study. All had received anti-HER2 treatment, and underwent CT examination every 8 weeks, until disease progression. CT scans were semi-automatically segmented to extract all liver metastases. CTTA was performed on each segmented area, computing for each lesion 34 quantitative parameters. Monoparametric and multi-parametric analysis were assessed to identify features correlated to therapy response. We also performed a correlative survival (OS) analysis, considering subjects with good survival those with OS > 9 months.

Results: In 23 patients we found 124 metastases, 55 classified as responding and 69 as non-responding. Nine parameters reached statistical significance in mono-parametric analysis (best AUC: 0.67, 0.68). In multi-parametric regression ten parameters were used in the model, achieving AUC equal to 0.82, sensitivity of 82% and specificity of 72%. For OS analysis, 12 patients were “good” and 11 “poor” survivors. In mono-parametric analysis, “cluster prominence” and “sum entropy” predicted OS with AUC equal to 0.78 and 0.83, respectively. The regression model with two variables (“cluster prominence” and “dissimilarity”) reached sensitivity of 83% and specificity of 82%.

Conclusion: Our study demonstrated CTTA as a potential biomarker to predict response of hepatic metastases to target therapy, possibly saving patients predicted as non-responders from toxicity.

B-1830 14:16
Automated visceral fat characterisation on CT scans through deep learning and CNN for the assessment of metabolic syndrome
A. Jimenez-Pastor, A. Alberich-Bayarri, A. Jimenez-Pastor, L. Marti-Bonmati; Valencia/ES (ana.jimenez@iquimib.com)

Purpose: Metabolic syndrome is a risk factor of developing cardiovascular disease and diabetes. Visceral fat has been recognized as a predictor of metabolic risk factors. The main goal is the fully-automated segmentation of visceral and subcutaneous fat by the concatenation of different convolutional neural networks (CNN) on Computed Tomography (CT) images.

Methods and Materials: A set of 20 CT series from obese patients with metabolic syndrome were collected. In CNN development, 80/20% images were used for training/test, respectively. The axial reconstructed images were manually classified into abdominal or non-abdominal. All these images were used to train a first 15-layer-CNN to classify abdominal CT sections of the full scan. For the fat segmentation, all the abdominal CT images were manually segmented into visceral and subcutaneous fat. A total of 1270 2D-images were used to train two different encoder-decoder CNN for the automated fat segmentation and volumes quantification.

Results: The accuracy obtained on the first CNN for abdominal/non-abdominal images classification was 99.35%. To evaluate the performance of both encoder-decoder-CNN, the DICE coefficient over the validation dataset was calculated, obtaining 94.55% and 98.05% for visceral and subcutaneous fat respectively. Mean relative error between the handicrafted and CNN visceral/subcutaneous fat volumes was 3.01/0.94% and the mean relative error on mesenteric-to-total-fat-ratio was 2.17%.

Conclusion: Visceral and subcutaneous fat can be automatically characterized through the segmentation of both fat components by CNNs. This allows the precise measurements of the relative fat fraction and the prediction of metabolic risk factors development on patients with metabolic syndrome.

B-1831 14:24
Application of a clinical decision support system to the imaging pathway of patients with hepatocarcinoma and cholangiocarcinoma
M. Gabelloni, M. Di Nasso, C.A. D’Amore, R. Morganti, L. Faggioni, G. Masi, E. Neri; Pisa/IT (mgiabelloni@sirm.org)

Purpose: To determine the effectiveness of the ESR iGuide clinical decision support system in reducing the rate of inappropriate diagnostic examinations and the resulting costs for the healthcare system.

B-1832 14:32
Automated CT abdominal imaging protocol selection using natural language processing and machine learning
P. Rogalla, B.E. Hoppel, K. Noro, Y. Yamazaki, K. Utsumiya, Y. Shimomura, S. Sugiyama; Toronto, ON/CA, Delafield, WI/US;

Purpose: To develop and evaluate an automatic protocolling engine based on machine learning for predicting the correct imaging protocol in abdominal CT.

Methods and Materials: Determining the optimal imaging protocol for patients undergoing abdominal CT has become a challenging and time-consuming task in most Radiology Departments. Our study demonstrated CTTA as a potential biomarker to predict response of hepatic metastases to target therapy, possibly saving patients predicted as non-responders from toxicity.

Conclusion: The use of ESR iGuide can cut the costs of the healthcare system by reducing the number of inappropriate abdominal diagnostic examinations and potentially improving patients’ outcome.

B-1833 14:40
AI automated identification of complete- and non-responders using texture analysis of rectal cancer 3T MR images performed before, during and after neoadjuvant CRT
R. Ferrari, C. Mancini Terracciano, C. Voena, M. Rengo, M. Zerunian, R. Paramatti, R. Faccini, A. Laghi; Employee; Canon Medical.

Purpose: To evaluate the Artificial Intelligence (AI) model for classification of Complete (CR) and Non Responders (NR) patients with rectal cancer treated with neoadjuvant Chemo-RadioTherapy (CRT). AI input is based on textural analysis of high resolution 3T MR images performed before, during and after CRT.

Methods and Materials: 55 consecutive patients with rectal cancer were prospectively enrolled in this study. Patients underwent 3T T2-weighted (T2w) Magnetic Resonance Imaging (MRI) before, during and after CRT; ROIs around the tumor were manually drawn. All patients underwent complete surgical resection and the specimen was used to evaluate patients’ response. Two AI models were built with the most statistically significant features training a Random Forrest (RF) classifier on a 28 patients (training cohort). The model performances were estimated on 27 patients (validation cohort) using a ROC curve analysis and a decision curve analysis.

Methods and Materials: Forty patients (17 affected by hepatocarcinoma and 23 by cholangiocarcinoma, respectively) were retrospectively evaluated. Using ESR iGuide, all patient data (including signs and symptoms and laboratory values) that could have justified imaging were reviewed to calculate the appropriateness score of every imaging examination performed. The agreement between the examinations suggested by ESR iGuide and those actually performed was assessed using Cohen’s k coefficient.

Conclusion: A total of 98 imaging examinations of the abdomen were performed in 40 patients from 2013 to 2017. Out of all imaging examinations, 79.6% (78/98) were considered appropriate by ESR iGuide and 20.4% (20/98) were deemed unnecessary, having medical utility even when suggested. Out of these latter, 85% were biopsies (17/20), 5% (1/20) abdominal CT, 5% (1/20) barium contrast exams, and 5% (1/20) colonoscopy, respectively. The agreement between the examinations suggested by ESR iGuide and those actually performed was poor in all cases (Cohen’s k less than 0.2). According to the established prices in the BLINDED regional healthcare system, the total cost of the 98 imaging examinations was €14,016, of which 21.6% (£3,033) were related to imaging tests classified as inappropriate by ESR iGuide.

Conclusion: The use of ESR iGuide can cut the costs of the healthcare system by reducing the number of inappropriate abdominal diagnostic examinations and potentially improving patients’ outcome.
Results: Textural analysis points to a lower intra-tumor heterogeneity at the pre- and during-treatment stage for CR patients with a characteristic time evolution of some of the textural features. The obtained AI model shows good discriminatory ability with a ROC AUC of 0.94 (95% CI: 0.89,0.99) in the validation cohort. The discriminatory power of the AI model built for NR discrimination has a ROC AUC of 0.85 (95% CI: 0.80,0.90). Decision curve analysis confirms the clinical usefulness of the models.

Conclusion: AI models based on textural parameters of MR images of patients with rectal cancer taken before, during and after CRT, show good performances for stratification of response to therapy.

Author Disclosures:
A. Laghi: Research/Grant Support; Italian Association of cancer research.

B-1834 14:48
Radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic cancer
Y. Bian; Shanghai/CN (bianyun2012@foxmail.com)

Purpose: To develop and validate a radiomics nomogram for the preoperative prediction of lymph node (LN) metastasis in pancreatic ductal adenocarcinoma (PDAC).

Methods and Materials: In this retrospective study, 213 patients with surgically resected, pathologically confirmed PDAC underwent multislice computed tomography (MSCT) within one month before surgery. All patients were divided into a training set (n=185) and a validation set (n=46); The least absolute shrinkage and selection operator (LASSO) logistic regression algorithm was used to select the radiomics features. Multivariable logistic regression analysis was used to develop the predictive model that incorporated the radiomics signature, computed tomography (CT)-reported organs or vascular status, and CT-reported LN status, and a radiomics nomogram was built. The performance of the nomogram was assessed in the training set and validated in the internal independent validation set. Finally, decision curve analysis (DCA) was performed to estimate the clinical usefulness of the nomogram.

Results: The multivariable logistic regression model included the radiomics signature, CT-reported organ or vascular invasion status, and CT-reported LN status. The individualized prediction nomogram showed good discrimination in the training set [area under the curve (AUC), 0.9206; 95% confidence interval (CI), 0.8861-0.9597] and in the validation set (AUC, 0.9125; 95% CI, 0.8311-0.9398) and good calibration. DCA demonstrated that the radiomics nomogram was clinically useful.

Conclusion: The presented radiomics nomogram that incorporates the radiomics signature, CT-reported organ or vascular invasion status, and CT-reported LN status was a noninvasive preoperative prediction tool with favourable predictive accuracy for LN metastasis in patients with PDAC.

B-1835 14:56
A sparse representation radiomics method based on multi-modality ultrasound images for hepatocellular carcinoma diagnosis and PD1 prediction
W. Wang, Y. Dong, Z. Yao, Q. Zhang, D. Yang, J. Yu; Shanghai/CN (puguang61@126.com)

Purpose: Programmed cell death protein 1 (PD1) is of great importance for surveillance and treatment of hepatocellular carcinoma (HCC). An updated radiomics method based on multi-modality ultrasound images is proposed to discriminate HCC and predict PD1 index.

Methods and Materials: A total of 65 patients with operation and histopathologically proved HCC were included in the prospective study. Every patient underwent multi-modality ultrasound examination before operation, including B mode ultrasound (BMUS), shear wave elastography (SWE), and shear wave velocity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT) and support vector machine (SVM) for asymmetric data. With the sparse regulation of the SRT, we try to make accurate diagnosis of HCC and prediction of PD1 before operation. The accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were calculated to evaluate performance of radiomics models.

Results: Based on radiomics methods, a total of 2560 features were extracted from multi-modality ultrasound images for each HCC lesion. Two radiomics models were built and leave-one-out cross validation (LOOCV) was used to evaluate models. The performance of each model improved as the viscosity modality was included. In LOOCV, the AUC was 0.97 for HCC discrimination (95% CI 0.93 to 0.99) and 0.97 for PD1 prediction (95% CI 0.89 to 0.98).

Conclusion: Radiomics analysis based on multi-modality ultrasound images could help to make accurate diagnosis of HCC and prediction of PD1 level before operation.
B-1839 14:09 Proposal of a breast phantom for dosimetry quality control procedures in digital mammography and digital breast tomosynthesis

Purpose: To design new quality control (QC) phantoms that properly stimulate the automatic exposure control (AEC), current digital mammography (DM) and breast tomosynthesis (DBT) systems to prospectively determine the exposure parameters selected for patient breasts of varying characteristics.

Methods and Materials: Breast fibroglandular information (e.g. peak and mean density, and mean dense tissue area) was obtained retrospectively from a cohort of about 4000 screening DM images using commercial software (Volpara™). A 2 cm-thick phantom slab was designed and manufactured based on the acquired Volpara™ data and the state-of-art of AEC for all current systems. This base slab is composed of polyethylene (PE) simulating adipose tissue with a half-ellipsoid inset of polyoxymethylene (simulating fibroglandular tissue). Phantom thicknesses up to 8 cm were obtained by adding 2 cm-thick PE slabs to the base slab. The AEC response was tested on systems from several vendors, representing different AEC philosophies and techniques. The average glandular dose (AGD) from AEC based phantom acquisitions was compared to AGDs from patients and from the standard homogeneous PMMA phantoms (according to the EU guideline).

Results: The mean AGD of the phantom images agrees with the mean patient AGD to within one standard deviation. Results from statistical t-test show that the new phantom has the potential to better reproduce the exposure parameters used for patients than current homogeneous PMMA phantoms (without the need for spacers).

Conclusion: The phantom seems to provide a simple and reproducible QC method to predict the patient AGD using routine clinical settings.

B-1839 14:17 Device-specific reference values for modulation transfer function (MTF) quality control measurements of digital mammography detectors

Purpose: Presampling modulation transfer function (MTF) measurements quantify detector sharpness and are recommended in the EUREF digital mammography quality control (QC) protocol. The full potential from this measurement will only be realized when reproducibility and limiting values are known for the systems in service. This retrospective study produces average MTF data for vendors/devices and assesses MTF measurement reproducibility.

Methods and Materials: Our physics QC service routinely measures MTF in two perpendicular directions using an edge test object imaged with 2 mmAI at the tube, grid removed. MTF is calculated from linearized Dicom 'For Processing' images and averaged for the two directions, where appropriate. The 95% point of the MTF (MTFp) and MTF at 5mm (MTF5mm) were collated from seven years of QC reports of 37 digital mammography systems (6 vendors/9 models). For these parameters, difference from test to test, and difference from baseline value were calculated.

Results: MTF measurements were found to be reproducible. For example, 5 fault-free Siemens Inspiration systems (14 tests) had a mean MTFp5.3±0.28mm−1 (coefficient of variation (cov) of 5.3%) while MTF5mm was 0.53±0.02 (cov of 4.7%). Average deviation of MTF5mm between successive tests (with 95% confidence intervals) was 3.9% (2.6%-5.2%), while for the difference from baseline value, this result was 4.1% (2.6%-5.7%). For comparison, the permitted baseline change is ±10% in the protocol. For all other vendors, similar reproducibility and confidence intervals were found.

Conclusion: Average deviation of MTF from baseline is typically <5%, making the MTF a robust means of assessing detector sharpness.

Author Disclosures: H. Bosmans: Founder; Qaelum.

B-1840 14:25 Comparative phantom tests of digital mammograms, breast tomosynthesis and synthetic mammograms

L. Vancollie, L. Cockmarthin, N. Marshall, H. Bosmans; Leuven/BE (lesbeth.vancollie@uzleuven.be)

Purpose: To compare digital mammography (DM), digital breast tomosynthesis (DBT) and confocal mammograms (SM) using the 3D structured L1 phantom with calibration and mass lesion-like inserts via a human observer detectability study.

Methods and Materials: Twelve combined DM-DBT phantom images were acquired at automatic exposure controlled dose levels on the GE HC Senographe Pristina, Hologic Selenia Dimensions and Siemens Inspiration systems at respective MGD/image values for DM/DBT: 1.20mGy/1.20mGy; 1.77mGy/2.24mGy; 1.33mGy/2.61mGy. Detectability was assessed via human reading using a 4-alternative forced choice (4-AFC) method. Threshold diameter (d1) of the different inserts was defined as the diameter for 62.5% detected fraction.

Results: Microcalcification detectability was better for DM and DBT compared to SM, with p < 0.001 for all systems. Threshold diameter increased from DM to SM by 23 µm, 17 µm and 33 µm for the GE, Hologic and Siemens, respectively. Detection of both spiculated and non-spiculated masses was significantly better in DM and DBT mode compared to SM, while SM in turn outperformed DM. For the 3 vendors, d1 for mass-like lesions increased going from DBT to SM by 2.06 mm, 1.42 mm and 1.11 mm for the non-spiculated masses and by 1.50 mm, 0.05 mm and 1.46 mm for the spiculated masses for GE, Hologic and Siemens respectively.

Conclusion: For microcalcification detection, better scores were obtained for DM than for SM, while DBT was significantly better than SM for mass-like lesions, suggesting that SM, in its current stage of development, cannot be recommended as a stand-alone modality for any of the devices.

Author Disclosures: H. Bosmans: Founder; Co-founder of Qaelum NV. Research/Grant Support: The medical physics team has a research agreement with Siemens-Healthineers and GE HealthCare.

B-1841 14:33 Image improvement factor (Q) measured for three different antiscatter grids used in mammography imaging

N. Marshall, H. Bosmans; Leuven/BE (nicholas.marshall@uzleuven.be)

Purpose: The grid image improvement factor (Q) describes the relative improvement in signal to noise ratio (SNR) for grid use compared to a non-grid technique: a well-designed grid should improve SNR, allowing dose reduction at constant SNR. The Q factor was assessed for grids in three different digital mammography systems.

Methods and Materials: Grids from GEHC Pristina (2D and 3D mode), Siemens Inspiration (2D) and Hologic Dimensions (2D) were assessed. The grid primary and total transmissions, Tp and Tt, were measured for polymethyl methacrylate (PMMA) thicknesses from 20mm to 70mm, using automatic exposure control factors. For Tp, the PMMA was positioned on top of the breast support and imaged with a large field of view. Tt was measured with PMMA at the base of an 10mm-collimated beam. Q was computed as Q = Tp/Tt.

Results: For GEHC Pristina, Q increased from 0.774 at 20mm to 1.367 at 70mm PMMA. For the same thickness range, Q ranged from 0.835 to 1.259 for Siemens Inspiration and Hologic Dimensions, respectively.

Conclusion: The Q factor shows a dose-equivalent SNR gain by 4-9% for PMMA thicknesses above 40mm, suggesting grid use is beneficial above this thickness. Benefit can reach 26-37% for the thickest breasts (70mm PMMA, 90 mm breast equivalent). Assessment is straightforward and should be part of commissioning tests.

Author Disclosures: H. Bosmans: Founder; Co-founder Qaelum NV, Belgium. Research/Grant Support; The medical physics team has a research agreement with Siemens-Healthineers and GE HealthCare.

B-1842 14:41 Analysis of noise decomposition results in mammography quality control: is quantum noise the dominant noise source?

Purpose: The EUREF QC protocol for digital mammography describes decomposition of noise, measured in homogeneous images into electronic, quantum and structured noise terms: quantum noise must form the highest percentage of the total. This study examined reproducibility and produced typical values for different models.

Scientific Sessions
Methods and Materials: Variance was measured from homogeneous response function images acquired as a function of detector air kerma (DAK). A weighed 3rd order polynomial curve fit was made to variance versus DAK giving the three noise components. Results for 309 QC tests on Fuji Innovality, Fuji Amulet(S), GEHC Essential, IMS Giotto, Hologic Selenia/Dimensions, Phillips/Sectra and Siemens Inspiration systems were analyzed to give percentage of noise at clinical DAK. Typical values were calculated and, averaged across systems of the same model.

Results: For the Innovality (detailed data available for all), the quantum noise percentage (with 95% confidence intervals) was 94.6% (93.2%-96.0%), electronic noise was 4.4% (3.1%-5.6%) and structured noise was 1.0% (0.8%-1.2%). At the clinical DAK. Quantum noise percentage was 61.3% for the Amulet(S), 82.8% for the Essential, 84.6% for the Selenia/Dimensions, 72.4% for the Giotto, 97.3% for the Philips/Sectra and 78.1% for Inspiration. Electronic noise formed the next highest percentage (range 1.0% to 37.3%), while noise from other sources was low (range 0.1% to 4.1%). Coefficient of variation for the quantum percentage ranged from 1.7% to 9.7%.

Conclusion: Three component noise decomposition is reproducible and quickly verifies whether quantum noise is the dominant noise source. This is a useful QC test for tracking system noise performance.

Author Disclosures: H. Bosmans: Founder; Qaelum.

B-1845 15:05 Accuracy testing of two partial breast imaging simulation platforms for applications in virtual clinical trials

L. Vancollie1, M. Herbst1, L. Cookmar1, N. Marshall1, F. Schebesch1, J. Vignero1, H. Bosmans1, Leuven/BE, 2Forchheim/DE, 3Erlangen/DE, 4Veszprém/Veiszprém (veszprem.vancollie@uzleuven.be)

Purpose: Simulation platforms lie at the heart of virtual clinical trials and must be verified for accuracy and realism. Two platforms (‘A’ and ‘B’) developed by 2 different groups were evaluated for these aspects. Both platforms employ partial simulation, whereby lesions or objects are simulated into real images.

Methods and Materials: Partial breast density (PBD) was measured in a breast CT simulation environment.

Results: MGD, AGD, and MBD medians were 1.53mGy, 1.62mGy and 8%, respectively. Median MBDs were lower than Dance’s standard glandularities for breast thicknesses (almost 50% for 20mm breast thickness). There was a strong positive correlation ($R^2 = 0.987, p < 0.0001$) between MGD and AGD although Bland-Altman analysis revealed small statistically significant bias of 0.087mGy between MGD and AGD ($p = 0.001$).

Conclusion: MGD was comparable to that previously reported for Australian women (8.1%). AGD is highly correlated to MGD, although the Dance method particularly underestimates dose at smaller compressed breast thicknesses.

B-1846 15:13 Towards clinical phase-contrast breast CT at Elettra: major SNR improvement at larger propagation distances

L. Brombal1, P. Delogu1, D. Dreossi2, G. Loiolio1, P. Oliva1, G. Mettivier1,12, R. Longo1, R. Rigoni1,6, A. Liboni1, T. Trieste1,6, Siena/IT, 2Sassari/IT, 3Naples/IT, 4Trieste/IT, 5Siena/IT, 6Trento/IT, 7Siena/IT, 8Naples/IT, 9Ferrara/IT, 10luca.brombal@phil.uni.trento.it

Purpose: In-vivo phase-contrast breast CT is feasible using synchrotron radiation. Novel results towards the clinical breast CT modality are reported, showing a major SNR improvement associated to larger propagation distances.

Methods and Materials: Effects of propagation distance on image quality metrics, i.e., SNR, contrast and spatial resolution, are quantitatively evaluated by scanning a large breast surgical specimen at 3 propagation distances (1.5, 2.7, 6.4 m). The same object was imaged at 30 keV with a GeTe single-photon counting detector (60 μm pixel pitch) and the flux is adjusted to provide similar doses at all distances. Images are acquired in free-space-propagation and the Paganin’s phase-retrieval algorithm is applied. Experimental results are described within a rigorous theoretical framework accounting for propagation, phase-retrieval and tomographic reconstruction processes.

Results: A major (4-fold) SNR increase is observed going from the shortest to the longest propagation distance while no significant differences in contrast or spatial resolution are reported. As a result, a major visibility improvement of fibroglandular or tumoral details (e.g., spicules) is demonstrated. For all the distances experimental data are in a good agreement with theoretical predictions.

Conclusion: Moving towards larger propagation distances offers significant advantages since it greatly improves soft tissue details’ visibility (i.e., SNR) at a constant radiation dose, without altering the image appearance in terms of contrast and spatial resolution. Conversely, the same image quality can be attained by reducing the radiation dose. The proposed theoretical background is a valuable tool for propagation distance optimization towards the clinical exam.
B-1847 15:21

Dose-compatible grating-based phase-contrast mammography on mastectomy specimens using a compact synchrotron source
L. Heck, C. Egel, S. Grandal, M. Dierolf, D. Mayr, K.A. Hellenthal, M.F. Reisert, F. Pfeiffer, J. Herzen, Garching/DE, Munich/DE (Lisa.heck@tum.de)

Purpose: In X-ray breast imaging, the low soft-tissue contrast of conventional attenuation-based images can be improved by phase-contrast imaging. Here, the diagnostic performance of grating-based phase-contrast mammography with a compact synchrotron source was evaluated.

Methods and Materials: In this study, grating-based multimodal mammography on mastectomy specimens at an inverse Compton compact synchrotron source was performed. This novel X-ray source offers a quasi-monochromatic X-ray beam which is tunable in its energy and is partially coherent. Grating-based phase-contrast and dark-field images as well as conventional absorption images were acquired. Here, we examined four freshly dissected breast specimens and one mammographic accreditation phantom for a quantitative analysis.

Results: We found enhanced diagnostic information in monochromatic grating-based phase-contrast images while the applied dose was lower or equal to the clinically applied dose. Microcalcifications could be identified equally well at significantly reduced dose in the monochromatic images. In a quantitative analysis performed with a mammographic accreditation phantom, the monochromatic absorption–contrast images showed better or equal contrast-to-noise ratio (CNR) compared to the clinical one even at 20% reduced dose. The monochromatic grating-based dark-field images outperformed the clinical image in case of the tumor masses even at 65% reduced dose.

Conclusion: The demonstrated improved contrast of diagnostic information and increased CNR at lower or equal dose indicates that compact synchrotron sources have great potential to bring benefits to clinical imaging for mammography. This is particularly advantageous with regard to the radiation exposure, since glandular breast tissue is one of the tissues most sensitive to exposure.

B-1849 14:08

Fine focal spot: a technique to improve image quality of computed tomography pulmonary angiography
K.K. Lau, L. Abdelganne, K. Buchan, A. Kuganesan, T. Lau, Melbourne/AU, Southport/AU (kenkplau@gmail.com)

Purpose: Faster temporal resolution (FTR) is routinely employed in CTPA to reduce motion artefacts. CT with fine focal spot (FFS) enables fine anatomical details. The latest x-ray tube design allows the use of FFS in body, but tube rotation time (t) needs to be reduced. The aim of this retrospective study of CTPA was to compare FFS and FTR in CTPA image quality.

Methods and Materials: 50 consecutive adult patients with FTR CTPA (0.275 second-rt and standard focal spot) and another 50 consecutive adult patients with FFS CTPA (0.3 second-rt and 0.6 second-rt) were included. Two radiologists blindly, randomly and independently performed qualitative review on the clarieties of PAs, lungs, aortas, hearts, ribs and livers on images from 2 groups using 5 point ranking method.

Results: FSS CTPA (19 male, mean age of 62, 13% PE incidence) and 50 FTR CTPA (23 male, mean age of 65, 6.7% PE incidence) were studied. Mann-Whitney U test showed FSS was significantly better than FTR in the image qualities of pulmonary arteries, lungs, aorta, liver and ribs.

Conclusion: Despite slower rotation t, FSS still has stronger positive influence on CTPA image quality than FTR. FSS may become an important CTA scanning tool that aid the PE detection.

SS 1904

Traditional and advanced pulmonary vascular imaging
Moderators:
M. Sánchez; Barcelona/ES
A. Nair; London/UK

B-1848 14:00

Pertusion-ventilation CT via three-material differentiation in dual-layer CT: a feasibility study
A. Sauter, J. Hammel, M. Kimm, D. Pfeiffer, F.K. Kopp, K. Ahchterhold, F. Pfeiffer, E.J. Rummeny, P.B. Noel; Munich/DE, Garching/DE (andreas.sauter@tum.de)

Purpose: Evaluation of a simultaneous xenon-ventilation and gadolinium-perfusion dual-energy computed tomography (CT) examination in a pig-model using a tissue discriminating two-material decomposition, resulting in a three-material differentiation.

Methods and Materials: For verification, xenon and gadolinium quantification were examined in a phantom model by comparing nominal to measured concentrations. A landrace pig was examined using a dual-layer CT (DL-CT). Three scans were performed: 1) native; 2) xenon ventilation only; and 3) xenon ventilation and gadolinium perfusion. An in-house-developed algorithm was used to obtain xenon- and gadolinium-density maps. Firstly, lung tissue was segmented from other tissue. Consequently, a two-material decomposition was performed for lung tissue (xenon/soft tissue) and for remaining tissue (gadolinium/soft tissue). By combining both density maps, a xenon-gadolinium density map was generated.

Results: Measurements of xenon and gadolinium concentrations showed a percentage difference between nominal and measured concentration of below 1.2% was shown. For gadolinium, a difference of below 1.3% for all concentrations >1mg/ml resulted. Using the in-house-developed algorithm, it was possible to differentiate xenon and gadolinium in a ventilation/perfusion scan of a pig, resulting in xenon and gadolinium density maps. By summation of both density maps, a three-material differentiation (xenon/gadolinium/soft tissue) can be performed and thus, xenon ventilation and gadolinium perfusion can be visualized in one CT scan.

Conclusion: With DL-CT, xenon and gadolinium can be quantified accurately. Via three-material differentiation, a ventilation/perfusion examination can be performed during one CT-scan, resulting in decreased radiation dose and increased accuracy compared to other previously described methods.

B-1850 14:16

Do subtraction CT-derived iodine maps have the same impact on pulmonary embolism detection as dual-energy CT-derived maps?

Purpose: To compare the impact on pulmonary embolism (PE) detection of adding iodine maps derived from either subtraction CT (SCT) or dual-energy CT (DECT) to CT angiography (CTA).

Methods and Materials: In this prospective study, 274 patients with suspected PE underwent CTA+DECT, and an additional pre-contrast scan to generate the CTA+SCT for the presence of PE. The partial areas under the receiver operating characteristic curves (pAUC) for the clinically relevant specificity region were compared using multi-reader multi-case variance.

Results: The pooled sensitivities were not significantly different (95% confidence intervals for CTA: 67%-89%, SCT: 70%-91%, DECT: 72%-91%). Pooled specificity was significantly higher for SCT (100%-100%) compared to the other two techniques (CTA: 89%-97%, DECT: 89%-98%, p<0.001). The pAUCs for the average reader increased equally with the addition of either iodine map (p=0.029 SCT vs. CTA, p=0.009 DECT vs. CTA, p=0.65 DECT vs. CTA). Average reading times were equivalent while the median dose-length-products were 166 mGy-cm for CTA and 177 mGy-cm for DECT (p<0.001).

Conclusion: In the previously described relevant specificity region were compared using multi-reader multi-case variance.

B-1851 14:24

Split-bolus contrast injection protocol enhances the visualisation of the thoracic vasculature during chest CT
C. Saade; Beirut/LE (charbel.saade@aub.edu.lb)

Purpose: To investigate the visualization of mediastinal lymph nodes during thoracic CT employing a multi-phasic contrast media (CM) protocol.

Methods and Materials: IRB approved retrospective study consisting of 300 patients with known chest malignancy. Patients were allocated to one of two
CM protocols: Protocol A, consisted of dual bolus (Phase 1: 100mL CM followed by 100mL saline chaser) intravenously injected at 2.5mL/s; Protocol B employed a multi-phase CM injection protocol (Phase 1: 2.56mL contrast and saline, followed by phase 3 and 4.40mL contrast and saline injected at 2.5mL/s) with a fixed scan delay of 70sec for each acquisition. Attenuation profiles of the thoracic arteries and veins were calculated as well as the inter-venous contrast ratios (AVCR). Receiver operating characteristic (ROC), visual grading characteristic (VGC) and Cohen's kappa analysis we assessed.

Results: Arterial opacification was up to 24%(p<0.032) higher in protocol B than A, while it was significantly lower in protocol B than A with a maximum reduction of up to 84%(p<0.0001). There was no statistical significance between the central and peripheral pulmonary arteries (>263 HU) in each protocol. Protocol B, demonstrated significant improvement in AVCR at various anatomical sites (p<0.002). Radiation dose was significantly reduced in protocol B compared to A (p<0.004). Both ROC and VGC demonstrated significantly higher Az score for protocol B compared to A (p<0.0001) with an increased inter-reader agreement from poor to excellent.

Conclusion: Employing a multi-phasic CM protocol significantly improves opacification of the thoracic vasculature and visualization of mediastinal lymph nodes during thoracic CT.

B-1852 14:32
Lung dual-energy quantitative CT vs single-photon emission computed tomography for quantification of the perfusion
S.A. Si-Mohamed1, C. Moreau-Triby2, Q. Wdowik1, P. Douek1, L. Bouselle1; 1Brön/FR, 2Bron/FR
Purpose: Perfusion scintigraphy is the current gold standard to assess the fractional contribution of each lobe to the total lung function. We developed a quantitative CT-derived method based on iodine density maps obtained from a dual-energy CT (DE-CT) acquisition and compared it with perfusion single-photon emission computed tomography-CT.

Methods and Materials: Fifty three patients who underwent both modalities for suspected acute and chronic pulmonary embolism were retrospectively enrolled. CT angiography was performed on a DLT (iQon, Philips, Haifa, Israel). Lung lobes were segmented semi-automatically on conventional images, using the ‘COPD’ module (Intellispace portal, Halfa, Israel). The lobar masks were then transposed onto the iodine density maps using in-house software, in order to compute the absolute amount of iodine in mg per lobe and the total amount in both lungs. The relative perfusion of each lobe was obtained by dividing the amount of iodine per lobe by the total amount and compared to the gold standard using linear regression and Bland-Altman analysis.

Results: Linear regression between the relative pulmonary lobar perfusion showed excellent good correlation (slope=0.88, offset=2.11 and R²=0.87) for 285 lobes. Linear regression for each lobe demonstrated a R² of 0.85, 0.81, 0.81, 0.76, 0.67 for the central, lower, upper, inferior, middle, right superior, left superior and right lower pulmonary lobes respectively. Bland Altman analysis demonstrated a bias at -0.10 and agreement limits [-6.01; 5.81].

Conclusion: Given its simplicity, we anticipate that quantitative dual-layer CT could be widely used to measure the relative lung perfusion and replace perfusion lung scintigraphy for various clinical applications.

B-1853 14:40
Influence of respiratory position on pulmonary artery contrast enhancement in dual-energy computed tomography angiography
J. Vaimel1, M.-K. Uprus2, N. Igumenova1, Ä. Roose1, A. Samarin1, Tallinn/EE; 2Peetri/EE
Purpose: Transient interruption of contrast results in suboptimal enhancement of pulmonary arteries due to increased flow of unopacified blood from the inferior vena cava as a result of patient’s deep inspiration prior to the scan. The primary purpose of this study was to determine if shallow-inspiration breath-hold allows superior pulmonary artery attenuation compared to deep-inspiration breath-hold.

Methods and Materials: CT pulmonary angiographies were acquired in 107 patients (58 women, 49 men; age 16-91 years, mean 67 years) in shallow-inspiration breath-hold and in 115 patients (47 women, 58 men; age 26-92 years, mean 67 years) in deep-inspiration breath-hold using 64-detector row CT scanner and dual energy protocol. Bolus tracking was used for triggering the scan. Attenuation in Hounsfield units (HU) was measured in pulmonary trunk, thoracic aorta and superior vena cava on 65kV images. Scans with the scan. Attenuation in Hounsfield units (HU) was measured in pulmonary trunk, thoracic aorta and superior vena cava on 65kV images. Scans with

Conclusion: CT pulmonary angiography performed after shallow-inspiration breath-hold leads to higher contrast enhancement of pulmonary arteries reducing the number of diagnostically inadequate scans.

B-1854 14:48
Dual-energy CT pulmonary angiography and lung perfusion imaging with ultra-low-dose contrast application
K. Hekimoglu1, K. Haberal1, H. Turnaoglu2, G. Kahraman; 1Ankara/TR, 2Konya/TR
Purpose: To prospectively evaluate the quantitative and subjective quality of low-dose contrast dual-energy CT pulmonary angiography (DE-CTPA) and lung perfusion imaging (LPI) in comparison with routine pulmonary angiography (CTPA).

Methods and Materials: CTPA (n=49) had been done with 16-slice multidetector CT (MDCT) by 60 mL contrast media (21 g iodine). A third-generation dual-energy MDCT system was used for DE-CTPA and LPI (n=45) with ultra-low contrast media (7 g iodine). Average enhancement levels, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate image quality and noise. Shapiro-Wilk test was used to evaluate the normality assumption for enhancement values. Variables are presented as median with 25% and 75% interquartile range (IQR). Comparison between groups was performed with Mann-Whitney U test and LPI added three groups with Kruskal-Wallis test. p values <0.05 were considered statistically significant.

Results: Pulmonary enhancement levels of two protocols revealed no significant difference between ultra-low-dose contrast DE-CTPA protocol and routine CTPA (p=0.18). The SNR and the CNR ratios also revealed no statistical difference between protocols (p=0.2 and p=0.18, respectively). The five-point score was significantly better in the DE-CTPA and LPI (p=0.007) for image quality. There was not detected any significant difference for image quality and image noise evaluation between protocols (p=0.3).

Conclusion: DE-CTPA and ultra-low contrast media allows sufficient enhancement in pulmonary arteries combined with high-quality lung perfusion images. This allows a significant reduction in iodine load while improving diagnostic confidence.

B-1855 14:56
Value of CT pulmonary angiography to predict short-term outcome in a patient with pulmonary embolism
A.M. Osmag1, E. H. Abdeldayem; Cairo/EG (Dr_osman80@yahoo.com)
Purpose: To evaluate the role of CT pulmonary angiography (CTPA) in the assessment of pulmonary embolism (PE) severity and the related CT cardiac changes reflecting the clinical status of the patients and predicting the outcome.

Methods and Materials: This is a prospective study of 184 patients presented with suspicious acute PE. All patients underwent CTPA followed by ECHO. Pulmonary artery obstructive index (PAOI) using Qanadli Score was calculated and cardiac changes were recorded. The patients' outcome was followed up for 30 days.

Results: Only 150 patients completed the study; 26.7 % needed ICU admission while 13.3 % died during follow-up. There was a significant relationship between the PAOI and the risk classification, right ventricular dysfunction (RVD) diagnosed by ECHO and the patients' short outcome. We found PAOI cutoff value of 45% for mortality and 35% for ICU admission and 27.5% for RVD with 60%, 75% and 90% sensitivity and 80%, 73% and 68% specificity, respectively. CT RV/LV ratio was the most sensitive parameter to predict RV dysfunction followed by pulmonary artery diameter.

Conclusion: CTPA is not only used for diagnosis but also to assess the severity of PE, the effect on the right ventricular function and subsequently the need for ICU admission and prediction of the outcome.

B-1856 15:04
D-dimers, Wells’ scores and CTPA for pulmonary embolism: are all diagnostics used appropriately?
C. So1, P. de Souza1, R. Kumar1, D. Remedios; London/UK (chunwah.so@nhs.net)
Purpose: Pathways for the management of a suspected pulmonary embolism (PE) rely on pre- and post-test probability. This audit assesses adherence to established pathways, incorporating use of Wells’ Score, D-dimer and CT Pulmonary Angiography (CTPA).

Methods and Materials: Wells’ scores, D-dimer levels, CTPA requests and reports from 60 consecutive patients were retrospectively analysed. Clinical, laboratory and request data were correlated with the CTPA report to assess adherence to pathways and accuracy of supplied information.
Results: There was 100% concordance of the supplied D-dimer result with the laboratory value confirming the absence of gaming. In 22 cases the D-dimer was not used according to guidelines, of which 9 had a low Wells' score but no D-dimer performed. In these 9 cases, the CTPA was negative. Furthermore, 13 cases had a high Wells’ score with an unnecessary D-dimer. Pulmonary embolism was identified in 17% of cases in keeping with the published pickup rates for a CTPA - all of which either had a high Wells’ score, high D-dimer or both, reinforcing the value of the pathway.

Conclusion: The rate of non-adherence with national pathways for PE investigation is 37%, resulting in waste of laboratory and radiological resources. A clinical decision support tool which factors in risk stratification and laboratory data may reduce waste by guiding clinicians towards the most appropriate first-line investigation, radiological or otherwise.

B-1857 15:12
The effect of different monochromatic image choices on the reconstruction of CT perfusion data in one-stop spectral and perfusion CT scan
H. Wang, P. Lu, S. Yue, W. Li; Zhongzhou/CN (1508249322@qq.com)

Purpose: To assess the effect of monochromatic images with different energy levels on the reconstruction of CT perfusion data in one-stop spectral and perfusion CT scan as compared with perfusion CT scan alone.

Methods and Materials: Twenty patients with lung tumors underwent one-stop spectral and perfusion CT scan (including whole tumor perfusion CT and whole lung contrast-enhanced CT). In the study group, monochromatic images with energy level from 40 to 80 keV (group A1 to A5), 100 keV (kV-like images (corresponding 68keV, group B) generated from spectral CT were used to reconstruct CT perfusion images with primary perfusion data. Another ten patients with lung tumors underwent perfusion CT scan alone was taken as the control group (group C). CT perfusion parameters of the tumors including blood volume (BV), blood flow (BF), mean transit time (MTT) and permeability surface (PS) were compared by using One-way ANOVA and independent t-test.

Results: Significant differences in CT perfusion parameters except for BV were found among the study group, and the BF and MTT increased with the increase of energy level. There was no difference of all CT perfusion parameters between group B and group C. However, compared to control group, BV in group A (except for group A3), BF in group A1 to A3, MTT in group A4, A5 increased and MTT in group A1 to A2, PS in group A1, A5 decreased (P<0.05).

Conclusion: 100 kVp-like energy level (corresponding 68keV) was the optimal energy level to reconstruct perfusion images in the one-stop spectral and perfusion CT scan.

B-1858 15:20
CT angiography for pulmonary embolism in the emergency department: diagnostic accuracy of 20ml high-concentration contrast medium
G. Milanese1, R. Cobelli1, C. Manna1, M. Silva1, E. Rasciti1, S. Poggesi2, N. Sverzellas1,1 Parma/TI, 2Bologna/IT (gianluca.milanese@studenti.unipr.it)

Purpose: To compare the diagnostic performance of CT pulmonary angiography (CTPA) between 20 ml and 40 ml of contrast medium (CM), in patients with suspected pulmonary embolism (PE).

Methods and Materials: CTPAs performed by 64-row multidetector scanner with 20ml (ultra-low volume: ULV) or 40 ml (low volume: LV) of high-concentration CM (Iomeprol 400 mg/ml; iodine delivery rate 1.2 mg/sec) were retrieved; tube potential was optimized for angiographic scan (100 kVp). Two radiologists independently scored vascular enhancement and image noise by a 5-point Likert score. Quantitative analysis was performed by densitometric parameters, including vascular contrast enhancement (CE; densitometric threshold for diagnostic CE=250 HU), and quantitative metrics for image noise, both in central and peripheral pulmonary arteries; furthermore, the overall mean CE was calculated.

Results: 102 ULV and 74 LV were included. The qualitative score was overall sufficient by ULV, yet inferior than LV (p<0.001). Qualitative image noise was comparable between ULV and LV, though the inter-observer agreement was only fair for peripheral vessels. Non-diagnostic qualitative parameters were reported in 9/102 ULV, of which 7/9 were associated with major pulmonary abnormalities. Quantitative image noise was not significantly different between ULV and LV. The mean CE was lower in ULV group (p<0.001), though >250 HU in both groups.

Conclusion: CTPA with 20 ml allows sufficient CE of the pulmonary arteries in patients with clinical suspect of PE. Decreased image quality was mostly associated with massive PE or concomitant pleuro-pulmonary abnormalities.

B-1903b 14:00
Discovering the right ventricle in cardiac MR

SS 1903b
Cardiac magnetic resonance feature tracking for quantifying right ventricular deformation in type 2 diabetes mellitus patients
B. Hu, Z.-G. Yang, Y.-K. Guo; Chengdu/CN (brighttyue@foxmail.com)

Purpose: To determine the feasibility of deformation analysis, including 12 with impaired right ventricular ejection fraction (RVEF ≤ 45%) and 58 with preserved RVEF (RVEF > 45%), and 22 healthy controls in this prospective study. CMR was used to determine cardiac function and RV feature-tracking parameters. Binary logistic regression was used to predict RV dysfunction. ROC analysis was used to assess the diagnostic accuracy.

Methods and Materials: We enrolled 72 DM2 patients, without or with reduced RVEF (RVEF ≤ 45%) and 58 with preserved RVEF (RVEF > 45%), and 22 healthy controls in this prospective study. CMR was used to determine cardiac function and RV feature-tracking parameters. Binary logistic regression was used to predict RV dysfunction. ROC analysis was used to assess the diagnostic accuracy.

Results: Compared with controls, RV global longitudinal peak strain (GLPS) and circumferential peak strain (GCPS) were significantly lower in DM2 patients, without or with reduced RVEF (GLPS, −10.24 (−11.41−(−9.27)) vs. −6.84 (−5.79−(−6.88)) % vs. −7.71 (−10.15−(−4.79) %; GCPS, −4.84 (−6.05−(−3.36)) % vs. −2.45 (−4.76−4.30) % vs. 0.59 (−3.83−3.42) %; all p < 0.01). GLPS in all three directions was significantly lower at basal, mid, and apical slices in DM2 patients than in controls (all p < 0.05), except for radial PS at the apical slice and circumferential PS at the basal slice. GCPS was an independent predictor of RV dysfunction (odds ratio: 1.265, 95% confidence interval: 1.020-1.568; p = 0.032), and GLPS demonstrated greater diagnostic accuracy (area under curve: 0.813) to predict RV dysfunction at a cut-off value of less than -9.54%.

Conclusion: In DM2 patients, CMR-FT could quantify RV deformation and identify subclinical RV dysfunction in those with normal RVEF; further, RV strain parameters are potential predictors for RV dysfunction.

B-1860 14:08
Magnetic resonance functional assessment of the right ventricle in the short-axis plane as obtained from cross-referenced atrioventricular plane localisation
M. de Mevere1, B. Dubourg, D. Delacour, S. Bejar, P.J. Michelin, J.-N. Dacher; Rouen/FR

Purpose: Axial orientation may have been favoured over short-axis orientation (SAO) for evaluating the right ventricular function. The main reason lays in the difficulty to identify the atrioventricular junction in the short-axis plane implying lower reliability of the derived volumes. Our goal was to assess the accuracy and reproducibility of SAO-derived stroke volume measurement when using cross-referenced localisation of the atrioventricular plane at the tricuspid valve.

Methods and Materials: 41 patients referred for various acquired and congenital cardiopathies underwent CMR including SAO bSSFP slices. Additional right ventricular vertical long-axis and four-chamber views were used for semi-automatic localisation of the tricuspid plane. Right ventricle stroke volume (RV SV) was obtained three times by two observers. Two-dimensional phase contrast MRA “through plane” was performed at the level of the pulmonary trunk to measure the pulmonary stroke volume (PSV) and used as reference to assess accuracy. Intra- and inter-observer variabilities were tested using Bland-Altman analysis.

Results: There was high correlation (r=0.94) and no significant difference between RV SV and PSV (83±20mL vs. 81±21mL; p=0.05). The RV SV, as well as others functional parameters of the RV, showed good intra- ICC: 0.95; COV: 6.2) and inter-observer reliabilities (ICC: 0.91; COV: 8.9).

Conclusion: Right ventricle stroke volume derived from SAO analysis using cross-referenced localisation of the atrioventricular plane can be routinely performed with high accuracy and reproducibility.
Cardiac magnetic resonance imaging study of right ventricular myocardial deformation in spontaneous T2DM rhesus monkey

Purpose: To assess right ventricular function in monkeys with spontaneous T2DM using cardiac magnetic resonance imaging.

Methods and Materials: Twelve male spontaneous T2DM rhesus monkeys, and age- and sex-matched nine control monkeys underwent cardiac magnetic resonance imaging scanning to evaluate biventricular function using CMR cine and CMR-tissue tracking. Glucose, insulin, triglycerides, cholesterol, lipoprotein and liver, and renal function were assessed from blood.

Results: There was no significant decrease in RV and LV ejection fraction in T2DM (p<0.05). However, the absolute value of radial and circumferential global peak systolic strain, systolic strain rate and three directions global peak diastolic strain rate of the RV free wall were lower in the diabetic group (p<0.05). Also, only radial and circumferential peak systolic strain and radial diastolic strain rate of LV were higher (p<0.05). Our study also demonstrated that RV deformation, especially radial and circumferential, was negatively correlated with age, weight and glycated haemoglobin level (p<0.05).

Conclusion: RV showed systolic and diastolic dysfunction which was consistent with that of LV in spontaneous T2DM rhesus monkeys. RV dysfunction is closely related to blood glucose level, age and weight.

B-1862 14:24
Right ventricular functional assessment with cardiac MRI by comparing volume measurements between axial and short axis orientations

D.G. Osay, E. Peker, I. Enden; Ankara/TR (gizemoktay@gmail.com)

Purpose: Right ventricular (RV) volume and function assessment is usually performed in patients with cardiovascular diseases by using cardiac magnetic resonance imaging (CMRI). Its importance to clear that which slice orientation provides better overall assessment of RV functional performance. This study is designed to evaluate right ventricular (RV) volume measurements and their reproducibility with comparing axial and short axis orientation acquisition techniques.

Methods and Materials: From December 2015 to December 2017, 40 patients who underwent CMR (1.5T) and had axial and short axis acquisitions were retrospectively evaluated. Measurements of RV from data sets acquired in axial and short axis orientations were compared.

Results: Comparison between the axial and short axis methods, there wasn’t any significant and systematic difference in the EDV, ESV and SV volumes, EF values (mean bias EDV 15.6 +/- 27.6 mL/2 difference; ESV 8.5 +/- 19.6 mL/2 difference; SV 7.18 +/- 18.7 mL/2 difference; EF -1.63/6.5 difference). Also, there was no difference between two method in terms of intraindividual reliability in all measurements.

Conclusion: There is no any significant impact of the slice acquisition orientation on CMR assessment of RV volumes and the addition of the axial acquisitions extend the duration of CMRI; so its reproducibility were not clinically significant.

B-1863 14:32
Balloon pulmonary angioplasty (BPA) improves right ventricular dysfunction and pulmonary haemodynamics in inoperable CTEPH

A. Hasse, K. Tello, H. Gaji, A. Breitherk, C.B. Wiedenroth, W. Seeger, E. Mayer, G.A. Krombach, F.C. Roller, Giessen/DE; Bad Nauheim/DE (alexander.hasse@mail.de)

Purpose: To assess the effect of BPA on right ventricular (RV) dysfunction and pulmonary haemodynamics in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH).

Methods and Materials: MRI at 1.5 Tesla and right heart catheterization were performed before and 6 months after BPA in 30 consecutive patients (mean age 63.4 ± 10.5 years; 17 female). Right ventricular function (RVEF) and feature tracking strain analysis (global longitudinal (GL), circumferential (GC) and radial (GR)) were obtained and correlated to mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR).

Results: RVEF (35.9% ± 10.8 to 48.4% ± 8.7), mPAP (42.1 mmHg ± 8.0 to 37.8 mmHg ± 7.9) and PVR (551.8 ± 192.3 to 377.7 ± 140.2) significantly decreased after BPA (p<0.0001). Moreover, RV strain parameters significantly decreased after BPA (GL-19.9 ± 5.7 to 24.0 ± 3.5, p<0.001; GC-9.4 ± 4.0 to -11.0 ± 3.5, p<0.002; GR-38.2 ± 19.1 to 50.7 ± 15.0, p<0.001) and GL strain revealed the best and significant correlations to RVEF (before BPA r = -0.75; after BPA r = -0.54), mPAP (r = 0.36; r = 0.52) and PVR (r = 0.49; r = 0.48).

Conclusion: BPA in patients with CTEPH leads to significant improvement of RV function and pulmonary haemodynamics. RV mechanical dysfunction is significantly improved and RV strain measures showed promising correlations to function and haemodynamics. In the course of CTEPH, strain analysis might enable new insights regarding therapy effect, therapy monitoring and prognosis.
frames/cardiac cycle. Vessel geometry was measured in contrast enhanced MR-angiography using 3D multiplanar reconstructions. Flow was visualized using path lines; WSS and PG were visualised using time-resolved colour-coded maps. Data was processed offline using a commercially available software.

Results: The PG from the Fontan tunnel (FT) to the right pulmonary artery (RPA) was lower than from the FT to the left pulmonary artery (LPA) (RPA: 0.7±1.6mmHg vs. -1.2±4.4mmHg). Average WSS was lower in the RPA than in the LPA (0.19±0.08Pa vs. 0.23±0.11Pa). There was a significant negative correlation of the angle of the RPA anastomosis to the average WSS of the RPA (ρ=-0.76; p<0.03) and of the angle of the sum of the angles of the LPA and RPA anastomosis to the average WSS of the LPA (ρ=-0.937; p<0.001) and RPA (ρ=-0.760; p=0.029).

Conclusion: Indirect measurements of WSS and PG using 4D-flow-MRI were feasible. These measurements could aid in further optimizing surgical methods in order improve flow from the FT to the pulmonary arteries to prevent complications such as protein-losing enteropathy and intrapulmonary shunts.

Author Disclosures:
A. Curta: Research/Grant Support; Circle Cardiovascular provided software free of charge for research purposes.

B-1867 15:04 Pulmonary insufficiency: extending the advantage of pulmonary regurgitation volume versus pulmonary regurgitation fraction to a congenital heart disease mixed population

Purpose: To compare the use of pulmonary regurgitation volume (PRV) and pulmonary regurgitation fraction (PRF) in the assessment of patients with pulmonary regurgitation (PR) undergoing cardiac magnetic resonance (CMR) imaging.

Methods and Materials: 179 patients with PR who had undergone CMR were retrospectively evaluated. Their right ventricular diastolic (EDVI) and systolic (ESVI) volume indexes, stroke volume and ejection fraction were obtained from cine CMR sequences, while PRV and PRF were obtained by phase contrast sequences. Patients were divided in groups according to aetiopathology, and to PR severity. Correlations between PRV or PRF and RV parameters were studied through Spearman's rank correlation and a t-test comparing two independent samples.

Results: Tetralogy of Fallot was the main setting of PR (98/179). Overall, EDVI had a stronger correlation to PRV (ρ=0.592, p<0.001) than PRF (ρ=0.522, p<0.001), and ESVI had a stronger correlation to PRV (ρ=0.454, p<0.001) than PRF (ρ=0.406, p<0.001). Regarding subgroup analysis, in moderate or severe PR patients, EDVI had a significantly higher correlation (ρ=0.043) than PRF (ρ=0.049, p<0.001) and PRF (ρ=0.037, p<0.001).

Conclusion: Especially when assessing moderate to severe PR, PRV may be a better indicator of right ventricular dysfunction than PRF. Moreover, PRV may be a predictor of worsening RV dilation.

B-1868 15:12 Free breathing real-time cardiac MRI in children with congenital heart disease: comparison of right ventricular function with standard breath-hold imaging

C. Treutlein, M. Zeilinger, R. Heiß, W. Wuest, O. Rompel; Erlangen/DE

Purpose: Right ventricular (RV) functional parameters in children with congenital heart disease acquired in free-breathing (FB) and single-breath-hold (SB) full cardiac cycle real-time compressed sensing (CS) cine CMR compared with standard retrospective segmented multi-breath-hold cine CMR.

Methods and Materials: 23 patients with biventricular congenital heart disease underwent standard segmented breath-hold cine, single-breath-hold and free-breathing CS real-time cine CMR with inline motion correction to obtain a stack of continuous axial images of the right ventricle. Functional parameters and scan time were compared. Two radiologists independently performed qualitative analysis of image quality (rated on a 5-point scale: 1 = nondiagnostic up to 5= excellent) and quantitative analysis of right ventricular volume measurements.

Results: All functional parameters correlated significantly (all p<0.01). Image quality score was slightly lower in SB and FB than in standard BH (4±1.08 and 4.2±0.8 vs. 5.5±0.6). Differences in functional results of the right ventricle based on Bland-Altman analysis were less than 5% (95% CI, -8.7 to 7.2). Scan time was 20s (±22) and 14s (±10) vs. 209s (±89). Overall inter-rater variability ranged from -9.0 to 8.1%.

Conclusion: Free-breathing and single-breath-hold real-time compressed sensing cine CMR in children with congenital heart disease could evaluate RV volume with excellent accuracy and delivers diagnostic image quality in a shorter examination time than standard segmented BH examination. It may replace multi-breath-hold standard cine CMR.

B-1869 15:20 Regional right ventricular deformation in hypotrophic cardiomyopathy: assessed with cardiovascular magnetic resonance tissue tracking

X. Li, Y. Zhigang, Y. Guo, Y. He, S. He, K. Shi, C. Xia, Z. Li; Chengdu/CN (lixiang5861@163.com)

Purpose: To evaluate the regional right ventricular (RV) systolic function in patients with hypertrophic cardiomyopathy (HCM) using cardiovascular magnetic resonance-3D tissue tracking.

Methods and Materials: Seventy-one HCM patients classified as late gadolinium enhancement (LGE) present or absent groups and 15 healthy controls were enrolled. The short-axis and four-chamber long-axis cine imaging as well as LGE imaging were performed. The ejection fraction of right ventricular (RVEF), global and regional (basal, mid, and apical) RV tracking strain variables were measured.

Results: In the HCM group, 44 patients presented with LGE and 27 without LGE. The RVEF were not comparable among all patients and controls (P<0.58), but global peak longitudinal strain (PLS) in HCM patients with LGE were significantly lower than those without LGE (-5.6±12.93% vs. -10.68±5.53%, P<0.05). Furthermore, the apical and mid regional of RV-PLS were significantly lower in HCM patients with LGE compared with those without LGE and controls (apical PLS: -6.59±14.53% vs. -10.38±7.61% vs. -12.43±6.69%, P<0.05; mid PLS: -0.13±23.11% versus -9.72±7.72% versus -10.28±5.36%, P<0.05). The basal RV longitudinal strain in HCM patients with LGE were significantly lower than without LGE (-6.58±20.11% vs. -10.36±2.8%, P<0.05).

Conclusion: In HCM, the decreased regional RV myocardial strain occurred before the RVEF reduced, which suggests that regional RV systolic function for HCM is impaired in subclinical stage. Moreover, myocardial deformation of RV was more severe with the presence of LV LGE.

Author Disclosures:
Y. Zhigang: Research/Grant Support; National Natural Science Foundation of China (No. 81471721, 81471722, 81641169, 81771887, and 81771897).

14:00 - 15:30 Room M 4

Gastro-oesophageal imaging: now and next

Moderators:
G.H. Mostbeck; Vienna/AT
T. Rohan; Brno/CZ

B-1871 14:00 Significance of multidetector computed tomography in the assessment of achalasia subtypes and detection of pulmonary complications

S. Jovanovic, A. Djuric Stefanovic, A. Simic, O. Skrobic, D. Masulovic; Belgrade/RS (dr.sanja.jovanovic@gmail.com)

Purpose: To evaluate the multidetector computed tomography (MDCT) findings in patients who have achalasia, to assess its role in differentiating three different subtypes, detecting lung involvement and extra-oesophageal thoracic complications.

Methods and Materials: Clinical retrospective study included 51 patients with manometrically confirmed achalasia who underwent chest X-ray and MDCT in preoperative diagnostic workup. Oesophageal wall thickness and morphology, luminal dilatation, lung changes and extra-oesophageal manifestations were analysed on MDCT. Wilcoxon, Kruskal-Wallis and Mann-Whitney test were used for assessing the differences among the achalasia subtypes.

Results: Twenty (37.7%) patients had achalasia subtype 1, 21 (40.8%) had subtype 2 while 6 (11.8%) had subtype 3. Oesophageal wall thickness of the oesophageal body (EB) and distal oesophageal segment (DES) as well as nodular/lobulated appearance of DES were significantly more often found in subtype 3 (P=0.024, p<0.001, p<0.009, respectively). Oesophageal dilatation gradually decreased from subtype 1 to 3 (p=0.006). Chest X-ray revealed lung changes in 9 (17%) and MDCT in 21 (41%) patients (p<0.001), most frequently in subtype 1, with predominance of ground-glass opacities. Tracheal/bronchial compression was detected in 27 (52.9%) and left atrial compression in 17 (33.3%) patients.
Conclusion: MDCT is a useful tool in detection of lung and extra-oesophageal thoracic complications in patients with achalasia, and a valuable additional imaging modality in differentiation of achalasia subtypes.

B-1872 14:08
Value of MRI with static and dynamic sequences in the study nature extension of the tight stenosis of the oesophagus-gastric junction.

G. De Francesco; S. Bruni; G. D’Alessio; S. Bux; A. Ambrosi; A. Vaccaro; V. Grimaldi; M. Fracella; Bari/IT; 2 Triggiano/IT; 3 Valenzano/IT (dottguelfodferanco@yahoo.it)

Purpose: Evaluation of the efficacy of MRI with static and dynamic sequences in the diagnostic procedure for the evaluation of the extension and nature of the tight stenosis of the gastric-oesophageal junction.

Methods and Materials: From August 2016 to February 2018, 112 patients with tight stenosis of the gastric-oesophageal junction were assessed by gastroscopy. After distension of the stomach by 700-900 cc of water and intravenous administration of hypertonic drug (11 of n-methyl scopolamine) MRI of the oesophagus and stomach was performed with a 1.5 T MRI. 3D fast spin echo sequence with fat suppression and phased-array surface coils. The protocol provided the execution of morphological sequences (true fast/HASTE), cine -RM, DWI and VIBE with intravenous contrast medium.

Results: MRI examination allowed to identify in all cases the thickening of the oesophagus-gastric junction. The identification of the paraetial signal, the enhancement and the DWI signal of the wall allowed to correctly characterize: 60 fibrotic stenosis (53%), 24 acalasic stenosis (22%) and 16 neoplastic stenosis (14%). In the remaining 12 cases (10% of the total) the examination was not conclusive due to the poor collaboration/clausrophobic crisis of the patients (8 cases) or to associated comorbidities (4 cases).

Conclusion: The MRI of the oesophagus and the stomach has the possibility to discriminate with high accuracy the extension and nature of the tight gastric-oesophageal stenosis with very high diagnostic efficacy and allowing patients a subsequent adequate and appropriate therapeutic approach.

B-1873 14:16
Accuracy of 3.0 T MRI in the preoperative T staging of patients with potentially resectable oesophageal cancer, with histopathological correlation.

Y. Lu; J. Qu; Z. Wang; X. Yan; Zhengzhou/ CN; Shanghai/ CN (1524607779@163.com)

Purpose: To explore the value of 3.0 T MRI using multiple sequences (T2-TSE-BLADE, contrast-enhanced star-VIBE, delayed star-VIBE, and correlation of the three sequences) in evaluating the preoperative T stage for potentially resectable oesophageal cancer (EC) with pathologic confirmation.

Methods and Materials: Patients with endoscopically biopsy-proven EC and T1/T2/T3/T4a staging by CT who were imaged on a 3.0 T scanner were prospectively enrolled. The MRI protocol included T2-TSE-BLADE, contrast-enhanced star-VIBE, and delayed star-VIBE. Readers assigned a T stage on MRI, and post-operative pathologic confirmation was considered the gold standard. Inter-reader agreement was calculated. The diagnostic accuracy of T staging on T2-TSE-BLADE, contrast enhanced star-VIBE, delayed star-VIBE, and the combination of the three sequences were analysed and compared to post-operative pathologic T staging.

Results: The study included 158 patients. Inter-reader agreements of T staging were excellent for T2-TSE-BLADE (Kappa=0.818, P<0.0001), contrast-enhanced star-VIBE (Kappa=0.807, P<0.0001), delayed star-VIBE (Kappa=0.817, P<0.0001) and the combination of the three sequences (Kappa=0.935, P<0.0001). Diagnostic accuracies of delayed star-VIBE for T1/T2 staging were 95.57% and 97.47% for reader 1 and reader 2, respectively. For T3/T4 staging, diagnostic accuracy of T2-TSE-BLADE and contrast enhanced star-VIBE ranged between 86.61% and 97.47% for reader 1 and reader 2, respectively. Diagnostic accuracy of the combination of the three sequences was higher than individual sequences for both readers.

Conclusion: 3.0 T MRI using the 3 combined sequences showed higher diagnostic accuracy in T staging of patients with potentially resectable EC compared to individual sequence.

B-1874 14:20
Is the perfusion-metabolic tumor phenotype related to tumour volume and nodal stage in primary oesophageal tumours undergoing DCE-MRI and 18F-FDG PET/CT?

S. J. Withey, K. Owczarczyk, C. Yip, M. M. Siddique, A. Green, J. Bell, G. Cook, V. J. Goh; London/UK (samlue.withey@nhs.net)

Purpose: Locoregional stage remains a relatively poor outcome discriminator in primary oesophageal cancer undergoing curative treatment. We aimed to assess the relationship between tumour perfusion, metabolism & volume with nodal stage.

Methods and Materials: Following ethical approval and informed consent, DCE-MRI and 18F-FDG PET/CT were performed at staging in 24 patients (18 male, median age 64 ± 10 years; 21 adenocarcinoma, 3 squamous cell carcinoma) with primary oesophageal cancer, planned for surgery ± neoadjuvant therapy. DCE-MRI transfer constant (Ktrans), 18F-FDG PET/CT maximum standardised uptake value (SUVmax) and FDG-avid mean tumour volume (MTV) were calculated. Spearman rank correlation assessed the relationship between Ktrans, SUVmax, and MTV. Ktrans, SUVmax, and MTV were compared in clinically and pathologically node positive patients (cN and pN respectively) using Wilcoxon rank test. Significance was at P=0.05.

Results: No correlation was observed between Ktrans, SUVmax, or MTV (Spearman 0.1 and 0.01 respectively). No statistically significant difference between Ktrans, SUVmax or MTV in cN+ versus cN- or pN+ versus pN-patients. When stratifying patients by MTV (<median versus ≥median), in patients with lower metabolic tumour volume, baseline Ktrans was significantly higher in node negative patients (cN and pN, p=0.02 and p=0.04 respectively). This trend was not observed in patients with high metabolic volume cancers. In patients with lower MTV, baseline Ktrans was inversely correlated with number of pathologically involved lymph nodes (Spearman -0.56, p<0.01).

Conclusion: Low DCE-MRI Ktrans appears predictive of nodal involvement in lower MTV cancers.

B-1875 14:32
Combination of quantitative 18F-FDG PET parameters and contrast-enhanced CT in locoregional restaging and prognostication of survival in patients with oesophageal cancer.

D. Tamand; B. Fueger, A. Haug, A. Ba-Ssalamah; Vienna/AT (dielmar.tamand@medunwien.ac.at)

Purpose: To assess whether the combination of contrast-enhanced CT (CE-CT) and quantitative 18F-FDG PET parameters can improve locoregional restaging in oesophageal cancer (EC) after neoadjuvant therapy.

Methods and Materials: Eighty-eight consecutive patients with locally advanced EC, who underwent oesophagectomy after neoadjuvant chemotherapy or chemoradiotherapy were included in this retrospective study. The diagnostic accuracy of CE-CT, visual 18F-FDG PET/CT (vPET/CT) and quantitative PET parameters were assessed for local staging. Histopathology was used as the reference standard. The prognostic value on survival was assessed using Cox regression analysis.

Results: T staging; sensitivity, specificity, positive predictive value (PPV) and accuracy was 78.8%, 70.2%, 59.0% (CE-CT) and 81.1%, 81.1%, 68.2% (vPET/CT) for T staging as well as 59.5%, 75.9%, 50.0% (CE-CT) and 70.2%, 93.7%, and 67.0% (vPET/CT) for N staging, respectively. Tumour length (TL) and metabolic tumour volume (MTV) were correlated with advancing T stages (p<0.002 and 0.038). CE-CT had the best sensitivity to differentiate between T3/4 and T0-2 stages (AUC 0.86, p<0.001), while MTV had the highest sensitivity to detect complete response (TO vs. 1-4, AUC 0.77, p=0.002). The combination of CE-CT and MTV had an even superior accuracy to predict complete response (AUC 0.82, p<0.001). The imaging AJCC stage provided a better prognostication of RFS, CSS and OS than either T stage, N stage derived from CE-CT or vPET/CT, or quantitative PET parameters alone.

Conclusion: Combining both CE-CT and quantitative PET parameters allows for robust prediction of restaging, recurrence and survival in EC.

B-1876 14:40
Correlation between dual-energy CT and perfusion CT parameters in patients with gastric carcinoma.

Y. Chai; Zhengzhou/ CN (chaiyarucyr@163.com)

Purpose: To develop a dual-energy enhanced CT protocol using time attenuation curves from previously acquired perfusion CT data and to evaluate the relationship between iodine enhancement value at dual-energy CT and perfusion parameters in gastric carcinoma patients.

Methods and Materials: The retrospective part included the development of a dual-energy enhanced CT protocol to evaluate peak arterial and venous enhancement on the basis of time-attenuation curves from previously acquired perfusion CT data in 40 patients. The prospective part consisted of an intravadinal comparison of dual-energy CT and perfusion CT data in another 40 patients with gastric carcinoma. Iodine value and normalized iodine value in arterial and venous phase from dual-energy CT and perfusion parameters (arterial flow, AF) from perfusion CT were compared. Pearson R and linear correlation coefficients were calculated.

Results: The strongest intravadingal correlations in gastric carcinoma were found between iodine value in AP with AF (r=0.73, P=0.01). Moderate correlations were found between normalized iodine value in AP with AF (r =0.70, P=0.021) and between normalized iodine value in VP with AF (r =0.57, P =0.013). No further significant correlations were found. The volume CT dose index (10.3 mGy) and dose-length product (214.0 mGy-cm) of dual-energy CT were lower than those of the arterial phase of perfusion CT (29.8 mGy and 654.9 mGy-cm, respectively).
Conclusion: A enhanced dual-energy CT protocol acquired from perfusion CT data sets in patients with gastric carcinoma could show good correlation between iodine value from dual-energy CT with perfusion parameters.

B-1877 14:48
Clinical value of radiomics nomogram in preoperative prediction of lymph node metastasis of gastric adenocarcinoma
R. Wang, J. Li, J. Gao; Zhengzhou/CH (wr07715125@163.com)

Purpose: To develop and validate the spectral CT-based radiomics in predicting preoperatively the lymph node metastasis (LNM) of gastric adenocarcinoma.

Methods and Materials: A total of 196 gastric adenocarcinoma patients confirmed by pathology and underwent preoperative spectral CT scanning were retrospectively enrolled (98 in the training set and 98 in the test set). The clinical information of these patients were recorded, and the CT values, iodine concentration (IC) values and normalized iodine concentration (nIC) values of primary lesions and lymph nodes in dual-phases were measured and calculated in the postprocessing workstations. 273 radiomics features were extracted from the dual-phases CT images in different energy level (40, 65 and 100KeV) to build a radiomics signature. Univariate and multivariable logistic regression analysis were performed to screen predictive indicators for LNM in gastric adenocarcinoma. A radiomics nomogram incorporating significant indicators was developed in the training set, and its performance was measured using the receiver operating characteristics (ROC) curves and was compared with DeLong test.

Results: The radiomics nomogram, which incorporated the CT-reported LN status, IC values in portal venous phases of primary lesions and two radiomics signatures (RSa40, RSPh5) distinguished LNM with an area under curve (AUC) of 0.822 (95% CI, 0.739-0.906) in the training set. It yielded an AUC of 0.819 (95% CI, 0.732-0.906) and an accuracy of 0.735 (95% CI, 0.636-0.819) in the test set. There were no significant differences in AUC between two sets (p=0.9533).

Conclusion: The radiomics nomogram provides individualized preoperative prediction of LNM in gastric adenocarcinoma patients.

Author Disclosures: R. Wang: Author; Li. Jing.

B-1879 15:04
Structured CT reporting improves accuracy in diagnosing internal herniation after laparoscopic Roux-en-Y gastric bypass
J.C. Ederveen1, S.W. Nienhuis1, J. Nederend1; 1Maastricht/NL, 2Eindhoven/NL (jeannette.ederveen@mumc.nl)

Purpose: To confirm that structured reporting of CT scans using ten signs in clinical practice leads to a better accuracy in diagnosing internal herniation (IH), compared to non-structured reporting.

Methods and Materials: A cohort was used of patients who had undergone laparoscopic gastric bypass surgery between January 1, 2011 and January 1, 2018. CT scans between June 1, 2017 and October 1, 2018 were prospectively included and structured reports were made using ten signs: (1) swirl sign, (2) small-bowel obstruction, (3) clustered loops, (4) mushroom sign, (5) hurricane eye sign, (6) small bowel behind superior mesenteric artery, (7) right-sided anastomosis, (8) enlarged nodes, (9) venous congestion, and (10) mesenteric oedema. Furthermore, an overall impression of IH likelihood was given using a 5-point Likert scale. CT scans performed between January 1, 2011 and January 1, 2017, without structured reporting, were used for comparison. Accuracy was calculated using two-way contingency tables. Reoperation and three-month follow-up were used as reference.

Results: A total of 472 CT scans were performed in the study period, 292 in 2011-2016 without structured reporting and 180 in 2017-2018. Of these, 164 (91.1%) were reported using structured reporting. Sensitivity was 79.5% (95%-CI: 67.6-91.5%) and 86.2% (95%-CI: 73.7-98.8%), respectively (p=0.467); specificity was 87.6% (95%-CI: 83.5-91.7%) and 95.6% (95%-CI: 92.1-99.0%), respectively (p=0.011); positive predictive value was 53.0% (95%-CI: 41.0-65.1%) and 80.6% (95%-CI: 66.7-94.6%), respectively (p=0.009); negative predictive value was 96.1% (95%-CI: 93.5-98.6%) and 97.0% (95%-CI: 94.1-99.9%), respectively (p=0.644); and accuracy was 86.4% (95%-CI: 81.8-90.0%) and 93.9% (95%-CI: 88.8-96.9%), respectively (p=0.014).

Conclusion: Structured reporting for the diagnosis of internal herniation after bariatric surgery improves accuracy and can be implemented in clinical practice with good result.

B-1880 15:12
Can routine postoperative CT scan provide reliable leakage risk stratification after laparoscopic sleeve gastrectomy (LSG)?
D. Palumbo, G. Guazzarotti, C. Martinenghi, R. Nicolotti, A. Del Maschio, F. De Cobelli; Milan/IT (palumbo.diego@hsr.it)

Purpose: Our aim was to assess the role of routine postoperative CT scan in the early identification of factors representing potential substrates of leakage after LSG.

Methods and Materials: We enrolled 208 LSG patients (139F, 69M; 43±12.1 years; 43.5±6.9kg/m²) who underwent contrast enhanced CT scan within 72 hours from surgery between September 2015 and September 2018 Imaging post processing included measurement of the distance between the first staple firing and pylorus (StP). We also evaluated the presence of perigastric haematoma and of any twisting of the stomach remnant.

Results: 9 patients suffered from gastric leak (4.3%). The mean StP was 20.0±10.2 cm for SG group and 44.0±16.4 cm for LG group (p=0.005). ROC analysis identified as best threshold for StP 29.9 cm, below which patients demonstrated a higher rate of gastric leakage (AUC: 83.3%;81.8%;Sp:75.4%);9 patients (4.3%) suffered from perigastric haematoma; they were more likely to develop gastric leakage after LSG (33.3%;p=0.005);16 patients developed twist of stomach remnant (7.7%); we identified two patterns of twist: type A (10 patients,4.8%), if the twist involves the proximal third of the gastric remnant; type B (6 patients,2.9%), if it involves its middle and distal part.5 out of 6 type B patients suffered from gastric leak, while no gastric leak was found in type A group, thus suggesting that type B twisting of the gastric remnant significantly increases the probability of gastric leak after LSG (p=0.005).

Conclusion: Routine postoperative CT scan has a promising role in the risk stratification of patients who underwent LSG.

Author Disclosures:

D. Palumbo: Author; G. Guazzarotti: Author; C. Martinenghi: Author; R. Nicolotti: Author; A. Del Maschio: Author; F. De Cobelli: Author;
SS 1911b

Epilepsy and epileptogenic conditions

Moderators:
N.N.
N. Pylaigorskaya, Paris/FR

B-1881 14:00

Evaluation of visuospatial memory performance in temporal lobe epilepsy: a retrospective FMRI study

)victor.schmidbauer@meduniwien.ac.at)

Purpose: Impairment of cognitive functions is often observed in temporal lobe epilepsy (TLE). Adapted versions of the Roland’s Hometown Walking (RHTW) task offer a possibility to examine visuo-spatial memory performance non-invasively by functional MRI (fMRI). The aim of this study was to test whether by means of an adapted form of the RHTW paradigm laterality of visuo-spatial memory function can be identified.

Methods and Materials: Between 01/2013 and 09/2017, 32 patients with the diagnosis of medically intractable TLE were examined on the same 3 Tesla MRI scanner using an adapted version of the RHTW fMRI task as part of the presurgical work-up. EEG revealed a right-sided seizure onset in 5/32 and a left-sided origin in 23/32. Imaging data were analyzed using spm12. Significance levels were set at p<0.05 family-wise error (FWE) corrected and p<0.001 uncorrected. Special attention was paided to mesio-temporal regions.

Results: Left TLE patients showed significant activations in both, right mesio-temporal structures (right posterior parahippocampal gyrus: FWE-corrected p=0.00072/z-score=5.17) and left mesio-temporal structures (left posterior parahippocampal gyrus: FWE-corrected p=0.026/z-score=4.86). Right TLE patients showed significant activations only in left mesio-temporal structures (left hippocampus: uncorrected p<0.0012/z-score=3.37). No significant activations were observed in right mesio-temporal structures, most likely due to the underlying disease.

Conclusion: Using an adapted version of the RHTW IMRI task it was possible to lateralize visuo-spatial memory function in patients with left and right TLE.

B-1882 14:08

Disturbed hippocampal integration into the functional language network in patients with temporal lobe epilepsy

Purpose: Temporal lobe epilepsy (TLE) in the language dominant hemisphere may impair language function. We used functional magnetic resonance imaging (fMRI) to study the language network and its hippocampal integration in patients with left or right TLE.

Methods and Materials: Analysis was based on fMRI data (3T MRI, verb-generation task) of a homogeneous group of 32 patients with TLE due to unilateral hippocampal sclerosis (HS) (17 left) and 14 healthy controls. We analyzed differences in task activation and alterations in the whole-brain language connectome. We quantified the hippocampal integration into the language network with seed-based connectivity analysis, evaluated the hippocampal involvement in the altered language connectome, and more specifically, we analyzed the functional dissociation along the anterior-posterior axis of both hippocampi.

Results: While no significant differences in task activation were found, widespread alterations of the language connectome were observed in left TLE. The diseased hippocampus, and in left TLE also the right hippocampus, showed significantly impaired connectivity. While the right hippocampus showed primarily impaired connectivity to regions associated with the task-negative default mode network, the left hippocampus showed disturbed connectivity to frontal task-positive language regions. Additionally, analysis of the functional dissociation revealed a reduced connectivity for more anterior parts of the diseased hippocampus, particularly in left TLE for hippocampal connections to inferior frontal language regions.

Conclusion: Our analysis revealed widespread disruptions of fronto-temporal language networks and impairment of fronto-hippocampal connectivity only in patients with left TLE. This emphasizes the critical role of the integration of the left hippocampus during language tasks.

B-1883 14:16

Study of correlation between hippocampal perfusion and volume in patients with temporal lobe epilepsy for epileptic lateralisation

Y. Zhang, H. You, Y. Lv, W. Dou, B. Hou, F. Feng; Beijing/CN

(v1506229259@qq.com)

Purpose: To analyse the asymmetry of hippocampal perfusion and volume quantitatively for epileptic lateralization based on the application of MRI arterial spin labelling (ASL) in cerebral blood flow (CBF) and MR automated volumetry and to assess the relationship between perfusion and volume atrophy.

Methods and Materials: Fifty-two patients (28 (53.8%) women; mean age 27.9±9.64 years) with temple lobe epilepsy were recruited retrospectively. Regions of interests (ROIs) were provided in hippocampal head, body and tail for average hippocampal CBF ratio measurements (CBF ratio = CBF (non-epileptogenic hippocampi)/CBF (epileptogenic hippocampi)). The hippocampal volume was automatically segmented and measured using AccuBrain®. The ratios for hippocampal volume were also calculated (volume ratio = volume (non-epileptogenic hippocampus)/volume (epileptogenic hippocampus)). The logistic regression model examined the utility of perfusion and volume asymmetry in lateralizing seizure onset determined by video-EEG. The Spearman correlation was used to evaluate the relationship between perfusion and volume asymmetry.

Results: 45 (66.3%) and 44 (84.6%) patients showed average hippocampal CBF ratios and hippocampal volume ratios bigger than 1, respectively. Logistic regression analysis showed that the hippocampal perfusion and volume asymmetry was the strong predictor of epileptic laterality (hippocampal perfusion asymmetry β=3.455, P<0.001; hippocampal volume asymmetry β=−3.820, P<0.001). There was a significant correlation between hippocampal perfusion and volume asymmetry (rs=0.33, P =0.017).

Conclusion: The hippocampal perfusion and volume asymmetry were highly correlated and both were significant predictors of epileptic lateralization in TLE patients.

B-1884 14:24

DTI-MRI findings in synthetic cannabinoid users

(s0nydin89@hotmail.com)

Purpose: Synthetic cannabinoids (SC) are major agonists of cannabinoid receptor type 1 (CB1). There are so many different SC types based on their chemical structure, some widely known subtypes Spice, Bonzai, K2, Aroma or Kronic. These SC subtypes have become increasingly popular especially among young adults and adolescents in Europe. In the literature there is some conventional MRI findings are defined for SC abusers, such as restricted diffusion and increased T2/FLAIR signal in the corpus callosum and cerebellar peduncles. In this study, we aimed to analyse microstructural alterations in the white matter of the brains in SC users as demonstrated by diffusion tensor imaging (DTI).

Methods and Materials: Approval of ethical committee was obtained. Diffusion imaging data were acquired in 41 non-collinear directions to create diffusion tensor images of 22 patients (F/M: 0/22, Age range: 18-41 years, mean age: 22.7±4.8 years) who have used SCs for at least six months and diffusion tensor images of 20 controls (F/M: 0/20, Age range: 18-41 years, mean age: 27.9±9.64 years) with temporal lobe epilepsy. We showed that FA values acquired from left temporal lobe (inferior longitudinal fasciculus) (216.2±58.9 vs 263±27.4; p =0.002), and right hippocampus (224.5±61.5 vs 255±24.3; p =0.040) are lower in SC users before conventional MRI sequences.

Conclusion: DTI can show micro structural white matter changes occurring in SC users, before conventional MRI sequences.
B-1886 14:40 Evaluation of MRI findings in Hippocampal sclerosis with special reference to T2 relaxometry
V. Inampudi1, S. Nimmalapudi3, A. Prakash; 1Vijayawada/IN, 2Bengaluru/IN (vinee.inampudi@gmail.com)

Purpose: To preliminarily investigate the post-operatice changes of arcuate fasciculus (AF) in gloma patients detected by two-tensor unscented Kalman filter tractography (UKFT) from the perspective of the usefulness as a reference for post-operative recovery of language functions.

Methods and Materials: Sixty-eight patients with pathologically confirmed gliomas involving eloquent language areas successfully post-operative follow-up were enrolled, and all underwent MRI protocols including 3D-T1, T2-FLAIR and DTI. UKFT was applied to reconstruct the long, anterior and posterior segment of bilateral AF. The relative ratio of AF (RRAF) was calculated according to the formula: RRAF = (volume of left AF/postop)/ (volume of right AF/postop). Language assessment was conducted using the self-battery of N-fluent test, NCAG test and language function were analysed according to the formula: subtraction score = (score in language function/postop) - (score in language function/pretop).

Results: Post-operative RRAF of the long segment of the left AF was positively correlated with the subtraction score in AQ (r=0.777, P=0.014); comprehension (r=0.711, P=0.032) and repetition (r=0.740, P=0.023); Post-operative RRAF of the posterior segment of the left AF was positively correlated with the subtraction score in comprehension (r=0.850, P=0.007) and repetition (r=0.747, P=0.003).

Conclusion: UKFT can preliminarily show that increasing volume of the long segment of the left AF may be a predictor of a well restoration of post-operative language function. The restoration of post-operative long and posterior segment of left AF may be helpful for improving language comprehending and repeating ability of patients.

B-1880 15:12 Feasibility of evaluating the genetic mutation status of grade II and III gliomas by diffusion-weighted imaging
Y. Zhang, S. Liu, H. You, Y. Wang, B. Hou, Y. Lv, F. Feng; Beijing/CN (15562225229@qq.com)

Purpose: To explore the feasibility and value of distinguishing and predicting genetic status (e.g. IDH1, MGMT, and TERT mutation status) in WHO grade II and III gliomas by diffusion-weighted MRI.

Methods and Materials: Sixty-eight patients with pathologically confirmed WHO grade II and III gliomas, IDH1 and MGMT, TERT mutation status (MUT/WT) were included retrospectively in this study. In all patients, normalised apparent diffusion coefficient (ADC) was estimated within T2 hypointense lesions. Mann-Whitney U test was used to evaluate differences.
null influence on MR diffusion parameter.

Results: Normalised ADC showed significant differences between IDH1 mutation status in grade II and III gliomas (P = 0.0002). There were no statistical differences observed between MGMT and TERT mutation status (MGMT: P = 0.03545, TERT: P = 0.0632). In ROC analysis, the AUC of normalised ADC for IDH1 mutation status was 0.7584 (95%CI: 0.636-1.8806). The sensitivity and specificity were 70.37% and 85.37%, respectively, when the cutoff value of normalised ADC was set as 1.59. Logistic regression analysis showed that normalised ADC could be identified as the strong independent parameter in the differentiation of IDH1 mutation status (β = 2.629, P < 0.001) in grade II and grade III gliomas.

Conclusion: DWI could be the potential tool for differentiating different IDH1 mutation statuses. MGMT and TERT mutation status of II and III gliomas have little influence on MR diffusion parameter.

B-1891 15:20

The dorsolateral prefrontal cortex mediates the recruitment of auditory cortex in cross-modal plasticity and higher order cognitive functions in sensorineural hearing loss

Y. Luan, G.-J. Teng; Nanjing/China

Purpose: The recruitment of auditory cortex in the non-auditory sensory and higher order cognitive processing was demonstrated following hearing deprivation. The dorsolateral prefrontal cortex (DLPFC), with dense anatomical connections with auditory pathway, is involved in the multi-sensory integration, auditory regulation and various cognitive functions. We aimed to verify the mediation role of the DLPFC in the cross-modal reorganization and cognitive participation of auditory cortex in the long-term sensorineural hearing loss (SNHL) by combing the functional and structural measurements.

Methods and Materials: 35 long-term bilateral SNHL patients and 35 well-matched controls were recruited for assessment of structural imaging, resting-state functional magnetic resonance imaging, diffusion tensor imaging and neuropsychological test.

Results: No difference of grey matter volume in DLPFC was found. The functional connectivity (FC) between DLPFC and auditory cortex, cuneus, fusiform, lingual gyrus and calcarine sulcus was increased in the SNHL patients. The FC in the auditory cortex was associated with the symbol digit modality test (SDMT) scores, which reflect the attention, processing speed and visual memory. Hearing-related FC with DLPFC was found particularly in visual areas. Tract-based spatial statistics (TBSS) analysis revealed decreased FA values mainly in inferior fronto-occipital fasciculus (IFO), which showed negative correlations with DLPFC FC in auditory cortex in SNHL.

Conclusion: Higher functional coupling between DLPFC with auditory and visual areas, accompanied by decreased FA along the fasciculus connecting frontal cortex with temporal and occipital areas, might mediate the cross-modal plasticity via a top-down regulation and facilitate the involvement of auditory cortex into higher order cognitive processing following SNHL.

B-1892 14:00

Why guidelines are important: inter observer variability in assessing MRI signs of endometriosis between reader following ESUR guidelines vs. reader using prior domain knowledge

S. Rajan, R. Rajan, M. Murugavel, B. Barnwal, V. Gupta, V. Venugopal, V. Mahajan; New Delhi/India

Purpose: To assess the interobserver variability in identifying the MRI signs of endometriosis as described by European society of Urogynaecological radiology. A logistic regression model was examined to identify the existence of threshold ADC in predicting genetic mutation status.

Methods and Materials: This retrospective study included 77 randomly selected cases of endometriosis diagnosed on MRI. The cases were pulled from PACS, anonymised and assigned to two radiologists with 16 years and 11 years of experience in body imaging. The radiologists identified the presence or absence of following signs in each case: Retroflexion of uterus, uterine endometriosis, Uterosacral ligament thickening, tethering of rectum, thickened round ligament, uterus and ovaries posterior to inter-schial line, T2 Shading, restricted diffusion, hematosalpinx, vaginal vault pulled-up, bladder involvement and superficial peritoneal implants. Radiologist 1 followed the definitions of the ESUR guidelines whereas Radiologist 2 used a diagnostic checklist based on prior domain knowledge. Interobserver variability was assessed (Fleiss bounds) via the Krippendorff’s alpha coefficient corrected for chance.

Results: The interobserver variability ranged from ‘fair to good’ (Fleiss bounds, 0 in (0.73) in 9 labels (retroflexion, ovaries adherent to uterus, posterior position of ovaries, haemorrhagic cluster cyst in ovaries, T2-shading, hematosalpinx, pulling up of vaginal vault, bladder involvement, superficial peritoneal implants). Five labels (uterus involvement, uterosacral ligament thickening, tethering of rectum, thickened round ligament, uterus and ovaries posterior to inter-schial line, restricted diffusion) were deemed ‘poor’ (<0.40).

Conclusion: We identified the MRI signs of endometriosis having high inter-observer variability. There is scope for improvement in the agreement if the guidelines are followed universally.

B-1893 14:08

Multi-parametric magnetic resonance relaxometry as an assessment of dysmenorrhea severity in patients with adenomyosis

C. Lin, Y. He, Y. Qi, X. Wang, H. Zhou, H. Xue, Z. Jin; Beijing/China

Purpose: To determine whether dysmenorrhea described as visual analogue scale (VAS) in patients with adenomyosis can be estimated by magnetic resonance (MR) relaxometry.

Methods and Materials: In this prospective study, we approved by institutional review board and ethical committee. Written informed consents were obtained. From November 2017 to June 2018, 60 patients suspected of adenomyosis were continuously enrolled. Pelvic MR examinations including T1, T2 and T2* relaxation were performed on 3T Ingenia CX (Philips Healthcare, the Netherlands) during peri-ovulatory period. No visible adenomyosis lesions were found in 22 patients, and 38 patients were finally enrolled. VAS of dysmenorrhea were collected. T1, T2 and T2* relaxation times of lesions were measured blindly by two radiologists via Intellispace Portal (version 11.1.0.64190, Philips Healthcare, the Netherlands) on slices showing maximum lesion area. Intraclass correlation coefficient (ICC) was used to evaluate interobserver reproducibility. Spearman rank correlation coefficients were calculated to demonstrate the relationship between relaxation times and VAS, and a p value <0.05 was considered statistically significant.

Results: ICC ranged from 0.857 to 0.988. A moderate, negative correlation was found between T2* relaxation time of lesions and VAS (r = -0.444, p = 0.0006). Weak correlations were found regarding T1 and T2 relaxation times but they are not statistically significant (r = 0.8563, p = 0.0165, and r = -0.1120, p = 0.4999, respectively).

Conclusion: T2* relaxation time of lesions in peri-ovulatory period can quantitatively assess dysmenorrhea severity in patients with adenomyosis.

B-1894 14:16

Diagnostic algorithm to differentiate benign atypical leiomyomas from malignant uterine sarcomas using MR imaging

C. Abdel Wahab 1, A-S. Batu 1, A. Bellucci 2, B. Bonaffini 4, S. Sauvage 1, M. A. Lefere Belda 1, A-S. Batu 1, I. Thomasin-Nagaggara 1, A. Bellucci 2, C. Reinhold 4, L. Fournier 4, 1 Paris/FR, 2 Monza, QC/CA, 3 Issy Les Moulineaux/FR, 4 McGill, QC/CA

Purpose: To build a diagnostic algorithm to differentiate malignant uterine sarcomas from benign leiomyomas with atypical presentation on MRI.

Methods and Materials: An IRB-approved case-control study included 156 women (51 sarcomas and 105 atypical leiomyomas) with an atypical uterine mass on MRI underwent before surgery or with MRI follow-up > 1 year. A diagnostic algorithm was developed for the prediction of malignancy. Clinical and MRI data were collected and compared with pathological findings. Two independent pathologists (N = 43 and 59) were used for validation, one with a reader with no previous knowledge of the algorithm to evaluate its generalizability.

Results: Predictive imaging criteria for malignancy included enlarged lymph nodes or peritoneal implants (OR = 21), high signal on DWI > the endometrium (OR = 9), ADC ≤ 0.905×10−3 mm²/s (OR = 178). Conversely, the presence of a portion, even partial, with low T2 signal had a VPN of 100% (p = 0.0001). The accuracy of the algorithm for differentiating benign atypical leiomyomas from sarcomas was 96.8% in the training set, and 95% and 95% in the two validation populations. The algorithm, however, should not be applied to extensively haemorrhagic masses.

Conclusion: Beyond the previously known clinical and morphologic criteria, algorithmic diagnostic criteria on MRI reliably differentiate malignant sarcomas from atypical leiomyomas, to guide optimal therapeutic management. We developed an interpretation model usable in routine practice for myometrial tumours on MRI including T2 and T1 signal, DWI signal and ADC value.
B-1895 14:24

Differentiation of uterine serous carcinoma from benign atypical leiomyomas: diagnostic value of quantitative parameters based on diffusion-weighted imaging

E. Kim, S. Rha, M.H. Choi, M. Choi, J.-I. Choi; Seoul/KR (doourcing@nami.re.kr)

Purpose: To investigate the diagnostic value of quantitative parameters based on diffusion-weighted imaging (DWI) for differentiation between uterine serous carcinoma (US) and benign atypical uterine leiomyomas (ALM).

Methods and Materials: This retrospective study include 80 women (ALM=56, US=24) imaged with pelvic MRI with DWI prior to surgery. Two readers independently evaluated each lesion for quantitative features as well as quantitative parameters including the mean ADCmean, the ADC ratio (ADCmean/ADCmax), the relative contrast ratio (RCR) [SImax on b1000/SImin on b1000], and the contrast-to-noise ratio (CNR) [SImax on b1000-SImin on b1000]/SDnoise on b1000]. The diagnostic performance of the calculated parameters in discriminating US and ALM was compared using receiver operating characteristic (ROC) analysis.

Results: The area under the ROC curve (AUC) for the mean ADCmean was superior (0.818 [95% confidence interval (CI) 0.716-0.896]) with sensitivity (SN) and specificity (SP) of 83% and 77%, followed by the RCR (0.811 [95% CI 0.708-0.900]) with SN and SP of 79% and 78%, the CNR (0.742 [95% CI 0.632-0.833]) with SN and SP of 75% and 76%, and the ADC ratio (0.729 [95% CI 0.618-0.822]) with SN and SP of 50% and 91%. All four parameters showed statistically significance for discrimination between US and ALM (p<0.006).

Conclusion: The clinical application of quantitative parameters based on DWI and ADC map is helpfull for distinguishing US from ALM preoperatively.

B-1896 14:32

Correlation between zonal oblique multislice intravoxel incoherent motion diffusion and dynamic contrast enhanced magnetic resonance imaging parameters in endometrial cancer

C. Lin, Y. He, Y. Qi, X. Wang, H. Zhou, H. Xue, Z. Jin; Beijing/CN (linchengyu@pumch.cn)

Purpose: To investigate the correlation between parameters of Zonal Oblique Multislice (ZOOM) Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in patients with endometrial cancer.

Methods and Materials: Institutional review board approval and informed consents were obtained. Between December 2017 and September 2018, 36 patients pathologically confirmed of endometrial cancer were included in this prospective study. Pelvic examinations were performed in a 3.0 T MR scanner (Ingenia CX, Philips Healthcare, the Netherlands), including ZOOM IVIM with 8 b values and DCE-MRI with 3 different flip angles (5° and 15° initially; and 20°sequentially afterwards). IVIM parameters (D, diffusion coefficient; Dstar, pseudo-diffusion coefficient; and f, perfusion fraction) and DCE-MRI parameters (time to peak; wash in rate; wash out rate; Ktrans, transfer rate between extravascular extracellular space and blood plasma constant between blood plasma and extravascular extracellular space; and kep, transfer rate between extravascular extracellular space and blood plasma constant between blood plasma and extravascular extracellular space) were blindly measured by two radiologists via ImageJ software (version 10.1.0.64190, Philips Healthcare, the Netherlands). Spearman correlation was performed and a p value <0.05 was considered statistically significant.

Results: Interobserver measurement reproducibility was good to excellent. A moderate correlation was found between f and wash out rate (r=0.500, p=0.0019). Mild correlations were found between D and Ktrans (r=-0.329, p=0.0498), D and kep (r=-0.411, p=0.025), f and time to peak (r=-0.358, p=0.0319), f*Distar and wash in rate in (r=0.345, p=0.0423), and f*Distar and wash out rate (r=-0.377, p=0.0255).

Conclusion: ZOOM IVIM perfusion-related parameters demonstrated moderate-to-mild correlation with DCE-MRI quantitative parameters in endometrial cancer.

B-1897 14:40

Multi-parametric MR imaging for prediction of response to gonadotropin releasing hormone analogue in patients with adenomyosis: a preliminary study

C. Lin, Y. He, Y. Qi, X. Wang, H. Zhou, H. Xue, Z. Jin; Beijing/CN (linchengyu@pumch.cn)

Purpose: To evaluate the feasibility of multi-parametric MR imaging in predicting the therapeutic response to gonadotropin releasing hormone analogue (GnRHa) in patients with adenomyosis.

Methods and Materials: 12 patients suspected of adenomyosis were continuously involved in multi-parametric pelvic MR examinations between October 2017 and May 2018. Intravoxel Incoherent Motion (IVIM) with 8 b values and Amide Proton Transfer (APT) imaging were performed on ST Ingenia CX (Philips Healthcare, the Netherlands) during peri-ovulatory period. Visual analogue scale (VAS) of dysmenorrhea and menstrual blood volume (MBV), were collected before GnRHa injection and 3 months after. APT values and IVIM parameters (D, diffusion coefficient; Dstar, pseudo-diffusion coefficient; f, perfusion fraction) of adenomyosis lesions were blindly measured by two radiologists and compared between patients with different therapeutic responses. Receiver operating characteristic (ROC) analysis was performed.

Results: Among 12 patients, 6 patients achieved complete response (CR, VAS=0 and normal MBV), while 6 patients with partial response (PR, otherwise). APT values in lesions were higher in patients with PR than those with CR (2.387±0.6 1.668%, p=0.0130), and Distar values were lower (18.44±2.41 vs. 8.44±0.37, p=0.0039). AUC of APT for differentiating PR from CR was 0.9167 (p=0.0163) and 0.9444 (p=0.0104), respectively. The feasible threshold values was estimated as 2.035% and 52.92 pps, with sensitivity of 83.33% and specificity of 100%, respectively.

Conclusion: Parameters acquired from multi-parametric MR imaging, especially APT and Distar values showed potentials in predicting GnRHa therapeutic response in patients with adenomyosis.

B-1898 14:48

Conservative treatment in patients with cervical cancer on FIGO stage IB1-I A1 >2cm: the role of MRI in a pilot study: preliminary results

B. Gui, L. Russo, F. Cambi, F. Petta, S. Persiani, R. De Vincenzo, R. Manfredi; Rome/IT (lucarusso.md@gmail.com)

Purpose: To evaluate the role of Magnetic Resonance (MRI) in the detection of staging and evaluation of response to “fertility-sparing” treatment in patients with early stage cervical cancer (FIGO stage IB1-I A1 >2cm).

Methods and Materials: In this prospective study, 11 patients with early-stage cervical cancer (FIGO stage IB1-I A1 >2cm) and negative pelvic lymphadenectomy, who want to preserve their fertility, have been enrolled. Patients performed colposcopy, MRI, transvaginal sonography and PET-CT at staging moment and during the follow-up. All patients enrolled underwent neoadjuvant chemotherapy (nCT), with platinum and taxanes, and instrumental evaluation. In case of clinical complete response to treatment (CR) to nCT, patients underwent conization. Follow-up MRI exam has been performed at 6 (18 months, including conventional and diffusion-weighted sequences).

Results: Patients’ mean age was 30 years old (range 23-36 years old). MRI correctly identified tumor FIGO stage and classified treatment response in all 11 patients. 9 of 11 patients had CR to nCT, 1 patient had no response to nCT, 1 patient developed disease progression after nCT. Between the 9 patients with CR to nCT, 1 patient decide to abandon the protocol to undergo radical hysterectomy. 7 patients completed study protocol without disease recurrence (1 of them completed a pregnancy) and 1 patient developed liver metastasis recurrence 6 months after conization, but she is still alive at 57 months of follow-up.

Conclusion: In patients with early-stage cervical cancer who undergo fertility-sparing treatment, MRI exam is very helpful to assess response to nCT and during follow-up after conization.

B-1899 14:56

Quantitative MR texture analysis to distinguish leiomyosarcoma from benign leiomyoma with high signal intensity on T2-weighted imaging

Purpose: To distinguish leiomyosarcoma (LMS) from benign leiomyoma (LM) with high signal intensity (SI) on T2-weighted imaging (T2WI) using quantitative MR texture analysis.

Methods and Materials: We retrospectively studied 39 patients with uterine smooth muscle tumours with high SI on T2WI, who were surgically resected and pathologically diagnosed as LM or LMS, between October 2009 and November 2012. From pathological analysis, 33 were diagnosed with LM, and 6 with LMS. Each tumour was manually segmented and assessed on axial or sagittal MR images on T2WI and on apparent diffusion coefficient (ADC) map using ImageJ (a software program for quantitative analysis). Quantitative MR texture parameters analysed in each lesion included T2WI skewness, T2WI kurtosis, T2WI entropy, ADC mean, ADC variance, ADC skewness, ADC kurtosis, ADC entropy, ADC uniformity and percentile ADC values. The differences between LMs and LMSs were statistically evaluated by Mann-Whitney U test, logistic regression analysis and receiver operating characteristic curves.

Results: In the univariate analysis, significant differences between LMs and LMSs were observed in ADC variance, ADC entropy and ADC uniformity (P < 0.05, respectively). Compared with the LMs, the LMSs exhibited larger ADC variance and ADC entropy, but smaller ADC uniformity on the histogram. The multivariate analysis revealed that the independent differentiator was ADC entropy (P < 0.05) with moderate accuracy (area under the curve, 0.838). The best cutoff value for ADC entropy was 9.901 (sensitivity: 64%, specificity: 100%).

Conclusion: ADC entropy can help accurately distinguish LMSs from LMs with high SI on T2WI.
B-1900 15:04
Imaging of potential donors for uterus transplantation, with emphasis on the uterine arteries
J. Båth, P. Dahn-Kähler, N. Kvarnström, A. Thilander Klang, M. Brännström, H. Leonhardt, Gothenburg/SE (john.bath@vgregion.se)

Purpose: To explore the optimal imaging evaluation algorithm regarding potential donors for uterus transplantation and assessing the uterine arteries.

Methods and Materials: In this prospective study, 10 women aged 45-62 willing to donate their uteri underwent MR imaging of the pelvis, including contrast-enhanced MR angiography (MRA), contrast-enhanced CT angiography (CTA), and digital subtraction angiography (DSA). Details of the uterine arteries were compared between the three different angiographic modalities.

Results: MRA was not able to adequately identify 7 out of 20 arteries. One of these arteries was questionable on CTA and judged to be generally thin, but DSA finally visualized it as proximally divided in two small-calibre branches and the woman was accepted for surgery. Another MRA absent artery was identified as adequate on both CTA and DSA. There was no significant difference of average arterial lumen diameter measured by MRA, CTA and DSA. Three women were excluded from surgery because of significantly stenosed uterine arteries bilaterally. There were no method-related complications found.

Conclusion: Given the capacity of MRI to describe details of uterine anatomy and pathology it is valuable to start with this modality. If fully visualized from the origin into the uterus wall by MRA with a diameter of at least 1.5 mm, there is no need to move on with other angiographic methods. If not, CTA should be performed for better details of the uterine arteries. In a few cases, there may be a need for further investigation by the more invasive modality of DSA.

B-1901 15:12
Diffusion tensor imaging parameters of endometrial carcinoma can predict local tumour behavior: a feasibility study
A. Ghosh, T. Singh, V. Singla, R. Bagg, S. Srinivasan; Chandigarh/IN (tulikardx@yahoo.com)

Purpose: We evaluated diffusion tensor parameters of endometrial tumours and their correlation with myoinvasion and tumour-grade; demonstrating the feasibility of predicting myoinvasion and tumour grade, demonstrating the feasibility of predicting them, using quantitative diffusion tensor imaging.

Methods and Materials: This prospective study included 26 consecutive patients with endometrial carcinoma. Patients underwent DCE-MRI and DTI with 12 diffusion sensitising directions in the sagittal plane on a 1.5 tesla scanner. Fractional Anisotropy, mean, radial and axial diffusivity and eigenvalue2 correlated significantly with myoinvasion. The minimum axial diffusivity of the tumour had an AUC of 0.81 (0.61 to 0.94) in predicting type 1 versus type 2 endometrial tumours. Multivariate analysis was done which showed that the mean and minimum values of mean-diffusivity, fractional anisotropy, axial-diffusivity and eigenvalue2 correlated significantly with myoinvasion. The minimum axial diffusivity of the tumour had an AUC of 0.87(0.68 to 0.97) and 0.708 (0.50 to 0.87) in predicting superficial and deep myoinvasion. Similarly FA sum obtained an AUC of 0.81 (0.61 to 0.94) in predicting type 1 versus type 2 endometrial tumours.

Conclusion: Diffusion Tensor Imaging parameters can be used to characterise endometrial tumours and predict local myoinvasion, thus demonstrating the utility of physiological diffusion imaging in tumour staging and characterisation.

B-1902 15:20
Shear wave elastography of the endometrium: a simple tool to improve diagnostic accuracy of endometrial carcinoma from other benign endometrial diseases
S. Mah, A. Vijayananthan, K. Rahmat, R. Muridan, Y. Abdul Aziz, C.H. Yeong; Kuala Lumpur/MY (stephen_mah7@hotmail.com)

Purpose: The incidence of endometrial cancer (EC) is increasing globally and in Malaysia, it rose from 3300/100,000 in 2003 to 4100/100,000 in 2007. We evaluated the diagnostic value of endovaginal shear wave elastography (SWE) of the endometrium in patients with abnormal uterine bleeding (AUB) in order to reduce the incidence of unnecessary invasive endometrial biopsy.

Methods and Materials: 43 subjects were enrolled, where shear wave elastography ultrasound were performed. There were 24 healthy controls and 19 patients who presented with AUB, where histopathology results were available. SWE average values were elaborated as E\text{max} and E\text{min} where, “E” represents the longitudinal elasticity of a material. These values were described in kilopascal (kPa) unit. Analysis was performed for the SWE values and endometrial thickness (ET). The mean age of patients were 58.9 years. Highly significant correlation between the SWE values and ET was present in AUB patients (r=0.771, p<0.001). Significant difference of ET and SWE values were demonstrated between the control and AUB patients (p<0.05). Amongst the AUB patients, there was also significant difference of SWE values between the malignant and non-malignant diseases, where p=0.01. The SWE cut-off value of ≤82.5 kPa (E\text{max}) and ≤103.7 kPa (E\text{min}) resulted in 100% sensitivity, 86.8% specificity and 98.4% accuracy.

Conclusion: Endometrial SWE serves as a clinically applicable diagnostic tool in women with AUB. With cut-off values of E\text{max} 82.5 kPa and/or E\text{min} 103.7 kPa, EC were excluded from other non-malignant endometrial diseases. This will aid in imaging patients for invasive biopsy procedures.
Scientific and Educational Exhibits
(C)

Full EPOS™ presentations are published at epos.myESR.org and can be cited by a Digital Object Identifier (DOI), if selected so during poster submission.
Satellite Symposia
(D)

Wednesday, February 27.... 588
Thursday, February 28 591
Friday, March 1 593
Saturday, March 2 596

ECR/ESR takes no responsibility for the content of the Satellite Symposia, and the opinions expressed therein do not necessarily reflect those of the ECR/ESR
Automated 3D breast ultrasound (US) is a new technique, which scans the breast automatically and almost entirely. Data sets can be stored and are available for 3D cross-correlating review. This technique may eliminate the subjectivity of conventional 2D ultrasound, and disconnects the acquisition and assessment of US data. It facilitates the possibility of double reading, review of follow-up studies, and the application of computer-aided detection. Issues to be discussed are: - Implementation of automated 3D breast ultrasound in the clinical radiological setting - Technique of reading and interpretation of 3D US data sets - Standardization of assessment and reproducibility (e.g., CAD and reading software) - Diagnostic yield, sensitivity and specificity and factors influencing these, such as limitations, artefacts and pitfalls.

Learning Objectives:
1. To learn how to implement 3D breast US in daily practice.
2. To become familiar with the technique and assessment software.
3. To understand the accuracy and limitations of 3D breast ultrasound.
4. To become familiar with potential future developments.

Advanced elastography in breast cancer detection
M. Vancu; Craiova/RO

The 3D reconstruction of the breast has opened up a new era in breast ultrasound. This new technique has improved the quality of ultrasound images to such an extent that sonography is now a major mode of detection for breast cancer. The ACUSON S2000 ABVS overcomes the inherent limitations of the breast ultrasound investigation: a small field of view and poor reproducibility. The advantages of the ACUSON S2000 ABVS include standardization with the possibility of second-look and follow-up studies, reproducibility and operator independence. Coronal slices of the breast allow quick identification of areas with impaired architecture. The tools perform measurements more accurately, and are extremely helpful for follow-up studies such as in cases of chemotherapy. Cancer tissue is stiffer than normal breast tissue. The idea of using this stiffness information for diagnosis evolved into a new diagnostic imaging method for detecting tissue elasticity. Ultrasound elastography is an excellent technique for characterizing breast lesions as benign or malignant. There are two types of elastography: strain elastography, which allows for a qualitative assessment of the lesion, and shear wave elastography, which can be measured as a velocity, with a quantitative value of the stiffness. We have used elastography on over 3000 diagnostic breast ultrasound cases over several years and it has been a “virtual biopsy”. The technique has been extremely helpful in increasing confidence in breast evaluation.

What you need to know when using contrast media in breast imaging
E.M. Fellerberg; Munich/DE

Since nearly 100 years contrast agents are used in imaging. The big leap for contrast use in breast imaging was the introduction of breast MRI in the 80s. Contrast enhanced breast MRI is the most sensitive technique for detection of breast cancer today. Digital full-field mammography introduced roughly 20 years ago also paved the way for contrast enhanced mammography. In contrast to MRI, where gadolinium based contrast agents (GBCA’s) are used, contrast enhanced mammography uses iodine-containing agents. Even if contrast agents are generally judged as safe, some specialties for both of them have to be considered to prevent side effects or damage to the patient. This talk will focus on the history of contrast enhanced breast imaging and point out advantages and disadvantages of the different types of contrast agents. Recent data will address risks and concerns regarding Gd presence of GBCA’s in the brain. To conclude you will learn which patient history information and laboratory is required to securely apply different contrast agents and how to manage of the most common side effects.

Learning Objectives:
1. To give an overview of the advantages and disadvantages of the different available contrast agents.
2. To enable to prepare patients adequately for contrast administration and handle possible side-effects.

Clinical utility of contrast enhanced dual energy mammography
L.J. Pina Insauti; Pamplona/ES

Titanium Contrast Enhanced Mammography (TICEM) is a development of digital mammography. By using dual energy (conventional low energy mammography plus high energy mammography) after the administration of a bolus of intravenous iodinated contrast medium, a morpho-functional image of the breast is acquired. This technique joins the high spatial resolution of conventional digital mammography and the functional information based on neoangiogenesis. The unique titanium filter enables consecutive TICEM studies without tube overheating. The indications of this technique for the clinical use include: Problem -solving technique after inconclusive mammography, preoperative assessment of breast cancer, follow-up of scars after conservative treatment, follow-up of intermediate risk patients (borderline histologic lesions, such as lobular carcinoma in situ, typical ductal or lobular hyperplasia, as well as positive family history of breast cancer). In fact, the majority of indications are those of MRI, including the contraindications for MRI (pacemakers, claustrophobic patients...). According to our clinical experience with over 200 cases, TICEM significantly increases the accuracy and sensitivity of mammography, with no loss of specificity. Unfortunately, some false negative results can be obtained in DCIS and some false positive results in papilloma and some fibroadenomas. TICEM is contraindicated for patients allergic to iodine, for patients with renal insufficiency and for pregnant women.
Satellite Symposia

Learning Objectives:
1. To become familiar with Titanium Contrast Enhanced Mammography (TiCEM).
2. To learn the main indications for this technique.
3. To learn the main limitations of TiCEM.

Non-invasive phenotyping of breast cancer with novel MR biomarkers
P.A.T. Rützer; Vienna/AT

Breast imaging aims to identify breast cancer. Suspicious lesions detected by imaging nowadays undergo image-guided biopsies to secure a final diagnosis. One aim of imaging is to provide a maximum sensitivity while maintaining the highest possible specificity. False positive imaging findings undergo unnecessary biopsies and follow-up examinations and thus cause a substantial economical and medical burden. In addition, the debate on overdiagnosis is still ongoing. MRI as a method providing a multitude of image contrasts including multiple (semi-)quantitative parameters allows an accurate characterization of tissue properties. These data can not only be used to distinguish between benign and malignant findings but further to characterise therapeutically and diagnostically relevant subtypes of breast disease. The talk will provide an evidence-based overview on the clinical relevance and current possibilities of imaging-based phenotyping applied to the breast. In addition, future developments including PET-MRI will be discussed.

14:00 - 15:30 Studio 2019

jointly organised by Siemens Healthineers and Bayer HealthCare

SY 2c
What should the future of breast cancer screening with digital breast tomosynthesis look like?
Moderator:
I. Sechopoulos; Nijmegen/NL

Introduction
I. Sechopoulos; Nijmegen/NL

The superiority of digital breast tomosynthesis (DBT) over digital mammography (DM) for cancer detection in screening has been proven in several population-based prospective screening trials. However, most of these results have been achieved with considerably longer reading times than with DM. In some cases, higher radiation doses have also been used. Is this acceptable? What are the most important features and characteristics on our wish list for the ideal breast cancer screening program with DBT in the future? In this symposium, the latest results of clinical trials will be presented, analyzed in terms of effectiveness when considering population screening, and the remaining knowledge gaps identified. We will discuss whether we should just copy the standard approach with DM for screening with DBT or whether we should go in new directions. Finally, we will review the challenges faced in the widespread implementation of DBT for population screening.

View of future screening programmes: conclusion from the Malmö Breast Tomosynthesis Screening trial - a concept for breast screening
S. Zäckriss; Malmö/SE

According to some of the important principles of screening established by WHO in 1968, a screening test should be fast, safe, efficient and acceptable for the target population. Screening with 2D mammography fulfills many of these prerequisites, but how will digital breast tomosynthesis, DBT, fit in? The organization and workflow in mammography screening is long-standing and well-established in many countries, and changes may have a great impact on these issues. This talk will focus on the facts about digital breast tomosynthesis regarding screening performance, effectiveness and possible measures to reduce reading time. When planning the Malmö Breast Tomosynthesis Screening Trial we took the principles of screening into consideration and used 1-view DBT and reduced compression. Furthermore, artificial intelligence in combination with the radiologist opens up possibilities for further future improvements.

Comparison of two-dimensional and three-dimensional mammography performance in breast cancer screening
D. Pavic; Charleston, SC/US

Aim: The study compares breast cancer screening performance using Full Field Digital Mammography images (2D) and three-dimensional Digital Breast Tomosynthesis (DBT) images, in MLO projection only (3DMLO) and as a complete DBT exam in MLO and CC projections (3D). Introduction: Radiation dose at 3D screening can be reduced by omitting separate 2D acquisition and abandoning CC projection in DBT, if 3DMLO could demonstrate comparable diagnostic performance. Material and methods: Women aged 40 and older who had screening exams using Siemens a DBT unit in the period from Aug 1, 2016 to Sep 30, 2017 were included. 21 biopsy-proven cancer patients with 24 cancers were identified. Based on age and Breast Imaging Reporting and Data System (BI-RADS) density assessment (DS) they were matched with 24 biopsy-proven benign patients and 25 patients who were negative or benign on screening. Age, race and DS were collected. Lesion location, type and size, axillary lymph nodes status and pathological diagnosis were also collected for biopsy patients. Screening exams of those 70 patients, consisting of 2D and 3D mammography images, were included in the image set. Three fellowship-trained breast radiologists and two breast imaging fellows were the readers. We will compare the diagnostic performance of 3DMLO, 3D and 2D readings, separately for each reader and for all readers, by looking at recall rate, cancer detection rate, positive predictive value and area under curve (AUC).

CAD for breast cancer screening: first experiences with a CAD integration for screen-reading of 3D mammograms and with 3D CAD for tomo-reading
S.H. Heywang-Köbrunner; Munich/DE

So far, CAD has not routinely been applicable for screen-reading in organized screening programs, mostly due to excessively false positive rates (of 1 to 1/3 hit per mammogram). Tomosynthesis, which is considered the most promising method for breast cancer screening, is associated with a 10-20-fold increase in the number of images. Insufficient data exists concerning the capability of maintaining the reader’s concentration with this work load, so the need for CAD-support increases. Also, new artificial intelligence (AI) algorithms promise improved sensitivity and specificity. We present a software solution that allows integration of an AI-CAD system with the screen reading software. Tomograms are automatically assigned a degree of suspicion (1-10), based on a large number of screening mammograms. Filtering cases with high suspicion (9 or 10), either a selective third reading may be considered, or a second reader might decide to spend more time on these cases or read them first. Due to the high sensitivity for microcalcifications, less reading time can be used for cases rated 1-4. In a different study using AI-CAD for tomosynthesis an excellent sensitivity of 90-92% combined with a very low false positive rate of 9-15% was achieved in a demanding case series of 400 proven cases. These results indicate important progress compared to prior CAD systems on 2D mammograms.

Learning Objectives:
1. Prior limitations of CAD.
2. Possibilities for integrating a CAD system for screen reading.
3. Progress achieved by CAD-3D reading.

The future role of synthetic mammograms: is it more than a 2D image?
C. Van Ongeval; Leuven/BE

A synthetic mammography (SM) is a two-dimensional image, reconstructed from digital breast tomosynthesis (DBT) data. Simulation studies (work of Michielsen et al.) using insertion of simulated microcalcifications and mass lesions in raw data of tomosynthesis showed an impact of reconstruction algorithm on the lesion detection fraction. The algorithm of SM impacts on the presentation of line structures and high density structures like microcalcifications, resulting in increased conspicuity of lesions in the SM. In the Oslo trial (Per Skaane et al.) SM was included into the screening protocol and in this study it was concluded that improvement of the reconstruction algorithm had an impact on the lesion detection. Further work on the reconstruction algorithm of SM can improve the presentation of suspicious lesions with careful attention to the creation of false positive lesions: how far is this CAD related enhancement allowed in clinical practice? Physical-technical evaluation of the quality of SM is ongoing and will be complicated by the complex structure of the applied processing algorithms.

Personalised breast cancer screening and the role of breast density
M. Broeders; Nijmegen/NL

Breast screening programs today generally offer a mammographic examination every two years to women in a specified age range. Ongoing research is exploring the added value of personalized risk-based screening, i.e. screening strategies tailored to a woman’s individual risk of breast cancer. A vital prerequisite for personalized risk-based screening is a comprehensive breast
cancer risk prediction model. The next step is to develop screening regimens for women at varying levels of risk, which may be addressed in several ways: changing starting and stopping ages, changing screening intervals, as well as offering further imaging techniques in addition to digital mammography. Using modeling techniques, the harm-benefit ratios and cost-effectiveness can then be estimated to find the optimal screening strategies. In parallel, it is essential to understand the acceptability of personalized approaches, especially for women at low risk, and the challenges in communication and implementation. Breast density is an important factor in this research area because it can contribute to risk prediction, but will also play a role in finding the optimal screening strategy. Automated measures of breast density on digital mammography are being updated rapidly, which will facilitate getting this data for all women in the target population. However, the fact that DBT may replace digital mammography in the near future raises the following questions: how does DBT perform across breast density categories? What is the relationship between automated breast density measures on DBT and breast cancer risk? What is the role of additional imaging modalities when DBT is the screening test?

Learning Objectives:
1. To understand the components of a personalized breast cancer screening program.
2. To explore the role of automated breast density estimates in personalized breast cancer screening with tomosynthesis.

16:00 - 17:00 Studio 2019

SY 2d
Pretherapeutic diagnostics of tumour extent

Moderators:
P. Clauser; Vienna/AT
E. Wenkel; Erlangen/DE

Pretherapeutic diagnostics of tumour extent (part 1)
E. Wenkel; Erlangen/DE

In pretherapeutic diagnostics to determine the extent of spread of a breast cancer (TNM staging), the interaction of the various breast imaging modalities (comprehensive mammo diagnostics) plays a particularly important role. Various clinics are working on modern staging concepts, combining current guidelines with new imaging procedures. In this symposium, two experts will each discuss pretherapeutic TNM staging diagnostics cases from their clinical routine. The audience will be actively involved in the coordination processes and is invited to participate in the discussion.

Pretherapeutic diagnostics of tumour extent (part 2)
P. Clauser; Vienna/AT

In pretherapeutic diagnostics to determine the extent of spread of a breast cancer (TNM staging), the interaction of the various breast imaging modalities (comprehensive mammo diagnostics) plays a particularly important role. Various clinics are working on modern staging concepts, combining current guidelines with new imaging procedures. In this symposium, two experts will each discuss pretherapeutic TNM staging diagnostics cases from their clinical routine. The audience will be actively involved in the coordination processes and is invited to participate in the discussion.

12:30 - 13:30 Room F2

SY 3
Elevating radiology through precision health

Moderator:
M. Goyen; Hamburg/DE

Why managing risk in oncology patients really matters: a nephrologist’s perspective on precision health
A. de Francisco; Cagliari/IT

Artificial intelligence: the new way to your best CT image
L. Macron; Saint Denis/FR

How MRI with AIR™ Technology brings comfort, speed and quality
V. Martínez de Vega; Madrid/ES

12:30 - 13:30 Room K

organised by Canon Medical

SY 4
AI, deep learning and multi-parametric assessment for advanced imaging and diagnostics

Moderator:
C. Oppenheim; Paris/FR

Roadmap for artificial intelligence in radiology: recognition, reconstruction, reasoning
B. Van Ginneken; Nijmegen/NL

Artificial Intelligence, in the form of deep learning, is extremely successful in automated recognition of abnormalities, in segmentation and in quantification. I will illustrate this with some recent results. Increasingly, deep neural networks are used for reconstruction, for denoising extremely low dose scan, for creating novel images, and for mapping images from one modality to another, for example CT to MR. The next frontier is to go beyond mappings from input data to output data and design systems that can reason based on variable inputs.

Deep learning reconstruction: the next step in CT image quality
M. Prokop; Nijmegen/NL

I will present the first clinical results of Deep Learning Reconstruction (DLR) algorithm for CT (both 320-row CT and UHR-CT), featuring a deep learning neural network that can differentiate and remove noise from signal, creating extraordinary high quality images.

MRI and advanced algorithms like computed MRI from research to clinical practice
L. Saba; Cagliari/IT

Computed MRI finally has become more practical in a clinical setting. Clinical imaging therefore may very well profit from these advanced imaging techniques. Where in the past these tools were mostly used in research it can also provide flexibility and reduction in examination time in daily practice. It also offers the possibility to offline reconstruct conventional sequences with different contrast settings and it allows to obtain quantitative values that may be used for follow up or for tissue characterization.

Multiparametric approach for diffuse liver disease with ultrasound
V. Vilgrain; Clichy/FR

Diffuse liver disease poses a major challenge to the global healthcare system. Quantitative techniques in ultrasound have recently been developed for follow-up and for therapy monitoring. Nowadays, the measurement of shear wave propagation speed is already being used to assess liver elasticity in clinical routine. In this talk we will discuss novel techniques such as the quantitative imaging of the attenuation of the longitudinal ultrasound waves (ATI), as well as the quantitative imaging of shear wave dispersion (SWD) to assess tissue parameters related to steatosis and to the viscosity of liver tissue, and present early clinical experience.
Satellite Symposia

Thursday, February 28

organised by Kheiron Medical Technologies

SY 5
Deep learning in breast cancer screening: clinical rigour, deep workflow integration and patient collaboration

Moderator:
C.K. Austin; Sammamish, WA/US

Clinical rigour and the validation process for deep learning algorithms
H. Harvey; London/UK

An overview of the phases of clinical studies and trials required during the algorithmic validation process, from phase I feasibility all the way through to phase IV post-deployment and post-market surveillance.

Understanding workflow: the key to effective integration
N. Sharma; Leeds/UK

Integration with, and deep vertical knowledge of, the breast screening workflow is vital to ensure effective deployment of deep learning algorithms. This talk will provide an overview of the current UK breast screening workflow, and how deep learning is poised to provide robust and effective support.

Patient involvement in the testing and validation of deep learning systems
L. O’Riordan; Ipswich/UK

Patient and Public Initiatives are key to ensuring valuable information and learning occurs from the early stages of the clinical validation and testing process. This talk will cover the patient’s experiences of the breast cancer pathway, and discuss how building patient advocacy and feedback into clinical studies is a vital part of research in the development of deep learning systems.

organised by Siemens Healthineers (MR)

SY 6
Siemens Healthineers MR lunch symposium

Moderator:
A. Schneck; Forchheim/DE

BioMatrix: delivering on increased consistency and higher productivity in MRI
A. Schneck; Forchheim/DE

MAGNETOM Lumina: first clinical experiences
M.G. Mack; Munich/DE

Fast MSK with CAIPI SPACE, SMS TSE and compressed sensing
J. Fritz; Tübingen/DE

Reducing variability in MRI
L. Tanenbaum; New York, NY/US

organised by Hologic

SY 8
Advances in breast imaging: clinical use of CEDM across Europe

Programme not available by date of publication

organised by Siemens Healthineers (MR)

SY 6
Siemens Healthineers MR lunch symposium

Moderator:
A. Schneck; Forchheim/DE

BioMatrix: delivering on increased consistency and higher productivity in MRI
A. Schneck; Forchheim/DE

MAGNETOM Lumina: first clinical experiences
M.G. Mack; Munich/DE

Fast MSK with CAIPI SPACE, SMS TSE and compressed sensing
J. Fritz; Tübingen/DE

Reducing variability in MRI
L. Tanenbaum; New York, NY/US

organised by Philips (IGT MOS)

SY 10
Redefining the potential of mobile surgical imaging

Moderator:
N. Bonaros; Innsbruck/AT

Complex cases of TAVI
N. Bonaros; Innsbruck/AT

organised by Elsevier

SY 32
Programme not available by date of publication
Satellite Symposia

12:30 - 13:30 Room M 2

SY 12
Driving the chronic thromboembolic pulmonary hypertension (CTEPH) patient journey through imaging

Moderator:
D. Gopalan; London/UK

Welcome and introduction
D. Gopalan; London/UK

The first step to accurate diagnosis: the evolving role of DECT
M. Rémy-Jardin; Lille/FR

Balloon pulmonary angioplasty: an emerging treatment for CTEPH
B.C. Meyer; Hannover/DE

Imaging innovations and their impact on patients
D. Gopalan; London/UK

Q&A and closing
All speakers

12:30 - 13:30 Room M 3

organised by Bayer HealthCare (MRI 1)

SY 13
Primovist© (gadoxetic acid): the liver specific contrast agent

Moderator:
F. Caseiro Alves; Coimbra/PT

Benefits of Primovist® in non-cirrhotic livers
F. Caseiro Alves; Coimbra/PT

Benefits of Primovist® in cirrhotic livers
G. Brancatelli; Palermo/IT

Optimisation of the workflow in liver MRI
L. Grazioli; Brescia/IT

12:30 - 13:30 Room M 5

organised by Bayer HealthCare (MRI 2)

SY 14
Trust the macrocyclics

Moderator:
M. Essig; Winnipeg, MB/CA

Basics for high efficacy in MRI
H. Pietsch; Berlin/DE

Modern neuroimaging protocols
M. Essig; Winnipeg, MB/CA

Essentials of comprehensive MRA
H. Kramer; Munich/DE
organised by Infinitt

SY 15
Dose management systems and beyond: challenges and experiences

Moderators:
M. Kolodziej; Frankfurt a. Main/DE
L. Thursar; Frankfurt a. Main/DE

Managing radiological examinations: dose management and beyond
E. Katter; Freiburg/DE

Implementation of the radiation protection laws in Switzerland
R. Simmler; Glattpark/CH

organised by Philips (CT)

SY 16
How spectral CT & AI can improve routine clinical practice

Moderator:
P. Coulon; Suresnes/FR

Benefits of spectral CT in emergency department
C. Truwit; Minneapolis, MN/US

Spectral CT for routine practice CTA and cardiac CT
P. Ball; Belfast/UK

Spectral CT and AI in oncology applications
D. Maintz; Cologne/DE

organised by Philips (US)

SY 17
Breakthrough innovations in ultrasound

Moderator:
P.S. Sidhu; London/UK

Exploring the ultimate vascular solution with the world’s first xMATRIX XL14-3 transducer
D. Staub; Basle/CH

Early clinical experience using the XL14-3 for MSK applications
S. Konijnenberg; Schijndel/NL

Early clinical experience using the XL14-3 for small parts applications
D.A. Clevert; Munich/DE

Advancing the role of ultrasound with 3D/4D CEUS in the abdomen
D.A. Clevert; Munich/DE

organised by Samsung

SY 18
Samsung innovations for patient safety: CEUS and paediatric DR imaging

Moderator:
V. Cantisani; Rome/IT

CEUS: from guidelines to clinical practice
V. Cantisani; Rome/IT

To date CEUS EFSUMB guidelines reporting on hepatic and non-hepatic applications have been published with an additional recent statement on EFSUMB CEUS use in pediatric applications and one on liver which is ongoing provided by WFUMB. Those guidelines updated the previous ones and had the purpose to inform, recommend and tailor clinical practice rather than to report on research projects. Thus, they provide a kaleidoscope of current findings, formulated by a group of experts and are primarily based on surveys of the published peer-reviewed literature. In general, CEUS is most useful where an abnormality can be displayed on B-mode ultrasound (US), and the better the quality of the B-mode imaging, the better the quality of the CEUS images, although sometimes especially in liver metastasis detection they may reveal what was not previously observed at Baseline Ultrasound. Therefore, CEUS is frequently used as an extension of conventional US (B-mode and color Doppler). Contrast studies should always be interpreted in the context of the overall clinical picture, other imaging and laboratory tests. Overall, UCAs are mainly used as vascular agents following intravenous injection and they highlight the macro- and microvascular systems. However, they can also be instilled into body cavities, both normal and pathological. According to indications and recommendations in the present lecture daily practice cases will be presented in order to enhance the benefit of CEUS application over baseline Ultrasound or even CT and MRI. Tips and tricks to tailor the examination will be provided as well.

Balancing the risks and benefits in radiology - contrast and x-rays and paediatric blunt abdominal trauma: safety and dose reduction
M. Sellars; London/UK

Contrast - enhanced ultrasound (CEUS) is a cost effective, safe alternative to computed tomography (CT) when imaging children who have sustained blunt abdominal injuries. CEUS still remains the gold standard for the assessment of abdominal and pelvic injuries however, depending on the mechanism of injury and the severity of solid organ injury these patients are often exposed to repeated examinations involving ionising radiation and intravenous iodinated contrast agents. The use of CEUS in the follow up of severe blunt abdominal injuries in the paediatric population has evolved in the past 10 years and more recently in our institution has also proved beneficial as a first line imaging technique in children who have sustained minor blunt abdominal injuries. Although current data has shown that ultrasound contrast agents are safe for use in the adult population, few studies have evaluated safety in children. Clinicians therefore have to be prepared for the possibility of both anaphylactoid and severe anaphylactic reactions as would be the case when administering any intravenous contrast agent.

Clinical trial to evaluate the dose reduction in paediatric radiography
S. Oh; Seoul/KR

Objectives: To prove that an upgraded image post-processing engine (IPE) in S-station, exclusively installed in Samsung Digital Diagnostic X-ray system, provides achievable dose reduction at a certain lower dose than the predicate device (old IPE) used in pediatric patients. Methods: Validation study of a noise simulation tool and clinical image evaluations on clinical images and low dose images rendered by the validated noise simulation tool was done, respectively. Results: Both quantitative and qualitative analysis results strongly suggested that simulated low dose images by a noise simulation tool showed almost the same image quality as corresponding real dose images. The dose step difference were shown to have statistical significance. Conclusions: The performance of the new IPE suggests achievable dose reduction rates up to 45% relative to the predicate IPE for pediatric populations.
Satellite Symposia

12:30 - 13:30 Room E1

SY 19
Clear direction in CT: advanced efficiencies for better patient care

*Moderator:
J.E. Wildberger; Maastricht/NL*

- AMACING results on prophylactic iv hydration prior to contrast administration
 J.E. Wildberger; Maastricht/NL

- AMACING and pre-hydration in the ESUR prevention of PC-AKI guideline
 A.J. van der Molen; Leiden/NL

12:30 - 13:30 Room Y

organised by Olea Medical

SY 20
AI, automation, visualisation: impacting radiology

- Technological trends that are changing medical imaging and the practice of radiology
 A. Davis; New York, NY/US

- Opportunities for AI-enabled patient care
 P. Chang; Irvine, CA/US

12:30 - 13:30 Room G

organised by Bracco

SY 21

Programme not available by date of publication

12:30 - 13:30 Room M 2

organised by Siemens Healthineers

SY 23
Precision medicine in ultrasound: addressing the difficult to scan scenario with the new ACUSON sequoia

*Moderator:
A. Nilsson; Uppsala/SE*

- Precision ultrasound for an increasingly XXL population using image fusion, CEUS and improved ultrasound penetration
 A. Nilsson; Uppsala/SE

- As an increasingly large proportion of our patient population can be classified as obese, finding, characterizing and potentially treating focal lesions is routinely becoming more difficult. Diagnostic tools, such as high quality contrast enhanced ultrasound and multi-modality fusion, in conjunction with improved ultrasound penetration, can help us personalize ultrasound to meet this challenge.

- CEUS diagnostic imaging in the paediatric population
 M. Stenzel; Jena/DE

 An overview of current best practice of ultrasound in infants and children referencing adult patients where appropriate. Sonography is the imaging modality of choice in paediatrics because it provides a cross-sectional depiction of anatomical structures with high spatial and temporal resolution and is relatively robust handling restless and active patients. No other method can provide comparable diagnostic information. Indications for paediatric sonography include: screening, diagnosis and follow up exams. Contrast enhanced ultrasound can be used to enhance diagnostic possibilities. The two main indications for contrast enhanced ultrasound in children are the assessment of vesicoureteral reflex disease and the characterization of focal lesions, particularly in the liver.

12:30 - 13:30 Room M 3

organised by Bayer Russia

SY 24
Game changers in brain imaging: when differential diagnosis really matters

*Moderator:
I.E. Tyurin; Moscow/RU*

Brain cases: adults

I. Trolimnko; Moscow/RU

Brain cases: paediatric

A.E. Tsooriev; Yekaterinburg/RU

Head and neck cases

D. Farina; Brescia/IT
organised by Guerbet

SY 30

GBCA: how to get away from background noise
Moderator: E. de Kerviler; Paris/FR

Mechanisms of gadolinium retention in the body
E. Lancelot; Villepinte/FR

The global safety of gadolinium contrast agents
E. De Kerviler; Paris/FR

The diagnostic power of gadolinium contrast agents
A. Radbruch; Heidelberg/DE

14:00 - 15:30 Room X

organised by GE Healthcare

SY 25

Programme not available by date of publication

organised by Elsevier

SY 26

"Brain in flame"- pathology and imaging of non-infectious CNS inflammation: a masterclass from Dr. Anne Osborn
Moderator: L. Farley; London/UK

"Brain in flame"- pathology and imaging of non-infectious CNS inflammation: a masterclass from Dr. Anne Osborn
A.G. Osborn; Salt Lake City, UT/US

In this special seminar we discuss the role of aberrant brain inflammation in a broad spectrum of CNS pathology, focusing on both suggestive MRI features as well as direct visualization of brain inflammatory using Translocator Protein (TSPO) PET imaging. The didactive presentation will be followed by an interactive case-based session demonstrating the use of CDSS to solve diagnostic dilemmas.

14:00 - 15:30 Room O

organised by Carestream

SY 27

Advancements in volumetric extremity imaging
Moderator: M. Boesen; Copenhagen/DK

Arthro-cone beam computed tomography for the detection of osteoarthritis
S. Bouabdallah; Geneva/CH

Introduction: XR remain the gold standard for establishing an imaging-based diagnosis of osteoarthritis. However, the criteria of Kellgren and Lawrence classification (KLC) are delayed and lack of sensitivity and specificity. CBCT is an emerging modality in extremity’s imaging allowing low dose radiation with diagnostic quality images.

Materials and Methods: 32 arthro-CBCT requested for osteoarthritis assessment, preceded by XR were performed. All Arthro-CBCT were reconstructed with Modeled Based Iterative Reconstruction and were analysed by 2 independent-blinded MSK radiologists for the overall quality (3-point Likert scale). Contrast, bone density and minimal joint space width (JSW) were evaluated. The stage of Kellgren and Lawrence was compared between Arthro-CBCT and XR as well as sclerosis and erosions using 3-point Likert scale. P value was calculated using the Wilcoxon test. Finally, radiation dose was estimated and compared between the two modalities.

Results: The image quality was excellent in all cases of arthro-CBCT with excellent inter observer concordance (kappa=1). The mean radiation was 1966,328,812 and 330 respectively for the contrast, the trabecular bone, the subchondral cortex and for the cartilage. An under classification of osteoarthritis was noticed with XR regarding the JSW (p=0.02), the detection of osteophytes (P<0.0001) and the KLC (P<0.0001). The dose for arthro-CBCT and XR were estimated at 4.9 and 0.05 mSv.

Conclusion: Arthro-CBCT may be a new way to assess osteoarthritis due to its high image quality and low radiation dose.

Articular surfaces of the tibiotalar joint from different medical imaging technologies: for morphological models and custom-made prostheses
A. Leardini; Bologna/IT

Total ankle replacement still suffers of failures and patient dissatisfaction, likely accounted for to the poor design and the limited number of sizes. To match better patient-specific joint anatomy, custom-made prostheses are being introduced, possibly to reduce the mismatching. Additive manufacturing, i.e. 3D printing, and biomechanical modelling and designing nowadays make this possible. For this purpose, however, reliable medical-imaging analyses are mandatory, to achieve accurate patient-specific models of the joint to be replaced, and in case of the contralateral as a reference. The aim of this study was to investigate the quality of customized morphological models of the ankle on different medical imaging technologies. A cadaver shank-foot specimen instrumented with multi-modal markers was plastered. Scans were taken in a CT standard, Dual-Energy (DE) and Cone-Beam (CB) technologies, as well as on 1.5 and 3.0 T MRI. Relevant DICOM files were used to create CAD models for the tibia and talus bones, the cartilages and the beads. Also to create bone-cartilage models, these models were registered based on the fiducial markers or 3D shape matching. Distance map analysis calculated the inter-model differences. Large distances by corresponding models were observed using surfaces derived from standard CT and 1.5 T MRI. More uniform distance maps of cartilage and bone models were obtained respectively by 3.0 T MRI and CBCT, which resulted also in best bone-cartilage models. In personalized joint replacements, these findings support the definition of subject-specific morphological models for better custom-made prostheses.

Clinical and weight-bearing indication for CBCT of the extremities
M. Boesen; Copenhagen/DK

CBCT offers the opportunity to study the bony changes in a variety of clinical and research indications of the musculoskeletal system such as 3D isotropic high resolution bone imaging of trauma to the extremities, 3D isotropic high resolution bone imaging of rheumatic diseases (Osteoarthritis, Rheumatoid Arthritis, Psoriasis Arthritis, Gout and Pseudo Gout (CPPD/HADD) with a low radiation dose. Weight-bearing CBCT can also provide important information regarding mechanical changes in knee and foot in 3D between supine and weight-bearing conditions. The lecture will summarize the potential for application of CBCT in the above mentioned conditions and show preliminary results regarding weight-bearing imaging of the patellofemoral joint and ankle.

Extremity CT: the basics and the promise
J. Yorkston; Rochester, NY/US

Recent years have seen the introduction of a number of specialized x-ray systems optimized for imaging specific anatomical regions. In particular, volumetric imaging systems designed to acquire dental, ENT and extremity images based on Cone Beam CT technology are now commercially available. This submission will review the technical aspects of these new systems with a focus on their unique capabilities. The presentation will also describe the ongoing work to improve the image quality of the Carestream Onsight system with a view to enabling various quantitative CT capabilities. Model based iterative reconstruction coupled with advanced scatter correction algorithms have resulted in a significant improvement in HU accuracy. Continuing development of semi and fully automated measurement tools hold the promise of providing the clinician with a full array of accurate 3D measurements in the foot, knee and hand in an efficient, reproducible manner that should enhance clinical decision making once fully implemented. The talk will review a number of these forthcoming capabilities. Additionally the potential for advances in patient specific instrumentalion to improve surgical efficiency and patient outcomes will be discussed in the context of 3D printing of patient specific surgical implants and surgical guides. Ongoing work associated with image analysis of the high quality 3D reconstructions to detect, classify and monitor early onset OA and RA will also be highlighted.
Saturday, March 2

10:30 - 12:00

C&T 2

organised by Elsevier

SY 33

Programme not available by date of publication

12:30 - 13:30

Room Y

organised by Philips (DXR)

SY 28

Next generation image processing technologies for clinical excellence in digital radiography

Moderator:
S. Mintert; Hamburg/DE

Philips UNIQUE 2: meeting clinical challenges by tailored image processing
S. Specht; Hamburg/DE

A paediatric radiologist’s perspective
P.-C. Krüger; Jena/DE

More confident image interpretation with Philips bone suppression (by Riverain Technologies)
D. Manke; Hamburg/DE

12:30 - 13:30

Room G

organised by Bracco (US)

SY 29

Programme not available by date of publication

12:30 - 13:30

Tech Gate Auditorium

organised by ICIS

SY 31

All about CT and MRI contrast medium use for upper abdominal imaging noise

Moderator:
A.G. Rockall; London/UK

Use of iodine contrast in upper abdominal imaging: stop to the confusion*
J.-P. Tasu; Poitiers/FR

Time to clarify which gadolinium-based contrast should be used in liver MRI*
B. Taouli; New York, NY/US

Contrast agents in interventional procedure to treat HCC and follow-up
J.M. Lee; Seoul/KR

* The lecture will be given in French
Authors’ Index
(E)
Abela-Ridder B.
Radiology and migrations: Importance of migration for neglected tropical diseases: WHO perspective (PC 5), A-0229

Aberle C., Ryckx N., Treier R., Schindera S., Menz R.
Update of the diagnostic reference levels for CT in Switzerland using dose management software (SS 1413), B-1196

Abou Elkassem A., Abdel Aal A.M.K., Mahmoud K., Gunn A., lirette S., Smith A.
Liver surface nodularity score as a new predictor of overall survival in patients with HCC treated by TACE (MY 3), B-0357

Abou Elkassem A., Abdel Aal A.M.K., Mahmoud K., Gunn A., lirette S., Smith A.
CT-based liver surface nodularity score for noninvasive assessment of clinically significant portal hypertension (MY 17), B-1473

Abouelkehir R.T., Abou El-Ghar M.E., El-Diasty T.
Dynamic contrast-enhanced MRI perspectives in the assessment of aggressiveness of urinary bladder cancer (SS 707), B-0830

Abrar D.B., Frenken M., Klosterkemper Y., Antoch G., Schleich C.
Rheumatoid arthritis magnetic resonance imaging score predicts therapy response (SS 610), B-0516

Abrar D.B., Frenken M., Klosterkemper Y., Antoch G., Schleich C.
Silent progression in patients with rheumatoid arthritis: is DAS28 remission an insufficient goal in RA? (SS 610), B-0518

Abrar D.B., Frenken M., Sewerin P., Antoch G., Schleich C.
is an abbreviated version of psoriatic arthritis magnetic resonance imaging score (PsAMRIS), PsAMRIS-6, applicable for detection and monitoring of disease-related joint changes? (SS 610), B-0519

Abuzaid M.M., Elshami W., Noorajan Z.
Quantification of gadolinium with 3rd generation dual source dual energy CT: role of spectral separation (SS 1406), B-1118

Ahmed S.A., El Barody M.M., El Malek N.A.A., El Salam Ebrah M.A.
Imaging surveillance in operable transitional cell carcinoma of the bladder (MY 13), B-1086

Accuracy of MDCT and laparoscopy in the prediction of peritoneal carcinomatosis index score in primary ovarian cancer (MY 3), B-0371
<table>
<thead>
<tr>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn H., An Y., Baek J., Suh Y., Choi H.</td>
</tr>
<tr>
<td>Alagely A., Okromelidze L., Vilanilam G.K., Middlebrooks E.H., Gupta V.</td>
</tr>
<tr>
<td>Alapic Z., Bjulita R., Srivastava S., Koskinen S.K.</td>
</tr>
<tr>
<td>Alibano D., Aliprandi A., Brioschi M., Magnani S., Messina C., Sdao S., Randelli F., Sconfienza L.M.</td>
</tr>
<tr>
<td>Eriksson T., Lidén M.</td>
</tr>
<tr>
<td>Ahsan Y., Hong G., Park K., Lee C.W.</td>
</tr>
<tr>
<td>Al-Badry N., Al-Qahtani H.</td>
</tr>
<tr>
<td>Allianou A.</td>
</tr>
<tr>
<td>Al-Turki W.</td>
</tr>
<tr>
<td>Al-Ashwina A., Al-Hasani M., Al-Sawaihi H.</td>
</tr>
<tr>
<td>Akhouandi N., Faghihi Langroudi T.</td>
</tr>
<tr>
<td>Al-Attar H., Al-Ammar A., Al-Hisham M., Al-Mahdi A.</td>
</tr>
<tr>
<td>Akram M.H.</td>
</tr>
<tr>
<td>Akan O.</td>
</tr>
<tr>
<td>Akram M.H.</td>
</tr>
<tr>
<td>Al-Ashwina A., Al-Hasani M., Al-Sawaihi H.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Hejji A., Al-Qahtani H.</td>
</tr>
<tr>
<td>Al-Thani A., Al-Hashimi A., Al-Hejji A.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Qahtani S.J.M., Meakin J.R., Palfray R.M., Knapp K.</td>
</tr>
<tr>
<td>Al-Mosawi A., Al-Qahtani H.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Thani A., Al-Hashimi A., Al-Hejji A.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Qahtani S.J.M., Meakin J.R., Palfray R.M., Knapp K.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Qahtani S.J.M., Meakin J.R., Palfray R.M., Knapp K.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Qahtani S.J.M., Meakin J.R., Palfray R.M., Knapp K.</td>
</tr>
<tr>
<td>Al-Mosawi A.M.J., Al-Jiboori M.A.K.</td>
</tr>
<tr>
<td>Al-Qahtani S.J.M., Meakin J.R., Palfray R.M., Knapp K.</td>
</tr>
</tbody>
</table>
Athanasiou A.
Minimally-invasive local treatment of breast cancer: the time is now: Chairperson’s introduction (RC 1202), A-0671

Atri P.K., Sodhi K.S., Bhatia A., Saxena A.K., Khandelwal N.
Model-based iterative reconstruction: is it relevant for reducing radiation dose in paediatric head CT? (SS 1412), B-1224

Attanasio A., Corrias G., Saba L.
OLEA/NOVA+ SyntenticMRI application on workflow in pelvis MRI studies (SS 414), B-0415

Attye A.
Imaging in Meniere’s disease: what to believe and how to interpret: MR hydroms imaging: how to do it? (SF 13b), A-0587

Auer T.A., Griese C., Geisel D., Hamm B., Denecke T.
MRI of hepatocellular adenomas: is there an additional value of using Gd-EOB for subtype differentiation? (MY 17), B-1469

Autti T.
Audit across Europe: directive and perspective: Implementing a clinical audit programme: the Finland experience (ESR Audit), A-0139

Avendano D., Sutton E.J., Morris E.A., Marino M.A., Gibbs P., Martinez D.
How should we manage breast ultrasound masses that do not enhance on MRI? (SS 702b), B-0719

Avendano D., Jochelson M.S., Pinker-Domeng K., Marino M.A., Gluskin J., Sung J.S.
Contrast-enhanced mammography screening women after breast-conserving therapy (SS 1902b), B-1804

Aviram G.
Thoracic emergencies: C. Diagnosing PE (RC 1704), A-1055

Ayaz Ü.Y., Doğan M.E.
Making measurements on coronal ultrasound images of infant hips during Barlow manoeuvre: a new and rapid screening method for developmental hip dislocation (SS 1012), B-1053

Aydiv R.C., Bräu F., Notohampirodjo M., Roos J.E., Leng S., Williamson E.E., Nikolaou K., Cyron C.J., Marcus R.P.
Evaluation of blood pressure variations on CTA geometries of abdominal aortic aneurysms (SS 1915), B-1729

Aydingoz U.
Musculoskeletal radiology: inflammation: B. Arthropathies (E² 221), A-0090

Aydingoz U.
MR imaging of the knee: C. Looking around the corners: posteromedial and posterolateral (RC 810), A-0445

Ayres V.J., Fleury E.F., Ramalho L., Pompei L.D.
Solitary dilated duct visualised by mammography: are we correctly classifying according to BI-RADS lexicon 5th edition? (SS 202), B-0084

Ayroso C.
Imaging of the complicated postoperative abdomen: A. Liver (RC 901), A-0496

Azevedo K.
Patient safety in medical imaging: Patient safety: beyond radiation protection (ESR/EFRS), A-0929

Azman S.S., McDermott E., Ryan M.-L.
Written patient information in radiology: an Irish perspective (SS 214), B-0024

B

Ba-Salamah A.
Imaging of benign liver lesions: still difficult?: C. FNH or adenoma? (RC 101), A-0004

Babar J.
Challenging HRCT patterns: tips and tricks from the experts: Chairperson’s introduction (SF 8b), A-0451

Bacher K.
Advanced clinical dosimetry in interventional radiology: The basis of clinical dosimetry in interventional radiology (EU 4), A-0748

Bachmann Nielsen M.
Ultrasound simulation models in training and education: where are we going?: Review of the available market of ultrasound simulators (ESR US SC/EFSUMB), A-0042

Bachmann Nielsen M.
US teaching to undergraduate students: why, how and from whom?: How: US teaching in the radiology department and hands-on classroom teaching using living models and simulators (ESR US SC/UETS), A-0338

Bai J., Matthews R., Bangiyev L., Chimpiri A.R., Franceschi D.
Imaging detection and characterisation of bone metastases from neuroendocrine neoplasm with simultaneously acquired Ga-68 DOTATATE PET/MRI (SS 716), B-0687

Balaji R.
IVIM MRI: a better tool to assess myometrial invasion in endometrial cancer (SS 216), B-0176

Balaji R.
Intravoxel incoherent motion imaging (IVIM) assessment of bone marrow infiltration in multiple myeloma (SS 316), B-0345

Balaji R.
Response assessment in multiple myeloma using intra-voxel incoherent motion (IVIM) diffusion MRI: a newer paradigm (SS 316), B-0346

Balaji R.
Arterial spin labelling (ASL) MRI to assess nodal metastases in head and neck cancer (SS 608), B-0636

Balaji R.
MRI histogram and texture analysis as predictors of response to therapy in head and neck malignancies (SS 1816), B-1640

Comparison between stress CT perfusion versus FFRCT in the evaluation of suspected CAD: PERFECTION prospective study (SS 703), B-0783

Diagnostic accuracy of combined CCTA and low-dose dynamic stress CT myocardial perfusion with a whole-heart coverage CT scanner in patients with suspected CAD (SS 1403), B-1212

Bagheri M., Shafiei A., Farhadi F., Apolo A.B., Folio L.R., Jones E.C., Summers R.M.
Lymph node measurement on serial imaging in clinical trials (SS 1816), B-1640

Bagur A., Hutton C., Gyngeell M.L., Robson M.D., Brady M.
Accuracy and reproducibility of magnitude-based proton density fat fraction quantification with resolved water-fat ambiguity (SS 713), B-0763

Bai J., Matthews R., Bangiyev L., Chimpiri A.R., Franceschi D.
Imaging detection and characterisation of bone metastases from neuroendocrine neoplasm with simultaneously acquired Ga-68 DOTATATE PET/MRI (SS 716), B-0687

Baeßler B.
A new era of gadolinium-less MR: Radiomics and multiparametric MRI approaches for a better contrast in cardiac and prostate applications (ESR/ESMRMB), A-1008

Baeßler B.
A new era of gadolinium-less MR: Radiomics and multiparametric MRI approaches for a better contrast in cardiac and prostate applications (ESR/ESMRMB), A-1008

Baeßler B.
A new era of gadolinium-less MR: Radiomics and multiparametric MRI approaches for a better contrast in cardiac and prostate applications (ESR/ESMRMB), A-1008

Baeßler B.
A new era of gadolinium-less MR: Radiomics and multiparametric MRI approaches for a better contrast in cardiac and prostate applications (ESR/ESMRMB), A-1008
Authors’ Index

Imaging of potential donors for uterine transplantation, with emphasis on the uterine arteries (SS 1907), B-1900

Bauer B.
Communicating the role of the radiologist: best practices to manage patient expectations: The patient perspective: sharing expectations and experiences (part 1) (PA), A-0825

AI-based prediction of haematocrit values from non-contrast CT imaging data - towards fully automated CT-derived myocardial extracellular volume fraction quantification (SS 1403), B-1217

Bauer M.J., Lavra F., Scarrabello M., van Assen M., Saba L., de Cecco C.N., Schoepf U.J.
Quantitative analysis of dynamic CTA for the detection of endoleaks after abdominal aortic aneurysm endovascular repair: a feasibility study (SS 1915), B-1721

Bäuerle T.
The radiological investigation of musculoskeletal tumours: C. CT and hybrid imaging (RC 1210), A-0694

Bäuerle T.
How to improve bone metastases and osteosarcoma assessment: Keynote lecture (SS 716), K-15

CT-FFR profiles in patients without coronary artery disease: the effect of location and lumen (SS 703), B-0781

Bazzocchi A.
MSK intervention: the road from low to no invasion: Preventing side effects and complications by new procedures: management by radiologists (SF 5c), A-0275

Bazzocchi A.
Everything you always wanted to know about metabolic bone disease (but were afraid to ask): Chairperson’s introduction (SF 15a), A-0880

Beardmore C.
The future of radiology: what it could mean for new radiography graduates: What will radiology look like in 30 years? (BR 17), A-1046

Beaumont H., Evans T.L., Klifa C., Hong S.R., Chadjaa M., Monostori Z., Iannessi A.
RECIST 1.1 evaluations in a phase II clinical trial: does reader expertise represent a risk factor for measure reliability? (SS 1016), B-1023

Beck S., Deniffs E., Riederer I., Rumienny E.J., Pfeiffer D.
Iodine images in dual-energy CT: benchmarking quantitative iodine concentration values of the healthy liver (SS 701), B-0790

Becker C.D.
IT-security and GDPR: Understanding the key points of GDPR (SF 12), A-0696

Becker C.D.
The tumour board of the future: Maximising the added value of tumour boards (NH 16), A-0959

Bedene A., Alucik E., Žibert J., Meks N.
The use of different angulation in mediolateral oblique view based on patient anatomy in mammography (SS 1914b), B-1710

Bedlington N.
Communicating the role of the radiologist: best practices to manage patient expectations: Chairpersons’ introduction (part 1) (PA), A-0822

Beenen L.F.M., Scheerder M.J., Beets-Tan R.G.H.
Interventional radiology (IR) in children: what a friend or foe of the patient? (PC 16), A-0980

Beer L., Hochmair M., Haug A., Kifjak D., Schwabel B., Mayerhofer M.E., Prosch H.
Comparison of RECIST, iRECIST, and PERCIST for the evaluation of response to P1/1-PD-L1-blockade therapy in patients with non-small cell lung cancer (SS 1016), B-1020

Beer L., Bastati N., Pötter-Lang S., Stoyanova D., Michael E., Bican Y., Einspieler H., Ba-Salamah A.
What is the effect of steatosis, iron overload and renal function on the uptake and excretion of gadodextrin acid-enhanced MRI? (SS 1016b), B-1052

Beers M., Scholtz J., Leithner D., Barakat A., Vogl T.J., Gruber-Rouh T., Kaltenbach B., Poikowski C., Bucher A.M.
Evaluation of virtual grid post-processing for paediatric no-grid radiography in an unselected paediatric patient cohort (SS 1512), B-1317

Beeren R.G.H.

Beigelman C.
Pleural neoplasms; B. Pleural carcinomatosis of thoracic and extra thoracic origin (E’ 1322), A-0802

Added value of susceptibility-weighted imaging for the prediction of hemorrhagic transformation in patients with acute ischaemic stroke treated by mechanical thrombectomy (SS 311), B-0261

CBCT-guided hydrogel plug percutaneous deployment before video-assisted thoracoscopic surgical resection (SS 1909), B-1808

Bengo G.
Computed tomography (CT) imaging in weight-bearing positions: the positives and challenges in an institutional trial (SS 614), B-0487

Benila L., Berger P., Girodet P.O., Dromer C., Macey J., Laurent F., Dournes G.
Fully automated 3D quantification of the lung emphysema in COPD using 3D-UTE MRI (SS 1404), B-1202

Gadolinium deposits in healthy women undergoing repetitive GDBCA-enhanced breast MRI in the context of high-risk breast cancer screening (SS 1802a), B-1542

Berger C.
Late effects in survivors of childhood cancer: Fertility issues: male and female (Part 2) (SF 17), A-1026

Berger M.F.
Working in radiology: burnout and bore-out or engaged and passionate?: A personal story (PC 13), A-0742

Berli A.
How to organise nationwide ischaemic stroke care (and make multidisciplinary teams work): Are you experienced, trained or certified? Certification, subspecialisation, specialisation: friend or foe of the patient? (PC 16), A-0980

Bernaerts A., Vanspaunen R., Blaiv C., van Dinther J., Zarowski J., Wuys F., Offeriers F.E., Casselman J.W., de Foer B.
Value of four stage vestibular hydrops grading and asymmetric perilymphatic enhancement in the diagnosis of Ménière’s disease on MRI (SS 308), B-0290

Bégin T.
Emphysema in COPD using 3D-UTE MRI (SS 311), B-0261
Authors’ Index

Bloem J.L.
Musculoskeletal: bones and soft tissues: Bone tumours (BS 1), A-0033

Bloom J.L.
Infection: bone and soft tissue: Infection: bone and soft tissue (E² 25A), A-0106

Blum A.
Upper extremity imaging: Keynote lecture (SS 310), K-07

Boban J.
Altered mental state: B. Imaging in an altered mental state (RC 1311), A-0766

Boca I., Ciurea A., Ciortea C., Bergea A.
The value of automated breast ultrasound added to full-field digital mammography in women with dense breasts (SS 1002), B-0922

Boccalini S., Si-Mohamed S.A., Matuzzu M., Plaine B., Rotzinger D.C., Hanquier L., Bousset L., Revel D., Douek P.
An ethnographic study to investigate general practitioner’s opinion of ultrasound services in primary care (SS 1414), B-1113

Boland M., Rainford L.A., Byrne C., Ryan M.-L.
An ethnographic study to investigate general practitioner’s opinion of ultrasound services in primary care (SS 1414), B-1113

Boldrini L.
Current status and future challenges in MR-integrated radiotherapy: Clinical status of MR-integrated photon therapy (ESR/ESTRO), A-0498

Bollen T.
Acute pancreatitis: Atlanta Classification of acute pancreatitis (E² 24A), A-0096

Bollen T.L.
Diagnosis and management of acute pancreatitis: A. The 2012 revised Atlanta Classification: what has really changed? (RC 1601), A-0925

Bolestad K.N.
Dose reduction and image quality implications of iterative image reconstruction in CT: Chairperson’s introduction (RC 1713), A-1049

Histopathological growth patterns of colorectal cancer liver metastases: predictive value of MRI morphological features (SS 616a), B-0528

Comparison of reduced field-of-view and large-field-of-view diffusion-weighted 3T MR imaging in the evaluation of solid pancreatic lesions (SS 1401a), B-1097

Borg Grima K., Bezizza P., Rainford L.A.
The establishment of a triage tool for patient stratifications undergoing myocardial perfusion scintigraphy stress tests in Malta (SS 1014), B-0891

Borges A.
Head and neck imaging: A. Cystic neck lesions (E² 1721), A-0999

Borggreve J., Gebest M., Hauger M., Kabbasch C., Schlamm M., Dörner J.
Differentiation of histologically proven intracerebral tumour entities with quantitative iodine mapping in dual-layer computed tomography (SS 1411a), B-1166

Borrallo P.
How to deal with the epidemics of thyroid nodules?: The pathologist assessment (MS 16), A-0989

Bortsova G., Dubost F., Van der Lugt A., Bos D., De Brujin M.
Automatic detection of intracranial calcifications in CT using deep learning (SS 1005b), B-0982

Borsetti A., Padalini A., Amadio F., Cavaglia E., Niola R.
Role of multidetector CE-CT before transcatheter endovascular embolisation in active arterial bleedings (SS 109), B-0002

Bosmans J.M.L.
Reporting and communication today and tomorrow: challenges to implement structured reporting (RS) and deal with artificial intelligence (AI): Communication with referring physicians and patients: what is relevant? (PI 1), A-0507

Cavaglià E., Niola R.
Histopathological growth patterns of colorectal cancer liver metastases: predictive value of MRI morphological features (SS 616a), B-0528

Castagna M., Caramella D., Falaschi F., Bolognesi U., Falaschi F.
Role of multidetector CE-CT before transcatheter endovascular embolisation in active arterial bleedings (SS 109), B-0002
Authors’ Index

<table>
<thead>
<tr>
<th>Brady A.</th>
<th>Clinical audit: how to deal with the legal and professional requirements: Overview on adoption of BSS throughout Europe (PI 2), A-0587</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brady A.</td>
<td>Communicating the role of the radiologist: best practices to manage patient expectations: Explaining the radiologist's role to patients (PA), A-0824</td>
</tr>
<tr>
<td>Bremnes A.</td>
<td>Optimisation of shunt radiography (SS 1314), B-1072</td>
</tr>
<tr>
<td>Briers E.</td>
<td>Communicating the role of the radiologist: best practices to manage patient expectations: The patient perspective: sharing expectations and experiences (part 2) (PA), A-0826</td>
</tr>
<tr>
<td>Briers E.</td>
<td>Patient safety in medical imaging: Patient perspectives on patient safety in medical imaging (ESR/EFRS), A-0932</td>
</tr>
<tr>
<td>Brillet P.-Y.</td>
<td>Fibrotic lung diseases: B. Lung fibrosis in connective tissue and granulomatous diseases (RC 1204), A-0701</td>
</tr>
<tr>
<td>Brink M.</td>
<td>Thoracic emergencies: A. Chest trauma (RC 1704), A-1053</td>
</tr>
<tr>
<td>Brklijačić B.</td>
<td>Imaging strategies in renal tumours: Chairperson's introduction (RC 907), A-0571</td>
</tr>
<tr>
<td>Brklijačić B.</td>
<td>Minimally-invasive local treatment of breast cancer: the time is now: B. Radiofrequency ablation therapy (RC 1202), A-0673</td>
</tr>
<tr>
<td>Brklijačić B.</td>
<td>US and vascular disease: a perfect match: B. Upper and lower limb: arterial district (RC 1315), A-0753</td>
</tr>
<tr>
<td>Brklijačić B.</td>
<td>Artificial intelligence: presented with new lecture formats: Introduction (ESOR), A-0368</td>
</tr>
<tr>
<td>Broeders M.</td>
<td>Personalised breast cancer screening and the role of breast density (SY 2c)</td>
</tr>
<tr>
<td>Brombal L., Delogu P., Dreossi D., Golosio B., Oliva P., Mettivier G., Rigon L., Talbi A., Longo R.</td>
<td>Towards clinical phase-contrast breast CT at Elettra: major SNR improvement at larger propagation distances (SS 1913), B-1846</td>
</tr>
<tr>
<td>Brookes A.L.</td>
<td>Forensic imaging: C. Paediatric forensic imaging (RC 814), A-0401</td>
</tr>
</tbody>
</table>

Boswijk E., Sanders K.J.C., Broeders E., de Ligt M., Vanmankenlichtenbelt W.D., Mottaghy F., Schrauwen P., Wildberger J.E., Bucur J.	TSH suppressive therapy aggravates arterial inflammation: an 18FDG PET study in thyroid carcinoma patients (SS 315), B-0202
Boudaibous S.	Anthro-cone beam computed tomography for the detection of osteoarthritis (SY 27)
Boudinaud C., Abergel G., Fontarensky M., Joubert Zakeyh J., Boyer L., Magnin B.	Quantification of hepatic steatosis: evaluation of 4 MRI techniques vs reference method by biopsy (MY 17), B-1470
Bouhamama A., Leporq B., Lame F., Bihane C., Sdika M., Blay J., Beuf O., Pilleul F.	MRI-based radionic to assess lipomatous soft tissue tumours malignancy: a pilot study (SS 1816), B-1638
Bourgjoti C., Chatoupis K., Antoniou A., Tzavara C., Panourgias E., Vergetidou M., Moulopoulos L.	Adnexal cystic lymphangioma in patients with massive leiomyomatous uterus: a not so uncommon finding (SS 1507), B-1388
Bourgjoti C.	Imaging in pregnancy: A. Safety issues in pregnancy: what radiologists need to know (RC 1307), A-0809
Böven J., Boos J., Lanzman R.S., Klosterkemper Y., Kröpil P., Thomas C., Antoch G., Alissa J.	Evaluation of a novel 3D-surface reconstruction technique in post-mortem CT after stab attacks: diagnostic accuracy and forensic impact compared to conventional CT and autopsy findings (SS 1017), B-0954
Böven J., Boos J., Lanzman R.S., Kröpil P., Klosterkemper Y., Thomas C., Antoch G., Alissa J.	Forensic relevance and diagnostic impact of a novel 3D-reconstruction technique (cinematic rendering) of severe injuries in postmortem computed tomography (MY 15), B-1368
Bovenberg J.A.	Will the General Data Protection Regulation (GDPR) hamper the secondary use of clinical imaging data for research?: Can I sell or licence imaging data to industry or spin-off companies? (ESR/BBMRI-ERIC), A-0632
Brady A.	Reporting and communication today and tomorrow: challenges to implement structured reporting (RS) and deal with artificial intelligence (AI): Chairpersons’ introduction (part 1) (PI 1), A-0502
Braspennings S., Van Mieghem C., Vanhoenacker P.	FFRC$_{CT}$ vs CAD-RADS$^{ ext{TM}}$ and its impact on patient management: a retrospective pilot study (MY 18), B-1679
Brat H., Zanca F., Rizk B., Montandon S., Racine D., Meicher E., Fournier D.	Clinical diagnostic reference levels for CT examinations: a prospective multicentre study (SS 1813), B-1600
Bremerich J.	Acute chest pain and cardiac imaging: C. Late gadolinium enhancement (LGE) and more: the role of MRI in and after ACS (RC 1603), A-0940
Calli C. Neurologic emergencies: Haemorrhagic stroke (SAH) (BS 9), A-0523

Calli C. Neuro: Chairperson’s introduction (E³ 1423), A-0828

Caltiadi F. Tips and tricks for abdominal ultrasound: Doppler imaging (US 2), A-0667

Calvo Irmitzaldu M., Ezponda Casajús A., Soriano I., Paternain Nuin A., Elorri M., Aquerreta Beola J.D. Comparison of image quality and radiation dose between combined ATCM and FTC technique in whole-body low-dose multidetector CT in the diagnosis of multiple myeloma (SS 210b), B-0064

Calvo Irmitzaldu M., Ezponda Casajús A., Garcia Baizán A., Pueyo Villoslada J.C., Rabago G., Bastarrika Alemari G. Systolic high-pitch coronary CT angiography for evaluation of the coronary arteries in heart transplant recipients (SS 1003), B-1015

Calvo Irmitzaldu M., González de la Huerba Rodríguez I., Ezponda Casajús A., Eztxano J., Elizalde Pérez A.M., Pina Insauti L.J. The accuracy of contrast-enhanced mammography: a retrospective multireader study (SS 1902a), B-1784

Campo I., Sachs C., Bussani R., Bertolotto M., Cova M.A. Focal testicular lesions: multiparametric US features and association with histopathology (SS 1807), B-1659

Campo I., Cernic S., Arban F., Pozzi Mucelli R., Sacconi F., Cova M.A. Pre-surgical marking under CT guidance of non-palpable, non solid/solid/partially solid pulmonary nodules: when and why to use it (SS 1909), B-1807

Campora R., Piana Jacquot F.M., Zorza I., Agazzi G.M., Ravanelli M., Farina D. Staging tongue cancer with the 8th edition of TNM: can MRI provide a surrogate of the pathologic DOI? (SS 1008), B-0970

Campos Herrero J. Functional imaging of breast and female pelvis: A. Breast tumours (E³ 820), A-0474

Campos Herrero J. Diagnosing ductal carcinoma in situ (DCIS): B. Imaging DCIS (RC 1702), A-1028

Cannello R., Brancatelli G., Rangeswamy B., Minervini M.I., Borhani A.A., Furlan A. Enhancement pattern of hepatocellular adenoma (HCA) on MR imaging performed with Gd-EOB-DTPA vs other Gd-based contrast agents (GBCAs): an intra-individual comparison (SS 201a), B-0071

Cannello R., Fraum T.J., Ludwig D.R., Borhani A.A., Fowler K.J., Furlan A. Value of targetoid appearance on T2-weighted imaging and signs of tumour vascular involvement for differentiating hepatocellular carcinoma (HCC) from other non-HCC liver malignancies (SS 1901a), B-1765

Cannello R., Vernuccio F., Marin D., Furlan A. Liver imaging reporting and data system v2018: visualisation features and diagnostic value of ancillary features favouring malignancy in observations at intermediate and high risk for HCC (SS 1901a), B-1771

Cantisani V. CEUS: from guidelines to clinical practice (SY 18)

Cao G., Duan Y., Zhu W., Liu Y. Brain MRI characteristics in neuromyelitis optica spectrum disorders: a multi-center study in China (MY 16), B-1429

Caobelli F. Dead or alive: imaging of myocardial viability: B. Hybrid imaging (RC 1703), A-1019

Capasso F., Coppola M., Caruso M., Stilo S., Stanzione A., Venetucci P. Prevention of post-partum haemorrhages in patients with morbidity adherent placenta: a monocentric experience (SS 709), B-0738

Capocci R., Tarcher V., Bosc R., Totobenazara J., Koberite H., Luciani A., Meyblum E., Dao T.H. Efficiency of mammography, tomosynthesis and breast MRI in detecting malignant extension to the nipple area complex in patients with multifocal or extensive breast DCIS (SS 309), B-0262

Capozzi N., Fernandez-Clotet A., Alfaro I., Ordás I., Panes J., Rimola J. Validation of the simplified magnetic resonance index of activity (sMaRIA) for Crohn’s disease without using gadolinium (SS 1801b), B-1653

Cappello G., Doronizio V., Romano V., Timpani A., Desi G., Cortese F., Giannini V., Mazzeotti S., Regge D. Imaging texture features to predict neoadjuvant therapy response in locally advanced rectal cancer (SS 616b), B-0618

Capretti I., Palumbo P., Iafrite S., Bruno F., Arrigoni F., Mariani S., Zugaro L., Barile A., Masciocchi C. Clinical response in hip osteoarthritis: comparison between intra-articular treatment with hybrid hyaluronic acid (HA) and combined therapy with Platelet-Rich Plasma (PRP) and HA (SS 1510), B-1295

Caramella C. Imaging in oncological trials: Assessing treatment response in the era of immunotherapy (ESR/EORTC), A-0792

Carchesio F., Iezzi R., Posa A., Veltri G., Gasbarrini A., Manfredi R. Operator learning curve for transradial liver cancer embolisation: implications for the initiation of a transradial access programme (SS 209), B-0109

Cardano G., Fighera A., Campagnola A., Zamboni G., Frulloni L., Mansueto G. Diagnostic accuracy of CT features and CT texture analysis in differentiating focal autoimmune pancreatitis from adenocarcinoma: a retrospective study (SS 1401a), B-1094

Cardis E. CT radiation risk in children: an overview: Chairpersons introduction (EU 6), A-0933

Cardis E. CT radiation risk in children: an overview: Ongoing studies and first results of the European EPIC-CT study (EU 6), A-0935

Carnevale A., Cossu A., Cotti E., Graziano M., Chiarello S., Giganti M. Combined pulmonary fibrosis and emphysema (CPFE): epidemiological and clinical features, visual scoring and quantitative CT assessment in 72 patients (SS 1604), B-1406

Caroli A. Imaging biomarkers and their combinations in the era of artificial intelligence: COST action initiatives as a platform for image biomarker selection (ESR/EIBALL), A-0063

Carolus H., Iuga A., Borsch T., Wiemker R., Kliinder T., Maintz D., Höink A., Püsken M. Fully automatic detection and segmentation of thoracic lymph nodes in MSCT scans of the chest using deep learning (SS 1905a), B-1761
Authors’ Index

Carrapiello G.
From morphology to function: Emergency interventional radiology: brain and body (EM 2), A-0582

Caruana C.J.
Principles of imaging and radiation protection: Chairperson's introduction (E³ 1523), A-0895

Caruana G., Taibbi A., Petta S., Cannella R., Busé G., Cutaia G., Giambelluca D., Di Marco V., Bartolotta T.V.
Liver stiffness quantification in patients with non-alcoholic steatohepatitis: comparison of shear wave elastography and transient elastography with liver biopsy correlation (SS 1801a), B-1529

Caruso P.A.
Differential diagnoses you don't want to miss: B. Differential diagnoses of paediatric neck lesions (RC 1308), A-0798

Caruso P.A., Buch K., Corre C., Eichler F.
MRI findings in gene therapy-treated adenoleukodystrophy (SS 1011a), B-0933

Caruso P.A., Buch K., Bates S., Roberts D.
MRI patterns of brain injury in neonates with pathology-proven placental abruption (SS 1412), B-1226

Caruso P.A., Pescosolmo M., Buch K., Morrow E.
MRI findings in Christianson syndrome (SS 1412), B-1228

Casse R.
Preliminary results of a neural network for the automatic detection of chest X-ray incorrect exposure (SS 205), B-0020

Casale R.
Diffusion tensor imaging with quantitative perfusion CT parameters in patients with gastric cancer: comparison of conventional CT (SS 1017), B-0955

Castañer E.
Radiation benefit in paediatric procedures: C. Imaging professionals in the EU: radiologists without borders: The benefits of harmonised training for the radiologists of tomorrow (ESR/UEMS), A-0263

Castañer E.
Imaging in Meniere's disease: what to believe and how to interpret: Panel discussion: Did you pick up the essentials? (SF 15b), A-0890

Castagnoli F., Griazioli M., Puglia M.
Fritoli B., Morone M., Romanini L., Donato F., Ambrosini R., Griazioli L.
Gadoxetic acid (GA)-enhanced liver MRI and conventional MR sequences (SS 201b), B-0213

Castellano E.
CT and intervention in vascular pulmonary diseases: B. Evaluating the pulmonary vasculitis (E³ 822), A-0471

Castellano E.
Getting the balance right: radiation risk and imaging benefit in paediatric procedures: Computed tomography: are we doing enough? (EU 5), A-0873

Catalano C.
Imaging professionals in the EU: radiologists without borders: The benefits of harmonised training for the radiologists of tomorrow (ESR/UEMS), A-0218

Catania D.
Radiography audit and quality management: B. Imaging pathway: case study - radiography quality management (RC 514), A-0209

Catania M., Foti G., Beltramello A., Carbognin G.
Diffusion tensor imaging with quantitative evaluation of sciatic nerve within the pelvis in patients with non-contributory lumbar spine magnetic resonance imaging in radiculopathy (SS 1910b), B-1743

Cassar-Pullicino V.N.
The old spine: challenges of imaging and treatment: A. Degeneration of the old spine: relevance of findings and differential diagnosis (RC 1610), A-0969

Cassart-M.J.
Radiologic anatomy: head and neck: Temporal bone (BE 6), A-0319

Casselman J.W.
Imaging in Meniere's disease: what to believe and how to interpret: Chairperson's introduction (SF 15b), A-0885

Casselman J.W.
Imaging in Meniere's disease: what to believe and how to interpret: Panel discussion: Did you pick up the essentials? (SF 15b), A-0890

Cavaleri S., Ferrari A., Villa R., Brambilla M., Stecco A., Carrierio A.
Dose optimisation in multiphasic computed tomography imaging of the liver with high-concentration contrast media (SS 701), B-0798

Cazzato R.L.
Imaging of chronic forefoot pain: C. Imaging-guided percutaneous treatment of forefoot pain (RC 510), A-0263

Celeng C., Froeling M., Leiner T.
Feasibility of T1-rho mapping as endogenous contrast agent to detect myocardial fibrosis (SS 303), B-0377

Ceruzal L.
Elbow imaging: from detailed anatomy to pathology: C. Plica and cartilage (RC 1710), A-1048

Cerit M., Oner A.Y., Yildiz A., Cindil E., Sendur H.N., Leventoglu S.
Periarticular fistula mapping at 3T: volumetric vs conventional MR sequences (SS 201b), B-0213

Cewé Jónsson P.M., Thorisdóttir S., Oladottir G.L., Koskinen S.
Imaging of penetrating extremity injuries in a Scandinavian level-1 trauma centre: a 4-year analysis of the trauma registry data from the Karolinska trauma centre, Stockholm (SS 1017), B-0955

Chai Y.
Application of preset adaptive statistical iterative reconstruction-V in dual-enhanced abdominal CT (SS 213), B-0139

Chai Y.
Diagnostic accuracy of CT for lymph node metastasis in gastric cancer: comparison of spectral parameters developed dual-energy CT and conventional CT (SS 1401b), B-1276

Chai Y.
Correlation between dual-energy CT and perfusion CT parameters in patients with gastric carcinoma (SS 1901b), B-1876

Challen R., Low L., McEntee M.F.
Dementia patient care in the medical imaging department (SS 1814), B-1496

Caumo F., Gennaro G., Guenoun D., Corcos G., Nisolle J., Vuillemin-Bodaghi V., Vande Berg B.
Medial meniscal ossicle is associated with medial posterior root tear and ACL tear: a case-controlled multicentric SIMS study of 42 cases (SS 1810), B-1507

Caumo F., Gennaro G., Romanucci G., Zorzi M., Fedato C., Montemezzi S.A.
Cancer detection rate, ductal carcinomas in situ and advanced breast cancers in the 2nd round of a population-based screening with tomosynthesis and synthetic mammography (SS 302), B-0250

Cavallini C.
Principles of imaging and radiation protection: Chairperson's introduction (E³ 1523), A-0895

Cassar-Pullicino V.N.
From morphology to function: Emergency interventional radiology: brain and body (EM 2), A-0582

Caruso P.A.
Differential diagnoses you don't want to miss: B. Differential diagnoses of paediatric neck lesions (RC 1308), A-0798

Caruso P.A., Buch K., Corre C., Eichler F.
MRI findings in gene therapy-treated adenoleukodystrophy (SS 1011a), B-0933

Casale R.
Preliminary results of a neural network for the automatic detection of chest X-ray incorrect exposure (SS 205), B-0020

Casale R.
Diffusion tensor imaging with quantitative perfusion CT parameters in patients with gastric cancer: comparison of conventional CT (SS 1017), B-0955

Caspers J., Turowski B., Rubbert C.
Automated age-specific regional brain atrophy estimation: an integrated workflow (SS 1005b), B-0983

Cassar-Pullicino V.N.
Musculoskeletal: bones and soft tissues: Soft tissue tumours (BS 1), A-0032

Cauil A., Lefebvre G., Guenoun D., Corcos G., Nisolle J., Vuillemin-Bodaghi V., Vande Berg B.
Medial meniscal ossicle is associated with medial posterior root tear and ACL tear: a case-controlled multicentric SIMS study of 42 cases (SS 1810), B-1507

Caumo F., Gennaro G., Romanucci G., Zorzi M., Fedato C., Montemezzi S.A.
Cancer detection rate, ductal carcinomas in situ and advanced breast cancers in the 2nd round of a population-based screening with tomosynthesis and synthetic mammography (SS 302), B-0250

Cavalleri S., Ferrari A., Villa R., Brambilla M., Stecco A., Carrierio A.
Dose optimisation in multiphasic computed tomography imaging of the liver with high-concentration contrast media (SS 701), B-0798

Cazzato R.L.
Imaging of chronic forefoot pain: C. Imaging-guided percutaneous treatment of forefoot pain (RC 510), A-0263

Celeng C., Froeling M., Leiner T.
Feasibility of T1-rho mapping as endogenous contrast agent to detect myocardial fibrosis (SS 303), B-0377

Cereuzal L.
Elbow imaging: from detailed anatomy to pathology: C. Plica and cartilage (RC 1710), A-1048

Cerit M., Oner A.Y., Yildiz A., Cindil E., Sendur H.N., Leventoglu S.
Periarticular fistula mapping at 3T: volumetric vs conventional MR sequences (SS 201b), B-0213

Cewé Jónsson P.M., Thorisdóttir S., Oladottir G.L., Koskinen S.
Imaging of penetrating extremity injuries in a Scandinavian level-1 trauma centre: a 4-year analysis of the trauma registry data from the Karolinska trauma centre, Stockholm (SS 1017), B-0955

Chai Y.
Application of preset adaptive statistical iterative reconstruction-V in dual-enhanced abdominal CT (SS 213), B-0139

Chai Y.
Diagnostic accuracy of CT for lymph node metastasis in gastric cancer: comparison of spectral parameters developed dual-energy CT and conventional CT (SS 1401b), B-1276

Chai Y.
Correlation between dual-energy CT and perfusion CT parameters in patients with gastric carcinoma (SS 1901b), B-1876

Challen R., Low L., McEntee M.F.
Dementia patient care in the medical imaging department (SS 1814), B-1496

B
Biopsy-proven ductal carcinoma in situ radiographic features and upgrade rates
(SS 1902b), B-1798

Chand G., Xing Y., Liu C., Wong N., Meszaros L., O’Doherty J., Ting H., Zhao J.,
Cook G.
Imaging programmed cell death ligand-1 (PD-L1) expression in non-small cell lung cancer with
anti-Tc-anti PDL1 sdAb SPECT
(SS 1016), B-1021

Chang P.
Opportunities for AI-enabled patient care
(SY 20)

Chassagnon G.
Pulmonary neuroendocrine proliferations and neoplasms: A. Diffuse idiopathic pulmonary
neuroendocrine cell hyperplasia (DIPNECH) (RC 504), A-0268

Chaudhry M.B.H., Azemuddin M., Ahmad M.N., Mubarak F., Haq T.U.
Reliability of on-call radiology residents’ interpretations in detecting intracranial
aneurysms on 640 slice multidetector computed tomography angiography (MY 15), B-1367

Chen H., Yan J., Liu K., Deng Y., Huang X., Su R., Xiaojun Z.
Less regulated, more segregated ventral visual network in patients with major depressive
disorder (MY 16), B-1430

Chen M., Yuan H.
Consistency of bone mineral density assessments between dual-energy CT and
quantitative CT (SS 210a), B-0048

Chen X., Xin J.
PET/CT imaging of the novel molecular probe 18C-aminoglycerol for the diagnosis of liver
fibrosis (SS 306), B-0236

Chen X., Li H.
DWI and high-resolution T2WI-volumetry association with lymphovascular invasion and N-
stages in resectable rectal cancer (MY 17), B-1480

Chen X., Li L., Zhao S.
Early detection of left ventricular involvement assessed by 3D CMR feature tracking improves
risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy
(SS 603), B-0593

Chen X.J.
Accurate pulmonary nodule detection in CT images using multi-stage 3D deep convolution
neural networks (MY 7), B-0812

Chen Y., Michalopoulou E., Gale A.G.,
Barrett T., Haslam P., Patel A., Ahmed H.
Prostate imaging self-assessment and mentoring (PRISM): a prototype self-assessment
scheme for radiologists (SS 401), B-0397

Chen Y., Michalopoulou E., Gale A.G.,
Bernardi D.
Improving quality assurance in DDB breast screening by visual search monitoring
(SS 1910a), B-1730

Chen Y., Zhu Y., Guan W., Qu Y.
MRI/US fusion transperineal prostate biopsy
versus systematic biopsy for clinically significant prostate cancer detection in patients with
negative ultrasound findings (SS 1007), B-0881

A novel improved deep learning framework for
liver lesion detection (MY 7), B-0810

Chen Y., Zhu Y., Liu H., Xu K., Yu S., Su T.,
Zhang Z., Wang Y., Jin Z.
Dual-layer detector CT angiography in
preoperative assessment of carotid body
tumours: comparison of virtual monoenergetic
and polyenergetic images (SS 1808), B-1633

Cheng S., Xue H., Jin Z.
Locally advanced and metastatic pancreatic cancer: the role of CT quantitative imaging
biomarkers for predicting outcomes of patients treated with chemotherapy (SS 1401a), B-1104

Cheng Z., Cai X., Feng Y.
Application of intravoxel incoherent motion
imaging (IVIM) in patients with hyperuricemia
(MY 13), B-1083

Chhabra A., Pezeshk P., Dessouky R.,
Morales O., Shah J.
Dixon imaging of bone stress injury of the knee: comparison to conventional proton density-
weighted MR imaging (SS 1410), B-1129

Chianca V., Albano D., Cuocolo R.,
Messina C., Gitto S., Corazza A., Merli I.,
Brunetti A., Sconfienza L.M.
Machine learning classification of spinal lesions: compared accuracy of texture parameters
extracted by different software
(SS 1910a), B-1730

Chilamkurthy S., Ghosh R., Tanamala S.,
Biviji M., Canpeau N., Venugopal V.
Automated detection of mide line shift and mass
effect from head CT scans using deep learning
(SS 705), B-0755

Chin L.H.Q., Lee K.H., Ng H., Cheung M.,
Li Y.L., Lau H.T., Tse D.
Development of a CT diagnostic prediction
model for diagnosis of pyonephrosis
(SS 307), B-0330

Cho C., Grosse-Slentz C., Brinker G.,
Nadobny J., Niehues S., Taupitz M.,
Hamm B., Schlittmann P.
Hotspot temperatures leading to burn in 3T MRI
in pigs (SS 713), B-0762

Cho E., Choi J.M., Kim J.H., Yu J., Chung J.
Dual-arterial phases and split-bolus intravenous contrast injection: reduction of transient
respiratory motion artefact on gadoxetate
disodium-enhanced MRI of the liver
(SS 401), B-0397

Cho M., An C., Aljoqiman K., Kim M.
Non-invasive imaging diagnosis of hepatocellular carcinoma in patients with both
chronic liver disease and a history of
hepatectomy prior to transplantation (SS 1901a), B-1763

Chodyla M., Demircioglu A., Haubold J.,
Bogner S., Herrmann K., Nensa F., Umulu L.
18F-FDG-PET/CT-based radiogenomic tumour
decoding and phenotyping of non-small cell lung
(SS 605), B-0575

Choi B.
Feasibility study of synthetic diffusion-weighted
MR imaging in patients with breast cancer by
quantitative assessment
(SS 1802b), B-1567

Choi B., Lee K.Y., Kim C., Lee S., Je B.,
Cha J., Yong H., Kang E., Oh Y.
Comparison of coronary lumen diameter in CT
angiography: spray nitroglycerin vs sublingual
nitroglycerin tablet administration
(SS 1003), B-1014
Choi N., Kim Y., Jung N., Kang B., Lee J. Can 18 F-FDG PET/CT predict invasive components in DCIS of breast diagnosed by needle biopsy? Comparison with variable imaging modalities including mammography, USG and MRI (MY 5), B-0469

Chou Y. Using MRI or CT for preoperative evaluation of HCC makes the clinical outcome different (SS 2021a), B-0075

Choudary G., Kale P.G., Peddi S. Correlation of three-dimensional computerized tomographic renal volume with DTPA split renal function in prospective donors for renal transplantation (MY 13), B-1075

Christie S., Ng C., Sá dos Reis C. Influences on radiographers’ choice of immobilisation methods in paediatric radiological examinations (SS 214), B-0025

Christou A., Koutoulidis V., Koulocheri D., Hamed K., Mitchell A.J., Koutoulidis V. Impacts on radiographers’ choice of immobilisation methods in paediatric radiological examinations (SS 214), B-0025

Chulroek T., Wangchaweenungrun D., Cattapan K., Hamed K., Mitchell A.J., Harisinghani M.G., De E.J.B. Magnetic resonance imaging findings differentiate among perirethral bulking agent, urethral diverticulum and periurethral cyst, preventing misdiagnosis (SS 707), B-0827

Cil B.E. Visceral arteries: A. Diagnosis of vascular compression syndromes (RC 115), A-0021

Cilia F., Calvieri C., Catapano F., Coco S., Ammendola R.M., De Rubeis G., Galea N., Francone M., Catalano C. Evaluation of left ventricular strain assessment with feature-tracking CMR in STEMI at long term follow-up (SS 603), B-0592

Clauser P. Pretherapeutic diagnostics of tumour extent (part 2) (SY 2d)

Clément O. Imaging biomarkers and their combinations in the era of artificial intelligence: Chairpersons’ introduction (part 1) (ESR/EIBALL), A-0056

Clément O. Professional issues for radiology departments to enable research: Chairperson’s introduction (PI 3), A-0625

Clément O. Contrast media guidelines: C. Ongoing evidence for acute adverse reactions (RC 1207), A-0726

Clevert D.A. Advancing the role of ultrasound with 3D/4D CEUS in the abdomen (SY 17)

Clevert D.A. Early clinical experience using the XL14-3 for small parts applications (SY 17)

Clevert D.A. Ultrasound simulation models in training and education: where are we going? Chairpersons’ introduction (part 1) (ESR US SC/EFSUMB), A-0039

Clevert D.A. How to perform ultrasound image fusion: Prostate (US 1), A-0171

Clevert D.A. Tips and tricks for abdominal ultrasound: Elastography (US 2), A-0669

Clevert D.A. US and vascular disease: a perfect match: A. Abdominal aorta (RC 1315), A-0188

Clevert D.A. Multiple dose monitoring in mammography: the use of combined breast thickness and density determined DRLs (SS 1802a), B-1539

Clevert D.A. Can artificial intelligence improve physician sensitivity in detecting early ischaemic damage on computed tomography? (SS 1005b), B-0979

Collette L. Imaging in oncological trials: Trial design and imaging end-points (ESR/EORTC), A-0790

Collocola A., Ortino M., Durante S. Quality controls in ultrasound: a trial to evaluate the obsolescence of ultrasound probes with a low-cost agar gel phantom (SS 1013), B-0999

Colombi D., Chiesa S., Bodini F., Morelli N., Silva M., Sverzatelli N., Franco C., Micheletti E. Difference between measurement of T size at computed tomography and at resected specimen: is it relevant for NSCLC stage? (SS 1016), B-1029

Coma A. Imaging in abdominal emergencies: an (evidence-based) update: A. The acute abdomen in neonates (RC 412), A-0188

Connor S. Differential diagnoses you don’t want to miss: A. Differential diagnoses of nose and paranasal sinus lesions (RC 1308), A-0797

Conti A., Calcagno M.C., Meo D., Modica A., Rizzo D., Mammino L., Foti P.V., Palmucci S., Basile A. Comparative assessment of occupational radiation exposure between transabdominal and transfemoral approach during percutaneous retrograde scleroembolisation of left varicocele (SS 1009), B-0959

Cook G. Hybrid and translational imaging: the bigger picture: On the horizon: novel PET tracers with translational potential (ESR/ESH(3)), A-0797

Cooen A.M.P., Korte B., Duijm L.E.M. Additional breast cancer detection at screening mammography through quality assurance sessions between screening radiographers and coordinating screening radiologists (SS 202), B-0081
Authors’ Index

Damilakis J.
Medical imaging and emerging issues in occupational radiation exposure: Eye lens radiation dose and cataractogenesis (ESR/EFOMP), A-0545

Damilakis J.
Advanced clinical dosimetry in interventional radiology: Dose management of patients and staff in interventional radiology (EU 4), A-0751

Damilakis J.
Principles of imaging and radiation protection: C. Radiation protection (E 1523), A-0898

Daniaux M.
New horizons in breast ultrasound (SY 23)

Danse E., Michoux N., Kartheuser A., Devit O., Baldin P., Jouret-Mourin A., Jacquet L., Coche E.
Does spectral CT help to predict the severity of ischaemic colitis? (SS 1001a), B-0944

Danse E., Coche E.
Abdominal emergencies: advanced imaging in daily routine?: Routine CT vs dual energy CT in acute abdominal pain: should we change our scan protocol? (SF 15c), A-0888

Das M.
Pulmonary neuroendocrine proliferations and neoplasms: C. Small cell lung cancer (RC 504), A-0270

Davis A.
Technological trends that are changing medical imaging and the practice of radiology (SY 20)

Davis M.
Forensic imaging: A. The chain of evidence (RC 814), A-0399

De Cataldo C., Corridore A., Torlone S., Cannizzaro E., Palumbo P., De Matteis F., Di Lizio M., Di Cesare E., Masciocchi C.
Retrospective evaluation of the accuracy of coronary computed tomography angiography compared to invasive coronary angiography: radiological and therapeutic approach in CAD-RADS 3 V (SS 1503), B-1309

De Cataldo C., Torlone S., Corridore A., Palumbo P., Cannizzaro E., De Matteis F., Di Sibio A., Di Cesare E., Masciocchi C.
Analysis of strain values in asymmetrical hypertrophic cardiomyopathy: correlations with wall thickness and extent of focal fibrosis (SS 1903a), B-1872

De Cicco M.L., Andreoli C., Sessa B., Miele V., Ianniello S.
Accuracy of a new system score based on lung ultrasound and clinical data in the decision of a drainage tube necessity in polytrauma patients pneumothorax (SS 717), B-0734

De Decker B., Bernaerts A.
Imaging in Meniere's disease: what to believe and how to interpret: MR hydrod imaging: how to interpret it? (SF 15b), A-0888

De Francisco A.
Why managing risk in oncology patients really matters: a nephrologist’s perspective on precision health (SY 3)

Value of MRI with static and dynamic sequences in the study nature extension of the tight stenosis of the oesophagus-gastric junction (SS 1901b), B-1872

De Graaf P.
Imaging of eye and orbital pathologies: C. Benign and malignant masses of the eye and orbit (RC 1708), A-1070

De Kerviler E.
Oncological imaging: where are we now?: Chairperson's introduction: What are the problems of morphologic evaluation (RC 1216), A-0711

De Kerviler E.
The global safety of gadolinium contrast agents (SY 30)

De Koekkoek-Doll P., Vogel W., van den Brekel M.W.M., Smit L., Beets-Tan R.G.H., Maas M.
SUV-based lymph node selection for fine-needle aspiration guided by real-time fused ultrasound and FDG PET in head and neck cancer patients (SS 608), B-0862

De Koekkoek-Doll P., van den Brekel M.W.M., Vogel W., Smit L., Beets-Tan R.G.H., Maas M.
Microflow and resistance index in suspicious lymph nodes (SS 1816), B-1635

De la Camara M.A.
Clinical dilemmas in radiography: what graduates need to know: Professionalism in an era of social media (part 2) (BR 12), A-0950

Fontan-operated adolescents have increased hepatic fibrotic markers assessed by ultrasound shear wave elastography and MR T1 mapping (SS 212), B-0168

Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study (SS 1509), B-1303

De Magistris G., Pane F., Corvino F., Giurazza F., Coppola M., Amadio F., Silvestre M., Cavaglia E., Nola R.
High-flow priapism: colour Doppler findings and embolisation (SS 109), B-0006

De Martino S.R.M., Corcioni B., Gaudiano C., Ciccarese F., Vagnoni V., Saviola R., Golferi R.
Is it today acceptable to perform only targeted fusion MR/US prostate biopsy in naïve patients? (SS 1007), B-0873

De Mattia C., Ronza R., Grassi M., Pecorilla M., Colombo P.E., Siena S., Vanzulli A., Torresin A.
An inter and intra patient radiomic study to select the most promising features aiming to precision medicine feasibility (SS 1013), B-0991

De Meyere M., Dubourg B., Delacour D., Bejar S., Michelle P.J., Dacher J.
Magnetic resonance functional assessment of the right ventricle in the short-axis plane as obtained from cross-referenced atrioventricular plane localisation (SS 1903b), B-1860

MRI in unilateral Meniere’s disease: the value of post-contrast cochlear perilymph signal intensity (SS 308), B-0298

De Natale S., Lombardi R., Greca A., Catania M., Belou A., Rizzo G., Ambrosetti M.C., D’Onofrio M.
Solid pseudopapillary neoplasms of the pancreas: clinicopathological and radiological features according to size - 20-year experience from a high-volume centre (SS 501), B-0457

De Robertis Lombardi R., Greca A., Catania M., Belou A., Rizzo G., Ambrosetti M.C., D’Onofrio M.
Solid pseudopapillary neoplasms of the pancreas: clinicopathological and radiological features according to size - 20-year experience from a high-volume centre (SS 501), B-0457

De Serio I., Jerman K., Londero V., Zuliani C.
Architectural distortions with microcalcifications: a mammographic malignancy predictor of B3 lesions? (SS 202), B-0086

De Smul E., Jeurissen B., Stijers J., Vanhevel F., Parize P.M., Van Dyck P.
Super-resolution reconstruction of knee MR images (SS 1410), B-1127

De Smul E., Billet T., Heusdens C., Parize P.M., Van Dyck P.
Healing of the anterior cruciate ligament following primary repair: a longitudinal DTI study (SS 1810), B-1509

De Visschere P.
The "prostate unit" at work: The radiologist: non-invasive explorer of the prostatic realm (MS 8a), A-0478
Dedulle A.S.L., Rahimzadeh S., Fitousi N., Bosmans H., Jacobs J.
Evaluating the use of a noise index to identify outliers in CT examinations (SS 213), B-0132

Degnan A.J., Ho-Fung V.M., Nguyen J.C., Lawrence J.T.R., Kaplan S.L.
Secondary fractures in paediatric radial head and neck fractures: common association, commonly missed (SS 1012), B-1055

The value of MR spectroscopic bone marrow fat fractions in the assessment of treatment response in patients with Gaucher disease (SS 1012), B-1057

Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted (MY 16), B-1421

Dekimpe C.
Ultrasound-guided percutaneous release of the carpal tunnel: comparison between senior vs junior operator and learning curves: a cadaveric study (SS 1510), B-1294

Del Poggio A., Pereira C., Iadanza A., Falini A., Anzalone N.
Diagnostic efficacy and safety of gadoteridol in a large sample of MRI studies at 1.5T (SS 1911a), B-1055

Del Rio Carrero B., Luburich Hernaiz P., Bolivar Cuevas S., Carreho Garcia E., Vicens Zygmun V., Molina Molina M.
Fibrotic lung disease in MP0-ANGA positive patients (SS 1604), B-1404

Delfino L., Damasio M., Derchi L.E.
MRU for diagnosis of obstructive pathology of the upper urinary tract (SS 312), B-0342

Delis H.
Dose management in paediatric radiology: C. Optimisation in the neonate (RC 1313), A-0788

Relationship between epicardial adipose tissue and coronary vascular function in patients with normal myocardial perfusion by 82Rb PET/TC (MY 18), B-1684

Comparison between percutaneous and laparoscopic microwave ablation of hepatocellular carcinoma (SS 1709), B-1439

Della Setta M., Colletti F., Schmelzle M., Raschzok N., Hamm B., Denecke T.
Intra-individual comparison of the MRI contrast agents gadoteric acid vs gadoteric acid in liver MRI of patients with HCC and underlying cirrhosis (MY 17), B-1468

T2-weighted signal intensity (T2SI) textural analysis in an evaluation of neoadjuvant chemoradiotherapy (CRT) response in patients with locally advanced rectal adenocarcinoma (SS 1501a), B-1545

Rectal wall T2 relative signal intensity: a non-invasive biomarker of gastro-intestinal (GI) toxicity in patients treated with pelvic radiotherapy (RT) (MY 17), B-1485

Delilos D.P., Pappas E.P., Seimenis I., Karaiskos P.
Contrast-enhanced MR images employed in stereotactic radiosurgery: does susceptibility-related distortion pose a significant problem? (SS 713), B-0768

Demaerel P.
Inflammatory and infectious CNS pathology: A. Autoimmune encephalitis (RC 1211), A-0676

Demircioglu A., Haubold J., Forsting M., Nassenstein K., Ummutlu L., Nensa F.
Generating dual-energy images from monoenergetic 80 kV images using a conditional generative adversarial network (SS 1005a), B-0913

Demozzi E., Cavicchioli F., Hoogenboom M., Catania M., Foti G., Munari E., Cavalleri S., Carbognin G.
Detection of prostate cancer: comparison between robotic-assisted “in-bore” MRI-guided biopsies and cognitive transrectal ultrasound-guided biopsies (SS 1007), B-0872

Depretis M.A., Ibañez Sanz L., Martinez Chamorro E., Borruel Nacenta S.
A comparative study 2007-2015 on acute appendicitis: evolution in use by diagnostic imaging techniques (SS 317), B-0268

Depretto C., Baldari D., Cartia F., Ferranti C., Scaperrotta G.
Affirm Prone Biopsy System 2D/3D™: Imaging biomarkers and their combinations in the era of artificial intelligence: Chairpersons’ introduction (part 2) (ESR/EIBALL), A-0057

Desai S.R.
Fibrotic lung diseases: Chairperson’s introduction (RC 1204), A-0699

Desai S.R.
Patterns of pulmonary toxicity: B. Smoking-related lung disease (E³ 1626b), A-0983

Detection of intracranial haemorrhage on CT of the brain using a deep learning algorithm (SS 705), B-0753

deSouza N.M.
Imaging biomarkers and their combinations in the era of artificial intelligence: Chairpersons’ introduction (part 2) (ESR/ESTRO), A-0049

deSouza N.M.
Tumour relapse in gynaecological cancer: C. Salvage treatment with image directed therapy: high-intensity focused US (HIFU) and stereotactic RT (E³ 519), A-0287

deSouza N.M.
Imaging biomarkers and their combinations in the era of artificial intelligence: Chairpersons’ introduction (part 1) (ESR/EIBALL), A-0057

Dessypris E., Cavicchioli F., Hoogenboom M., Catania M., Foti G., Munari E., Cavalleri S., Carbognin G.
Detection of prostate cancer: comparison between robotic-assisted “in-bore” MRI-guided biopsies and cognitive transrectal ultrasound-guided biopsies (SS 1007), B-0872

Devaraj A.
Screening with imaging: a new era?: Chairpersons’ introduction (SF 1), A-0027

Devaraj A.
Cavitary and cystic diseases of the lung: B. Lungertans cell histiocytosis (LCH) (E³ 722), A-0375

Devaraj A.
Lung nodule management in 2019: Chairperson’s introduction (RC 904), A-0548
Dewaguet J., Copin M., Faire J., Deken V., Sedlmair M., Remy J., Remy-Jardin M.
Dual-energy CT (DECT) during tumour perfusion: can we distinguish features that can reflect prognosis? (SS 704), B-0778

Drezman R.
Highlighted Lectures: Getting it right: how to report an imaging study before the interventional radiology procedure (TF), A-0834

Dhanasingh A.
Research software in cochlear duct length estimation, Greenwood frequency mapping and electrode array length selection (SS 308), B-0297

Di Chiara A., Palmisano A., Della Vecchia G., Esposito A., Passoni P., Fiorino C., Del Maschio A., De Cobelli F.
Importance of tumour volume reduction rate on T2w and DWI during and after CRT for prediction of treatment response to CRT in locally advanced rectal cancer (LARC) (SS 1501a), B-1343

Di Chiara A., Palmisano A., Rancotta P., Passoni P., Del Maschio A., De Cobelli F.
Whole-tumour texture analysis of ADC maps in the prediction of pathological response of locally advanced rectal cancer (LARC) (SS 1501a), B-1344

Di Giacomo L., Bagacchi G., Nardone V., Tini P., Gentili F., Marcelli D., Roviello F., Volterrani L., Mazzi M.A.
Advanced gastric cancer response to neoadjuvant chemotherapy: is CT texture analysis a reliable imaging biomarker? A multicentre study from Italian research group for gastric cancer (SS 1401b), B-1276

Arterial transit artefacts on ASL perfusion MRI in patients with carotid artery stenosis are a better predictor of recent symptoms than degree of stenosis or carotid plaque morphology (SS 711), B-0712

Di Paola V., Russo L., Miccò M., Sbarra M., Pozzi Mucelli R., Manfredi R.
Evaluation of peri-prosthetic neurovascular fibres before and after radical prostatectomy by means of 1.5 T MRI diffusion tensor imaging (SS 307), B-0328

Dick E.
Imaging of "foreign bodies": A. Surgical and radiological perspectives (RC 417), A-0166

Ultra-low-dose CT detects synovitis in patients with suspected rheumatoid arthritis (SS 610), B-0514

Dietzel M., Schulz-Wendtland R., Wenkel E., Biełowicz C., Bäuerle T., Uder M., Ellman S.
Rethinking abbreviated breast MRI: potential to skip DCE scans by integrated semi-quantitative T2 and ADC analyses (SS 602), B-0551

Automated volumetric analysis of breast cancer vascularisation enables risk stratification in patients scheduled for neoadjuvant chemotherapy (SS 702a), B-0701

Dietzel M., Ellman S., Wenkel E., Clauser P., Schulz-Wendtland R., Uder M., Baltzer P.A.T.
The Kaiser score, a decision rule based on BI-RADS MRI descriptors: is there an impact of histopathology on the diagnostic accuracy? (SS 702a), B-0702

Dietzel M., Ellman S., Wenkel E., Biełowicz C., Schulz-Wendtland R., Uder M., Bäuerle T.
Combining artificial intelligence and MRI in the management of equivocal breast lesions: the perfect couple? (SS 702a), B-0703

Ding L., Ma L., Zhang F.
The value of the single energy metal artefact reduction algorithm in post-surgery follow-up of patients with hip tumour prostheses (SS 1010), B-0903

Dionisi C., Coppo M., Villa R., Brambilla M.
Geometric efficiency: measuring methods’ comparison (SS 1314), B-1071

Optoacoustic imaging is helpful in predicting breast cancer molecular subtypes (SS 1902a), B-1793

Donato P.
Optoacoustic imaging features correlate with breast cancer clinicopathological prognostic factors (SS 1902a), B-1794

Dominguez A.
Forensic imaging: Chairpersons’ introduction (Part 1) (RC 814), A-0397

Percutaneous ablation of renal cancer: radiofrequency vs. microwave (SS 1807), B-1662

Donzelli R.
Feasibility of foetal MRI in the evaluation of heart diseases: Chairperson’s introduction (E³ 526), A-0223

Dong J.D.
CT and intervention in vascular pulmonary diseases: Chairperson’s introduction (E³ 822), A-0469

Dodos D., Bartolović N., Kovacic S., Miletić D., Rumboldt Z.
Accuracy of virtual monochromatic images for the detection of early brain ischaemia on dual-energy CT (SS 311), B-0260

Optoacoustic imaging is helpful in predicting breast cancer molecular subtypes (SS 1902a), B-1794

Optoacoustic imaging features correlate with breast cancer clinicopathological prognostic factors (SS 1902a), B-1794

Domenech-Ximenes B., Cauba Cambas V., Daunis-i-Estadella J., Pedraza Gutierrez S., Fernández-Real J.M., Puig Alcántara J.
Weight loss in obesity, impact on carotid intima media thickness and cardiovascular risk factors: a longitudinal study (SS 215), B-0044

Dominguez A.
Forensic imaging: Chairpersons’ introduction (Part 1) (RC 814), A-0397

Percutaneous ablation of renal cancer: radiofrequency vs. microwave (SS 1807), B-1662

Donzelli R.
Feasibility of foetal MRI in the evaluation of heart diseases: Chairperson’s introduction (E³ 526), A-0223

Dong S., Zhu M.
Feasibility of foetal MRI in the evaluation of foetal congenital heart disease (SS 612), B-0599

Dong S., Ji H.
Diffusion-weighted magnetic resonance imaging of the foetal brain in complex congenital heart disease (SS 612), B-0600

Dong Y., Han X., Yang D., Lou W., Zhang Q., Wang W.
Preoperative prediction of pancreatic neuroendocrine tumours’ grade: the added value of contrast-enhanced ultrasound with quantitative analysis (SS 501), B-0452
Authors’ Index

Forton R.K., Hardy M., Sargeant A.
The construction of care in CT (SS 214), B-0029

Foti G., Catania M., Beltramello A., Carbognin G.
Evaluation of glenoid labral tears: comparison between dual-energy CT arthrography and MR arthrography of the shoulder (SS 310), B-0239

Foti G., Catania M., Beltramello A., Carbognin G.
Identification of bone marrow oedema and osteochondral injuries of the knee: diagnostic accuracy of dual-energy CT and virtual non-calcium techniques (SS 1410), B-1128

Fournier L.S.
Whole-body imaging in gynaecological malignancy: Chairperson’s introduction (E’1 319), A-0129

Fournier L.S.
Professional issues for radiology departments to enable research: How to or ganise an imaging department for clinical research (PI 3), A-0627

Fournier L.S.
Navigating tumour phenotype with advanced imaging analysis: Unravelling tumour heterogeneity using radiomics (SF 15d), A-0901

Foutzitzi S., Deftereos S.P.
Lung ultrasound, a safe & useful tool for neonatal with respiratory problems monitoring (SS 212), B-0163

Fowler K.
Hepatocellular carcinoma: from diagnosis to treatment: A. How to diagnose HCC: new guidelines (RC 1701), A-1002

Fraia A., Zenatta E., Weber M., Balestro E., Stramare R., Doria A., Giraudo C., Quiaia E.
Muscle and pulmonary involvement in patients with antisynthetase syndrome: two aspects of the same disease or two different conditions? Preliminary results of an MR and HRCT study (SS 610), B-0517

França M.M.
US before CT in the acute abdomen?: Discussion (PS 1427), A-0838

Franchi-Abella S.
Paediatric oncology: The most common abdominal tumours (BS 12), A-0661

Francone M.
Radiologic anatomy: chest: Vasculature (BE 3), A-0124

Francone M.
From diagnosis to prognosis: how does cardiac imaging affect patient outcome?: A. In myocarditis (RC 403), A-0146

Frauenfelder T.
Everything you need to know about 3D post-processing: C. Interpretation of 3D processing results: from image to volume rendering (RC 405), A-0145

Frauenfelder T.
Challenging HRCT patterns: tips and tricks from the experts: Perilobular consolidation (SF 8b), A-0455

Frauenfelder T.
Lung nodule management in 2019: A. Radiological assessment (RC 904), A-0549

Prevention of the progressive biochemical cartilage destruction under methotrexate therapy in early rheumatoid arthritis (SS 610), B-0515

The value of the simplified RAMRIS-5 in early-RA patients under methotrexate therapy using high-field MRI (SS 610), B-0517

Molecular lumbar intervertebral disc alterations in patients with leg length discrepancy (SS 1910a), B-1736

Prospective single-centre study to evaluate artifacts using CEUS in follow-up after EVAR; possible adverse effects on endoleak detection in comparison with CTA (SS 1915), B-1720

Friedrich-Nel H.
Radiographers’ challenges offering imaging services in Africa: South Africa. The South African radiographer; button pusher or creative thinker? (EM 5), A-0654

Frigerio A.
Diagnosing ductal carcinoma in situ (DCIS): A. New radiologic-pathologic knowledge on DCIS (RC 1702), A-1027

Frijia G.
Cardiovascular effects after radiotherapy for breast cancer: the European MEDIRAD Project: Chairpersons’ introduction (part 2) (EU 1), A-0015

Frijia G.
Diagnostic reference levels (DRLs) based on clinical indication: Chairperson’s introduction (EU 2), A-0408

Frijia G.
Diagnostic reference levels (DRLs) based on clinical indication: One shoe does not fit all: clinical indication based DRLs (EU 2), A-0410

Frijia G.
Improving radiation protection in medical imaging in low- and middle-income countries: past actions and future directions: The International Society of Radiology’s (ISR) vision (EU 3), A-0659

Frijia G.

Frijia G.
Artificial intelligence and radiation protection: Chairpersons’ introduction (part 1) (EU 7), A-1011

Frijia G.
Artificial intelligence and radiation protection: Artificial intelligence: a tool for quality and safety improvement in radiation protection (EU 7), A-1013

Fritz J.
Fast MSK with CAIPI SPACE, SMS TSE and compressed sensing (SY 6)

Froelich M.F., Pons Lucas R., Coppenrath E., Sommer W., Trett I.K.M., Saam T., Sommer N.N.
Comparison of contrast-enhanced modified T1-weighted 3D TSE black blood and 3D MP-RAGE sequences for detection of meningeal enhancement (SS 1911a), B-1773

Fu H., Xu R., Guo Y., Yang Z., Liu H.
The difference of left ventricular myocardial strain in isolated LVNC and dilated cardiomyopathy with hyper-trabeculation: structure, functional and risk factors analysis (SS 212), B-0166

Fu H., Wen L., Guo Y., Yang Z.
CMR tissue tacking assessment of myocardial strain in non-ischaeamic dilated cardiomyopathy patients with and without left ventricular hyper-trabeculation (SS 603), B-0594

Fu J., Tang L., Li Z., Shi Q., Yan Z., Li X., Ji J.
Diffusion kurtosis imaging evaluation of histological differentiation and Lauren classification in advanced gastric cancer (SS 616b), B-0611
Authors’ Index

Fu J., Mengjie F., Li J., Li X., Tang L., Dong D. Assessment of metastatic GIST heterogeneity using texture analysis: ADC texture as a potential biomarker of 5-year survival (SS 1401b), B-1280

Fu R., Qiu T., Lu Q., Luo Y. Quantitative assessment of liver function before hepatectomy using two-dimensional shear wave elastography correlated with indocyanine green clearance test (SS 1501b), B-1370

Fuchsjäger M.H. The art to transmit and to receive: how to communicate critical information to our patients: Chairpersons’ introduction (Part 1) (SF 8c), A-0414

Fuchsjäger M.H. Minimally-invasive local treatment of breast cancer: the time is now: C. Cryotherapy (RC 1202), A-0674

Fusaro M., Rattazzi M., Nardin C., Tiepolo M., Dorigo A., Tesserin G., Stamatì G., Agostini C., Morana G. Acute chest pain evaluated with coronary CT: feasibility of new atherosclerotic markers on coronary CT angiography (SS 308), B-0293

Fusco R., Granata V., Pecori B., Petrillo A. Visualisation and image quality of the chorda tympani nerve in temporal bone: comparison of conventional CT and ultra-high-resolution CT (SS 306), B-0293

Fütterer J.J. Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer (SS 1501a), B-1346

Füllterer J.J. Early detection of prostate cancer: C. Active surveillance: best practice (E¹ 219), A-0095

Gabelloni M., D’Amore C.A., Morganti R., Faggioni L., Spinelli C., Neri E. Application of a clinical decision support system to the imaging pathway of patients with hepatocarcinoma and cholangiocarcinoma (SS 1905b), B-1831

Gabelloni M., Di Nasso M., D’Amore C.A., Morganti R., Faggioni L., Masi G., Neri E. Impact of ESR iGuide in the diagnostic workflow of paediatric patients with abdominal pain (SS 1401), B-1280

Gabagadze A.E., Nada A., Gomaa M., Hashem R.H., Shokry A. The additive value of diffusion-weighted imaging in the initial workup for paediatric head and neck lesions (SS 1412), B-1232

Gac P., Trzmielewska E., Poreba M., Mazur G., Sobieszczanska M., Poreba R. Ultracathographic evaluation of changes in carotid arteries in patients with hypertension after a stroke (SS 215), B-0039

Galimzianova A., Desser T.S., Siebert S., Syed S., Kamaya A., Rubin D. Comparison of automated quantitative ultrasound image analysis vs expert scoring systems for prediction of malignancy in thyroid nodules (SS 1605), B-1402

Gallagher F.A. Merging the best: hybrid imaging: C. Hyperpolarised MRI (RC 806), A-0459

Gammbo P.A.T., Ribeiro M.M., Macedo A.P.L. Evaluation of hippocampus volume in the elderly people by magnetic resonance imaging: comparison of two segmentation methods (SS 414), B-0410

Gammack P., Harper A., Alexander S., Jones J. An audit of the use of ultrasound scanning in investigation of paediatric inflammatory neck masses (SS 1708), B-1455

Gangi A. Pain palliation in cancer patients: Chairperson’s introduction (SF 9a), A-0511

Gao A., Cheng J., Bai J., Zhang Y., Hong Y., Kong D. Application of histogram analysis of diffusion Kurtosis imaging to tumour grading and tissue heterogeneity (SS 1416), B-1244

Gao A., Bai J., Zhang Y., Cheng J., Hong Y. Two postprocessing method of diffusion kurtosis imaging in glioma grading (SS 1911a), B-1779

Gao B. The mechanism of cerebral aneurysms and treatment effect on thegenesis (SS 211b), B-0184

Gao L., Hou Y., Ma Y., Ma Q., Lu X. The value of multiple quantitative spectrum parameters for assessing the lymph node metastasis of lung cancer with dual-layer detector spectral CT (SS 1804), B-1604

Garcia Figuerias R. Quantitative imaging in oncology: B. Quantitative image biomarkers for targeted tumour therapies (E¹ 1726a), A-1059

Garcia Gorga R. Clinical dilemmas in radiography: what graduates need to know: Professionalism in an era of social media (part 1) (BR 12), A-0689

Garcia Roch C.G., Garcia Garcia F., Aragon Tejada F.X., Ciampi Dopazo J., Munoz Cepeda M., Bernabeu Rodriguez M., Giovanetti Gonzalez R., Roca A., Baron Rodiz P.A. Contrast-enhanced ultrasound (CEUS) efficiency in renal graft complication evaluation (SS 607), B-0625

Garcia-Castro F., Catala-March J., Brotons-Cuitat D., Llobet-Llambriich M., Sanchez-Osorio E., Alberich-Bayarri A. Quantification and evaluation of pre-post exercise femoral cartilage thickness and T2 changes in ultramarathon athletes (SS 710), B-0680

Gare C. Foetal and neonatal imaging pearls: B. Corpus callosum anomalies: pre- and postnatal correlation (RC 912), A-0561

Garettier M., Grimbardi R., Tissier F., Pons-Becmeur C., Ben Salem D., Borotikar B. Feasibility of lower limb muscle volume estimation during contraction with real-time dynamic MRI: implications to clinical diagnostics (SS 1810), B-1511

Gascho D., Heimer J., Thali M., Zoelch N. Magnetic resonance spectroscopy in muscle tissue and bone marrow to identify that a body was previously frozen and is meanwhile thawed (SS 1810), B-1516

Gaspar R.M.C.R., Abrantes A.F., Matos V. Frontiers of periosteal changes: comparison between anthropological data, clinical records and readings of X-ray medical imaging technology (SS 714a), B-0643

Gasparotti R. How to implement MRI neuro advanced techniques at home: C. How to read diffusion tensor imaging (DTI) (E¹ 129a), A-0026

Gatidis S. Translating functional and molecular imaging in oncology: A. Functional cancer imaging with MRI (RC 1206), A-0704
Hazirolan T.
Non-contrast MR angiography: ready to go?: Non-contrast MR angiography for large vessels (SF 8d), A-0421

He J., Zhou Q., Li X., Xu X., Ding X., Zhou X., Zhang M.
Automatic segmentation for coronary computed tomography angiography using convolutional neural networks (SS 1405), B-1189

He M., Xue H., Jin Z.
Can two breath-hold 3D-MRCP replace the conventional 3D-MRCP? (SS 301), B-0386

He M., Xue H., Jin Z.
Comparison of reduced field-of-view (rFOV) and full FOV (IFOV) diffusion-weighted imaging (DWI) in the assessment of insuloma: image quality and WHO grading (SS 501), B-0454

He M., Xue H., Jin Z.
Differentialization of atypical non-functional pNET and PDAC using a CT radiomics-based nomogram (SS 816b), B-0813

Amide proton transfer MR imaging for cervical cancer: a preliminary study (MY 13), B-1074

Contrast-enhanced T1 mapping MR imaging for evaluation of myometrial invasion in endometrial cancer: initial experience (MY 13), B-1087

Healy N., Kilburn-Toppin F., Wallis M.
Can breast MRI aid in predicting high burden axillary disease in patients diagnosed with breast cancer? (SS 1902b), B-1801

Healy N.A., Tanner J.A., Kilburn-Toppin F.
CT staging in newly diagnosed breast cancer: are we adhering to current guidelines? (SS 1902b), B-1795

Heck L., Eggel E., Grandi S., Dierolf M., Mayr D., Hellerhoff K.A., Reiser M.F., Pfeiffer F., Herzen J.
Dose-compatible grating-based phase-contrast mammography on mastectomy specimens using a compact synchrotron source (SS 1913), B-1847

Local diagnostic reference levels in mammography: setting a maximum/alarm dose in a diagnostic mammography unit using dose monitoring software (SS 1802a), B-1545

Heidinger B.H., DaBreo D.C., Carroll B.J., Feldman S.A., Mohabdi D., McCormick I., Matos J.D., Manning W.J., Litmanovich D.
Presence of coronary artery calcifications on CT is associated with PE-related mortality in patients with acute PE (SS 1503), B-1306

Heijmink S., van Mullekom E., Tillier C., Grivas N., van der Poeel H.
Radiological prediction of the chance of post-RALP urinary continence on preoperative MR prostate image can substantially alter patients’ choice of treatment (SS 307), B-0326

Tissue stiffness after self-myofascial release in athletes with different experience in foam rolling assessed by quantitative acoustic radiation force impulse elastography (ARFI) (SS 710), B-0684

Heitmann S., Toomey R., Chen M., Pettka P., Molehe M., Selau Junior M., Fernandes K., Davies K., Pires Jorge J.
Factors influencing student radiographers’ assessment of chest radiograph image quality (SS 1914a), B-1704

What is the contribution of MR spectroscopy in the differential diagnosis of solitary pulmonary masses? (SS 1404), B-1206

Hekimoglu K., Haberal K., Turnaoglu H., Kahraman G.
Dual-energy CT pulmonary angiography and lung perfusion imaging with ultra-low-dose contrast application (SS 1904), B-1854

Helbich T.H.
Screening for breast cancer: Combined screening with mammography and ultrasound (RC 902), A-0528

Helmerberger T.
Nevascular interventions in the lung: Keynote lecture (SS 1909), K-42

Automated image quality assessment in CT using a 3D printed lung vessel phantom and structural similarity index analysis (SS 213), B-0137

Hermans R.
Post-treatment imaging of the head and neck: A. Normal findings after radiotherapy (RC 1206), A-0720

Hermie I., Van Besien J., De Visschere P., Villeira G.
Predictive 18F-FDG PET/MAA-SPECT/CT dosimetry in patients with locally advanced inoperable hepatocellular carcinoma treated by selective interventional radiotherapy with 90Y resin microspheres (MY 8), B-0546

Hernandez-Giron I., Schippers R., den Harder J.M., Streekstra G.J., Veldkamp W.J.H.
Automated image quality assessment in CT for tomo-reading (SY 2c)

Herrmann A., Dieudonné A., Ronot M., Sanchez M., Pereira H., Chatellier G., Garin E., Lebthal R., Vilgrain V.
Predictive 18F-FDG PET/MAA-SPECT/CT dosimetry in patients with locally advanced inoperable hepatocellular carcinoma treated by selective interventional radiotherapy with 90Y resin microspheres (MY 8), B-0546

Herrmann A., Dieudonné A., Ronot M., Sanchez M., Pereira H., Chatellier G., Garin E., Lebthal R., Vilgrain V.
Predictive 18F-FDG PET/MAA-SPECT/CT dosimetry in patients with locally advanced inoperable hepatocellular carcinoma treated by selective interventional radiotherapy with 90Y resin microspheres (MY 8), B-0546

Herrmann A., Dieudonné A., Ronot M., Sanchez M., Pereira H., Chatellier G., Garin E., Lebthal R., Vilgrain V.
Predictive 18F-FDG PET/MAA-SPECT/CT dosimetry in patients with locally advanced inoperable hepatocellular carcinoma treated by selective interventional radiotherapy with 90Y resin microspheres (MY 8), B-0546

Hinzpeter R.M.M.
Thoracic emergencies: Acute coronary syndrome (BS 2), A-0088
Huang S., Yang Z., Diao K., Shi K., Gao Y., Shen M., Guo Y.
Assessment of left ventricular deformation in restrictive cardiomyopathy with preserved ejection fraction by cardiac magnetic resonance tissue tracking (MY 18), B-1681

Huang S., Yang Z., Shi K., Diao K., Gao Y., Guo Y., He Y., He S., Shen M.
The diagnostic performance of novel non-contrast markers in discrimination of cardiac amyloidosis and hypertrophic cardiomyopathy on cardiovascular magnetic resonance imaging (SS 1903a), B-1820

Huang S., Li X., Fang Z., Lin J., Zhang Z., Sun C.C., Feng S., Li Z.
Correlation analysis between magnetisation transfer ratio with collagen area fraction in the surgical specimen of Crohn’s disease (SS 1801b), B-1654

Huang X., Hou Y., Ma Y., Gao S., Jia Z., Lu X.
The optimal monochromatic image level of coronary CT angiography on a dual-layer detector spectral CT with half-dose contrast agent (SS 1030), B-1017

Huber F.A., Stutz S., Vittoria De Martini I., Mannil M., Becker A.S., Winklhofer S., Burgstaller J.M., Guggenberger R.
Texture analysis for quantitative evaluation of central lumbar spinal stenosis (SS 1910a), B-1733

Huber F.A., Gkousmas S., Thuering T., Becce F., Guggenberger R.
Spectral photon-counting for gout diagnosis in plain radiography: a feasibility study (SS 1013), B-0997

Huber T., Rotkopf L., Bette S., Preibisch C., Gempt J., Pyka T., Thierfelder K., Wiestler B.
Wavelet parameter maps of perfusion-weighted plain radiography: a feasibility study (SS 2113), B-0776

Hunink M.G.M.
Investment strategies: B. Value-based imaging (E11118), A-9636

Hunink M.G.M.
Working in radiology: burnout and bore-out or engaged and passionate?: Chairperson’s introduction (Part 1) (PC 13), A-0740

Hook-wire localisation vs lipiodol localisation for patients with pulmonary lesions having ground-glass opacity: the LOGIS trial (SS 704), B-0776

Comparing the diagnostic accuracy of 18F-FDG-PET/CT, contrast-enhanced CT and combined imaging in patients with suspected vascular graft infections (SS 315), B-0224

Husseiny Salama D.
Radiology in Africa: facing challenges and opportunities: Structured strategies to combat radiation protection challenges in Africa. What can the ESR do? (EM 1), A-0310

Iacobellis F., Di Serafino M., Cinque T., Stavolo C., Romano L.
Can MR be useful in the follow-up of blunt liver and spleen injuries: preliminary results (SS 217), B-0104

Iezzi R.
Non-contrast MR angiography: ready to go?: Chairperson’s introduction (SF 8d), A-0419

Iezzi R.
No time to lose: aortic disease, revisited: B. Acute diagnosis and imaging in aortic dissection (RC 1515), A-0908

Ilhan H.
Hybrid and translational imaging: the bigger picture: Advances in theragnostics: monitoring radionuclide therapy (ESR/ESHi(MT)), A-0976

Im S., Chung H., Kim S., Park H.
Diagnostic value of ultrasound in paediatric veno-occlusive disease (VOD) after HSCT using the European Society for Blood and Marrow Transplantation (EBMT) criteria (SS 312), B-0396

Inampudi V., Nimmalapudi S., Prakash A.
Evaluation of MRI findings in Hippocampal atrophy and sarcopenia and osteoporosis in patients with cancer diagnosis: evaluation with CT (SS 210a), B-0050

Ivanac G.
Highlighted Lectures: Spinal emergencies: a look beyond trauma (TF), A-0832

Influence of arm positioning on radiation dose during combined thorax and liver CT imaging: a phantom study (SS 1813), B-1592

Izzo A., Varrassi M., Bruno F., Bianchi G., Cobianchi Bellisari F., Carducci S., Giordano A., Di Cesare E., Masciocchi C.
Intraarticular lumbar facet joint steroid injection vs. medial branch block: which technique ensures better clinical outcome for managing lumbar back pain? A single-centre experience (SS 1809), B-1579

Izzo A., Arrigoni F., Palmou P., Bruno F., De Cataldo C., Mariani S., Zugaro L., Barile A., Masciocchi C.
Is the anaesthesia a key factor for the good outcome of bone ablation procedures: a review of the last two-year experience in an MSK interventional centre (SS 1809), B-1581

Jacob S.
Cardiovascular effects after radiotherapy for breast cancer: the European MEDIRAD Project: The MEDIRAD Early-Heart study (EU 1), A-0018

Jacobson J.A.
Musculoskeletal interventional procedures: B. Injectable, percutaneous tendon fenestration and tenotomy: clinical outcomes and current evidence (TC 1628), A-0992

Jacobson J.A.
Musculoskeletal interventional procedures: C. Interactive case discussion (Part 2) (TC 1628), A-0994
Jäger H.R.
How to implement MRI neuro advanced techniques at home: A. Practical approach to cerebral perfusion techniques (E1 126a), A-0024

Jäger H.R.
My three top tips in neuroimaging (not only for neuroradiologists): Encephalitis (SF 4), A-0156

Jäger H.R.
A new era of gadolinium-less MR: Brain perfusion and angiography using ASL in comparison with gadolinium based techniques (ESR/ESMRMB), A-1010

Jahnke P., Hamm B., Diekhoff T.
Dose optimisation in dual-energy CT imaging of the neck: evaluation of acquisition parameters using a 3D-printed patient phantom (SS 1808), B-1630

Dose reduction in CT imaging of the neck - individual performance and synergetic effects of dose reduction techniques in a clinical context (SS 1808), B-1631

Jajodia A., Aggarwal D., Rao A.S., Aggarwal B.
Role of diffusion MRI in differentiation of residual/recurrent neck malignancies and post-treatment changes in comparison with histopathology findings (SS 1816), B-1637

Theatre radiology: making the inoperable operable with real time, intraoral ultrasound guided trans oral robotic surgery (SS 1008), B-0976

James S.L.J.
The radiological investigation of musculoskeletal tumours: B. MRI and whole-body MRI (RC 1210), A-0693

Jang S., Kim J., Choi S., Park S., Han J.
Diagnostic performance of computerised 3D CT texture analysis of pancreas for the assessment of patients with diabetes (SS 501), B-0453

Jardri R.
Brain imaging in psychiatry: From fMRI capture of hallucinations to innovative image-guided treatments (MS 8b), A-0406

Jargiello T.
Thoracic emergencies: Acute aortic syndrome (BS 2), A-0086

Jargiello T.
Blunt polytrauma: CT protocols, CT interpretation and interventional radiology options: C. Interventional radiology in trauma: diagnosis and management (RC 817), A-0438

Jäschke W.R.
Medical imaging and emerging issues in occupational radiation exposure: Occupational exposure from interventional radiology procedures: how to measure it, how to reduce it (ESR/EFOMP), A-0546

Jäschke W.R.
Advanced clinical dosimetry in interventional radiology: Chairpersons’ introduction (part 1) (EU 4), A-0746

Jayaram P.R., Marshall T.
Who gets kyphoplasties and how much height is restored: a single-centre demographic profile (SS 1510), B-1297

Jeffery T.J., Gibson D.
Extracted computed tomography angiography measurements as a screening tool for obstructive sleep apnoea in acute stroke patients (SS 711), B-0709

Jeong S.Y., Lee J., Kim K.W., Jang J.K., Kwon H., Song G.W., Lee S.G.
Estimation of the right posterior section volume in live liver donors: semi-automated CT volumetry in conjunction with portal vein segmentation (SS 701), B-0796

Imaging biomarkers for the differentiation of benign and malignant small solitary pulmonary nodules smaller than 1 cm based on CT texture analysis (SS 305), B-0308

Value of TSCT features in differentiating pre- and minimally invasive from invasive adenocarcinoma presented as ground-glass nodules smaller than 3 cm (SS 704), B-0772

Jiang H., Liu X., Chen J., Cao L., Wei Y., Song B.
A radiomics-clinical model to diagnose hepatocellular carcinoma: prospective comparison with the EASL and LI-RADS (v2018) criteria (SS 1901a), B-1764

Jiang J., Chen M.
Conventional ultrasound and ultrasound elastography in non-Hodgkin lymphoma: ultrasound prognostic index compared with the international prognostic index (SS 1816), B-1642

Automatic visceral fat characterisation on CT scans through deep learning and CNN for the assessment of metabolic syndrome (SS 1905b), B-1830

Jin P.
Application value of dual-source CT combined with intelligent modulation and iterative reconstruction in aortic dissection imaging (SS 1815), B-1498

Jin T.
Application of half-dose contrast-enhanced T2-fluid-attenuated inversion recovery sequence in brain metastasis (SS 1911a), B-1774

Jo H., Park M.
Association between small pulmonary vascular area and mild airflow limitation in healthy smokers (SS 604), B-0582

Johansen S.
Neonatal chest X-ray (MY 15), B-1369

Johnson K.J.
Why do I miss fractures in emergency?: A. Missed fractures in children (RC 1217), A-0683

Jokerst C., Gotway M., Panse D., Cummings K., Jensen E., Panse P.
Understanding temporal enhancement of pulmonary nodule with dynamic contrast enhancement CT and utility of each acquisition (SS 1004), B-1007

Joo I., Kim S., Kang T., Lee K., Lee J.
Radiologic-pathologic correlation of non-hypervascular hypointense nodules on gadexotic acid-enhanced MRI: a multi-centre retrospective observational study (SS 1901a), B-1767

Joon P., Rastogi R., Agarwal A., Gupta Y., Pushkarna A.
Comparative study of MR urethrography, sonourethrography and RGU with VCUG for diagnosis of male urethral strictures (SS 1807), B-1666

Joseph D.Z.
Acceptable quality dose for mammography: a guide for practitioners in developing countries (SS 1914b), B-1713

Joseph D.Z., Nkubli F., Christian N.
Optimization of radiation doses and image quality for mammography examination (SS 1914b), B-1714

Jovanovic S., Djuric Stefanovic A., Simic A., Skrobic O., Masulovic D.
Significance of multidetector computed tomography in the assessment of achalasia subtypes and detection of pulmonary complications (SS 1901b), B-1871
Authors’ Index

Jover Sánchez J.J., Díaz Díaz J., Ferreiro Argüelles C., Núñez Valentín P., Rodríguez García E.
Multiple sclerosis: evolution of magnetic resonance imaging diagnostic criteria from McDonald 2001 to McDonald 2017, including MAGNIMS 2016 (SS 611), B-0535

First report from breath-holding high-resolution high-sensitivity SiPM PET/CT: are lung nodules getting more active? (SS 306), B-0235

Age at aortic coarctation reconstruction is correlated with aortic vessel wall stiffening: an evaluation of pulse wave velocity and wall shear stress from 4D flow MRI (SS 1815), B-1506

Juli C.
Beyond helium-free operations, boost diagnostic confidence and speed with Ingenia Ambition (SY 7)

Jung E.M.
How to perform ultrasound image fusion: Liver (US 1), A-0169

Junghanss T.
Radiology and migrations: Clinical importance of the diseases related to migration (PC 5), A-0230

Junkerd S., Steinkohlf B., Sztankay B., Nagel U.
Prostate magnetic resonance imaging with and without contrast medium: is biparametric MRI sufficient for routine examinations? (MY 13), B-1076

Jurik A.
Imaging of forgotten small joints: A. Sterno-cleavicular joints: from trauma to inflammation (RC 1310), A-0782

Justich C.
The art to transmit and to receive: how to communicate critical information to our patients: How patients feel about communication (BR 12), A-0688

Kada S.
Clinical dilemmas in radiography: what graduates need to know: Communication and compliance difficulties in imaging (BR 12), A-0688

Käfer H., Frohn M.
Imaging professionals in the EU: radiologists without borders: Creating a European radiology (or healthcare) workforce: the value of qualifications across borders (ESR/UEMS), A-0216

Kahn C.E.
Reporting and communication today and tomorrow: challenges to implement structured reporting (RS) and deal with artificial intelligence (AI): The concept of common data elements (CDE) for reporting (PI 1), A-0505

Kahraman A., Kolu M., Kahraman B., Ozdemir Z., Karaca L., Yilmaz S.
Postoperative complications after living donor liver transplantation: risk assessment on Gd-EOb-DTPA-enhanced 3-T MR imaging using quantitative-qualitative parameters (SS 1001b), B-1051

Kai Y., Hui Shu Y.
Assessment of predictors for pulmonary subsolid nodule detection in non-lung apex in ultralow dose CT reconstructed with ASIR-V (SS 1004), B-1002

Kainberger F.
The 3D printing lab from bench to bedside: Chairperson's introduction (SF 8f), A-0446

Kainberger F.
Arthritis: an imaging approach: Arthritis: an imaging approach (E 25D), A-0854

Comparison of quantitative regional perfusion-weighted phase resolved functional lung (PREFUL) MRI with pulmonary perfusion DCE-MRI in COPD patients (SS 1404), B-1201

Quantitative magnetic resonance imaging can predict tumour subtype, therapy response and patient survival in pancreatic ductal adenocarcinoma (SS 616b), B-0815

Kak M., Goldberg N.
Reduced peritrabecular inflammation for microwave ablation (MWA) compared to radiofrequency (RF) and irreversible electroporation (IRE) (SS 1709), B-1436

Kaletenbach B., Wichmann J.L., Yel I., Albrecht M.H., Vogl T.J., Martin S.S.
Multi-energy CT quantification of first-pass perfusion in hypervascular liver lesions: potential to differentiate hypervascular metastasis from hepatocellular carcinoma (SS 701), B-0794

Kamali M., Clarke S.E., Costa A.F.
Evaluation of liver MRI examinations with two dosages of gadobenate dimeglumine: a retrospective blinded intra-individual study (SS 401), B-0403

Kamat R., Ramesh A., Nagarajan K.
Evaluation of acoustic radiation force impulse imaging in the diagnosis of malignant cerebral lymphadenopathy (SS 608), B-0631

Kamble A.N., Kamble A.
Novel imaging signs in detecting the 1p 19q non-co-deleted IDH wild and 1p 19q non-co-deleted IDH mutant lower grade gliomas (SS 211a), B-0602

Kang H., Kim Y.
Correlation of cerebrovascular reserve assessed by acetazolamide-stress SPECT with collaterals on arterial spin-labeling MRI in patients with carotid occlusive disease (MY 16), B-1414

Kang L., Zhang X., Chen X., Li H.
Correlation between EGFR gene mutation and CT, clinical features and pathological subtypes in ground glass lung adenocarcinoma (SS 704), B-0770

Kantarci M.
From diagnosis to prognosis: how does cardiac imaging affect patient outcome?: C. In coronary artery disease (RC 403), A-0148

Decrease in unnecessary biopsy recommendations by the application of quantitative multiparametric breast ultrasound: a prospective study (SS 702b), B-0716

Kaposi P.N., Yount T., Borsos P., Magyar P., Bérczi V.
Orthopaedic metallic artefact reduction is indispensable for CT evaluation of the urinary tract after hip replacement (SS 407), B-0444

Kaposi P.N., Budai B., Frank V., Shariati S., Folhoffer A., Abonyi M., Bérczi V.
CT texture analysis in liver fibrosis shows a strong correlation with portal phase enhancement and can predict cirrhosis in decision tree model (SS 1805b), B-1589

Karaca H., Soydan L., Baskak F., Sever A.
Measurement of the depth of facial nerve at the level of stylomastoid foramen using MR imaging in Bell's palsy (SS 308), B-0295
Authors’ Index

Karanam L.S.P., Baddam S.R., Honavar S., Palkonda V.R.
Alternative routes of intraarterial chemoinfusion for intraocular retinoblastoma (SS 609), B-0562

Karanam L.S.P., Baddam S.R., Alurkar A., Pamidimukkala V., Polavarapu R.
Bilateral carotid stenting in the same sitting in high-risk patients: a single-centre study (MY 8), B-0841

Karanam L.S.P., Baddam S.R., P. V.R., Honavar S.
Role of intraarterial chemotherapy for retinoblastoma: our experience with review of literature (SS 1012), B-1062

Karcaaltincaba M.
Dual-energy CT of the abdomen: the time is now: C. Applications for abdominal organs (E¹ 1526), A-0859

Use of kZ space for sub-mm through-plane resolution in T2-weighted 2D spin-echo prostate MRI (SS 407), B-0438

Karli Oguz K.
Imaging of the brain: B. Acquired toxic-metabolic encephalopathies (E³ 520), A-0290

Kartalis N.
Solid pancreatic neoplasms: Staging (E¹ 24D), A-0853

Kashel E.
Blunt polytrauma: CT protocols, CT interpretation and interventional radiology options: A. CT protocols in blunt polytrauma (RC 817), A-0436

Kasprian G.
Diffusion tensor imaging (DTI): Keynote lecture (SS 709), B-0742

Kasprian G.
Blunt polytrauma: CT protocols, CT (SS 407), B-0438

Kasprzak G.
Diffusion tensor imaging (DTI): Keynote lecture (SS 1411b), B-0322

Kassarjian A.
Solid pancreatic neoplasms: Staging (E¹ 24D), A-0853

Kassarjian A.
Solid pancreatic neoplasms: Staging (E¹ 24D), K-30

Kassarjian A.
Predictive value of 18F-FDG PET/CT needle biopsy of lymphoma suspected patients (SS 614), B-0482

Kasprzak G.
Foetal and neonatal imaging pearls: A. Foetal MRI advanced technics (RC 912), A-0560

Kassarjian A.
Imaging of forgotten small joints: B. Symphysis pubis and its surroundings (RC 1310), A-0783

Kastelic M., Vidmar J., Šifer K.K., Kocjančič I.
Analysis of pleural effusion dynamics in patients with pulmonary infarction based on CTPA measurements (SS 1804), B-1608

Kastler B.
Pain palliation in cancer patients: Pelvic pain management with minimally invasive techniques (SF 9a), A-0514

Gastric variceal recurrence after balloon-occluded retrograde transvenous obliteration (SS 709), B-0742

Katsula K.
My three top tips in neuroimaging (not only for neuroradiologists): Multiple sclerosis (SF 4), A-0154

Kauczor H.-U.
Functional imaging of the lungs: B. Quantitative CT-imaging biomarkers in airways diseases (E³ 520), A-0290

Kauczor H.-U.
Professional issues for radiology departments to enable research: How to attract residents to research (PI 3), A-0626

Kaufmann S., Thaiss W., Horger M., Nikolau K., Bedke J.
Characterisation of CT-indeterminate renal masses by contrast-enhanced ultrasound and acoustic radiation forced impulse imaging (SS 607), B-0628

Cerebrospinal fluid volume as a predictor of malignant middle cerebral artery infarction (SS 711), B-0705

Kavanagh J., Wunder J., Ferguson P., Graesser A., Adam G., Peidusch K.
Magnetic particle imaging for pulmonary circulation time measurement (SS 615), B-0499

Kawashima J., Wunder J., Ferguson P., Mohankumar R.
Radiologic predictors of survival in soft tissue sarcoma (SS 210b), B-0066

Kawashima J., Washizuka F., Nakano H., Shimada Y.
The study of usefulness of blending injection method in dynamic liver CT scanning with reduced contrast medium (SS 614), B-0482

Kawashima J., Washizuka F., Nakano H., Shimada Y.
The study of usefulness of blending injection method in dynamic liver CT scanning with reduced contrast medium (SS 614), B-0482

Kawashima J., Washizuka F., Nakano H., Shimada Y.
The study of usefulness of blending injection method in dynamic liver CT scanning with reduced contrast medium (SS 614), B-0482

Kawanag J., Wunder J., Ferguson P., Mohankumar R.
Radiologic predictors of survival in soft tissue sarcoma (SS 210b), B-0066

Keeling A., Koh D.-M., O’Connor S., Boyd K., Kaiser M., Blackledge M., Messiou C.
Lack of clinically meaningful anatomical variations in the bone marrow ADC values in diffuse myeloma allows untargeted sampling to confirm disease burden (SS 316), B-0353

Keel V.C.
Diffuse low-grade gliomas: new things you should know: A. Molecular basis for classification, treatment and predicting outcome in low-grade gliomas (RC 1711), A-1030

Kelly-Morland C.
Role of imaging in cancer of unknown primary (CUP): A. MDCT: the imaging workhorse for suspected CUP (RC 516), A-0281

Ken S., Lacroix E., Portalez D., Aziza R., Gilhodes J., Brun T.
Multi-parametric MRI in patients with low-to-moderate risk of prostate cancer for the differentiation of adenocarcinoma and prostatitis (SS 307), B-0322

Kenis S.F., Iqaghi J.B., Ibe D., Saliu A., Adams N.B., Aliyu I.
The role cerebroplacental ratio in prediction of foetal outcome among patients with pre-eclampsia (SS 1607), B-1391

Kenneth M., Ameda F., Byanyima R.K., Nakasuji N.
Carotid artery plaque detected on ultrasound is associated with impaired cognitive state in the elderly: a population-based study in Wakiso district, Uganda (MY 16), B-1417

Kertész H., Traub-Weidinger T., Rausch I., Beyer T., Cal-Gonzalez J.
Optimising PET/CT paediatric imaging for patient dose reduction (SS 306), B-0234

Kesar A., Swamy S.S., Sampangi S., Desai I., Ashok Kumar M., Asokan P., Kailur K.
Denosumab response evaluation in primary osseous giant cell tumours with 18F-FDG PET/CT (SS 210b), B-0063

Does breast tomosynthesis increase cancer detection in a screening population with clinically elevated breast cancer risk? (SS 302), B-0251

Kedzierski B., Gac P., Glosna M., Porba R., Pawlas K.
Radiation dose and the repeatability of measurements of dimensions of the aortic valve in multidetector computed tomography performed routinely in the qualification procedure for TAVI (SS 203), B-0200

Keczmark K.
Application of the IEC3.1 standard of CTDIvol to a supine CBCT device (SS 1808), B-1628

Kelly-V.C.
Diffuse low-grade gliomas: new things you should know: A. Molecular basis for classification, treatment and predicting outcome in low-grade gliomas (RC 1711), A-1030

Keil V.C.
Diffuse low-grade gliomas: new things you should know: A. Molecular basis for classification, treatment and predicting outcome in low-grade gliomas (RC 1711), A-1030
Khan S.U.K.
Magnetic resonance imaging evaluation of aortitis and infarction in tuberculous meningitis (SS 1811b), B-1697

Kharuzhyk S.

Kristenke E.
Multidisciplinary approach to cancer care: A. The soft tissues team (RC 816), A-0466

Khurana R., Bajaj S.K.
Evaluation of foetal modified myocardial perfusion index as a predictor of perinatal outcome in gestational diabetes (SS 612), B-0605

The forecaster of coronary atherosclerosis: black or white, fat or calcium? (MY 18), B-1688

Kickingreder P.
Imaging in oncological trials: Radiomics in oncology trials (ESR/EORTC), A-0793

Kiefer L.S., Fabian J., Rospieszcz S., Storz C., Schlett C.L., Roemer F.W., Nikolau K., Bamberg F.
Distribution patterns of intra- and extra-mycelar fat by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from a population-based cohort (SS 1810), B-1514

Kiefer L.S., Fabian J., Rospieszcz S., Storz C., Schlett C.L., Roemer F.W., Nikolau K., Bamberg F.
Assessment of skeletal muscle mass by magnetic resonance imaging in a population-based cohort (SS 1810), B-1515

Kierans Z., Arrigo A., Kotze J., Van Der Velde L., Zwaagstra H., Gronning K., O’Connor M., Verzuijden I.
An investigation into the effectiveness of breast and gonad lead shielding in abdominal radiography (SS 1314), B-1066

Kiesling F.M.A.
Merging the best: hybrid imaging: B. Hybrid imaging with PET/MRI (RC 806), A-0458

Kilburn-Toppin F.
Breast imaging in pre-menopausal women: Physiological changes and benign breast diseases in young women (SF 9e), A-0425

Kilburn-Toppin F.
Breast: A. Fundamentals of mammography (E4 1823), A-1084

Kim D.K., An C.
Newly appearing hepatic lesions on follow-up CT after curative-intent surgery for colorectal cancer: when and why should we order liver MRI? (SS 1401b), B-1282

Kim D.K., Han K.
Percutaneous cryoablation in early-stage hepatocellular carcinoma: analysis of local tumour progression factors (SS 1709), B-1443

Kim D., Song Y.
The comparison of hook vs coil localisation for video-assisted thoraecoscopy surgery (SS 704), B-0775

Kim E., Rha S., Choi M.H., Choi M., Choi J.
Differentiation of uterine sarcomas from benign uterine leiomyomas: diagnostic value of quantitative parameters based on diffusion-weighted imaging (SS 1907), B-1895

Kim H., Chang J., Seo D.
Improvement of safety and image quality with a self-made airway management device for sedation and anaesthesia in paediatric heart CT (SS 714a), B-0646

Kim H., Lee K., Ko Y., Choi J., Sim J.
Using 2-mSv appendiceal CT in usual practice for adolescents and young adults: willingness survey of 579 radiologists, emergency physicians, and surgeons from 20 hospitals (SS 1401b), B-1285

Kim J., Lee J.
The effect of renal function on the intracranial gadolinium deposition in young rats (SS 312), B-0339

Kim J., Lee C.
Abbreviated gadoxetic acid-enhanced MRI (AGAM) including second shot arterial phase (SSAP) for hepatocellular carcinoma surveillance (SS 1001b), B-1045

Kim J.E., Kim H., Choi D., Nickel D.
T1 mapping for liver function evaluation in gadoxetic acid-enhanced MR imaging: comparison of lock-observer inversion recovery and B1 inhomogeneity-corrected variable flip angle method (SS 401), B-0396

Kim J., Kim M., Yoon H., Lee M., Han K., Shin H.
Technical failure of echo-planar imaging MR elastography in paediatric liver (SS 312), B-0335

King A.D.
Functional imaging in head and neck oncology: B. Incidence and prognosis of synchronous cancer or distant metastases from head and neck tumours (E4 1298b), A-0076

King A.D.
Post-treatment imaging of the head and neck: C. Treatment monitoring for early detection of recurrence (RC 1208), A-0722

Kinkel K.
Functional imaging of breast and female pelvis: Chairperson’s introduction (E4 820), A-0473

Kim M., Kim S., An C., Han K., Lee S.
Gadoxetic acid-enhanced magnetic resonance imaging for prediction of the postoperative prognosis of intrahepatic mass-forming cholangiocarcinoma (SS 1001b), B-1043

Kim S., Kim C., Lee K.Y., Cha J.
Accuracy of model-based iterative reconstruction for CT volumetry of part-solid nodule and pure solid nodule at various dose settings: an anthropomorphic chest phantom study (SS 1004), B-1001

Response assessment of HCC after locoregional therapy on gadoxetic acid-enhanced MRI: performance of the LI-RADS TR categorisation and added value of ancillary features (SS 1901a), B-1772

Kim T., Han H., Park J., Kim H.
Predicting difficulties on preoperative sonographic evaluation in scheduled laparoscopic cholecystectomy in patients with acute calculous cholecystitis (SS 301), B-0392

Kim Y., Kim M., Seo N.
The feasibility of diffusion-weighted magnetic resonance imaging of the liver using multiplexed sensitivity encoding (SS 401), B-0402

Kim Y., Rim J., Kim S.M., Yun B.L., Park S.Y., Ahn H.S., Kim B., Jang M.J.
False negative on computer-aided detection application in preoperative automated breast ultrasound of breast cancer patients (SS 702a), B-0099

Kim Y., Choi N., Kang B., Lee J., Jung N.
Usefulness of CAD for diagnostic automated breast US in MRI-detected lesions (SS 802), B-0555

Kimoto N., Hayashi H., Asakawa T., Asahara T., Katsumata A., Kanazawa Y., Yamamoto S., Okada M.
Effective atomic number image produced with energy-resolved photon counting detector toward the development of next-generation plain X-ray diagnosis (SS 1013), B-0994

King A.D.
Functional imaging in head and neck oncology: B. Incidence and prognosis of synchronous cancer or distant metastases from head and neck tumours (E4 1298b), A-0076

Kinkel K.
Functional imaging of breast and female pelvis: Chairperson’s introduction (E4 820), A-0473
<table>
<thead>
<tr>
<th>Authors’ Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirby A., Quigley A.J., Jones J., McGurk S.</td>
</tr>
<tr>
<td>CT chest under general anaesthetic: is the degree of atelectasis improved by prone positioning? (SS 1512), B-1323</td>
</tr>
<tr>
<td>Kirchner J., Martin O., Sawicki L.M., Umutlu L., Heusch P., Buchbender C.</td>
</tr>
<tr>
<td>Can we replace sentinel lymph node resection in breast cancer patients by breast MRI, axillary MRI or axillary “T-FDG PET/MRI” (SS 796), B-0669</td>
</tr>
<tr>
<td>Kirienko M., Ninatti G., Cozzi L., Gennaro N., Ricci F., Carlo Stella C., Zucali P., Chiti A., Sollini M.</td>
</tr>
<tr>
<td>Ability of computed tomography (CT) radiomic features to differentiate lymphomas from thymic masses in the anterior mediastinum (SS 1816), B-1636</td>
</tr>
<tr>
<td>Kirova-Nedialkova G.I.</td>
</tr>
<tr>
<td>Highlighted Lectures: Acute aortic syndrome: Intimate knowledge through intimate case (TF), A-0833</td>
</tr>
<tr>
<td>Kitalia S., Sakwa J., Aswani E., Kanamu L.</td>
</tr>
<tr>
<td>Evaluation of radiology request forms (MY 15), B-1356</td>
</tr>
<tr>
<td>Kjelle E., Lysdahl K.B., Olerud H.M.</td>
</tr>
<tr>
<td>Mobile radiography services can improve the utilisation of diagnostic imaging among nursing home residents (SS 214), B-0030</td>
</tr>
<tr>
<td>The histology of the right paraffissural liver parenchyma: collagen is the basis for a hypoattenuating pseudolesion on CT (SS 201a), B-0068</td>
</tr>
<tr>
<td>Klepanec A., Harsany J., Mako M., Hoferica M., Cisar J., Cabukova M., Rusina M., Krastev G.</td>
</tr>
<tr>
<td>Endovascular treatment of patients with acute ischaemic stroke in posterior circulation: single-centre experience (SS 309), B-0281</td>
</tr>
<tr>
<td>Klingerl M., Schimmoller L., Ulrich T., Quentin M., Arsov C., Antoch G., Wittsack H.</td>
</tr>
<tr>
<td>Improved diffusion weighted imaging of the prostate: RESOLVE and ZOOMit in comparison to standard EPI sequences (SS 207), B-0158</td>
</tr>
<tr>
<td>Klosterkemper Y., Konieczny M., Hesper T., Alissa J., Antoch G., Boos J.</td>
</tr>
<tr>
<td>Dose optimisation in spinal computed tomography for planning of scoliosis surgery (SS 1910a), B-1739</td>
</tr>
<tr>
<td>Ko A., Park H., Lee E., Choi H., Do J., Park S., Choi B.</td>
</tr>
<tr>
<td>Early prediction of the severity of acute pancreatitis using radiologic and clinical scoring systems with classification tree analysis (SS 501), B-0451</td>
</tr>
<tr>
<td>Ko H., Choi J., Chae K., Park S., Jang J., Lee C.</td>
</tr>
<tr>
<td>Relative regional air volume change as a biomarker in humidifier disinfectant-associated lung injury in children with normal-looking chest CT (SS 1512), B-1322</td>
</tr>
<tr>
<td>Kober F.</td>
</tr>
<tr>
<td>A new era of gadolinium-less MR: From native T1 to arterial spin labelling MRI in the heart (ESR/ESMRMB), A-1009</td>
</tr>
<tr>
<td>Kocak B., Memis Durmaz E., Kadioglu P., Polat Korkmaz O., Comunoglu N., Tanriver F., Kocer N., Islak C., Kizilkilic O.</td>
</tr>
<tr>
<td>Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative MRI texture analysis (SS 1005b), B-0986</td>
</tr>
<tr>
<td>Kocak B., Memis Durmaz E.S., Ates E., Baykara Ulusan M., Kilickesmez O.</td>
</tr>
<tr>
<td>Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: an experimental radiomics study on renal clear cell carcinomas (SS 1605), B-1395</td>
</tr>
<tr>
<td>Koci M., Graber-Naidich A., Cheng X.S., Fleischmann D., Willemin M.J.</td>
</tr>
<tr>
<td>Iodine in common contrast-enhanced CT images can identify invasive and radionuclide imaging markers of coronary plaque vulnerability (SS 607), B-0624</td>
</tr>
<tr>
<td>Koh D.-M.</td>
</tr>
<tr>
<td>Imaging tumour response to immunotherapy: D. Monitoring immune response with MRI (RC 116), A-0068</td>
</tr>
<tr>
<td>Kohler R.</td>
</tr>
<tr>
<td>Head and neck imaging: when does it become abnormal?: B. Normative measures in the orbit (RC 908), A-0569</td>
</tr>
<tr>
<td>Radiomic analysis of coronary CT angiography images can identify invasive and radionuclide imaging markers of coronary plaque vulnerability (SS 305), B-0303</td>
</tr>
<tr>
<td>Kondoh H., Kawai T., Mochida M., Yamaguchi T.</td>
</tr>
<tr>
<td>Fast displaying time of electronic patient record and PACS sharing system with IHE-XDS/XDS-I and cloud technology (SS 1405), B-1187</td>
</tr>
<tr>
<td>Konge L.</td>
</tr>
<tr>
<td>Ultrasound simulation models in training and education: where are we going?: Gamification and virtual reality in medical simulation (ESR US SC/EFUMB), A-0043</td>
</tr>
<tr>
<td>Könin L.C.D., de Jong P.A., van Overhagen H., Mali W.P.</td>
</tr>
<tr>
<td>Validation of CT imaging characteristics to differentiate intimal from medial calcifications in peripheral vessels and its application in a non-vascular cohort (SS 315), B-0222</td>
</tr>
<tr>
<td>Koninjenberg S.</td>
</tr>
<tr>
<td>Early clinical experience using the XL14-3 for MSK applications (SY 17)</td>
</tr>
<tr>
<td>Koo N.</td>
</tr>
<tr>
<td>Direct projection augmented reality-guided x-ray examination system: a preclinical study (SS 1314), B-1069</td>
</tr>
<tr>
<td>Kool D.R.</td>
</tr>
<tr>
<td>Post-treatment emergencies in oncologic patients: Chairperson’s introduction: The role of imaging in the early detection of complications in oncologically treated patients (E³ 926), A-0515</td>
</tr>
<tr>
<td>Korte B., Lamojjer J.R.C., Dulijn L.E.M.</td>
</tr>
<tr>
<td>Two decades of biennial screening mammography: trend in the incidence of delayed breast cancer diagnosis after repeated recall for the same mammographic abnormality (SS 202), B-0082</td>
</tr>
<tr>
<td>Korte B., Luiten J.D., Dulijn L.E.M.</td>
</tr>
<tr>
<td>Trends in frequency and outcome of high-risk breast lesions at percutaneous biopsy in women recalled at biennial screening mammography (SS 1402a), B-1149</td>
</tr>
<tr>
<td>Kortesniemi M.</td>
</tr>
<tr>
<td>Big data and the big picture: deep learning in optimisation of medical imaging (part B): From image quality to care outcome (EF 2), A-0327</td>
</tr>
<tr>
<td>Kortesniemi M.</td>
</tr>
<tr>
<td>Principles of imaging and radiation protection: A. Principles of computed tomography (E³ 1553), A-0896</td>
</tr>
<tr>
<td>Kortesniemi M.</td>
</tr>
<tr>
<td>Dose reduction and image quality implications of iterative image reconstruction in CT: A. Basics of iterative image reconstruction in CT (RC 1713a), A-1050</td>
</tr>
<tr>
<td>Kose S., Koc F., Hanta I.</td>
</tr>
<tr>
<td>Correlation of USG diaphragm thickness measurements with pulmonary function and inspiratory strength tests in myotonic dystrophy type 1 (SS 1604), B-1413</td>
</tr>
<tr>
<td>Authors’ Index</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Kuruz O., Pekar E., Kul M., Erden I., Erden A.</td>
</tr>
<tr>
<td>Kurys-Denis E., Skrobas U., Brudkowska Z., Karakula-Juchnowicz H., Krupski W., Maciejewski R.</td>
</tr>
<tr>
<td>Kvist O., Diaz Ruiz S., Dornik T., Sanmartín Berglund J., Flodmark C.</td>
</tr>
<tr>
<td>Kwon J., Kim J.</td>
</tr>
<tr>
<td>Laghi A.</td>
</tr>
<tr>
<td>Lahaye M.J.</td>
</tr>
<tr>
<td>Lai Z., Sá dos Reis C., Sun Z.</td>
</tr>
<tr>
<td>Laitinen H., Saukko E., Svedström E., Papulo O., Niiniilivaara H.</td>
</tr>
<tr>
<td>Lam A., Aggarwal R., Liu G., Kavanagh J.</td>
</tr>
<tr>
<td>Lamb H.J.</td>
</tr>
<tr>
<td>Lambiadiari V.</td>
</tr>
<tr>
<td>Lambert L., Hrabak P., Novotny A., Jahoda J., Burgetova T.</td>
</tr>
<tr>
<td>Lambin P.</td>
</tr>
<tr>
<td>Lambergts D.M.</td>
</tr>
<tr>
<td>Lameijer J.R.C., Nederend J., Voogd A.C., Tjan-Heijnen V.C., Duijm L.</td>
</tr>
<tr>
<td>Lampichler K., Reider L., Simbrunner B., Stadlmann A., Manderfer M., Buckscis T., Paternostro R., Asenbaum U., Reiberger T.</td>
</tr>
<tr>
<td>Lamprecht T.</td>
</tr>
<tr>
<td>Lancelot E.</td>
</tr>
<tr>
<td>Láng K., Dustler M., Dahiblom V., Andersson I., Zackrissom S.</td>
</tr>
<tr>
<td>Langenbach M.C., Albrecht M.H., Hammerstingl R., Gruber-R euth T., Vogl T.J.</td>
</tr>
<tr>
<td>Langs G.</td>
</tr>
<tr>
<td>Laniado M.</td>
</tr>
<tr>
<td>Lanza E., Bolengo I., Poretti D., Mugila R., Ceriani R., Pedicini V.</td>
</tr>
<tr>
<td>Lari S.A.R.</td>
</tr>
<tr>
<td>Lari S.</td>
</tr>
<tr>
<td>Lari S.</td>
</tr>
<tr>
<td>Lari S.</td>
</tr>
<tr>
<td>Lastella G., Wiedemann F., Monti C.B., Secchi F., Ali M., Sardanelli F.</td>
</tr>
<tr>
<td>Lastella G., Cannas P.M., Ali M., Secchi F., Sardanelli F.</td>
</tr>
<tr>
<td>Lau K.K., Deb S., Kuganesan A.</td>
</tr>
<tr>
<td>Lau K.K., Abdelganne L., Buchan K., Kuganesan A., Lau T.</td>
</tr>
</tbody>
</table>
Le Bouélh M., Lusque A., Baileyguier C.S., Drata C., Cherei P., Kind M., Vaysse C., Le Guellec S., Boulet B.
Imaging characterisation of breast desmoid tumours (MY 5), B-0478

Leardini A.
Articular surfaces of the tibiotalar joint from different medical imaging technologies: for morphological models and custom-made prostheses (SY 27)

Lebedev S., Fournie E., Stierstorfer K., Kacheleiß M.
Stack transition artefact removal (STAR) in cardiac CT with automatic parameter selection (SS 313), B-0312

Leckebusch T., Wenzel P., Jungmann F., Halfmann M.C., Brumberg R.M., Dürer C., Krettnet K.-F., Emrich T.
Prognostic role of feature tracking in suspected myocardial infarction with non-obstructed coronary arteries (MINOCA): sensitive or senseless? (SS 603), B-0591

Lecouvet F.E.
Whole-body imaging in metastatic urinary tract and prostate cancer: A. WB-MRI: technique and reporting system Met Rads P (E1419), A-0195

Lecouvet F.E.
Advances in musculoskeletal techniques: whole-body MR: A. Oncologic application (E1 1221), A-0646

Lecouvet F.E.
Imaging in oncological trials: Modern imaging-based trials: focus on oligometastatic disease and evaluation of metastatic directed therapies (ESR/EROTC), A-0791

Lederlin M.
Lung cancer in the era of molecular oncology and immune therapy: A. Lung adenocarcinomas with EGFR mutations (E1 1022), A-0599

Lee C.M., Jeon C.H., Park J.B., Kim C.W., Kwon H., Cho H.M.
Transcatheter arterial embolisation for traumatic coronary arteries (MINOCA): sensitive or sensitive? (SS 709), B-0740

Lee C.M., Jeon C.H., Park J.B., Kim C.W., Kwon H., Cho H.M.
Interventional urethral realignment to posterior urethral rupture accompanied by complex pelvic fracture (SS 1809), B-1573

Lee C.Y., Chen Y., Chen P., Lu C., Lin W.
Executive network integrity predicts sarcopenia with EGFR mutations (E1 1022), A-0599

Lee D.H., Kim S., Choi A.L., Yoon C.
Submarine sign of epidermoid cysts: a diagnostic model based on ultrasound feature (MY 9), B-0869

Lee D., Lee J., Bae J.
Shear wave dispersion slope obtained by shear wave elastography could help detect allograft abnormality after liver transplantation (SS 1501b), B-1375

Lee D., Lee J.
Gadoxetic acid-enhanced liver MR can predict tumour recurrence after curative treatment for small single hepatocellular carcinoma (MY 17), B-1466

Lee H., Lee H.S., Lee Y.H.
Comparing emergency department disposition of abdominal tomogram to abdominal x-ray (SS 317), B-0277

Lee J., Lee I., Kim J.
Percutaneous needle biopsy for lung lesions focused on needle angle and lesion depth: 14-year results (MY 4), B-0435

Lee J.M.
Hepatocellular carcinoma: from diagnosis to treatment: B. Unusual appearances of HCC and lesions that simulate HCC: can we increase diagnostic confidence? (RC 1701), A-1003

Lee J.M.
Contrast agents in interventional procedure to treat HCC and follow-up (SY 31)

Lee J.Y., Sabbah S., Rogalla P.
Analyzing the impact of sarcopenia on brain: using correlation between paraspinal muscle and brain volume (MY 16), B-1420

Lee K.H.
Imaging the acute abdomen: new insights: Using contrast-enhanced ultrasound to assess treatment outcomes in patients with small single hepatocellular carcinoma (MY 9), B-0862

Lee K.H.
Preoperative multi-detector CT scoring criteria for assessing pericardial, lung, and phrenic nerve invasion of thymoma (SS 1804), B-1611

Lee L.
Examining the impact of sarcopenia on brain: using correlation between paraspinal muscle and brain volume (MY 16), B-1420

Lee M.
Factors influencing the disagreement between the automated volumetric breast density and radiologist’s visual assessment in assessment of breast density (SS 1002), B-0918

Lee S.
Audit across Europe: directive and perspective: Quality improvement and change management: audit in industry (ESR Audit), A-0141

Lee S., Lee G.Y., Kim S.
Clinical utility of fat suppressed 3-dimensional CAIPIRINHA SPACE MRI of the knee in adults (MY 9), B-0862

Lee S.Y., Ou H., Yu C., Cheng Y.
Safety and efficacy of small versus large drug-eluting bead transarterial chemoembolisation for hepatocellular carcinoma (SS 609), B-0561

Lee S.
Audit across Europe: directive and perspective: Quality improvement and change management: audit in industry (ESR Audit), A-0141

Lee S.
Evaluation of ascending aorta flow pattern in patients with repaired TOF using 4D flow CMR (SS 1903b), B-1865

Legrand J., Pascart T., Norberciak L., Becce F., Budzik J.
Dual-energy computed tomography in calcium pyrophosphate deposition: initial clinical experience (SS 210a), B-0593

Dysfunction and thrombosis of aortic valve prostheses in patients after TAVR in computed tomography (SS 203), B-0201

Leichter I., Fialkoff B., Uziel Y., Ben-David E., Romman Z., Sosna J., Komori J.M.
Improved grey-white matter separation by amplitude/power coefficients derived from spectral analysis of dual-energy CT (SS 213), B-0133

Leichter I., Ben-David E., Menat J., Peretz A., Romman Z., Komori J.M., Sosna J.
Accurate non-invasive assessment of carotid intimal medial thickening by dual-layer spectral CT (SS 313), B-0313

Leimgruber A.
Artificial intelligence in hybrid imaging: Radiomics+: prediction model using convergent data (ESHi(MT) 2), A-0552

Leine T.
Non-contrast MR angiography: ready to go?: Non-contrast MR angiography techniques (SF 8d), A-0420
Authors’ Index

Leiner T.
Dead or alive: imaging of myocardial viability: A. MRI (RC 1703), A-1018

Leithner D., Horvat J.V., Marino M., Bernard-Davila B., Jochelson M.S.,
Martinez D., Morris E.A., Thakur S., Pinker-Domenig K.
Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes (SS 1402b), B-1175

Leithner D., Horvat J.V., Marino M., Bernard-Davila B., Jochelson M.S.,
Martinez D., Morris E.A., Thakur S., Pinker K., Meyer-Baese A.
Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results of a multicenter study (SS 1402b), B-1176

Leleu F., De Margerie C., de Bazelaire C.,
Gaudez F., Lefaucheur C., de Kerviler E.
Contributions of the whole-body CT scan before multi-organ donation in brain dead patients (SS 1017), B-0953

Lenga L., Booz C., Wichmann J.L., Scholtz J.,
Martin S.S., Vogl T.J., Albrecht M.H., Yel I.
Single- and dual-energy CT pulmonary angiography using second- and third-generation dual-source CT systems: comparison of radiation dose and image quality (MY 4), B-0434

Lenga L., Yel I., Booz C., Martin S.S.,
Scholtz J., Vogl T.J., Wichmann J.L.,
Albrecht M.H., dual-energy CT in patients with fatty liver disease: improved assessment of hypoattenuating liver lesions using virtual monoenergetic imaging (MY 17), B-1472

Lennartz S., Mager A., Grosse Hokamp N.,
Schäfer S., Maintz D., Persighel T.
Differentiation of benign lung nodules and metastases: a machine-learning approach using texture features from spectral detector CT-derived iodine maps and conventional images (SS 1016), B-1025

Lennon L., Tsui S., Dick G.,
Hislop-Jambrich J.
Is the technology for patient placement in CT really that useful in reducing dose and improving SNR? (SS 714b), B-0655

Leone A.
Spinal trauma: how to get it right: Spinal trauma: how to get it right (E 25c), A-0614

Leone F., Orsi M.A., Cellina M., Presazzi A.,
Marianni D., Oliva G.
False-positive recall in screening mammography: pitfalls of challenging mammogram (SS 202), B-0087

Leonhardt H.
Imaging of 'foreign bodies': C. The role of interventional radiology in the management of foreign bodies and following complications (RC 417), A-0168

Lerchbaumer M.H., Marticorena Garcia S.R.,
Kallenbach M., Hamm B., Fischer T.
Diagnostic performance of contrast-enhanced ultrasound (CEUS) in unclear testicular pathology (SS 1807), B-1657

Levashkina I., Serebryakova S.V.,
Kitaigorodskaja O.V.
Diffusion tensor imaging for vascular dementia prediction: threshold level of fractional anisotropy in liable white matter tracts (SS 1411b), B-1287

Lewis S., Hazell L.J.
Active learning of exposure technique in digital radiography (SS 1914a), B-1701

Li J., Li K.
Increased lateral meniscal slope is associated with greater risk of lateral bone contusion in noncontact ACL injury (MY 9), B-0859

Li J., Yang H.
Quantitative magnetic resonance imaging in patellar tendon-lateral femoral condyle friction syndrome: relationship with subtle patellofemoral instability (MY 9), B-0861

Li J., Ma W., Wu Y., Li L.
Development and validation of nomograms predictive of axillary nodal status to guide surgical decision-making in early-stage breast cancer (MY 5), B-0466

Li J.
Development and validation of a dual-energy CT-based radiomic nomogram for preoperative prediction of lymph node metastasis in patients with gastric cancer (SS 1805b), B-1584

Li L., Ren B., Wang S., Xia C.
Supervised one-to-one style transfer to improve the quality of CT images (SS 1005a), B-0911

Li L., Zhao S.
MRI characteristics and clinical outcomes of hypertrophic cardiomyopathy with infant-like late enhancement (SS 1903a), B-1818

Li Q., Li L., Liu K., Xia C., Xiao Y., Liu S.
Detectability of non-solid pulmonary nodules by deep learning: results from a phantom study (SS 1004), B-1009

Li T.
Quantitative elastography of rectal lesions: the value of shear-wave elastography (SWE) in identifying benign and malignant rectal lesions (SS 201b), B-0206

Li W., Zhigang Y., Han P., Li Z.
Application of low-radiation and low-contrast dose protocol combined with high-strength ASIR-V algorithm in 'one-stop' coronary and carotid and cerebrovascular CT angiography (SS 814), B-0479

Li X., Zhigang Y., Guo Y., He Y., He S., Shi K.,
Xia C., Li Z.
Regional right ventricular deformation in hypertrophic cardiomyopathy: assessed with cardiovascular magnetic resonance tissue tracking (SS 1903b), B-1869

Li X., Wang L.
Small (< 4 cm) renal masses: convolutional neural network-based deep-learning approach in differentiating fat-poor renal angiomyolipoma from renal cell carcinoma at MSCT (MY 7), B-0804

Li X., Li W.
Deep learning with a convolutional neural network for predicting Fuhrman grade of clear cell renal cell carcinoma at MSCT (SS 1605), B-1399

Li X., Huang S., Lu B., Huang L., Li Z., Du J.,
Zhong Y.
Ability of diffusion-weighted magnetic resonance imaging to characterise bowel fibrosis depends on the degree of bowel inflammation (SS 1801b), B-1651

Li Y., Xiang Y., Zeng C., Wang J., Han Y.,
Luo Q., Zheng Y.
Cortical atrophy and cerebral hypoperfusion in anti-N-methyl-D-aspartate receptor encephalitis: relationship to cognitive impairment and disease severity (SS 1911b), B-1888

Li Y., Yang X., Wang J., Xue H., Liang W.B.,
Deng Z.H., McNulty J., Lv J.C., Zhang L.
Ante-mortem chest radiograph retrieval for forensic human identification by deep learning (SS 605), B-0573

Li Y., Du Y., Liang X., Xue H., Jin Z.
EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer (SS 1406), B-1121

Li Y., Cui Y., Zhu J., Li W.
Texture features from mammography predict the characterisation of breast tumours (SS 1805a), B-1519

Li Z.
Value of the cinematic rendering from CT data in evaluating the relationship between deep soft tissue sarcomas of the extremities and adjacent major vessels (SS 716), B-0692

Liang M., Zhao X.
Machine learning-based analysis of rectal cancer MRI radiomics for prediction of metachronous liver metastasis (MY 17), B-1478
Adipose tissue in MRI of obese patients

Quantification of abdominal subcutaneous adipose tissue in MRI of obese patients (SS 713), B-0764

Multi-parametric magnetic resonance relaxometry as an assessment of dysmenorrhea severity in patients with adenomyosis (SS 1002), B-0921

Lin H., Lee R., Yen H., Liu C., Chen J.
Portal vein and ligamentum teres variations in diverse gallbladder locations: is the left-sided gallbladder always a high-risk feature for pre-operative assessment? (SS 301), B-0393

Correlation between zonal oblique multislice intravoxel incoherent motion and dynamic contrast enhanced magnetic resonance imaging parameters in endometrial cancer (SS 1007), B-1893

Lin H., Lee R., Yen H., Liu C., Chen J.
Portal vein and ligamentum teres variations in diverse gallbladder locations: is the left-sided gallbladder always a high-risk feature for pre-interventional assessment? (SS 301), B-0393

Lin S., Lin M., Lau K.
Efficacy of model-based iterative reconstruction in cystic fibrosis assessment on computed tomography (SS 604), B-0581

Linck P., Kuchcinski G., Munsch F., Griffier R., Okubo G., Renou P., Dousset V., Sibon I., Tourdias T.
Long-term neurodegeneration of substantia nigra secondary to ipsilateral infantil is quantified with iron-sensitive imaging and impacts motor outcome (MY 16), B-1415

Linder N.P., Solty K., Hartmann A., Bliüber M., Stange, R., Busse H.
Quantification of abdominal subcutaneous adipose tissue in MRI of obese patients (SS 713), B-0764

Lindig T., Zaiss M., Herz K., Deshmane A., Bender B., Golay X., Scheffler K.
GLINT: GluCoEST in neoplastic tumours at 3T - first-in-man studies of GluCoEST in glioma patients (SS 211a), B-0095

Linn J.
Altered mental state: A. MRI in the diagnosis of cerebral amyloid angiopathy (CAA) (RC 1311), A-0785

Linsenmaier U.
Imaging of 'foreign bodies': Chairperson's introduction (RC 417), A-0165

Lisson C.S., Lisson C.G.S., Mayer-Steinacker R., von Baer A., Barth T.F.E., Baumhauer M., Beer A.J., Beer M., Schmidt S.A.
Performance of 3D texture analysis for tissue characterisation and differential diagnosis of osteosarcoma (SS 210b), B-0061

Littooij A.S.
Paediatric oncology: The most common chest imaging (SS 12), A-0680

Litmanovich D.
Chronic obstructive pulmonary disease (COPD): Chairperson's introduction (E³ 922), A-0564

Liu G., Wu G.
Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics parameters in endometrial cancer (SS 1010), B-0924

Liu H., Xu R., Guo Y., Yang Z., Chen L., Fu C., Li X.
Evaluate diffuse myocardial characteristics in rabbit model based on daunorubicin-induced cardiotoxicity by CMR native T1 mapping imaging (SS 303), B-0375

Liu H., Guo Y., Xu H., Yang Z.
Evolution of myocardial oedema of acute and subacute myocardial infarction verified in swine model: assessed by native T1 mapping and T2 mapping (SS 303), B-0382

Liu J., Zhang W., Cheng J.L.
Preliminary study on changes of oxygen uptake fraction in pilots before and after hypoxia exposure (SS 1111b), B-1691

Liu J., Zhang W., Cheng J.L.
A resting-state functional magnetic resonance imaging study of hypoxic exposure in pilots (SS 1111b), B-1692

Liu J., Zhang W., Cheng J.L.
Preliminary study of hypoxic exposure effect on cerebral blood perfusion of pilots using 3D ASL (SS 1111b), B-1693

Improved pulmonary nodule malignancy prediction with surrounding tissues (SS 1905a), B-1752

Liu K., Li Z., Diao K., Peng W.
The correlation between coronary artery stenosis and myocardial perfusion indexes: a prospective 'one-stop' 256-row detector computed tomography study (MY 18), B-1677

Liu L., Yin B., Peng W.
Correlate of perfusion parameters on dynamic contrast-enhanced MRI with biomolecular factors and subtypes of breast cancers (SS 602), B-0552

Liu L., Yao S., Zeng M.
Small (<5cm) gastric sub-epithelial tumours: identification of gastrointestinal stromal tumours using CT with a practical scoring method (SS 1101b), B-1278

High concentration contrast medium injection protocol in combination with monochromatic imaging for dose reduction in spectral coronary CT angiography (SS 313), B-0320

Liu P., Wang Y., Cao J., Lin L.
Quantitative tissue-tracking and T1 mapping cardiac magnetic resonance (CMR) in active acomegaly (SS 414), B-0406

Automatic segmentation for acute ischaemic stroke from DWI using deep convolutional neural networks (SS 1005b), B-0978

Liu X., Yang Z., Guo Y., Ren Y., Gao Y.
Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion (SS 1403), B-1222

Liu Y., Gao P., Duan Y.
Brain disease classification based on routine MRI using a deep learning algorithm (SS 705), B-0752

Liu Y., Yu J., Su L.
Comparison of the intensity and pattern of contrast enhancement in neoplastic tumours on dynamic contrast-enhanced MRI with bimolecular factors and subtypes of breast cancers (SS 602), B-0552

Automatic segmentation for acute ischaemic stroke from DWI using deep convolutional neural networks (SS 1005b), B-0978

Lo Re G., Terranova M.C., Picone D., Franchini S., Vitabile S., Midiri M.
Semi-automatic technique for Crohn's disease diagnosis, using a supervised machine learning algorithm (SS 1905b), B-1827
Authors’ Index

Evaluation of single-view contrast-enhanced mammography as potential strategy for screening of patient with high breast cancer risk: a non-inferiority retrospective study (SS 1902a), B-1787

Lobo M.L.
Intensive care paediatric radiology: the very sick neonate: B. Chest imaging in the ICU: tubes and catheters (RC 512), A-0278

Loewe C.
The degenerative cervical spine: C. The postoperative cervical spine (RC 1611), A-0950

Loew C.
How to organise nationwide ischaemic stroke care (and make multidisciplinary teams work): Chairperson's introduction: Stroke care in Austria: small country, small challenge? (PC 16), A-0977

Logager V.
Emergency radiology II: A. Urinary system trauma (E1 521), A-0202

Logager V.
Tumour relapse in urological cancer: Chairperson's introduction (E1 619), A-0326

Logager V.
Prostate MRI: the accreditation issue: B. Towards a European accreditation of prostate imaging centres (E1 1726a), A-1073

Loguodoss M., Chellathurai A.
88 GA PSMA vs whole body diffusion weighted MR imaging in staging of high risk prostate cancer (SS 306), B-0227

Lohmeier J., Hamm B., Makowski M.R.
Quantitative 3D analysis of hybrid 18F-FET PET/MR-neuroimaging for differentiation between treatment response and glioma recurrence (SS 706), B-0864

Loiseau Audiarac M.P., Bader C., Castermans C., Quintana I.
VERTIM: pilot study evaluating influence of adding nature images in imaging departments’ waiting rooms, according to different aesthetic approaches, on patients’ perceived anxiety (SS 214), B-0032

Looby S.
The degenerative cervical spine: C. The postoperative cervical spine (RC 1611), A-0950

Lopes R.
Brain imaging in psychiatry: Advanced MRI and clinical applications: the structured report (MS 8b), A-0405

Loupa T., Brittes L., Almeida C.M.D.S.
Inoperable patients with chronic thromboembolic pulmonary hypertension: initiation a balloon pulmonary angioplasty programme (SS 1014), B-0889

Louw A.
Clinical simulation and its role in radiography education: High fidelity: clinical simulation for undergraduate radiography (SF 9b), A-0493

Løvblad K.-O.
Stroke: interventional: Keynote lecture (SS 311), K-08

Lu L., Tang S., Wang X., Gong Q., Huang X.
Altered cortical morphology of visual cortex in children with intermittent exotropia (SS 1011b), B-1036

Lu M.
How preoperative sentinel lymph node contrast-enhanced ultrasound helps intraoperative sentinel lymph node biopsy in breast cancer: initial experience (MY 5), B-0459

Lu M.
Preliminary study of real-time three-dimensional contrast-enhanced ultrasound of sentinel lymph nodes in breast cancer (SS 702b), B-0721

Lu Y., Ou J., Wang Z., Yan X.
Accuracy of 3.0 T MRI in the preoperative T staging of patients with potentially resectable oesophageal cancer, with histopathological correlation (SS 1901b), B-1873

Lu Y., Yin B.
The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest (MY 7), B-0808

Luan Y., Teng G.
The dorsolateral prefrontal cortex mediates the recruitment of auditory cortex in cross-modal plasticity and higher order cognitive functions in sensorimotor hearing loss (SS 1911b), B-1891

Lucertini E., Zerunian M., Caruso D., De Santis D., Moltoni G., Landolfi F., Blondi T., Iannicelli E., Laghi A.
Magnetic resonance of rectal cancer response to therapy: comparison between 3.0 and 1.5 Tesla (SS 1501a), B-1341

Lucic M.A.
Imaging professionals in the EU: radiologists without borders: It’s easier than you think: the many ways to gain European CME/CPD credits (ESR/UEMS), A-0222

Low pretreatment neutrophil to lymphocyte ratio predicts better survival in uveal melanoma liver metastases undergoing hepatic chemoperfusion (SS 209), B-0116

Luiten J.D., Voogd A.C., Tjan-Heijnen V.C.G., Wesseling J., Luiten E.J.T., Duijm L.E.M.
Utility of diagnostic breast excision biopsies during two decades of screening mammography (SS 1402a), B-1158

Lukasite R., Kliokyte R., Samulis A., Poskus T.
Conditional CT strategy effectiveness in diagnosing acute appendicitis (SS 317), B-0270

Lumen N.
The "prostate unit" at work: The urologist: knight of swords in the prostatic badlands (MS 8a), A-0480

Luo X., Zhang M., Ding J., Chen M.
Pulmonary nodule size measuring difference: comparison between machine-learning based auto-measurement on CT images and gross specimens through surgery (SS 204), B-0147

Luo Y.
Deep convolutional neural network for histopathological classification of pancreatic neuroendocrine neoplasms (SS 1605), B-1401

Lurie D.J.
Demystifying MRI: things you always wanted to know: B. MR imaging basic concepts: how to turn signals into images (RC 1513), A-0911

Lutsik N., Mendeleeva L., Solovev M., Yatsyk G., Kulikov S., Savchenko V.
Whole-body magnetic resonance imaging (WBMRI) for the assessment of response to treatment in multiple myeloma patients after autologous haematopoietic stem cell transplantation (SS 316), B-0350

Long-term reactions to pulsatile tinnitus are featured by weakened short-range functional connectivity within a brain network on the right-sided temporal lobe (SS 1011b), B-1040

Lysdahl K.B.
Radiation protection: all you need to know: BR 16), A-0962

M

Radiation risk from digital breast tomosynthesis screening: a comparison with full-field digital mammography (SS 1914b), B-1708
Maly Sundgren P.C.
Cutting edge imaging and minimally invasive interventions in spine and spinal cord trauma (SF 13b), A-0756

Mandry D.
Functional imaging of the kidneys: A. MR measurement of split renal function (E¹ 720), A-0378

Manfré L.
Cutting edge imaging and minimally invasive interventions of the spine: Cutting edge minimally invasive spine interventions (SF 13b), A-0759

Manfredi R.
Cystic neoplasms: Other cystic pancreatic neoplasms (E² 24C), A-0608

Mangessius S., Huas A., Müller C., Krisman F., Maliknecht P., Schoche M., Gizewski E., Poewe W., Seppi K.
Age and gender effects on brainstem MR planimetry (SS 1811b), B-1659

Maniatis V.
Abdominal emergencies: Perforation of the GI tract (BS 5), A-0241

Manka R.
Functional imaging of the heart: A. Functional techniques for clinical cardiac MR (E² 420), A-0199

Manke D.
More confident image interpretation with Philips bone suppression (by Riverain Technologies) (SY 28)

Mann R.M.
The high-risk patient enigma: B. Value of breast MRI. Rate of understimation and impact on treatment decision: is breast MRI increasing the number of high-risk lesions? (E² 426a), A-0150

Mann R.M., van Spijker G., Caballo M., Sekopoulos I.
Dedicated breast CT may prevent unnecessary biopsies in women recalled from mammographic mammography imaging (SS 1913), B-1841

Mansouri B.
Improving radiation protection in medical imaging in low- and middle-income countries: past actions and future directions: Africa's vision to improve radiation protection (EU 3), A-0663

Mantatzis M., Thanosoulis K., Theodoridis A., Mokali J., Gianniotis C., Seimenis I.
MRA vs DSA based models of cerebral aneurysms: how do the corresponding CFD derived flow fields compare? (SS 211b), B-0183

Mantini C., Ricci F., Mastrodicasa D., Rotondo D., Cotroneo A.R., Gallina S.
Atrial flow planimetry by phase-contrast CMR imaging for grading of aortic stenosis (SS 203), B-0195

Mantini C., Caio M., Mastrodicasa D., Marinelli D., Tartaro A., Cotroneo A.R., Di Gianmarco G.
Aortic valve bypass surgery in severe aortic valve stenosis: insights from cardiac and brain magnetic resonance imaging (SS 203), B-0203

Mantini C., Maffei E., Toia P., Ricci F., Cotroneo A.R., Cademartini F.
Influence of image reconstruction parameters on cardiovascular risk reclassification by computed tomography coronary artery calcium score (SS 1503), B-1313

Manzhurtsev A., Menshchikov P., Ublinsky M., Melnikov I., Akhadov T., semenova N.
The effect of visual stimulation on the aspartate concentration in activated cortex at 3T (SS 1011b), B-1038

Manzhurtsev A., Menshchikov P., Ublinsky M., semenova N., Bozhko O., Akhadov T.
Glutamate concentration changes in response to continuous stimulation (SS 1911a), B-1778

Mao J., Shen J.
Evidence from in vivo MRI: ferritin heavy chain and interferon-β gene-modified mesenchymal stem cells transplanted peripherally inhibit malignant gliomas (SS 696), B-0508

Marcello R., Assegnati G., Di Blasi A., Cortese F., Konda D., Poti E.
Use of Onyx (ethylene vinyl alcohol copolymer) in haemorrhage embolisation procedures (SS 109), B-0010

Marconi V., Lorenzon M., Girometti R., Cortese F., Konda D., Poti E.
Use of Onyx (ethylene vinyl alcohol copolymer) in haemorrhage embolisation procedures (SS 109), B-0010

Marcon V., Lorenzon M., Girometti R., Di Mico L., Bondini F., Bracciani A., Zuliani C.
Comparison between rapid unenhanced MRI protocol (RU-MRI) and digital breast tomosynthesis (DBT) in detecting breast cancer in a screening-like population (SS 302), B-0253

Marcy P.-Y.
Thyroid gland: Keynote lecture (SS 208), K-03

Marinescu A.V., Radu R., Terecosea E., Marinescu A.N., Tiu C., Nicola A.
Accuracy of intracerebral haemorrhage volume calculation: comparison between manual volume segmentation, ABC/2 and sABC/2 (SS 211b), B-0191

Marino M.A., Gucalp A., Bernard-Davila B., Keating D.M., Martinez D., Morris E., Jochelson M.S.
Mammographic screening in male patients at high risk for breast cancer: is it worth it? (SS 1002), B-0924

Maroldi R.
Functional imaging in head and neck oncology: C. Is functional imaging necessary to detect distant metastases in head and neck cancers? (E¹ 126b), A-0077

Maroldi R.
Radiologic anatomy: head and neck: Larynx (BE 6), A-0320

Maros M.E., Siegel F., Kämpegen B., Sodmann P., Sommer W., Schönberg S.O., Henzler T., Groden C., Wenz H.
Quality assessment of structured multi-parametric MRI reports of the prostate based on RADLEX mapping of uroscopical key information content (SS 205), B-0022

In the ablation of colorectal cancer liver metastases with a new generation MW system nodule size >2 cm independently predicts worse local tumour progression free survival (MY 8), B-0511

Marshall B., Bosmans H.
Image improvement factor (Q) measured for three different anticatter grids used in mammography imaging (SS 1913), B-1841

Marshall N.
Striking the balance: image quality assessment in radiological optimisation: Chairperson's introduction: The big picture, can we be objective about image quality? (RC 413), A-0161

Marti-Bonmati L.
Functional imaging of the liver: Chairperson's introduction (E¹ 620), A-0332

Marti-Bonmati L.
Dream team: Chairperson's introduction (E¹ 1018), A-0594

Martin A.
Career planning: The role of preceptorship in first post-radiotherapy positions (BR 9), A-0531

Martin C., Lassale L., Regnard N., Kuhn F.P., Larousserie F., Audard V., Biau D., Drape J.L., Feydy A.
Diffusion-weighted imaging combined with dynamic contrast-enhanced sequences in MRI as a predictor factor of malignancy in non-fatty soft tissue tumour (SS 210b), B-0508

Martin O., Sawicki L.M., Kirchner J., Antoch G., Herrmann K., Umulu L., Heusch P.
Evaluation of a fast protocol for staging patients with bronchial cancer using PET/MRI (SS 708), B-0670
Authors’ Index

Martin O., Heusch P., Kirchner J., Ulrich T., Buchbinder C., Nensa F., Herrmann K., Umuto L., Sawicki L.M.
Is there a connection between immunohistochemical markers and grading of lung cancer with ADC and SUV of hybrid 18F-FDG PET/MRI?? (SS 706), B-0871

Martin S.
Musculoskeletal radiology: inflammation: A. Inflammatory and infections in the soft tissues (E³ 221), A-0089

Value of fractional flow reserve computed from triple-rule-out CT angiography data in the emergency department (SS 763), B-0780

Deep learning-based automated calcium scoring for cardiac computed tomography (MY 7), B-0620

Martinez de Vega V.
How MRI with AIR™ Technology brings comfort, speed and quality (SY 3)

Martinelli P., Brunetti A.
Comparison of diagnostic accuracy between 2D-SWE and magnetic resonance elastography (1D-TE), shear wave elastography (MRE) for assessment of liver fibrosis in HCV patients (SS 1801a), B-1528

Matzek W.K.
US and vascular disease: a perfect match: C. Ultrasound as guidance for vascular interventions (RC 1315), A-0754

Matteo S., Mussetto I., Paparo F., Perugini Bernardi S., De Carsi M., Cavascio L., Gendereigo G., Bicalgalup L., Rollandi G.A.
Prospective comparison of transient elastography (1D-TE), shear wave elastography (2D-SWE) and magnetic resonance elastography (MRE) for assessment of liver fibrosis in HCV patients (SS 1801a), B-1528

Maurea S., Ginocchio M.I., Verde F., Romeo V., Mainenti P.P., Petretta M., Sarno L., Martinelli P., Brunetti A.
Comparison of diagnostic accuracy between clinical risk factors and MRI to predict placental adhesion disorders in patients with placenta previa (SS 1507), B-1385

Maurer M.H., de Buocourt M., Berghöfer A., Huppertz A., Rosenkranz A.B., Streitparth F., Reverhagen J.T., Meyl T.
Subspecialisation in radiology: effects on the diagnostic spectrum of radiologists and report turnaround time in a Swiss university hospital (SS 1405), B-1184

Maurer M.H., Lachenmayr A., Beldi G., Candinas D., Reverhagen J.T., Kim-Fuchs C.
Percutaneous stereotactic CT-based microwave ablation for neuroendocrine liver metastasis (SS 1709), B-1434

Maurer M.H., Banz-Wüthrich V., Beldi G., Kim-Fuchs C., Candinas D., Tingley P., Reverhagen J.T., Lachenmayr A.
Stereotactic image-guided microwave ablation of hepatocellular carcinoma (SS 1709), B-1438

Mayerhofer M.E.
Which whole-body exam should I choose?: Keynote lecture (SS 1716), K-33

Mayrhofer M.T.
Will the General Data Protection Regulation (GDPR) hamper the secondary use of clinical imaging data for research?: Can I reuse, share or give open access to existing imaging data for research? (ESR/BBMRI-ERIC), A-0631

Mazzaro A., Zamboni G., Fighera A., Campagnola A., Mansueto G.
CT texture analysis for detection of tumour recurrence in patients resected for pancreatic adenocarcinoma (SS 1401a), B-1103

Mazzilli A., Loria A., Castriconi R., Lusa Aguero T., Calandrino R., del Vecchio A.
A radiation dose index monitoring (RDIM) systems comparison for CT procedures (SS 1413), B-1194

McCarthy L.L., Brenner C., Sammon J., Spence L.D., O’Connor J.
The applicability of the Greulich and Pyle atlas to a modern Irish population (SS 1012), B-1056

McAnulla S.J., Knapp K.M., Ball S.
Understanding diagnostic student radiographer attrition in the UK (SS 1914a), B-1698

McDermott G.M., Hayball M., Ganeshan B., Riaz Z., Scarsbrook A.
Automated CT texture analysis of lung cancer FDG PET-CT data using a novel software tool: preliminary results (SS 204), B-0150

McDermott G.M., Brown P., Scarsbrook A.
Evaluation of pre-treatment FDG PET-CT-based imaging parameters and textural features as prognostic indicators in non-small cell lung carcinoma (SS 704), B-0771

McGinty G.
Clinical audit: how to deal with the legal and professional requirements: Peer review as key for quality improvement: the US experience (PI 2), A-0588
<table>
<thead>
<tr>
<th>Authors’ Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micelli M.V.M., Corridore A., Torlone S., Panebianco L., Cerrone P., Martino M., Succhini P., Splendiani A., Masciocchi C.</td>
</tr>
<tr>
<td>Middleton M.S., Henderson W.C., Louie A.L., Myers R., Djedjos S., Sirlin C.</td>
</tr>
<tr>
<td>Miele V.</td>
</tr>
<tr>
<td>Mikayama R., Shirasaka T., Yabuuchi H., Sakai Y., Kojima T., Kondo M., Yoshikawa H., Kato T.</td>
</tr>
<tr>
<td>Milanese G., Cobelli R., Manna C., Silva M., Rascetti E., Poggesi S., Sverzellati N.</td>
</tr>
<tr>
<td>Mildenberger P.</td>
</tr>
<tr>
<td>Miller T.T.</td>
</tr>
<tr>
<td>Miller T.T.</td>
</tr>
<tr>
<td>Millet I.</td>
</tr>
<tr>
<td>Millet I.</td>
</tr>
<tr>
<td>Milnerowicz M., Garcarek J., Miś M., Miś M., Kacala A.</td>
</tr>
<tr>
<td>Mingliang W., Zeng M.</td>
</tr>
<tr>
<td>Mingliang W., Zeng M.</td>
</tr>
<tr>
<td>Mittal K., Bansal V.</td>
</tr>
<tr>
<td>Miyazawa R., Kamo M.</td>
</tr>
<tr>
<td>Mohamed R.E., Dawoud R.M., Aboelsafa A.A.</td>
</tr>
<tr>
<td>Moerup S., Precht H., Foley S., Seegert A., Schlemmer H.-P., Kuder T.</td>
</tr>
<tr>
<td>Mokrane F., Chen A., Zhao B., Ammari S., Schwartz L., Houtou R., Dercle L.</td>
</tr>
<tr>
<td>Molinari F.</td>
</tr>
<tr>
<td>Molinano S., Veglia S., Davini O., Ruggieri C.</td>
</tr>
<tr>
<td>Moller J.M., Østergaard M., Thomsen H.S., Sørensen I.J., Madsen O.R., Pedersen S.J.</td>
</tr>
<tr>
<td>Monelli F., Fiocchi F., Pacchetti A., Casari F., Bertucci E., Petrella E., Torricelli P.</td>
</tr>
<tr>
<td>Montesano M., Rengo M., Badia S., Panvini N., Picchia S., Bellini D., Carbone I., Laghi A.</td>
</tr>
<tr>
<td>Montgomery A.</td>
</tr>
<tr>
<td>Moon H., Hong G., Byeon Y., Lee C.</td>
</tr>
</tbody>
</table>
Moradi Amani A., Meyer-Baese L., Tahmassebi A., Pinker-Domingik K. Determining the best leader nodes in Alzheimer networks (SS 1511), B-1328

Moscato F. The 3D printing lab from bench to bedside: Creating a 3D printing lab in radiology (SF 8T), A-0447

Mostbeck G.H. GI bleeding: how can the problem be solved?: A. Acute GI bleeding (RC 501), A-0205

Mourad C., Galant C., Libert F., Vande Berg B. Failure patterns in femoral head osteonecrosis: a micro-CT study with histological correlation (SS 1010), B-0894

Morgan R. Visceral arteries: C. Endovascular treatment of mesenteric ischaemia (RC 115), A-0023

Mori M., Fujioka T., Tsuchiya J., Kubota K., Tateishi U. Impact of 18F-FDG-PET/CT using time-of-flight in evaluating axillary lymph node metastases of breast cancer (MY 5), B-0471

Morozov S. Captain's dashboard: Chairperson's introduction (E2 916), A-0555

Morozov S. Secrets of radiology communications with patients and referring physicians: C. Personal-branding and promotion for a radiologist (E2 1218), A-0710

Morris E.A. MRI for early detection, staging and management of breast cancer; B. MR imaging biomarkers for the clinical setting (RC 502), A-0234

Morris M. Reflective clinical portfolios as a tool to develop competence in radiography students (MY 15), B-1353

Mukherji R., Mahajan V. Fuzzy PACS: linking large unorganised image and report databases for development and validation of deep learning algorithms (SS 1405), B-1183

Mullen S.N., O’Connor M. Moving beyond the bookshelf: an investigation into the use of social media journal clubs in radiography practice (SS 214), B-0023

Müller A.G., Müller F.H., Hentschel M., von Bredow C., von Bredow Y., Trenczek T. Detection of gut inflammation with MR and PET imaging in the insect Manduca sexta: A new screening system for effectors and inhibitors of gut inflammation (SS 606), B-0510

Müller F.C., Bovin J.S., Gosvig K.K., Kainberger F., Rodell A., Östergaard M., Boesen M. Dual-energy CT for assessment of bone marrow oedema in the acute fracture: a systematic review (SS 710), B-0675

Müller F.C., Borgesen H., Gosvig K.K., Rodell A., Booz C., Schmidt B., Krauss B., Boesen M. Optimising dual-energy CT parameters for virtual non-calciﬁng: a phantom study (SS 710), B-0882

Muller H., Rae W.I.D., Friedrich-Nel H. Dose distribution for vascular procedures at a tertiary training hospital in South Africa (SS 1014), B-0890

Müller L., Keber U., Mahnken A.H., Mandic R., Martini M., Seyer P. USPIO contrast agents for detecting cancer: which one works best? (MY 3), B-0365

Müller M., Reintert C.P., Nikolau K., La Fougère C., Pfannenberg C., Gatidis S. Automated lung cancer detection in PET/CT using a deep learning approach (MY 7), B-0818

Mungai F., Verrone G.B., Pietragalla M., Bonsaer L., Bartolucci M., Miele V. Lesion-parenchyma ratio of DCE-MRI pharmacokinetic parameters for characterisation of salivary gland tumours (SS 1008), B-0975

Muollo A., Beneventi A., Macchi E., Piacentino F., Floridi C., Fontana F., Carrafello G., Fugazzola C. Fusion imaging technique in lung biopsy to demonstrate the correlation between standardised uptake value (SUV) and specimen's diagnostic value (SS 1909), B-1810
Murchison J.T., Ritchie G., Senyszak D., van Beek E.J.R.
Evaluation of deep learning software tool for CT-based lung nodule classification (SS 1905a), B-1751

Role of multiparametric 4D-MRI in detection of parathyroid lesions in primary hyperparathyroidism (SS 608), B-0640

Musaeiva K., Musaiev B., Kmetiyuk Y.
Prognostic value of restaging 18-FDG PET/CT volumetric parameters for post-index irradiation recurrence of head and neck squamous cell carcinoma (MY 14), B-1250

Comparison of signal intensity ratio, extent and transmurality between a novel LGE black-blood and standard LGE bright-blood sequences in patients with ischaemic heart disease (SS 1803), B-1613

Diagnostic accuracy of single-shot two-dimensional multisegment late gadolinium enhancement in ischaemic and non-ischaemic cardiomyopathy (SS 1803), B-1614

Mussmann B.R.
Radiation protection: all you need to know: Chairperson’s introduction (RC 501), A-0204

Murphy D.J.
The heart between the lungs: A. Cardiomyopathies (E³ 1222), A-0716

Nadrijanski M., Milosevic Z.
Breast MRI: potential use of unenhanced morpho-functional diagnostic protocols (SS 602), B-0549

Nadrijanski M., Milosevic Z.
Tumour texture parameters of IDC in neoadjuvant chemotherapy: early identification of non-responders on breast MRI (SS 1402b), B-1172

Nagaraj Y., Dorris M.D., Rook M., Li Q., Guo J., Vliegenthart R., Oudkerk M., van Ooijen P.M.A.
Multi-parametric radiomics in low-dose CT for discrimination between emphysematous and non-emphysematous lung tissue (SS 305), B-0309

Nair A.
Chest: B. Inflammation and tumours of the lung (E² 1623), A-0953

Napoli A.
MSK intervention: the road from low to no invasion: Avoiding side effects and complications by using MR guided high-intensity focused ultrasound (SF 5c), A-0272

Narcisse Fidele N.
Indications and the outcome of the mammography at Douala General Hospital (SS 1914b), B-1711

Nasr H., Alnajashi N., Alqarni A., Farghaly H.
F-18 FDG PET/CT compared to Tc-99m MDP Bone scintigraphy in assessment of metastatic osseous disease in patients with breast cancer and the relation to serum CA15-3 and alkaline phosphatase (SS 1716), B-1459

Natale L.
Functional imaging of the heart: C. Non-ischaemic cardiopathies (E³ 420), A-0201

Natale L.
Cardiac imaging in structural heart disease: Chairperson’s introduction (RC 1503), A-0876

Reducing radiation dose while maintaining observer performance using prior iterative reconstruction (PfIR) in multiphase dual energy renal CT (SS 1407), B-1142

Nayahangan L.
Ultrasound simulation models in training and education: where are we going?: Needs assessment of simulations-based training in radiology (ESR US SC/EFUMB), A-0041

Nazarova E., Kupriyanov D., Tereshenko G., Smetanina N., Novichkova G.
Magnetic resonance imaging assessment of iron status in paediatric patients with hematologic disorders (SS 1512), B-1326

Nchimi Longang A.
Cardiac: recalling the forgotten structures: Hide and seek: the pericardium (SA 13), A-0773

Negru D.
GI bleeding: how can the problem be solved?: Chairperson’s introduction (RC 501), A-0204

Fallowfield L.
The art to transmit and to receive: how to communicate critical information to our patients: Fundamentals of physician/patient communication (SF 8c), A-0417

Nenning K., Schmidbauer V., Fösleitner O., Prayer D., Baumgartner C., Pataraia E., Langs G., Bonelli S., Kasprian G.
Disturbed hippocampal integration into the functional language network in patients with temporal lobe epilepsy (SS 1911b), B-1882

Neri E.
Big data and the big picture: deep learning in optimisation of medical imaging (part A): Imaging and dose biobanks (EF 1), A-0265

Neri E.
Reporting and communication today and tomorrow: challenges to implement structured reporting (RS) and deal with artificial intelligence (AI): Chairpersons’ introduction (part 2) (PI 1), A-0503

Neri E.
The tumour board of the future: Physical or virtual multidisciplinary meetings? (NH 16), A-0958

Neubauer C., Wolf J., Neubauer J.
Influence of different examination settings on the imaging of micrometastases in CBCT (SS 1902a), B-1791

Neubauer J., Reidelbach C., Kotter E., Goerke S.M.
Comparison of patient satisfaction for wrist examinations in cone beam-computed tomography and multidetector-computed tomography (MT 9), B-0867

Newman D.
Radiographers’ challenges offering imaging services in Africa: Chairpersons’ introduction (part 1) (EM 5), A-0651

Nguyen H., Nguyen T., Thong P.M., Ha H.S., Viet N.K., Lien L.T.T., Ngoc P.B., Hoa H.V.
Second generation of dual source computed tomography for evaluating coronary artery lesions in Vietnamese paediatric patients with Kawasaki disease (SS 1003), B-1012
Authors’ Index

<table>
<thead>
<tr>
<th>O’Connor J.</th>
<th>Navigating tumour phenotype with advanced imaging analysis: Understanding tumour microenvironment: the role of habitat imaging (SF 15d), A-0900</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Connor J.</td>
<td>Quantitative imaging in oncology: Chairperson’s introduction (E³ 1726a), A-1057</td>
</tr>
<tr>
<td>O’Connor M.</td>
<td>Radiography audit and quality management: A. Understanding PACS to support radiography quality management processes (RC 514), A-0208</td>
</tr>
<tr>
<td>O’Connor O.J.</td>
<td>Striking the balance: image quality assessment in radiological optimisation: A. Between a ROC(k) and a hard place: classical and pragmatic methods of determining clinical image quality (RC 413), A-0182</td>
</tr>
<tr>
<td>O’Leary D.</td>
<td>Radiography research: a "how to" guide: Chairperson’s introduction: Why is radiography research important? (BR 13), A-0777</td>
</tr>
<tr>
<td>O’Riordan L.</td>
<td>Patient involvement in the testing and validation of deep learning systems (SY 5)</td>
</tr>
<tr>
<td>Obmann V.C., Yang K., Seyfried N., Stopchinski M., Wright K., Ghodasara S., Panda A., Chen Y., Gulani V.</td>
<td>High spatial-temporal resolution free-breathing quantitative bowel perfusion imaging (SS 1801b), B-1650</td>
</tr>
<tr>
<td>Obmann V.C., Lo W., Seyfried N., Jiang Y., Panda A., Wright K., Ropella-Panagis K., Gulani V.</td>
<td>Magnetic Resonance Fingerprinting (MRF) enables simultaneous T1 and T2 mapping of the bowel wall in patients with Crohn’s disease (SS 1801b), B-1655</td>
</tr>
<tr>
<td>Obradov M.</td>
<td>MSK intervention: the road from low to no invasion: The 10 most important side effects and complications in MSK interventions (SF 5c), A-0273</td>
</tr>
<tr>
<td>Occhipinti M.</td>
<td>Radiologic anatomy: chest: Mediastinal (BE 3), A-0122</td>
</tr>
<tr>
<td>Occhipinti M.</td>
<td>Back to basics: how to interpret a chest radiograph?: E. Mediastinal syndrome (RC 1504), A-0918</td>
</tr>
<tr>
<td>Occhipinti M.</td>
<td>Chest: A Fundamentals of chest imaging (E³ 1623), A-0952</td>
</tr>
<tr>
<td>Oechtering T.H., Nowak A., Sieren M., Graessner J., Koijman-Kurufest H., Barkhausen J., Frydychowicz A.</td>
<td>Inter-scanner and inter-software comparison of quantitative 4D flow MRI (SS 315), B-0225</td>
</tr>
<tr>
<td>Oei L.</td>
<td>Lymphangioleiomyomatosis (E³ 722), A-0376</td>
</tr>
<tr>
<td>Offiah A.C.</td>
<td>Predicting fracture risk in children: D. CT (including HRpQCT) (RC 812), A-0464</td>
</tr>
<tr>
<td>O’Kearney D.</td>
<td>The reasons for practitioners’ passive approach to informing patients prior to their radiological examinations (SS 1413), B-1192</td>
</tr>
<tr>
<td>Ohkawara Y., Fujisawa Y., Suhara N., Kishida Y., Seki S., Yoshikawa T., Koyama H., Murakami T.</td>
<td>Inspiratory/expiratory xenon-enhanced CT with 3D motion analysis: utility for pulmonary functional loss assessment and clinical stage classification of COPD (SS 604), B-0579</td>
</tr>
<tr>
<td>Ohno Y., Yaguchi A., Okura K., Kishida Y., Seki S., Ueno Y., Yoshikawa T., Murakami T.</td>
<td>Comparison of the capability of nodule component measurement and management on follow-up CT examinations between 3D CADv systems with and without CNN (SS 1004), B-1003</td>
</tr>
<tr>
<td>Ohno Y., Yui M., Lee H., Koyama H., Kishida Y., Seki S., Yoshikawa T., Kassai Y., Murakami T.</td>
<td>Comparison of quantitative capability among DWI with FASE and EPI sequences at 1.5T or 3T systems and FDG-PET/CT: for differentiating malignant from benign solitary pulmonary nodules (SS 1404), B-1209</td>
</tr>
<tr>
<td>Ohno Y., Yui M., Kishida Y., Seki S., Yoshikawa T., Murakami T.</td>
<td>Multi-parametric approach among CEST imaging, DWI and FDG-PET/CT for diagnosis of solitary pulmonary nodule (SS 1404), B-1209</td>
</tr>
<tr>
<td>Ohno Y., Aoyagi K., Yui M., Kishida Y., Seki S., Yoshikawa T., Murakami T.</td>
<td>Comparison of capability for TNM stage assessment among whole-body MRI and PET/MRI at different field strength and FDG-PET/CT in non-small cell lung cancer (SS 1716), B-1460</td>
</tr>
<tr>
<td>Ohno Y., Yaguchi A., Aoyagi K., Takenaka D., Yoshikawa T., Kishida Y., Seki S., Murakami T.</td>
<td>3D computer-aided CT texture analysis with machine learning: capability to play as second reader for radiological finding assessment in interstitial lung disease (SS 1905a), B-1755</td>
</tr>
<tr>
<td>Oikonomou A.</td>
<td>Right ventricular functional assessment with PET/CT in non-small cell lung cancer (SS 1004), B-1209</td>
</tr>
<tr>
<td>O’Kearney D.</td>
<td>The reasons for practitioners’ passive approach to informing patients prior to their radiological examinations (SS 1413), B-1192</td>
</tr>
<tr>
<td>Oikonomou A.</td>
<td>Cavitary and cystic diseases of the lung: nodules (SS 1404), B-1209</td>
</tr>
<tr>
<td>Oktay D.G., Peker E., Erden I.</td>
<td>Right ventricular functional assessment with cardiac MRI by comparing volume measurements between axial and short axis orientations (SS 1903b), B-1862</td>
</tr>
<tr>
<td>Olalla Muñoz J.R.</td>
<td>Small bowel obstruction: improve your reading and reporting competences: B. Step 2: Identify the SBO cause (RC 1717), A-1039</td>
</tr>
</tbody>
</table>
Authors’ Index

Olusunkanmi Balogun E. Radiographers’ challenges offering imaging services in Africa: Nigeria. Healthcare services in Nigeria: the radiographers’ opportunities and challenges (EM 5), A-0653

Örnek A., Umurtlu L., Kirchner J., Heber D., Herrmann K., Ruhlmann V. Comparison evaluation of the diagnostic potential of PET/MRI and PET/CT using mIBG-lod-124 in neuroendocrine and neuroectodermal tumours (SS 706), B-0673

Öz I.I., Bomers J.G., Overduin C.G., Jenniskens S.F., Sedelaar J.P.M., Paetz T., Rieder C., Schumann C., Futterer J.J. Focal cryoablation for recurrent prostate cancer following radiation therapy: assessment of iceball margin and signal intensity of tumour by 3D registration of MRI (SS 1007), B-0878

Oleaga Zufiria L. EDIR: an instrument to develop excellence in your career: Chairperson’s introduction (EDIR), A-0848

Oleaga Zufiria L. EDIR: an instrument to develop excellence in your career: EDIR teaser (EDIR), A-0949

Oleaga Zufiria L. EDIR: an instrument to develop excellence in your career: CORE examination (Part 2) (EDIR), A-0981

Oliveira M.V.L., Barros J. Development of 3D printed quality control tool for X-Ray beam alignment and collimation evaluation (SS 1814), B-1493

Oluniran G., Blackwell J., Tuohy B., Colgan N. Phantom for independent global head SAR assessment of MRI-induced temperature change (SS 713), B-0761

Omelchenko O., Makarchuk M., Podkovka O., Myronyak L., Rogozhyn V. Reward-related system fMRI activation as a monitoring tool for alcohol abuse rehabilitation (SS 1911b), B-1034

Omoumi P. MRI imaging of the knee: B. Meniscal tears: obvious and subtle (RC 810), A-0444

Omura V.L.N. Synthesized mammography: is it as good as digital mammography to find microcalcification? (SS 302), B-0254

Ording Müller L.-S. Juvenile idiopathic arthritis (JIA): C. MRI and role of contrast in the assessment of synovitis (E 1326), A-0796

Örnek A., Umurtlu L., Kirchner J., Reichardt B., Herrmann K., Ruhlmann V. Inflammation focus search with 18F-FDG-PET/MRI: comparative or additive value of PET and MRI (SS 306), B-0231

Oyen R.H. Multidisciplinary approach to cancer care: Chairperson’s introduction (RC 816), A-0465

Oyen R.H. Prostate cancer: Keynote lecture (SS 207), K-04

Ozden C., Warnač M.L., Brunner F., Starekova J., Koops A., Lund G.K., Kiroofa-Nedyalkova G.L., Adam G., Tahir E. Impaired left ventricular function in patients with treatment-resistant arterial hypertension evaluated by feature-tracking myocardial strain CMRI (SS 603), B-0590

Özmen M.N. Renal, adrenal and urinary tract pathologies: Ureter and bladder (SS 8), A-0434

Ozturk M., Polat A.V., Baris Y.S., Selcuk M.B. The diagnostic value of shear wave elastography for the differentiation of benign and malignant soft tissue tumours (SS 210b), B-0059

Ozturk M., McDermott J.C., Laesekse P.F., Nakada S.Y., Hedican S.P., Best S., Kleedehn M.G. Percutaneous management of Indian pouch stones: a single-centre retrospective study (SS 1509), B-1297

Pažanin A., Škrk D., Mekis N. Optimisation of collimation and its impact on patient dose in radiography of lumbar spine in anteroposterior and lateral projection (SS 1314), B-1073

Pacifici S., Bindinelli P., Galli V., Giacobbe A., Mariotti D., Pediarlarco S., Salimbeni S., Santucci G., Severi D. A core curriculum for the breast radiographers working in Italy (SS 1914b), B-1715

Pacifici S., Giudice D. Scanxiety in follow-up breast cancer women (SS 1914b), B-1718

Padhani A.R. Whole-body imaging in metastatic urinary tract and prostate cancer: Chairperson’s introduction (E 419), A-0194

Padley S.P.G. Back to basics: how to interpret a chest radiograph?: Chairperson’s introduction (RC 1504), A-0913

Pacinski S., Bindinelli P., Galli V., Giacobbe A., Mariotti D., Pediliarco S., Salimbeni S., Santucci G., Severi D. A core curriculum for the breast radiographers working in Italy (SS 1914b), B-1715

Paciotti G., Durante M., Nappi C., Salini C., Piccinni M., Scandurra C., Di Biase C., Zaffaroni F., Manzato E., Alessi M., Proietti M. Optimisation of collimation and its impact on patient dose in radiography of lumbar spine in anteroposterior and lateral projection (SS 1314), B-1073

Pažanin A., Škrk D., Mekis N. Optimisation of collimation and its impact on patient dose in radiography of lumbar spine in anteroposterior and lateral projection (SS 1314), B-1073

Paciotti G., Durante M., Nappi C., Salini C., Piccinni M., Scandurra C., Di Biase C., Zaffaroni F., Manzato E., Alessi M., Proietti M. Optimisation of collimation and its impact on patient dose in radiography of lumbar spine in anteroposterior and lateral projection (SS 1314), B-1073

Padhani A.R. Whole-body imaging in metastatic urinary tract and prostate cancer: Chairperson’s introduction (E 419), A-0194

Padley S.P.G. Back to basics: how to interpret a chest radiograph?: Chairperson’s introduction (RC 1504), A-0913
Paech D., Dreher C., Regnery S., Goerke S., Unterberg A., Wick W., Bendszus M., Ladd M., Schlemmer H.-P.
Amide proton transfer (APT) MRI is a predictor of survival and progression in high-grade glioma patients (SS 606), B-0505

Lactate-weighted imaging of brain tumours using chemical exchange saturation transfer (CEST) MRI at 7 Tesla (MY 16), B-1419

Are aneurysmal subarachnoid haemorrhage scales applicable to non-aneurysmal subarachnoid haemorrhage? (MY 16), B-1418

Phenotyping diabetic cardiomyopathy in South Asians and Europeans (SS 603), B-0588

Paladini A., Beomonte Zobel D., Vallati G.E., Pizzi G., Cappelli F., Borzelli A., Amodeo E.M.
Response to SIRT (selective internal radiation therapy) in patients affected by unresectable multifocal intra-hepatic cholangiocarcinoma: results of a preliminary study (SS 209), B-0113

Paladini A., Vallati G.E., Pizzi G., Cappelli F., Beomonte Zobel D., Amodeo E.M., Borzelli A.
Retrospective analysis of a cohort of patients affected by unresectable HCC treated with SIRT and liver transplant (SS 609), B-0563

Paladini A., Vallati G.E., Pizzi G., Cappelli F., Beomonte Zobel D., Amodeo E.M., Borzelli A.
Intermediate-stage HCC. SIRT and balloon-occlusive micro-catheter: the right way? (MY 8), B-0846

Minocycline hydrochloride as a soft sclerosing agent for symptomatic simple renal and hepatic cysts: our experience (SS 1709), B-1435

Palermo M., Sambataro G., Tiralongo F., Desiderio C., Falsaperla D., Torrisi S., Basile A., Vancheri C., Palmucci S.
To assess clinical and radiological disease severity in a population of IPF patients which differ for the presence of diffuse pulmonary ossification (DPO) on HRCT (SS 1604), B-1405

Palmisano A., Esposito A., Benedetti G., Giannini F., Baldetti L., Del Maschio A., De Cobelli F.
Modification of left ventricle myocardial perfusion reserve after the implantation of coronary sinus stent: a stress-rest CMR study (SS 1403), B-1221

Cardiovascular magnetic resonance early predictors of unfavourable left ventricle remodelling in patients with acute myocarditis (MY 18), B-1678

Palmqvist R.
Radiology and pathology: will we ever be (digitally) married? What difference would there be for patients? (Part 1) (SF 13a), A-0738

Palumbo D., Palmisano A., Faletti R., Benedetti G., Gatti M., Del Maschio A., De Cobelli F., Esposito A.
Assessment of diagnostic performance of cardiac magnetic resonance (CMR) mapping parameters in acute myocarditis (AM) patients (SS 303), B-0381

Palumbo D., Guazzarotti G., Martinenghi C., Nicoletti R., Del Maschio A., De Cobelli F.
Can routine postoperative CT scan provide reliable leakage risk stratification after laparoscopic sleeve gastrectomy (LSG)? (SS 1901b), B-1880

Palumbo D., Arrigoni F., De Cataldo C., Ruschioni M., Zugaro L., Barile A., Masciocchi C.
Intraarticular osteoblastomas: from challenging diagnostic entity to minimally invasive treatment with magnetic resonance-guided focused ultrasound (MRgFUS) (SS 1809), B-1571

Palumbo P., Cannizzo E., Corridore A., De Cataldo C., Torlone S., Di Luzio M., Di Sibio A., Di Cesare E., Masciocchi C.
Prognostic validity of stress cardiac magnetic resonance (CMR) in the intermediate-long term outcome assessment of known-CAD patients (SS 1803), B-1623

Pambianchi G., Galea N., Carbone I., Mileto A.
Lactate-weighted imaging of brain tumours using chemical exchange saturation transfer (CEST) MRI at 7 Tesla (MY 16), B-1419

Pan X., Guo M.
Clinical application of 640 slice spiral CT double low enterography in inflammatory bowel disease (SS 1801b), B-1646

Panagiotopoulos N., Fechtrup N., Oechtering T.H., Roggenbuck U., Nassenstein K., Barkhausen J., Hunold P.
Evaluation of the prognostic value of visually detected cardiac MRI findings in asymptomatic diabetics and healthy volunteers (SS 1803), B-1622

Pandur A., Sipos D., Banfi B., Betlehem J., Radnai B.
Age-adjusted D-dimer and risk-stratification in acute pulmonary embolism for reduce the unnecessary CT imaging (SS 717), B-0728

Panebianco V.
Tumour relapse in urological cancer: A. Prostate cancer relapse (E 619), A-0329

Pantilli M., Calandrelli R., Pilato F., Colosimo C.
A systematic quantitative morpho-volumetric analysis in infants with sagittal craniosynostosis and relationship with the severity of scaphocephalic deformity (SS 1412), B-1225

Diagnostic accuracy of dual-energy CT for renal mass evaluation: systematic review and meta-analysis (SS 1407), B-1148

MRI texture analysis in predicting lymph nodal yield after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) (SS 2016b), B-0207

Panzeri M., Colombo M., Papa M., Cardone G., Venturini M., Capitanio U., Montorsi F., Del Maschio A., De Cobelli F.
Comparison of cryoablation and microwave ablation in the treatment of small renal tumours (SRT): technical success, complications and midterm clinical outcome (SS 1509), B-1302

Panzironi G., Motta G., Galati F., Marzocca F., Collalunga E., Pediconi F.
Can perilesional oedema detected in MRI be considered as a biomarker for breast cancer? The role of T2-weighted sequences (SS 802), B-0553

Pan T., Vikram R.
Changes on noise power spectrum by advanced CT image reconstruction techniques (SS 213), B-0134
Paolicelli S., Virelli R., Coli L., Matino S., Telegrafo M., Stabile Ianora A., Gesualdo L., Bevilacqua V., Moschetta M.
Calculation of total kidney volume (TKV) in autosomal dominant polycystic kidney disease (ADPKD); comparison of 3 different methods (SS 307), B-0329

Papa M., Losa A., Suardi N., Agostini G., Maga T., Gaboardi F., Cardone G.
Modified ABLATE-score (mABLATE): a specific nephrometric score to predict complications and relapses in percutaneous cryoablation of renal lesions (SS 1509), B-1300

Papadaki E.
Update on cerebrospinal fluid (CSF) diseases: B. Diagnosis and treatment of intracranial hypotension (RC 911), A-0520

Papakonstantinou O.
Multidisciplinary approach to the diabetic foot: Imaging evaluation of the diabetic foot (MS 17), A-1064

Papalios V.
Imaging professionals in the EU: radiologists without borders: Brexit means Brexit: radiologists with borders? (ESR/UEMS), A-0217

Papanagiotou P.
Diffusion tensor imaging in intractable unilateral mesial temporal lobe epilepsy (SS 1411b), B-0974

Papalois V.
Imaging and management of the incidental scrotal lesions: Testicular-sparing surgery: a teamwork of radiologist and urologist (SF 5d), A-0296

Pavlova O., Serova N.S., Davydov D., Ternovoy S.K.
Correlation between the size of the inferior orbital wall defect and treatment tactics in orbital trauma according to the MSCT data (MY 14), B-1281

Pecoraro M., Campa R., Barchetti G., Salvo V., Catalano C., Panebianco V.
Is DCE useless in early detection of prostate cancer? The analysis of quantitative parameters might help radiologists to decide if findings mildly restricted on ADC map should be sampled (SS 207), B-0160

Pedersen M.R.V.
Ultrasound: continuing to make waves: A. Technology advances: from 3D to elastography (RC 1714), A-1005

Park S., Cho S., Hocheol C., Lee S.
Distal transradial approach at the anatomical snuffbox for interventional procedures: a single-centre pilot study (SS 1009), B-0965

Parkar A.P.
Cavitory and cystic diseases of the lung: A. Cavitory lung lesions (E³ 722), A-0374

Parkar A.P.
Back to basics: how to interpret a chest radiograph?: D. Pleural syndrome (RC 1504), A-0917

Parkar A.P.
Chest: C. Mediastinum, pleura and chest wall (E³ 1623), A-0954

Pasquini L., Tortora D., Rossi Espagnet M., Figà-Talamanca L., Mununza F., Occella C., Rossi A., Severino M.
Cavernous sinus enlargement: a novel finding in Sturge-Weber syndrome (SS 1011a), B-0930

Pasquini L., Li Q., Del Ferraro G., Peck K., Holodyn A.I., Makse H.
Functional network analysis of human language: a novel approach using task-based fMRI (SS 1011b), B-1032

Pastorino U., Silva M., Sabia F., Sestini S., Boeri M., Sozzi G., Sverzellati N.
Marchianò A.V.
Low-dose computed tomography (LDCT) screening reduces overall and lung cancer specific mortality beyond five years (SS 204), B-0143

Pastorino U.
Lung cancer team: What the surgeon needs to know (MS 1), A-0054

Quantification of heterogeneity to classify benign parotid tumours (SS 1008), B-0974

Patella G., Besana F., Faletti E., Ori Belometti G., Costa C., D’Alessio A., Mauri G., Pacella C.M.
Outcome in 73 patients with benign prostatic hyperplasia treated by an ultrasound guided transperineal laser ablation by interventional radiologists (SS 607), B-0630

Patney A., Murugavel M., Mahajan V.
Comparison of 90 and 180 micron resolution cone-beam CT scans in patients with artefact causing root canal filling material (SS 213), B-0140

Patsch J.M.
Paediatric musculoskeletal and oncologic imaging: Keynote lecture (SS 1012), K-26

Paulo G.
Growing radiography research: Radiography research: where should we be in 2030? (part 2) (EFRS WS), A-0961

Paulo G.
The future of radiology: what it could mean for new radiography graduates: Chairperson’s introduction: What will radiology departments look like in the future? (BR 17), A-1041
Ramauskas N., Dementaviciene J., Armaitis J., Barushauskas D., Bialopetruvicius J., Rimeika G., Stankeviciene J.
Towards a deep learning model for exhaustive chest x-ray pathology classification
(SS 1905a), B-1757

Ramlau A.
Informed consent in diagnostic imaging: an evaluation of current practice
(SS 214), A-0026

Ramos A.
My three top tips in neuroimaging (not only for neuroradiologists): Hydrocephalus
(SF 4), A-0160

Rampal P., Sachdev N., Taneja A.
MRI evaluation of ankle joint in juvenile idiopathic arthritis (SS 610), B-0513

Rana A.
The role of radiology in major healthcare challenges faced by Pakistan: Role of radiology in developing a living donor liver transplant programme (EM 3), A-1080

Rana P., Sodhi K.S., Bhatia A., Saxena A.K., Suri D., Singh S.
Diagnostic utility of 3 Tesla thorax magnetic resonance imaging in HIV-positive children (SS 212), B-0169

Rance B.
Imaging biomarkers and their combinations in the era of artificial intelligence: Building and discovering biomarkers with AI (ESR/EIBALL), A-0688

Rangan K.B.K., Gambhir S.
Imaging biomarkers and their combinations in the era of artificial intelligence: Building and discovering biomarkers with AI (ESR/EIBALL), A-0688

Ranschaert E.R.
Mobile devices in radiology: A. Security and confidentiality aspects of mobile computing (RC 105), A-0011

Ranschaert E.R.
IT-security and GDPR: Security aspects when using mobile devices and/or social media (SF 12), A-0688

Rasouly N., Kastler B., Hélénon O., Habib Geryes B., Comte A.
In vitro and in vivo quantification of urinary stone volume using attenuation threshold-based optimized ultra-low-dose CT method (SS 1807), B-1664

Ratib O.
Mobile devices in radiology: Chairperson’s introduction (RC 105), A-0010

Ratib O.
Artificial intelligence in hybrid imaging: Sharing is caring: on the need for open research data (ESH(MT) 2), A-0554

Ratib O.
IT-security and GDPR: Issues related to patient consent to allow access to the data (SF 12), A-0697

Ratib O.
Hybrid and translational imaging: the bigger picture: Chairpersons’ introduction (part 1) (ESR/ESHi(MT)), A-0972

Raudner M.W., Wielandner A., Uyanik-Únal K., Steizmüller M., Zuckermann A., Loewe C., Beitzke D.
Quantitative cardiac magnetic resonance in the detection of early cardiac transplant rejection - MRI compared with endomyocardial biopsy (SS 303), B-0374

Ravaglia V., Venturi G., Scrittori N., Farnedi S.
A method to optimize DSA clinical protocols (SS 1413), B-1198

Razansky D.
Translating functional and molecular imaging in oncology: C. Optical imaging in cancer (RC 1206), A-0706

Reevers J.A.
Vascular arteries: Chairperson’s introduction (RC 115), A-0020

Reevers J.A.
Cone-beam, 4D and more: new diagnostic tools for vascular diseases: A. The role of intra-procedural perfusion assessment in peripheral arterial disease (E³ 1226), A-0664

Regine R., Palmieri F., Zanfardino F., Fatigati G., Martino A., Cornacchia M., Cozzolino P.
Transperineal thermoablation in patients with benign prostatic hyperplasia: our experience (MY 8), B-0840

Regine R., Palmieri F., Zanfardino F., Fatigati G., Martino A., Cornacchia M., Cozzolino P.
Transperineal thermoablation in patients with benign prostatic hyperplasia: our experience (MY 8), B-0840

Regine R., Palmieri F., Zanfardino F., Fatigati G., Martino A., Cornacchia M., Cozzolino P.
Transperineal thermoablation in patients with benign prostatic hyperplasia: our experience (MY 8), B-0840

Regine R., Palmieri F., Zanfardino F., Fatigati G., Martino A., Cornacchia M., Cozzolino P.
Transperineal thermoablation in patients with benign prostatic hyperplasia: our experience (MY 8), B-0840

Rehnitz C., Wuennemann F.
Ability of T2 mapping at 3T MRI for biochemical assessment of normal and damaged glenoid cartilage of the shoulder: an arthroscopy controlled prospective study (SS 310), B-0242

Rehni M.M.
Improving radiation protection in medical imaging in low- and middle-income countries: past actions and future directions: Patient doses in large part of the LMI countries and way forward: The International Organization for Medical Physics’ (IOMP) vision (EU 3), A-0660

Reil
Improving radiation protection in medical imaging in low- and middle-income countries: past actions and future directions: Patient doses in large part of the LMI countries and way forward: The International Organization for Medical Physics’ (IOMP) vision (EU 3), A-0660

Reichardt B., Ornék A., Nicolás V., Maier C.
MRI-CT fusion imaging before high-selective lumbar sympathicolysis (MY 8), B-0839

Reichardt B., Ornék A., Nicolás V., Maier C.
Lumbar sympathetic trunk in MRI and CT: its visibility and distance to two anatomical landmarks for pre-interventional planning (MY 8), B-0840

Reichardt B., Ornék A., Nicolás V.
Cinematic MRI of the wrist: initial study for instability of the wrist in correlation to fluoroscopy and x-ray findings (MY 9), B-0866

Clinical decision support based on automated non-contrast CT density measurements in patients with acute ischaemic stroke (SS 711), B-0713

Reijnierse M.
Musculoskeletal interventions: Keynote lecture (SS 1510), K-31

Reimer R.P., Reimer P., Mahnenk A.H.
MRI-based texture analyses has the potential to predict response to transarterial radioembolization at baseline (MY 3), B-0354

Reimer R.P., Lichtenstein T.E., Flatten D., Maintz D., Borggreve J., Grosse Hokamp N.
Virtual monoenergetic images from spectral detector CT (SDCT) enable radiation dose reduction in unenhanced cranial CT (SS 1911a), B-1783

Reiter C., Kräuter C., Koepf E., Reiter G., Greiser A., Schmidt A., Scherr D., Fuchsjaeger M.H., Reiter U.
4D- vs 2D-flow imaging in the evaluation of transluminal velocity profiles: comparison with echocardiography (SS 1803), B-1620
Authors’ Index

Rocher L.
Late effects in survivors of childhood cancer: Fertility issues: male and female (Part 1) (SF 17), A-1025

A mathematical-descriptor of tumour mesoscopic structure from CT images annotates prognostic and molecular phenotypes of epithelial ovarian cancer (SS 1507), B-1387

Rockall A.G.
Early detection of ovarian cancer: A. Current guidance on screening and familial ovarian cancer (part 1) (E¹ 119), A-0070

Rockall A.G.
Functional imaging of breast and female pelvis: C. Ovarian tumours (E¹ 820), A-0476

Roditi G.
Non-contrast MR angiography: ready to go?: Peripheral non-contrast MR angiography (SF 8d), A-0422

Rodriguez Ruiz A., Kallenberg M., Gubern-Merida A., Karssemeijer N., Mann R.M.
Artificial intelligence detecting breast cancer on mammography: does breast density play a role? (SS 702a), B-0697

Rodriguez Ruiz A., Fedon C., Michielsen K., Sechopoulos I.
Scatter radiation correction in digital breast tomosynthesis with a deep learning convolutional neural network (SS 1805a), B-1527

Rogalla P., Hoppel B.E., Masakazu M., Zhou J., Farrell C., Kandell S.
Image quality comparison between iterative reconstruction methods and AI-based reconstruction for CT chest (SS 305), B-0306

Rogalla P., Hoppel B.E., Noro K., Yamazaki Y., Utsunomiya K., Shimomura Y., Sugiyama S.
Automated CT abdominal imaging protocol selection using natural language processing and machine learning (SS 1905b), B-1832

Rohan T., Andrasina T., Litavcova A., Juza T., Zavadil J., Richter S., Valek V.
Is PET MRI valuable in inflammation or fever of unknown aetiology? (SS 306), B-0232

Röhrich S., Hofmanninger J., Pan J., Prayer F., Prosch H., Langs G.
Scanner parameter induced variability of radionics features in routine chest CT data (SS 1005a), B-0905

Introducing 3D modelling of MRI in preoperative mapping of perianal fistula: how it could help the surgeons? (SS 201b), B-0212

Roman S.
Small bowel obstruction: improve your reading and reporting competences: Chairperson’s introduction (RC 1717), A-1037

Romanowski C.A.J.
Update on cerebrospinal fluid (CSF) diseases: A. Imaging strategies for hydrocephalus (RC 911), A-0519

Romanucci G., Caumo F., Zorzli M., Bricolo P., Cugola L., Brunelli S., Mariotto R., Montemezzi S.A., Fornasa F.
Stratifying tomosynthesis screening results by age groups and by first or subsequent screening (SS 302), B-0248

Rosella F., Gorgatti T., Vit A., Gavrilovic V., Peleggin A., Sponza M.
Efficacy of drug-eluting stents ELUVIA in treatment of high grade of femoropopliteal lesions (SS 1009), B-0967

Rosendahl K.
US teaching to undergraduate students: why, how and from whom?: From whom: the importance of radiologists delivering US teaching and staying experts in this field (ESR US SC/UES), A-0339

Ross J.S.
Cutting edge imaging and minimally invasive interventions of the spine: the precise "roadmap" for clinicians (SF 13b), A-0758

Rossi A.
Neuro A. Congenital and white matter disorders of the brain (E¹ 1423), A-0829

Rossi A.
Paediatric brain imaging: A. Head and neck emergencies in children (E¹ 1921), A-1101

Impact of radiologic imaging revision in the multidisciplinary management of head and neck cancer patient (SS 1006), B-0973

Rossi G.
Lung cancer team: Role of the pathologist: making the most of the sample (MS 1), A-0052

Rovira-Cañellas A.
My three top tips in neuroimaging (not only for neuroradiologists): Acute disseminated encephalomyelitis (ADEM) (SF 4), A-0155

Rovira-Cañellas A.
Head and neck imaging: B. Non-traumatic head and neck emergencies in children (E² 1921), A-1100

Royer L., Anjari M., Sasikumar S., SinhaRay R., Mak S., Subasinghe M., Murphy D., Breen R., Nair A.
Applying British Thoracic Society 2015 compared to Fleischner Society 2017 recommendations for lung nodule management leads to different discharge and PET-CT referral rates (SS 204), B-0142

Rubbert C., Meineke A., Sawicki L.M., Klosterkemper Y., Antoch G., Boos J.
Potential of a machine learning model for dose optimisation in chest CT quality assurance (SS 1404), B-1210

Rübtenthaler J.
How to perform ultrasound image fusion: Kidney (US 1), A-0170
Rubin D.L., Akdogan M.U., Altindag C., Alikm E. ePAD: A platform to enable machine learning and AI application development in medical imaging (SS 1005a), B-0906

Ruby L., Sanabria S.J., Mutschler T., Martini K., Frauenfelder T., Klingmüller V., Rominger M. Musculoskeletal elastography: exploration of confounders in a challenging field (SS 1810), B-1512

Rud E., Flatabo T., Baco E., Sandbæk G. CT urography for examining the upper urinary tract in case of haematuria: time to reconsider? (SS 307), B-0332

Rud E., Ottoson F., Flatabo T., Baco E. Whole-body MRI for detecting bone metastases in treatment naïve high-risk prostate cancer: cracking nuts with a sledgehammer? (SS 707), B-0821

Rud E., Langberg C.W., Baco E., Sandbæk G. Testicular cancer follow-up: less is more (SS 1807), B-1656

Ruggeri V., Mariscotti G., Durando M., Costanza C., Bergamasco L., Castellano I., Fonio P. MRI assessment of axillary lymph nodes after neoadjuvant chemotherapy based on breast cancer subtype (SS 1902b), B-1799

Ruggieri C., Veglia S., Ruffino A., Ciccone G., Evangelista A., Davino O. Role of the cardiosynchronised computed tomography angiography in the dissection of descending thoracic aorta (SS 1815), B-1499

Russe M.F., Kocher N., Kellner E., Reisert M., Bamberg F., Kotter E. Optimising the dataset for deep learning with x-ray images in musculoskeletal radiology (SS 605), B-0568

Rutten M.J.C.M. 3D automated breast ultrasound: accuracy and diagnostic potentials (SY 2b)

Ryan J.W., MacMahon P.J., Bolster F. Mass casualty incidents: are you ready? An evidenced-based radiology MCI protocol template (SS 217), B-0098

Ryan M.-L. Audit across Europe: directive and perspective: Implementing a clinical audit programme: the radiographic perspective (ESR Audit), A-0140

Rubin D.L., Alkım E. ePAD: A platform to enable machine learning and AI application development in medical imaging (SS 1005a), B-0906

Ruby L., Sanabria S.J., Mutschler T., Martini K., Frauenfelder T., Klingmüller V., Rominger M. Musculoskeletal elastography: exploration of confounders in a challenging field (SS 1810), B-1512

Rud E., Flatabo T., Baco E., Sandbæk G. CT urography for examining the upper urinary tract in case of haematuria: time to reconsider? (SS 307), B-0332

S

Sá dos Reis C., Gremion I., Schmidt K., Richli Meystre N. What criteria should be considered by radiographers while assessing the image quality of breast implant mammograms? (SS 1914b), B-1709

Saade C. Patient habitus and renal volume have no effect on a reduced patient-specific contrast media administration during renal CTA: impact on contrast media, radiation dose and image quality (SS 614), B-0481

Saade C., El-Merhi F. Patient lung volume is significantly related to contrast media volume during CT pulmonary angiography when employing a patient-specific contrast protocol (SS 717), B-0727

Saade C., Khalifeh S., Karout L., Naffaa L. Multidetector liver CT: improved image quality, decreased radiation and contrast media dose with peristaltic contrast media injection system (SS 701), B-0799

Saade C., Haydar A. A reduced contrast media injection protocol significantly improves the visualisation of liver vasculature at reduced radiation dose during hepatic CTA (SS 701), B-0800

Saade C. An augmented patient-specific approach to administration of contrast agent for CT renal angiography (MY 15), B-1351

Saade C. Split-bolus contrast injection protocol enhances the visualisation of the thoracic vasculature during chest CT (SS 1904), B-1851

Saake M., Schmidle A., Kopp M., Hanspach J., Hupp T., Nagel A., Doerfler A., Uder M., Baehr E. MRI T1w brain signal intensity and relaxation times in individuals with prior exposure to gadobutrol (SS 1911a), B-1777

Saba L. MRI and advanced algorithms like computed MRI from research to clinical practice (SY 4)

Saba L. Carotid disease 2.0: A. Carotid plaque imaging: tool or too? (RC 915), A-0508

Sabatino V., Russo U., d’Amuri F.V., Bevilacqua A., Pagnini F., Milanese G., Nizzoli R., Pedrazzi G., De Filippo M. Pneumothorax and pulmonary haemorrhage after CT-guided lung biopsy: incidence, clinical significance and correlation (MY 8), B-0842

Sachs C., Giudici F., Bortul M., Zanconati F., Gasparini C., Assante M., Tonutti M., Cova M.A. Relevance of arbitration in the management of discrepant screening mammography: Trieste’s Breast Unit experience in 2013-2014 biennium (MY 5), B-0464

Sadate A., Occean B., Larbi A., Fabbro-Peray P., Beregj I. Systematic review and meta-analysis of randomized trials on the impact of lung cancer screening by low-dose computed tomography in populations highly exposed to tobacco (MY 4), B-0431

Sadotti G., Notaro D., Zini C., Bellini M. “SpineJack®” percutaneous placement in mageri A2 and A3 traumatic vertebral compression fractures of the thoracolumbar spine (SS 1809), B-1578

Saez F. EDIR: an instrument to develop excellence in your career: CORE examination (Part 1) (EDIR), A-0850

Saez F. Paediatric radiology for the general radiologist: A. Paediatric MSK imaging: normal variants or real injuries? (E³ 1621), A-0924

Saez F. Musculoskeletal: Chairperson’s introduction (E³ 1723), A-1033

Sahin C., Oc Y., Hasanevendiglu Bayrak A. Percutaneous CT guided RFA treatment of osteoid ostema in children and adults: it has high success rate in children too (SS 1809), B-1576

Saad E. Whole-body imaging in gynaecological malignancy: C. Advanced imaging techniques in metastatic gynaecological cancer (E³ 319), A-0132

Saida C. What criteria should be considered by radiographers while assessing the image quality of breast implant mammograms? (SS 1914b), B-1709

Saida C. Patient habitus and renal volume have no effect on a reduced patient-specific contrast media administration during renal CTA: impact on contrast media, radiation dose and image quality (SS 614), B-0481

Saida C., El-Merhi F. Patient lung volume is significantly related to contrast media volume during CT pulmonary angiography when employing a patient-specific contrast protocol (SS 717), B-0727

Saida C., Haydar A. A reduced contrast media injection protocol significantly improves the visualisation of liver vasculature at reduced radiation dose during hepatic CTA (SS 701), B-0800

Saida C. An augmented patient-specific approach to administration of contrast agent for CT renal angiography (MY 15), B-1351

Saida C. Split-bolus contrast injection protocol enhances the visualisation of the thoracic vasculature during chest CT (SS 1904), B-1851

Saake M., Schmidle A., Kopp M., Hanspach J., Hupp T., Nagel A., Doerfler A., Uder M., Baehr E. MRI T1w brain signal intensity and relaxation times in individuals with prior exposure to gadobutrol (SS 1911a), B-1777

Saba L. MRI and advanced algorithms like computed MRI from research to clinical practice (SY 4)

Saba L. Carotid disease 2.0: A. Carotid plaque imaging: tool or too? (RC 915), A-0508

Sabatino V., Russo U., d’Amuri F.V., Bevilacqua A., Pagnini F., Milanese G., Nizzoli R., Pedrazzi G., De Filippo M. Pneumothorax and pulmonary haemorrhage after CT-guided lung biopsy: incidence, clinical significance and correlation (MY 8), B-0842

Rubin D.L., Akdogan M.U., Altindag C., Alikm E. ePAD: A platform to enable machine learning and AI application development in medical imaging (SS 1005a), B-0906
Sala E.
Navigating tumour phenotype with advanced imaging analysis: Chairperson's introduction (SF 15d), A-098

Sala E.
Quantitative imaging in oncology: D. Imaging heterogeneity and genomic variability in ovarian cancer (E¹ 1726a), A-1061

Salah F., Tabbara A., Al Arab N., Sibahi A., Asmar K., Tamim H., Makki M., Hourani R.
Can MR and CT imaging features differentiate benign from malignant meningiomas? (SS 1411a), B-1168

Characterisation of peripheral nerve sheath tumours in patients with neurofibromatosis type 1 using diffusion-weighted magnetic resonance imaging (SS 1416), B-1240

Salem A., Grueneisen J., Schaarschmidt B.M., Chodya M., Martin O., Rischpler C., Forsting M., Herrmann K., Umutlu L.
Comparison of 18F-Ga-DOTATOC PET-MRI and MRI-DWI for whole body staging of patients with neuroendocrine tumours (SS 1716), B-1456

Salgado R.
Cardiac imaging: B. Imaging cardiac valves (E¹ 921), A-0484

Salgado R.
Cardiac imaging in structural heart disease: A. CT-guided planning of minimally invasive procedures (RC 1503), A-0877

Saltybaeava N., Marcon M., Berger N., Kolditz D., Steindling C., Boss A., Alkadhi H.
First clinical application of spiral breast CT with photon-counting detector; patient-specific radiation dose assessment (SS 1802a), B-1541

Samara E.
Patient-specific dosimetry: Chairperson's introduction (RC 113), A-0046

Samel E.
Striking the balance: image quality assessment in radiological optimisation: B. Bridging the gap between physical and clinical image quality (RC 413), A-0186

Sammut S.J., Cook N., Mahmood N., Balasubramaniam R., Thomas B., James A.
Magnetic resonance enterography: is routine administration of gadolinium-based IV contrast really needed for the assessment of Crohn's disease? (SS 1801b), B-1647

Samuelsson C., Kälvesten J., Wilczek M., Brismar T.B.
Metacarpal bone diameter increases constantly, but escalated resorption of the inner surface at menopause explains decreased bone mineral density - a study in 1492 adult women (SS 2108a), B-0049

Sánchez P.S.
The value of core-biopsy of nodules less than 10 mm (SS 1909), B-1811

Sánchez Casanueva R.M.
Advanced clinical dosimetry in interventional radiology: Real time patient dose monitoring (EU 4), A-0750

Sánchez-Montañez A.
Paediatric brain imaging: B. Acute neurological child beyond trauma (E¹ 1921), A-1102

Sanderink W., Strobbe L.J., Bult P., Schepoelos I., Karssemejeier N., Mann R.M.
Dependence of MRI-based size estimates of small invasive breast cancers on patient and tumour characteristics (SS 602), B-0550

Sanderink W., Teuwen J., Schepoelos I., Karssemejeier N., Apelmann L., Weiland E., Mann R.M.
Evaluation of breast lesions with simultaneous multi-slice DWI in comparison to routine read-out segmented DWI (SS 1802b), B-1564

The value of core-biopsy of nodules less than 10 mm (SS 1909), B-1811

Santos J.
Clinical dilemmas in radiography: what graduates need to know: Chairperson's introduction: What are the current issues in radiography? (BR 12), A-0868

Santos R.
Ultrasound: continuing to make waves: C. Role of ultrasound in biomechanics and sports science (RC 1714), A-1007

Santos R.A.
Relation between fascia and pain by ultrasound (RC 1314), B-1063

Santos R.A.
Obstetric ultrasound - knowledge and perception of pregnant women in Portugal (MY 15), B-1357

Sapinho I.
How to deal with the epidemics of thyroid nodules?: The endocrinologist perspective (MS 16), A-0986

Sapepy-Marinier D.
Principles of imaging and radiation protection: B. Principles of magnetic resonance imaging (E¹ 1523), A-0897

Sarangi P.K., Parida S., Mohanty B.K., Mangaraj S., Mohanty J., Swain B.M.
Diagnostic utility of mean peak systolic velocity of superior thyroid artery (STA PSV) in the differential diagnosis of thyrotoxicosis (MY 14), B-1253

Sardanelli F.
MRI for early detection, staging and management of breast cancer: A. Preoperative staging with MRI: results of preoperative MRI (MIPA) trial (RC 502), A-0233
Authors’ Index

Sarkodie B.D.
Use of MRI for age verification of U-17 footballers: the Ghana study (MY 9), B-0871

Sano A., Mettivier G., Tucciariello R.M., Boone J.M., Bosmans H., Bliznakova K., Russo P.
Personalised estimates of mean glandular dose and image quality investigations in cone-beam computed tomography dedicated to the breast (SS 1913), B-1843

Sauer M., Tennstedt P., Berliner C., Huland H., Adam G., Beyerdorff D.
Correlation of erectile dysfunction after radical prostatectomy with findings of preoperative multiparametric prostate MRI (MY 13), B-1089

Saukko E., Niinivilta H., Henner A., Nieminen M.T.
Comparison of radiation dose and image quality between an image intensifier and flat panel detector system in ERCP (SS 1014), B-0886

Perfusion-ventilation CT via three-material differentiation in dual-layer CT: a feasibility study (SS 1904), B-1848

Sauter A., Kopp F.K., Dangelmaier J., Deniffl D., Meurer F., Bippus R., Rummery E.J., Noel P.B.
Sparse-sampling computed tomography (SpSCT) for the detection of pulmonary embolism (BS 213), B-0138

Savatovsky J.
Advance neuro diagnostics and clinical outcome with Ingenia Eliton solution (SY 7)

Savintseva Z., Skvortcova T., Zakhs D.V.
Correlation between [11C]methionine PET uptake and apparent diffusion coefficient in patients with gliomas (SS 1411a), B-1164

Sawall S., Dorn S., Maier J., Faby S., Uhrig M., Schlemmer H.-P., Kachelrieß M.
Does iodine CNR improve when switching from lngenia Eliton solution (SY 7)

Sawall S., Dorn S., Maier J., Faby S., Uhrig M., Schlemmer H.-P., Kachelrieß M.
Optimal iodine CNR in a whole body photon-counting CT scanner (SS 313), B-0321

Sawicki L.M., Buddensieck C., Boos J., Kirchner J., Ullrich T., Rabenalt R., Albers P., Antoch G., Hautzel H.
Prospective comparison of whole-body MRI and 11C-Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer (MY 13), B-1077

Scaglione M.
Abdominal emergencies: advanced imaging in daily routine?: Chairperson’s introduction (MF 15c), A-0891

Scaglione M.
Acute abdomen: Keynote lecture (SS 317), K-09

Scarsbrook A.
Merging the best: hybrid imaging: A. Hybrid imaging with SPECT/CT (RC 906), A-0457

Scavone G., Raciti M.V., Calgano M.C., Calbadiano D.C., Galvan J., Scavone A.
Mare Nostrum and tuberculosis: the role of chest x-ray and clinical-laboratory data among Mediterranean migrants on landing (MY 4), B-0436

Scavone G., Calbadiano D.C., Raciti M.V., Calgano M.C., Calbadiano G., Galvano J., Giarrizzo A., Piazza L., Scavone A.
Imaging of minione anastomosis gastric bypass abdominal complications (SS 1901b), B-1878

Schaar J., Dijkstra H., Wielema M., Dorrius M., Sijens P.
Automatic cluster analysis of breast lesions assessed with diffusion-weighted imaging (SS 702a), B-0704

Schaarschmidt B.M., Martin O., Kirchner J., Grueneisel J., Heusch P., Forsting M., Antoch G., Herrmann K., Umutlu L.
Does PET/MR improve lesion detection in oncology: a prospective unincetre study in 1003 examinations (SS 1716), B-1461

Schachtner B., Ingrisch M., Gresser E., Schneider M.J., Schreier A., Solyanik O., Magistro G., Nörenberg D.
Feature rejection for radiomic analyses based on variations of tumour segmentation masks (SS 1605), B-1400

Schachter B., Ingrisch M., Gresser E., Schneider M.J., Schreier A., Solyanik O., Magistro G., Hörenberg D.
Clinical PI-RADS assessment (SS 707), B-0828

Schell P., Kohl S., Radtke J., Hohenfellner M., Schlemmer H.-P., Maier-Hein K., Bonekamp D.
Deep learning for prostate cancer segmentation and detection: diffusion MRI U-net compared to clinical PI-RADS assessment (SY 7), B-0813

Schell P., Kohl S., Radtke J., Wiesenfarth M., Hohenfellner M., Schlemmer H.-P., Maier-Hein K., Bonekamp D.
Benefit of diagnostic support of PI-RADS assessment by quantitative ADC measurements and radiomics in MR diagnosis of prostate cancer (SY 13), B-1077

Scherthner H.
Cone-beam, 4D and more: new diagnostic tools for vascular diseases: B. CT 4D imaging after TEVAR (SY 1226), E-0668

Schiavino S., Tagliafico A., Grisina L., Massone E., De Giorgis S., Garlaschi A., Calabrese M.
The value of automated breast ultrasound (ABUS) coronal view (SS 702b), B-0724

Schiavino S., Calabrese M., Melani E.F., Massone E., Villa A., Di Leo G., Zanardo M., Sardanelli F.
Should atypical ductal hyperplasia be surgically excised after percutaneous needle biopsy: systematic review and meta-analysis (SS 1402a), B-1151

Schillebeeckx J.
Clinical audit: how to deal with the legal and professional requirements: Can newer IT-developments including artificial intelligence (AI) help to improve quality in radiology? (P1 2), A-0589

Schima W.
How to face the tsunami of pancreatic intraductal papillary mucinous neoplasia (IPMN): IPMN: when to watch and when to resect (SY 5), A-0237

Schima W.
Gastrointestinal and abdominal: B. Pancreas and spleen (E³ 1233), A-0770

Should atypical ductal hyperplasia be surgically excised after percutaneous needle biopsy: systematic review and meta-analysis (P1 2), A-0589

Schimmöller L., Ziayee F., Ullrich T., Klingebiel M., Quentin M., Antoch G., Arso C.
Impact of dynamic contrast-enhanced (DCE) MRI on prostate cancer detection: is it worth the effort? (SS 207), B-0161

Schimmöller L., Ziayee F., Ullrich T., Schima W., Massone E., Albers P., Arso C.
Value of dynamic contrast enhanced (DCE) MR imaging in PI-RADS 4 patients (SS 307), B-0327

Schimmöller L., Ullrich T., Mones F., Quentin M., Rabenalt R., Albers P., Antoch G., Arso C.
MP-MRI can exclude prostate cancer progression in patients under active surveillance (SS 707), B-0874
Authors’ Index
Authors’ Index

Sconfienza L.M.
The radiological investigation of musculoskeletal tumours: A. Radiographs and ultrasound (RC 1210), A-0692

Screaton N.J.
CT and intervention in vascular pulmonary diseases: A. CT imaging of pulmonary hypertension (E³ 822), A-0470

Sechopoulos I.
Introduction (SY 2c)

Sechopoulos I.
Patient-specific dosimetry: A. Breast imaging dosimetry (RC 113), A-0047

Secil M.
Imaging and management of the incidental scrotal lesions: Incidental extra-testicular lesions: can we characterise them? (SF 5d), A-0294

Secinaro A.
Late effects in survivors of childhood cancer: Cardiorespiratory complications (SF 17), A-1022

3D quantitative analysis of the aorta and pulmonary artery on non-contrast CT (SS 615), B-0497

Sedlaczek O.L.
Imaging tumour response to immunotherapy: Chairperson's introduction (RC 116), A-0064

Sedlaczek O.L.
Lung cancer in the era of molecular oncology and immune therapy: B. PD-L1 positive lung tumours (E³ 1022), A-0600

3D quantitative analysis of the aorta and pulmonary artery on non-contrast CT (SS 615), B-0497

Teaching temporal bone anatomy CT scan as a psychomotor skill: a quasi-experimental study (SS 308), B-0291

Sefidbakht S., Bijan B., Bagheri S., Etemadi Z., Esmaelian S., Etemadi Z., Esmaelian S.
Role of fetal MRI in diagnosis of genitourinary anomalies: is there an added value? (SS 612), B-0602

Seidensticker M.
Basic interventional radiology for non-interventionists: let's start with biopsy!: How to follow-up on your patients (SF 5b), A-0248

Seilern und Aspang J., Kristen K., Platzgummer H., Hartenbach F., Wiedermann J., Kristen K., Platzgummer H., Hartenbach F., Wiedermann J.
Reliability of ultrasonography measurement of the anterior talfibular ligament (ATFL) length in healthy subjects, based on examinee experience and patient positioning (SS 710), B-0677

Evaluation of coronary arteries with prospectively-ECG-triggered-High-Pitch-CT in patients undergoing TAVI-planning (MY 18), B-1663

DMN-neuronal activity pattern in patients with PD in early stages (SS 1811a), B-1554

Sellars M.
Balancing the risks and benefits in radiology - contrast and x-rays and paediatric blunt abdominal trauma: safety and dose reduction (SY 18)

Seo H.S.
Perivertebral muscle as index of sarcopenia: comparison with previous muscle imaging and functional indexes (MY 9), B-0852

Seo J.B.
Chronic obstructive pulmonary disease (COPD): B. Quantitative imaging biomarkers (E³ 922), A-0586

Feasibility of volume index to assess liver volume: comparison of ultrasound and computed tomography (SS 701), B-0797

Seraydarmansour O., Taher Rakel Z., Taher Rakel Z.
MR quantification of the fatty fraction from IDEAL IQ sequence in the assessment of muscle atrophy in rotator cuff tears (SS 310), B-0238

Sertorio F., Signa S., De Cesari M., Masambo M.B., Magnano G.M., De Cesari M., Masambo M.B., Magnano G.M.
Role of whole-body magnetic resonance imaging in identifying potential diagnostic clues in children with fever of unknown origin (SS 312), B-0341

Use of magnetic resonance imaging to predict progression of juvenile idiopathic arthritis in paediatric patients in clinical remission (SS 1012), B-1054

Seorl R.
Getting the balance right: radiation risk and imaging benefit in paediatric procedures: Guidelines for the use of conventional radiographs in children and adolescents (EU 5), A-0872

Seuss H., Janka R., Daneker P., Cavallaro A., Uder M., Hammon M., Uder M.
Evaluation of a semi-automated segmentation tool for volumetric analysis of the renal cortex and medulla in non-contrast T1-weighted MR images (MY 13), B-1088

Severoni S.
Radiology and migrations: Impact of migration on health: WHO perspective (PC 5), A-0228

Shafaaat O., Faeghi F., Bagheri A., Rabbani M., Jabbari K., Rabbani M.
Evaluating the diagnostic value of different imaging modalities in cerebral venous thrombosis (SS 1811b), B-1694

Shanahan M., Geso M., Potter A., Lennie G., Geso M., Potter A., Lennie G.
Scoliosis dose comparison using current clinical protocols (SS 714b), B-0657

Mammography positioning errors: a multi-centre study (SS 1802a), B-1543

Sharma N.
Understanding workflow: the key to effective integration (SY 5)

Sharma S., Bansal R., Jain S., Sethi P., Sethi P.
Comparative evaluation of strain ratio on sonographic elastography and T2* values on 3Tesa MRI in differentiating malignant from benign axillary lymph nodes in breast cancer (SS 1902b), B-1797

Shelmerdine S.C.
Juvenile idiopathic arthritis (JIA): A. Conventional radiography: still a helpful method? (E³ 1326), A-0794

What does perinatal autopsy add after antenatal ultrasound and post-mortem MRI investigations (SS 612), B-0606
Shelmerdine S.C., Hutchinson J.C., Sebire N.J., Arthurs O.J.
Post-mortem ultrasound-guided biopsy for perinatal death investigation: a pilot study
(SS 1512), B-1319

Shen M., Yang Z., Diao K., Jiang L., Huang S., Hu B., Guo Y.
Left ventricular global strain analysis in arrhythmogenic right ventricular cardiomyopathy with or without syncope: a cardiac magnetic resonance imaging study (MY 18), B-1674

Shen M., Yang Z., Diao K., Zhao Q., Jiang L., Huang S., Guo Y.
Left ventricular function impairment and deformation assessment of post-transcatheter aortic valve implantation (TAVI); a systematic review and meta-analysis (MY 18), B-1680

Shen M., Yang Z., Diao K., Jiang L., Hu B., Huang S., Guo Y.
Functional assessment and prognostic value of cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy (SS 1903a), B-1825

Excessive alcohol consumption in adolescent men compromises frontal white matter integrity via disruption of myelin (and axons): a combined DTI-metabolic study (SS 1411b), B-1618

Shi K., Yang Z., Guo Y., Huang S., Li X.
Noninvasive assessment of myocardial oxygenation after acute myocardial infarction with breath-hold-induced blood oxygen level-dependent imaging (SS 1803), B-1618

Shi R., Yang Z., Guo Y., Zhao Q., Gao Y., Han P.
Comparison of the incidence of in-stent restenosis and the newly developed plaques after stenting between diabetic and non-diabetic patients: evaluation with DSCT angiography (MY 18), B-1676

Shi Z., Chen G., Zhou C., Lu G., Zhang L.
Development and validation of prediction model based on hemodynamic derived from computed tomography angiography for rupture risk of small unruptured intracranial aneurysms (SS 315), B-0217

Shi Z., Pan C., Zhou C., Fan D., Li X., Lu G., Zhang L.
Development and validation of a deep neural network-based computer-assisted detection system for cerebral aneurysms in CT angiography (SS 705), B-0754

Diagnostic performance of MRI- vs MDCT-categorised T3cd/T4 for identifying high-risk stage II or stage III colon cancers: a pilot study (SS 1001a), B-0942

Shokry S., Moustafa A.F.I., Hawanna M.A.M., Hussein M.M., Shokry A.
Diffusion-weighted MR imaging diagnostic merits in post-therapeutic assessment of musculoskeletal soft tissue sarcoma (SS 716), B-0693

Shorikov M., Sergeeva O.N., Frantsev D., Lapteva M., Virsheke E., Dolgushin B.
Overrepresentation of uncommon biliary confluence types in hilar cholangiocarcinoma patients (SS 301), B-0395

Shu S., Xianghong X., Ganghua T.
Cell death PET imaging of rat liver cirrhosis with 11Ga-NOTA-PEG3-Duramycin (SS 1406), B-1124

Si-Mohamed S.A., Dupuis N., Rotzinger D.C., Boccalini S., Yagil Y., Coulon P., Shapira N., Douek P., Bousell L.
Virtual non contrast imaging of aortic intramural hematoma for replacing the non contrast CT imaging (SS 717), B-0731

Si-Mohamed S.A., Tatard-Leitman V., Coulon P., Douek P., Noel P.B., Bousell L.
Spectral photon-counting CT multi-phase liver imaging with dual contrast agent (SS 1406), B-1116

Siddique U.
The role of radiology in major healthcare challenges faced by Pakistan: Many faces of tuberculosis (EM 3), A-1082

Siddiqui I.A., Foley K.G., Panalipappan B., Gibson A., Pearce T., Davies G.J.
One-year results from the South Wales Rapid Diagnostic Clinic for patients with serious but non-specific symptoms of cancer (SS 1904), B-1852

Silva M.
Lung cancer team: Imaging and staging (MS 1), A-0051

Silva M.
Lung cancer in the era of molecular oncology and immune therapy: C. ALK-rearranged and other mutations of lung adenocarcinomas (E³ 1022), A-0801

Silva V.M.F., Ramos I., Moreira J., Marques M.
Comparison of MRI acoustic noise levels in different types of sequences (SS 414), B-0412

Simelius-Nieminen S., Malmivirta H., Seiko-Vänttinen V., Saukko E.
Infection control: developing aseptic methods and creating a guideline for interventional radiology unit (SS 1014), B-0888

Simeonov G.
Diagnostic reference levels (DRLs) based on clinical indication: European Commission perspective (EU 2), A-0409

Simmelr L.
Implementation of the radiation protection laws in Switzerland (SY 15)

Coronary CT based on-site FFR might be a useful tool to identify haemodynamically relevant non-culprit lesions in patients who suffered myocardial infarction (SS 703), B-0796

Singh A., George U.B., Pandian J.D.
Pattern of septomegacolic collateral circulation on perfusion computed tomography in patients with acute ischaemic stroke (SS 711), B-0714
Authors’ Index

Sorantin E.
Everything you need to know about 3D post-processing: Chairperson’s introduction (RC 405), A-0142

Soyer P.
Imaging in pregnancy: C. Imaging the placenta (RC 1307), A-0811

Spadarella G., Bonomo L., Monti C.B., Sardenelli F., Secchi F.
Psosas muscle cross-sectional areas and aortic valve calcification in patients enrolled for transcatheter aortic valve implantation (TAVI) (SS 203), B-0199

Specht S.
Philips UNIQUE 2: meeting clinical challenges by tailored image processing (SY 28)

Spiliopoulos S.C.
Multidisciplinary approach to the diabetic foot: Interventional radiological treatment (IR) (MS 17), A-1065

Spink C., Avanesov M., Schmidt T., Grass M., Schoen G., Adam G., Ittrich H., Bannas P.
Radiation dose reduction during angiographic adrenal vein sampling using a new imaging technology (SS 209), B-0119

Spoor D.S.
Cardiovascular effects after radiotherapy for breast cancer: the European MEDIRAD Project: Optimization of multivariable prediction models for major cardiac events after radiotherapy for breast cancer (EU 1), A-0017

Sporea I., Bende F.B., Popescu A.S., Sirli R., Danila M.
Are there different cut-off values for staging liver fibrosis using 2D-SWE implemented on different systems from the same manufacturer? (SS 1801a), B-1533

Spurny M., Jiang Y., Schübel R., Danila M.
Balloon vesselplasty vs percutaneous arterial embolization in mesenteric ischemia (SS 201a), B-0067

Stacul F.
Contrast media guidelines: B. Iodine-based contrast media in myeloma patients (RC 1207), A-0725

Stacul F.
Contrast agents for imaging: not only iodine: Keynote lecture (SS 607), K-13

Stafrace S.
Intensive care paediatric radiology: the very sick neonate: Chairperson’s introduction (RC 512), A-0726

Stajgis M.
My three top tips in neuroimaging (not only for neuroradiologists): Chairperson’s introduction (SF 4), A-0152

Stajgis M.
Renal, adrenal and urinary tract pathologies: Adrenal pathologies (BS 8), A-0433

Stanzione A., Ponsiglione A., Cocozza S., Cuocolo R., Picchi S.G., Romeo V., Stilo S., Brunetti A., Imbracio M.
Prostate cancer local staging: a comparison of short dual pulse and biparametric MRI vs multiparametric MRI (SS 707), B-0823

Diastolic dysfunction in competitive triathletes following a strenuous endurance sport event (MY 18), B-1682

Prediction of surgery requirement in mesenteric fibrosis on CT using a radiomics approach (SS 1401b), B-1279

Classification of malignant and benign liver tumours using a radiomics approach (SS 201a), B-0067

Staub D.
Exploring the ultimate vascular solution with the world’s first xMATRIX XL14-3 transducer (SY 17)

Steinbach L.
Shoulder sports injuries and postoperative MRI: A. Shoulder injuries in the throwing athlete (TC 1328), A-0804

Steinbach L.
Shoulder sports injuries and postoperative MRI: C. Interactive case discussion (Part 1) (TC 1328), A-0806

Steinfelder E.
Will the General Data Protection Regulation (GDPR) hamper the secondary use of clinical imaging data for research?: Why is secondary use of existing imaging data important for research progress? (ESR/BBMRI-ERIC), A-0630

Stenzel M.
CEUS diagnostic imaging in the paediatric population (SY 23)

Stern E.J.
Thoracic imaging: new approaches and techniques: Keynote lecture (SS 1804), K-38

Stevenson C., Schuier J., Acharya T., Bronson K., Rollison S., Bandettini W., Shanbhag S., Chen M.Y.
Deep learning reconstruction for calcium scoring reduces radiation dose while maintaining accuracy of Agatston scores (SS 305), B-0300

Stevenson C., Schuier J.L., Acharya T., Bronson K., Rollison S., Bandettini W., Shanbhag S., Chen M.Y.
The effect of deep learning reconstruction on calcium scoring (SS 1414), B-1114

Steljtes B.
Artificial intelligence (AI): our future cannot be predicted, but we have to be prepared: AI for lesion detection and characterisation (SF 8a), A-0394

Altered whole brain connectivity as a potential marker of disease burden in glioma patients (SS 211a), B-0094

Stoker J.
US before CT in the acute abdomen?: Chairperson’s introduction (PS 1427), A-0835

Independent association of extracellular volume fraction with myocardial strain assessed by CMR in subjects without history of cardiovascular disease from the general western population (SS 603), B-0589

Storz C., Rothenbacher T., Rospilczsz S., Linseisen J., Messmann H., De Cecco C.N., Peters A., Schlott C.L., Bamberg F.
Whole-body MRI: prevalence and extent of asymptomatic diverticular disease and the association of dietary habits, cardiometabolic and constitutional risk factors (SS 1001a), B-0945
Stoupis C.
Gastrointestinal and abdominal: Chairperson's introduction (E' 1259), A-0768

Stowe J.G.
The future of radiology: what it could mean for new radiography graduates: Evolving imaging technologies (BR 17), A-1043

Stowe J.G., O'Halloran C.
Integrating CT simulation into radiography undergraduate training (SS 1914a), B-1702

Stranieri G., Gallo G., De Pascale A., Gned D., Bini M., Basile D., Checcucci E., Porpiglia F., Vettri A.
Local staging in prostate cancer (PCA): the role of capsular bulging and the length of capsular contact (LCC) to predict the risk of extracapsular extension (ECE) at final pathology (SS 707), B-0824

Stranieri G., Priola A., Basile D., Priola S., Vettri A.
Incidental adrenal masses (IAM) at basal CT or enhanced CT: differentiating non-functioning adenomas from tumour lesion using histogram and texture analysis (TA) (SS 1407), B-1144

Strickland N.H.
Mobile devices in radiology: C. Recommendations for reporting on mobile devices (RC 105), A-0013

Stroszczyński C.
GI bleeding: how can the problem be solved?: B. Occult and overt GI bleeding: the role of radiology (RC 501), A-0026

Value-based practice (VBP) training for radiographers (SS 214), B-0033

Su T., Jin L.
Leaving-tail microcoil localisation for small pulmonary nodules prior to thoracoscopy (SS 1909), B-1813

Su T., Chen Y., Chen X., Zhang T., Shi X., Xue H., Zhang Z., Jin Z.
Preliminary diffusion kurtosis imaging study of head and neck squamous cell carcinomas associated with histologic grades (MY 14), B-1246

Comparison between high-resolution 3D-REAL-IR and 3D-FLAIR sequences in the assessment of endomyocardial hydrops in 3 Tesla (SS 308), B-0294

Sudarkina A., Dergilev A., Gorbunov N., Kozlov V.
Quantitative analysis of diffusion weighted magnetic resonance imaging in lung nodules characterisation (SS 1004), B-1005

Sudarski S., Henzl T., Schäfer D., Viergutz T., Terboven T., Schönberg S.O., Haubenreisser H.
Incidental findings in whole-body CT: a retrospective analysis in over 1000 resuscitation room patients (SS 217), B-0106

Sudarski S., Schäfer D., Henzl T., Terboven T., Viergutz T., Schönberg S.O., Haubenreisser H.
Iatrogenic injuries and misplaced foreign material found in whole-body CT: a retrospective analysis in over 1000 resuscitation room patients (SS 717), B-0735

Suganchand Rikabchand S.K.
Role of acoustic radiation force impulse (ARFI) in differentiating benign and malignant thyroid nodules (SS 208), B-0128

Suganchand Rikabchand S.K., Mohammed Kashif R.
Role of shearwave elastography in assessment of cervical lymph nodes (SS 608), B-0637

Sugiyama M., Takehara Y., Alley M., Unno N., Katahashi K., Wakayama T., Nozaki A., of cervical lymph nodes (SS 608), B-0637

Sukupova L.
Radiation burden of patients with hepatocellular carcinoma from multiple TACE and CT procedures (SS 1813), B-1602

Suleiman M.E., Brennan P.C., McEntee M.F.
The effect of overestimating glandularity on mean mammographic glandular dose increase after EVAR treatment (SS 1915), B-1722

Sullivan Y., Fraser L., Woodhouse G.
A retrospective review of justification of diagnostic X-ray quality assurance (SS 1013), B-0998

Sum R., Lau K.K.
Gelfoam slurry tract embolisation after computed tomography-guided percutaneous lung biopsy: does it prevent major pneumothorax? (SS 1909), B-1815

Sun W., Ota H., Chibana S., Sato H., Sugimura K., Takase K.
The role of 4D flow MRI in evaluating the outcome of balloon pulmonary angioplasty (MY 4), B-0421

Sundell V., Hippeläinen E., Peltonen J.I.
Automatic analysis and result presentation workflow for diagnostic X-ray quality assurance (SS 1013), B-0998

Sung P., Yoon S.
CT bronchovascular bundle thickening sign as a predictor of survival in patients with peripheral small cell lung cancer 3 cm or smaller (SS 704), B-0773

Svanteson M., Afdadzi M., Martinsen A.C., Klow N.E., Lysvik E.K., Bjerkland K., Ender T.R.
Assessment of coronary in-stent stenosis using high-resolution scan mode and dual-energy CT: a phantom study (SS 614), B-0480

Sverzellati N.
Challenging HRCT patterns: tips and tricks from the experts: Inter-and intralobular septal thickening (SF 8b), A-0453

Sverzellati N.
Fibrotic lung diseases: A. Idiopathic pulmonary fibrosis (RC 1204), A-0700

Sverzellati N.
Writing reports: a survival guide: B. Interstitial lung disease: searching for clarity (E' 1221), A-0793

Swarup M., Upreti L.
Usefulness of CT perfusion generated time-density curves and perfusion parameters in the diagnosis and differentiation of parotid neoplasms (SS 1008), B-0977

Survey: imaging surveillance among Belgian breast clinics for primary locoregional breast cancer in non-high-risk women (MY 5), B-0473

Sysmäki H., Wood P., Laaksonen-Heikilä R.
Radiographer as RIS/PACS administrator: promoting professional networking and continuing professional education by the society of radiographers in Finland (SS 1414), B-1115

Szatmari G., Pytelowski P., Papanikolaou N., Ilting R.
Operational performance optimisation by means of an imaging analytics platform: a case study (SS 1405), B-1185
T

Tack D.
Errare humanum est: A. Errors in chest radiograph (E² 7211), A-0356

Tack D.
Back to basics: how to interpret a chest radiograph?: C. Lobar atelectasis (RC 1504), A-0916

Machine learning-based analysis of CT radiomics model for the prediction of colorectal metastasous liver metastases (SS 1805b), B-1852

Tagliafico A.
Elbow imaging: from detailed anatomy to pathology: B. Biceps and triceps (RC 1710), A-1047

Tagliafico A., Rossi F., Valdora F., Grandis M., Benedetti L., Bignotti B., Schenone A., Martinoli C.
Pilot study on radiomics of peripheral nerves: feasibility of quantitative imaging phenotyping on magnetic resonance imaging (SS 1910b), B-1745

Taha N., Zidan D., Geneidi E.
Should multiparametric MRI with semi-quantitative perfusion replace triphasic CT in follow-up post TACE (SS 401), B-0400

Taina M.
Neurologic emergencies: Ischaemic stroke: diagnosis (BS 9), A-0524

Takahashi S., Ueno Y., Sofue K., Negi N., Kagawa K., Murakami T., Tanaka U.
Reassessment the ability of renal CE-CT for follow-up post TACE (SS 9), A-0524

Low energy imaging for depicting renal venous tumour thrombus on multi-phase contrast-enhanced dual-energy CT with 3rd generation dual-source CT scanner (SS 1407), B-1145

Advantages of T2 relaxation time with ultrasound short TE on intervertebral disc degeneration (SS 1910a), B-1735

Takenaka D., Fujii K., Sugihara N., Seki S., Yoshikawa T., Ohno Y.
Ultra-high-resolution CT vs state-of-the-art area-detector CT: can higher spatial resolution improve nodule detection capability at same radiation dose in chest nodule phantom study? (MY 4), B-0424

Takenaka D., Higashida A., Kono Y., Hashimoto T., Maeda H., Sakamoto S.
The utility of the ultra-high-resolution CT to evaluate the detailed bronchial tree for COPD (MY 4), B-0425

Talarczyk S., Uhlenbrock D.F., Haage P., Stückle C.A.
Morphological changes of disc herniation following CT-guided percuticular infiltration (SS 1510), B-1299

Tali E.T.
Inflammatory and infectious CNS pathology: Chairperson's introduction (RC 1211), A-0675

Tam M.
The 3D printing lab from bench to bedside: Cardiovascular applications of 3D printing (E³ 7211), A-0356

Tamandi D., Fueger B., Haug A., Ba-Ssaltamah A.
Combination of quantitative 18F-FDG PET parameters and contrast-enhanced CT in locoregional restaging and prognostication of survival in patients with oesophageal cancer (SS 1901b), B-1875

Tamburrano C., Busacca M.
Colla-Ha versus bone marrow stimulation for chondral and osteochondral lesion: a 2-year randomized controlled trial (MY 9), B-0864

Tanamala S., Chilamkurthy S., Biviji M., Ghosh R., Rao P.
Prospective evaluation of a deep learning algorithm deployed in an urban imaging centre to notify clinicians of head CT scans with critical abnormalities (SS 705), B-0748

Tanamala S., Chilamkurthy S., Biviji M., Rao P., Ghosh R.
Automated detection and localisation of aortic coarctation on 16-slice CT: a multi-center study (MY 7), B-0807

Coronary computed tomography angiography-derived fractional flow reserve in anomalous origin of the right coronary artery from the left coronary sinus (SS 703), B-0784

Tan L., Chang W., Chen M.
A preliminary study of predicting molecular subtypes of breast cancer by the radiomics features of contrast-enhanced ultrasound (MY 7), B-0807

Factors that influence performance of the contrast-enhanced ultrasound prediction model in 1023 breast lesions: a multi-center study (MY 5), B-0462

Tan W.
Contrast-enhanced digital mammography, magnetic resonance imaging and mammography alone: a comparison of diagnostic performance in symptomatic women (SS 1902a), B-1785

Tanturri de Horatio L.
Juvenile idiopathic arthritis (JIA): B. Ultrasound for detecting and grading of inflammation in JIA (E² 1326), A-0795

ASL perfusion MRI reveals reduced cerebral blood flow in the hippocampal region in patients with former childhood medulloblastoma (SS 1416), B-1241

Tao B., Xiao Y., Zhang W., Yao L., Lui S.
Altered cortical thickness related to single nucleotide polymorphisms (SNP@) in the major histocompatibility complex (MHC) in antipsychotic-naive schizophrenia (SS 1511), B-1330

Taouli B.
Functional imaging of the liver: C. Characterisation of liver tumours and prediction of tumour response (E² 620), A-0335

Taouli B.
Time to clarify which gadolinium-based contrast should be used in liver MRI (SY 31)

Tasu J.-P.
Use of iodine contrast in upper abdominal imaging: stop to the confusion (SY 31)

Tavakoli Tabasari S., Baran P., Nesterets Y., Pacilie S., Wienbeck S., Dullin C., Arefli F., Lewis S., Tromba G., Gureyev T., Brennan P.
Propagation-based computed tomography and cone-beam computed tomography of the breast: a comparison of radiological image quality (SS 1902a), B-1789
Authors’ Index

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor A.M.</td>
<td>Cardiac imaging: A. Grown-ups with congenital heart disease (E³ 921), A-0483</td>
</tr>
<tr>
<td>Taylor S.A.</td>
<td>Radiologic anatomy: abdomen: Small bowel (BE 4), A-0162</td>
</tr>
<tr>
<td>Teerasmitit W.S.R.V.</td>
<td>Predicting progression to hypervascular HCC in hypovascular hypointense nodules on gadoxetic acid-enhanced MR images in patients with chronic liver disease (SS 1901a), B-1769</td>
</tr>
<tr>
<td>Teh J.</td>
<td>Acute trauma: patterns in the peripheral skeleton: Acute trauma: patterns in the peripheral skeleton (E³ 25E), A-1089</td>
</tr>
<tr>
<td>Teixeira S.R., Arruda E.R., Saade S.M., Jackson O., Pollock A.N., Feygin T.</td>
<td>Prenatal MRI assessment of swallowing and pharyngeal structures in foetuses with facial clefts (SS 612), B-0604</td>
</tr>
<tr>
<td>Temel E., Cindell E., Ozhan Oktar S., Demir N.B., Sendur H.N., Haznedaroğlu S., Satis H., Bilici Salman R.</td>
<td>Evaluation of quantitative shear wave sonoeLASTography of major salivary glands in Sjögren’s syndrome (SS 1708), B-1453</td>
</tr>
<tr>
<td>Ter-Karapetyan A., Wielpuż M.O., Kauczor H.-U., Triphan S.</td>
<td>Quantitative perfusion MRI of the lung in COPD: the problem of short-term repeatability (MY 4), B-0420</td>
</tr>
<tr>
<td>Tessarin G., Fusaro M., Bortolanza C., Morana G., Quaia E.</td>
<td>HTA of patient management with and without triple rule out CT protocol (SS 1003), B-1011</td>
</tr>
<tr>
<td>Thaha R., Jogi S., Rajan S., Singh A., Mahajan V., Mehndiratta A., Venugopal V.K., Mahajan H.</td>
<td>Retrospective comparative study to assess the pitfalls of CartiGram and the complementary role of FSPD in the evaluation of cartilage lesions of the knee joint (SS 1410), B-1132</td>
</tr>
<tr>
<td>Thaha R., Jogi S., Rajan S., Venugopal V., Bhattarcharjee R., Mehndiratta A., Singh A., Barnwal M., Mahajan V., Nanda G.</td>
<td>Evaluating variability of T2 values of the cartilage, meniscus and muscles around knee joint on CartiGram sequence at 1.5 T and 3.0 T MR (SS 1410), B-1133</td>
</tr>
<tr>
<td>Tham J., Harkness E.F., Stocking K., Brentnall A.R., Cuzick J., Evans D.G., Astley S.M.</td>
<td>Reproducibility and measurement error in automated breast density assessment (SS 1002), B-0917</td>
</tr>
<tr>
<td>Theilig D., Steffen I., Denecke T., Hamm B., Geisel D.</td>
<td>Predicting liver failure after extended liver resection following portal vein embolisation with gadoxetic acid-enhanced MRI (SS 1501b), B-1374</td>
</tr>
<tr>
<td>Thoduka S., Mercogliano S., Czerniakowsky V., Spahr N., Schlier J., Schenk A., Abolmaali N.</td>
<td>Post-SIRT PET/CT showing variable deposition of 90Y in various liver tumour types (SS 609), B-0558</td>
</tr>
<tr>
<td>Thoey H.C.</td>
<td>Functional imaging of the kidneys: Chairperson’s introduction (E³ 720), A-0377</td>
</tr>
<tr>
<td>Thoey H.C.</td>
<td>Renal, adrenal and urinary tract pathologies: Renal pathologies (BS 8), A-0432</td>
</tr>
<tr>
<td>Thoey H.C.</td>
<td>Prostate MRI: the accreditation issue: C. Towards a certified radiologist (E³ 1726b), A-1074</td>
</tr>
<tr>
<td>Thomassin-Nagagara I.</td>
<td>Early detection of ovarian cancer: C. ORADS: MRI (E³ 119), A-0073</td>
</tr>
<tr>
<td>Thomassin-Nagagara I.</td>
<td>Breast imaging in pre-menopausal women: Chairperson’s introduction (SF 8e), A-0424</td>
</tr>
<tr>
<td>Thompson J.</td>
<td>Radiography research: a “how to” guide: How to critically appraise a research article (BR 13), A-0779</td>
</tr>
<tr>
<td>Thomsen H.S.</td>
<td>Contrast media guidelines: Chairperson’s introduction (RC 1207), A-0723</td>
</tr>
<tr>
<td>Thorsidottir S., Oladottir G., Nunnemela M., Koskinen S.</td>
<td>Diagnostic performance of CT and the use of GI contrast material for the detection of hollow viscus injury after penetrating abdominal trauma (SS 217), B-0101</td>
</tr>
<tr>
<td>Thrall J.H.</td>
<td>Dream team: A. How to find the best people and make them a part of a long-time success (E³ 1018), A-0595</td>
</tr>
<tr>
<td>Thrurnher M.M.</td>
<td>My three top tips in neuroimaging (not only for neuroradiologists): Meningitis (SF 4), A-0157</td>
</tr>
<tr>
<td>Thrurnher M.M.</td>
<td>Inflammatory and infectious CNS pathology: C. Inflammatory and infectious myelitis (RC 1211), A-0678</td>
</tr>
<tr>
<td>Thrurnher M.M.</td>
<td>Cutting edge imaging and minimally invasive interventions of the spine: Advanced imaging of spinal cord lesions: do we need DWI, perfusion and spectroscopy? (SF 13b), A-0757</td>
</tr>
<tr>
<td>Thrurnher M.M.</td>
<td>Neuro: C. Tumours of the brain and spine (E³ 1423), A-0831</td>
</tr>
<tr>
<td>Thrurnher M.M.</td>
<td>Imaging of the brain: A. Stroke mimics (E³ 1821), A-1075</td>
</tr>
<tr>
<td>Tian S., Yuan H.</td>
<td>Application of 3.0T magnetic resonance diffusion tensor imaging in diagnosis of discogenic low back pain (SS 1910b), B-1742</td>
</tr>
<tr>
<td>Tiberia F., Rengo M., Steri L., Bellini D., Trionfiera G., Carbone I., Laghi A.</td>
<td>Effectiveness of bowel preparation without diet restriction for optimal quality CT colonography: a validation study (SS 1001a), B-0940</td>
</tr>
<tr>
<td>Tilliridou V., Murchison J., van Beek E.J.R., Newby D.E., Williams M.C.</td>
<td>Implications of incidental coronary artery calcification on thoracic computed tomography (SS 1503), B-1316</td>
</tr>
<tr>
<td>Tipaldi M., Krokidis M., Orgera G., Rebonato A., Ambrogi C., Rossi M.</td>
<td>Transarterial embolization of non-variceal upper gastrointestinal bleeding: is the use of ethylene-vinyl alcohol Copolymer as safe as Coils? (MY 8), B-0849</td>
</tr>
<tr>
<td>Tipaldi M., Orgera G., Laurino F., Ronconi E., Krokidis M., Zolovkins A., Laghi A., Rossi M.</td>
<td>CT-guided lung biopsy: a simplified classification and scoring system to assess appropriateness of indication according to nodules’ 18-FDG uptake, dimension and localisation (SS 1909), B-1809</td>
</tr>
<tr>
<td>Tiralongo F., Palermo M., Falsaperla D., Krokidis M., Zolovkins A., Laghi A., Rossi M.</td>
<td>Implications of incidental coronary artery calcification on thoracic computed tomography (SS 1503), B-1316</td>
</tr>
<tr>
<td>Tiralongo F., Palermo M., Falsaperla D., Stefano A., Torrisi S.E., Foti P., Basile A., Vancheri C., Palmucci S.</td>
<td>Correlation between pulmonary function tests, histogram-based analysis indexes and visual HRCT scores in a population of IPF patients (MY 4), B-0418</td>
</tr>
<tr>
<td>Titova A.M., Fokin V.A., Trufanov G.E., Ivanova M.O.</td>
<td>DECT in the diagnosis of the efficiency of chelation therapy in patients with iron overload (SS 701), B-0791</td>
</tr>
<tr>
<td>Authors’ Index</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Tolan D.J.M.</td>
<td>Imaging of the complicated postoperative abdomen: C. Bowel (RC 901), A-0406</td>
</tr>
<tr>
<td>Tommyh M., Wazon M., Abdul Jabar A., Abbass E., Mishaw N.</td>
<td>Effect of adding charcoal capsule to abdominal ultrasound preparation on image quality (SS 1414), B-1105</td>
</tr>
<tr>
<td>Tomita E., Hayashi H., Asahara T., Shitakubo Y., Sakuragawa K., Ikushima H., Kanazawa Y., Okazaki T., Hashizume T.</td>
<td>Evaluation of dose to risk organ during brachytherapy for cervical cancer using a novel passive rectum dosimeter (SS 711a), B-0648</td>
</tr>
<tr>
<td>Tomita H., Yamashiro T., Tsubakimoto M., Iida G., Murayama S.</td>
<td>Texture analysis for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma on unenhanced CT (SS 1008), B-1629</td>
</tr>
<tr>
<td>Tomppert A., May M.S., Wiesmüller M., Heiß R., Nagel A., Uder M., Wuest W.</td>
<td>Perfusion MRI with high spatial and temporal resolution in the head and neck region using golden angle radial sampling (MY 14), B-1245</td>
</tr>
<tr>
<td>Tonelli P., Boeri C., Cirone D., Bianchi S., Miele V., Nori Cucchiari J.</td>
<td>Reliability of contrast-enhanced spectral mammography (CESM) in the pre-surgical assessment of breast cancer: CESM vs histological maximum diameter (MY 5), B-0470</td>
</tr>
<tr>
<td>Tong X., Wald R., Karur G.R., Cheung Y., Ng M.</td>
<td>Application of CMR derived myocardial deformation parameters to predict restrictive physiology in repaired tetralogy of Fallot patients (SS 1903b), B-1864</td>
</tr>
<tr>
<td>Topcuoglu E.D., Topcuoglu O.M., Semiz Oysu A., Bukte Y.</td>
<td>Gadodatromine meglumine, a macrocyctic agent causes gadolinium retention in the brain of children: a case-control study (SS 1011a), B-0929</td>
</tr>
<tr>
<td>Topcuoglu O.M., Selcuk N., Sarikaya B.</td>
<td>Transarterial radioembolisation with Yttrium90 glass microspheres without temporary or permanent occlusion of the cystic artery appears to be safe in terms of adverse effects (SS 609), B-0357</td>
</tr>
<tr>
<td>Torkzad M.R., Riddell A., Koh D.-M.</td>
<td>Assessment of abbreviated MRI of liver for initial follow-up of patients with liver metastases from colorectal cancer (SS 1001b), B-1046</td>
</tr>
<tr>
<td>Torlone S., Corridore A., Martino M., Micelli M., Panebianco L., Tota R., Splendiani A., Masiocchi C.</td>
<td>Deep grey matter and multiple sclerosis: is there a correlation between MR imaging and disability? (SS 611), B-0544</td>
</tr>
<tr>
<td>Toth D., Kittlinger J., Lampichler K., Loewe C., Scherntthner R.</td>
<td>Curved surface reformations - diagnostic accuracy and time-efficiency of a new peripheral CTA reformation technique (SS 315), B-0219</td>
</tr>
<tr>
<td>Toulqué Y., Bouhalli O., Doherty J.O., Goracy J., Delakls J.</td>
<td>Monte Carlo simulation of dual-energy CT systems: initial validation of radiation dose measurements (SS 1813), B-1801</td>
</tr>
<tr>
<td>Toudias T.</td>
<td>Functional imaging of the brain: A. Stroke (E³ 320), A-0134</td>
</tr>
<tr>
<td>Tran T.T., Kristiansen C.H., Haidl F., Roy S., Lindstrom J.C., Ashraf H., Lauritzen P.</td>
<td>Determining optimal scan delay in indirect CT venography: time to peak attenuation correlates with cardiac output and heart rate (SS 615), B-0492</td>
</tr>
<tr>
<td>Trattning S.</td>
<td>7 Tesla MR goes clinical: Chairperson’s introduction (SF 5a), A-0249</td>
</tr>
<tr>
<td>Trattning S.</td>
<td>7 Tesla MR goes clinical: MSK imaging at 7 T: what are the additional clinical benefits (SF 5a), A-0252</td>
</tr>
<tr>
<td>Travali M., Foti P., Ognibene N.M.G., Palmucci S., Puzzo L., Inserra G., Zanoil L., Parisi S., Basile A.</td>
<td>Can diffusion-weighted imaging (DWI) in MR enterography discriminate inflammatory strictures from fibrotic strictures in Crohn’s disease? (SS 1801b), B-1648</td>
</tr>
<tr>
<td>Traykova N.I.</td>
<td>Communicating the role of the radiologist: best practices to manage patient expectations: Chairpersons’ introduction (part 2) (PA), A-0823</td>
</tr>
<tr>
<td>Traykova N.I.</td>
<td>Head and neck cancer: Keynote lecture (SS 1008), K-23</td>
</tr>
<tr>
<td>Treutlein C., Zeilinger M., Heiß R., Wuest W., Rompel O.</td>
<td>Free breathing real-time cardiac MRI in children with congenital heart disease: comparison of right ventricular function with standard breath-hold imaging (SS 1903b), B-1868</td>
</tr>
<tr>
<td>Trianni A.</td>
<td>Patient-specific dosimetry: C. Patient dose in fluoroscopy and interventional (RC 113), A-0049</td>
</tr>
<tr>
<td>Trianni A.</td>
<td>Radiation protection technology and management: Keynote lecture (SS 1413), K-29</td>
</tr>
<tr>
<td>Triantopoulou C.</td>
<td>Acute pancreatitis: Role of imaging (E³ 24A), A-0097</td>
</tr>
<tr>
<td>Tridente D.M., Heidinger B.H., DaBreo D.C., Bankler A.A., Litmanovich D.</td>
<td>CT measurements of expiratory central airway collapse in COPD patients with suspected tracheobronchomalacia: comparison between transverse and MPR images (SS 600), B-0580</td>
</tr>
<tr>
<td>Tripathi P., Guo W., Yang C., Rai B., Zeng M., Yu H.</td>
<td>Clinical feasibility assessment of T3 sub-stage in rectal cancer using MRI (SS 1501a), B-1339</td>
</tr>
<tr>
<td>Tripathi P., Hu D., Zeng M., Guo W., Rao S., Rai B.</td>
<td>MRI-detected extramural vascular invasion is a strong risk factor in predicting distant metastasis in rectal cancer (MY 17), B-1479</td>
</tr>
<tr>
<td>Trisoglio A., Soligo E., Berardo S., Sukhoveli L., Bor S., Buoni G., Stecco A., Carriero A.</td>
<td>Evaluation of STIR, T1 DIXON ‘in and out of phase’ and DWI sequences, to propose a standardised protocol of the MRWB in patients affected by myeloma (MY 3), B-0367</td>
</tr>
<tr>
<td>Trofimenko I.</td>
<td>Brain cases: adults (SY 24)</td>
</tr>
<tr>
<td>Trojanowska A.</td>
<td>Radiologic anatomy: head and neck: Neck spaces (BE 6), A-0318</td>
</tr>
<tr>
<td>Trojanowska A.</td>
<td>Post-treatment imaging of the head and neck: B. Normal findings after surgery (RC 1208), A-0721</td>
</tr>
<tr>
<td>Truwit C.</td>
<td>Benefits of spectral CT in emergency department (SY 16)</td>
</tr>
<tr>
<td>Tsapaki V.</td>
<td>Dose management in paediatric radiology: B. Optimisation and technology in paediatric projection radiography, interventional and CT scanning (RC 1313), A-0787</td>
</tr>
<tr>
<td>Tschauner S., Marterer R., Nagy E., Apfalter G., Singer G., Riccabona M., Sorantin E.</td>
<td>Comparison of extremity cone beam-computed tomography and multidetector-computed tomography in injured children (MY 15), B-1361</td>
</tr>
<tr>
<td>Tsetis D.K.</td>
<td>GI bleeding: how can the problem be solved?: C. When is the interventional radiologist needed? (RC 501), A-0207</td>
</tr>
<tr>
<td>Authors’ Index</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Prospective randomised controlled trial comparing a battery-powered and a manual drill in bone biopsy (SS 1510), B-1292</td>
<td>Brain cases: paediatric (SY 24)</td>
</tr>
<tr>
<td>Uller W., Wohlgemuth W.A., Goessmann H., Müller-Wille R., Kirchner G.</td>
<td>Tsoumakidou G.</td>
</tr>
<tr>
<td>Partial splenic artery embolisation using ethylene vinyl alcohol copolymer in patients with portosplenomesenteric thromboses and portal hypertension (SS 709), B-0739</td>
<td>Pain palliation in cancer patients: Pain from bone metastases (SF 9a), A-0512</td>
</tr>
<tr>
<td>A new technique in mammography: self-compression-survey of patient contentedness (SS 1802a), B-1546</td>
<td>Consecutive acquisition of MRDSA and perfusion MRI in cases of brain metastasis through the addition of a supplementary dose of a Gd-based contrast agent at 3T (SS 1411a), B-1167</td>
</tr>
<tr>
<td>Real-time sonography as a teaching aid of anatomy in undergraduate radiography institutions in Northern Nigeria (SS 1414), B-1109</td>
<td>Texture analysis and machine learning for differentiation between phyllodes tumours of the breast from fibroadenomas in non-contrast MRI (SS 1402b), B-1180</td>
</tr>
<tr>
<td>Umutlu L.</td>
<td>Tsuda M.</td>
</tr>
<tr>
<td>Improving patient experience (SY 2a)</td>
<td>Adaptive statistical iterative reconstruction for computed tomography of the spine (SS 1814), B-1489</td>
</tr>
<tr>
<td>Umutlu L.</td>
<td>Tunariu N.</td>
</tr>
<tr>
<td>Role of imaging in cancer of unknown primary (CUP): B. Role of PET/CT in suspected CUP (RC 516), A-0292</td>
<td>Whole-body imaging in metastatic urinary tract and prostate cancer: B. WB-MRI and response assessment (E³ 419), A-0196</td>
</tr>
<tr>
<td>Vaimel J., Uprus M., Igumenova N., Roose Å., Samarinn A.</td>
<td>Tuncyurek Ö., Garces-Descovich A., Duran E.E., Cataldo T.E., Poylin V.V., Moretele K.J.</td>
</tr>
<tr>
<td>Influence of respiratory position on pulmonary artery contrast enhancement in dual-energy computed tomography angiography (SS 1904), B-1853</td>
<td>Structured vs narrative reporting of pelvic MRI in perianal fistulising disease: impact on clarity, completeness, and surgical planning (SS 201b), B-0210</td>
</tr>
<tr>
<td>Valletta R., Faccioli N., Tagliamonte M., Bonatti M., Mansueto G.</td>
<td>Turkay R., Inci E.</td>
</tr>
<tr>
<td>Role of CT colonography in differentiating sigmoid cancer versus chronic diverticular disease (SS 1001a), B-0937</td>
<td>Cognitive-MR-US fusion prostate biopsy: which one is worthwhile to perform? (SS 1007), B-0877</td>
</tr>
<tr>
<td>Vaijumal L.</td>
<td>Uberoï R.</td>
</tr>
<tr>
<td>Radiomics analysis of breast cancer on digital mammography (SS 602), B-0550</td>
<td>Cone-beam, 4D and more: new diagnostic tools for vascular diseases: C. How cone-beam CT can change your practice in interventional radiology (E³ 1226), A-0666</td>
</tr>
<tr>
<td>Feasibility of extracellular volume quantification using dual-energy CT (SS 1403), B-1215</td>
<td>The role of radiology in major healthcare challenges faced by Pakistan: Imaging of oral cancer (EM 3), A-1078</td>
</tr>
<tr>
<td>The prognostic value of CT myocardial perfusion and CT-FFR for MACCE in patients with coronary artery disease (SS 703), B-0787</td>
<td>Non-enhanced breast MRI (DWIBS mammography) for screening women with dense breasts: a feasibility study (SS 602), B-0550</td>
</tr>
<tr>
<td>Relationship between coronary CT angiography-derived fractional flow reserve and dynamic CT myocardial perfusion imaging in patients with coronary artery disease (SS 703), B-0789</td>
<td>van Beers B.E.</td>
</tr>
<tr>
<td>Functional imaging of the liver: A. Diagnostic and staging of diffuse liver diseases using functional MRI (E³ 620), A-0333</td>
<td>van Beuchem M.A.</td>
</tr>
<tr>
<td>Functional imaging of the brain: C. Cerebral small vessel diseases (E³ 320), A-0136</td>
<td>van der Molen A.J.</td>
</tr>
<tr>
<td>Improved patient experience (SY 2a)</td>
<td>My three top tips in neuroimaging (not only for neuroradiologists): Microbleeds (SF 4), A-0161</td>
</tr>
<tr>
<td>van der Molen A.J.</td>
<td>van der Molen A.J.</td>
</tr>
<tr>
<td>Contrast media guidelines: A. Post-contrast acute kidney injury (PC-AKI) (RC 1207), A-0724</td>
<td>Association between baseline meniscal extrusion on MRI and long-term incident knee osteoarthritis in two different cohorts (SS 1410), B-1136</td>
</tr>
<tr>
<td>van der Wel R.R., Vonder M., van Hamersvelt R.W., Greuter M., Si-Mohamed S.A., Douek P., Boussel L., Leiner T., Willeimink M.J.</td>
<td>Detectability of small coronary calcifications: a comparison between dual-layer and spectral photon-counting CT (SS 313), B-0311</td>
</tr>
<tr>
<td>van der Wel R.R., Vonder M., van Hamersvelt R.W., Willeimink M.J., Greuter M., Leiner T.</td>
<td>Effect of dose and iterative reconstruction on coronary calcium scores at different heart rates for dual-layer CT (SS 313), B-0317</td>
</tr>
<tr>
<td>van der Zijden T.</td>
<td>van der Zijden T.</td>
</tr>
<tr>
<td>Neurologic emergencies: Ischaemic stroke: treatment (SS 9), A-0525</td>
<td>Radiology and pathology: will we ever be (digitally) married?: Are digital pathology and AI the definitive factors for the merging? (SF 13a), A-0735</td>
</tr>
<tr>
<td>van Diest P.J.</td>
<td>van Diest P.J.</td>
</tr>
</tbody>
</table>
Authors’ Index

Vázquez E.
Foetal and neonatal imaging pearls: Chairperson's introduction (RC 912), A-0559

Vázquez E.
Paediatric oncology: The most common brain tumours (BS 12), A-0679

Veillon F.
Head and neck imaging: when does it become abnormal?: A. Normative measures in the temporal bone (RC 908), A-0568

Velasco González A., Münnich N., Rusche T., Buerke B., Görlch D., Sauerland C., Heindel W.
Circle of Willis anatomy does not influence the results of mechanical thrombectomy with balloon guide catheter (SS 311), B-0266

Veldhuis W.B.
Radiology and pathology: will we ever be (digitally) married?: How would the integration work? (Part 2) (SF 13a), A-0737

Velthuis B.K.
From diagnosis to prognosis: how does cardiac imaging affect patient outcome?: B. In non-ischaemic cardiomyopathy (RC 403), A-0147

Veltri G., Iezzi R., Posa A., Carchesio F., Gasbarrini A., Manfredi R.
Transarterial chemoembolisation with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients (SS 209), B-0110

Venugopal V., Maidhy K., Mahajan V., Mahajan H., Vaidya S., Devalla A.R.
Opening the “Black Box”: radiological insights into a deep neural network for lung nodule characterisation (SS 1005a), B-0912

Automated classification of chest x-rays as normal/abnormal using a high sensitivity deep learning algorithm (SS 1905a), B-1753

Verbeke S.
The “prostate unit” at work: The pathologist: guardian of the truth (MS 8a), A-0479

PET-MRI is non-inferior to PET-CT in paediatric and adolescent Hodgkin's lymphoma for staging and early response assessment (SS 1512), B-1324

Vernooij M.
Altered mental state: C. MRI in the diagnosis of Alzheimer's disease (RC 1311), A-0767

Vernooij M.
Neuro: B. Neurovascular disorders and trauma of the brain (E 1423), A-0830

Vernuccio F., Rosenberg M., Meyer M., Nelson R.C., Marin D.
Negative biopsy of focal hepatic lesions: decision tree model for patient management (SS 201a), B-0070

Vernuccio F., Godfrey D., Meyer M., Trionfera G., Carbone I., Laghi A., Steri L.
Polyp detection rate as a quality measure in CT colonography: analysis of the performance of a CT colonography service using a reduced bowel preparation without dietary restriction (SS 1001a), B-0935

Vignale D., Palmisano A., De Maschio A., De Cobelli F., Esposito A.
Cardiac CT in the quantification of myocardial extracellular volume fraction (ECV) with a semi-automatic method: comparison with cardiac MR (SS 1403), B-1216

Vijayakumar D.H., Kulkarni M.M.
Utility of 3T MRI whole-body DWI in onc-imaging for the detection of metastasis: comparison with PET/CT (SS 1716), B-1464

Vikestad K.G.
The future of radiology: what it could mean for new radiography graduates: Changing the delivery of radiology, responding to the needs of our patients (BR 17), A-1044

Vilar J.
Errare humanum est: B. Errors in CT of the chest (E 721), A-0357

Vilar J.
Chest: Chairperson's introduction (E 1623), A-0951

Vilares Morgado P.M.
Basic interventional radiology for non-interventionalists: let's start with biopsies!: How to do your procedure (SF 5b), A-0247

Vilela P.
My three top tips in neuroimaging (not only for neuroradiologists): Venous sinus thrombosis (SF 4), A-0159

Vásquez E.
Secrets of radiology communications with patients and referring physicians: A. Communication is all that really matters (E 1218), A-0708

Vivas M., Juhasz I.Z., Nguyen D.T., Csoobay-Novak C., Nemes B., Bottke K., Dosse E.
Long-term results of the aortoiliac kissing stents and risk factors of in-stent restenosis (SS 1009), B-0958

Verstraete K.
Musculoskeletal: bones and soft tissues: Bone marrow diseases (BS 1), A-0031

Verstraete K.
Bone, joint and soft tissue infection: A. Osteomyelitis (RC 410), A-0178

Polymn metastases from pancreatic cancer: morphologic and quantitative differences compared to lung metastases from colorectal cancer (SS 1016), B-1028

Viola S., M. R., Vaidya S., Devalla A.R.
Opening the “Black Box”: radiological insights into a deep neural network for lung nodule characterisation (SS 1005a), B-0912

Vijayakumar D.H., Kulkarni M.M.
Utility of 3T MRI whole-body DWI in onc-imaging for the detection of metastasis: comparison with PET/CT (SS 1716), B-1464

Vilares Morgado P.M.
Basic interventional radiology for non-interventionalists: let's start with biopsies!: How to do your procedure (SF 5b), A-0247

Vilela P.
My three top tips in neuroimaging (not only for neuroradiologists): Venous sinus thrombosis (SF 4), A-0159
Authors’ Index

Vilgrain V.
Multiparametric approach for diffuse liver disease with ultrasound (SY 4)

Vilgrain V.
Artificial intelligence: presented with new lecture formats: ESOR in action 2019 (ESOR), A-0369

Villeirs G.M.
Early detection of prostate cancer: Chairperson’s introduction (E³ 219), A-0091

Villeirs G.M.
The “prostate unit” at work: Chairperson’s introduction: My PSA is elevated...what now? (MS 8a), A-0477

Villeirs G.M.
The “prostate unit” at work: Multidisciplinary case presentation and discussion (MS 8a), A-0462

Vinyay S.

Vinnicombe S.J.
The high-risk patient enigma: C. Can surgery be avoided? (E³ 426a), A-0151

Vliegenthart R.
Acute chest pain and cardiac imaging: B. Myocardial perfusion in acute coronary syndrome (ACS): necessity or luxury? (RC 1603), A-0939

Vo D.T., Phan C.C., Nguyen L.T.T., Le H.M.D., Nguyen T.T.
Anal fistula: the role of MR imaging in preoperative evaluation (SS 201b), B-0214

Vock P.
Medical imaging and emerging issues in occupational radiation exposure: Is fear of radiation-induced occupational cancer irrational? (ESOR/EFOMP), A-0544

Diffusion kurtosis imaging (DKI) utility in differentiating low- and high-grade gliomas in paediatric patients: further experience (SS 1512), B-1327

Added value of MRI to endoscopic and endosonographic response assessment after neoadjuvant chemoradiotherapy in oesophageal cancer: a pilot study (MY 17), B-1483

Volpe A., Romeo V., Ginocchio M.I., Maurea S., Mainenti P.P., Petretta M., Sarno L., Martinelli P., Brunetti A.
Imaging detection of placenta adherence disorder in patients with placenta previa: comparison between US and MR findings (SS 1507), B-1383

von Falck C., Hinrichs J.B., Wacker F.
Presence of intravascular contrast material after intraarterial injection for CT arthrography (SS 710), B-0681

von Knebel Doeberitz P., Pannell T., van Assen M., Albrecht M.H., De Cecco C.N., Duguay T., Bayer R.R., Tesche C., Schoepf U.J.
Coronary CT angiography derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischaemia (SS 305), B-0301

von Krüchten R., Lorbeer R., Schuppert C.
Lung volumes and its association with subclinical impairment in whole-body MR imaging (SS 1404), B-1268

Double aspiration thrombectomy in endovascular recanalisation of acute ischaemic stroke patients (SS 309), B-0279

Vourtsis A.
Breast density and risk stratification: Keynote lecture (SS 1002), K-21

Vullierme M.
How to face the tsunami of pancreatic intraductal papillary mucinous neoplasia (IPMN): Diagnosis of IPMN: the mimickers and how to sort them out (SA 5), A-0238

Wagner W., Wuenennmann F., Biederer J., Konietzke P., Stillner W., Wielpütz M.O., Kauczor H.-U., Tromba G., Dullin C.
Synchrotron phase-contrast imaging of the lung: a proof-of-concept study on porcine lungs in a human-scale chest phantom (SS 1804), B-1610

Wald C., Aldoj N., Feger S., Hartmann N., Lukas S., Zargaran Tavakoli S., Dewey M.
Automated coronary artery segmentation using a U-net deep learning architecture on cardiac CT (SS 1003), B-1016

Wall A., Kucharzyk S.R., Hennessy W., O’Connor M., McNulty J.
The opinions of American radiography educators on lead shielding use in conventional radiography (SS 1914a), B-1706

Wallis M.G.
Breast cancer screening and treatment: how much is too much?: Are there breast cancers we do not have to treat? (SA 16), A-0944

Wallis M.G.
Diagnosing ductal carcinoma in situ (DCIS): C. Diagnosing DCIS with biopsy (RC 1702), A-1029

The mammographic features of 13,213 women with screen-detected non-invasive breast disease (SS 202), B-0079

Evaluation of dynamic contrast enhancement in PIRADSv2: a report from the Gothenburg 2 screening study for prostate cancer (SS 307), B-0324

Walsh C.
Dose reduction and image quality implications of iterative image reconstruction in CT: C. Image quality assessment of iterative reconstruction: pitfalls and future directions (RC 1713), A-1052

Wang F., Wang Q.
Correlation between single-kidney glomerular filtration rate (GFR) with ultra-low-dose CT perfusion and 99mTc-DTPA renal scan in healthy and tumour-bearing kidney (SS 307), B-0331

Epithelial ovarian cancer: tumour staging and detection of lymph node metastasis using ADC histogram parameters (SS 1507), B-1386

Wang H., Lu Y.
Diagnostic value of MR imaging with metal artefact reduction sequences in local recurrence of malignant bone tumour after joint replacement (SS 210b), B-0062

Does establishing preoperative nomogram including ultrasonographic findings help predict the likelihood of malignancy in patients with microcalcifications? (SS 702b), B-0718

Wang H., Zhang F., Fu W., Guan J., Guo Y.
Radionc analysis of multiparametric MRI for preoperative evaluation of pathological grade in bladder cancer (SS 707), B-0831

Wang H., Zou T., Xia C., Borrego P., Sousa P., Zhang M.
On the generalisability of deep learning across populations and abnormalities: a case study of the Stanford MURA and CheXNet algorithms (SS 1005a), B-0907
Wang H., Yue S., Lu P., Li W.
The effect of different monochromatic image choices on the accuracy of CT perfusion values for lung cancer in one-stop-spectral and perfusion CT scan (SS 704), B-0799

Wang H., Lu P., Yue S., Li W.
The effect of different monochromatic image choices on the reconstruction of CT perfusion data in one-stop-spectral and perfusion CT scan (SS 1904), B-1857

Wang L., Li R., Yan F., Qiang J., Han Q., Chen X.
Volumetric iodine density using dual-layer spectral CT for liver fibrosis staging and histopathological correlation (SS 1801a), B-1531

Wang M., Feng S., Li Z.P.
Prediction of type 2 diabetes mellitus using noninvasive MRI quantitation of visceral abdominal adiposity tissue volume (SS 414), B-0411

Application of artificial intelligence-based image optimisation algorithm in aorta CTA with low tube voltage and reduced contrast medium volume (SS 205), B-0012

Wang R., Li J., Gao J.
Clinical value of radiomics nomogram in preoperative prediction of lymph node metastasis of gastric adenocarcinoma (SS 1901b), B-1877

Wang S., Li N., Yu C.
The application of hepatic artery-targeting guidewire technique combined with indirect portography to transjugular intrahepatic portosystemic shunt (SS 709), B-0745

Wang S., Fan G.
Characterising resting-state networks in bilateral severe-to-profound sensorineural hearing loss infants within an early sensitive period (SS 1412), B-1230

Wang S., Wang Z., Zhang S., Fu Y., Hu T., Peng W.
Assistant effects of a computer-aided diagnosis system based on 3D convolutional neural network on LDCT reading (MY 7), B-0801

Wang S., Gong J., Yu H., Peng W.
CT-based radiomics predict immune-therapy response in patients with non-small-cell lung cancer (SS 1905a), B-1758

Wang W., Cheng J.
A whole-tumour histogram analysis of apparent diffusion coefficient maps for distinguishing uterine endometrial carcinoma from endometrial polyps (MY 7), B-0814

Wang W., Cheng J.
A whole-tumour histogram analysis of apparent diffusion coefficient maps for distinguishing lateral ventricle central neurocytoma from ependymoma (SS 1416), B-1239

Wang W., Dong Y., Yao Z., Zhang Q., Yang D., Yu J.
A sparse representation radiomics method based on multi-modality ultrasound images for hepatocellular carcinoma diagnosis and PD1 prediction (SS 1905b), B-1835

Wang W., Ding Y., Yang L., Zeng M., Rao S., Tian J.
Radiomics of gadoxetic acid-enhanced MRI: a predictive biomarker for CK19-positive hepatocellular carcinoma (MY 17), B-1467

Wang Y., Yong C., Wielopolski P., van der Wiel-Koolij E.C., Tiddens H.A., Clet P.
Assessment of lung volume and central airways dimension using MRI in children: a comparison with plethysmography, CT and PFT (SS 212), B-0170

Wang Y., Yao J., Raymond C., Ellingson B.M.
Association between tumor acidity and hypervascularity within human gliomas using pH-weighted amine CEST-EPI and DSC-perfusion MRI at (SS 1411a), B-1165

Wang Z.
Ultrasound-guided vacuum-assisted resection: could it be enough for the diagnosis and treatment of intraductal papilloma? (MY 5), B-0467

Watanabe A.T., May R.C., Sen L.C., Kapoor M., Leung J.
Artificial intelligence software to improve mammography workflow (SS 702a), B-0696

Watanabe A.T., Lim V., Weise E., Yu H.
Improved cancer detection using artificial intelligence: a retrospective evaluation of missed cancers on mammography (SS 702a), B-0698

Waterton J.C.
Imaging biomarkers and their combinations in the era of artificial intelligence: Role of AI in the introduction of imaging biomarkers: accelerator or obstacle? (ESR/EIBALL), A-0060

Watthén T., Paalimäki-Paakki K., Henner A.
Women's experience of pain in screening mammography (SS 1914b), B-1717

Wawryznik P., Bobek-Billiekwitz B., Hebda A., Awramienko A., Mazgaj P.
Tissue sodium concentration (TSC) in normal brain: preliminary study (SS 1511), B-1338

Webb A.
Demystifying MRI: things you always wanted to know. A Basic MR: the building blocks of pulse sequences (RC 1513), A-0910

Webb A.
MRI: safety, phantoms and quantification: Keynote lecture (SS 713), K-18

Weber L., Kristianssson I., Hansson M., Siemund R., Geijer H., Geijer M.
Exposure levels from radiology procedures used in myeloma diagnostics (SS 1413), B-1197

Weber M.-A.
Musculoskeletal: B. Bone tumours (E 1723), A-1035

Weber T.
Radiology and migrations: Radiology of the diseases related to migration (PC 5), A-0231

Wegner F., Friedrich T., von Gladiss A., Buzug T.M., Barkhausen J., Haegel J.
Magnetic particle imaging: artefact-free imaging of the in-sent lumen of coronary stents (SS 615), B-0498

Wei Y., Song B., Jiang H., Chen J.
Can intravoxel incoherent motion diffusion-weighted imaging be used for preoperative assessment of microvascular invasion in hepatocellular carcinoma (MY 3), B-0356

Weidekamm C.
Knee sports injuries and postoperative MRI: B. ACL reconstruction and cartilage repair (TC 1526), A-0920

Weidekamm C.
Knee sports injuries and postoperative MRI: C. Interactive case discussion (Part 2) (TC 1528), A-0922

Weikert T.J., Nesci I., Cyriac J., Moor M., Bremerich J., Sauter A.W., Sommer G., Stieltjes B.
Generation of a curated dataset from unstructured reports using natural language processing, illustrated on CT reports regarding pulmonary embolism (SS 1005a), B-0904

Assessing the precision of an AI-powered algorithm for automatic detection and 3D segmentation of primary tumours in NSCLC (SS 1016), B-1030

Weikert T.J., Winkel D.J., Bremerich J., Stieltjes B., Sauter A.W., Sommer G.
AI-powered detection of pulmonary embolism in CT pulmonary angiograms: a validation study of the diagnostic performance of prototype algorithms (SS 1404), B-1211

Weinrich J.M., Maas K.J., Stäreková J., Intert L., Sehner S., Regier M., Adam G., Quitke A.
Feasibility of sub-milliliter CT of the skeletal pelvis: a human cadaver study (SS 710), B-0679
Authors’ Index

Yang J., He B.
Effect of dual-energy CT single-energy imaging on image quality of mesenteric vessels and segmental thickening intestinal wall (SS 1401b), B-1283

Yang I., Wu B.
Correlation between T2WI texture features of primary tumour and nodal metastasis in rectal cancer (SS 201b), B-0204

Yang I., Wu B.
The role of intravoxel incoherent motion and diffusion kurtosis imaging in evaluating pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer (SS 616b), B-0612

Yang L., Jiang T.
Value of CT image texture analysis in the differential diagnosis of benign and malignant parotid tumours (SS 1808), B-1624

Yang L., Li H., Quan C., Zhou L., Geng D., Li Y.
Quantitative brain lesion distributions in MOG-Ab-positive and AQP4-Ab-positive patients: overlaps and differences (SS 611), B-0541

Yang Y., Liu H.
Computerised texture analysis predicts histological invasiveness within lung adenocarcinoma manifesting as pure ground-glass nodules (SS 704), B-0774

Yang Y., Han Q., Chen X., Yan F.
Assessment of pancreatic ductal adenocarcinoma lesion using virtual monoenergetic images from dual-layer spectral detector CT (SS 1401a), B-1098

Yang Y., Han Q., Chen X., Dong H.
Evaluation of vascular and local lymph node invasion, resectability of pancreatic ductal adenocarcinoma with spectral detector CT (SS 1401a), B-1100

Yao K.B.
Radiographers’ challenges offering imaging services in Africa: Côte d’Ivoire. Professional practice of radiology and imaging in Africa: radiographers for more commitment and responsibility in patients’ safety (EM 5), A-0655

Yap A., Rahmat K., Muridan R., Seow P., Fong C., Ong L., Tan L., Ramli H.
Evaluation of white matter maturation in children with developmental delay using diffusion tensor imaging (DTI) (SS 1412), B-1233

Yar O., Onur M.R., Idilman I., Akpinar E., Akata D.
Investigation the causes of overscanning in z-axis in thorax, abdominopelvic and thoraco-abdominopelvic CT examinations (SS 1813), B-1594

Yates A., Cromwell P., Hughes N.M., Skelahan S., Evoy D., McDermott E., Prichard R.
Correlation between preoperative 4D CT parathyroid volumes and perioperative PTH levels (SS 608), B-0633

Yazbek S., Atat C., Abdel Hay J., Moussa R.
Functional MRI study of language organisation in left-handed and right-handed trilingual subjects (SS 1011b), B-1031

Ye Z., Xiong X., Chen J., Cao L., Duan T., Zhang Z., Song B.
The value of MRI-PDFF in detecting and grading hepatic steatosis in patients with nonalcoholic fatty liver disease: a meta-analysis (MY 17), B-1471

Yee A.Y.M., Norlissah R., Chng L.S.
Role of ultrasound elastography in differentiating tuberculosis and malignant lymph nodes (SS 608), B-0641

Yel I., Lenga L., Wichmann J.L., Albrecht M.H., Vogl T.J., Martin S.S.
Value of static first-pass dual-energy CT perfusion analysis in patients with acute pancreatitis (SS 501), B-0448

Association of cerebral microbleeds with vasculitis in patients with systemic lupus erythematosus (SS 1511), B-1336

Comparison of radiomics nomograms for the differentiation of primary chordoma, giant cell tumor, and metastatic tumour of sacrum based on magnetic resonance imaging (SS 1910a), B-1731

Yin P., Hong N.
A triple-classification radiomics model for the differentiation of primary chondroma, giant cell tumour, and metastatic tumour of sacrum based on magnetic resonance imaging (SS 1910a), B-1731

Yin P., Hong N.
Comparison of radiomics nomograms for the differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography and multiparametric magnetic resonance imaging (SS 1910a), B-1732

Ying M.T.C., Cheng S.C.H., Ahuja A.T.
Diagnostic performance of computer-aided quantification of intranodal vascularity in differentiating common neck lymph node diseases (SS 608), B-0638

Prognostic value of tumour regression grade on MR in rectal cancer: a large-scale, single-centre experience (SS 1501a), B-1342

Yoo J., Lee J., Kang H., Ahn S.
Reproducibility of shear wave dispersion imaging for evaluation of non-alcoholic fatty liver disease (SS 1801a), B-1532

Yoon J., Lee E., Lee S.M., Chang W., Lee J.
Double low-dose spectral liver CT in patients at high risk of HCC (SS 701), B-0795

Yoon S., Park Y., Choi Y., Ahn S., Chang J., Kim S., Lee S.
Radiomics MRI phenotyping with machine learning to predict the grade of lower grade gliomas: a study focused on non-enhancing tumours (SS 211a), B-0097

Yorkston J.
Extremity CT: the basics and the promise (SY 27)

You C., Gu Y.J., Chen S., Shen X.X., Peng W.J.
Radiologic and clinicopathologic associations with upgrade to malignancy in high-risk breast lesions (SS 1406a), B-1152

Yousry T.A.
Functional imaging of the brain: Chairperson’s introduction (E3 320), A-0133

Yu O., Quan X., Lu X.
Quantitative assessment of the relationship between spatial distribution of emphysema and pulmonary function in COPD patients by an automatic analysis software (SS 604), B-0578

Yu S., Chu P., Smith-Bindman R.
Clinical indications for computer tomography (CT) diagnostic reference levels (DRLs) (SS 205), B-0015
Authors’ Index

Zhang H., Wang Z., Liu J.
The effects of weight-bearing and non-weight-bearing anteroposterior DF of feet in hallux valgus deformity (SS 1314), B-1064

Zhang J.
The value of low-dose dynamic CT myocardial perfusion imaging for accurate evaluation of microvascular obstruction in patients with acute myocardial infarction (SS 1403), B-1213

Zhang J., Li Z., Xia C.
T2* value analysis of achilles tendons disease with ultra-short echotime (UTE) MRI (MY 9), B-0953

Zhang L., Guo Y., Yang Z., Li X., Fu C., Xu H., Yang M., Xu R., Xie L.
Quantitative T2 mapping for detecting myocardial oedema and its association with myocardial injury biomarkers in acute myocardial infarction swine models (MY 18), B-1675

Zhang S., Wang W., Su X., Sun H., Yue Q., Gong Q.
Meta-analytic investigations of grey matter alterations in patients with Tourette syndrome (MY 16), B-1426

Zhang X., Cheng J., Ma K.
Utility of histogram analysis of ADC maps in differential diagnosis of Pleomorphic adenoma and Acinar cell carcinoma originated from parotid gland (MY 14), B-1248

Zhang Y., Yang Z., Guo Y., Diao K., Shen M., Li X., Xu K., Yu H., Xia C.
Assessment of myocardial deformation in a rabbit model of diabetes mellitus by cardiac magnetic resonance tissue tracking (SS 603), B-0596

Zhang Y., Yang Z., Guo Y., Xu H., Peng W., Xia C., Li Z.
Assessment of right ventricular deformation in end stage renal disease patients by cardiac magnetic resonance tissue tracking (MY 18), B-1673

Zhang Y., You H., Lv Y., Dou W., Hou B., Feng F.
Study of correlation between hippocampal perfusion and volume in patients with temporal lobe epilepsy for epileptic lateralisation (SS 111b), B-1833

Feasibility of evaluating the genetic mutation status of grade II and III gliomas by diffusion-weighted imaging (SS 111b), B-1890

Zhang Z., Jiang H., Cao L., Ye Z., Chen J., Song B.
A predictive model for early recurrence of hepatocellular carcinoma after tumour resection based on whole lesion MR imaging radiomics features (SS 201a), B-0074

Zhang Z., Chen J., Jiang H., Cao L., Ye Z., Song B., Duan T.
Peritumoral radiomics features from gadoxetic acid-enhanced MR imaging predicting early recurrence of hepatocellular carcinoma (SS 100b), B-1044

Zhao C.
Three-dimensional shear wave elastography for differentiating benign from malignant thyroid nodules (MY 14), B-1295

Zhao L., Zhao X., Ma X.
Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: qualitative and quantitative MRI combined with prognostic immunohistochemical marker (SS 301), B-0394

Zhao M.
A GPC3-specific aptamer-mediated MR probe for hepatocellular carcinoma (SS 806), B-0507

Zhao Q., Xu R., Yang Z., Guo Y.
Magnetic resonance first-pass perfusion imaging for assessment of myocardial microvascular dysfunction in pediatric patients with acute leukemia (SS 1903a), B-1826

Zhao X., Huang M., Zhu J., Cheng J.
Diagnosis of biliary stone disease: compressed-sensing-accelerated 3D-MRCP versus conventional MRCP (SS 301), B-0390

High-resolution MR image of intracranial blood vessels wall using 3D VISTA sequence (SS 315), B-0216

Zheng L., Zhang L., Zhang G.
Pilot study of three-dimensional MRI in the evaluation of eye shape of high myopia and classification of posterior staphyloma (SS 1708), B-1449

Zheng S., Guo J., Rook M., Cui X., Veldhuis R.N.J., Oudkerk M., van Ooijen P.M.A.
Automatic pulmonary nodule detection in low-dose CT scans using convolutional neural networks based on maximum intensity projection (SS 1905a), B-1756

Zhodybay Z., Akhmetova G., Akhmetova G., Panina A., Ainakulova A.
Lung cancer screening with low dose computed tomography: the republic of Kazakhstan experience (SS 1018), B-1026

Zhong J., Arunsingh M., Brown P., Dyker K., Prestwich R., Currie S., Vaidyanathan S., Scarsbrook A.
Prediction of patient outcome in head and neck squamous carcinoma following chemo(radiation): comparison of 4 different FDG PET-CT response assessment interpretative criteria (SS 706), B-0666

Performance of FDG PET-based textural features for prediction of loco-regional recurrence in advanced larynx and hypopharynx squamous cell carcinoma (SS 706), B-0667

Diagnostic performance of fractional flow reserve derived from coronary computed tomography angiography in myocardial bridging: a comparison with invasive fractional flow reserve (SS 703), B-0785

Zhou J., Dan H., Cheng G.
Feasibility study of whole breast texture analysis for predicting tumour response to neoadjuvant chemotherapy (SS 1402b), B-1171

Zhou W., Chai M., Wong W., Yap P., Lai Y., Lee T., Leung S., Lee J., Ng M.
Prognostic value of myocardial perfusion reserve index in patients with coronary microvascular disease: a multi-centre study (SS 1403), B-1220

Zhou X., Xiao B., Hu H., Tang J.
The development of a novel manganese dioxide-based nanoparticles and real-time monitoring of its anticancer effect by MRI (MY 5), B-0472

Zhu B., Jiang T., Peng P., Li M.
Can dual-energy CT replace perfusion CT for the diagnosis of the solid pulmonary nodules? (SS 204), B-0151

Zhu L., Denecke T., Asbach P., Hamm B., Xue H., Jin Z.
Relapse of type 1 autoimmune pancreatitis after steroid therapy: imaging findings and risk factors (SS 301), B-0450

Zhu L., Sun Z., Jin Z., Qian T., Nickel D., Makowski M., Asbach P., Hamm B., Xue H.
T1 mapping of autoimmune pancreatitis as a quantitative outcome biomarker (MY 17), B-1475

Cardiac magnetic resonance imaging study of right ventricular myocardial deformation in spontaneous T2DM rhesus monkey (SS 1903b), B-1861

Zhu Y., Chen Y., Guan W.
The experimental study of prostate cancer imaging using PSMA targeting ultrasound/MRI dual modality nanobubbles (SS 606), B-0511

Zhu Z., Zhao X., Zhou C.
Wide-detector axial scan on revolution CT for combining application of ASIR-V and ASIR on unenhanced abdominal CT in vivo: the image quality and radiation dose evaluation (SS 407), B-0445
Zhu Z., Zhao X., Zhou C.
Perfusion MRI prediction of progression-free survival in patients with hepatocellular carcinoma treat with TACE (MY 8), B-0832

Zhuravlev K.N., Sinitsyn V.E., Shepktor A.V.
Coronary calcium screening with non-gated standard and low-dose chest CT in comparison with ECG-gated calcium scoring CT (SS 1503), B-1314

Zimny A.
Inflammatory and infectious CNS pathology: B. Infectious encephalitis (RC 1211), A-0677

Zini C., Notaro D., Sadotti G., Bellini M.
Percutaneous intervertebral disc coagulation therapy (PDCT) by plasma light: a new method for the treatment of lumbar and cervical disc herniation (SS 1809), B-1575

Zins M.
Visceral arteries: B. Acute and chronic mesenteric ischaemia (RC 115), A-0022

Zins M.
Tumour response assessment in abdominal imaging: C. Pancreatic adenocarcinoma (RC 301), A-0109

Zins M.
How to face the tsunami of pancreatic intraductal papillary mucinous neoplasia (IPMN): Chairperson's introduction (SA 5), A-0236

Zins M.
How to face the tsunami of pancreatic intraductal papillary mucinous neoplasia (IPMN): Panel discussion: Management of IPMN: what is the Achilles heel of our current concept? (SA 5), A-0240

Zins M.
Solid pancreatic neoplasms: Diagnosis (E³ 24D), A-0852

Zolda P.
Growing radiography research: Turning your research idea into reality: opportunities for European funding (EFRS WS), A-0864

Evaluation of signal intensity in dentate nucleus and globus pallidus after repeated administrations of gadolinium in multiple sclerosis patients (SS 811), B-0536

Zubler V.
Inflammatory and infectious diseases of the spine: how to differentiate from degeneration: A. Spondyloarthritis: a diagnostic chameleon (RC 910), A-0541

Zugni F., Funicelli L., Bertani E., Bellomi M.
Lymphadenectomy of small intestine neuroendocrine neoplasias (si-NEN): testing the most recent preoperative classification with contrast-enhanced computed tomography (CT) (SS 1401b), B-1281

Zur G., Lesman-Segev O., Schlesinger I., Eran A., Kahn I.
Structural integrity impact of focused ultrasound thalamotomy and correlation to behavioural outcomes for tremor disorders (SS 1811a), B-1557

Zwierko B., Dura M., Zuchowski P., Jeka S.
Applying the low-dose protocol in high resolution computed tomography examination in patients with rheumatoid arthritis (SS 1604), B-1408
List of Authors & Co-Authors
(F)
List of Authors & Co-Authors
<table>
<thead>
<tr>
<th>Author</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhu J.</td>
<td>B-0390, B-0969, B-1519</td>
</tr>
<tr>
<td>Zhu L.</td>
<td>B-0450, B-1475</td>
</tr>
<tr>
<td>Zhu M.</td>
<td>B-0599, B-1163</td>
</tr>
<tr>
<td>Zhu T.</td>
<td>B-1861</td>
</tr>
<tr>
<td>Zhu W.</td>
<td>B-1429</td>
</tr>
<tr>
<td>Zhu Y.</td>
<td>B-0511, B-0881, B-1633</td>
</tr>
<tr>
<td>Zhu Z.</td>
<td>B-0445, B-0832</td>
</tr>
<tr>
<td>Zhuo Z.</td>
<td>B-0360</td>
</tr>
<tr>
<td>Zhuravlev K.N.</td>
<td>B-1314</td>
</tr>
<tr>
<td>Ziayee F.</td>
<td>B-0161, B-0327</td>
</tr>
<tr>
<td>Žibert J.</td>
<td>B-1070, B-1710</td>
</tr>
<tr>
<td>Zidan D.</td>
<td>B-0400</td>
</tr>
<tr>
<td>Ziegelmayer S.</td>
<td>B-0615</td>
</tr>
<tr>
<td>Ziegert M.</td>
<td>B-1199, B-1631</td>
</tr>
<tr>
<td>Zimlichman E.</td>
<td>B-1186</td>
</tr>
<tr>
<td>Zimmermann H.A.</td>
<td>B-0583</td>
</tr>
<tr>
<td>Zimmermann M.</td>
<td>B-0005</td>
</tr>
<tr>
<td>Zimny A.</td>
<td>A-0677, B-1265</td>
</tr>
<tr>
<td>Zini C.</td>
<td>B-1575, B-1578</td>
</tr>
<tr>
<td>Zitzelsberger T.</td>
<td>B-0589</td>
</tr>
<tr>
<td>Zishoda-Huzior A.</td>
<td>B-1583</td>
</tr>
<tr>
<td>Zoelch N.</td>
<td>B-1516</td>
</tr>
<tr>
<td>Zografos C.</td>
<td>B-1157</td>
</tr>
<tr>
<td>Zografos G.</td>
<td>B-1157</td>
</tr>
<tr>
<td>Zolda P.</td>
<td>A-0864</td>
</tr>
<tr>
<td>Zolovkins A.</td>
<td>B-1809</td>
</tr>
<tr>
<td>Zopfs D.</td>
<td>B-1424</td>
</tr>
<tr>
<td>Zorza I.</td>
<td>B-0970</td>
</tr>
<tr>
<td>Zorzenon L.</td>
<td>B-0536</td>
</tr>
<tr>
<td>Zorzi M.</td>
<td>B-0248, B-0250</td>
</tr>
<tr>
<td>Zou M.</td>
<td>B-1454</td>
</tr>
<tr>
<td>Zou T.</td>
<td>B-0907</td>
</tr>
<tr>
<td>Zou T.-X.</td>
<td>B-1041</td>
</tr>
<tr>
<td>Zoumpousis P.</td>
<td>B-1378, B-1530, B-1537, B-1837</td>
</tr>
<tr>
<td>Zubler V.</td>
<td>A-0541</td>
</tr>
<tr>
<td>Zucal P.</td>
<td>B-1636</td>
</tr>
<tr>
<td>Zuccelli A.</td>
<td>B-1022</td>
</tr>
<tr>
<td>Zucchetta P.</td>
<td>B-1364</td>
</tr>
<tr>
<td>Zuchowski P.</td>
<td>B-1408</td>
</tr>
<tr>
<td>Zuckermann A.</td>
<td>B-0374, B-1617</td>
</tr>
<tr>
<td>Zugaro L.</td>
<td>B-1295, B-1571, B-1572, B-1580, B-1581</td>
</tr>
<tr>
<td>Zugni F.</td>
<td>B-1281</td>
</tr>
<tr>
<td>Zu-Hua G.</td>
<td>B-0528</td>
</tr>
<tr>
<td>Zulani C.</td>
<td>B-0086, B-0253, B-0477, B-1078, B-1079, B-1139</td>
</tr>
<tr>
<td>Zulian F.</td>
<td>B-0512</td>
</tr>
<tr>
<td>Zuliani M.</td>
<td>B-0512</td>
</tr>
<tr>
<td>Zulueta J.</td>
<td>B-1609</td>
</tr>
<tr>
<td>Zumofen D.</td>
<td>B-0193, B-0946</td>
</tr>
<tr>
<td>Zur G.</td>
<td>B-1557</td>
</tr>
<tr>
<td>Zurera Tendero L.J.J.</td>
<td>B-1662</td>
</tr>
<tr>
<td>Zwaagstra H.</td>
<td>B-1066</td>
</tr>
<tr>
<td>Zwanenburg J.J.</td>
<td>B-0215</td>
</tr>
<tr>
<td>Zwierko B.</td>
<td>B-1408</td>
</tr>
<tr>
<td>Zwinderman A.H.</td>
<td>B-0096</td>
</tr>
</tbody>
</table>
List of Moderators

(G)
List of Moderators

M

Maguire S.: SS 319
Mahmood U.: CT 6, CT 10
Maier A.: SS 201b
Malamatieniu C.: SS 414
Malone D.E.: RC 1201
Maly Sundgren P.C.: E¹ 126a
Manfredi R.: E² 24A
Marinec B.: BS 5
Markiet K.: MY 13, SS 308
Marro M.: SS 702b
Marticorena Garcia S.R.: SS 301
Martin S.S.: SS 1005a
Martinelli C.: MY 9
Masselli G.: SS 1507
Matos C.: E¹ 24b
McGinty G.: PI 2
McNulty J.: EM 4, EFRS WS, ESR/ERFS
Mentzel H.-J.: SS 312
Mehrmich Z.: RC 911
Miletic D.: SS 1501a
Minoiu C.A.: SS 703
Mintert S.: SY 28
Mitreska N.: SS 1012
Mizzi D.: SS 1914b
Molinari F.: SS 704
Monte X.: SS 1016
Morozov S.: SS 1405
Mostbeck G.H.: SS 1901b
Moyle P.L.: SS 302
Mück F.O.: SS 217
Müller-Eschner M.: SS 1915
Mussmann B.R.: SS 1314
Mytsyk Y.: SS 607

N

Nair A.: SS 1904
Neri E.: SS 1005a
Nevalainen M.: SS 1810
Newman D.: EM 5
Niessen W.J.: SS 1805b
Nightingale J.M.: EFRS WS, SS 1814
Nikolau K.: SS 1403
Nilsson A.: SY 23
Njaugi V.: RC 40, SS 1010
Nyshen C.: ESR US SO/UES

O

OEI E.: SS 210a
Olczak Z.: SS 1903b
Oppenheim C.: SY 4
Ording Müller L.-S.: BS 12
O'Reilly G.: SS 1813
Osril M.A.: SS 1902b
Otero-Garcia M.: SS 216
Ozgen Mocan B.: SS 308

P

Palkó A.: BE 4
Papadaki E.: SS 1416
Parkar A.P.: BS 2
Pavlica P.: SS 707
Pedersen R.: RC 1610
Penzkoler T.: SS 707
Pershina E.: SS 1903a
Pesapane F.: SS 1902a
Pinto dos Santos D.: SS 1905b
Piqueras J.: SS 1512
Prayer D.: SS 612
Prayer F.: SS 312
Precht H.: EM 4
Prokop M.: SS 1905b
Pronin I.N.: RC 1711
Puchner S.: SS 609
Puch E.: SS 207
Pulzato I.: SS 1004
Pusceddu C.: SS 1909
Pyatigorskaya N.: SS 1911b
R

Radder A.: SY 7
Radovic N.: SS 1802b
Raisakai M.: SS 614
Ramanathan S.: SS 1407
Ratb O.: SF 12
Rausch I.: SS 606
Reiner C.S.: SS 401
Reiser M.F.: E¹ 1626a
Regier M.: SS 1004
Reponen J.: SS 1414
Reveili M.: SS 610
Riera L.: SS 212
Riklund K.: RC 314
Rockall A.G.: SY 31
Roding T.: RC 314
Rohan T.: SS 1901b
Ronot M.: SS 401
Rosendahl K.: E¹ 1326
Rossi A.: SS 1403
Russe M.F.: SS 1805b
Saat R.: MY 14
Salgado R.: SS 603
Samara E.: SS 213
Sánchez M.: SS 1904
Sánchez Montañero A.: SS 1412
Santos M.: SS 1504
Santos R.A.M.: SS 1914a
Sappey-Mariner D.: ESR/ESMRMB
Sartor H.: SS 1002
Scapin E.: SS 208
Scarborough A.: SS 306
Schaarschmidt B.M.: SS 216
Schimmlöller L.: SS 1007
Schlett C.L.: SS 305
Schneck A.: SY 6
Schwarz-Nemec U.: SS 1012
Sechopulos I.: SY 2c
Seimel S.: RC 1513
Selverstova E.: SS 1011b
Sellia T.: SS 702a
Seuri R.: SS 714a
Severino M.: MY 16
Sider P.S.: US 1, SY 17
Silva M.: RC 504
Simeonov G.: EU 2
Singhal A.: SS 208
Sintysin V.E.: SS 1903b
Sjöberg J.: SS 1013
Skrobisz K.: SS 1907
Smits M.: EFRS/ESORTC, ESR/EORTC
Sn alike B.: SS 214
Sofia C.: SS 701
Sosna E.: E¹ 1526
Springer E.: SS 1810
Stagits M.: SS 217
Steinfelder E.: ESR/BBMRI-ERIC
Stojanov D.: SS 1911a
Strobi F.: SS 1009
Sudol-Szopta L.: RC 1710
Suzille V.: SS 205
Sutter R.: RC 1310
Svaře A.: TF

T

Taibbi A.: SS 501
Tak R.A.P.: SS 703
Tarnoki D.L.: SS 215
Teneva T.: TF
Thieme N.: RC 908
Thompson J.: SS 1014
Thurmer P.: SS 711
Thursar L.: SY 15
Toledano-Massiah S.: MY 4
Torregrosa Andrews A.: SS 1001b
Tresoldi S.: SS 615
Trianni A.: SS 1413
Triantopoulou C.: RC 1801
Trimboli R.M.: MY 5
Triulzi F.M.: SS 1412
Tsitskari M.: SS 109
Tüdös Z.: SS 1909
Tyurin I.E.: E¹ 1626b, SY 24
Tzalonikou M.: RC 810
U

Umullu L.: SY 2a

V

Válek V.: ESR US SC/UES
van der Hoorn A.: SS 1008
van der Lugt A.: ESR/BBMRI-ERIC
Van Ongeval C.: RC 1702
van Osch M.J.P.: ESR/ESMRMB
Vasco Araújo M.F.: SS 1811a
Vasilevskaya-Nikolodvovskaya V.: SS 1410
Velonakis G.: SS 1809
Verbit B.: SS 1816
Vemuccio F.: SS 1001b
Vidjak V.: SS 609
Vilar J.: BE 3
Vilgrain V.: ESR

W

Walecki J.: BS 9
Wenkkel E.: SY 2d
Wielopolski M.O.: MY 4
Wildberger J.E.: SY 19
Woltek R.: SS 306
Wolf F.: MY 18
Wörter K.: RC 510

Y

Yakimov A.: SS 1011b
Yalynska T.: SS 212
Yousry T.A.: SS 611

Z

Zackrisson S.: SY 2b
Zaltoun M.M.A.: SS 211b
Zaninato Rambaldi G.: SS 1816
Zar F.: RC 514
Zelenak K.: SS 309
Zins M.: MY 7