Effects of grassland management on plant nitrogen use efficiency (NUE): evidence from a long-term experiment

Link to publication record in Ulster University Research Portal

Published in:
Basic and Applied Ecology

Publication Status:
Published (in print/issue): 01/12/2019

DOI:
10.1016/j.baae.2019.10.001

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.
Effects of grassland management on plant nitrogen use efficiency (NUE): evidence from a long-term experiment

Gary Egana, Paul McKenziea, Michael Crawleyb, Dario A. Fornarac*

aUlster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
bDepartment of Biological Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY, England,
cAgri-Food and Biosciences Institute, 18A Newforge Lane, Co. Antrim, Belfast, BT9 5PX, Northern Ireland, UK

*Corresponding author. Tel: +44 (0) 28 90255335; Fax: +44 (0) 28 9025 5035
e-mail: dario.fornara@afbini.gov.uk
Abstract

Grassland management intensification can greatly influence nitrogen (N) dynamics between aboveground and belowground compartments mainly because of the large amount of available N forms, which are repeatedly added to soils. A better understanding of how chronic fertilisation might affect N use efficiency (NUE) in plants can contribute to reducing N losses from soils and improve the sustainability of managed grasslands. Here we address how NUE might be affected by (1) the addition of key nutrients (e.g. N, P, K, Mg) in different combinations, (2) grazing by rabbits, and (3) liming (i.e. CaCO₃ applications) in a 22-year-old permanent grassland experiment established in Berkshire, UK, in 1991. We first calculate seven different NUE indexes, which are known to respond either to changes in soil N availability (i.e. endogenous N inputs from soil N mineralization processes) or to exogenous N inputs (i.e. synthetic N fertiliser). We found that plant NUE calculated as plant biomass produced per unit of N acquired significantly decreased under the chronic addition of multiple nutrients (NPKMg) and was even lower under N-only applications. Most NUE indexes significantly decreased under grazing but greatly increased under liming applications. We found evidence that NUE indexes, which accounted for endogenous N sources decreased at increased rates of soil N mineralization. Finally, we found no significant relationships between any of the NUE indexes and estimates of soil N losses (Mg N ha⁻¹) or N retention in soils (i.e. units of soil N retained per unit of N added) calculated from changes in net soil N budget over 22 years. Our study carried out on relatively acidic sandy soils suggests how liming applications in combination with low levels of multi-nutrient additions (NPKMg) can significantly improve plant biomass production per unit of N added thus contributing to enhance the sustainability of managed grassland ecosystems.

Keywords: grassland intensification, grazing, liming, nutrient fertilisation, plant yields
Human-managed grassland ecosystems are often artificially 'improved' to increase their primary productivity (i.e. grass yields). Grassland improvement has been mainly achieved through regular nutrient fertilisation (e.g. Nitrogen (N), Phosphorus (P) additions to soils), liming (i.e. the application of Calcium and Magnesium-rich materials to grassland soils) and livestock grazing (Conant et al. 2001; Blüthgen et al. 2012; Heyburn et al. 2017). A common feature of these management practices is that either directly or indirectly they greatly contribute to increase soil N availability, which is a key factor sustaining plant productivity. However, increased soil N inputs may be associated with a strong decrease in plant species diversity (Fornara & Tilman 2012) and with negative N fertilisation effects on important ecosystem services, such as: (i) increased N mineralisation (Zhang et al. 2012) and greater potential for N loss, and (ii) a decline in soil fungal abundance (de Vries et al. 2006; Weber et al. 2013). To improve the sustainability of managed grassland ecosystems we need to better understand how plants might uptake and use N under the effects of multiple practices including N fertilisation, grazing and liming.

In this study we use a long-term ecological experiment to address how Nitrogen Use Efficiency (NUE) might respond to multiple grassland management practices. We assume that variations in NUE result from differences in nutrient retention and acquisition by plants (Hiremath & Ewel, 2001) and we use a set of seven indices to specifically assess how applied N (i.e. exogenous N additions) and soil N availability (i.e. endogenous N) are utilised to produce biomass (Pastor & Bridgham 1999; Dobermann 2005).

The basic tenet is that plant communities growing on artificially N-fertilised soils are more productive but have significantly lower NUE when compared to less productive communities growing on N-poor soils, which have higher NUE (Pastor & Bridgham 1999; Yuan et al. 2006). NUE theory suggests that plant responses to changes in soil N availability...
can be either (1) monotonic where plant NUE increases as soil N availability decreases (Yuan et al. 2006; Keuter et al. 2013), or (2) unimodal where plant NUE initially increases with increasing soil N availability but eventually decreases when soil N availability reaches critical levels (Pastor & Bridgham 1999). In both models (monotonic and unimodal) NUE eventually decreases in response to chronic N fertilisation, therefore we expect to find similar NUE responses in managed grasslands, which received repeated N additions for many years.

Grazing can also affect NUE because mammalian herbivores tend to create and maintain a grassland community, which has higher relative yields compared to ungrazed pastures and also improved digestibility of forages (McNaughton 1984; Kleinebecker et al. 2011). A first mechanism by which mammalian grazers can influence plant N uptake and NUE is through the addition of labile N forms to soils from animal faeces and urine (van der Wal et al. 2004). A second mechanism is associated with increased plant tolerance to herbivore damage, which may include higher plant compensatory growth, increased photosynthetic activity, phenological delays and relocation of resources to storage reserves (Tiffin 2000), all of which influence NUE. Measuring NUE when plant biomass is removed by grazers remains challenging mainly because plant biomass:N content ratios vary seasonally according to changes in the frequency and intensity of herbivory and changes in plant growth (see Kleinebecker et al. 2011).

The addition of liming materials to soils (e.g. CaCO₃) can increase NUE by altering the availability of inorganic forms of soil N (e.g. NO₃) for plant uptake as found in an acidic upland grassland (Ignacio Rangel-Castro et al. 2004). Liming can also indirectly increase soils’ biological capacity for N fixation and nitrification as found in an acidic subnatric yellow sodosol (Wakelin et al. 2009), for example, by favouring the establishment and persistence of legume species within grassland plant communities. Finally, liming may
influence NUE because of its positive effects on the size of mineral-associated soil organic matter pools, which can retain more N (Briedis et al. 2012).

Despite experimental evidence that N fertilisation, grazing and liming can significantly affect NUE, very few studies have so far addressed the long-term effects of these three practices on NUE. Greater NUE by plants could help reduce overall N fertilisation rates and decrease N leaching from soils (Dobermann 2005). There is also scope to improve food production per unit of N added to soils, this is because extensively managed grasslands with good NUE can result in good forage quality (Klingler et al. 2018). However, it could also be that changes in soil N content lead to a reduction in forage quality (Wilkins, Allen & Mytton, 2000).

Here we specifically address how 22 years of different nutrient fertilisation, grazing (by rabbits) and liming treatments (1) have influenced plant NUE, and (2) whether changes in NUE are potentially related to changes in soil processes such as soil N mineralization or the ability of grassland soils to retain or lose N.

In order to produce estimates of NUE, which are comparable with previous estimates, we applied seven different calculation methods, which have been used and reported in multiple literature studies (Berendse & Aerts 1987; Pastor & Bridgham 1999; Dobermann, 2005; Yuan et al. 2006). We specifically compare two sets of NUE indexes: (a) the first set measures productivity in response to N acquisition and N availability within the soil; (b) the second set of indexes (derived from Dobermann 2005), measures productivity in response to applied N fertiliser (see details in the Methods section).

To our knowledge, no studies have so far simultaneously addressed potential long-term effects of multiple management practices (i.e. nutrient fertilisation, liming and grazing) on plant NUE. Here we use a well-replicated grassland experiment established in 1992 at Silwood Park, Berkshire, UK to test the following hypotheses:
H1 NUE will be lower under chronic N fertilisation (either when N is applied alone or in combination with other nutrients) and will be higher in unfertilised grassland soils;

H2 Chronic grazing will be associated with lower plant NUE;

H3 Long-term liming applications will be associated with greater NUE;

H4 NUE will be negatively related to the availability of inorganic soil N forms (i.e. high NUE associated with low rates of soil N mineralization);

H5 N losses from soils will be lower where plant NUE is higher.

Materials and methods

Experimental Design & Treatments

Our study was carried out in Nash’s Field, a mesotrophic grassland (Lolio-Cynosuretum cristati grassland, Anthoxanthum odoratum sub-community; Rodwell 1992), with acid, sandy soils established at Silwood Park, Berkshire. The experiment started in 1991 to test for the effects of various treatments on plant community structure. The experiment is laid out in a split-plot design (3 factor factorial) with four larger plots (22 x 44 m), hereafter blocks, each split to contain two grazing treatments (± grazing), within these there are two pH treatments (± lime), which are in turn sub-divided to contain five (2 x 2 m) plots receiving different nutrient treatments. Thus, the split plot nested design includes 4 blocks x 2 grazing treatments x 2 liming treatments x 5 nutrient treatments. In the statistical model, the four large blocks were included as random effects while the treatment factors were considered as fixed effects.

Lime was applied at 5 tonnes of CaCO₃ ha⁻¹ every few years to maintain a soil pH close to 7 and mineral nutrients were applied annually at the following rates: ammonium nitrate (N) 100 kg ha⁻¹, triple superphosphate (P) 35 kg ha⁻¹, muriate of potash (K) 225 kg ha⁻¹ and Epsom salts (Mg) 11 kg ha⁻¹. The combination of nutrient treatments was as follows: (i) N-only, (ii) P-only, (iii) N, P and Mg together, (iv) simultaneous addition of all nutrients (N, P, K and...
Mg) and (v) unfertilized-control. Exclusion fences, that are rabbit proof, are present at this ongoing experiment to test for the effects of grazing, primarily by rabbits (Oryctolagus cuniculus L.). Occasional grazers include muntjac (Muntiacus reevesi Ogilby) and roe (Capreolus capreolus) deer. Within the grazing exclusion plots, biomass has been cut with a sickle bar mower (and removed from plots) in August each year since the summer of 1991. Rabbits are able to move across unfenced plots, which receive nutrient and liming treatments.

The soils of Nash’s Field are characterized by low P status and have a mean total P value of 5.9 mg kg$^{-1}$.

Plant species composition of Nash’s Field is dominated by the following grass species: Common Bent (Agrostis capillaris), False Oat Grass (Arrhenatherum capillaris), Red Fescue (Festuca rubra), Creeping Soft Grass (Holcus mollis) and Yorkshire Fog (Holcus lanatus) (Allan & Crawley 2011). Grasses comprise 74% of the standing biomass across all treatments, while forbs contribute 22.2% and legumes 1.1% on average. Abundant forb species include Goose Grass (Galium aparine), Sorrel (Rumex acetosa), Germander Speedwell (Veronica chamaedrys) and Ragwort (Senecio jacobaea). Legume species include Lesser Trefoil (Trifolium dubium), White Clover (Trifolium repens) and Common Vetch (Vicia sativa).

Soil sampling and analysis

Five soil cores were collected between 6th and 7th of May 2014 to a depth of 20 cm from each of the 80 experimental plots and homogenised to form one sample. From these samples, subsamples were taken to enable the following analysis: soil total C, N and P. Soil samples were dried at 40°C for 5 days, passed through a 2 mm sieve to remove roots and stones and ground in a ball mill. Care was taken to remove all visible roots with tweezers. Samples were analysed for total C, N and P concentration by combustion and gas
chromatography using a COSTECH Analytical ECA 4010 instrument at the Ecosystems Analysis Laboratory, University of Nebraska, Lincoln, USA. Total P was determined with the sodium hydroxide (NaOH) fusion method described by Smith and Bain (1982).

Soil bulk density (BD) was measured from samples collected on the 7th May 2014 for each of the 80 plots with a soil corer (20 cm deep and 8 cm diameter) and calculated by dividing the mass of oven-dried soil by total soil volume. Soil samples were dried at 50 °C until a constant weight. Percentage soil moisture was calculated by dividing the mass of oven dry soil by the mass of fresh soil and multiplying this by 100 (Blake & Hartge 1986).

A further 80 soil samples were collected on the 18th of June 2014 at a depth of 20 cm to measure N mineralization rates. Samples were sieved through a 2 mm mesh and 20 g of soil was placed in each of 160 individual urine pots (i.e. two pots per sample). A first sub-sample of 80 vials was used for the first extraction where 50 ml of 1M KCl solution (149.1 g KCl to 1L of DI water) was added to each vial before soils were shaken for 30 minutes to homogenise the solution. These soils were then settled overnight at 4 °C. After, 5 mL of the clear supernatant that had separated from the now settled soil, was aliquoted into 80 x 8 mL bijou vials and frozen. The remaining 80 sub-sample vials were incubated in the dark at a constant moisture and temperature (22 °C) for 30 days. Sufficient water was added to each sample to reach the assumed field moisture capacity of 9% and again after 2 weeks during the 30-day laboratory incubation if necessary to keep moisture constant. Thereafter, 50 ml of 1M KCl solution was added to the samples which were then incubated overnight. From each of the 30-day exposure samples, 5 mL of the settled clear supernatant was pipetted into individual 8 mL bijou vials and frozen. All samples were analysed for NH$_4^+$-N and NO$_3^-$-N with a Bran-Luebbe AA3 auto analyser. Net N mineralization was calculated by subtracting initial extractable nitrate and ammonium concentrations from the final concentrations measured after soils were incubated for 30 days (Robertson et al. 1999).
We measured plant aboveground biomass and analysed available data on plant community composition. Aboveground plant biomass was harvested inside a 25 × 25 cm quadrat placed in the centre of each 2 x 2 m plot between 10th and 19th June 2014. Samples were dried for 4 days at 65°C and weighed, ground and placed in 1.0 mL Eppendorf tubes and analysed for total C and N by combustion and gas chromatography using a COSTECH Analytical ECA 4010 instrument. Plant percent cover including percent of each of three functional groups (C₃-grasses, legumes and forbs) was estimated and agreed by two independent investigators within each of the 80 experimental plots.

NUE indexes

We followed indications from previous studies, which measured NUE indexes across different ecosystems (Berendse & Aerts 1987, Bridgham et al. 1995; Pastor & Bridgham 1999; Dobermann 2005). Based on these literature studies we identified seven NUE indexes as follows (see Table 1):

i) Nitrogen use efficiency (NUE_N), which is an index of plant productivity (i.e. yield) per unit of N acquired (i.e. plant N%).

ii) Nitrogen response efficiency (NRE_N), which is an index of plant productivity per unit of available N (i.e. rate of net soil N mineralization).

iii) Nitrogen uptake efficiency (NupE_N), is the ratio of acquired to available N. This is a measure of how effective the plant community is at acquiring soil available N.

iv) Partial factor productivity (PFP_N), is a measure of how much plant biomass is produced per unit of fertiliser N applied. This index includes contributions to yield from endogenous N sources, therefore, this index is a measure of plant productivity.
per unit of N from exogenous (i.e. N from artificial fertilization) and endogenous (i.e. N from the soil pool) sources.

v) Agronomic efficiency (AE_N), is a measure of yield in response to the product of N use efficiency from applied sources per unit of N fertilizer applied. This index is the same as PFP_N but subtracts the mean yield of control plots to remove potential growth from endogenous sources of soil N from the equation.

vi) Recovery efficiency (RE_N), is a measure of exogenous N recovered in the plant per unit of fertilizer applied. The endogenous N contribution to yield is excluded by subtracting mean values from control plots.

vii) Physiological efficiency (PE_N), is a measure of yield from exogenous sources per unit of N acquired also from exogenous sources. The endogenous productivity response and N uptake are excluded within this equation by subtracting the mean values of control plots.

NupE_N, NRE_N and NUE_N indexes enable us to better understand how effectively plants uptake N under different management treatments and in response to changing soil N availability (see Table 1). However, these indexes do not specifically enable us to account for the additional effects of exogenous N inputs (i.e. N added through artificial fertilization) on plant productivity. We thus used specific indexes (see Dobermann 2005) to estimate the effective use of N fertilizer by plants. These are partial factor productivity of applied N (PFP_N), agronomic efficiency of applied N (AE_N), plant recovery efficiency to applied N (RE_N) and physiological efficiency of applied N (PE_N) (Table 1). The remaining index, partial factor productivity of applied N (PFP_N) measures yield in response to fertilizer application without excluding endogenous sources of N (Table 1). The potential contribution from biological nitrogen fixation to NUE is recognised, however, no specific calculations in
relation to this group have been carried out due to the very low percent cover of legumes in Nash’s Field (<1%).

Multiple factors associated with seasonal changes (i.e. temperature and moisture) can affect plant productivity and N dynamics (Agehara & Warncke 2005; Xu & Zhou 2006; Fridley et al. 2016). Consequently, studies on NUE can have a seasonal component. However, our study analyses data from a long-term grassland that has been ‘conditioned’ by different nutrient treatments for 22 years. Here we analyse data from the peak of the growing season to provide a snapshot of how NUE might be affected by a different combination of treatments.

N loss from soils

Soil N retention efficiency (NRtE) was calculated by subtracting mean soil N pool values (Kg N ha\(^{-1}\)) of control plots from soil N pools of N-fertilised plots and then by dividing this value by total N fertiliser applied in 22 years (see Table 2). Soil N loss (SNL) was calculated by subtracting the difference of soil N pools between N-fertilised and control plots from the total amount of N applied over 22 years (Table 2).

Data analysis

The Nash’s Field experiment is laid out as a split plot design with four randomly located blocks (i.e. larger plots) within which nutrient fertilisation, grazing and liming treatments are nested. In our model, blocks were assigned as random effects and the other treatments (grazing, liming and nutrient application) were assigned as fixed effects. Mixed effects ANOVA was performed to test for treatment effects (i.e. nutrient addition, liming and rabbit grazing) on multiple plant NUE indexes (Table 1) and soil N indexes (Table 2). To construct a final model and confirm model assumptions restricted maximum likelihood (REML) was
used. Significant differences between factor levels were tested using post-hoc Tukey tests. Linear regression models were also used to test for potential covariation and relationships between variables. Data were analysed using version 10.0.0 of the JMP statistical software (SAS Institute Inc.).

Results

NUE in response to nutrient fertilization, grazing and liming

We found that N addition either alone or in combination with other nutrients (i.e. P, K, Mg) significantly reduced NUEN whereas unfertilized (control) and P-fertilized plant communities had the highest NUEN ($F_{4,79} = 21.6, P < 0.0001$; Fig. 1A). Nitrogen response efficiency (NRE) and Nitrogen uptake efficiency (NupE) data did not significantly change across nutrient treatments but had a tendency to be lower under the N-only treatment (Fig. 1a). All NUE indexes that accounted for additional effects of exogenous N inputs (i.e. PFPN, AEN, REN and PEN; Fig 1b) were in general lower under the N-only application but were statistically significant ($P = 0.005$; Fig. 1B) only for REN.

We found that NUEN, NREN and NupEN all significantly decreased under grazing ($F_{1,79} = 9.7, P < 0.0001$; $F_{1,79} = 5.82, P = 0.01$; $F_{1,77} = 5.65, P < 0.01$, respectively; Fig. 2A), whereas PFPN, AEN, REN and PEN were not significantly affected by rabbit grazing (Fig. 2B).

Liming had positively affected NUEN, NREN and NupEN ($F_{1,79} = 4.4, P = 0.04$; $F_{1,79} = 6.23, P = 0.01$; $F_{1,79} = 4.17, P = 0.04$, respectively; Fig. 3A). Liming also had a tendency to positively affect PFP, AE, RE and PE as well but these results were not significant (Fig. 3B).

Relationships between NUE indexes and key belowground parameters

We found that NUEN was significantly negatively related to the rate at which N becomes available in soils (i.e. net soil N mineralization) (Fig. 4A). NRE$_N$ and NupE$_N$ are calculated...
using net soil N mineralization values so they cannot be used in this assessment to avoid auto
correlations. We found that PFP_N, REN, AEN and PE_N were not related to increases in soil N
mineralization rates. Only NUE_N was found positively related to soil pH (Fig. 4B). None of
the N uptake and soil availability indexes were significantly related to soil C:N, C:P or N:P
ratios, whereas PFP_N, REN and AEN all decreased as soil C:N, C:P and N:P ratios increased
(P < 0.05 for all analyses). There was no relationship between PE_N and soil C:N, C:P and N:P
ratios.

Relationship between NUE indexes, plant species diversity and soil N loss/gains

We found that plant species diversity was significantly positively related to NUE_N (F_1,79 =
22.5, P < 0.0001) and negatively related to PFP_N (F_1,47 = 7.52, P = 0.009) and REN (F_1,47 =
5.25, P = 0.026). No significant statistical relationships were found between NUE_N (and each
of the other NUE indexes; all analyses P > 0.05) and soil N loss or soil N retention efficiency.
Among management treatments we found that the ‘N-only’ treatment was associated with a
significant increase in soil N retention efficiency (P = 0.02).

Discussion

Our findings show how NUE_N (i.e. plant productivity per unit of N acquired) is significantly
higher in plants growing on unfertilised soils compared to grassland communities, which
grow on chronically N-fertilised soils. This confirms our first hypothesis and agrees with the
common view that plant productivity can be significantly reduced in N-poorer soils but plant
biomass production per unit of N acquired can be relatively high (Aerts & Chapin 2000).
However, there is also evidence that NUE may not respond to changes in soil N content
(Nakamura 2002; Yuan et al. 2005). The other two indexes, which mostly account for
endogenous N sources (NupE_N, NRE_N) were also higher (although not significantly) in
unfertilised soils (Fig. 1A). Instead, our evidence is that NUE_N decreased by a factor of 1.6
under the ‘N-only’ and ‘All’ (all nutrients applied) treatments and by a factor of 1.7 under the
NPMg treatment when compared to the control. These estimates agree with previous findings
in peatland sites where NUE was 1.6 times lower with high N return rates than in peatland
communities exposed to low nutrient return rates (Bridgham et al. 1995).

We found that NUE_N was positively related to plant species diversity, mainly because
greater plant species numbers were associated with no N additions. In our study we found
that the percent cover of specific plant functional groups (i.e. grasses, legumes, forbs) did not
influence nitrogen use efficiency of the plant community. This could be partly because
grasses contribute on average >70% of the plant community biomass in our experimental
plots. However, we did not specifically measure nitrogen use efficiency of specific functional
groups or specific plant species and we suggest that further studies could address how species
identity could influence N uptake and use under different management treatments.

We also found evidence that limitation of key nutrients such as P or Mg can reduce
plant NUE. For example, our results show significantly lower NUE under the N-only
treatment especially when measured with the REN index (Fig. 1b), which is a measure of
plant N uptake from N fertiliser sources only. These results suggest that plant N uptake per
unit of N applied is greatly increased when N is added together with other nutrients (i.e. N +
PMg). Thus the lack of key limiting non-N nutrients may strongly affect NUE (Elser et al.
2010). For example, reduced P availability may restrict plant growth as P is required for
photosynthesis, nucleic acid synthesis, respiration and enzyme activation (Vance et al. 2003).
Whilst our data suggests that P limitation may reduce NUE, no correlation was found
between concentrations of available soil P and NUE.

Despite potential effects from limiting nutrients, our data shows no significant
differences in NUE between treatments with or without potassium (K) (Fig. 1). This is
surprising as K is vital for many plant processes including the activation of over 60 enzymes and the production Adenosine Triphosphate – ATP (Ujwalaranade-Malvi 2011). It could be that these grassland soils have sufficient K to support N use but further studies should address how N and K interact to support plant growth under multiple management practices. We found that grazing (principally by rabbits) significantly reduced NUE\textsubscript{N}, NupE\textsubscript{N} and NRE\textsubscript{N} thus confirming our second hypothesis (Fig. 2A). We suggest that these indexes are lower under grazing partly because of increased soil N inputs from animal faeces and urine and partly because of a reduced need by plants to acquire and store N in their tissues. Our results show that NRE\textsubscript{N} (biomass production in response to available N) particularly decreases under grazing and this is possibly due to a strong positive grazing effect on rates of soil N mineralization (P < 0.0001) rather than a grazing negative effect on plant yields. These results align with findings from Shan et al. (2011), which show that grazing by sheep can decrease NUE (measured as ANPP per unit of N mineralized); however, overall net effects on NUE will depend on grazing intensity and changes in soil temperature and moisture. Grazing intensity without N inputs has been shown to increase NUE following a grass mowing experiment (Keuter et al. 2013). Here mowing simulated the effects of grazing by removing biomass but did not ‘replenish’ soil nutrient pools with faecal/urine N returns, thus forcing plants to increase NUE in response to biomass removal. We suggest that NUE would have increased (instead of decreasing) in our experimental grassland if grazing pressure had been greater, this is because there may be higher rates of compensatory regrowth, as identified in the grazing lawns hypothesis (McNaughton, 1984). According to our third hypothesis we found that liming determined an increase in NUE\textsubscript{N}, NupE\textsubscript{N} and NRE\textsubscript{N} indexes (Fig. 3A). These indexes significantly increased in limed grasslands (NRE\textsubscript{N} by 68%, NupE\textsubscript{N} by 52% and NUE\textsubscript{N} by 17%) when compared to unlimed grassland plots. The positive liming effect on these NUE indexes may be explained by
liming-induced increases in soil pH. However, this is only directly supported by a positive
correlation between NUE and soil pH (Fig. 4B). The fact that NupE_N also increased in limed
soils suggests that acquired N by plants increased more than soil available N.

Whilst we found a positive effect on NUE indexes in response to liming, we suggest
that these responses may be site-specific and may not translate to non-acidic soils. This is
because NUE may be higher in limed soils when compared to non-limed equivalents due to
inherent deficiencies associated with acidic soils. For example, in acidic soils plant growth
can be limited by nutrient deficiencies (Marschner 1991) that include an increased loss of N
through volatilization, leaching and denitrification (Fageria et al. 2005). There can also be an
adverse effect on plant morphology, physiology and biochemical process (Baligar et al.
1997). However, there are mechanisms that can lead to higher NUE in un-limed acid soils.
One such mechanism, in response to low pH, is changed physiology and a restriction of N
uptake. Here, there may be selective pressures to minimise N loss due to reduced ability by
plants to uptake N.

Our fourth hypothesis predicted that NUE indexes would decrease with increases in
rates of soil N mineralization. We found this expectation confirmed only for NUE_N whereas
changes in other indexes were not related to increases in soil N mineralization. It might be
that plants benefit from direct N uptake from artificial inorganic N inputs to soils and thus
rely less on N becoming available from the mineralization of soil organic nitrogen pools.

Our final hypothesis was that N losses from soils would be lower where plant NUE is
higher. We found, however, no relationship between NUE indexes and total soil N losses or
soil N retention efficiency. Several studies show that high NUE can result in lower soil N
losses (Silla et al. 2004; de Vries et al. 2006; de Vries et al. 2011) including reductions in soil
N leaching (de Vries et al. 2012) and N_2O emissions (Ammann et al. 2009). There might be
multiple reasons behind the lack of any relationship between NUE and N loss in our system
including: (a) saturation within some N sinks such as within microbes or plants, or on the
exchange sites of soil organic matter and minerals (Templer et al. 2012), (b) high levels of
nitrification leading to an excess of nitrate, which is more mobile than other forms of nitrogen
(Subbarao et al. 2009), (c) poor synchronicity between N supply and demand (Robertson
1997), (d) low levels of physical protection of nitrates within soil aggregates (Smucker et al.
1995), and (e) overall low fungi to bacteria ratios, which can be indicative of dynamic soil
systems and higher N losses (de Vries et al. 2006; de Vries et al. 2011). To improve nitrogen
use efficiency and reduce N losses from the system we need to improve synchronicity in N
inputs and use and ameliorate soil structure. For example, increases in plant diversity could
improve synchronicity in N inputs and use by including species which differ in phenology,
root depth and element stoichiometry (Hooper & Vitousek 1998; Fornara & Tilman 2009).

Conclusions

Our findings show how NUE is significantly lower in plants growing on soils receiving either
inorganic (synthetic N fertiliser) or organic forms of N (from animal waste) or both. Our
evidence is the NUE is higher when the contribution of endogenous sources of N (i.e. soil N
mineralisation rates) are included in equations to determine good nutrient management
practice. Our findings also show how the practice of agricultural liming can significantly
increase NUE and this could be related to soil pH-induced effects on soil N availability and N
use by plants. NUE$_N$ (i.e. plant biomass N per unit of N acquired) was the index that showed
the most significant change in response to multiple management practices. This suggests that
a key plant strategy to respond to low nutrient status is to utilise acquired N more efficiently
as opposed to capturing additional resources (i.e. by investing in associations with beneficial
symbionts). Based on our findings we suggest that a combination of lower nutrient inputs
(NPKMg) together with liming applications could significantly contribute to increasing NUE across managed grasslands while maintaining grass yields in the long-term.

Acknowledgements

This research paper was financed in part by the Department of Employment and Learning (DEL) and by the Department of Agriculture, Environment & Rural Affairs (DAERA) of Northern Ireland (UK) - project number 7001 (41499).
References

matter pools and carbon-protection mechanisms in aggregate classes influenced by

Blüthgen, N., Dormann, C.F., Prati, D., Klaus, V.H., Kleinebecker, T., Hölzel, N., Alt, F.,
Boch, S., Gockel, S., Hemp, A., Müller, J., Nieschulze, J., Renner, S.C., Schöning, I.,
Schumacher, U., Socher, S.A., Wells, K., Birkhofer, K., Buscot, F., Oelmann, Y.,
Rothenwöhrer, C., Scherber, C., Tscharntke, T., Weiner, C.N., Fischer, M., Kalko, E.
of land-use intensity in grasslands: integrating mowing, grazing and fertilisation.

Fungal/bacterial ratios in grasslands with contrasting nitrogen management. *Soil
Biology and Biochemistry, 38*(8), 2092–2103.

grassland soils with different fungal biomass. *Soil Biology and Biochemistry, 43*, 997
– 1005.

management promotes plant and microbial nitrogen retention in temperate grassland.
PloS one 7(12):e51201. https://doi.org/10.1371/journal.pone.0051201

International Workshop on Enhanced-Efficiency Fertilisers”, Frankfurt, Germany.

stoichiometry of plant production: metabolism, scaling and ecological response to
global change. New Phytologist, 186(3), 593–608.

Fig. 1. Relationships between NUE indexes and applied inorganic nutrient treatments; (A) Nitrogen Use Efficiency (NUEN), Nitrogen Uptake Efficiency (NupEN) and Nitrogen Response Efficiency (NREN); (B) Partial Factor Productivity for applied N (PFPN), Agronomic Efficiency for applied N (AE_N), Plant Recovery Efficiency of applied N (RE_N), and Physiological Efficiency of applied N (PE_N). NupEN, NREN and NUEN indexes estimate how effectively plants uptake N in response to changing soil N availability. PFPN, AE_N, RE_N, PE_N account for additional effects of exogenous N inputs (synthetic N fertilizer). Legend: All = all nutrients (N, P, K, Mg); N, P = N or P alone; NPMg = N, P & Mg together. Error bars show ± SE and represent variation among plots receiving the same nutrient treatment. Different letters indicate a significant difference (P < 0.05); NS, not significant.

Fig. 2. Relationships between NUE indexes and grazing (abbreviations and descriptions similar to Fig. 1 and Table 1). Error bars show ± SE and represent variation among plots receiving the same nutrient treatment. Different letters indicate a significant difference (P < 0.05); NS, not significant.

Fig. 3. Relationships between NUE indexes and agricultural liming (CaCO_3) (abbreviations and descriptions similar to Fig. 1 and Table 1). Error bars show ± SE and represent variation among plots receiving the same nutrient treatment. Different letters indicate a significant difference (P < 0.05); NS, not significant.

Fig. 4. Relationships between NUEN and (A) net soil N mineralisation rates, and (B) soil pH.
Table 1. Seven indexes of plant NUE that were calculated in the Nash’s Field long-term grassland experiment, which enable a comparison of the effects of endogenous (i.e. changing soil N availability) and exogenous (i.e. artificial fertilisation) N inputs on plant N uptake and use across experimental plots, which have been regularly fertilised, grazed and limed over 22 years.

<table>
<thead>
<tr>
<th>Name</th>
<th>Calculation</th>
<th>Explanation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Use Efficiency</td>
<td>NUE(_N) = Y / U</td>
<td>Yield (Y) per unit of nutrient taken up (acquired) by the plant (U). U is a measure of N concentration (%) in plant biomass (dry weight). Y and U measure yield and uptake in response to both endogenous nutrients and (exogenous) applied N.</td>
<td>(Berendse & Aerts, 1987; Pastor & Bridgham, 1999)</td>
</tr>
<tr>
<td>Nitrogen Response Efficiency</td>
<td>NREN = Y / V</td>
<td>Yield (Y) per unit of nutrient available in the soil (V).</td>
<td>(Bridgham et al. 1995; Berendse & Aerts 1987; Pastor & Bridgham, 1999)</td>
</tr>
<tr>
<td>Nitrogen Uptake Efficiency</td>
<td>NupEN = U / V</td>
<td>Ratio of acquired N (U) to available N (V).</td>
<td>(Pastor & Bridgham 1999; Yuan et al. 2006)</td>
</tr>
<tr>
<td>Partial Factor Productivity</td>
<td>PFP(_N) = Y_N/F_N</td>
<td>Yield in fertilised plots (Y_N) per unit of fertilizer applied (F_N) (kg ha(^{-1})).</td>
<td>(Dobermann 2005)</td>
</tr>
<tr>
<td>Agronomic Efficiency</td>
<td>AEN = (Y_N – Y_0)/F_N</td>
<td>Yield in fertilised plots (Y_N) minus the mean of biomass yield in control plots (Y_0) per unit of fertilizer applied (F_N) (kg ha(^{-1})).</td>
<td>(Dobermann 2005)</td>
</tr>
<tr>
<td>Plant recovery efficiency of applied N</td>
<td>RE(_N) = (U_N – U_0)/F_N</td>
<td>Biomass N concentration in fertilised plots (U_N) minus the biomass N concentration in unfertilised controls (U_0) per unit of fertilizer applied (F_N) (kg ha(^{-1})).</td>
<td>(Dobermann 2005)</td>
</tr>
<tr>
<td>Physiological efficiency of applied N</td>
<td>PE(_N) = (Y_N – Y_0)/(U_N – U_0)</td>
<td>Yield in fertilised plots (Y_N) minus mean yield from unfertilised control plots (Y_0) divided by yield N concentration in fertilised plots (U_N) minus the yield N concentration in unfertilised controls (U_0).</td>
<td>(Dobermann 2005)</td>
</tr>
</tbody>
</table>
Table 2. Two indexes related to changes in soil N retention efficiency, and total soil N loss over 22 years since the long-term grassland experiment was established in 1991 at Silwood Park, Berkshire, UK.

<table>
<thead>
<tr>
<th>Name</th>
<th>Calculation</th>
<th>Explanation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil N retention efficiency (g soil N g⁻¹ N added)</td>
<td>NRtE = (SN – S₀)/FN₂²</td>
<td>Soil N pools (kg N ha⁻¹) in fertilised plots (SN) minus mean soil N pools in the control plots (S₀) divided by total N fertiliser applied (kg N ha⁻¹) during the whole experiment (FN₂²; 22 years).</td>
<td>(Fornara & Tilman 2012)</td>
</tr>
<tr>
<td>Soil N loss (Mg N ha⁻¹)</td>
<td>SNL = (FN) – (SN – S₀)</td>
<td>Soil nutrient loss is measured as the total amount of fertiliser applied in 22 years (FN) minus the difference between soil N pools of fertilised plots (SN) and control plots (S₀).</td>
<td>(Fornara et al. 2013)</td>
</tr>
</tbody>
</table>
Fig. 1

(A)

(B)

Fig. 2

(A)

(B)
Fig. 3

(A)

(B)

Fig. 4

(A)

(B)

\[R^2 = 0.20 \quad P < 0.0001 \]

\[R^2 = 0.15 \quad P = 0.007 \]