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Abstract 

Background and Objective: Automatic voice pathology detection using sustained vowels has been widely explored. 

Because of the stationary nature of the speech waveform, pathology detection with a sustained vowel is a 

comparatively easier task than that using a running speech. Some disorder detection systems with running speech have 

also been developed, although the majority of them are based on a voice activity detector (VAD) that is itself a 

challenging task. Pathology detection with running speech needs more investigation, and systems with good accuracy 

are required. Furthermore, pathology classification systems with running speech have not received any attention from 

the research community. In this paper, automatic pathology detection and classification systems are developed using 

text-dependent running speech without adding a VAD module. 

Method: A set of three psychophysics conditions of hearing (critical band spectral estimation, equal loudness hearing 

curve, and the intensity loudness power law of hearing) is used to estimate the auditory spectrum. The auditory 

spectrum and all-pole models of the auditory spectrums are computed and analyzed, and used in a Gaussian mixture 

model for an automatic decision.  

Results: In the experiments using the Massachusetts Eye & Ear Infirmary (MEEI) database, an accuracy of 99.56% 

is obtained for pathology detection, and an accuracy of 93.33% is obtained for the pathology classification system. 

The results of the proposed systems outperform the existing running-speech based systems.  

Discussion: The developed system can effectively be used in voice pathology detection and classification systems, 

and the proposed features can visually differentiate between normal and pathological samples. 

Keywords: Running speech, voice pathology detection, voice pathology classification, auditory spectrum, all-pole 

model, GMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

Because of its noninvasive nature, the automatic assessment of voice pathology is strongly being considered as a 

primary screening tool or helping tool for the clinician. It will be of great help to an ENT specialist if an automatic 

assessment system can discriminate between normal and pathological samples, as well as classify the voice 

pathologies. The process of differentiating between normal and pathological subjects is a two-class problem referred 

to as pathology detection. By contrast, discriminating between different types of pathologies is a multiclass problem 

referred to as pathology classification. Automatic pathology detection is a widely explored area by the research 

community, while pathology classification is considered to be a more difficult task as compared with pathology 

detection and receives less attention. 

Most of the automatic pathology assessment systems, pathology detection, and pathology classification present in the 

literature are developed by using a sustained vowel /ah/ [1-4]. This is a comparatively easier task than developing 

assessment systems with continuous (running) speech. A speech signal remains stationary in the case of a sustained 

vowel, but it varies over time in the case of continuous speech. This is the reason why pathology assessment systems 

that use continuous speech are challenging and require more investigation. Moreover, these systems are more realistic 

because people use continuous speech in their conversations in daily life. Running speech contains fluctuations of 

vocal characteristics in relation to voice onset, voice termination, and voice breaks, which are considered to be crucial 

in quality voice evaluation. These characteristics are not fully represented in short signals of phonation such as a 

sustained vowel [5].  

Running-speech-based systems sometimes perform voice activity detection (VAD) before extracting the speech 

features. The VAD module is responsible for automatic segmentation of the voiced, unvoiced and silence parts of a 

speech signal. In a study [6], Umapathy et al. acknowledged that voice activity detection is itself a challenging task. 

On the other hand, in the existing pathology detection system that uses running speech, there are no visual cues for 

the features for medical doctors to use in their decisions. If a detection decision is verified by clear visual evidence, 

the system will be more useful to doctors. Moreover, present features based on human auditory mechanisms using a 

few psychophysics conditions of hearing, showing good performance for pathology detection but not for pathology 

classification. The proposed system will use the features incorporated by more conditions of hearing so that it may 

provide good results for both types of tasks (pathology detection and pathology classification).  

VAD-free pathology detection and classification systems based on text-dependent running speech are developed in 

this study. The proposed features are referred as auditory processed spectrum (APS) and are estimated by using three 

principles of hearing, namely, critical band spectral estimation, the equal loudness hearing curve, and the intensity 

loudness power law of hearing. The idea is to simulate the human perception of voice. The APS features are further 

analyzed by using an all-pole model to obtain all-pole model based cepstral coefficients (APCC). The all-pole models 

are obtained by linear predictive (LP) analysis [7, 8], which is widely used in speech-based applications, is well known 

to approximate the high-energy regions of a speech spectrum, and provides a fine harmonic structure. The proposed 

system has two important characteristics: (i) it is VAD-free, so there is no extra complexity to calculate VAD; and (ii) 

the features have the capability to detect pathologies by visual inspection, so doctors can have an extra level of 

screening apart from the automatic decision from the system. 

The rest of the paper is organized as follows: Section 2 describes the related work on text-dependent running-speech-

based pathology systems, Section 3 provides information on the developed systems, Section 4 describes the 

experimental setup and results for pathology detection and classification, Section 5 contains a discussion of the 

proposed systems, and finally Section 6 draws some conclusions.  

2 Related Work 

Speech features are broadly divided into following two categories based on simulated human hearing mechanisms or 

model human voice production systems. One of the first types of speech features is Mel-frequency cepstral coefficients 

(MFCC), and an example of another type of feature is linear prediction coefficients (LPC), which are based on all-

pole model. MFCC used triangular band-pass filters (BPFs) to divide the spectrum into certain frequency bands. The 



center frequencies of the BPFs are spaced on a Mel scale, and the bandwidths correspond to well-known auditory 

perception phenomena called critical bandwidths. MFFC mimic the behavior of the human auditory system, and have 

shown great success in pathology detection: 97.46% with sustained vowels [9] and 96% with running speech [10]. 

The performance of MFCC for pathology classification was not good: it provided an average accuracy of 70% in [11]. 

The proposed features also use critical bandwidth phenomena. Additionally, they are incorporated by other conditions 

of hearing, explained in Section 3, so that the developed system may provide good results for pathology detection as 

well as for pathology classification.  

Another MFCC-based system for disordered detection by using text-dependent running speech was developed in [12]. 

The running speech of a limited number of normal and disordered subjects (12 and 26, respectively) was used to 

evaluate the developed system. An accuracy of 91.66% was reported. The Gaussian mixture model (GMM) was 

implemented as a classification technique with a varying number of Gaussian mixtures. A limited number of samples 

were used for experiments; therefore, no reliable conclusions could be made. 

In [10], Godino et al. proposed a text-dependent running-speech-based pathology detection by using MFCC, and a 

VAD module was implemented to extract the voiced part of the continuous speech. The obtained accuracy (ACC) was 

96%. A receiver operating characteristic (ROC) curve was also plotted; the area under the ROC curve was 99.8%. The 

results with running speech were better than those with the sustained vowels. To perform the experiments, a subset of 

the Massachusetts Eye & Ear Infirmary (MEEI) database [13] containing 117 pathological and 23 normal subjects 

was selected. The “Rainbow” passage was used as a running speech; its text is given in Appendix A. To avoid biased 

results from the classifier, in the VAD module it was better to reject a voice segment than to accept an unvoiced 

segment. It is difficult to classify voiced and unvoiced (V-UV) speech segments accurately. In a study [6], Umapathy 

and his coauthors acknowledged that voice activity detection is itself a challenging task. An accuracy of 93.4%, 

without a voice activity detector, was obtained in the study. In a study by Lowell et al. [14], cepstral analysis was 

performed by measuring two features: cepstral peak prominence (CPP) and smoothed CPP (CPPS) [15]. CPP and 

CPPS can be calculated only in voice segments; therefore, VAD was necessary for these features.  

Long-term acoustic features, such as shimmer and jitter, were also used for running-speech-based pathology detection 

systems. Such types of measurements normally involve the accurate estimation of the pitch period, which is a very 

difficult task, especially in pathological samples. Vicsi et al. [16] used acoustic features, shimmer, jitter, harmonic-to-

noise ratio (HNR), and MFCC to distinguish between normal persons and dysphonic patients. The best obtained 

accuracy was 84% with the sustained vowel /i/ by using shimmer and jitter. The accuracy of the system was increased 

to 86% when tested with running speech: a folk tale, “The North Wind and the Sun.” The study was conducted with 

a private database containing 33 pathological and 26 healthy subjects. In a study by Parsa and Jameison in 2001, 

voiced/unvoiced segments of running speech were extracted by using contours of fundamental frequency [17]. The 

authors used nine acoustics parameters including shimmer, jitter, fundamental frequency, and linear predictive (LP) 

modeling-based measures for the discrimination of normal and pathological subjects. Fifty-three normal and 175 

pathological samples of the MEEI database for both sustained vowel and running speech were considered in the study. 

The LP-based measures provided the highest accuracy of 96.5%.  

Zhang and Jiang [18] differentiated normal and pathological subjects with the help of perturbation measures including 

shimmer and jitter, signal-to-noise ratio (SNR), and nonlinear dynamic (NLD) measures including correlation 

dimension and second-order entropy by using sustained vowels and running speech. As the results suggested, shimmer 

and jitter did not exhibit a significant difference between normal and pathological signals for the running speech, 

although nonlinear dynamic measures and SNR were statistically significant for running speech. The results in the 

form of ACC or AUC were not provided; therefore, a comparison with other studies is not possible.  

In [19], Watts and Awan reported that an accuracy of 91% is obtained for a running-speech-based pathology detection 

system. The performance of the system is not as good as that of other studies. 

A pathology classification with running speech has been reported in a recent study [20]. Three different types of vocal 

fold pathologies (edema, paralysis, and nodules) are considered for the experiments. The maximum achieved accuracy 

was 76.2% when edema and nodules were combined and detected from paralysis and healthy samples. The authors 



mentioned that there are few works in voice-pathology classification, and all use the sustained vowel /a/ as a speech 

signal. No significant work is present for pathology classification with running speech. 

3 Method 

Automatic voice pathology detection and classification systems are developed in this system. Two sets of features are 

used in the developed systems and are described in the following subsections.  

3.1 Auditory Processed Spectrum (APS) 
 

The auditory processed spectrum is estimated from running speech by using a set of psychophysics conditions of 

hearing. The perception can be modeled as a sequence of the critical band spectral estimation, equal loudness hearing 

curve, and intensity loudness power law of hearing. A set of auditory transformations based on the human hearing 

system modifies the spectrum. The steps to compute the APS features are depicted in Fig. 1. The spectrum of the 

normal/pathological speech sample is generated by applying a Fourier transformation (FT). Then the spectrum is 

passed through a set of band-pass filters to produce a critical band spectrum. The Fourier transformation provides the 

information of energy at each frequency component. Before applying the FT, the speech signal is divided into 

overlapping frames and multiplied with a hamming window [12] to remove the spectral leakage at the ends of the 

divided frames.  

 

The inner ear of a human plays a very important role in separating different frequencies. The inner ear transfers the 

energy from different frequencies to the basilar membrane. The higher frequencies are localized at the basal turn and 

the lower frequencies towards the apex of the cochlea, as shown in Fig 2. 

 

 

 
Figure 1. Computational steps to estimate the auditory spectrum. 

 

 

 

 

Figure 2. Frequency distribution in Hz along cochlea [21].  



  

Each point on the basilar membrane can be considered as a band-pass filter. The bandwidth of the cochlear filter is 

nonlinear and increases with an increase in frequency, as shown in Fig 3. Critical bandwidth—one critical band is 

referred to one bark—is linear up to 500 Hz and increases by 20% of the center frequency above 500 Hz. To 

approximate critical bands, two different scales are proposed: one by Zwicker [22] and the other by Schroeder [23]. 

The scale by Zwicker is used in this study and is given by Eq. (1): 
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Figure 3. Twenty-four bark spaced band-pass filters. 

 

The spectrum of the speech signal is wrapped with the Bark scale by filtering the spectrum through band-pass filters. 

The center frequencies of the band-pass filters are provided in Table 1. Twenty-four filters are used in this study.  

  

Table 1: Center Frequencies of Bark spaced band-pass filter bank 

Filter No. 
Frequency 

(HZ) 
Filter No. 

Frequency 

(HZ) 

 94.6 13 1737.4 

2 186.1 14 1995.8 

3 276.3 15 2293.0 

4 368.5 16 2638.5 

5 468.4 17 3045.1 

6 577.3 18 3530.5 

7 696.3 19 4120.3 

8 827.1 20 4852.0 

9 971.5 21 5783.2 

10 1131.6 22 6923.0 

11 1310.2 23 8298.8 

12 1510.7 24 10046.4 



 

After remapping the frequency axis to the bark scale, a Bark-warped critical band spectrum is obtained. Then, Log is 

applied on the obtained spectrum to dynamically compress the spectral amplitude. Moreover, it converts multiplicative 

distortions to additive distortions, which can be filtered. The log spectrum is now passed through a band-pass filter—

relative spectra, known as RASTA—to remove the effect of constant and slowly varying parts in each component of 

the estimated critical band spectrum. This filtering emphasizes the spectral changes occurring in the range of 1–10 

Hz. The human auditory system is relatively insensitive to those slowly varying stimuli. The RASTA filter is given 

by Eq. (2): 
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The inverse of Log is applied to the output of RASTA filter. To incorporate the phenomenon that human hearing is 

more sensitive to the middle frequency range of the audible spectrum, each critical band spectrum is multiplied by an 

equal loudness curve. The curve suppressed the low and high frequencies relative to midrange from 400 Hz to 1200 

Hz. According to the power law of hearing, a nonlinear relationship exists between the intensity of sound and 

perceived loudness. The phenomenon is incorporated after taking the cube root of the spectrum, which compresses 

the spectrum, and the obtained output is referred to as the auditory spectrum of the input signal. The obtained auditory 

processed spectrum is given to the GMM for classification of normal and pathological subjects. 

3.2 All-Pole Model Based Cepstral Coefficients (APCC) 
  

Voice pathologies affect the vocal folds, and these disorders produce irregular vibrations in the vocal folds owing to 

the malfunctioning of the voice box. Vocal fold pathologies exhibit variations in the vibratory cycle of the vocal folds 

because of their incomplete closure. A voice disorder also changes the shape of the vocal tract and produces 

irregularities in spectral properties. Vocal tract properties can be modeled using the all-pole model with the help of 

linear predictive (LP) analysis. 

 

The steps to perform an LP analysis are presented in Fig. 4. Autocorrelation is implemented with an inverse Fourier 

transformation, and LP coefficients (LPC) are obtained after applying the Levinson-Durbin algorithm. Then the LPC 

are given to a recursive routine, determined by Eq. (3), to calculate the cepstral coefficients. LP analysis provides fine 

a harmonic structure, and is well known to approximate the high-energy regions of a speech spectrum. The computed 

cepstral coefficients are inputted to the GMM for the differentiation of normal and pathological patients. 

In Eq. (3), 
2  is the gain term in the LPC, p is the order of the LP analysis, an are LPC, and cn are obtained cepstral 

coefficients. 
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Figure 4. Steps to compute all-pole model of estimated spectrum. 

 

 



3.3 Gaussian Mixture Model 
 

GMM [24] is a state-of-the-art modeling technique that has been widely used in different scientific areas including 
voice pathology [12, 25-27]. GMM copes more with the space of the features rather than the time sequence of their 
appearance. The basis for using GMM is that the distribution of feature vectors extracted from an individual’s speech 
data can be modeled by a mixture of Gaussian densities. A Gaussian mixture density is a weighted sum of M component 
densities given by    

( ) ( )
1

|   | , ,       1,2,3,...,
M

i i i

i

p X w g X i M
=

 =   =                           (4) 

where ,  ,  and i i iw 
 
are the mean vector, covariance matrix, and weight (prior probability) of the ith Gaussian 

component, respectively. A K-means algorithm is used to initialize the parameters. These parameters are estimated and 
tuned by the well-known Expectation-Maximization (EM) algorithm [28] to converge to a model giving a maximum 

log-likelihood value. The calculated features are represented by D-dimensional data vector  1 2 3X , , ,..., Dx x x x= , 

and the density of each component is given by a D-dimensional Gaussian function of the form  
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The weights of Gaussian components satisfy the following constraint: 
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By using the GMM model, denoted by ( ),  i i =  , two types of experiments are performed. The first type of 

experiment is for pathology detection to differentiate between normal and pathological subjects. The other type of 
experiment is for pathology classification to detect the type of voice pathology.  
 
In pathology detection, all normal subjects generate one GMM model, and all disordered subjects generate a second 
GMM model. The GMM models are generated by using different numbers of Gaussian component/mixtures. Once 
models are generated, a parametric test utterance (extracted features) will be compared with both models, and the log-
likelihood of both models will be computed to make a decision. If the log-likelihood of the test utterance is greater for 
the GMM model of normal subjects, then the test utterance belongs to the normal class; otherwise, it belongs to the 
pathological class.  
 
During the feature extraction process, the speech signal was divided into short frames. A final score of the log-likelihood 
to a parametric representation of the test utterance will be assigned by adding the log-likelihood score for each frame. 
In this process, independence between the frames is assumed. A block diagram showing pathology detection by using 
GMM is depicted in Fig. 5.  
 

 
Figure 5. Pathology detection by using GMM. 

 



For pathology classification, GMM models for all disorders (adductor, keratosis, nodules, polyp, and paralysis) are 
generated by using a different number of GMM components. Then, to find the type of disorder, a parametric test 
utterance will be compared with all the generated models one by one, and the log-likelihood values of the test utterance 
will be computed with each model. The GMM model with the maximum log-likelihood will decide the type of disorder 
for the test utterance. The process for pathology classification is shown in Fig. 6.   
 

 
 

Figure 6. Pathology classification by using GMM. 
 

4 Material and Experimental Results 

The APS and APCC features are computed for normal and pathological speech signals. Speech signals are taken from 

the MEEI database. The database was recorded with a condenser microphone in a controlled environment at the 

Massachusetts Eye & Ear Infirmary Voice & Speech Laboratory. The database recorded a large number of voice 

disorder patients having different kinds of voice complaints after a clinical evaluation. The MEEI database contains 

two types of signals: sustained vowel /ah/ and running speech that corresponds to the Rainbow passage.   

The MEEI database was recorded at two sampling frequencies (25 KHz and 50 KHz). Therefore, samples having a 

sampling frequency of 50 KHz were downsampled to 25 KHz. A subset of the MEEI database as mentioned in [1, 4] 

is used for the evaluation of the disorder detection and classification. The subset contains 173 pathological and 53 

normal subjects. The pathological subjects are suffering from adductor spasmodic dysphonia, vocal fold nodules, 

keratosis, vocal fold polyp, and paralysis. A distribution of the normal and pathological samples having different types 

of disorders is shown in Table 2. 

Table 2: Distribution of normal and pathological samples in the MEEI subset 

Subjects Disorders Type No. of Samples Total 

Pathological 

Adductor spasmodic dysphonia  22 

173 

Vocal fold nodules 20 

Keratosis 26 

Vocal fold Polyp 20 

Paralysis 85 

Normal --- 53 53 

 

The group of normal subjects contained 21 male and 32 female, while the number of males and females for 

pathological subjects were 70 and 103, respectively. For normal subjects, the age range for male speakers is 26–59 

years, and for female speakers the range is 22–52 years. The average age for males and females in the group of normal 

subjects is 38.81 and 34.1 years, respectively. For pathological subjects, the age of the male patients is within the 



range of 26–58 years, and the range for females is 21–51 years. The average age for males is 41.71 years, and for 

females the average age is 37.58 years.  

All subjects who recorded the sustained vowel also recorded the Rainbow passage. There were two instances when a 

pathological subject recorded the sustained vowel but did not record the Rainbow passage; the missing subjects are 

FXC12AN and MCA07AN. Therefore, in this study, 171 pathological and 53 normal speech samples are used.  

To compute the APS features, the speech signals were divided into windows of 10 ms, with 50% overlapping, and 

multiplied with the hamming window. A 256-point FT and 24 band-pass filters in a bark-spaced filter bank are used 

to calculate the APS features. All-pole models are calculated by using 11th-order LPC analysis to obtain the APCC 

features. The first- and second-order derivatives are also calculated on these cepstral components by using a linear 

regression calculated by Eq. (7): 
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where t corresponds to the first-order derivative at the tth frame, ct,m represents mth coefficients of the tth frame, and 

B is a length of the regression window, which is 5 in this study.  

The results of the developed system based on the proposed features, are expressed in terms of sensitivity, specificity, 

accuracy, and the area under the ROC curve. These features are represented by SEN, SPE, ACC, and AUC, 

respectively. The terms are define as follows: accuracy is the ratio between correctly detected samples and the total 

number of samples, sensitivity is the ratio between truly identified pathological samples and the total number of 

pathological samples, and specificity is the ratio of truly classified normal samples and the total number of normal 

samples. The performance parameters SEN, SPE, and ACC are calculated by using following relationships: 

100
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100
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           (10) 

where true negative (TN) means that the system detects a normal subject as a normal subject, true positive (TP) means 

that the system detects a pathological subject as a pathological subject, false negative (FN) means that the system 

detects the pathological subject as a normal subject, and false positive (FP) means that the system detects the normal 

subject as a pathological subject. 

 

4.1 Pathology Detection 

A five-fold approach is used to perform the experiments for pathology detection. The database is divided into five 

equal disjoint sets where each time one set is used in the system evaluation while the remaining four sets performed 

training. In this way, each sample from the database is used as a testing utterance, and a log-likelihood value is 

computed for it. The classifier makes the decision on the basis of the computed log-likelihood. By using the five-fold 

approach, the results of the developed system become robust against training and testing sets of the samples. The 

reported performance parameters SEN, SPE, and ACC (in Tables 3, 4, and 5) are averaged over five folds, and the 

standard deviation (STD) of the performance parameter over the five folds is also provided.  



Gaussian models for normal and pathological subjects are estimated by using a different number of Gaussian mixtures, 

i.e., 8, 16, 32, 48, 64, and 80. Experiment results showed that the GMMs of the two classes are estimated accurately 

when the number of mixtures is increased. Pathological subjects are represented as a positive class, and normal 

subjects are considered as a negative class. 

Detection with Auditory Processed Spectrum (APS) 

The performance of the APS features for voice pathology detection is shown in Table 3. The highest obtained accuracy 

is 98.22% and the AUC is 98.57%. The attained SEN and SPE are 97.66% and 100%, respectively. The STD is zero 

for SPE which shows that the SPE is independent of the training and testing data. For each fold in the five-fold 

approach, it was 100%. The ROC curves for the APS with 64 and 80 Gaussian mixtures are shown in Fig. 7 (a). The 

decision values of the classifier, which are the log-likelihoods, are used to plot the ROC curve. A high value of the 

AUC indicates that classifier is reliable in differentiating normal and pathological samples.  

Table 3: Performance measures (%) for pathology detection with APS 

Gaussians SEN ± STD SPE ± STD ACC ± STD AUC 

8 92.42 ± 3.2 100 ± 0 94.19 ± 2.5 96.35 

16 96.49 ± 2.4 100 ± 0 97.32 ± 1.8 97.72 

32 97.06 ± 2.4 100 ± 0 97.77 ± 3.8 97.75 

48 97.06 ± 2.9 100 ± 0 97.77 ± 2.2 97.76 

64 97.06 ± 3.6 100 ± 0 97.77 ± 2.7 97.70 

80 97.66 ± 2.4 100 ± 0 98.22 ± 1.8 98.57 

Detection with All-Pole Model Based Cepstral Coefficients (APCC) 

The results of pathology detection with 12 coefficients are provided in Table 4, and that with 36 coefficients (12 static 

+ 12 first derivative +12 second derivative) are presented in Table 5. The results with 24 coefficients (12 static + 12 

first derivative) are not provided as they did not show any improvement compared with the results of 12 coefficients. 

An accuracy of 98.22 % is obtained with 12 coefficients, and the AUC is 98.50%. The overall maximum accuracy is 

achieved with 36 coefficients. That maximum accuracy is 99.56% with an STD equal to 0.9. The other performance 

measures (SEN and SPE) are 99.41% and 100%, respectively; and the AUC is 99.99%. ROC curves are plotted only 

for 80 Gaussian mixtures to avoid overlapping with curves of other Gaussians. This is shown in Fig. 7 (b). 

Table 4: Performance measures for pathology detection with APCC by using 12 features 

Gaussians SEN ± STD SPE ± STD ACC ± STD AUC 

8 94.74 ± 4.3 92.55 ± 7.6 94.20 ± 1.9 95.53 

16 97.08 ± 5.0 98.18 ± 4.0  97.33 ± 3.6 97.67 

32 97.66 ± 3.8 98.18 ± 4.0 97.78 ± 2.7 98.27 

48 97.08 ± 5.0 98.18 ± 4.0 97.33 ± 3.6 97.80 

64 97.65 ± 5.2 98.18 ± 4.0 97.78 ± 3.8 97.97 

80 98.24 ± 3.9 98.18 ± 4.0 98.22 ± 2.8 98.50 

Table 5: Performance measurements for pathology detection with APCC by using 36 features 

Gaussians SEN ± STD SPE ± STD ACC ± STD AUC 

8 96.50 ± 2.4 98.18 ± 4.0 96.88 ± 1.2 97.56 

16 98.27 ± 2.5 98.18 ± 4.0 98.22 ± 1.8 99.30 

32 98.25 ± 2.6 100 ± 4.0 98.67 ± 1.9 99.04 

48 99.41 ± 1.3 98.18 ± 4.0 99.11 ± 1.2 99.74 

64 99.41 ± 1.3 98.18 ± 4.0 99.11 ± 1.9 99.91 

80 99.41 ± 1.3 100 ± 0 99.56 ± 0.9 99.99 
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Figure 7. ROC curves for pathology detection with (a) APS by using 64 and 80 Gaussian mixtures and (b) 36 APCC 

by using 80 Gaussian mixtures. 

The log-likelihood values are used as the discriminative measure to differentiate between two types of subjects. The 

Mann-Whitney U-test is performed to check the discriminant power of the log-likelihood at the 5% significant level. 

The obtained two-sided p-values are 0.0001E-22 and 0.0004E-24. For APS and APCC features, respectively, both p-

values are less than 0.05, which rejected the null hypothesis that the log-likelihood values of normal and pathological 

classes are from continuous distributions with equal medians. For APS features, the mean and standard deviation of 

the log-likelihood for pathological and normal classes are (1.48, 0.14) and (3.73, 0.48), respectively. For APCC, the 

results are (1.07, 0.23) and (4.73, 0.28), respectively. Different means and a small standard deviation of the log-

likelihood show that both types of features can detect normal and pathological subjects.  

For visual indication, energy distributions for the APS features for different pathological and normal subjects are 

depicted in Fig. 8. The APS features were computed by following the steps mentioned in Fig. 1. The spectrums were 

calculated for the entire speech signal, but for the sake of clarity, energy contours are plotted by considering the same 

part of the Rainbow passage, i.e., “when the sunlight.” It can be observed that high energies (circled in the figures) 

for the normal subjects belong to the region of lower frequencies, while those for voice-disordered subjects belongs 

to a high-frequency region. This suggests that normal and pathological subjects can be classified based on the high-

energy regions that have significantly different representations in the auditory spectrum for both types of subjects. For 

a pathological subject, higher bands in the APS features model the noisy components owing to the lack of closure of 

vocal folds. 

The energy distribution for the APCC features is also plotted in Fig. 8. The all-pole model provides a fine harmonic 

structure and highlights the high-energy regions of the spectrums. It can be observed from Fig. 8 that the high-energy 

for a normal subject is concentrated, and the high-energy for a pathological subject is sparse. The different 

representations of the energy contour, concentrated for normal, subjects and scattered for pathological subject, leads 

to the hypothesis that these coefficients can discriminate between normal and pathological voices. The cepstral 

coefficients obtained after Fig. 4 are also referred to as RASTA-PLP coefficients. The spread of energy contours in 

pathological voices can be supported by [29], where the authors showed that the energy is concentrated in a normal 

voice, while that for a pathological voice is distributed. 
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Figure 8. Energy distribution by APS and APCC for different normal and disordered subjects. All plotted speech 

signals correspond to the same part of the Rainbow passage “when the sunlight.” 



4.2 Pathology Classification 

For pathology detection, the five-fold approach was used, while for pathology classification all experiments are 

performed by using two-fold cross-validation owing to the limited number of samples for the disorders. The samples 

that are labeled with multiple disorders are removed from the list. Different numbers of Gaussian mixtures (4, 8, 16, 

32, and 48) are used to train each model. 

Classification with Auditory Processed Spectrum (APS) 

The classification results of each disorder (adductor, keratosis, nodules, polyp, and paralysis) with APS features are 

mentioned in Table 6, and the best-obtained accuracy for each disorder is represented by a bold value. The maximum 

accuracy for adductor is 93.33%, which was obtained with 32 Gaussian mixtures. The highest accuracy for keratosis 

is 85.53% with 48 Gaussians. Similarly, the best accuracy for nodules, polyp, and paralysis are 85.53%, 89.33%, and 

78.42%, respectively. The AUC was 94.01%, 86.92%, 88.36%, 91.99%, and 82.66% for adductor, keratosis, nodules, 

polyp, and paralysis, respectively. The ROC curve for each disorder is depicted in Fig. 9(a).  

Table 6: Accuracies (%) of all disorders with APS for different number of mixtures  

Disorder Type 
No. of Gaussian Mixtures 

4 8 16 32 48 

Adductor 84 78.67 84 93.33 89.33 

Keratosis  60.53 71.05 72 84.21 85.53 

Nodules 81.33 85.53 76 80.26 81.58 

Polyp 44 89.33 84.21 85.53 88.16 

Paralysis 64 69.33 77.11 75.33 78.42 
* Bold values represent best-obtained accuracy for each disorder 

Classification with All-Pole Model Based Cepstral Coefficients (APCC) 

The results of all disorders by using 12 APCC are presented in Table 7. The best-obtained accuracy for adductor is 

89.33% with 16 Gaussians; for keratosis, 81.58 with 16 Gaussians; for nodules, 85.33% with 48 Gaussians; for polyp, 

89.47%; and for paralysis, 78.42%. The AUC for adductor, keratosis, nodules, polyp, and paralysis are 90.20%, 

83.02%, 87.60, 91.85%, and 82.62%, respectively. The ROC curves for each disorder are shown in Fig. 9(b) for 

APCC.  

Table 7: Accuracies (%) for each disorder with 12 APCC by using different number of mixtures 

Disorder Type 
No. of Gaussian Mixtures 

4 8 16 32 48 

Adductor 81.33 82.89 89.33 89.33 88 

Keratosis  68.42 72.37 81.58 77.63 80.26 

Vocal Nodules 78.67 82.67 78.67 81.33 85.33 

Vocal Fold Polyp 81.33 75 81.58 89.47 89.47 

Paralysis 73.33 76.67 78.00 76.67 78.42 
* Bold values represent best-obtained accuracy for each disorder 

To plot the ROC curve for the disorder adductor, log-likelihood values of the disorder adductor are considered as a 

positive class, while the log-likelihood for all other disorders are considered as a negative class. Similarly, the ROC 

curve for each disorder is plotted in Fig. 9. The log-likelihood are used to decide the type of voice disorder. For the 

significance of log-likelihood values, the Mann-Whitney U-test is performed at a 5% significance level. The two-

sided p-value obtained for all disorders are provided in Table 8. The obtained p-values are less than 0.05, which rejects 

the null hypothesis that log-likelihood values of both classes are from continuous distributions with equal medians. 

The test shows that the proposed features can detect the type of a disorder. The AUC and p-values are calculated by 

using the log-likelihood values that correspond to the best accuracy. 



Table 8: p-values for each disorder obtained by performing Mann-Whitney U-test at 5% significant level (  = 

0.05) 

Features Adductor vs. Rest Keratosis vs. Rest Nodules vs. Rest Polyp vs. Rest Paralysis vs. Rest 

APS 0.0004E-7 0.0003E-5 0.0003E-4 0.0004E-4 0.0005E-8 

APPC 0.0001E-5 0.0001E-3 0.0006E-4 0.0004E-4 0.0006E-8 

 

  

(a) (b) 

Figure 9. ROC curves for each disorder with (a) APS and (b) APCC.  

A summary of the results for pathology classification with both types of features is shown in Fig. 10. ACC-APS and 

ACC-APP represent the accuracy of APS and APCC features, respectively, while AUC-APS and AUC-APCC 

represent AUC for APS and APCC, respectively. It can be observed that overall highest obtained accuracy is achieved 

by adductor, i.e., 93.33%. The performance of AS features is better than that of APCC features in the case of adductor 

and keratosis, whereas for the rest of the disorders the performance of both types of feature is the same. 

 

   Figure 10. Summary of results for pathology classification. 

5 Discussion 

Automatic voice pathology detection and classification systems are developed in this study by using the proposed 

features APS and APCC. The proposed features are implemented with a set of three psychophysics conditions of 

hearing: critical band spectral estimation, equal loudness hearing curve, and the intensity loudness power law of 

hearing. The features provided good results for pathology detection as well as for classifications and they are also 

visually appealing to differentiate between normal and pathological voices. This characteristic of the proposed features 



can thus convince medical doctors to make a decision even without a classifier. The higher bands in the APS features 

model the noisy components owing to lack of closure of vocal folds in pathological subjects, whereas APPC features 

provide a fine harmonic structure for normal subjects and are sparse for pathological subjects. 

By observing different studies in the literature, it can be concluded that MFCC behaves like a clinician because for a 

clinician it is easier to differentiate between normal and pathological subjects by auditory perception than to 

discriminate between different disorders. In [30], MFCC did not provide good results to differentiate between the 

voice disorders compared with other features used in the study, while the performance of the MFCCs were much 

better when all normal subjects were combined in one class and all disorders were grouped in second class. Studies 

[9] and [11] also strengthen the conclusion that MFCC perform better for disorder detection rather than disorder 

classification. MFCC provided a detection rate of 97.46% in [9] with the Rainbow passage, and an average accuracy 

of 70% was obtained in [11] when MFCC were used for the classification of disorders. MFCC were implemented by 

using one of the hearing conditions, referred to as a critical band. The developed system based on the proposed system 

also compared other types of features in Table 8 to ensure that it achieved best accuracy. 

In this study, the obtained detection rate of 99.56% with an STD equal to 0.9 and AUC of 99.99% shows that the 

proposed features performed well in discriminating between normal and pathological subjects. The proposed features 

also provided good accuracy in differentiating between different voice disorders. The best-obtained accuracy is 

93.33% for the adductor, with an AUC equal to 94.01%.  

Both features, APS and APCC, have many dimensions, and they required a multidimensional analysis whose 

interpretation for the human mind is not easy. Studies based on these types of multidimensional features need a 

machine-learning stage to make a decision for a test utterance [10]. In the proposed study, the output of the GMM 

classifier, which is log-likelihood, might be considered as a discriminant measurement to differentiate between the 

samples of different classes. The significance of the results depends on the discriminative power of the computed log-

likelihood. 

To practice the developed systems in a clinic, let us consider that 
n denotes the GMM model of the normal subjects, 

and 
p represents the GMM model of the disordered subjects. The parametric representation X of the test utterance 

will get two log-likelihood values, ( )log | np X 
 
when compared with a GMM model of the normal subjects, and 

( )log | pp X 
 
when compared with the model of disordered subjects. A threshold  can be used to decide the class. 

If ( )log | pp X   , the utterance is a pathological sample, otherwise, the utterance is a normal subject. The 

probability distribution function (pdf) is plotted for the log-likelihood values of normal and pathological samples to 

observe the significance of the computed log-likelihood. The pdf for the APS and APCC features are depicted in Fig. 

11(a) and 11(b), respectively, where log-likelihood values are normalized over a scale 1 to 5.  

The log-likelihood values used in the figures correspond to the best-achieved accuracies mentioned in Table 3 for 

APS, and in Table 5 for APCC. By analyzing Fig. 11, it can be observed that the log-likelihoods for normal and 

pathological subjects for both types of features are significantly different. The decision margins for differentiation of 

normal and pathological samples, for both types of features, are large and exhibit the significance of the proposed 

features. The decision interval for the APS features is IS = [1.85  3.16], and for APCC features it is IA= [1.17  4.41]. 

For clinical practice, the threshold  can be any value that lies within the decision intervals IS and IA for APS and 

APCC, respectively.  

A common threshold can also be adjusted for both features by selecting it from the intersection of the decision intervals 

IS and IA. A common decision margin for both features is IS. Moreover, two sided p-values for the log-likelihoods 

0.0001E-22 and 0.0004E-24 are obtained by performing a Mann-Whitney U-test with features at the 5% significant 

level (α = 0.05). The p-values are approximately zero, which rejects the null hypothesis and concludes that log-

likelihood can be used reliably to differentiate between normal and pathological classes.  

 



  
(a) (b) 

Figure 11. Probability density functions of log-likelihood values for features (a) APS and (b) APCC. Fig. 11(a) 

represents that log-likelihood values of pathological subjects for APS features are less than 2.0. It shows that if for a 

sample log-likelihood value is 2.0 or less, then the subject is suffering from a voice disorder. Fig. 11(b) shows that 

log-likelihood values of pathological subjects are less than 1.5 for APCC features. It represents that if log-likelihood 

value of a sample is less than 1.5, then it belongs to pathological subjects. A common threshold value, say 2.0, can 

also be used for both types of features to decide the presence of a voice disorder. 

The significance of the results for pathology classification is presented in Table 8. The p-values <0.05 show that both 

types of features can differentiate between types of disorders. As mentioned in a recent study [20], little research has 

been conducted on pathology classification, and all of it used the sustained vowel. The highest result reported in [20] 

to detect the type of disorder was 76.2%. In our proposed work, the best-obtained result is 93.33%. 

The results of the proposed detection system are compared with the results of existing systems in the literature. The 

accuracies of the existing systems are taken from the respective studies mentioned in the first column of Table 9. A 

system that uses a VAD is mentioned by “Yes,” otherwise “No.” From Table 9, we can find that the proposed system 

outperformed all of the mentioned works. The proposed system works without a VAD but still manages to perform 

accurately. 

The best accuracy in Table 9 without a VAD is 93.4% [6], and by using a VAD the accuracy is 96.5% [17]. The 

proposed system achieved better accuracy than both of these systems. 

Table 9: Comparison of proposed detection system with existing systems 

 

Reference 

 

Database VAD Features Accuracy 

[17] MEEI Yes 
9 acoustic parameters 

(shimmer, jitter, etc.) 
96.5% 

[6] MEEI No 
Frequency ratio, energy ratio, 

length ratio, and octave mean 
93.4% 

[10] MEEI Yes MFCC 96% 

[31] MEEI Yes Nonlinear dynamic measures 95% 

[16] Private No 
MFCC, shimmer, jitter, and 

HNR 
86% 

[12] Private No MFCC 91.66% 

Proposed 

System 
MEEI No APS and APCC 99.56% 



6 Conclusion 

Automatic voice pathology detection and classification are developed by using the proposed features APS and APCC. 

The developed system does not contain a VAD module because extraction of the voiced and unvoiced parts of a speech 

signal is itself a challenging task and increases the computational cost of a system. The systems are developed by 

means of running speech owing to its dynamic aspects (onset, offset, etc.). Moreover, running speech is more suitable 

for screening purposes in the context of daily communication.  

The proposed features showed a good performance for pathology detection as well as for classification. The features 

are also visually appealing to differentiate between normal and pathological voices; this characteristic of the proposed 

features can thus convince medical doctors to make a decision even without a classifier. The APS features are 

calculated by using a set of hearing principles which show that high energy for normal subjects belongs to the low-

frequency region. This is significantly different from pathological subjects, where high energy appeared in the high-

frequency region. Moreover, APCC features provided a fine harmonic structure for normal persons but a sparse 

structure for vocal-fold patients. An accuracy of 99.56% is achieved for pathology detection and 93.33% for 

classification. According to the best of our knowledge, this is the highest obtained accuracy for any running-speech-

based pathology detection and classification system. 

In a future work, we will investigate the proposed system using other databases and try to find the energy differences 

for different phonemes in a running speech. 
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Appendix A 
 

“When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow. The rainbow is a division of 

white light into many beautiful colors. These take the shape of a long round arch, with its path high above…” 
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