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CASL: Capturing Activity Semantics through
Location Information for enhanced activity

recognition
Xiao Zhang, Shan Cui, Tao Zhu, Liming Chen, Member, IEEE , Fang Zhou,

and Huansheng Ning, Member, IEEE

Abstract—Using portable tools to monitor and identify daily activities has increasingly become a focus of digital healthcare, especially
for elderly care. One of the difficulties in this area is the excessive reliance on labeled activity data for corresponding recognition
modeling. Labeled activity data is expensive to collect. To address this challenge, we propose an effective and robust semi-supervised
active learning method, called CASL, which combines the mainstream semi-supervised learning method with a mechanism of expert
collaboration. CASL takes a user’s trajectory as the only input. In addition, CASL uses expert collaboration to judge the valuable
samples of a model to further enhance its performance. CASL relies on very few semantic activities, outperforms all baseline activity
recognition methods, and is close to the performance of supervised learning methods. On the adlnormal dataset with 200 semantic
activities data, CASL achieved an accuracy of 89.07%, supervised learning has 91.77%. Our ablation study validated the components
in our CASL using a query strategy and a data fusion approach.

Index Terms—Healthcare, Deep learning, Semantic annotation, Location information, Semi-supervised active learning.

✦

1 INTRODUCTION

S ENSOR-BASED recognition of Activities of Daily Living
(SbrADL) is a hot topic in digital healthcare, and its

research can provide valuable advice for better healthcare
and lifestyle. Most SbrADL rely heavily on supervised
learning, which requires many labeled sensor data. Usually,
we achieve semantic annotation (recognize and label the
sensor data) by observing or monitoring the daily life of
the participants. In any case, these annotation methods are
manually labor-intensive, time-consuming [1]. The lack of
labeled sensor data due to cost is known as annotation
scarcity [2].

Many scholars put forward methods to solve the
problem of annotation scarcity, which can be divided
into knowledge-driven methods and data-driven methods.
Knowledge-driven methods are to manually build the on-
tology model and obtain the activity semantics through the
rules obtained by the ontology model. Saguna et al. [3] com-
bine ontology modeling, Spatio-temporal modeling with
inference to identify crossover and concurrent activities. Ye
et al. [4] calculated semantic similarity among activities,
objects, and sensor events using the hierarchical relationship
of activities and used semantic similarity to segment sensor
event sequences of concurrent activities to obtain partial
concurrent activity semantics. Ning et al. [5] provided a
ontology to achieve sensor data semantization according to
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publicly agreed standards. This new ontology can improve
its reuse across different models. Even so, knowledge-based
methods require a lot of domain knowledge and artifi-
cial modeling costs. When the experiment or application
environment changes, all the action rules of knowledge
engineering need to be changed accordingly. We focus on
the data-based approach because of the lack of portability
caused by the above problems.

To address the annotation scarcity, we develop a novel
model referred to as CASL, which takes the location infor-
mation contained in the SbrADL datasets as the only input.
Although the way activities are performed may change, the
location information (the sensor’s location or the hidden
location contained in the multimodal dataset [6]) in each ex-
periment environment is relatively fixed and easy to obtain.
When we keep the sensitivity of all the sensors consistent,
the activity location information can well match the activity
category [7]. Besides, location information can protect user
privacy better than other features in the SbrADL datasets
[7], [8]. The privacy problem is not the focus of our work
and will not be discussed in detail.

The main challenge to SbrADL is that the amount of data
in public datasets is limited [9]. It is difficult to avoid over-
fitting in training deep models through SbrADL datasets.
Therefore, we combine the mainstream semi-supervised
approach to overcome overfitting, including data augmenta-
tion, Consistent Regularization [10] into CASL to solve this
problem. The semi-supervised part was proven effective by
past work [11]. Then we combined the semi-supervised and
active deep learning to form the complete CASL. Moreover,
because of the limited amount of data, the heuristic method
of active learning is prone to sampling anomalies. The
active learning method is ineffective after combining semi-
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Fig. 1 The heat map of unlabeled sensor data was enhanced several times. The enhanced image is pixelated to augment the data
further. Finally, the model is improved through augmented data and expert collaboration.

supervised learning in batch settings. We proposed a novel
sampling method called Sampling-based on Distance and
Density Tradeoffs (S2DT) to overcome the above problem.
This sampling method is based on the different importance
of the distance and the sample density in different datasets.

In short, our work is to combine semi-supervised learn-
ing, active learning heuristic algorithm and deep model into
CASL, with location information as to its only input. The
CASL is robust and has a reasonable recognition rate even
in the case of a small dataset. The main contributions are as
follows:

• We propose a new semi-supervised active learning
algorithm, which takes location information as input
and solve annotation scarcity.

• We develop a novel sampling method to solve the
problem of of easy sampling of outliers from limited
labeled sensor data.

• We demonstrate by ablation experiments that
our proposed sampling method applied to CASL
achieved state-of-the-art results.

2 RELATED WORK

To set the stage for CASL, we first introduce existing data-
driven methods for semantic annotation. Semi-supervised
and active learning methods rely on limited labeled data
and have shown a growing trend [12].

Semi-supervised methods require less labeled data and a
large amount of unlabeled data. Wang et al. [13] proposed a
new generative adversarial network framework, called Sen-
soryGAN, which efficiently generates sensor data. However,
this approach works poorly for outliers. In order to solve
the problem, Zhang et al. [14] proposed semi-supervised
GAN. The semi-supervised GAN differs from conventional
GANs in that semi-supervised GANs perform n+1 classi-
fication, including n activity classification and a fake data
classification. We borrowed data augmentation from semi-
supervised learning and applied it to CASL. Chen et al.
[15] proposed a semi-supervised deep model for multi-
mode wearable sensor data activity identification. This work
addresses the challenges of person-to-person variability and
similarity between classes and the problems of finite marker

data and class imbalance. The development of this work
provides an idea for us to combine semi-supervised learning
with the deep model.

Unlike semi-supervised learning, active learning re-
quires experts or annotators to annotate activities’ semantics
manually. Active learning aims to select more valuable
activities to be judged by people as much as possible and
deliver these data to the classifier for judgment. Zhao et al.
[16] proposed a new principled active learning instance se-
lection method with stronger robustness to noise in activity
semantic annotation. Walter et al. [17] supplement existing
recognition systems by using crowd inputs for on-demand,
real-time activity recognition to provide robust, deployable
activity recognition. Although the sample selected by the
query strategy of active learning is crucial for training, the
discarded sample is also valuable due to many samples.
Therefore, deep active learning approaches are deployed
in activity recognition to use information from the miss-
ing samples [18], [19]. Hossain et al. [18] embed active
learning in the training phase of deep learning to collect
activity labels by querying the most information-rich and
costliest unlabeled sample points and using low uncertainty
instances. The combination of active learning and deep
model brings new inspiration to the research of activity
recognition and our work. Hossain et al. [19] propose an
active learning combinatorial deep model based on joint loss
function optimization to update its network parameters.
Their work inspires us to choose the combination of active
learning and the deep learning model.

The semi-supervised method makes the learner inde-
pendent of external interaction and automatically uses the
potential information of non-semantic sensor data to im-
prove the model performance [20]. However, the model can
only give semantic information to the activity according
to the most likely situation for those very fuzzy activities
[21]. The core idea of active learning is to find the most
valuable training samples through some heuristic strategies
so that the model can achieve or even exceed the expected
effect by labeling as few samples as possible through expert
judgment [22]. Combining semi-supervised learning with
the active learning method has received relatively little
attention but is quite natural [21].

As discussed above, the combination of active learning,

Page 2 of 9Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

Algorithm 1 Capture Activity Semantics through Location
Information
Input: The batch of Labeled activity sequence Al, unlabeled

Au, n = batch size and E is all kinds of activities.
Output: Labeled SbrADL dataset A

1: Initialize L,A′
1, A

′
u

2: Ãl ← AutoAugment(Al)
3: repeat
4: Ãk

u ← AutoAugment(Au)
5: repeat
6: if k = 1 : at∗i ← argmax

at∈E
(Pθ(at|aci))

7: ãt
k

i ← argmax
at∈E

(Pθ(at|ãci))
8: until i > n
9: l := Query(Ãk

u) and l /∈ L
10: L← L ∪ l, A′

u ← A′
u ∪ Ãk

u

11: until k > 2
12: A′

l ← orde disruption(Al ∪ Ãl)
13: A′

u ← orde disruption(A′
u)

14: A←MixUp(A′
l, A

′
u)

semi-supervised learning, and the deep model as a novel
model can overcome annotation scarcity very well. The
novel model uses location information as the input. See
section 3 for a detailed description of our model.

3 THE ARCHITECTURE OF CASL
This section introduce CASL, which solves the problem of
annotation scarcity. The dataset used by CASL is divided
into semantic activity set Al and non-semantic activity set
Au. CASL learns from Al, consistency between all aug-
mented sets of Au, and expert advice from active learning
modules. Therefore, the final loss function is shown in
Formula (1), consisting of supervised loss, unsupervised
loss, and active learning limitation loss.

L = Ll + λuLu + λnLn (1)

where Ll is the supervised loss, and Lu is the unsupervised
loss that we set up to represent consistency between aug-
mented data of Au. Ln represents the loss of the active
learning module. λu ∈ (0, 1) and λn ∈ (0, 1) are both
hyperparameters. λu represents the weight of unsupervised
loss. λn represents the estimate of expert annotation quality
and the weight of active learning part loss.

Algorithm 1 depicts the complete CASL process. We
use ac for the specific activity and at for the one-hot
encoding of the type of related activity. at∗ and atk rep-
resent the predictions of the activity type in Au and the
kth augmented dataset of Au. E represents all categories
of activities under the current SbrADL dataset, such as
E = {Eat, Cook, Sleep, Callphone}, and at ∈ E. Next, we
will explain the components of our CASL and the specific
form of each loss item.

3.1 Augmentation for heat map data

It is a challenge to avoid overfitting in training because
the amount of SbrADL datasets is generally limited. It is

Fig. 2 Classification boundary of Consistent Regularization. The
red dot represents the activity (ac) and its label (at), at ∈ E.
Blue and green are two augmented versions of red. The dotted
circle centered on the red sample is the expected tolerance
range. The activities within this range should be considered
the same category as the central data points.

necessary to augment the data to increase the robustness
of the model. To this end, we generate the heat map of Al

and Au based on the location information of activities. In
particular, the augmentation of Au is based on Consistent
Regularization that requires the model to all augmented
activities of the same non-semantic activity is as exact as
possible, as shown in Figure 2. To achieve the above objec-
tives, we need to force the classifier to make low entropy
predictions for the semantic tag of activity. Therefore, we
add an unsupervised loss term Lu into the loss function, as
shown in Formula (2).

Lu =
1

|E| |Au|
∑

i∈|Au|

|at1i − at2i | (2)

In calculating atki , we use the Softmax(logits(aci)/τ) to
replace the original probability formula P (ati|aci), includ-
ing τ represent temperature. logits(aci) is the output of the
FC layer of the classifier model. Then we obtain the proba-
bility p of the category of aci by the Softmax function. The
purpose of this calculation is to sharpen the distribution of
prediction by adjusting τ . The lower temperature usually
represents a sharper probability distribution, and entropy is
low [23].

3.2 Query strategy
Al cannot represent the complete information of the entire
dataset. We need to select more representative samples with
richer information from Au. Therefore, we take the distance
and density of the data distribution as the standard for
querying. The queried set is denoted as L (algorithm 1,
line7).

Distance: Considering that the initial activity set with
semantic already contains rich information, the queried
samples need to avoid overlapping with the labeled set
Al ∪ L. The queried samples representing a less frequent
activity should be far enough away from the labeled data
in the data space. We use the Mahalanobis distance d(·) to

Page 3 of 9 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

calculate the distance between two activities. For aci ∈ Au

and aci /∈ L, the minimum distance between it and all
samples in the Al ∪ L collection that currently contains
labeled information is expressed as follows:

Dist (aci) = min
acj∈Al∪L

d (aci, acj) (3)

Density: The distance cannot be used as the sole sam-
pling index because we may query meaningless outliers.
Therefore, we also need to limit our sampling method by
the representativeness of the sample distribution of Au,
which can be expressed in terms of the sample distribution
density. We measure the sample distribution density near
the candidate sample by the following formula:

Density (aci) =
1− d (aci, acj)∑

aci∈∁AuL, acj∈Al∪L

d(aci, acj)
(4)

From what has been discussed above, both distance and
density are considered to obtain a more valuable sample.
The query strategy is shown as Formula (5). α is a hyper-
parameter used to balance the importance of distance and
density, α ∈ (0, 1).

argmax (1− α)Dist(aci) + αDensity(aci)

s.t. ac∗ ∈ ∁AuL
(5)

We record the heat map data as ac and expert opinion
as at∗ which are combined into the element term li in L,
i ∈ (0, n). The loss term of the active learning module is
calculated as Ln using the average absolute error function,
and the calculation method is as follows:

Ln =
∑

aci∈Al∪L

|Active (aci)− f(aci)| (6)

where Active(aci) is the expert’s opinion on the activity
semantics. The reason for selecting L1 loss is that as the
iterations go on, the results of the query strategy may be
outliers of data anomalies, while the average absolute value
error has a relatively limited penalty on outliers.

3.3 MixUp
We applied MixUp [24] on CASL. MixUp is independent of
data and serves as a way of mixing data to augment the
data further. It taught CASL a simple linear interpolation
function that significantly reduced the complexity of unla-
beled data spaces. MixUp obtains the ac

′
and at

′
of new

virtual samples by mixing pixels of the heat map on behalf
of different activities, and we represent at

′
with the one-hot

encoding. The interpolation calculation of pixel fusion and
label independent thermal coding is as follows:

ac
′
= λac1 + (1− λ)ac2 (7)

at
′
= λat1 + (1− λ)at2 (8)

As with Mixup, the combination between two activities
and labels, λ is sampled randomly from Beta(α, α). In all
the experiments described in section 4, α is set to 1 as a
hyperparameter. The fusion of active ac fields we used is
shown in Figure 3. The virtual samples formed by the new
tuples < ac

′
, act

′
> form two new activity sets (algorithm

1, Line 12 to 15).

Fig. 3 Pixel fusion of the thermal map of the movement in
and out of the toilet (λ = 0.3), that is, the ac of the new
pixel worth the new activity can be obtained by calculating
the corresponding pixel according to formula (7).

In addition, this research adopted different methods in
the mixing process that mixed different semantic activities
instead of randomly sampling. Because there is no profit in
mixing samples of the same kind, please see Section 4.3 for
details.

3.4 Training Signal Annealing
Even lightweight image recognition models are prone to
over-fitting because the amount of SbrADL data is limited.
To solve this problem, we introduced a training method:
Training Signal Annealing (TSA) [23]. In a time of t, we set
up a threshold ηt, 1

|E| ≤ ηt ≤ 1 slowly release information
of Al during training. If the calculated pθ (at

∗|ac) of a label
is greater than ηt, we remove this activity from the loss
calculation. We represent the whole activity set batch with
B, the supervision loss with Ll is shown as follows.

Ll =
1

Z

∑
aci,at∗i ∈B

[−I(pθ(at∗i |aci) < ηt)log(pθ(at
∗
i |aci))]

(9)
where Z = I(pθ (at

∗|ac) < ηt) and I(·) is the indicator
function. Suppose T is the total number of training steps,
and t is the current number. For the case of the limited
amount of data and easy overfitting, we change ηt in an
exponential form, as shown in Formula ??.

ηt = exp

((
t

T
− 1

)
× 5

)
×

(
1− 1

K

)
+

1

K
(10)

4 EXPERIMENT

In this section, we begin with a brief description of our
experimental setup and then report the results of the eval-
uation by comparing it with four baseline methods and
MixMatch.

4.1 Implementation details
In this section, we introduce the two SbrADL datasets and
describe the feature processing strategy and the selection of
the image recognition model.
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4.1.1 Dataset Description

We validated our method with two public data sets from
the SbrADL data set published by the CASAS group. These
dataset deployed several environmental sensors in the lab
room to monitor movement and sensing water, bed, and
door.

HH130 [9]. People in the experimental setting in the
first dataset were asked to perform the following SbrADL:
Hygiene(ac1), Leave(ac2), Enter(ac3), Relax(ac4), and
Phone(ac5). In addition, the Eat and Sleep − out only
accounted for 0.0947% and 0.0330% of these datasets, which
were not included in this experiment. The dataset contains
8047 pieces of data.

adlnormal [25]. The data in this dataset represents par-
ticipants performing five SbrADL activities in the apart-
ment. The five tasks are: Eat(ac1), Wash − hand(ac2),
Wash − dishes(ac3), Call − phone(ac4) and Cook(ac5).
The dataset contains 6425 pieces of data.

4.1.2 Processing of model input

When processing the data, we manually modified the sen-
sitivity of the sensors to keep the sensitivity of all the
sensors consistent. We then list the sensors and the number
of times they produce messages in the current window.
We visualized this list based on the sensor position on the
experimental platform to get a heat map. The heat map can
uniquely identify an activity. For the resulting heat map,
the brightness and color of the pixels can represent the
frequency at which the sensor starts, as shown in Figure 3.
After this processing, each heat map generated can represent
a activity data. We use the modified version of VGG16 [26]
to recognize the heat map to predict the activity semantic
label.

4.2 Baseline

We compare our algorithms with the following baselines
from [12].

Random Forest(RF). RF is used to proceed with activity
recognition is to represent the rules in the form of a tree to
reason the activity label. In this experiment, RF contains 500
decision trees.

Naive Bayes(NB). This method is characterized by the
combination of prior and posterior probability, which avoids
the subjective bias of using prior probability only and
the over-fitting phenomenon of using sample information
alone. In this experiment, we use Gaussian mixture model
(DPGMM) [27] to determine the number of Gaussian clus-
ters for each training dataset adaptively.

Co-training [28]. This method is used to assign confi-
dence to the semantics to which the activity belongs. Then
select and delete the first few samples from the unlabeled
dataset predicted to be positive or negative with high con-
fidence. Each classifier is trained on a different randomly
sampled subset of the training dataset. After each classifier
is preliminarily trained, it can be used to calculate the
confidence of semantic labels of unlabeled activity data. Ac-
cording to the calculated confidence, we query the samples
with the highest confidence, and assign the voting results of
many classifiers to the detected samples as semantic label.

We put these samples into the labeled samples and use them
to train other classifiers.

GLSVM [29]. This method is based on the graph-based
label propagation based on the SVM classifier. It uses all
activities to construct a graph and the propagation of pre-
dicted label on the graph to infer the semantics of activities.
The graph is created from the information contained in all
the activity data.

4.3 Performance Analysis

In this part, we verified the effectiveness and robustness
of our model through comparative experiments, as shown
below.

The recognition rate for the overall dataset. The semi-
supervised part of CASL is inspired by MixMatch. There-
fore, we compared CASL with MixMatch at four feedback
times per round (the number of samples obtained from the
semantically tag-free activity) and four other methods of se-
mantic acquisition as the baseline methods: Random Forest
(RF), Naive Bayes (NB), Co-training [28], GLSVM [29]). To
avoid the bias from experts, we adopted the method of 3-
fold cross-validation, and Figures 4 and 5 show the result.
For the SbrADL dataset, CASL has an obvious advantage
over the four baseline methods in activity recognition rate,
and the activity recognition rate of CASL is always better
than that of MixMatch.

The recognition rate for a single activity. For the ADL
recognition scenario, we can not show that the accuracy
of one kind of activity identification is exceptionally high,
and the accuracy of another kind is relatively low in the
specific application. For example, when we applied the final
semantic annotation model to the data set of the system
containing the warning function of the abnormal state of
the elderly at home, our poor recognition rate of the abnor-
mal and dangerous condition of the old Fall-in-bathroom
was not allowed. Therefore, we do not just care about the
average accuracy of the model across the entire dataset. We
also care about how well our model performs in terms of the
individual accuracy of each class. Table 2 shows the results
of the comparison experiment between CASL, MixMatch,
and supervised learning under HH130 with 300 labeled
active data. After observing the experimental results, we can
draw the following conclusions:

1) For Relax(ac4), other models performed poorly. The
activity took place over a long time, and the experimental
platform of the HH130 dataset was collecting information
of other irrelevant infrared environmental sensors that were
sometimes triggered by the activity room. Figures 6 and
7 show fuzzy samples of Relax. Even though CASL has a
lower recognition rate, the results show that expert knowl-
edge can also improve model performance on such activities
with fuzzy labels.

2) However, it reflects some problems. The recognition
rate of Enter(ac3) is only 0.12% higher than MixMatch after
the expert. In addition, because the data quality of activities
like Enter is high, but the improvement rate is still low, Enter
is rarely mixed with other activities due to its high quality
after outputting the actual category of each sample to be fed
back.
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Fig. 4 Error rate line of CASL to MixMatch and baseline
methods on HH130 for a varying number of labels.

Fig. 5 Error rate line of CASL to MixMatch and baseline
methods on adlnormal for a varying number of labels.

TABLE 1 HH130 recognition rate (with 300 labeled activity data)

Activity
Method

Supervised MixMatch CASL(with 4 feedbacks)
ac1 94.95% 90.15% 92.03%
ac2 95.89% 92.95% 93.78%
ac3 97.77% 95.01% 95.13%
ac4 84.42% 80.91% 84.57%
ac5 96.43% 91.81% 94.22%

Average 94.23% 90.37% 91.95%

4.4 Ablation Study

In order to verify the effect of CASL, we use query strat-
egy, data fusion strategy and feature selection to perform
ablation experiments in this section.

Query strategy: In this part, we compare the recogni-
tion rate of CASL in the HH130 dataset with five active
learning query strategies (Random Sampling (RS), Margin
Sampling (MS) [30], Sequence Vote Entropy (SVE) [31],
Density Weighted Uncertainty Sampling (DWUS) [32], [33]).
We set 300 initial activity data with semantic annotation.
The results are shown in Table 2. Regardless of the number
of feedback received each time, sampling based on distance
and density trade-offs always performs best.

Data fusion strategy: We set up experiments for ver-
ifying the effect of MixUp on CASL. The Table 3 shows
that CASL, which does not use MixUp, has a recognition
error rate of 32.89% and 26.35%, respectively, under dif-
ferent feedback times (2 feedbacks and 4 feedbacks). The
recognition error rate reached 16.43% when fusion strategy
without restriction, respectively. The average accuracy was
13.73% when the fusion strategy was restricted. Compared
with Cutout [34] and CutMix [35], the recognition rate of
MixUp is superior to Cutout in the map after indoor activity
recognition processing. After we processed the dataset into
a heat map, the background of all the pictures was the same
layout diagram of the experimental platform. In this case,
the other two strategies are less effective than MixUP [24].
From the results, the fusion strategy we chose is effective.

Feature selection: We chose location information as the
only input to CASL because it is more general than other
information in SbrADL datasets. However, the premise of

this selection is to ensure that its effect is not inferior to
other features. We select three feature extraction methods
in [36] (LSTM [37], RKHS [38] and DDNN [36]) to com-
pare with heat map methods of CASL, and the results are
shown in Figures 6 and 7. Results show that CASL has
better performance than other feature extraction methods
on adlnormal dataset. However, the heat map method is less
accurate than the DDNN on the HH130 dataset. Although
the results show that CASL is effective, we need to explore
and combine other common information in the SbrADL
datasets to improve CASL’s performance.

5 CONCLUSION

We develop a novel semantic annotation method, called
CASL, to overcome the problem of expensive ADL dataset
semantic annotation. This method combines active learning
and mainstream semi-supervised methods. Moreover, we
conceived a new sampling method to overcome the problem
of sampling outliers on limited SbrADL datasets. We ex-
tensively studied the method’s labor overhead, recognition
rate and validity of each component. The results of the
experiment found that this method is effective. We hope
to apply this method to larger datasets in future work
by exploring the new S2DT method for large datasets. In
addition, the experiments done by CASL are all based on
SbrADL datasets, and we are interested in applying this to
other types of ADL datasets. Based on the results of the
ablation experiment, we need to explore statistical features,
temporal features and spatial correlation features to find
the feature that can be combined with or replace location
information as input of CASL.
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Fig. 6 Comparison of accuracy of different feature extraction
methods with CASL on HH130.

Fig. 7 Comparison of accuracy of different feature extraction
methods with CASL on adlnormal.

TABLE 2 Results of ablation experiment for query strategy. All values are error rates on HH130 and CASL with varying feedbacks.

Method S2DT RS MS DWUS SVE
2 feedbacks 85.23% 83.53% 84.12% 84.42% 85.43%
4 feedbacks 87.84% 84.52% 85.24% 87.65% 86.26%
8 feedbacks 86.84% 86.12% 86.26% 91.12% 88.63%

TABLE 3 Results of ablation experiment for data fusion strategy. All values are error rates on HH130 (with 200 labeled activity
data) and CASL with varying feedbacks.

CASL 2 feedbacks 4 feedbacks
without MixUp 32.89% 26.35%

MixUp without limit 16.43% 13.73%
MixUp on different labels 13.16% 10.25%

with Cutout 17.89% 14.15%
with CutMix 16.85% 13.75%
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