Weight loss with bariatric surgery or behaviour modification and the impact on female obesity-related urine incontinence: A comprehensive systematic review and meta-analysis

Link to publication record in Ulster University Research Portal

Published in:
CLINICAL OBESITY

Publication Status:
Published (in print/issue): 01/08/2021

DOI:
10.1111/cob.12450

Document Version
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.
Weight loss with bariatric surgery or behaviour modification and the impact on female obesity-related urine incontinence: A comprehensive systematic review and meta-analysis

1Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK
2Department of Urogynaecology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
3University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
4Institute for Translational Medicine, University of Pecs Medical School, Pécs, Hungary
5Department of Minimal Access Surgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
6Department of Endocrinology ASO/EASO COM, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
7Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, UK
8Minimal Access and Bariatric Unit, Princess Royal University Hospital, King’s College Hospital NHS Foundation Trust, Orpington, UK
9Diabetes Complication Research Centre, School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Ireland

Summary

Women with obesity are at risk of pelvic floor dysfunction with a 3-fold increased incidence of urge urinary incontinence (UUI) and double the risk of stress urinary incontinence (SUI). The National Institute for Health and Care Excellence (NICE) and European Association of Urology (EAU) recommend that women with a body mass index ≥30 kg/m² should consider weight loss prior to consideration for incontinence surgery. This systematic review and meta-analysis will assess this recommendation to aid in the counselling of women with obesity-related urinary incontinence (UI). Medical Literature Analysis and Retrieval System online (MEDLINE), EMBASE, Cochrane, ClinicalTrials.gov, and SCOPUS were systematically and critically appraised for all peer reviewed manuscripts that suitably fulfilled the inclusion criteria established a priori and presented original, empirical data relevant to weight loss intervention in the management of urinary incontinence. Thirty-three studies and their outcomes were meta-analysed. Weight loss interventions were associated in a decreased prevalence in UI (OR 0.222, 95% CI [0.147, 0.336]), SUI (OR 0.354, 95% CI [0.256, 0.489]), UUI (OR 0.437, 95% CI [0.295, 0.649]) and improved quality of life (PFDI-20, SMD -0.774 (95% CI [-1.236, -0.312]). This systematic review and meta-analysis provide evidence that weight loss interventions are effective in reducing the prevalence of obesity-related UI symptoms in women. Bariatric surgery in particular shows greater sustained weight loss and improvements in UI prevalence. Further large scale,

Abbreviations: BMI, body mass index; CENTRAL, Cochrane Central Register of Controlled Trials; EAU, European Association of Urology; EMBASE, Excerpta Medica; ICIQ-SF, International Consultation on Incontinence Questionnaire Short Form; IU, Urinary incontinence; KHQ, Kings Health Questionnaire; LAGB, Laparoscopic Adjustable Gastric Band; LVSG, Laparoscopic Vertical Sleeve Gastrectomy; MEDLINE, Medical Literature Analysis and Retrieval System online; MeSH, Medical Subject Heading; National Institute for PFDI-20; Pelvic Floor Distress Inventory; NICE, National Institute for Health and Care Excellence; PRIDE, Program to Reduce Incontinence by Diet and Exercise; PRISMA-P, Preferred Reporting Items for Systematic review and Meta-Analysis Protocols; PROSPERO, International Prospective Register of Systematic Reviews; QoL, Quality of Life; RYGB, roux-en-Y Gastric Bypass.; SUI, Stress urinary incontinence; UUI, Urge urinary incontinence.

William Sheridan, Ana Sofia Da Silva and Linda Cardozo, Georgios K Dimitriadis denotes co-first and co-last authors, respectively

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Clinical Obesity published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

Clin Obes. 2021;11:e12450.
https://doi.org/10.1111/cob.12450
randomized control trials assessing the effect of bariatric surgery on women with obesity-related UI are needed to confirm this study’s findings.

KEYWORDS
bariatric surgery, behaviour modification, meta-analysis, obesity, systematic review, urinary incontinence, weight loss

1 INTRODUCTION

Obesity is a growing pandemic, with the World Health Organization (WHO) reporting that obesity has nearly tripled worldwide since 1975.1 In 2016, more than 1.9 billion adults were overweight (body mass index [BMI] ≥25 kg/m²), and of these, over 650 million were obese (BMI ≥30 kg/m²). Obesity is associated with an increased prevalence in multiple non-communicable diseases.1

Urinary incontinence (UI) is defined as the involuntary loss of urine2 and is a common health condition that can significantly affect an individual’s quality of life (QoL).3 Reportedly, approximately 50% of adult women may experience UI,4 double the prevalence of UI documented in men.5 This difference in prevalence is due to the structure of the female urinary tract, as well as risk factors such as pregnancy, childbirth, and hysterectomy that can damage the pelvic floor musculature and connective tissue.6 Obesity is an independent risk factor for urinary storage (leakage) and UI symptoms6; such that a 5 points increase of BMI is associated with a 20%-70% increased risk of UI.6

Urge urinary incontinence (UUI) is the involuntary leakage of urine associated with urgency whilst stress urinary incontinence (SUI) presents as involuntary leakage with sneezing or coughing.2 Women with obesity have a 3-fold increased incidence of urge urinary incontinence (UUI) and double the risk of stress urinary incontinence (SUI).7,8

In women with obesity, weight loss interventions have been shown to reduce the frequency of UI.9-11 Currently, clinical guidance bodies such as the National Institute for Health and Care Excellence (NICE) and the European Association of Urology (EAU) recommend life-style intervention as the first-line treatment for women with UI and a BMI ≥30 kg/m².12 This encompasses the advice of weight loss through dietary, pharmacological, behavioural therapy interventions, or a combination of these.12

Bariatric surgery, including Roux-en-Y gastric bypass (RYBG), Laparoscopic Adjustable Gastric Band (LAGB) and Laparoscopic Vertical Sleeve Gastrectomy (LVSG), is a common intervention to treat morbid obesity (BMI ≥40 kg/m²).13 but can be an appropriate measure for individuals with a BMI ≥35 kg/m² and related co-morbidities such as diabetes and hypertension. Although behavioural intervention studies have shown to produce statistically significant weight loss in participants,14 bariatric surgery has proven to lead to significantly greater sustained weight loss in patients with obesity compared to non-surgical alternatives.15

What is known on the subject?

• Obesity is a recognized risk factor for UI
• Weight loss has proven to reduce UI and is currently recommended in the form of behavioural interventions.
• Bariatric surgery is known to lead to greater, sustained weight loss in individuals compared to conservative weight loss methods.

What does this study add?

• This study aims to clarify the effects of surgically induced weight loss on urinary incontinence and put forward recommendations for further areas of research.

This systematic review and meta-analysis were carried out in order to compare and understand better the effects of surgical and non-surgical weight loss interventions for female obesity-related UI.

2 METHODOLOGY

This protocol was developed according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P), and followed methods outlined in The Cochrane Handbook for Systematic Reviews of Interventions.16 This systematic review has been registered with PROSPERO (International Prospective Register of Systematic Reviews) with ID number 222714.

2.1 Search strategy

Two reviewers conducted systematic searches of the following databases: Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica (EMBASE), Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, SCOPUS databases. Our key MeSH (Medical Subject Heading) search terms were: “weight loss surgery” OR “bariatric surgery” OR “metabolic surgery” OR “weight
loss” OR “obesity surgery” OR “obesity treatment” OR “gastric sleeve” OR “sleeve gastrectomy” OR “gastric bypass” OR “gastric band” OR “duodenal switch” OR “biliopancreatic diversion” OR “LSG” OR “LVS” OR “RYGB” OR “LAGB” OR “diet induced weight loss” OR “lifestyle intervention” OR “obesity medication” OR “weight loss medicine” OR “weight loss drug” OR “weight loss device” AND “urinary incontinence” OR “lower urinary tract symptoms” OR “LUTS” OR “stress urinary incontinence” OR “overactive bladder” OR “detrusor overactivity” OR “Urgency urinary incontinence” OR “Prolapse” OR “POP”.

Moreover, reference lists of selected articles and other literature sources were browsed to ensure a comprehensive literature search was completed. None of the database searches filtered results based on year of publication date, and the last search was carried out in September 2020.

2.2 | Study selection

Single case reports, expert opinion manuscripts, letters to the editor, commentaries, conference papers, animal studies, meta-analyses, narrative review articles and articles not in English were excluded. Data were only included on adult (18 years or older), non-pregnant women. Articles were included if they examined the effect of any weight loss intervention on UI. No restrictions were made regarding the intervention type, where a study took place, the number of participants or the duration of follow up. Covidence Software was used to manage the study selection process. Publications were initially screened for any duplicates before being assessed independently and in parallel by two reviewers. Any conflicts regarding the inclusion of a study were met with discussion and consensus. If an agreement had not been reached, arbitration by a third reviewer would have been required.

2.3 | Data extraction

Data were extracted independently by three reviewers following Cochrane Public Health Group Data Extraction and Assessment Template to construct our own data extraction template that was piloted and systematically used for each article. Data extracted included: study description (eg, title, primary author, publication year, type of study, number of participants, type of weight loss intervention, and follow-up duration), participant demographics (eg, mean age), pre- and post- weight loss intervention anthropometric parameters (mean weight, mean BMI), UI assessment (eg, types of UI assessed, validated questionnaire(s) used), overall diagnosis (urodynamic tests and UI severity rating), quality of life assessments (scores of validated questionnaires). The primary outcomes were the prevalence of total UI, SUI and UUI before and after weight loss intervention.

2.4 | Quality assessment

Each study was assessed for bias using the Newcastle-Ottawa scale. Studies were evaluated on eight factors, categorized into three quality assessment scores.

2.5 | Data synthesis and statistical analysis

All meta-analytical calculations were performed using MedCalc, the same software was used for generating forest plots. Pooled odds ratios (OR) were calculated with 95% confidence intervals (CI) from the extracted data with count data, while pooled standardized mean differences were calculated from the extracted continuous variables, also with 95% CI. The DerSimonian-Laird random-effects model was used in all calculations. Heterogeneity was assessed using Cochran’s Q and I² statistics. Subgroup analyses with respect to the type of weight loss intervention were also performed for BMI and weight change differences as well as the count data variables where at least two subgroup data were available. Publication bias was assessed by using Egger’s and Begg’s tests along with a visual evaluation of the funnel plots when at least ten studies were available.

3 | RESULTS

Of the 702 references imported for screening, 157 duplicates were removed, leaving 545 articles to be screened against title and abstract, which resulted in 69 papers progressing to a full-text assessment. Due to one sample of patients from the PRIDE study being reported in 5 different articles only Subak et al. was included in the meta-analysis as this paper reported the outcomes of interest of the present study from the first follow up date. The same decision was made for other articles that reported on one sample of patients, including Treacy et al. and Mazoyer et al., along with Leshem et al. and Shimono et al. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) flow diagram is shown in Figure 1, outlining the outcomes of the screening process.

The 33 studies included in the present study, comprise studies from 12 different countries, amassing 5616 participants, with an age range of 18-78 across all intervention types, with sample size ranging from 10 to 1565. Table 1 (25 surgical intervention studies) and Table 2 (8 behavioural intervention studies) provide an overview of the studies included in this systematic review; including the assessment of outcomes used in the study, a summary of findings for change in total UI, and weekly UI episodes as well as Newcastle-Ottawa scale quality assessment scores.
3.1 | Meta-analysis of outcomes

3.1.1 | Changes in BMI and weight

The standardized mean difference (SMD) in BMI pre- and post-intervention, of both intervention types, was calculated from 18 studies as -1.948 (95% CI $[-2.363, -1.532]$, $p < .001$, $I^2 = 94.10\%$), as shown in Figure 2(A). After subgroup analysis, surgical interventions showed a statistically significant SMD with the value of -2.120 (95% CI $[-2.543, -1.696]$, $p < .001$, $I^2 = 94.07\%$), whilst the two non-surgical interventions yielded statistically non-significant difference in pre- and post-BMI (SMD -0.402, 95% CI $[-0.880, 0.0761]$, $p = 0.098$, $I^2 = 0.00\%$), as shown in Figures 2(B), (C) respectively. For the six studies that reported weight change, SMD for all intervention types was -0.803 (95% CI $[-1.160, -0.446]$, $p < 0.001$, $I^2 = 83.74\%$), see Figure 3. Out of that pool, weight change was reported in two surgical intervention studies (SMD -1.615, 95% CI $[-2.684, -0.546]$, $p = .003$, $I^2 = 78.76\%$) and in four behavioural intervention studies (SMD -0.545, 95% CI $[-0.683, -0.407]$, $p < .001$, $I^2 = 0.00\%$).

3.1.2 | Changes in total UI prevalence

A total of 23 studies reported changes in prevalence of UI before and after weight loss interventions. They yielded a significant pooled odds ratio (OR) of 0.222 (95% CI $[0.147, 0.336]$, $p < .001$, $I^2 = 89.76\%$), as shown in Figure 4(A). In the subgroup analysis, 18 surgical studies yielded a statistically significant result (OR 0.209, 95% CI $[0.148, 0.296]$, $p < .001$, $I^2 = 64.96\%$), while the result for five non-surgical interventions did not achieve statistical significance (OR 0.746, 95% CI $[0.545, 1.020]$, $p = .066$, $I^2 = 52.17\%$), shown in Figures 4(B), (C) respectively.

3.1.3 | Change in UI prevalence by subtype

Analysis of the total pool of 20 studies that reported prevalence of SUI pre- and post-weight loss intervention, produced a statistically significant pooled OR of 0.354 (95% CI $[0.256, 0.489]$, $p < .001$, $I^2 = 82.38\%$), Figure 5(A). The subgroup analysis of 17 surgical
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of Surgery</th>
<th>Study design and primary outcome</th>
<th>Follow-up (Months)</th>
<th>Sample size (n)</th>
<th>Mean (SD) BMI Pre- and Post-Intervention (kg/m²)</th>
<th>Mean (SD) Weight Pre- and Post-Intervention (kg)</th>
<th>Assessment of outcome</th>
<th>Change in Urinary Incontinence Prevalence and/or No. of Episodes</th>
<th>NOS Star Award and Assessment of Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro 2012²⁶</td>
<td>Brazil</td>
<td>Not Specified</td>
<td>Prospective Cohort study on the probability of UI before and after surgery</td>
<td>12</td>
<td>17</td>
<td>49.96 (5.77) to 29.97 (3.48)</td>
<td></td>
<td>Clinical interview, questionnaires on UI, KHQ, Modified Oxford Scale, perineometry, physical exam</td>
<td>At baseline, 17/17 Incontinent women. Post-operatively, 5/17 were continent. 12 women became continent. p<0.001.</td>
<td>8- Good</td>
</tr>
<tr>
<td>Olivera 2012²⁷</td>
<td>United States</td>
<td>RYGB, LAGB, LVSG (not specified)</td>
<td>Prospective cohort study on the impact on UI</td>
<td>37.8</td>
<td>36</td>
<td>45.76 (6.48) to 31.55 p<0.0001</td>
<td></td>
<td>PFIQ, PSIQ-12, FSFI</td>
<td>No prevalence data</td>
<td>7- Good</td>
</tr>
<tr>
<td>Kim 2017²⁸</td>
<td>Korea</td>
<td>RYGB (57)</td>
<td>Prospective Cohort study on benefit of surgery on LUTS (UI).</td>
<td>12</td>
<td>57</td>
<td>37.5 (5.9) to 28 (4.9) p<0.001</td>
<td></td>
<td>IPSS, QABSS, PPBC, Sandvik questionnaire, BDI</td>
<td>At baseline, 40.7% were incontinent at Post-operatively. 18.5% had incontinence.</td>
<td>7- Good</td>
</tr>
<tr>
<td>Romero Talamás 2016²⁹</td>
<td>United States</td>
<td>RYGB (65), LVSG (5), LAGB (2)</td>
<td>Prospective cohort study assessing prevalence of UI, SUI, UUI and other PFDs.</td>
<td>12</td>
<td>72</td>
<td>47.5 (9.4) to 32.7 (8.1) p<0.001</td>
<td></td>
<td>PFDI-20, PFIQ-7, PISQ-12, screening questions, urodynamic evaluation, POP-Q</td>
<td>SU was identified in 60(83.3%) patients at baseline and 32 (44.4%) at follow-up, p=0.001. UUI prevalence at baseline and follow up was 54, and 27 respectively, p<0.001. Urodynamic evaluation confirmed decreased in SUI prevalence after surgery (from 76.9% to 30.8%, P = 0.01). No confirmation in UUI.</td>
<td>7- Good</td>
</tr>
<tr>
<td>Wasserberg 2009³⁰</td>
<td>United States</td>
<td>RYGB (21), Duodenal switch (22), LVSG (3)</td>
<td>Prospective Cohort study on impact on PFD (mainly UI).</td>
<td>18.6</td>
<td>46</td>
<td>45 to 75</td>
<td>128 to 79</td>
<td>PFDI-20, PFIQ-7</td>
<td>At baseline, 71% had incontinence. Post-operatively, incontinence decreased by 39% (P = 0.003)</td>
<td>5- Fair</td>
</tr>
<tr>
<td>Whitcomb 2012³¹</td>
<td>United States</td>
<td>LVSG (3), LAGB (95)</td>
<td>Prospective cohort study on SUI and UUI prevalence.</td>
<td>12</td>
<td>69</td>
<td>39.7 (6.2) to 34 (5.6)</td>
<td></td>
<td>EPIQ, PISQ, FSFI, SF-36</td>
<td>At baseline: Prevalence of SUI was 22/69 (32 %). At 6 months follow up, this decreased to 10/69 (15 %) (p = 0.006) and at 12 months, was 14/69 (20 %) at (p = 0.027)</td>
<td>6- Fair</td>
</tr>
<tr>
<td>Kneipfler 2016³²</td>
<td>France</td>
<td>RYGB (67), LVSG (2)</td>
<td>Prospective cohort study on UI incidence.</td>
<td>11.3</td>
<td>70</td>
<td>44.5 (6.31) to 31.83 (5.83)</td>
<td></td>
<td>PFDI 20</td>
<td>UI incidence reduced from 57/70 (81%) at baseline to 41/70 (59%) post-intervention (P = 0.003). The number of continent patients increased from 13 at baseline to 29 at follow up. (P = 0.003)</td>
<td>5- Fair</td>
</tr>
<tr>
<td>Bump 1992³³</td>
<td>United States</td>
<td>RYGB (13)</td>
<td>Prospective cohort study on UI following bariatric surgery.</td>
<td>14.5</td>
<td>71</td>
<td>49.4 (7.9) to 33.1 (6.7) p=0.000001</td>
<td>131.5 (19.9) to 88.1 (17)</td>
<td>Urogynaecologic history, genitourinary physical and neurologic examination, Voiding diary, fluid loss quantitation test, urodynamic evaluation</td>
<td>UI prevalence was 12/13 at baseline, and 3/13 post-surgery (p = 0.004). Number of incontinence episodes/week before: 13.4 (SD 2.9), and after weight loss, 0.9 (SD 0.5), p = 0.001. Number of incontinence pads used/ day: 2.0 (SD 0.30) decreased to 0.08 (SD 0.08), p = 0.00008</td>
<td>7- Good</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of Surgery</td>
<td>Study design and primary outcome</td>
<td>Follow-up (Months)</td>
<td>Sample size (n)</td>
<td>Mean (SD) BMI Pre- and Post-Intervention (kg/m²)</td>
<td>Mean (SD) Weight Pre- and Post-Intervention (kg)</td>
<td>Assessment of outcome</td>
<td>Change in Urinary Incontinence Prevalence and/or No. of Episodes</td>
<td>NOS Star Award and Assessment of Quality</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Daucher 2010[4]</td>
<td>United States</td>
<td>RYGB (34)</td>
<td>Prospective Cohort study on the impact on urinary function and other PFDs.</td>
<td>6</td>
<td>34</td>
<td>46 (6) to 33 (6)</td>
<td></td>
<td>PFDI, PFQ, PISQ-12, POP-Q, 3-day bladder diary</td>
<td>At baseline: 12/34 were continent. Median number of incontinent episodes of 6.5 per day (range, 3-18; mean, 2). Postoperatively, 6 incontinent women became continent. Weekly episodes decreased by a median of 2.5 (range, 1-11; mean, 2) p = 0.05 in the 6 women who remained continent.</td>
<td>8- Good</td>
</tr>
<tr>
<td>Cuicchi 2013[5]</td>
<td>Italy</td>
<td>RYGB (87)</td>
<td>Prospective cohort study assessing change in prevalence of UI.</td>
<td>12</td>
<td>87</td>
<td>34 (6.7) to 30 (5.9)</td>
<td></td>
<td>ICIQ-SF, PFDI, PFQ-7, POPDI-6</td>
<td>At baseline: 58.6% were incontinent. Post-operatively, prevalence decreased to 17.2% and 9.2% at 6- and 12-months respectively (p < 0.0001). At 12 months, 43 (84.3%) of 51 patients became continent. The remaining 4 had improved UI, 2 had no change, and 2 reported worsening.</td>
<td>7- Good</td>
</tr>
<tr>
<td>Ranasinghe 2011[6]</td>
<td>Australia</td>
<td>LAGB</td>
<td>Retrospective study on the change in UI (and subtypes) symptoms.</td>
<td>120</td>
<td>143</td>
<td>43.5 (6.65) to 35.5 (6.8) p<0.0001</td>
<td>118.3 (18.5) to 96.7 (18.48)</td>
<td>ICIQ-SF, IPSS</td>
<td>At baseline, SUI prevalence: 38/97 and UUI prevalence: 11/97. Post-operatively, 11 women became continent, SUI was 27/97 (p = 0.0164) UUI prevalence worsened; 17/97 (p = 0.1088)</td>
<td>4- Fair</td>
</tr>
<tr>
<td>Fujisaki 2019[7]</td>
<td>Japan</td>
<td>RYGB (8), LVSG (30),</td>
<td>Prospective Cohort study on UI incidence</td>
<td>12</td>
<td>55</td>
<td>Not reported</td>
<td></td>
<td>Pad usage, ICIQ-UI-SF,</td>
<td>SUI prevalence: At baseline = 35, post-surgery = 11 (p = 0.001). UUI prevalence: At baseline = 11 post-surgery = 4 (p = ns)</td>
<td>4-Fair</td>
</tr>
<tr>
<td>Laungani 2009[8]</td>
<td>United States</td>
<td>Gastric bypass</td>
<td>Prospective cohort stay on impact on UI symptoms following surgery.</td>
<td>12</td>
<td>58</td>
<td>48 (7) to 32 (4)</td>
<td></td>
<td>ICIQ-SF</td>
<td>At baseline, 0/58 patients never leaked. At 12 months, 16/25 participants had UI resolved and never leaked (p<0.001). The number of patients with resolved or improved UI symptoms was 72% (23/32) at follow up. SUI baseline: 46/58 (79%), follow-up: 05/25 (p<0.001) UUI baseline: 31/58 (53%), follow-up: 7/25 (28%) (p = 0.03)</td>
<td>6- Fair</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of Surgery</td>
<td>Study design and primary outcome</td>
<td>Follow-up (Months)</td>
<td>Sample size (n)</td>
<td>Mean (SD) BMI Pre- and Post-Intervention (kg/m²)</td>
<td>Mean (SD) Weight Pre- and Post-Intervention (kg)</td>
<td>Assessment of outcome</td>
<td>Change in Urinary Incontinence Prevalence and/or No. of Episodes</td>
<td>NOS Star Award and Assessment of Quality</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>--</td>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Shimonov 2017 [1]</td>
<td>Israel</td>
<td>LVSG</td>
<td>Prospective cohort study on UI prevalence after surgery.</td>
<td>6</td>
<td>77</td>
<td>42.2 to 33</td>
<td></td>
<td>ICIQ-UI-SF, BFLUTSSF, PFDI-20, PSQ-12</td>
<td>Total UI prevalence at baseline: 29 (37.7%)</td>
<td>Total UI prevalence at follow-up: 14. Change: 15 (51.7%) The number of UI episodes decreased by 47% in the intervention group, compared with 28% in the control group.</td>
</tr>
<tr>
<td>Scozzari 2013 [2]</td>
<td>Italy</td>
<td>RYGB (18), LVSG (2), LAGB (12)</td>
<td>Prospective cohort study on UI incidence following surgery.</td>
<td>15.6</td>
<td>32</td>
<td>46.3 (6.3) to 31.3 p<0.001</td>
<td>122 to 83.2</td>
<td>PFDI-20</td>
<td>At baseline, Total UI prevalence: 59.4%</td>
<td>At follow-up: 50% (p = ns) SUI: no significant decrease UUI- Baseline: 14 (43.8%) Follow-up: 5 (15.6%) (p=0.029)</td>
</tr>
<tr>
<td>Durigon Keller 2019 [3]</td>
<td>Brazil</td>
<td>RYGB (83)</td>
<td>Prospective Cohort study on weight loss impact on UI severity</td>
<td>12</td>
<td>26</td>
<td>44.9 (6.49) to 29.98 (6.23) p<0.0001</td>
<td></td>
<td>ICIQ-SF, KHQ</td>
<td>At baseline: Total UI prevalence: 26 (100%); Continent 0, mild 7, moderate 12, severe 6, very severe 1. Post-operative UI prevalence: 14; continent 15, mild 6, moderate 3, severe 2.</td>
<td>7- Good</td>
</tr>
<tr>
<td>Bulbuller 2017 [4]</td>
<td>Turkey</td>
<td>LVSG (120)</td>
<td>Prospective Cohort study on impact on UI, SUI, UUI.</td>
<td>6</td>
<td>120</td>
<td>46.17 (5.35) to 31.6 (4.37)</td>
<td></td>
<td>ICIQ-SF, KHQ</td>
<td>UI prevalence at baseline: 72 (SUI-18, UUI-23, MUI-31) Total UI prevalence at follow-up: 44 (SUI-7, UUI-14, MUI-23).</td>
<td>7- Good</td>
</tr>
<tr>
<td>Kuruba 2007 [5]</td>
<td>United States</td>
<td>RYGB (42), LAGB (3)</td>
<td>Prospective cohort study on the impact of bariatric surgery on UI severity.</td>
<td>12</td>
<td>45</td>
<td>EBWL: 64% (range 19 to 91%)</td>
<td></td>
<td>UI severity index by Sandvik</td>
<td>At Baseline: 44 women (100%) Preoperatively, the patients reported slight (4%), moderate (47%), or severe (49%) urinary incontinence. At follow up - 50% of the patients had resolution of urinary incontinence, 18% had slight, 18% had moderate, 13% had severe symptoms 95% reported subjective improvement or resolution of UI, 5% reported unresolved UI symptoms.</td>
<td>5- Fair</td>
</tr>
<tr>
<td>Mazoyer 2019 [6]</td>
<td>France</td>
<td>RYGB (30), LVSG (24)</td>
<td>Prospective Monocentric Pilot Study on the incidence of urinary symptoms.</td>
<td>12</td>
<td>54</td>
<td>TWL: 33% (Range 9-51)</td>
<td>USP, PFDI-20 (POPDI, CRADI, UDI)</td>
<td>At baseline 32 (59%) had UI. UDI mean score decreased from 21.8 (SD 19.9) before surgery to 6.5 (SD 9.2) post-operatively (p < 0.001). Weight loss was associated with a significant improvement in UI (p < 0.001).</td>
<td>7- Good</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of Surgery</td>
<td>Study design and primary outcome</td>
<td>Follow-up (Months)</td>
<td>Sample size (n)</td>
<td>Mean (SD) BMI Pre- and Post-Intervention (kg/m(^2))</td>
<td>% Weight loss</td>
<td>Assessment of outcome</td>
<td>Change in Urinary Incontinence Prevalence and/or No. of Episodes</td>
<td>NOS Star Award and Assessment of Quality</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--</td>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Subak 2015 (^{49})</td>
<td>United States</td>
<td>RYGB (1111), Duodena I switch (12), LVSG (33), LAGB (387)</td>
<td>Prospective Cohort study on the change in UI prevalence (after weight loss).</td>
<td>12</td>
<td>1565</td>
<td>-29.5%</td>
<td>Baseline total UI prevalence: 772. Follow-up total UI prevalence: 250. Breakdown by subtype: SUI at baseline: 646. Post-operatively: 188 UUI at baseline: 505. Post-operatively: 165.</td>
<td>Validated participant reported UIQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burgio 2007 (^{44})</td>
<td>United States</td>
<td>RYGB (101)</td>
<td>Prospective cohort study on the prevalence of UI following bariatric surgery.</td>
<td>6 and 12</td>
<td>101</td>
<td>48.9 (7.2) to 30.2 (5.7)</td>
<td>MESA, UDI, HQ</td>
<td>At baseline: Total UI prevalence: 66.7%. At follow-up: Prevalence decreased to 37% at 12 months (56% reduction), (p < 0.001) (CI 95% 18.6-40.0). Women with UI who lost at least 18 BMI points, 71% had regained urinary continence 12 months after surgery. SUI prevalence at baseline was 59.8% and decreased to 31.5% at 12 months. (p < 0.001) (CI 95% 17.2-39.3). UUI prevalence at baseline was 35.9% and decreased to 15.2% at 12 months. (p < 0.001) (CI 95% 10.4-30.9). MUI prevalence at baseline was 31.6% and decreased to 9.9% at 12 months. (p < 0.001) (CI 95% 11.0-30.7).</td>
<td>6- Fair</td>
<td></td>
</tr>
<tr>
<td>O’Boyle 2016 (^{46})</td>
<td>Ireland</td>
<td>RYGB (57), LVSG (24), LAGB (1)</td>
<td>Prospective cohort study on prevalence of UI</td>
<td>15</td>
<td>82</td>
<td>50 (6.3) to 34 (6.8)</td>
<td>ICIQ-SF</td>
<td>At baseline: 82(100%) women had UI. 75% of patients complained of moderate to very severe incontinence. At follow up: 55. 83% patients reported reduced symptom severity. 33% reported complete symptom resolution. 37% had moderate to very severe incontinence.</td>
<td>6- Fair</td>
<td></td>
</tr>
<tr>
<td>AitSaid 2017 (^{46})</td>
<td>France</td>
<td>LVSG and RYGB</td>
<td>Prospective Cohort study on prevalence of SUI and UUI</td>
<td>12</td>
<td>83</td>
<td>43.7 (7.3) to 30.2 (7)</td>
<td>USP, ICIQ, SF Wexner scale, QOL</td>
<td>Baseline prevalence: SUI - 49.4%, OAB - 43.3%. Follow-up prevalence: SUI - 21.7%, OAB: 7.3%. No correlation between the degree of weight loss and improvement of SUI. (r = 0.007, p = 0.65) and UUI (r = 0.05, p = 0.64).</td>
<td>7- Good</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of Surgery</td>
<td>Study design and primary outcome</td>
<td>Follow-up (Months)</td>
<td>Sample size (n)</td>
<td>Mean (SD) BMI Pre- and Post-Intervention (kg/m²)</td>
<td>Assessment of outcome</td>
<td>Change in Urinary Incontinence Prevalence and/or No. of Episodes</td>
<td>NOS Star Award and Assessment of Quality</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Anglim 2018 (17)</td>
<td>Ireland</td>
<td>RYGB (40), LVSG (21)</td>
<td>Prospective Cohort study on impact on UI and cure rate.</td>
<td>12</td>
<td>61</td>
<td>51 (7) to 33 (9)</td>
<td>ICIQ-SF</td>
<td>At baseline: Total UI prevalence at baseline: 61</td>
<td>6 - Fair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At follow-up: 27</td>
<td>SUI change in prevalence: 22 to 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UUI(OAB) change: 13 to 5</td>
<td>MUI change: 27 to 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leshem 2018 (18)</td>
<td>Israel</td>
<td>RYGB (7), LAGB (94)</td>
<td>Prospective Cohort study on UI prevalence.</td>
<td>24</td>
<td>101</td>
<td>41.6 (4.6) to 27.5 (4.4)</td>
<td>ICIQ-SF, BFLUTS, PASQ-12</td>
<td>At baseline: 43 women had UI. 27 (63%) had SUI, 12 (28%) had MUI and two (4.5%) had UUI. At follow-up, prevalence of UI was 18. 13 had SUI, 2 had MUI, 3 had UUI.</td>
<td>5 - Fair</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: RYBG, Roux-en-Y Gastric Bypass; LAGB, Laparoscopic Adjustable Gastric Band; LVSG, Laparoscopic Vertical Sleeve Gastrectomy; BMI, Body Mass Index; EBWL, Excess Body Weight Loss; TWL, Total Weight Loss; KHQ, Kings Health Questionnaire; PFIQ-7, Pelvic floor Impact Questionnaire; PBQ, Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire; FSFI, Female Sexual Function Index; IPSS, International Prostate Symptom Score; OABSS, Overactive Bladder Symptom Score; PPBC, Patient perception of bladder condition; BDI, Beck Depression Inventory; PFDI-20, Pelvic Floor Distress Inventory; POP-Q, Pelvic Organ Prolapse Qualification; EPIQ, Epidemiology of Prolapse and Incontinence Questionnaire; SF-36, Short-Form 36 Health Survey; POPDI-6, Pelvic Organ Prolapse Distress Inventory; UDI, Urogenital Distress Inventory; ICIQ-SF, International Consultation on Incontinence Questionnaire Short Form; MESA, The Medical, Epidemiological, and Social Aspects of Ageing Questionnaire; CRADI, Colorectal-anal Distress Inventory; USP, Urinary Symptoms Profile; UI, Urinary; SUI, Stress Urinary Incontinence; UUI, Ure Urinary Incontinence; BFLUTS, Bristol Female Lower Urinary Tract Symptoms; PGI-I, Patient Global Impression of Improvement; PFMS, Pelvic Floor Muscle Strength.
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Description of intervention</th>
<th>Sample size (n)</th>
<th>Mean (SD) Weight Pre- and Post-Intervention (kg)</th>
<th>Assessment of outcome</th>
<th>Change in Urinary Incontinence Prevalence and/or No. of Episodes</th>
<th>NOS Star Award and Assessment of Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subak 20059</td>
<td>United States</td>
<td>Behavioural modification; Intensive group-based medical and behavioural weight loss program.</td>
<td>19</td>
<td>99 to 84</td>
<td>A 7-day voiding diary, HQ, UDI, SF-36, Urodynamic studies</td>
<td>Median (IQR) Episodes per week: Total UI: At baseline: 21 (11-33); At follow up: 4 (2-28); % improvement: 60% (30-89); p = 0.0005.</td>
<td>9- Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-calorie liquid diet (800 kcals per day or less), increased exercise (60 mins daily), taught standard cognitive & behavioural skills. Weekly group sessions led by a nutritionist, exercise physiologist or behavioural therapist.</td>
<td></td>
<td></td>
<td></td>
<td>SUI: At baseline: 8 (4-20); At follow up: 2 (0-10); % improvement: 70% (16-100), p = 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At follow up: 7 (18%) of women were 100% improved, 14 (35%) were at least 75% improved and 20 (50%) were at least 50% improved in weekly incontinence frequency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50% reduction in incontinence (p = 0.001) was observed in 58% (21 of 36) of women who achieved >5% weight loss and 25% (1 of 4) who achieved <5% weight loss.</td>
<td></td>
</tr>
<tr>
<td>Phelan 201299</td>
<td>United States</td>
<td>The Look AHEAD trial promoted weight loss of at least 7% weight loss by the first year; through a low calorie, low fat, and portion-controlled diet as well as weekly exercise (175 minutes).</td>
<td>1385</td>
<td>-7.7 (7.0); Control 0.7 (5.0)</td>
<td>Validated self-report questions</td>
<td>Weight loss intervention was associated with a 20% reduction in the odds of having UI (OR 0.80, 95% CI 0.65-0.98, p = 0.03), compared with control group.</td>
<td>9- Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At follow-up, SUI prevalence was less in ILI group (10.5%) than in the control group (12.8%), p = 0.07. Intervention decreased the odds of having SUI by 27% (OR 0.73, 95% CI 0.55-0.96), p = 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total UI prevalence at follow-up; intervention group (25.3%) was lower than the control group (28.6%) (p = 0.05). No significant effect between treatment groups (intervention & control) was seen on the 1 year prevalence of urgency UI (p=0.42).</td>
<td></td>
</tr>
<tr>
<td>Subak 20098</td>
<td>United States</td>
<td>Behavioural modification; PRIDE: Program modelled on Look AHEAD. Calorie and fat restriction of 1200 to 1800 kcal daily, depending on initial weight, with less than 30% of calories from fat. Encouraged to increase exercise to 200 mins per week. Behavioural skills, including self-monitoring, stimulus control, and problem-solving, were emphasised.</td>
<td>226</td>
<td>98.17 (17) to 90 (17)</td>
<td>7-day diary of voiding</td>
<td>At baseline, SUI was prevalent in 44 women and UUI prevalence was 104.</td>
<td>8- Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At follow-up, 32 women (27% reduction) had SUI, and 94 (19% reduction) had UUI. 41% of women in intervention group had >70% reduction in any UI episodes, compared to 22% of control group (p=0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean No. of UI episodes per week: Total UI: At baseline: 24 (SD 18); At follow-up: 13 (SD 15); % change: -47.4% (95% CI -54 to -40), p = 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUI: At baseline: 9 (SD 11); At follow-up: 4 (SD 7); % change: -57.6% (95% CI -67 to -46, p=0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UUI: At baseline: 14 (SD 14); UUI: WL: 8 (SD 11); % change: -42% (95% CI -51 to -32), p=0.14</td>
<td></td>
</tr>
<tr>
<td>Brown 200610</td>
<td>United States</td>
<td>Behavioural Modification: Included 3 groups: ILI, Metformin at 850 mg, 2x daily, or placebo twice daily. Through a low-fat diet and moderate-intensity physical activity for at least 150 min each week, the ILI aimed to lose a minimum of 7% of initial body weight.</td>
<td>660</td>
<td>-3.4 (8.2)</td>
<td>Self-reported questionnaire</td>
<td>Prevalence of weekly incontinence episodes at baseline was 48.1%. At follow-up, reduced to 38.3% (p=0.001).</td>
<td>8- Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intensive lifestyle intervention was associated with a 20% reduction in the odds (OR 0.80 [95% CI 0.64-1.01]) of weekly SUI episodes compared with placebo.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Description of intervention</td>
<td>Study design and primary outcome</td>
<td>Follow-up (Months)</td>
<td>Sample size (n)</td>
<td>Mean (SD) BMI Pre- and Post-Intervention (kg/m²)</td>
<td>Mean (SD) Weight Pre- and Post-Intervention (kg)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Auwad 2008</td>
<td>UK</td>
<td>Behavioural modification: All participants were offered a commercially run programme of diet and exercise. Anti-obesity medication, Orlistat, was offered to those who did not lose 5% of starting weight within 9 months. Prospectively Cohort study on the incidence of UI episodes.</td>
<td>20</td>
<td>42</td>
<td>36.2 to 31.9</td>
<td></td>
<td>24-h pad test, KHQ, Perineometry, Modified Oxford score.</td>
</tr>
<tr>
<td>Fjerbaek 2020</td>
<td>Denmark</td>
<td>Behavioural modification: Four individual dietary counselling session, (one group received 5 sessions), two training session per week for 12 weeks. Prospective Cohort study assessing UI impact on quality of life after weight loss.</td>
<td>9</td>
<td>24</td>
<td>32.7 (4.54) to 31.2 (4.23) p<0.0001</td>
<td>89.29 (12.58) to 85.5 (12.31)</td>
<td>ICIQ-SF, PGI-I, 24-hour pad test, PFMS</td>
</tr>
<tr>
<td>Subak 2002</td>
<td>United States</td>
<td>Behavioural modification: Weight loss program - low calorie liquid diet or reduced calorie solid diet and exercise. Prospective cohort study on change in incontinence frequency</td>
<td>3</td>
<td>10</td>
<td>38 (10) to 33 (7) p=0.03</td>
<td>106 (32) to 91 (22)</td>
<td>7-day urinary diary</td>
</tr>
<tr>
<td>Gozukara 2014</td>
<td>Turkey</td>
<td>Behavioural modification: Aimed to produce an average loss of >7% within 6 months Restricted calorie and fat diet (1,000-1,800 kcal daily). Randomised controlled trial on change in number of UI episodes.</td>
<td>6</td>
<td>163</td>
<td>85.1 (9.7) to 78.3 (10.4)</td>
<td></td>
<td>3- day voiding diary, PFDI, POP-Q, UDI, POPDI, CRADI</td>
</tr>
</tbody>
</table>

Abbreviations: AHEAD, Action for Health in Diabetes; DSE, Diabetes Support and Education; ILI, Intensive Lifestyle Intervention; PRIDE, Program to Reduce Incontinence by Diet and Exercise.
interventions for changes in prevalence of SUI was statistically significant for both surgical interventions (OR 0.312, 95% CI [0.235, 0.414], \(p < .001, \hat{I}^2 = 61.68\%\)) and non-surgical interventions (OR 0.754, 95% CI [0.614, 0.926], \(p = .007, \hat{I}^2 = 0.00\%\)), shown in Figures 5(B), (C) respectively.

The calculated OR for UUI with regard to any weight loss intervention was statistically significant (OR 0.437, 95% CI [0.295, 0.649], \(p < .001, \hat{I}^2 = 61.68\%\)) and non-surgical interventions (OR 0.754, 95% CI [0.614, 0.926], \(p = .007, \hat{I}^2 = 0.00\%\)), shown in Figures 5(B), (C) respectively.

Meanwhile combined analysis of six studies demonstrated changes in mixed UI prevalence (OR 0.330, 95% CI [0.189, 0.576], \(p < .001, \hat{I}^2 = 59.10\%\)), all of which were surgical interventions, shown in Figure 7.

![FIGURE 2](https://example.com/figure2.png)
FIGURE 2 Forest plot of standardized mean difference in pre- and post- BMI from all interventions (A), Surgical intervention studies (B) and behavioural (non-surgical) intervention studies (C)

![FIGURE 3](https://example.com/figure3.png)
FIGURE 3 Forest plot of standardized mean difference in pre- and post- weight change
3.1.4 Change in questionnaire scores

Several questionnaires were used to assess improvement of urinary function and QoL in the observed studies. Statistically significant results were obtained while calculating SMDs in all questionnaires of interest. For Pelvic Floor Distress Inventory (PFDI-20), the calculated SMD was -0.774 (95% CI $[-1.236, -0.312]$, $p = .001$, $I^2 = 93.42\%$), shown in Figure 8(A). For International Consultation on Incontinence Questionnaire Short Form (ICIQ-UI-SF), SMD was -1.110 (95% CI $[-1.497, -0.723]$, $p < .001$, $I^2 = 89.68\%$), as shown in Figure 8(B). Finally, for Urinary Distress Inventory (UDI), SMD was -0.742 (95% CI $[-0.911, -0.572]$, $p < .001$, $I^2 = 40.10\%$), shown in Figure 8(C).

4 DISCUSSION

The results of this meta-analysis demonstrate that the prevalence of UI before and after weight loss was significantly reduced (OR 0.222, 95% CI [0.147, 0.336]). Subgroup analysis of interventions showed surgical weight loss interventions were associated with greater reductions in the odds of patients experiencing UI (OR 0.209, 95% CI [0.148, 0.296]) compared with behavioural intervention studies (OR 0.746, 95% CI [0.545, 1.020]).

SUI and UUI prevalence also significantly improved after weight loss (OR 0.354, 95% CI [0.256, 0.489] and OR 0.437, 95% CI [0.295, 0.649], respectively). In addition, comparison of interventions showed patients who underwent weight loss through surgical means, experienced significantly decreased odds ratios in both SUI and UUI prevalence at follow-up (OR 0.312, 95% CI [0.235, 0.414] and OR 0.378, 95% CI [0.259, 0.552] respectively), whilst behavioural interventions showed a weaker improvement in SUI (OR 0.754, 95% CI [0.614, 0.926]) and a non-significant improvement in UUI (OR 0.943, 95% CI [0.661, 1.344]).

The evidence from this meta-analysis showed the studies where bariatric surgery had been performed led to greater reductions in BMI (SMD -2.120, 95% CI $[-2.543, -1.696]$), which may explain the greater improvement in UI, SUI, and UUI prevalence, compared with
behavioural weight loss interventions that demonstrated less significant reductions in BMI (SMD -0.402, 95% CI [−0.880, 0.0761]).

The Patient Reported Outcome Questionnaires included in this study were PFDI-20, ICIQ-UI-SF, and UDI, commonly used to assess UI, the severity of incontinence symptoms and their effects on quality of life. Pooled analysis of these scores showed statistically significant reductions in standardized mean differences of the scores from baseline to follow-up, suggesting that weight loss was associated with a significant improvement in UI prevalence and patient’s quality of life.

Whilst the underlying pathophysiology of UI is multifactorial and its aetiology not completely known, obesity is a recognized risk factor,6,33,55,56 and a dose-response relationship between increased weight and UI incidence has been observed.7 A study by Noblet et al. showed a strong correlation between BMI, intra-abdominal pressure and intravesical (bladder) pressure, with a Pearson correlation coefficient value of 0.76 and 0.71, respectively, both *p < .0001.*57 It was hypothesised that this increased intra-abdominal pressure increases stress on pelvic floor organs and supporting structures, and that such stress is responsible for the symptoms presented in SUI.57 Similarly, an increase in abdominal pressure as a result of increased abdominal adiposity, may also be responsible for detrusor instability (detrusor muscle overactivity) which can cause the symptoms of urgency that present in UUI.9

A cohort study examining the effects of surgical weight loss interventions highlighted that reduced abdominal adiposity was associated with significant decreases in urinary bladder pressure.58 The effects of reduced bladder pressure and SUI were observed by Bump et al., in whose study, patients’ intravesical pressure readings were significantly improved at follow-up and associated with a resolution in SUI in 7 of the 10 patients who complained of SUI at baseline.33

Traditional management of UUI can include bladder retraining and lifestyle changes, which typically advise avoidance of bladder irritants and reducing overall fluid intake.59 Both carbonated drinks and caffeinated beverages are considered to be bladder irritants.60,61 Following bariatric surgery, patients are advised to avoid bladder irritants and drinking fluids with meals.62 In a similar way, the dietary changes promoted in behavioural studies involve reduced calorie intake, which is likely to be associated with reduced fluid intake. The

FIGURE 5 Forest plot of OR values of stress urinary incontinence prevalence from all interventions (A), Surgical intervention studies (B) and behavioural (non-surgical) intervention studies (C)
changes in the amount of fluid intake or type of fluids being consumed may be contributing to the observed improvement in UUI symptoms from the weight loss intervention studies, and not due to weight loss alone. Current understanding of the effects of these dietary factors on urgency symptoms would benefit from further research.

The impact on UI severity following weight loss was only reported in four of the included studies assessing bariatric surgery as an intervention. In each, the number of participants experiencing severe UI decreased significantly. For example, in the study conducted by Kuruba et al, 49% of women complained of severe UI at baseline compared with only 13% at 12 months post-surgery. Furthermore, compared with surgical procedures that treat UI symptoms alone, bariatric surgery can provide further health benefits to obesity-related co-morbidities such as diabetes and hypertension, as well as improved mortality. Despite the paucity in evidence that shows

FIGURE 6 Forest plot of OR values of urge urinary incontinence prevalence from all interventions (A), Surgical intervention studies (B) and behavioural (non-surgical) intervention studies (C)

FIGURE 7 Forest plot of OR values of MUI prevalence from all interventions
bariatric surgery-induced weight loss leads to significant improvements in UI severity, it is tenable that women with UI that are diagnosed with severe obesity (BMI ≥ 35 kg/m2), could be counselled on the plethora of benefits of bariatric surgery.

Adverse effects were not reported in any behavioural studies and only discussed in one study assessing bariatric surgery. Adverse effects of bariatric surgery are well established and vary depending on the type of procedure carried out. Identifying all associated adverse effects is beyond the scope of this study but should nevertheless be taken into account if bariatric surgery is to be considered as a treatment option. In addition, the short-term cost of bariatric surgery, although beyond the scope of this review, is something to be considered. However, by preventing long-term complications of UI and other obesity-related co-morbidities, it would likely prove cost effective in the long-term.

The limitations of the present study include a disproportionately small number of controlled studies assessing surgical weight loss interventions on UI, compared to a large number of behavioural weight loss intervention studies most of which were randomized control trials. This highlights a paucity of randomized controlled trials evaluating the effects of surgical weight loss interventions on female obesity-related IU. The lack of comparison groups suggests the evidence provided by these manuscripts may be of low certainty.

Furthermore, there was a lack of consistency among the use of Patient Reported Outcome Questionnaires to evaluate patients’ UI symptoms and QoL. This meant pooled analysis of scores from infrequently used questionnaires such as the IPSS, BFLUTS, SF-36, USP, and Sandvik severity scale could not be completed. Regarding heterogeneity, meta-analysis of study outcomes showed inconsistency was substantial for many of them ($I^2 > 75\%$), despite using a random effects model. This heterogeneity was particularly evident across the outcomes of the surgical intervention studies and may be a result of different bariatric surgery techniques being used. Alternatively, this could be a result of inconsistent follow-up times across studies, some of which were likely too short for maximum weight loss to occur, hence limiting the significance of comparability.

The majority of studies used subjective measures for improvement in symptoms such as the common use of Patient Reported Outcome questionnaires and voiding diaries, which are arguably the most relevant for clinical care. However, compared with objective urodynamic measurements, the results are...
subject to patient response bias and their ability to accurately remember and complete these forms of assessment.65

5 | CONCLUSION

This is the first meta-analysis to study both bariatric surgery and behavioural weight loss interventions and their effects on UI, SUI, and UUI. Across all studies, weight loss was observed to be beneficial in improving UI. Specifically, bariatric surgery was associated with significantly reduced UI prevalence and sustained weight loss compared with behavioural interventions. The implication of these results from this study is that weight loss is an effective treatment for UI management in women with obesity. The authors of this paper recommend that more large-scale trials, with more robust study designs, are carried out to determine the relationship (linear or otherwise) between the degree of weight loss and impact on UI, and assess whether bariatric surgery should be offered to women with obesity-related UI, if other non-surgical UI management options have failed.

ACKNOWLEDGEMENTS

The authors are grateful to Francesco Rubino and Dudley Robinson for their support. We are grateful to Alexander Miras for providing access to Covidence systematic review software. The data that support the findings of this manuscript are available by the corresponding author upon reasonable request.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

ORCID

Georgios K Dimitriadis https://orcid.org/0000-0002-6662-804X

REFERENCES

How to cite this article: Sheridan W, Da Silva AS, Leca BM, et al. Weight loss with bariatric surgery or behaviour modification and the impact on female obesity-related urine incontinence: A comprehensive systematic review and meta-analysis. Clin Obes. 2021;11:e12450. https://doi.org/10.1111/cob.12450