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Abstract 16 

Biosurfactants can be used for bioremediation as amphiphilic compounds that have shown 17 

good tolerance to changes in temperature, salt concentration, pH, and other environmental 18 

factors. They have received increased attention in bioremediation because they are 19 

biodegradable and do not generate any secondary contaminants. Biosurfactants are used to 20 

remove organic molecules for example hydrocarbon contaminants through various 21 

mechanisms such as surface tension reduction, emulsification, and micelle formation. They can 22 

also play a role in removing heavy metals by increasing contact with the surface of heavy metal 23 

deposits and forming complexes and micelle formation. In this review, we focus on the role of 24 

biosurfactants in improving the efficacy of bioremediation. 25 

Keywords: Bioremediation; Biosurfactants; Oil pollution; Emulsification, Biodegradation 26 
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1. Introduction 28 

The release of potentially hazardous organic and inorganic pollutants into the ecosystem has 29 

been a topic of interest for years (1). Organic compounds and heavy metals are, usually present 30 

in the soil and high concentrations the inorganic contaminants are known to have the greatest 31 

risk to humans (2). The accumulation of non-degradable pollutants as heavy metals in 32 

biological systems would ultimately lead to the contamination of the entire food chain (3). In 33 

2015 it was reported that pollution-induced diseases resulted in an estimated 9 million 34 

premature deaths representing 16% of all deaths in the world (4). The physical approaches of 35 

bioremediation are mainly method of eliminating or degrading mainly organic pollutants 36 

present in the soil by different methods including physical techniques such as soil replacement 37 

processes, landfill barrier methods, and thermal desorption approaches (5). Chemical cleanup 38 

meanwhile consist mainly of soil solidification-stabilization, leaching, and oxidation-reduction 39 

processing. The solidification-stabilization technique could establish long-term stability of 40 

pollutants in contaminated media (6). Physical and chemical techniques of remediation/cleanup 41 

are usually costly and do not result in complete pollutants removal and often require 42 

management of a significant amount of harmful waste generated (7).  43 

Alternative bioremediation strategies to eliminate pollution are considered as relatively new 44 

sustainable recent approaches. There are three types/approaches for  bioremediation: 45 

phytoremediation, animal remediation and microbial remediation (8). Phytoremediation, a 46 

practical, cheap and environmentally friendly rehabilitation strategy, is a bioremediation 47 

technology that involves plants to remove either organic and inorganic contaminants, 48 

particularly from the soil environment (9). Animal remediation is also used widely to remedy 49 

soil and water contamination at specific locations (10). Microbial remediation process in 50 

comparison is mainly carried out by microorganisms or parts thereof to remove or clean up 51 

contaminants through their effective degradation and/or enhancing their bioavailability and 52 
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breakdown. This process is the main approach for removing many environmental pollutants, 53 

such as products from the petroleum industry (11). In some experiments, the polluted 54 

hydrocarbon soils were augmented with biosurfactants producing bacterial species which 55 

resulted in enhance hydrocarbons degradation (2, 12, 13). Plants, animals, and microbes are 56 

known to synthesize biosurfactants (14). Biosurfactants are known as amphiphilic compounds 57 

consisting of hydrophilic and hydrophobic moieties (15)) . This composition gives them 58 

surface-active properties, including reduction of surface and interfacial tension in aqueous 59 

solutions and mixtures of hydrocarbons (2, 16). This indicates that biosurfactants can be used 60 

to enhance bioremediation processes. Hence, in this review, we focus on the above issues 61 

through a discussion bioremediation with biosurfactants and their mechanism. 62 

2. Pollution 63 

Water and soil are the main recipients for different pollutants that influence their quality, 64 

nature, and performance. Hydrocarbon pollutants may include alkanes, aromatic compounds, 65 

chlorinated hydrocarbons, heterocyclic nitrogen, and nitroaromatics (17). Metal pollution in 66 

the ecosystem has also increased as a result of increased industrial activity. Heavy metals are 67 

present in soil and are known to be the inorganic pollutants with the greatest significant hazard 68 

to humans (18, 19). Metal toxicity is not only related to the exposure level but also to the 69 

metallic chemical species involved, which has an effect on stability and bioavailability within 70 

the ecosystem (20). Due to the propensity of such substances to bioaccumulation, they impose 71 

a considerable risk for food safety and all living organism (21, 22).  72 

Hydrocarbons are the most common organic contaminant in soil and water which are of 73 

growing concerns (11). Numerous oil spills repeatedly displayed the hazard effects 74 

hydrocarbons have on the environment. Oil pollution therefore needs solutions that are quick 75 

and economical (23). The persistence of organic polluting compounds within the natural 76 

environment depends on many factors, including chemical composition, distribution, and 77 
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concentration (24). In the event of an oil spill, physicochemical remedies are usually applied; 78 

however, these procedures are very costly and more strategies may be required depending on 79 

the chemical agents selected as surfactants or catalysts (25). Chemical remediation requires the 80 

addition of chemical compounds to degrade pollutants or turn them into substances that are less 81 

hazardous to the environment. Oxidation, reduction, polymerization, and precipitation are the 82 

most widely used methods in this process (26). 83 

Conventional physical remedies that separate/isolate soil and pollutants without chemical 84 

destruction or modifications of the oils are also common. Many of the petroleum products are 85 

trapped in the soil matrix, thereby reducing each remediation method performance. Biological 86 

processes on the other hand offers efficient remediation methods, as they combine efficiency 87 

and cost-effectiveness. Among many novel strategies, bioremediation consistently emerges as 88 

the least aggressive and often the most suitable method for maintaining the ecological balance 89 

(27). 90 

3. Bioremediation methods 91 

The use of biological processes to remove or transform pollutants in the environment to either 92 

safe levels or to turn pollutants into acceptable forms is known as bioremediation (8, 20). The 93 

definition involves biodegradation, which relates to the transformation or detoxification of 94 

contaminants partially or completely by biological systems (28). Bioremediation is therefore a 95 

method that improves the effectiveness of the natural biodegradation process (29). This 96 

technique involves  low-technology and is generally more economical and can often be carried 97 

out on-site or in situ (30, 31). The purpose of bioremediation is to reduce contamination levels 98 

to less toxic or safe levels, compared to the limits set by regulatory agencies or, preferably, 99 

complete mineralization to water and carbon dioxide (28). Bioremediation is also beneficial 100 

because of its environmentally sustainable nature, as it does not involve the introduction of 101 

foreign or hazardous chemicals to the polluted site. Environmental sustainability is as a result 102 
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of using natural reproducible additives that do not entail any damage to the natural ecosystem 103 

that often results from chemical and physical remediation methods. Bioremediation enables 104 

biological organisms to degrade toxic hydrocarbons into simple compounds that do not pose 105 

risk to human health and minimizes the need to eliminate and transfer harmful substances to 106 

another location (32). Biosurfactants producing bacterial species were shown to enhance 107 

hydrocarbon degradation through increased hydrocarbon removal compared to common 108 

chemical surfactants uses (12, 33). Therefore, biosurfactants applications are attractive in 109 

bioremediation processes(34). 110 

4. Biosurfactants properties and types 111 

Biosurfactants are amphiphilic compounds containing both lipophilic and hydrophilic groups. 112 

This structure gives them surface-active features such as surface and interfacial tension 113 

reductions in mixtures of waters and hydrocarbon (16). Plants, animals and microbes are 114 

reported to synthesize biosurfactants (14). These can have lower critical micelle concentration 115 

(CMC) values than synthetic surfactants which improves their performance in different 116 

applications. Microbial biosurfactants are divided into two main groups high molecular weight 117 

(HMW) polymeric compounds, e.g. polysaccharides, proteins or combined lipoprotein and 118 

lipopolysaccharide types and low molecular weight (LMW), e.g. lipopeptides and glycolipids 119 

(35). HMW biosurfactants can adhere very firmly to different surfaces and act as bio 120 

emulsifiers. LMW biosurfactants such as rhamnolipids and sophorolipids that are disaccharides 121 

with long chain acetylated fatty acids or hydroxyl fatty acids. They significantly reduce surface 122 

and interfacial tension (36).  123 

Unlike chemically synthesized surfactants, which are classified according to the nature of their 124 

polar group, biosurfactants are categorized mainly by their chemical composition and their 125 

microbial origin. In general, their structure includes a hydrophilic moiety consisting of amino 126 
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acids or peptides, anions or cations; mono-, di-, or polysaccharides; and a hydrophobic moiety 127 

consisting of unsaturated and saturated fatty acids (37, 38). Glycolipids are the most known 128 

biosurfactants. They are conjugates of carbohydrates and fatty acids. The linkage is by means 129 

of either an ether or an ester group (39, 40). Lipopeptides can also be classified as biosurfactants 130 

(41). A summary of the classification of biosurfactants and their structure is shown in Table 1. 131 

Table  1. Classification of biosurfactants and their structure  132 

Biosurfactant 
types 

Biosurfactants 
subtypes Chemical structure example Reference 

Glycolipids 

Rhamnolipids 

 

(42) 

 

(43, 44) 

Sophorolipids 

 

(45) 
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Mannosylerythritol 
Lipids 

 

Xylolipids 

 

(47) 

Cellobiose lipids 

 

(47) 

Lipopeptides  

(48) 

Surfactin 

 

(49) 
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Fengycin 

 

(44) 

Fatty Acids 
and 

Phospholipids 
Phospholipids 

 

(50) 

Polymeric 
Biosurfactant Emulsan 

 

(44) 

 133 

4-1. Glycolipid biosurfactants 134 

4-1-1. Rhamnolipids 135 

Rhamnolipids are glycolipid biosurfactants, mainly produced by Pseudomonas aeruginosa 136 

which are well known for their potential industrial, bioremediation and environmental uses (51, 137 
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52). They are composed of one or two rhamnose sugar groups linked to one or two fatty acid 138 

chain of mainly 10-14 carbon atoms, forming mono or di-rhamnolipid molecules (53). 139 

4-1-2. Trehalolipids 140 

Trehalolipids are disaccharide trehalose linked to mycolic acids. Trehalolipids from different 141 

organisms differ in the size and structure of mycolic acid, the number of carbon atoms, and the 142 

degree of unsaturation (54). Trehalolipids are produced by different species of Mycobacterium, 143 

Nocardia, and Corynebacterium. For example, trehalose dimycolate produced by Rhodococcus 144 

erythropolis (43, 55-57). 145 

4-1-3. Sophorolipids  146 

Sophorolipids are extra cellular glycolipids consist of a dimeric carbohydrate sophorose linked 147 

to a long-chain hydroxy fatty acid by a glycosidic bond. These biosurfactants are a mixture of 148 

at least six to nine different congeners, and showed application related to the oil bioremediation 149 

(58, 59). The purified sophorolipids were more surface active, less water soluble and showed 150 

stronger cytotoxic effects. Although, sophorolipids can lower surface and interfacial tension, 151 

they are not effective emulsifying agents (60). Sophorolipids are produced mainly by yeasts 152 

such as Torulopsis bombicola, T. petrophilum and T. apicola (61-63). 153 

4-1-4.  Mannosylerythritol Lipids 154 

biosurfactants containing mannose, erythritol, and two fatty acid chains are known as 155 

mannosylerythritol lipids. These glycolipids are centered around the disaccharide 156 

mannosylerythritol. The 2′ and 3′ positions of two fatty acids are linked to mannose by ester 157 

bonds and a bond at the 1′ position links erythritol to mannose (64, 65). 158 

4-1-5.  Xylolipids 159 

A xylolipid is a glycolipid biosurfactant with a xylose head and fatty acid tails. The bacteria 160 

that produce xylolipids are usually lactic acid bacteria (66). Although a few yeast species such 161 

as Pichia caribbica are reported to be able to synthesize xylolipids. In Joshi-Navare et al, 162 
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research xylolipids as biosurfactants can reduce the surface tension to 35.9 mNm−1 with a CMC 163 

of 1 mgL−1 (67). 164 

4-1-6. Cellobiose lipids 165 

Cellobiose lipids are a group of biosurfactants produced by microbes as secondary metabolites. 166 

It is usually produced as a mixture of different acylated low molecular weight D-glucolipids, 167 

linked to a hydroxyl palmitic acid via their ω-hydroxyl groups (68, 69). Cellobiose lipids were 168 

produced by Cryptococcus humicola JCM 1461 and the structure of main product was 16-O-169 

(2”,3”,4”,6’-tetra -O-acetyl-β-cellobiosyl)-2-hydroxyhexadecanoic acid. The CMC was 170 

3.3×105 M and 4.1 × 104 M in pH 4.0 and 7.0 respectively (69). 171 

4-2. Lipopeptides biosurfactants  172 

The group of Lipopeptide/lipoproteins presents a heterogeneous class of biologically active 173 

peptides and most of them are known to possess antimicrobial activity. Arthrofactin (AF) and 174 

surfactin (SF) are the most effective cyclic lipopeptide biosurfactants ever reported (49, 70).  175 

4-2-1. Arthrofactin 176 

Arthrobacter and Actinomyces and Streptomyces produced arthrofactin, a lipopeptide 177 

biosurfactant type (71). The surface and interfacial behavior of arthrofactin is noteworthy as 178 

this cyclic lipopeptide (at a concentration of 100 µM) can reduce the surface tension of water 179 

from 72 to 24 mNm-1 (72). Effects on biofilm formation, in addition to a wide range of 180 

industrial applications relevant for medical applications were reported for arthrofactin (72, 73). 181 

4-2-2. Surfactin 182 

Surfactant is a cyclic lipopeptide consisting of a hydrophobic tail that is thirteen to fifteen 183 

carbons long chain with seven amino acids produced by Bacillus subtilis is the most effective 184 

biosurfactant with low toxicity (74, 75). The amphiphilic nature helps surfactin to exist and 185 

function in both hydrophobic and hydrophilic environments. Surfactin is a commonly used 186 

biosurfactant with detergents, antimicrobial, antibacterial, and antiviral properties in a variety 187 
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of industries and formulations of cosmetic products, and oil bioremediation (76). 188 

4-2-3. Fengycin 189 

In fengycin as cyclic lipopeptide, decapeptides are joined to a linear chain of β-fatty acid by 190 

cyclization between the phenol side chain at position 3 and the C-terminus of an amino acid at 191 

position 10 (77). Bacillus species are the primary producers of fengycin (78). It has been 192 

demonstrated that fengycin readily interacts with the lipid bilayer and have antimicrobial 193 

effects (79). A lipopeptide closely related to fengycin has been identified and referred to as 194 

plipastatin. In fengycin and plipastatin, the Tyr position differs (80, 81).  195 

4-3. Fatty Acids, and Phospholipids biosurfactants 196 

Several bacteria and yeasts produce large quantities of fatty acid and phospholipid surfactants 197 

during growth on n-alkanes. The HLB is directly related to the length of the hydrocarbon chain 198 

in their structures. These are usually organisms which produce surface-active lipids when 199 

growing on hydrocarbon substrates. Several different types of biosurfactants have been isolated 200 

and characterized. These include glycolipids, lipopeptides, phospholipids, and neutral lipids. 201 

The complex lipids all contain fatty acids and these fatty acids often have a hydroxyl function 202 

on the carbon β to the carboxyl group or farther along the chain (82, 83). One of the most 203 

popular phospholipid biosurfactants is produced by Corynebacterium Lepus (83).  204 

4-4.  Polymeric biosurfactants 205 

Extracellular polymeric substances (EPSs) such as emulsan are involved in both detrimental 206 

and beneficial consequences of microbial aggregates such as biofilms, flocs and biological 207 

sludge. In biofouling, they are responsible for the increase of friction resistance, change of 208 

surface properties such as hydrophobicity, roughness, color, etc. In bio corrosion of metals, 209 

they are involved by their ability to bind metal ions. In bio weathering, they contribute by their 210 

complexing properties to the dissolution of minerals. The EPSs represent a sorption site for 211 

pollutants such as heavy metal ions and organic molecules (84, 85). 212 

5. Biosurfactants in bioremediation 213 
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Biosurfactants can withstand high temperatures, high salt concentrations and harsh conditions 214 

and remain stable.  Remediation techniques using biosurfactants and microorganisms 215 

generating biosurfactants help to detoxify petrolatum and heavy metals from the contaminated 216 

environment (86-89). Biosurfactants produced by Serratia marcescens ZCF25 are lipopeptide. 217 

This microorganism was isolated from oil sludge. Biosurfactants were highly stable in harsh 218 

environments, reduce surface tension and have a bioremediation application (90) 219 

Stenotrophomonas sp. S1VKR-26 produces biosurfactants that can be used for bioremediation 220 

of petrolatum contamination in wastewater (91). Bacillus cereus UCP 1615 biosurfactant are 221 

lipopeptide type with potential for oil spills remediation (92). The extracted biosurfactant from 222 

Rhodococcus erythropolis HX-2 increase the solubility of the hydrophilic compound and 223 

enhances petroleum biodegradation (93). 224 

 Some studies and research with regard to biosurfactants which improved the biological 225 

degradation of contaminants are shown in Table 2.226 
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Table 2. Numerous studies shown biosurfactants improved the biological degradation of contaminants. 227 

Microorganisms Pollutants 
Biosurfactant 

Type 
Mechanisms of Effects Reference 

Bacillus sp. 

Zinc, lead, 

chromium and 

copper 

Lipopeptide 

Complex (biosurfactant–metal) formation, 

then the complex form micelles and mobilize 

(leaves the soil)  

(86) 

Acinetobacter sp. 

Pseudomonas putida 

Lead, zinc and 

copper 
Rhamnolipid 

Wetting, interaction to the sediment surface 

and metal separation from the sediment 
(94) 

Isolates of KDM3, KDM 

4, KDM 6 

Zinc, lead and 

chromium 

Biosurfactant (not 

specified) 
No purpose mechanism (95) 

Pseudomonas  sp. CQ2 Cd, Cu and Pb 
Biosurfactant (not 

specified) 

Metals complex with carboxyl functional 

groups in biosurfactants  
(33) 

Achromobacter xylosoxidans 

Stenotrophomonas maltophilia 

Polychlorinated 

biphenyls 

Saponin 

Rhamnolipid 

Direct bacterial cell absorption of pollutants 

from the micellar core, increased mass 

transfer of contaminants to the aqueous phase, 

(96) 
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and modifying cell surface and cell 

lipophilicity 

Saccharomyces cerevisiae Biodiesel Mannoprotein 
Emulsifying contaminant with soil particles, 

thereby promoting biodegradation 
(97) 

Mixed culture microflora 
Biodiesel and 

diesel oil 
Rhamnolipid 

Increase bioavailability of organic compounds 

solubilized in micelles to microbial cells 
(98) 

Achromobacter sp. A-8 Petroleum 
Biosurfactant (not 

specified) 

Decreases surface tension and high 

performance in oil displacement 
(87) 

Serrati sp. Hydrocarbon Lipopeptide 

Reduced surface and interfacial tension 

increasing hydrocarbons surface area, which 

makes them accessible to the microbe  

(99) 

Bacillus cereus Oil Lipopeptide 
Increase of lipophilic substrates' 

bioavailability 
(100) 

Shewanella sp. Oil Rhamnolipid 
Improving the rate of mass transfer and 

microbial adhesion 
(88) 
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Wickerhamomyces anomalous Crude oil Lipopeptide Reduction in  surface tension (101) 

Bacillus algicola (003-Phe1), Rhodo- 

coccus soli (102-Na5), Isoptericola 

chiayiensis (103-Na4), and Pseu- 

doalteromonas agarivorans (SDRB-

Py1) 

Crude oil Rhamnolipid Increasing the emulsification of crude oil  (102) 

Bacillus sp. and Acinetobacter sp. Oil 
Lipopeptide 

Emulsan 
Micelles formation (89) 

Serratia marcescens UCP 1549 
Burned motor 

oil 
Lipopeptide 

emulsify oil, improve water solubility and 

decrease the surface tension 
(103) 

Bacillus methylotrophicus UCP1616 Motor oil Lipopeptide 

Increases the surface area of the hydrocarbons 

and enhances the interaction of the 

hydrophobic contamination and the microbial 

cell membrane 

(104) 
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Paenibacillus sp. D9 
Diesel and 

motor oil 

Biosurfactant (not 

specified) 

Increase the solubility of the hydrophobic 

contaminated aqueous environment, thereby 

improving biodegradation 

(105) 

Acinetobacter sp. Y2 Hydrocarbon Lipopeptide 
Improve the solubility and bioavailability of 

lipophilic compounds 
(106) 

Bacillus stratospheric strain FLU5 Motor oil Lipopeptide 
Micelles formation and increases the 

solubility of pollutions 
(107) 

Staphylococcus epidermidis EVR4 Diesel oil 
Biosurfactant (not 

specified) 

Oil pollutants become more soluble by 

biosurfactant 
(108) 

 228 
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6. Mechanism of biosurfactants in bioremediation 229 

One variable affecting the process of microbial degradation is the bioavailability of the 230 

polluting compounds to the degrading bacteria (109). Biosurfactants increase the hydrophobic 231 

pollutants bioavailability to microbes for biodegradation through enhancing their solubility 232 

(97). One application of biosurfactants is improving the biodegradation process of insoluble 233 

organic contaminations. Biosurfactant influences the rate of biodegradation of hydrocarbons 234 

and increases the decomposition process through two mechanisms; by increasing the solubility 235 

of petroleum hydrocarbons and by controlling the interaction between bacterial cells and 236 

petroleum substances reducing the surface tension among two phases (17). Biosurfactants as 237 

amphiphilic structure accumulate and form micelles in the hydrophilic environment at bulk 238 

concentrations above the CMC. Micelles are thermodynamically stable structures, and micelle 239 

formation is an equilibrium process. In micelle structures, hydrophobic groups of surfactants 240 

contact/orients towards the hydrophobic environment and hydrophilic groups contact/orients 241 

towards the aqueous phase; thus, hydrophobic contamination become dispersed and soluble in 242 

the aqueous solvent. On the other hand, micelle can increase the rate of absorption of substance 243 

to microbial cells (17, 107, 110). 244 

Biosurfactants can enhance biodegradation of poorly soluble substances by two main processes 245 

which enhance/increased bioavailability:  246 

 Improving the solubility by emulsifying hydrophobic compounds, making it more 247 

accessible to microbial attack.  248 

 Facilitating transfer of hydrophobic contamination by micelle formation, providing 249 

greater access to bacterial cells (17). 250 
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Fig.1 shown how biosurfactants can be increased bioremediation. 251 

Fig.1 Mechanisms of microbial degradation of the hydrophobic compound with the aid of 252 

biosurfactants  253 

Biosurfactants with complexation or surface sorption can aid heavy metal remediation. The 254 

anionic biosurfactant has a strong affinity to cationic heavy metals such as Zinc, Lead, 255 

Chromium and Copper and complexed with them, then biosurfactant–metal complex leaves 256 

the soil surfaces and form micelles. Based on this, biosurfactants can use for heavy-metal 257 

pollution remediation (33, 86, 111). Smaller micelles are more beneficial to biosurfactant 258 

diffusion in the soil, which increases the contact area with heavy metals in the soil and thus 259 

improves bioremediation performance (33). 260 

7. Conclusion 261 

The biosurfactants can be used as a low-cost method without the need for special equipment 262 

and in situ techniques to degrade organic contaminants such as petroleum and mobilise/collect 263 

inorganic contaminants such as heavy metals. Biosurfactants increase solubility by emulsifying 264 

hydrophobic pollution and providing greater access of microorganisms to contamination, 265 
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complexed with heavy metals and micelle formation, lead to the removal of contamination 266 

without creating a new toxic product. 267 

8. Future prospects 268 

The use of biosurfactants is an attractive option because of its versatility, biodegradability, 269 

ecological safety and environmental acceptance. Due to its higher production cost, purification 270 

and low yield, biosurfactant used has limited. For produce a high yield of surfactants and lower 271 

cost biosurfactants; renewable substrates, alternative purification technologies, genetic and 272 

metabolic engineering tools, and statistical methods can be applied. More efforts are required 273 

to evaluate biosurfactants in situ and their effect on indigenous microorganisms. 274 
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