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Traditional approaches to the dynamics of the open quantum systems with high precision are
often resources consuming. How to improve computation accuracy and efficiency for target sys-
tems presents us with one of the most difficult challenges. In this work, combining unsupervised
and supervised learning algorithms, a deep-learning approach is introduced to simulate and predict
Landau-Zenner dynamics. Data obtained from the multiple Davydov D2 Ansatz with a low multi-
plicity of four are used for training, while the data from the trial state with a high multiplicity of ten
are adopted as target data to assess the accuracy of prediction. After proper training, our method
can successfully predict and simulate Landau-Zenner dynamics using only random noise and two
adjustable model parameters. Compared to the high-precision dynamics data from the multiple
Davydov D2 Ansatz with a multiplicity of ten, the error rate falls below 0.6 %.

I. INTRODUCTION

As one of the most fundamental phenomena in quan-
tum dynamics, the Landau-Zener (LZ) transition hap-
pens as a result of propagating through the level crossing
between diabatic surfaces at a constant sweeping speed.
Its final transition probability obtained first by Landau
and Zener in 1932 [1, 2], and the LZ transition is found
to play an important role in a variety of fields, including
atomic and molecular physics [3–5], quantum optics [7],
chemical physics [6], and quantum information science
[8]. Recently, there has obtained renewed interest in the
LZ transition with the advent of a huge variety of new
applications [9, 10], such as a nitrogen-vacancy center
spin in isotopically purified diamond [11], a microwave
driven superconducting qubit coupled to a two-level sys-
tem, [12] and a spin-orbit-coupled Bose-Einstein conden-
sate [13]. Recent advances in circuit quantum electrody-
namics (QED) devices make them promising candidates
for exploration of the LZ transitions due to their potential
scalability and wide-ranging tunable parameters [14–19].
Circuit QED is an implementation of cavity QED in su-
perconducting quantum circuits. A superconducting flux
qubit coupled to a quantum interference device [16] has
been fabricated by Chiorescu et al., as well as a charge
qubit coupled to a transmission line resonator by Wall-
raff et al. [17]. Similar developments have paved the way
to implement the LZ transition experiments where the
energy gap between the diabatic states can be tuned by
external fields [18].

A schematic diagram of the LZ transition is shown in
Fig. 1, where |G⟩ and |E⟩ represent the adiabatic states,
and | ↑⟩ and | ↓⟩, the diabatic states. In general, a qubit
cannot be completely isolated from its surrounding en-
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Figure 1: Energy-level evolution in the adiabatic and diabatic
states of a LZ transition.

vironment. To accurately describe the dynamics of the
qubit, the environmental influence on the qubit must be
taken into account[20–24]. In this context, the multiple
Davydov trial states have been previously utilized to ac-
curately simulate the dissipative dynamics of LZ model
coupled to a bosonic bath in the framework of the stan-
dard time-dependent variation [25].

Development of artificial intelligence nowadays is in-
creasingly more influential to our daily lives, and nu-
merous applications are found in a variety of fields such
as machine vision, fingerprint/face/retina/iris recogni-
tion [26, 27], expert systems [28], automatic planning,
genetic programming, intelligent search, intelligent con-
trol, robotics, linguistics [29, 30] and image understand-
ing [31]. In this work, three machine learning meth-
ods, namely, an unsupervised learning algorithm using
the generative adversarial network (GAN), and two algo-
rithms of supervised learning, namely, the convolutional
neural network (CNN) and the back propagation neu-
ral network (BPNN), are integrated to predict the oc-
currence probability of LZ transitions, after the initial
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Figure 2: The qubit is coupled to a single harmonic oscillator.

set of training data is established by the multiple Davy-
dov D2 ansatz via time-dependent variation. GAN as a
class of machine learning frameworks in which two neu-
ral networks (NN) compete with each other in a zero-sum
game, has been extremely successful in artistic creation
and image synthesis. For example, GAN can be used to
migrate makeup style from a given reference face image
to another non-makeup face image without the change
of face identity [32]. CNN is a class of deep NNs often
applied to imagery analysis, while BPNN, a basic neural
network, allows feedbacks to the network to self-correct
the network parameters.
The rest of the paper is organized as follows. In Sec. II,

we introduced the Hamiltonian and the machine learn-
ing algorithms that could be applied in the study of LZ
dynamics. In Sec. III, results from the GAN, CNN and
BPNN are presented, and the prediction accuracy of the
present method within a certain range is analyzed. Con-
clusions are drawn in Sec. IV.

II. METHODOLOGY

A. The Hamiltonian

For a time-dependent quantum system coupled with a
single bosonic mode, its Hamiltonian can often be parti-
tioned into three parts,

H = HS +HB +HSB. (1)

Here, the system Hamiltonian is given by the standard
LZ Hamiltonian, that is

HS = HLZ = νt
σz
2

+ ∆
σx
2
, (2)

where σz and σx are the Pauli matrices, and ν > 0 is
sweeping speed of level crossing. The tunneling strength
∆ represents the internal interaction between diabatic
states. In our calculations, ν = 0.01 is adopted.
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Figure 3: There are two mechanisms to form a two-
stage picture for the time evolution of the LZ tran-
sition probabilities. (a) The first transition stage
is induced by direct tunneling D between the two
levels with off-diagonal coupling strength γ = 0.
From top down, tunneling strength ∆ = 1.0

√
ν/~,

0.7
√

ν/~, 0.4
√

ν/~, named the standard LZ tran-
sition. (b) The second transition stage results
from the indirect off-diagonal coupling to the single-
oscillator mode with tunneling strength ∆ = 0.
From top down, off-diagonal coupling strength γ =
1.0

√
ν/~, 0.7

√
ν/~, 0.4

√
ν/~.

As shown in Fig. 2, only a single harmonic oscillator is
included in the bath Hamiltonian

HB = ~ωb†b, (3)

where ~ = 1 is assumed throughout, ω represents the
frequency of the phonon mode, and b† (b) is the gener-
ation (annihilation) operator. The system-bath interac-
tion Hamiltonian HSB is assumed to be off-diagonal

HSB =
γ

2
σx(b+ b†), (4)

where γ is the non-diagonal coupling strength.
An alternative to the multiple Davydov D1 trial state

[33], the multiple D2 Ansatz (also known as the multi-D2
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Figure 4: Overall framework of the proposed ML approach, which can be regarded as a combination of one GAN, two CNNs,
and multiple BPNNs. GAN uses random noise and “Real data” to generate a set of counterfeit data. CNNs are adopted to
identify the parameter info imbedded in the counterfeit data. Finally, the BPNNs are used to establish a mapping relationship
for each part to error reduction.

Ansatz) with multiplicity M , can be written as

|ψM
D2

(t)⟩ =
∑
m

|m⟩
M∑
k=1

Am,k(t)e

(∑
q fk,q(t)b

†
q−H.c.

)
|0⟩,

where |m⟩ denotes the spin state | ↑⟩ or | ↓⟩, H.c. indi-
cates the Hermitian conjugate, and |0⟩ is the vacuum
state of the bosonic bath. The time-dependent vari-
ational parameters {Am,k, fk,q} are determined by the
Dirac-Frenkel time-dependent variational principle. The
reader is referred to Ref. [25] for calculation details.
The time-dependent transition probability is given by

P↑→↓(t) = ⟨ψM
D2

(t)| ↑⟩⟨↓ |ψM
D2

(t)⟩. (5)

As an illustration, the LZ transition probabilities P↑→↓(t)
for different control parameters, obtained with the mul-
tiple D2 anstaz with M = 10, are shown in Fig. 3, where
we set ω = 10

√
ν/~.

In the long-time limit, the probability of LZ transition
can be obtained analytically,

P↑→↓(∞) = 1− exp

[
−π(∆2 + γ2)

2~ν

]
(6)

According to Eq. (6), the long-time limit of the tran-
sition probability, P↑→↓(∞), depends on the values of ∆
and γ. Obviously, the time evolution of the LZ transi-
tion probabilities in Fig. 3 lead to asymptotic values in
accordance with Eq. (6).
The purpose of our project is to predict the evolution of

the LZ transition probability by using the model param-
eters ∆ and γ. As a convenient check of the performance

of the NNs, the predicted LZ transition probability in the
long-time limit should be in accordance with the analyt-
ical expression of Eq. (6).

B. Outline of our NN approach

As shown in Fig. 4, our overall NN approach in this
work can be regarded as a combination of one GAN, two
CNNs, and multiple BPNNs. Based on the diagram in
Fig. 4, we briefly describe the overall procedure. The
first step is to use the multiple Davydov D2 Ansatz to
calculate multiple sets of LZ transition probability data
as training data by varying the tunneling strength pa-
rameter ∆ and the off-diagonal coupling strength param-
eter γ within certain ranges. This is to establish the
training data, which is the part represented by the “Real
data” in Fig. 4. The GAN uses random noise and “Real
data” to generate a set of counterfeit data, which include
all time series (−20 < t < 40, consisting of 6001 data
points) and are different from any set of training data
while retaining structural similarity. In the second step,
the training data are divided into three time series, i.e.,
−20 < t < 0, 0 < t < 10 and 10 < t < 40. The time
series of −20 < t < 0 is irrelevant for our purpose, as
within this early time period the LZ transition does not
occur. The second time series is controlled by the pa-
rameter ∆ (0 < t < 10, about 1000 data points), and the
third, mainly by the parameter γ (10 < t < 40). These
two time series could be used as the training data for the
two CNNs, which are to be trained separately to identify
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the two parameters. As the operations of the two CNNs
are similar, we only describe the more complex one, that
is, the time series controlled by the parameter γ. Af-
ter that, the trained CNNs are adopted to identify the
corresponding part of the counterfeit data. Because the
high-precision calculation method is time consuming, we
have chosen to use low-precision data generated by the
multiple Davydov D2 Ansatz with multiplicity of M = 4
for training first, which is bound to result in certain er-
rors in the prediction. Therefore, the third step is to
divide the counterfeit data into multiple parts, and then
use the BPNN to establish a mapping relationship for
each part to reduce errors.
First of all, let us define several frequently used vari-

able names. “Training data” is calculated by the multiple
Davydov D2 Ansatz with M = 4, ∆ raging from 0.1 to
1.0, and γ ranging from 0.1 to 1.2. “Target data” is the
learning target of the output data during NN training.
Different NNs have different sets of target data. For ex-
ample, in GAN and BPNN, the “target data” represents
the training data, while in CNN the “target data” is the
parameters ∆ or γ used to calculate the training data.
“Validation data” is calculated by the multiple Davydov
D2 Ansatz with M = 10, ∆ = 0.45

√
ν/~, and γ rang-

ing from 1.3
√
ν/~ to 2.0

√
ν/~. “Analytical value” is the

LZ transition probability in the long-time limit given by
Eq. (6). “Convergent data” is the average value of train-
ing data over the time period of 15 < t < 40, which
approximates the LZ transition probability calculated by
training data in the long-time limit. Relevant details are
elaborated in Sec. III.C.

C. Artificial NNs used in our study

The core of artificial intelligence is machine learning,
which has representation learning and deep learning as
its center. The purpose of deep learning is to discover
hidden hierarchical constructs with probability distribu-
tions over a variety of data. In deep learning, an entire
probability distribution of the data set is generated ex-
plicitly, such as density estimation, or implicitly, such as
synthesis or de-noising. Deep learning can be roughly
classified into unsupervised and supervised learning al-
gorithms: the former usually refers to the procedure of
training a data set with many features and learning useful
structural properties on these data, while other types of
unsupervised learning, such as clustering, divide a data
set into sets of similar samples; the latter usually refers
to the procedure of training a data set with a target and
learning how to classify samples into categories based on
measurement outcomes.
Supervised learning implies that a known goal is pro-

vided to the system under training, and the system
strives to achieve the given goal. In unsupervised learn-
ing, however, there is absence of goals, and the algorithm
must learn to understand the data without any guid-
ance. Traditionally, regression, classification, and struc-

Figure 5: A flow chart of GAN. G is the generator, and D is
the discriminator. The goal of G is to use a set of random
noise as the initial data to generate a set of related data as the
input of the discriminator, which the goal of D is to compare
the target data with the data generated by G to determine
whether the generated data is the target data.

tured output problems are referred to as supervised learn-
ing, and density estimation as unsupervised learning. In
this project, GAN is adopted as unsupervised learning
algorithms, while CNN and BPNN, supervised learning
algorithms.

1. The GAN Model

The output scale of an artificial NN is in general less
than or equal to the input scale, which coincides with
the law of information dissemination. A large amount
of information can uniquely lead to a conclusion. Con-
versely, the inference does not hold. Therefore, in order
to predict the occurrence probability of LZ transitions
with a small number of parameters, the first thing to do
is to train a NN to generate a set of counterfeit data with
similar characteristics by involving random noise.

A flow chart of GAN is shown in Fig. 5. GAN consists
of two parts, one of which is called the generator (G),
and the other is called the discriminator (D) [36]. The
goal of the generator G is to use a set of random noise
as the initial data to generate a set of related data as the
input of the discriminator. Then, according to the feed-
back output by the discriminator, it could continuously
modify itself to achieve the ultimate goal of generating
counterfeit data. Another input set of the discriminator
is the training data, also called the target data. The goal
of the discriminator D is to compare the target data with
the data generated by G to determine whether the gen-
erated data is the target data. As the amount of training
increases, the generated data could inevitably look more
similar to the target data, with the discriminator D more
capable in judging whether the generated data is the tar-
get data. Details on the GAN loss function can be found
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(a) (b)

(c) (d)

...

Figure 6: GANs are trained by updating the discriminative
distribution (D, ochre dashed line) so that it discriminates
between samples from the data generating distribution (black
dashed line) and those of generative distribution (G, green
solid line), demonstrating the competition between G and D.
(a) before training, (b) training D, (c) training G, (d) after
training

in Appendix B.

As these processes are repeated, the generator and the
discriminator compete with each other, resulting in an
improved performance of the two. Eventually, a relative
balance is reached, that is, the probability that the dis-
criminator thinks that the generated data is true data
reaches 50%, then it can be considered that GAN has
been fully trained. The GAN training process are il-
lustrated in Fig. 6, where the black dashed line denotes
the training (target) data, the green line, the counterfeit
data generated by the generator, and the ochre dashed
line, the probability that the discriminator considers the
data to be true.

One can see the performance is not good for both the
generator or the discriminator in Fig. 6(a), as the weights
of G and D in the initial state are set randomly. I follows
that the discriminator adjusts its weights and yields a
new judgment, as shown in Fig. 6(b). The discriminator
decides that the data generated by generator is not the
training data, and based on the feedback, the generator
adjusts its weights as exhibited in Fig. 6(c). Repeated
adjustments and competition of the two finally yields a
balance as shown in Fig. 6(d). The discriminator now
decides that the probability that the generated data is
the training data is 50%, and the probability that it is
counterfeit data is 50%. In other words, GAN has been
sufficiently trained.

2. The CNN Model

Generally speaking, CNN is used for recognition
or classification in a supervised learning framework.
Schematics of a CNN is shown in Fig. 7. The input layer
processes the trained, two-dimensional image data as ma-
trix data, and extracts the feature values of the training
data in the convolution layer. In the pooling layer, the
dimensionality of the feature values of the training data
is reduced, thus the amount of calculations is also re-
duced. After the process of convolutional pooling, the
scale of the two-dimensional image data is reduced to a
level that can be easily calculated by a computer in the
full connected layer.

In order to prevent overfitting, a “dropout” operation
is usually performed in the fully connected layer accord-
ing to the scale of the data. Depending on the dropout
rate, which is in the range from 0.3 to 0.5, some data
points could be “lost”, which means that usually 30% to
50% of data does not participate in subsequent predic-
tions. Only the remaining 50% to 70% of the data are
passed to the output layer.

In order to prevent the input of each layer from being
a linear function of the output of the previous layer, the
data transfer between layers uses the activation function
to perform a nonlinear mapping, and the general activa-
tion function is selected to be the ReLU function.

3. The BPNN Model

BPNN is one of the basic NNs in deep learning with
back propagation, providing the network the necessary
feedback to correct itself. Many neural networks, such as
CNN and the recurrent neural network(RNN), use similar
algorithms. A schematic diagram of the BPNN model is
shown in the Fig. 8. The working principle of BPNN
is as follows. First, the input layer passes the training
data to the hidden layer, then the hidden layer processes
the data, and passes it to the output layer. The BP
algorithm is used to adjust the weight between layers
until the difference between the target and the data from
the output layer falls below an acceptable range.

The BPNN is usually used in function approxima-
tion or mode recognition. Function approximation is a
method that uses the input vector and the corresponding
output vector to train a network to approximate a given
function, while mode recognition is a method that uses
a pending output vector to associate it with the input
vector. In this work, BPNN is used for function approx-
imation.

III. RESULTS AND DISCUSSION

The training data set is composed of time series of LZ
transition probabilities calculated via the multiple Davy-
dov D2 Ansatz in a time-dependent variation procedure
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Figure 7: A schematic diagram of CNN. The purpose of CNN
is to extract features from a certain model, and then clas-
sify, identify, predict or make decisions based on the features.
Feature extraction is implemented by the convolutional layer
and the pooling layer. In the convolutional layer, the data is
divided into blocks and inner-producted with the convolution
kernel one by one. The output is feature maps. In the pool-
ing layer, the dimensionality of the feature maps needs to be
reduced, reducing the complexity of data operations while re-
taining the basic information of the data. After that, feature
maps are dropped out in the fully connected layer. In order
to prevent data from overfitting, different activation functions
are selected according to different purposes.

[34, 35], and each data set is determined by a parame-
ter pair of γ and ∆. The value of γ ranges from 0.1 to
1.2, and that of ∆, from 0.1 to 1.0, both in increments
of 0.1. The strength of intrinsic interactions between the
diabatic states, ∆, is in general less than or equal to the
environment-system coupling strength γ, in the pairing
of ∆ and γ. A total of 75 data sets are established for
the training.

Figure 8: A schematic diagram of BPNN. On the left hand
side is the input layer, where the input training data is stored,
and the middle pink column represents the hidden layer.
There can be multiple hidden layers, where the training data
is nonlinearly transformed. On the right hand side is the out-
put layer, where the data is finally exported.

Table I: Simulation outcomes for seven different cases. “train-
ing steps” labels the number of iterations, Lr(G) is the learn-
ing rate of G, and Lr(D) isthe learning rate of D. The con-
vergence time, “time (h)”, is given in units of hours. MSE is
used to evaluate prediction results.

Case 1 2 3 4 5 6 7

training steps 2000 5000 10000 40000 40000 40000 100000

Lr(G) 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Lr(D) 0.1 0.1 0.1 0.1 0.12 0.15 0.1

time (h) 0.33 1.25 2.5 9.0 9.2 9.3 18.2

MSE(%) 11.43 10.48 5.71 1.46 0.23 0.79 2.43

A. Results from GAN

Due to instabilities in the GAN algorithm, it is diffi-
cult to achieve the Nash equilibrium as the cut-off con-
dition of the network. Therefore, cut-off conditions are
determined by training steps and the convergence speed
of GAN depends on the training steps and the learning
rate.

To ensure accuracy and to achieve a higher conver-
gence speed, we carry out a series of test comparisons.
As shown in Table. I, “training steps” labels the number
of iterations, Lr(G) is the learning rate of G, and Lr(D)
isthe learning rate of D. The convergence time, “time
(h)”, is given in units of hours; the smaller the conver-
gence time it is, the higher the convergence speed. An
index for evaluating the pros and cons of GAN results is
the Mean Square Error (MSE), given by

MSE =

√∑n
i=1(xt − xo)2

n
(7)
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where xt is the target (training) data and xo is the output
(counterfeit) data generated by GAN. The smaller the
MSE is, the more accurate the results are.
As exhibited in Table I, more training steps do not

always lead to better predictions. For example, Case 7
(100, 000 training steps) has a larger MSE than Cases
4 to 6 (40, 000 training steps ), and Cases 1 to 3
(2, 000, 5, 000, 10, 000 training steps, respectively) has a
smaller MSE than Cases 4 to 6 (40, 000 training steps).
In this work, 40,000 training steps are chosen. To in-

crease the fidelity of the generated data, it is necessary to
improve the discriminator performance. A better choice
is Lr(G) = 0.1 and Lr(D) = 0.12. The final data size gen-
erated by GAN can be arbitrarily specified. In this work,
10 data sets are generated, one of which is shown in Fig. 9
(a). As the number of training steps reaches 40,000, the
set of generated counterfeit data has already possessed
the main characteristics of the LZ transition process. A
comparison between the generated data set (blue) and
the training data set (ochre) is plotted in Fig. 9 (b),
demonstrating that the generated data set is not a sim-
ple copy of the training set. In particular, the counterfeit
curve before t = 0 differs significantly from all training
curves. As data before t = 0 do not affect the predic-
tion of subsequent results, they are kept as a label of the
counterfeit data.
Taking as input a set of random noise, and using the

LZ transition probability and the image of its time evolu-
tion obtained by time-dependent variation as the training
data set, the GAN has been fully trained to this point,
producing a set of counterfeit images as its output that
resembles the training set. Next, CNNs are adopted to
unveil the information embedded in the set of counterfeit
data.

B. Results from CNN

As the parameters ∆ and γ control the probability of
LZ transitions, each group of time-dependent LZ transi-
tion probabilities contains the information on parameters
∆ and γ, which is identified by the CNNs.
Before training the CNNs, a portion of the data can

be processed artificially. According to Fig. 3, changes in
parameter ∆ affect the probability of the LZ transition
P↑→↓(t > 0), while changes in parameter γ, P↑→↓(t >
10). The initial LZ transition occurs according to the
condition ∆ ≤ γ, inferring that for 0 < t < 10, the
probability of the LZ transition is mainly determined by
∆, and for t > 10, jointly determined by ∆ and γ, but
the influence of γ is dominant. Therefore, the data are
first divided into three parts. The part dominated by
∆ is called the first sequence (for 0 < t < 10), and the
part dominated by γ is called the second sequence (for
10 < t < 40). The rest is temporarily put aside. The
training data are usually selected from the first sequence
or the second sequence, so the size of the training data is
greatly reduced. The number of data points in the train-
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Figure 9: GAN training process display. (a) Generate data.
(b) Comparison of generated data and random raw training
data.

ing data input is only about 1000∼2000. To save CPU
time, a simplified one-dimensional CNN is utilized to ex-
tract the information on the control parameters. Since
the data size is relatively small, there is no need to per-
form dimensionality reduction operations on the convo-
lutional feature data, rendering unnecessary the pooling
layer in CNN, and resulting in a simplified CNN structure
shown in Fig. 10.

A total of two CNNs are trained here, one to identify
∆, and the other to identify γ. Setting the convolution
kernel is a 1× n matrix, and each element in the matrix
is 1/n with n = 500. The fully connected layer consists
of two layers, each with 5 neurons. The activation func-
tion between input layer and convolution layer is ReLU,
the activation function between other layers is Tanh, the
optimizer is Gradient Descent, and the loss function is
MSE.

Similar to the GAN, the training data required to train
the CNN is also calculated by the multiple Davydov D2

method. The time series data consist of 6001 data points.
If the trained network is to recognize ∆ (γ), the training
data should be the data points from 2001 to 3000 (from
5001 to 6000). In this section, we mainly discuss the
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Figure 10: Simplified CNN structure. The activation func-
tions between input layer and convolutional layer is ReLU, it
is to remove all non-zero values in the training data. Then
training data is convolved with a large convolution kernel in
the convolutional layer, after which the training data is cal-
culated in the fully connected layer. The activation functions
of the remaining layers are Tanh.

Table II: Eight sets of data randomly selected from the test
data. CNN is used to identify parameter information of test
data. Label-γ and Label-∆ are true parameters of the selected
data, and output-γ and output-∆ are outputs of CNN.

1 2 3 4 5 6 7 8

Label-γ 1.0 0.6 0.7 0.5 0.9 0.7 0.7 0.4

Label-∆ 0.5 0.3 0.5 0.2 0.7 0.1 0.3 0.1

output-γ 1.05 0.62 0.68 0.51 0.87 0.68 0.68 0.42

output-∆ 0.52 0.31 0.48 0.21 0.67 0.10 0.29 0.11

CNN of identifying γ. Finally, the two networks are con-
nected in series, and the original training data obtained
by the multiple Davydov D2 with M = 4 are divided
into training data and test data according to the ratio of
8 : 2. The results of the sampling display are shown in
Table II, and the accuracy rate is found to reach almost
95%.
From Fig. 11, it is found that the generated random

data are recognized by CNN as ∆ = 0.45
√
ν/~ , and

γ = 0.7
√
ν/~. From GAN, data points of the counterfeit

data are generated, and from CNN, we obtain the tunnel-
ing strength parameter ∆ and the off-diagonal coupling
strength γ corresponding to the counterfeit data. Ac-
cording to the known parameter information and that
recognized by CNN, the correspondence between the two
can be easily obtained. Based on this, the counterfeit
data generated by GAN can be used for the final predic-

-20 -10 0 10 20 30 40

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P

 = 0.45
 = 0.7

Figure 11: One of 10 sets of counterfeit data generated by
GAN, after recognition by CNN. The parameter information
of this data set is ∆ = 0.45

√
ν/~ and γ = 0.7

√
ν/~.

tion. Relevant details are elaborated in Sec. III.C.

C. Results from BPNN

Similar to the process of training CNN to parameterize
the network, the procedure of using BPNN for prediction
is to divide the data into two time series, one of which is
dominated by ∆ (0 < t < 10), and the other, by γ (10 <
t < 40). Due to the similarity of the two operations, in
this work we show the prediction of the second sequence
(dominated by γ in the interval of 10 < t < 40) because
it is more challenging.

According to the correspondence between the analyti-
cal value calculated using the given parameter and that
using the GAN-recognized parameter, we can process the
counterfeit data to approximate the data calculated by
the multiple Davydov D2 Ansatz with given parameters.
Unfortunately, this is not the correct predicted result as
it is found that the predicted LZ transition probability
exceeds 1 during 10 < t < 15 for a larger γ, which has no
physical meaning. If the phrase “convergent value” of a
time series is used to denote the average value of the last
2500 data points of the time series, then the convergent
value of the predicted LZ transition probability deviates
slightly from the analytic result Eq. (6). To handle these
two prediction issues, we need to construct the mapping
relationships with BPNN, a schematic diagram of which
is shown in Fig. 12(a).

The second sequence is divided into two parts. The
first part covers the time interval of 10 < t < 15, and
is referred to as the structural part (labeled by “str”).
Five mapping relationships (i.e., structure mappings) are
constructed between the input data (i.e., processed coun-
terfeit data) and the target data (i.e., the training data)
with BPNN to provide corrections to the predicted LZ
transition probability. Here the input data are the coun-
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Figure 12: (a) Schematic diagram of our multiple BPNNs.
The input data here is the counterfeit data generated by a
trained GAN, “data process” denotes processing input data
based on the correspondence between the analytical value cal-
culated by the given parameter and that by the recognized pa-
rameter (through CNN), and “structure mapping” and con-
vergent value mapping are two sub-neural networks, used to
correct the predicted LZ transition probability. The output
data here is the predicted data. (b) Division of the time se-
ries of 10 < t < 40 into two portions: the square labelled
as “analyt” represents the “convergent value part”, and the
squarelabelled as “str” represents the “structure part”. The
blue line denotes the counterfeit data generated by a trained
GAN, serving as the input data in BPNN. The ochre line is a
set of training data obtained from the multiple Davydov D2

Ansatz, which is assumed as the target data.

terfeit data processed via the correspondence between
the analytical value calculated with given parameters and
that with recognized parameters (through CNN). Rele-
vant details are explained in Sec. III C 1. The second part
covers the time interval of 15 < t < 40, and is referred to
as the convergent value part labeled by “analyt”. In the
“analyt” part, we need only to construct one mapping re-
lationship (i.e., convergent-value mapping) between the
convergent value of input data and that of target data
with BPNN. It is used to realize the correction of the con-
vergent value of the counterfeit data generated by GAN,

as shown in Fig. 12 (b)

1. Low multiplicity

The parameter information of the GAN counterfeit
data can be obtained by the application of CNN. The tar-
get data of BPNN is provided by the multiple D2 Ansatz
with M = 4, and the GAN counterfeit data serves as the
input data of BPNN. In order to ensure a higher accuracy
of the predicted data, this mapping relationship between
counterfeit data and target data should be established
at all points in the time series, which is time consum-
ing. However, as mentioned earlier, the time interval of
−20 < t < 0 is not needed for predicting, while the time
interval of 0 < t < 10 can also be neglected because of
extremely weak γ dependence. Only the rest 3000 data
points from the interval of interval of 10 < t < 40 in
the time series will be used to construct the mapping
relationships with BPNN.

After traversing the remaining 3000 data points, each
corresponding to a point in time, it is found that the av-
erage value of the last 2500 data points in the time series
has nearly the same convergent value, calculated accord-
ing to the target data is different from the final probabil-
ity of Eq. (6), as shown in Fig. 13(a). This discrepancy
is due to adopting a low multiplicity for the Davydov D2

state during the variational simulation in the interest of
efficiency. Therefore, we use NNs to learn a mapping re-
lationship (i.e., convergent value mapping) between the
analytical value and the convergent value. The training
results are compared with Eq. (6) in Fig. 13(b). It is
found that the NNs have achieved good agreement be-
tween the analytical value of Eq. (6) and the convergent
value. Details on the BPNN structure mapping can be
found in Appendix C.

Thus the NNs need to totally train six kinds of map-
ping relations to improve the training efficiency. The
number of hidden layers is set to 1, and the number of
neurons in the hidden layer, 5. The learning function is
trainlm, the learning rate is 0.0001, and the maximum
number of learning times is 1000.

After BPNN training, the time evolution of the LZ
transition possibility with ∆ = 0.45

√
ν/~ and γ =

1.3
√
ν/~ is predicted. The validation data is obtained

by the multiple D2 Ansatz with M = 4, ω = 10
√
ν/~,

∆ = 0.45
√
ν/~, and γ = 1.3

√
ν/~. The overall com-

parison diagram is exhibited in Fig. 13 (c). The MSE
between the predicted data and the validation data for
10 < t < 40 in the time series is less than 0.1%, which is
acceptable.

2. High multiplicity

If the multiplicity of our Ansatz is sufficiently large,
e.g., M = 10, the numerically convergent LZ transition
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Figure 13: The BPNN training process. Comparison between
the convergent value of training data and the final probability
calculated by Eq.(6). (a) Before training. (b) After training.
(c) Comparison of the final predicted data with the validation
data. The blue line is the predicted data, and the ochre line
is the validation data calculated by the multiple D2 Ansatz
with M = 4, ω = 10

√
ν/~, ∆ = 0.45

√
ν/~, γ = 1.3

√
ν/~.

Table III: After training, the values of MSE between the pre-
dicted data and the real data calculated by the multiple Davy-
dov D2 Ansatz with M = 10.

γ 1.4 1.5 1.6 1.7 1.8 1.9 2.0

MSE(%) 0.34 0.39 0.42 0.46 0.24 0.54 0.56

probability, also known as the training data, agrees in the
long-time limit with the analytical expression of Eq. (6),
as shown in the Fig. 14(a). Therefore, it is only necessary
to learn the “structural part”, but not the “convergent
value part”, as our algorithm can directly predict the
analytical value at long times. As a result, only 5 BPNNs
are needed to complete the task.

Fig. 14(b) displays a comparison between predicted
data with different multiplicities for the case of γ =
1.3

√
ν/~ and ∆ = 0.45

√
ν/~. The green (blue) line de-

notes the predicted data from a training data set with
multiplicity M = 10 (4). The yellow dashed line is the
steady-state value given by Eq. (6). As demonstrated in
Fig. 14(b), predictions based the training data set with
M = 10 have achieved a relatively higher accuracy in the
long time limit.

In order to test the accuracy of our method, predicted
data for γ = 1.6 and γ = 1.8 are shown in Figs. 15(a) and
(b), respectively. Here the blue (ochre) line represents the
predicted (validation) data. Overall, good agreement is
achieved between the predicted data and the validation
data calculated by the multiple D2 Ansatz with M = 10.
Furthermore, calculated MSE for 7 values of γ are listed
in Table III, where the maximum MSE is found to be
below 0.6%. Thus it can be directly inferred that the
prediction results are reliable.

It is worth mentioning that only the time series for
10 < t < 40 is shown in this work. But the time series
for 0 < t < 10 can also be predicted by a similar proce-
dure, provided that the formula for predicting the final
probability of the LZ transition used should be changed
to

P (∞) = 1− exp

[
−π∆2

2~|ν|

]
(8)

D. Numerical Efficiency

To sum up, a total of 13 NNs, including one GAN, two
CNNs, and ten BPNNs, have been utilized in this deep-
learning approach. Using training data calculated by the
multiple Davydov D2 Ansatz with the high multiplicity
of M = 10, it takes about 188 hours to train the NNs
and make predictions. To save CPU time, we choose in-
stead as the training data those obtained by the multiple
Davydov D2 Ansatz with the low multiplicity of M = 4.
In doing so, the training time of the NNs is shortened to
20 hours with the efficiency increased by 940%.
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Figure 14: (a) Comparison between the training computed
data set and the long-time transition probability of Eq. (6).
The blue asterisk indicates the converged transition probabil-
ity at long times from the multiple Davydov D2 Ansatz, and
the ochre line is calculated by Eq. (6). The two are in good
agreement. (b) Comparison of predicted data using train-
ing data with different multiplicities for the time period of
−20 < t < 40. The off-diagonal coupling strength γ is set
to 1.3. The green line is the predicted data from a training
data set with multiplicity of 10, and the blue line denotes the
predicted data from a training data set with multiplicity of
4. The ochre dashed line indicates the steady-state value of
Eq. (6). It is found that predictions based the training data
set with M = 10 have achieved a relatively high accuracy at
long times.

The overall training time includes the time to train
the NNs and the time to prepare the training data, with
46% of the time spent on the former. After the training
is completed, the NN parameters are saved to facilitate
the subsequent predication. So there is no need for our
NNs to be retrained, or for the training data to be recal-
culated. Thus, regardless of the time partition between
NNs training and training data preparation, it only takes
12.78 seconds to make the prediction using NNs. In com-
parison, it usually takes about 20 to 30 minutes for the
multiple Davydov D2 Ansatz with the high multiplicity
of M = 10 to generate a set of converged data. The
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Figure 15: Comparison between the predicted data (blue line)
and the validation data (ochre) calculated by the multiple D2

Ansatz with M = 4, ω = 10
√

ν/~, ∆ = 0.45
√

ν/~. (a)

γ = 1.6
√

ν/~, (b) γ = 1.8
√

ν/~.

Table IV: Hardware specifications

OS Windows 10

CPU Intel(R) Core(TM) i7-8750H CPU

GPU NVIDIA GeForce GTX 1050 Ti

Memory 8GB

hardware configurations used in this work is shown in
Table V. Compared to the high-precision dynamics data
from the multiple Davydov D2 Ansatz with a multiplic-
ity of M = 10, the error rate of our more efficient NN
procedure falls below 0.6 %.

IV. CONCLUSIONS

Previously, the nonlinear autoregressive NNs have been
successfully employed by some of us to predict the non-
adiabatic dynamics of a paradigmatic model with only
one stage of the LZ transition [37]. But success was
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elusive in predicting more complicated scenarios, where
there are two or more transition stages. To overcome
those shortcomings, we construct a procedure of three
NN algorithms to jointly predict these more complex dy-
namical behaviors in the LZ transitions.
In particular, the first step of our procedure is to use

random noise and time-dependent LZ transition proba-
bilities calculated by the multiple D2 Ansatz to gener-
ate a set of counterfeit data. The second step is to use
two CNNs to identify the parameter information that is
embedded in the generated counterfeit data. The third
step is to establish two types of mapping relationships
with BPNN: one is constructed between the final prob-
ability of Eq. (6) and the long-time asymptotic value of
the training data obtained from the multiple Davydov D2

Ansatz, while the other is established between the “struc-
tural part” of the training data and that of the counter-
feit data generated by the GAN. Combining these three
steps, the final output data can perfectly predict the evo-
lution of the LZ transition probability for varying values
of γ. Specifically, our approach has the potential to over-
come accumulative numerical errors that are generated
by the traditional method over for a long computation
time.
With its demonstrated high efficiency, the machine

learning approach as laid out in this work can be ap-
plied to many computational tasks in complex, many-
body systems, such as noise characterization, parameter
estimation, feedback, optimization of quantum control,
in order to simplify and speed up resources-demanding
calculations.
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Appendix A: DERIVATION OF THE FINAL
PROBABILITY OF LZ TRANSITION

For a nondegenerate initial state |a⟩, the exact nona-
diabatic Landau-Zener transition probability is given

by Ref. [38]:

Pa→a = exp(−2⟨a|X2|a⟩
~ν

). (A1)

If at t = −∞, the system starts in a state |↑ k+⟩ for which
the diabatic energy is non-degenerate, then the following
transition probabilities at t = ∞ are exact:

P↑k+→↑k′
+
=

{
exp(−2π⟨↑k+|ν2|↑k+⟩

~ν ), k
′

+ = k+
0, k

′

+ > k+.
(A2)

By tracing out the environment, and performing the sum
over k

′

+ , we find:

P↑→↑ = exp(−πW
2

2~ν
) = 1− P↑→↓. (A3)

with the ground-state expectation value:

W 2 = 4⟨↑ 0+ | ν2 |↑ 0+⟩, (A4)

where the off-diagonal part in Hamiltonian Eq. 1 reads:

ν =
∆

2
σ̂x +

γ

2
σx(b̂+ b̂+), (A5)

and will be called the bit-flip interaction, then we have:

ν2 =
∆2

4
+
γ2

4
(b̂b̂+ b̂+b̂+ b̂b̂+ + b̂+b̂+). (A6)

So,

W 2 = 4⟨↑ 0+ | ∆
2

4
+
γ2

4
(b̂b̂+ b̂+b̂+ b̂b̂+ + b̂+b̂+) |↑ 0+⟩.

(A7)
Finally it can be cast into a simple expression:

W 2 = ∆2 + γ2 (A8)

Thus,

P↑→↑ = exp

[
−π(∆

2 + γ2)

2~ν

]
= 1− P↑→↓. (A9)

For more details on the derivation of Eq. 6, the readers
are referred to Ref. [38].

Appendix B: LOSS FUNCTION OF GAN

Next, we explain the loss function of GAN:

min
G

max
D

V (G,D) = EPdata(x)[log(D(x))]

+EPz(z)[log(1−D(G(z)))]
(B1)

As shown in Eq. (B1), where D(x) denotes the output
of discriminator D, x denotes the target data. And G(z)
denotes the output of generator G, z denotes the random
noise. V (G,D) is the loss function of GAN [36]. In order
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to minimize the value of V (G,D), Both EPdata(x) and
EPz(z) must be the smallest. Thus, the actual goal of
GAN is to get the largest D(x) while keeping G(z) as
small as possible.
We know that the training method of GAN is that

discriminator D and generator G are trained separately
in turn, so this objective function is also optimized for
the discriminator and generator, respectively. First, the
discriminator is optimized. The expression is as follows:

max
D

V (G,D) = EPdata(x)[log(D(x))]

+EPz(z)[log(1−D(G(z)))]
(B2)

where D(x) denotes the output of discriminator D, and
the output of D(x) is a scalar between 0 and 1. Obvi-
ously, we hope that the discriminant result is as close to
1 as possible, and z is random noise, G(z) represents the
generated data. In discriminator, we hope that the dis-
criminator’s discriminant result D(G(z)) is as close to 0
as possible, that is, to minimize the value of Eq. (B2).

min
G

V (G,D) = EPz(z)[log(1−D(G(z)))] (B3)

After the discriminator optimization, we proceed to
optimize the generator. Similarly, for the generator, the
value of its loss function Eq. (B3) should be as small as
possible. It only needs to make the result of D(G(z))
close to 1 as possible, and this is obviously the opposite
of the goal of the discriminator. Therefore, the confronta-
tion between G and D arise.
If we need to use GAN to generate data under specific

parameters, we can change the loss function of GAN as
follows:

min
G

max
D

V (G,D) = EPdata(x)[log(D(x | y))]

+EPz(z)[log(1−D(G(z | y)))]
(B4)

where y is the label (i.e., specified parameters). Eq. (B4)
is the loss function of Conditional Generative Adversarial
Net (CGAN). Unlike GAN, the input of CGAN is ran-
dom noise and labels, and the output data is not random
counterfeit data, but closely related to the input label.
When the label y is different, the loss function of CGAN
will also be different. Therefore, by changing the label,
we can generate the counterfeit data that we need.
textbfThe counterfeit data obtained through CGAN is

equivalent to a simple reproduction of the training data
set, while our method can predict the data exceeding the
parameter range of the training data set. Therefore we
chose GAN over CGAN.

Appendix C: STRUCTURE MAPPING OF BPNN

Fig. 16 displays the prediction result if the NN only
learns one mapping relationship, i.e., “convergent value
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Figure 16: Comparison between the predicted data (blue line)
and the validation data (ochre) calculated by the multiple

D2 Ansatz with M = 4, ω = 10
√

ν/~, and ∆ = 0.45
√

ν/~
without the “structure mapping”. (a) γ = 1.6

√
ν/~, (b) γ =

2.0
√

ν/~.

Table V: The number of established mapping relations versus
the time for the NN result to converge and the MSE between
the predicated data and the target data in the “structural
part”.

number 1 2 4 5 10 20

(MSE%) 2.3 1.6 1.1 0.8 0.5 0.3

time(min) 10.32 14.45 40.16 50.70 97.54 198.41

mapping”, but ignores the other mapping relationship
(“structure mapping”). It is found that the predicted
data differ substantially from the validation data and
some values of the predicated data for 10 < t < 15 even
exceed 1, which is not physical. Therefore, the “structure
mapping” is indispensable in the prediction making. In
the “structure mapping”, the data points in 10 < t < 15
(500 data points) are adopted as the part of the learning
process to avoid the aforementioned nonphysical outcome
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in the predicted LZ probability.
To ensure efficiency and accuracy simultaneously, we

found it is appropriate to divide the target data into the
“structural part” and the “convergent value part”, and
to train five corresponding mapping relationships in the
“structural part”, as shown in Table V. Similar to the
“convergent value mapping”, input data here is given by

Eq. (6), the analytical expression of the LZ transition
probability in the long-time limit. And target data is the
average value of the corresponding training data. The
number of hidden layers is set to 1, and the number of
neurons in the hidden layer, 5. The learning function is
trainlm, the learning rate is 0.0001, the maximum num-
ber of learning times is 1000, and validation check is 20.
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