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ABSTRACT10

Recent advancements in magnetoencephalography (MEG)-based brain-computer interfaces (BCIs) have shown great potential.
However, the performance of current MEG-BCI systems is still inadequate and one of the main reasons for this is the
unavailability of open-source MEG-BCI datasets. MEG systems are expensive and hence MEG datasets are not readily
available for researchers to develop effective and efficient BCI-related signal processing algorithms. In this work, we release a
306-channel MEG-BCI data recorded at 1KHz sampling frequency during four mental imagery tasks (i.e. hand imagery, feet
imagery, subtraction imagery, and word generation imagery). The dataset contains two sessions of MEG recordings performed
on separate days from 17 healthy participants using a typical BCI imagery paradigm. The current dataset will be the only
publicly available MEG imagery BCI dataset as per our knowledge. The dataset can be used by the scientific community
towards the development of novel pattern recognition machine learning methods to detect brain activities related to motor
imagery and cognitive imagery tasks using MEG signals.

11

Background & Summary12

Mental imagery activities such as imagination of limb movement or mathematical calculation induce explicit and predictive13

patterns of brain activity that can be detected using electroencephalography (EEG) or magnetoencephalography (MEG)1. One14

of the most prominent brain patterns is event-related desynchronization/synchronization (ERD/ERS) of brainwaves in the15

alpha (8-13 Hz) and beta (16-30 Hz) frequency bands during motor imagery tasks. Brain-computer interfaces (BCIs) can16

detect and translate these patterns into actions and thus, provide a potential medium for communication and rehabilitation17

for patients with severe neuromuscular impairment2–4. MI-based BCIs employed with neurofeedback training paradigms can18

induce brain plasticity and possibly contribute to the enhancement of motor rehabilitation for stoke patients5–7, thus, may19

provide an alternative to conventional recovery methods e.g. physical practice8 for these patients.20

While majority of the research to date has focused on EEG modality, MEG can also be useful towards developing effective21

BCI systems9, 10. MEG has the advantage of recording brain activity across the whole scalp while maintaining much higher22

spatial and temporal resolution. In addition, compared to EEG, MEG allows detection of higher frequencies as magnetic fields23

are less attenuated by the head bone and tissue as compared to electric fields11. Though not portable, MEG-based BCIs are24

relevant for rehabilitation interventions.25

Regardless of great potential, MEG-based BCI systems still need significant improvement in terms of robust and efficient26

signal processing algorithms. A big constraint towards the development of novel algorithms or validating currently available27

BCI signal processing pipelines is lack of open source MEG-BCI datasets. As per our knowledge, there are no sizable datasets28

available currently. In this work, we publish an MEG-based BCI dataset recorded using a conventional BCI paradigm involving29

MI and cognitive imagery (CI) tasks. The dataset contains 1134 minutes of MEG recordings across 34 recording sessions of 1730

healthy participants (two sessions for each participant recorded on different days), and 6,800 imagery trials. BCI interactions31

involved two MI (both hands and both feet imagination) and two CI (word generations and mathematical subtraction) states.32

On average, 66 minutes of MEG recordings and 400 imagery trials are available per participant. The dataset is one of the first33

MI- and CI-related MEG-based BCI datasets published to date and presents a significant step from existing datasets in terms of34

uniformity, state-of-the-art MEG system, number of participants and MEG channels.35



Methods36

Participants37

The study involved recruitment of 20 healthy participants. However, data of three participants are excluded from the dataset38

due to quality issues. Thus, the current dataset consists of 17 participants including 14 males (82.35%) and 3 females39

(17.64%), wherein median age of participants is 28 years with minimum age 22 years and maximum age 40 years. Out of40

17, 15 participants are right-handed and 2 participants are left-handed (by self reporting). Table 1 provides the demographic41

information of all the participants. The names of all participants have been hereby anonymised. The participants are identified42

only by their participant Ids i.e. ‘sub-1’ through ‘sub-20’. Ids of excluded participants are ‘sub-5’, ‘sub-8’ and ‘sub-10’.43

The experimental procedures were approved by the University Research Ethics Committee of the Ulster University, Northern44

Ireland, UK. All research procedures were carried out in accordance with approved institutional guidelines and regulations and45

guidelines of the Helsinki declaration. Prior to the data acquisition process, all participants were informed about the purpose46

and the procedures of the experiments and informed consenting procedure was followed wherein participants provided written47

consent to allow usage of their anonymised data for research purposes by other researchers. The participants had been screened48

for the absence of any psychiatric condition, any medications taken, and contraindications to MEG. Inclusion criteria were as49

follows: healthy individuals, age between 18 to 80 years (both inclusive), and no history of neurological, developmental or50

language deficits. Exclusion criteria were as follows: claustrophobic, pregnant or breastfeeding, body tattoos, metal or active51

body implants and on-going medications.52

MEG Data Acquisition53

MEG data were recorded with a 306-channel (102 magnetometers and 204 planar gradiometers) Elekta NeuromagT M system54

(Elekta Oy, Helsinki,Finland) located at the Northern Ireland Functional Brain Mapping (NIFBM) Facility of the Intelligent55

Systems Research Centre, Ulster University. Elekta NeuromagT M system (Elekta Oy, Helsinki,Finland) is installed with56

MaxShieldT M system which is a high-performance magnetic shielding system designed and optimised for bioelectromagnetic57

measurements using Elekta NeuromagT M . The system consists of structurally optimal magnetically shielded room with58

internal active shielding. All the participants were screened for any metallic foreign substance e.g. jewelry, coins, keys or any59

other ferromagnetic material before entering the magnetically shielded room. The standard fiducial landmarks (left and right60

pre−auricular points and Nasion), five head position indicator (HPI) coils (placed over scalp), and the additional reference61

points over the scalp were digitized (Fastrak Polhemus system) to store information about the participant’s head position,62

orientation, and shape. In addition, ocular and cardiac activities were recorded with two sets of bipolar electro−oculogram63

(EOG) electrodes (horizontal−EOG and vertical−EOG) and one set of electrocardiogram (EKG) electrodes, respectively.64

Before starting the data acquisition, the complete procedure and the experimental paradigm were described to the participants.65

All recordings were made with participants seated on a comfortable chair approximately 80 cm away from the projector screen66

and in upright position of MEG scanner. The MEG signals were filtered at a bandwidth of 0.01−300 Hz (online) and sampled67

at the rate of 1 kHz during the acquisition itself. Continuous head position estimation was started after 20 s of raw data68

recording and kept running for rest of the acquisition period.69

Experimental Paradigm70

Figure 1 presents the timing diagram of the BCI paradigm used for the data acquisition. Each trial starts with a rest period of 271

s followed by 5 s of imagery task period. The cue remains visible during the whole imagery task period. During the rest period,72

participants were asked to fixate on a red cross presented at the center of the screen. A randomly selected inter- trial−interval73

(ITI) of 1.5−2 s was presented after the imagery task period. The fixation point and the cue were displayed on a Panasonic74

projector with a screen resolution of 1024 x 768 and refresh rate of 60 Hz. MEG data were acquired over 2 sessions (each75

session on different days) using the same BCI paradigm. Each session consisted of 50 trials for each of the imagery tasks, thus76

includes a total of 200 trials. A break of 5 minute duration was provided in each session after completion of first 100 trials. The77

participants were kept seated during the break and asked to relax.78

The experimental paradigm was designed to cover four mental imagery tasks: two related to MI i.e. both hands movement79

imagery, both feet movement imagery and two related to CI i.e. mathematical subtraction imagery and word generation imagery.80

During the MI-related tasks, participants imagined movement of both hands/both feet when the related cue appeared at the81

screen (i.e. during the task period). Similarly, for CI tasks, participants either subtracted two numbers presented as cue or82

generated words related to the English language alphabet appeared as cue. Triggers were recorded within the .fif files (Elekta83

NeuromagT M system) to mark the start of imagery period for each trial.84

Data Processing85

The original MEG dataset was acquired from all 306 sensors (204 gradiometers and 102 magnetometers) during two different86

sessions for each participant and recorded as .fif files. As each session consists of two data files due to session break, for better87
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handling of the data, we have merged these files to create one single .fif file for each session. Thus, there are two raw .fif data88

files for each participant (i.e. one for each session). Our aim here is to provide the BCI researchers least processed data to allow89

them with greater flexibility towards customising the processing pipeline. However, we have also processed the .fif file format90

to convert the data in an epoched format (.mat file) to be compatible for BCI related analysis. Each epoch (trial) is generated91

with time duration of 7000 ms i.e. 2000 ms (pre-stimulus) to 5000 ms (post-stimulus). The triggers are available in both BIDS92

and .mat formats, where the classes are defined as follows:- Class 1: Both Hand Imagery, Class 2: Both Feet Imagery, Class93

3: Word generation Imagery, and Class 4: Subtraction Imagery and their associated triggers in the STIM channels are 4, 8,94

16, and 32, respectively. A detailed description of the data file structure is presented in Section ‘Data Records’. The fieldTrip95

Toolbox12 has been used in all data processing steps.96

Data Records97

The data acquired during the described experiment are freely accessible and may be downloaded from figshare13, which is a98

general-purpose repository that makes research outputs available in a citable, shareable, and discover-able manner. It is worth99

to be noted that the data is available in two data formats i.e. MEG-BIDS format14 (.fif ) and MATLAB compatible (.mat) file100

at the repository. Figure 2 shows the structure of the data directory for MEG-BIDS format where only one participant data101

structure is illustrated to avoid repetition. The folder named ‘MEG_BIDS’ contain two files named ‘dataset_description.json’102

and ‘participant.tsv’. Further, there are 17 sub-folders (one for each participant data), each having scan file ‘_scan.tsv’ and a103

sub-folder named ‘meg’. Each ‘meg’ folder contains five files i.e. ‘_coordsystem.json’, ‘_channels.tsv’,‘_events.tsv’,‘_meg.fif’,104

and ‘_meg.json’.105

We have also provided data in MATLAB compatible format and shared the script at GitHub as well to convert the MEG-BIDS106

format to .mat file format. The root database folder (MEG_mat) contains two folders, namely Session_01 and Session_02,107

which store datasets recorded on day 1 and day 2, respectively. Within each session folder, there are seventeen .mat files i.e.108

one for each participant. We have used a similar name convention for all files within the database e.g. in sub-1_ses-1_task-109

bcimici_meg.mat filename, ‘sub-1’ shows participant Id and ‘ses-1’ stands for session number. Each of these .mat files contains110

a MATLAB structure with name ‘dataMAT’. Table 2 provides names, data type, data size, and description of all the fields present111

within the ‘dataMAT’ MATLAB structure. To provide more flexibility to readers, we have provided the data in both BIDS and112

.mat file format, which can be downloaded from figshare13. The root database folder is (MEG_BIDS) for BIDS format and113

(MEG_mat) for MATLAB.114

Each session has 200 trials, stored in a cell array [1 x 200], named ‘data.trial’, and each trial has data from 306 channels for115

7 s time duration (i.e. [306 x 7000]), where sampling frequency is 1000 Hz. The class labels are stored in ‘data.trialinfo’ which116

is an array of size [200 x 1].117

Technical Validation118

We performed a technical validation of the dataset by estimating and evaluating spatio-temporal features for six binary-119

classification tasks. For this analysis, MEG data from 204 gradiometer sensors were used while discarding the data from 102120

magnetometers, as former provide higher sensor-to-noise ratio and are more sensitive to cortical activations. It is well known121

that SMRs are more prominent in cortical brain regions. Further, we have selected data for a 3 s time duration i.e. from 0.5 s to122

3.5 s after the onset of imagery task. To generate spatio-temporal features, one of the state-of-the-art methods (i.e. filter-bank123

common spatial pattern (FBCSP)) was employed. This method involves two main steps i.e. band-pass filtering within different124

frequency ranges (creating a filter-bank) and estimation of CSP features using the band-pass filtered data from previous step15.125

To explore the effect of selecting different combinations of frequency ranges, two filter-banks, namely FB1 and FB2, were126

created and CSP features were generated for both filter-banks separately. FB1 consisted of two frequency ranges i.e. 8−12 Hz127

− alpha (α) band and 14−30 Hz − beta (β ) band. FB2 consisted of ten overlapping frequency ranges i.e. 8−12 Hz, 10−14128

Hz, 12−16 Hz, 14−18 Hz, 16−20 Hz, 18−22 Hz, 20−24 Hz, 22−26 Hz, 24−28 Hz, and 26−30 Hz.129

To evaluate the BCI performance, classification accuracies (CAs) were estimated by using a support vector machine (SVM)130

classifier for six binary classification tasks, i.e. hand versus feet (H-F), hand versus word generation (H-W), hand versus131

subtraction (H-S), feet versus word generation (F-W), feet versus subtraction (F-S), and word generation versus subtraction132

(W-S). This evaluation was performed for both intra-session condition (i.e. 10-fold cross-validation using Session 1 data) and133

inter-session condition (i.e. training of classifier with feature set of Session 1 data and evaluation on feature set of Session 2134

data). The main reason for using 10-fold cross-validation estimator is that is has a lower variance than a single hold-out set135

estimator, which can be important if the amount of available data is limited as in our case we have 200 trials in each session.136

The 10-fold cross-validation (intra-session condition) performance is reported using box plot in Figure 3 with both filter-137

bank combinations (i.e. FB1 and FB2) for 6 different binary tasks comparisons (i.e. H-F, H-W, H-S, F-W, F-S, and W-S).138

The CA for FB1 ranged from 96.29% to 98.29% and for FB2 range from 99% to 99.94%. The overall results showed a high139
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separability between the feature sets of different classes. The results for inter-session condition are reported in Tables 3 and140

4 for FB1 and FB2, respectively. For FB1 which includes α and β frequency bands, H-W (i.e. hand vs word) class pair has141

achieved maximum average (over 17 participants) classification accuracy (i.e. 69.35 %), wherein participant sub-3 performed142

best with 94% and sub-4 has the lowest accuracy of 50%. In FB2, H-S (i.e. hand vs subtraction) class pair has achieved143

maximum average classification accuracy (i.e. 66.65%), wherein participant sub-20 performed best with 93% and sub-4 has the144

lowest accuracy 50%. Figure 4 shows comparison between average classification accuracies of FB1 and FB2 for six binary145

classification tasks in inter-session condition. Here, FB1 performed better than FB2 for majority of class pairs.146

Notably, the CAs for inter-session condition is significantly lower than the intra-session condition for all binary classification147

tasks. Importantly, most of the machine learning methods in BCI are facing an issue of low performance in terms of classification148

accuracy, which may be due to the presence of non-stationarity in the data recorded over multiple sessions16, 17. According to149

the literature, there are several reasons for the presence of non-stationarity in the data such as head movement, user fatigue,150

change in mood, or external noise interfering the MEG system18. We believe that the low CAs in the inter-session condition may151

be due to the presence of high non-stationarity (i.e. covariate shift) between MEG data of Session 1 and Session 2. The covariate152

shift is a case, where the input distribution of the data shifts (i.e. (Ptrain(x) 6= Ptest(x))), whereas the conditional probability153

remains the same, while transitioning from the training to testing stage, which in our case is from Session 1 to Session 219–21).154

The covariate shift between Session 1 and Session 2 is a challenging issue, as demonstrated by a large difference between the155

performances of single-trial classification, wherein 10-fold cross-validation average accuracy on Session 1 data is significantly156

higher than evaluation average accuracy on Session 2 data. We have examined input data distribution between Session 1 and157

Session 2 for all participants and found that all the participants’ data had some form of covariate shift. Figure 5 and 6 illustrate158

the presence of covariate shift in the feature set of the participant sub-20 for of α and β frequency bands, respectively. It is159

to be noted that the sub-20 data provided highest inter-session classification accuracy. Each figure consists of six sub-figures160

representing distribution between class pairs of six binary classification tasks. In each sub-figure, two ellipses with blue dashed161

line show the training distribution (Ptrain(x)) for the two participating classes (e.g. two classes for top-left sub-figure in Figure162

5 are Hand and Foot imagery) and black dashed line presents the decision hyper-plane for the training dataset. Similarly, the163

ellipses with red points boundary show the test data distribution (Ptest(x)) for the same classes and the red dash line presents164

the decision hyper-plane for the test dataset. A clear shift pattern for the datasets can be seen within both Figures 5 and 6, i.e.165

for majority of the class pairs, the training data has high separability as compared to the test data and there are large shifts in166

decision hyper-planes in most cases. This variation in inter-class separability may explain the low classification accuracies167

while evaluating the trained classifier with Session 2 data.168

Usage Notes169

There are several potential uses for this database. Firstly, it can be used to test the effectiveness of already developed EEG-BCI170

data analysis pipelines using this MEG dataset. Secondly, we encourage any use that can contribute towards development171

of novel pattern recognition and machine learning methods to detect brain activities related to MI and CI tasks using MEG172

signals. Thirdly, since we have performed a basic analysis and single-trial classification of tasks using the raw data, future work173

may involve exploring impact of various MEG pre-processing methods e.g. head movement correction and maxfiltering.22
174

Additionally, as the dataset contains two sessions that were recorded on different days for each participant, robustness of175

analysis pipelines towards inter-session non-stationarity can be assessed using this dataset. More importantly very high spatial176

resolution of MEG facilitates much enhanced source-level analysis. The data-sets can used for investigating source level177

features in accounting for inherent non-stationarity present in MEG neuro-imaging modality primarily due to head movements.178

Code availability179

The pre−processing and feature extraction of the MEG data, as well as the single-trial classification were performed using180

custom MATLAB codes based on Fieldtrip toolbox12 functions. All codes are available at our GitHub repository https:181

//github.com/sagihaider/MEGBCI2020.git.182
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Last login: Sun Jan  3 18:05:45 on ttys000
(base) Haiders-MacBook-Pro-2:MEG_BIDS sagihaider$ tree
.
├── dataset_description.json
├── participants.tsv
├── sub-1
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-1_ses-1_coordsystem.json
│   │   │   ├── sub-1_ses-1_task-bcimici_channels.tsv
│   │   │   ├── sub-1_ses-1_task-bcimici_events.tsv
│   │   │   ├── sub-1_ses-1_task-bcimici_meg.fif
│   │   │   └── sub-1_ses-1_task-bcimici_meg.json
│   │   └── sub-1_ses-1_scans.tsv
│   └── ses-2
│       ├── meg
│       │   ├── sub-1_ses-2_coordsystem.json
│       │   ├── sub-1_ses-2_task-bcimici_channels.tsv
│       │   ├── sub-1_ses-2_task-bcimici_events.tsv
│       │   ├── sub-1_ses-2_task-bcimici_meg.fif
│       │   └── sub-1_ses-2_task-bcimici_meg.json
│       └── sub-1_ses-2_scans.tsv
├── sub-11
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-11_ses-1_coordsystem.json
│   │   │   ├── sub-11_ses-1_task-bcimici_channels.tsv
│   │   │   ├── sub-11_ses-1_task-bcimici_events.tsv
│   │   │   ├── sub-11_ses-1_task-bcimici_meg.fif
│   │   │   └── sub-11_ses-1_task-bcimici_meg.json
│   │   └── sub-11_ses-1_scans.tsv
│   └── ses-2
│       ├── meg
│       │   ├── sub-11_ses-2_coordsystem.json
│       │   ├── sub-11_ses-2_task-bcimici_channels.tsv
│       │   ├── sub-11_ses-2_task-bcimici_events.tsv
│       │   ├── sub-11_ses-2_task-bcimici_meg.fif
│       │   └── sub-11_ses-2_task-bcimici_meg.json
│       └── sub-11_ses-2_scans.tsv
├── sub-12
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-12_ses-1_coordsystem.json
│   │   │   ├── sub-12_ses-1_task-bcimici_channels.tsv
│   │   │   ├── sub-12_ses-1_task-bcimici_events.tsv
│   │   │   ├── sub-12_ses-1_task-bcimici_meg.fif
│   │   │   └── sub-12_ses-1_task-bcimici_meg.json
│   │   └── sub-12_ses-1_scans.tsv
│   └── ses-2
│       ├── meg
│       │   ├── sub-12_ses-2_coordsystem.json
│       │   ├── sub-12_ses-2_task-bcimici_channels.tsv
│       │   ├── sub-12_ses-2_task-bcimici_events.tsv
│       │   ├── sub-12_ses-2_task-bcimici_meg.fif
│       │   └── sub-12_ses-2_task-bcimici_meg.json
│       └── sub-12_ses-2_scans.tsv
├── sub-13
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-13_ses-1_coordsystem.json
│   │   │   ├── sub-13_ses-1_task-bcimici_channels.tsv
│   │   │   ├── sub-13_ses-1_task-bcimici_events.tsv
│   │   │   ├── sub-13_ses-1_task-bcimici_meg.fif
│   │   │   └── sub-13_ses-1_task-bcimici_meg.json
│   │   └── sub-13_ses-1_scans.tsv
│   └── ses-2
│       ├── meg
│       │   ├── sub-13_ses-2_coordsystem.json
│       │   ├── sub-13_ses-2_task-bcimici_channels.tsv
│       │   ├── sub-13_ses-2_task-bcimici_events.tsv
│       │   ├── sub-13_ses-2_task-bcimici_meg.fif
│       │   └── sub-13_ses-2_task-bcimici_meg.json
│       └── sub-13_ses-2_scans.tsv
├── sub-14
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-14_ses-1_coordsystem.json
│   │   │   ├── sub-14_ses-1_task-bcimici_channels.tsv
│   │   │   ├── sub-14_ses-1_task-bcimici_events.tsv
│   │   │   ├── sub-14_ses-1_task-bcimici_meg.fif
│   │   │   └── sub-14_ses-1_task-bcimici_meg.json
│   │   └── sub-14_ses-1_scans.tsv
│   └── ses-2
│       ├── meg
│       │   ├── sub-14_ses-2_coordsystem.json
│       │   ├── sub-14_ses-2_task-bcimici_channels.tsv
│       │   ├── sub-14_ses-2_task-bcimici_events.tsv
│       │   ├── sub-14_ses-2_task-bcimici_meg.fif
│       │   └── sub-14_ses-2_task-bcimici_meg.json
│       └── sub-14_ses-2_scans.tsv
├── sub-15
│   ├── ses-1
│   │   ├── meg
│   │   │   ├── sub-15_ses-1_coordsystem.json
│   │   │   ├── sub-15_ses-1_task-bcimici_channels.tsv

MEG_BIDS

Figure 2. The structure of BIDS format data directory, where MEG_BIDS is a root folder. Under MEG_BIDS folder, each
participant has its data folder (e.g. sub−1 is for participant 1), where two sub-folders are given for Session 1 and Session 2 of
data recording, each sub-folder has a meg folder, where all the required information is available and ‘.fif’ files contain the MEG
recording.
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Figure 3. 10-fold cross-validation accuracy for Session 1 data under two different filter-banks (1) FB1: Alpha-Beta ;(2) FB2:
8-30 Hz, for 6 different binary task comparison (i.e. H-F, H-W, H-S, F-W, F-S, and W-S)
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Figure 4. Inter-session classification accuracy-based performance comparison under two conditions FB1 and FB2 for six
binary classification tasks.

9/13



-62 -61.5 -61 -60.5 -60 -59.5 -59 -58.5

First best feature

-61

-60.5

-60

-59.5

-59

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (1 vs 2), Freq [8-12] Hz
TrC1
TrC2
TsC1
TsC2
Tr Plane
Ts Plane

-63 -62.5 -62 -61.5 -61 -60.5 -60 -59.5 -59

First best feature

-62

-61.5

-61

-60.5

-60

-59.5

-59

-58.5

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (1 vs 3), Freq [8-12] Hz
TrC1
TrC3
TsC1
TsC3
Tr Plane
Ts Plane

-63 -62.5 -62 -61.5 -61 -60.5 -60 -59.5 -59

First best feature

-62

-61.5

-61

-60.5

-60

-59.5

-59

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (1 vs 4), Freq [8-12] Hz
TrC1
TrC4
TsC1
TsC4
Tr Plane
Ts Plane

-63 -62.5 -62 -61.5 -61 -60.5 -60 -59.5 -59 -58.5

First best feature

-62

-61.5

-61

-60.5

-60

-59.5

-59

-58.5

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (2 vs 3), Freq [8-12] Hz
TrC2
TrC3
TsC2
TsC3
Tr Plane
Ts Plane

-62.5 -62 -61.5 -61 -60.5 -60 -59.5 -59

First best feature

-61.5

-61

-60.5

-60

-59.5

-59

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (2 vs 4), Freq [8-12] Hz
TrC2
TrC4
TsC2
TsC4
Tr Plane
Ts Plane

-62 -61.5 -61 -60.5 -60 -59.5 -59

First best feature

-61.5

-61

-60.5

-60

-59.5

-59

-58.5

Se
co

nd
 b

es
t f

ea
tu

re

sub-20: Class (3 vs 4), Freq [8-12] Hz
TrC3
TrC4
TsC3
TsC4
Tr Plane
Ts Plane

Figure 5. Covariate shift (CS) between the training (Tr) (i.e. Session 1) and test (Ts) (i.e. Session 2) distributions in the α

band (i.e. 8-12 Hz) of participant sub-20 dataset for different binary class combinations, where Class 1: Hand, Class 2: Feet,
Class 3: Word, and Class 4: Subtraction.
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Figure 6. Covariate shift (CS) between the training (Tr) (i.e. Session 1) and test (Ts) (i.e. Session 2) distributions in the β

band (i.e. 14-30 Hz) of participant sub-20 dataset for different binary class combinations, where Class 1: Hand, Class 2: Feet,
Class 3: Word, and Class 4: Subtraction.
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Participant ID Age Gender Exp with BCI Dominant Hand
sub-1 37 M Yes L
sub-2 36 M No R
sub-3 23 M No R
sub-4 23 F Yes R
sub-6 32 F No R
sub-7 28 M Yes R
sub-9 32 M No R

sub-11 23 M No R
sub-12 29 M Yes R
sub-13 26 M No R
sub-14 30 F No L
sub-15 24 M Yes R
sub-16 36 M No R
sub-17 27 M No R
sub-18 40 M No R
sub-19 22 M No R
sub-20 23 M No R

Table 1. Demographic information of all the participants with participant ID, age, gender, experience with BCI, and dominant
hand

Field Name Type & Size Description
label cell array [306 x 1] MEG Channel labels
time cell array [1 x 200] Time stamps in accordance with cue
trail cell array [1 x 200] MEG data for 200 trials

fsample array [1] Sampling frequency
trialinfo array [200 x 1] Class labels of 200 trials

grad structure [1 x 1] A structure containing detailed
information about the MEG sensors

trialclass cell array [4 x 2] Classes in number and string
information about the MEG sensors

Table 2. Description of the fields present in the ‘.mat’ files for MEG_mat folder.
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Participant ID H-F H-W H-S F-W F-S W-S
sub-1 58 53 53 61 51 51
sub-2 57 74 60 85 67 72
sub-3 74 94 95 70 69 74
sub-4 50 50 50 50 50 49
sub-6 47 54 50 58 57 53
sub-7 51 69 62 87 66 58
sub-9 51 67 83 50 75 70
sub-11 47 86 91 83 85 90
sub-12 56 56 51 68 59 63
sub-13 49 90 86 91 87 57
sub-14 50 62 50 54 55 65
sub-15 80 65 56 69 75 59
sub-16 57 62 57 62 70 72
sub-17 55 57 71 55 70 47
sub-18 53 88 88 45 64 60
sub-19 54 61 56 57 63 62
sub-20 64 91 90 87 91 77
Mean 56.06 69.35 67.59 66.59 67.88 63.47

std 9.07 14.92 17.12 4.97 12.03 11.29

Table 3. Inter-session single-trial classification accuracy (%) for condition FB1 i.e. 8−12 Hz (α) and 14−30 Hz β frequency
bands. H: Hand; F: Feet; W: Word; and S: subtraction

Participant ID H-F H-W H-S F-W F-S W-S
sub-1 59 44 53 56 50 50
sub-2 51 58 61 75 65 54
sub-3 76 92 89 64 52 72
sub-4 50 52 50 50 46 50
sub-6 55 52 71 50 63 52
sub-7 52 50 57 50 53 50
sub-9 51 52 50 50 50 51
sub-11 49 60 90 55 74 52
sub-12 55 50 50 65 52 64
sub-13 47 88 71 91 87 54
sub-14 50 67 55 52 55 76
sub-15 66 86 78 77 82 56
sub-16 58 69 62 63 74 67
sub-17 49 61 62 59 65 57
sub-18 50 79 87 44 65 46
sub-19 50 58 55 64 63 51
sub-20 64 93 92 87 93 84
Mean 54.82 65.35 66.65 61.88 64.06 58.00

std 7.68 16.27 15.26 15.26 13.63 10.77

Table 4. Inter-session single-trial classification accuracy (%) for condition FB2 i.e. ten overlapping frequency bands in range
between 8−30 Hz. H: Hand; F: Feet; W: Word; and S: subtraction
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