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ABSTRACT
This article presents the assessment of time-dependent national-level restrictions and
control actions and their effects in fighting the COVID-19 pandemic. By analysing
the transmission dynamics during the first wave of COVID-19 in the country,
the effectiveness of the various levels of control actions taken to flatten the curve can
be better quantified and understood. This in turn can help the relevant authorities
to better plan for and control the subsequent waves of the pandemic. To achieve
this, a deterministic population model for the pandemic is firstly developed to take
into consideration the time-dependent characteristics of the model parameters,
especially on the ever-evolving value of the reproduction number, which is one of the
critical measures used to describe the transmission dynamics of this pandemic.
The reproduction number alongside other key parameters of the model can then be
estimated by fitting the model to real-world data using numerical optimisation
techniques or by inducing ad-hoc control actions as recorded in the news platforms.
In this article, the model is verified using a case study based on the data from the first
wave of COVID-19 in the Republic of Kazakhstan. The model is fitted to provide
estimates for two settings in simulations; time-invariant and time-varying
(with bounded constraints) parameters. Finally, some forecasts are made using
four scenarios with time-dependent control measures so as to determine which
would reflect on the actual situations better.

Subjects Computational Biology, Mathematical Biology, Epidemiology, Global Health, Infectious
Diseases
Keywords COVID-19, Coronavirus, Modelling, SEIRD, Time-dependent analysis

INTRODUCTION
According to the World Health Organization (WHO), more than 41.5 million diagnosed
cases related to COVID-19 with almost 1.15 million deaths have been reported globally as
of October 23, 2020 (World Health Organization, 2020). Although some countries such
as South Korea (Exemplars in Global Health, 2020), Japan (The Nippon Communications
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Foundation, 2020), New Zealand (Klein, 2020; The Japan Times, 2020), Malaysia (The Edge
Markets, 2020), and Vietnam (The Japan Times, 2020) had this pandemic under control
during its early stages, many countries are now battling the second (Cacciapaglia, Cot &
Sannino, 2020) or even the third wave of the pandemic (Popescu, 2020). In Kazakhstan, the
first cases were reported on March 13, 2020 (Kazinform International News Agency, 2020),
which was quite late compared to other countries within the region. Right after that, the
Kazakhstan government implemented aggressive intervention methods such as lockdowns
of its main cities, social distancing, quarantines, and closure of schools. Despite those
efforts, the spread of COVID-19 was still developing in the country before it was eventually
brought under control as seen in Fig. 1, which shows the 7-day moving average of active
confirmed cases (left subfigure) and the confirmed deaths (right subfigure) in Kazakhstan.

As such, mathematical models are essential to help analyse the dynamics of the spread
of COVID-19. One of the conventional mathematical models, namely the deterministic
compartmental SIR (susceptible, infectious, and recovered/removed) model, has been
used to predict viral or bacterial transmission diseases such as severe acute respiratory
syndrome (SARS), tuberculosis, meningitis, cholera, measles, influenza A (H1N1), and
HIV (Brauer, Castillo-Chavez & Castillo-Chavez, 2012; Rock et al., 2014). The SIR model
demonstrates the transportation of individuals as they go through three mutually exclusive
stages (compartments) of infection during the epidemic: susceptible (S), infected (I),
and recovered/removed (R), where the disease transmission rates with respect to time
can then be simulated. The SIR model and its variations have also been used to model
the COVID-19 pandemic. For example, a discrete-time SIR model was reported in
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Figure 1 Plots showing the up-to-date cases in Kazakhstan as of October 25, 2020. (A) shows the
7-day moving average of active confirmed cases whilst (B) shows the confirmed deaths. Data in both
graphs are plotted since the first cases were reported on March 13, 2020. The shaded regions show the
range of data (up till Day 108 (June 28, 2020)) used to understand the effectiveness of control actions in
this study. Full-size DOI: 10.7717/peerj.10806/fig-1
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Anastassopoulou et al. (2020), whilst a control-oriented SIR model was presented in
Casella (2021). Also, in Wu et al. (2020), the SIR model was used to estimate the clinical
severity of COVID-19.

A commonly-used variation of the SIR model is the SEIR model, where an exposed (E)
compartment is added to model a subpopulation of people who have been exposed to the
disease but have yet to become infectious (I) (Lin et al., 2020). This seems to be a more
suitable model to describe the dynamics of COVID-19 as it has been established that there
exists an incubation period where an exposed person is pre-symptomatic before starting to
show symptoms and become infectious (Lauer et al., 2020). In the literature, there are
some studies on using the SEIR model and its variants to model the COVID-19 outbreak.
For example, Keeling et al. (2020) extended the SEIR model to include age-specific studies
to provide short-term forecasts and to analyse the impact of compliancy (or the lack of)
onto the transmission dynamics of COVID-19 in the UK. Meanwhile, Bae, Kwon & Kim
(2020) and Piccolomini & Zama (2020) used the SEIRD model to model the spread of
COVID-19 in Korea and Italy, respectively. Piccolomini & Zama (2020) also used
time-dependent parameters in their model. However, these works did not provide the
analysis on the effects of time-dependent control actions and restrictions taken by the
respective countries to flatten the curve of COVID-19.

One of the main challenges to predict the evolution of the pandemic is the curve-fitting
problem. The Levenberg–Marquardt (LM) and trust-region-reflective (TRR) algorithms
are amongst two of the solutions that can be used to help solve this problem (Moré, 1978;
Sorensen, 1982). They were first introduced in the 1960s to solve nonlinear least squares
problems. The least squares problems address the issues of fitting a parameterised
function to a set of measured data points by minimising the sum of the squares of the
errors between the reference data and the prediction from the model. This could be used to
solve the parameter estimation problem for compartmental models such as the SIR and
SEIR models. Basically, the LM algorithm is the combination of the gradient descent
method and Gauss–Newton method (Haddout & Rhazi, 2015). The LMmethod acts more
like a gradient-descent method when the parameters are far from their optimal value,
and becomes more like the Gauss–Newton one when the parameters are close to the
optimal value. However, the LM algorithm may not converge nicely if the initial guess is
too far from the optimum, which can be prevented by using the TRR algorithm.

The article presents the assessment and forecast of the COVID-19 pandemic using a
modified SEIRD model to estimate the time-invariant and time-varying (with bounded
constraints) parameters of the model, and also to analyse the effects of time-dependent
control actions onto the kinetics of the spread of the virus. The SEIRD (susceptible,
exposed, infectious, recovered, and death) model is a variant of the SEIR model, where the
death (D) compartment is used to represent the fraction of the infectious subpopulation
who have unfortunately succumbed to the disease. As of October 25, 2020, there have
been more than 110,400 confirmed cases and 1,796 deaths recorded in Kazakhstan.
The first wave of the COVID-19 outbreak in Kazakhstan is studied in detail as a case study.
This is both critical and necessary in order to inform on the response of the transmission
dynamics of COVID-19 to the control actions taken by the authorities in the country.

Do et al. (2021), PeerJ, DOI 10.7717/peerj.10806 3/22

http://dx.doi.org/10.7717/peerj.10806
https://peerj.com/


The data used for this study is represented by the shaded regions (data up till Day 108
(June 28, 2020)) in the plots in Fig. 1. First, the initial fitting based on the real data in
Kazakhstan is performed using TRR algorithm using both constant and bounded
time-related parameters to obtain crucial information such as the reproduction number of
the pandemic. Further simulations are also carried out by inducing ad-hoc control actions
into the model. These results are able to help translate the transmission dynamics of
COVID-19 as well as the effects and efficacy of the control actions taken in the country.
Then some predictions are made based on these estimated parameters, where four scenarios
of reinstating of intervention measures are introduced at different times. Simulation
results show that one of the scenarios is able to describe the current COVID-19 situation in
Kazakhstan, and hence can be used to further inform on the future plan in controlling
the pandemic, especially during the unfortunate event of a second wave. Therefore, this
article will focus mainly on the solution of the inverse problem of the model using TRR as
well as other methods that will be discussed later in this article. This article does not
provide the solution of the forward problem of the model. Despite the discussion on the
predictions made by the proposed model in a later part of the article, its main contribution is
to understand the effects of time-dependent control actions in flattening the COVID-19
curve. As a result, it is of a higher interest to solve the inverse problem of the model.

This article is organised as follows: “Mathematical Modelling of COVID-19” introduces
the mathematical modelling of COVID-19 using SEIRD with feedback for control actions;
“Estimation of Reproduction Number and Other Model Parameters” presents the TRR
least-squares algorithm used to estimate the reproduction number and other parameters of
the model; “Case Study: Modelling the COVID-19 Outbreak in Kazakhstan” provides a
case study for the algorithm based on the data in Kazakhstan along with other simulation
settings with an extensive discussion of the simulation results; and “Conclusion” concludes
the article.

MATHEMATICAL MODELLING OF COVID-19
Firstly, consider the SEIRDmodel below, which is modified from the SEIRS model inNg &
Gui (2020),

dSðtÞ
dt

¼ �� mSðtÞ � bðtÞSðtÞIðtÞ; (1)

dEðtÞ
dt

¼ bðtÞSðtÞIðtÞ � ðmþ aÞEðtÞ; (2)

dIðtÞ
dt

¼ aEðtÞ � ðmþ gÞIðtÞ � fIðtÞ; (3)

dRðtÞ
dt

¼ gIðtÞ � mRðtÞ; (4)

dDðtÞ
dt

¼ fIðtÞ; (5)
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where S(t), E(t), I(t), R(t), and D(t) are the compartments representing the susceptible,
exposed, infectious, recovered, and deaths population, respectively. The overall population
N(t) is established to be N(t) = S(t) + E(t) + I(t) + R(t) + D(t). The constants Λ and m are
the birth rate entering the population and death rate due to non-COVID-19-related
conditions, respectively. The parameter a is the rate from being exposed to becoming
infectious, and γ is the recovery rate. As a result, the incubation and recovery periods can
then be computed to be τinc = 1/a and τrec = 1/γ. The constant
f ¼ d doldNold þ dothð1� NoldÞð Þ is used to describe the population from the infectious
compartment that could potentially succumb to the disease, resulting in fatality, where
Nold represents the fraction of elderly population (above 65 years old), whilst dold and doth
are the fatality rates of the elderly and the rest of the population, respectively. The time to
death can be computed using τdeath = 1/δ.

The function β(t) represents the transmission rate per S-I contact, such that β0 is the
initial transmission rate at time t = 0, that is β(0) = β0. Also, define the function σeff (t) ∈
[0,1] to represent the effective efficacy of the intervention measures introduced to
control the spread of the virus and to flatten the curve where it is assumed that σeff (0) = 0.
Therefore, β(t) can be expressed using

bðtÞ ¼ b0; for t ¼ 0
b0ð1� reff ðtÞÞ; for t > 0;

�
(6)

where reff ðtÞ ¼
Pn

i¼1 riðtÞ such that σi (t) represents the individual control actions
introduced on any particular day i of n days since the first cases have been recorded.
Therefore, σi (t) > 0 would indicate that a positive control action has been introduced to
reduce the spread of the virus. Conversely, σi (t) < 0 would indicate a negative control
action (relaxation of intervention measures) has been taken, such as the lifting of
lockdowns and other restrictions, which would then cause the transmission rate of the
disease to rise again. This condition will be further explored and studied in “Simulation 3:
Estimating σeff (t) and Assessment of Current COVID-19 Profile”. The value for σi (t)
is assigned such that the effective efficacy of the control actions are bounded, that is
0 ≤ σeff (t) ≤ 1. From (6), it can be seen that if σeff (t) = 1, then the transmission rate
becomes β(t) = 0. As a result, the disease would cease to further transmit in the society and
is successfully eradicated.

Using (6), the initial basic reproduction number R0 can then be formulated, before any
control action are taken (see, for example Ng & Gui (2020) for the mathematical proof),
using

R0 ¼ a�b0

mðmþ aÞðmþ gþ fÞ : (7)

The basic reproduction number R0 represents the average number of people that each
infected person is spreading the virus to, that is R0 > 1 indicates that each infected person
spreads the virus to more than one other person, hence signifying a growing pandemic
whilst R0 < 1 indicates that each infected person spreads the virus to less than one other
person, bringing the pandemic under control. Therefore, σeff (t) has a direct effect on the
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basic reproduction number for time t > 0, where the time-dependent function for the
effective reproduction number Reff (t) can be written using

Reff ðtÞ ¼ a�b0ð1� reff ðtÞÞ
mðmþ aÞÞðmþ gþ fÞ ; (8)

where Reff (0) = R0.
Assuming a closed population with negligible birth and death rates, that is Λ/m ≈ 1,

Λ ≈ 0, and m ≈ 0, the system (1)–(5) can be rewritten using

dSðtÞ
dt

¼ �bðtÞSðtÞIðtÞ; (9)

dEðtÞ
dt

¼ bðtÞSðtÞIðtÞ � aEðtÞ; (10)

dIðtÞ
dt

¼ aEðtÞ � gIðtÞ � fIðtÞ; (11)

dRðtÞ
dt

¼ gIðtÞ; (12)

dDðtÞ
dt

¼ fIðtÞ; (13)

and that the overall population is invariant such that

dNðtÞ
dt

¼ 0 8t � 0 ! Nð0Þ ¼ Nð1Þ;

As a result, the initial basic reproduction number in (7) can be re-expressed using

R0 ¼ b0

gþ f
; (14)

and subsequently, the time-dependent effective reproduction number in (8) can be
written using

Reff ðtÞ ¼ b0ð1� reff ðtÞÞ
gþ f

: (15)

This assumption and model setup will be used for the case study in “Case Study:
Modelling the COVID-19 Outbreak in Kazakhstan”. Figure 2 shows the block diagram of
the model.

ESTIMATION OF REPRODUCTION NUMBER AND OTHER
MODEL PARAMETERS
The system (9)–(13) can be described using the continuous-time dynamical system

_xðtÞ ¼ f ðxðtÞ; pÞ; xð0Þ ¼ x0; (16)

where xðtÞ ¼ ðSðtÞ;EðtÞ; IðtÞ;RðtÞ;DðtÞÞ 2 R5 are the states and
x0 ¼ ðSð0Þ;Eð0Þ; Ið0Þ;Rð0Þ;Dð0ÞÞ 2 R5 are the initial conditions of the states at time t = 0.
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The vector p ¼ ða;b;g; dÞ 2 R4 represents the parameters in the system that are to be
estimated. The other parameters, namely Nold, doth, and dold are assumed to be constants,
thus they are omitted from being included into the vector p. Therefore, by estimating β, γ,
and δ, an estimation for Reff (t) can be produced using (15).

The function f : U ! R5 is a nonlinear map such that the domain U has the form

U ¼ ðxðtÞ; pÞjxnðtÞ > 0; pm > 0f g; (17)

for n ¼ 1; . . . ; 5 andm ¼ 1; . . . ; 4. Equation (17) indicates that all states (or subpopulations
in an epidemiological model) are nonnegative given any finite nonnegative initial
conditions and that all system parameters are positive. See (Ng & Gui, 2020; Keeling &
Rohani, 2008; Van den Driessche &Watmough, 2008) for the proofs on the nonnegativeness,
boundedness, and stability of the SEIR model and its variations.

The parameters in the vector p can be estimated over time since the first recorded cases
of COVID-19 by solving the following problem in least-squares sense,

min
p

jjf ðxðtÞ; pÞ � x̂ðtÞjj22 ¼ min
p

Xt

i

ðf ðxðiÞ; pÞ � x̂ðiÞÞ2; (18)

where f(x(i),p) can be expanded to be

f ðxðiÞ; pÞ ¼
f ððSð1Þ; Eð1Þ; Ið1Þ;Rð1Þ;Dð1ÞÞ; pÞ
f ððSð2Þ; Eð2Þ; Ið2Þ;Rð2Þ;Dð2ÞÞ; pÞ

..

.

f ððSðtÞ;EðtÞ; IðtÞ;RðtÞ;DðtÞÞ; pÞ

2
6664

3
7775; (19)

and x̂ðtÞ is the predicted or estimated states of the system. It is also established that the
parameters are bounded, that is pmin ≤ p ≤ pmax, to reflect onmore realistic real-world values.

CASE STUDY: MODELLING THE COVID-19 OUTBREAK IN
KAZAKHSTAN
At the time of writing, Kazakhstan has passed the first wave of the COVID-19 infected
curve but it has still yet to encounter a second wave like many other nations. As such,

Figure 2 Block diagram of the SEIRD model used to model the dynamics of COVID-19 in
Kazakhstan. Full-size DOI: 10.7717/peerj.10806/fig-2
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the data obtained in the country will be an interesting case study for modelling the
outbreak of the virus and the prediction of the reproduction number such that its
transmission dynamics and the effectiveness of the national-level control actions can be
better understood. These results could then be potentially used to predict the future
dynamics of the pandemic in Kazakhstan and the suitable control actions to be taken to
help flatten the curve. Table 1 shows the major events and control actions taken by
the Kazakhstan government up till Day 103 (Jun 22, 2020) in controlling the spread
of COVID-19.

Population facts and initial assumptions of the model
The current population N in Kazakhstan is approximately 18.8 million according to the
United Nations, Department of Economic & Social Affairs, Population Division (2019) and
the fraction of elderly population (65 years of age and above) Nold is 8% according to
the Organisation for Economic Co-operation & Development (2018). The incubation period
τinc is set to 5.1 days in line with the report in Lauer et al. (2020) and the recovery period
τrec is 18.8 days according to Flaxman et al. (2020). For this simulation, it is assumed
initially that the time to death τdeath is the same as the recovery period, that is τdeath = τrec,
where the patient spends the same amount of time hospitalised whether or not they
recover from the disease. Based on the data published by World Health Organization
(2020), the fatality rates of the elderly population and nonelderly population are
approximated to be 3% and 1.5%, respectively. The initial infectious cases are set to I(0) = 2
and it is assumed that E(0) = 20 × I(0). This initial condition for E(0) is made assuming
that 20 persons are exposed to each of the initially infectious person through various
physical means and contacts. It is also found through simulations that these assumptions
also fit the model well to the initial dynamics of the reported cases. The initial basic

Table 1 Timeline of main events related to COVID-19 in Kazakhstan.

Date Event

March 13, 2020 (Day 1) The first two infected cases were confirmed

March 16, 2020 (Day 4) Aggressive control measures were implemented including closure of schools, social distancing, strict border control,
limitation of shops opening hours, etc.)

March 17, 2020 (Day 5) State of emergency was declared

March 19, 2020 (Day 7) The whole capital city (Nur-Sultan) was isolated from other parts of the country

March 27, 2020 (Day 15) Operation of enterprises and organisations in Nur-Sultan and Almaty were suspended

April 21, 2020 (Day 40) Nur-Sultan and Almaty eased quarantine regulations, reopened manufacturing facilities, construction industry, and some
services

May 11, 2020 (Day 60) Kazakhstan to gradually lift quarantine restrictions. End of state of emergency

May 29, 2020 (Day 78) Checkpoints between cities were removed

June 18, 2020 (Day 99) Checkpoints are being rolled out in districts in North Kazakhstan

June 19, 2020 (Day 100) Quarantine measures are applied for weekends

June 22, 2020 (Day 103) Nur-Sultan shut down all kindergartens
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reproduction number R0 is assumed to be 3.0. Table 2 shows the summary of the initial
assumptions of the states and parameters used to fit the initial trajectory of COVID-19
in Kazakhstan.

However, it is to note that given the limited data available on COVID-19 where most
countries only report on the cumulative infectious and deaths cases, only a subset of
the states x(t) can be used to estimate the parameters. As such, w(t) = (I(t),D(t)) is defined
to be used for prediction by the algorithm in (18), which can now be updated and
written using

min
p

jjf ðwðtÞ; pÞ � ŵðtÞjj22 ¼ min
p

Xt

i

ðf ðwðiÞ; pÞ � ŵðiÞÞ2; (20)

where ŵðtÞ represents the predicted variables and f(w(i),p) can be expanded using the
similar structure as (19).

The simulations that follow consider the data recorded in Kazakhstan fromMarch 13, 2020
where the first cases were recorded till Day 108 (June 28, 2020), as denoted by the shaded
regions in Fig. 1. In “Simulation 1: Estimating Model Parameters Using TRR Assuming
Bounded Constraints for β and Constant a, γ, δ” and “Simulation 2: Estimating Model
Parameters Using TRR Assuming Bounded Constraints for All Parameters”, the model
is fitted and its parameters estimated using a time step of 7 days, assuming constant
and bounded constraints for time-related parameters, respectively. In “Simulation 3:
Estimating σeff (t) and Assessment of Current COVID-19 Profile”, the effects of the control
actions taken by estimating the value of the control actions efficacy σi (t) and subsequently,
σeff (t), over time in relation to the timeline of COVID-19-related events in the country
are analysed. This article will also provide some analysis on the trajectories past Day 108 of
the virus for different times of which control actions can be reinstated.

Table 2 Assumptions of states and parameters used for initial fit of the model.

Parameter Value

Overall population, N(t) 18.8 × 106

Initial infectious cases, I(0) 2

Initial exposed cases, E(0) 40

Initial recovered cases, R(0) 0

Initial death cases, D(0) 0

Initial susceptible cases, S(0) N(0) − E(0) − I(0)

Fraction of elderly population, Nold 0.08

Fatality rate of elderly population, dold 0.03

Fatality rate of nonelderly population, doth 0.015

Incubation period, τinc 5.1 days

Recovery period, τrec 18.8 days

Time to death, τdeath 18.8 days

Initial basic reproduction number, R0 3.0
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Simulation 1: estimating model parameters using TRR assuming
bounded constraints for β and constant α, γ, δ
First, the fitting of the model is made using the algorithm in (20) assuming that the
parameters a, γ, and δ remain constant as set out in Table 2. As for β(t), it is assumed to be
bounded such that 0.01 ≤ β(t) ≤ 1. See Table 3.

Figure 3 shows the results of the fitting of the model compared with the data. Figures 3A
and 3B show the key plots of the 7-day moving average of the active confirmed cases
and the cumulative deaths, respectively. Figure 3C shows the trajectories of all
compartments in the SEIRD model. It can be seen that although the active confirmed cases
can be predicted relatively well, the predictions for the cumulative deaths are not able to
follow the actual data. This is due to the less flexibility in the fitting of the model as all
time-related parameters are assumed to be unchanged. Figures 3D–3F show the extended
trajectories of Figs. 3A–3C until the model reaches its equilibrium after about 1,000 days
since the first cases were reported, assuming that no further control action is taken
after Day 108. These results show that the active confirmed cases could peak around
Day 500 with approximately 0.6 million cases whilst the cumulative deaths could reach
a total of about 50,000. Given that the fitting for the cumulative deaths is underestimated,
the actual numbers could potentially rise much higher than the result shown in Fig. 3E.
Table 4 shows the estimated reproduction number Reff (t) over time.

Simulation 2: estimating model parameters using TRR assuming
bounded constraints for all parameters
The simulation is then repeated assuming now that all parameters to be estimated are
bounded. The incubation period is assumed to be bounded with a range from 2 to 14 days
(Lauer et al., 2020). The recovery period and time to death are assumed to be bounded
with a range from 1 to 60 days (Flaxman et al., 2020). See Table 5. The results shown in
Figs. 4A and 4B depict that both the active confirmed cases and cumulative deaths are
able to fit to the actual data much better compared to Figs. 3A and 3B from Simulation 1 in
“Simulation 1: Estimating Model Parameters Using TRR Assuming Bounded Constraints
for β and Constant a, γ, δ”. Figure 4C shows the trajectories of all compartments in
the SEIRD model. Table 6 shows the results for the estimated parameters from the
optimisation process, which indicate that with the bounded constraints now applied to the
time-related parameters, the estimated Reff (t) have more realistic values and they
reflect better to the progress of the transmission dynamics of the virus in Kazakhstan.
The higher Reff (t) values for time windows starting Days 15 and 22 (highlighted using bold

Table 3 Settings for parameters in Simulation 1.

Parameter Lower bound Upper bound

Incubation period, τinc = 1/a 5.1 days 5.1 days

Recovery period, τrec = 1/γ 18.8 days 18.8 days

Time to death, τdeath = 1/δ 18.8 days 18.8 days

Transmission rate, β(t) 0.01 1.00
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Figure 3 Simulation 1: The fitting of the model for (A) 7-day moving average active confirmed cases,
and (B) cumulative deaths, using bounded transmission rate β and constant incubation, recovery,
and time to death periods (τinc, τrec, τdeath). (C) Shows the trajectories for all compartments in the
SEIRD model and (D)–(F) show the extended plots of (A)–(C) until the model achieves
equilibrium. Full-size DOI: 10.7717/peerj.10806/fig-3
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text in Table 6) could be attributed to potentially lack of testing and record of cases as
the country was still coming to grips with the presence of the virus in the society during
the earlier stages of the pandemic. Figures 4D–4F show the extended trajectories of
Figs. 4A–4C until the model reaches its equilibrium after about 1,200 days since the
first cases were reported, assuming that no further control action is taken after Day 108.
The results show that with bounded constraints applied to all parameters, the active
confirmed cases could peak at slightly over 0.75 million cases around Day 600 whilst the
cumulative deaths could reach a total of slightly over 250,000 cases. Nonetheless, both
simulations in “Simulation 1: Estimating Model Parameters Using TRR Assuming
Bounded Constraints for β and Constant a, γ, δ” and “Simulation 2: Estimating Model
Parameters Using TRR Assuming Bounded Constraints for All Parameters” agree that
the virus would continue to spread in the society with a mean reproduction number of
Reff (t) ≈ 1.44 for the time window beginning Day 106. Hence, it is essential that effective

Table 4 Optimisation results from Simulation 1 using bounded transmission rate and constant
time-related parameters

Day Reproduction Number, Reff (t)

Initial assumption taken from Table 2

1 R0 = 3.00

8 8.16

15 7.49

22 6.95

29 1.20

36 4.36

43 1.55

50 3.47

57 0.19

64 1.51

71 1.73

78 2.91

85 0.19

92 1.18

99 2.32

106 1.38

Table 5 Settings for parameters in Simulation 2.

Parameter Lower bound Upper bound

Incubation period, τinc = 1/a 2 days 14 days

Recovery period, τrec = 1/γ 1 day 60 days

Time to death, τdeath = 1/δ 1 day 60 days

Transmission rate, β(t) 0.01 1.00
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Figure 4 Simulation 2: The fitting of the model for (A) 7-day moving average active infectious cases,
and (B) cumulative deaths, using bounded constraints for transmission rate β and incubation,
recovery, and time to death periods (τinc, τrec, τdeath). (C) Shows the trajectories for all
compartments in the SEIRD model and (D)–(F) show the extended plots of (A)–(C) until the
model achieves equilibrium. Full-size DOI: 10.7717/peerj.10806/fig-4
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intervention measures and control actions have to be taken to bring the pandemic
under control, that is to achieve the reproduction number of Reff (t) < 1.

Simulation 3: estimating σeff (t) and assessment of current COVID-19
profile
To understand the effectiveness of the intervention measures taken by the Kazakhstan
government to stop the spread of the virus up to Day 108, the model is simulated by
inducing ad-hoc control actions σi (t) into the model in line with the main events shown in
Table 1 as well as to fit to the actual data.

The same fitting parameters in Table 2 are used with the exception of R0 and I(0), where
initial values of R0 = 3.7 and I(0) = 5 are assumed, respectively. The solid lines in Figs. 5A
and 5B represent the estimated data based on the fitting parameters; the solid line in
Fig. 5A shows the number of 7-day moving average active confirmed cases whereas the
solid line in Fig. 5B shows the number of cumulative deaths. The results show that without
any control measures, the curves would rise exponentially indicating that the pandemic
would continue to grow. For example, the number of active infected cases would reach
about 55,000 by Day 140 whilst the number of deaths would exceed 5,000 by Day 180.
It is further noted that this trend of rising cases agrees with the results obtained from
Simulation 2 in “Simulation 2: Estimating Model Parameters Using TRR Assuming
Bounded Constraints for All Parameters”. The unshaded rows in Table 7 show the
progress of the efficacy of individual control actions σi (t), the effective efficacy of control

Table 6 Optimisation results from Simulation 2 using bounded constraints for all parameters. Bold values indicate Reff (t) values for time
windows starting Days 15 and 22.

Day Reproduction number, Reff (t) Incubation period, τinc Recovery period, τrec Time to death, τdeath

Initial values taken from Table 2

1 R0 = 3.00 5.10 18.80 18.80

8 2.33 3.06 2.36 1.00

15 7.48 9.39 7.48 59.71

22 11.71 11.82 60.00 3.29

29 2.29 7.16 11.21 5.05

36 6.52 12.04 60.00 4.15

43 1.31 2.00 2.49 14.41

50 5.92 12.89 60.00 18.45

57 0.40 12.91 40.37 23.81

64 0.94 2.00 4.52 59.11

71 6.29 14.00 31.73 44.18

78 2.92 14.00 27.66 60.00

85 0.17 9.64 16.93 15.76

92 1.85 14.00 16.74 11.01

99 2.74 14.00 21.20 5.67

106 1.51 14.00 23.92 5.46
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Figure 5 Simulation 3: The solid lines in both subfigures show the simulation results from fitting the
SEIRD model onto the data in Kazakhstan by updating the value of the control action efficacy σeff (t)
over time as discussed in “Simulation 3: Estimating σeff (t) and Assessment of Current COVID-19
Profile”. The subfigures show the results for (A) the 7-day moving average active confirmed cases and
(B) cumulative deaths, respectively. The dashed, dotted, dashed-dot, and dashed-x lines in both sub-
figures show the predictions based on four control action scenarios on Days 116, 123, 130, and 137
(vertical blue dotted lines), respectively, as presented in “Predictions on Reinstating Control and
Intervention Measures”. The vertical grey dotted lines show the timestamps related to COVID-19 in
Kazakhstan as listed in Table 1. Full-size DOI: 10.7717/peerj.10806/fig-5
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actions σeff (t), and the reproduction number Reff (t) over time since the first confirmed
cases in the country. The negative values for the efficacy of individual control actions,
that is σi (t) < 0 (highlighted using bold text in Table 7) indicate the relaxation of the
control actions such as the lifting of lockdowns or state of emergency and the removal of
checkpoints between cities. It can also be seen that these coincide with such corresponding
events in Table 1, that is Day 40 with the easing of quarantine regulations and the
reopening of certain business and industries and 60 with the gradual lifting of quarantines
and end of state of emergency (σi (t) = −0.48 on Day 63 in Table 7), and Day 78 with the
removal of checkpoints between cities (σi (t) = −0.40 on Day 88 in Table 7), respectively.
As a result, a resurgence of the spread of COVID-19 would follow where the Reff (t)
increase to 2.37 and 1.85 on Days 63 and 88, respectively. It can be observed that there is a
lag of 10–20 days between the announcements of the enforcements or lifting of control
actions to the actual effects being recorded via the confirmed cases. This could be due to a
few reasons, namely (i) the incubation time with a median of 5.1 days before a patient
starts to show symptoms and become infectious; (ii) the time delay incurred for the
population and the industries involved to respond and act according to the control actions
announcements, which could take one to 2 weeks.

Comparison of simulation results
The simulation results obtained in “Simulation 1: Estimating Model Parameters Using
TRR Assuming Bounded Constraints for β and Constant a, γ, δ” and “Simulation 2:
Estimating Model Parameters Using TRR Assuming Bounded Constraints for All
Parameters”, and “Simulation 3: Estimating σeff (t) and Assessment of Current COVID-19
Profile” are then compared to see how well each of the simulation methods are able to fit to
the actual data. See Fig. 6, where Figs. 6A and 6B compare the model fitting error for the
active confirmed cases and cumulative deaths of the three simulation methods,
respectively.

Table 7 The progress of Reff (t) based on the change in the efficacy of the control actions.

Day Efficacy of Ad-Hoc Control Action, σi (t) Effective Efficacy of Control Action, σeff (t) Reproduction number, Reff (t)

Initial estimation, R0 0 0 3.7

25 0.15 0.15 3.15

50 0.30 0.45 2.04

52 0.39 0.84 0.59

63 −0.48 0.36 2.37

79 0.54 0.9 0.36

88 −0.40 0.5 1.85

105 −0.22 0.28 2.66

Simulated scenarios of reinstating intervention measures

Scenario 1: Day 116 )
0:58

)
0:86

)
0:50

Scenario 2: Day 123

Scenario 3: Day 130

Scenario 4: Day 137
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For the model fitting error for the active confirmed cases, Fig. 6A shows that all three
methods manage to achieve errors with a median of less than 150 cases; medians of 57.13,
3.67, and 115.10 for Simulations 1, 2, and 3, respectively. Whilst Simulation 2 produces the
smallest error amongst the three simulation methods, this could also indicate that the
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Figure 6 Plots comparing the simulation results from the three simulation methods in Simulations
1, 2, and 3, respectively. (A) Shows the model fitting error for active confirmed cases whilst (B) shows the
model fitting error for cumulative deaths. The inset boxplot in each subfigure shows the statistical
analysis of the three fitting methods. Full-size DOI: 10.7717/peerj.10806/fig-6
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model is overfitted. This might not be able to inform well on the effectiveness of the control
action taken on the effective reproduction number Reff (t) in relation to the timeline of the
main events tabulated in Table 1.

As for the model fitting error for the cumulative deaths, Fig. 6B shows that again all
three methods manage to achieve errors with relatively low median of less than ten cases
(medians of 8.70, 0.82, and 9.10 for Simulations 1, 2, and 3, respectively) even though
Simulation 3 produces a much larger interquartile range (IQR) compared to Simulations 1
and 2. And as with the model fitting error for the active confirmed cases, the model
obtained from Simulation 2 could be overfitted.

Despite results from Simulation 3 producing slightly larger errors with a higher median
and larger IQR compared to Simulations 1 and 2, this method will be used in “Predictions
on Reinstating Control and Intervention Measures” to simulate and predict the future
trajectories of the dynamics from reinstating control and intervention measures to bring
the pandemic under control. The main reason for this is that the method used in
Simulation 3 allows for manual setting of ad-hoc control actions in the model in line with
the timeline of the main events in Table 1. Hence, this will help to inform and allow us to
understand more on the effectiveness of time-dependent control actions taken in reducing
the value of Reff (t), hence bringing the outbreak of COVID-19 under control.

Predictions on reinstating control and intervention measures
Assume now that following the results obtained via Simulation 3 in “Simulation 3:
Estimating σeff (t) and Assessment of Current COVID-19 Profile”, the reproduction
number is to be reduced to Reff (t) < 1 such that the spread of the virus is under control.
As a result, the necessary intervention measures have to be reinstated. Hence, four
scenarios are simulated where the intervention measures would be reinstated on Days 116,
123, 130, and 137, respectively by setting σi (t) = 0.58 such that the reproduction number
becomes Reff (t) = 0.50 as shown using the shaded rows in Table 7.

With Scenario 1, the number of active confirmed cases would reach its peak around
Day 120 with 14,500 cases before they gradually reduce indicating that the pandemic is
under control. For Scenarios 2–4, the active confirmed cases peak on Days 128, 135, and
142, with about 21,600, 32,200, and 48,000 cases, respectively. These data are shown
using the dashed, dotted, dashed-dot, and dashed-x lines in Figs. 5A and 7A, where the
latter shows the trajectories until the model reaches equilibrium. Similarly, the dashed,
dotted, dashed-dot, and dashed-x lines in Figs. 5B and 7B show the total number of deaths
for these four scenarios. The total number of deaths are estimated to be approximately
1,000, 1,400, 2,000, and 2,900 for Scenarios 1–4, respectively. On a further note, although
the active confirmed cases would reach the equilibrium around Day 400 with almost the
same value of approximately 45–130 cases (see Fig. 7A), the simulation results from
the four scenarios clearly show that with every delay of 7 days in reinstating the
intervention measures, the peaks of the active confirmed cases and cumulative deaths
(see Fig. 7B) would increase exponentially. Therefore, it is obvious that the sooner the
reinstating of intervention measures are implemented, the better the outcomes of the
situation, especially to reduce deaths and save precious lives.
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From these simulations, it is evident that the current situation in Kazakhstan is
developing quite closely to Scenario 3 for both active confirmed and cumulative deaths
cases. As a result, perhaps these information can be potentially used to address and control
the pandemic during an unfortunate event of a second wave. In addition, the results
shown in Table 7 can also be further analysed to model the mobility and dynamics of the
population in the country and its various districts in responding to various levels of
intervention measures taken by the authorities.

CONCLUSION
This article has discussed and presented a methodology to assess the current COVID-19
pandemic profile and to use those information to provide critical information on efficacy
and effects of time-dependent control actions in flattening the curve of COVID-19.
A modified SEIRD model was used in this study and the parameters of the mathematical
model as well as the reproduction number were estimated, for both constant and bounded
constraints conditions for time-related parameters, using the trust-region-reflective
(TTR) algorithm where the data in Kazakhstan were used as a case study. A further
analysis was carried out by inducing ad-hoc control actions into the model and to
determine how well they correspond to actual events and control actions recorded in the
country. Four scenarios were further simulated to provide understanding about the effects
of reinstating intervention measures taken 7 days apart of each other onto the active
confirmed and cumulative deaths cases. The results show that any delay in reinstating the
intervention measures would increase the peak of the active confirmed cases and also
the cumulative deaths exponentially. Of course, the quantitative analysis in this article is
highly dependent on the accuracy of the input data. With the limited data available and
using the presented modelling, assessment, and prediction techniques, it is hope that
this research is able to inform the transmission dynamics of the virus and provide some
useful information and analyses for the COVID-19 situation in Kazakhstan.
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