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Abstract—Automated inspection has become a vital part of 

quality control during semiconductor wafer production. Current 

processes are focussed on finding defects via variation from a 

‘golden’ image using pixel to pixel comparisons or utilization of 

opaque neural network-based approaches. We present a novel 

approach which uses the Bag of Visual Words technique to 

determine local features that correspond to specific defects within 

a wafer image, known as a custom vocabulary, as a way to begin 

creation of a more transparent system for automated defect 

detection and  classification. We demonstrate that the custom 

vocabularies, combined with machine learning algorithms, result 

in high performance accuracies with efficient computational run-

times. 

Keywords— Defect Detection, Defect Classification, Bag of 

Visual Words, Local Features, Semiconductor wafers, Image 

Processing.  

I.  INTRODUCTION  

Semiconductor wafers are a component used in products 
such as processors and hard drive media. Inspection is vital 
during the manufacturing process in order to detect defects and 
ensure quality control. Several methods have been proposed for 
defect detection on semiconductor wafers, however the 
majority of techniques focus on defect detection across the 
wafer as a whole. When defects are detected they are marked 
on the wafer bin map in order to identify the total number found. 
This is a useful approach when looking for systematic defects 
across a product line and removing a defective product earlier 
in the production line. However, it is sometimes desirable to 
detect not only the location of a defect but also the type of defect 
as some of the product may still be commercially viable. The 
goal of this research is to use images of a single chip on the 
wafer, known as die images, to detect and classify defects.  An 
example of a wafer bin map and a die image is presented in 
Figure 1. 

 
Figure 1: (a) Wafer bin map with detected defects coloured 
blue and (b) Single die image 

  Production of semiconductor wafers involves multiple 
stages and many different components are used during this 
process. Due to the varying size and criticality of these 
components, many different inspection techniques are used 
throughout manufacturing to ensure quality control. Inspection 
techniques include using electrical input and microwave testing 
along with optical cameras that can inspect to pico-meter level. 
The difference in these types of inspection systems has resulted 
in many interpretations of how to best detect and classify 
defects [10, 21, 23]. One widely used approach is to observe the 
overall frequency and location of defects using the wafer map 
in order to detect systematic or widespread damage over the 
complete wafer, such as a scratch or tear, as shown in Figure 2. 
Whilst this solution [9, 11, 18] has been proven to be useful for 
finding systematic or clustered defects across the whole wafer, 
it does not consider the type of defect, and consequently 
whether the product is still viable. 

 

Figure 2: Example of a Scratch defect using the wafer bin map 

  When considering automated visual inspection of 
semiconductor wafers, die images are used and examples of 
defects upon these die images are given in Figure 3. Most 
previous work is based on the use of global features with 
Tobin’s content-based image retrieval golden image 
comparison method [27] being the most popular. This 
inspection representation is commonly found in most 
Automated Defect Classification (ADC) machines [1, 23]. 
However, other methods have been used to detect specific types 
of defects across the industry. Chou [6] uses the Hough 
transformation to detect scratches or gouges on a wafer surface 



while Park [25] detailed an approach using the Histogram of 
Gradient (HOG) operators to great effect. However, there has 
been little work on the use of local image features for automated 
inspection using techniques such as Sobel [14], SIFT [8], ORB 
[13], and SURF [2]. In [16] we proposed the use of SIFT and 
SURF local image features for wafer defect detection and 
concluded that whilst both techniques could identify wafer 
defects, the use of SURF resulted in improved detection 
accuracy.  

(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 
Figure 3 – Examples of defects present on semiconductor die images: (a) 

Rip, (b) Scratch, (c) Warp, (d) Delamination, (e) Incomplete liftoff, (f) 

Corrosion 
 

  As well as detecting defects, defect classification is also 
necessary. In some cases, products that have been identified 
with non-critical defects, which would otherwise be removed 
due to the presence of a defect, can continue on the production 
line. Additionally, identifying the type of defect and the stage 
at which it occurs in the production process can help in 
improving overall quality, yield and production processes. The 
majority of defect classification approaches to date focus on the 
use of neural networks and deep learning. For example, Reza 
[12] used an artificial neural network with a back-propagation 
algorithm to observe contamination defects on wafers, a method 
also applied by Chou [6]. The work in [11,19, 22, 23] uses 
Convolutional neural networks for classification. While these 
deep learning methods return good results, the black box nature 
of neural networks can be a problem in industry, such as 
semiconductor manufacturers, since the designs are frequently 
updated and changed and although the neural network could be 
trained to work well with current designs,new designs could 
cause system failure as we are currently seeing in domains such 
as self-driving cars [28] and image recognition [29]. Thus, we 
have developed a novel approach based on transparent local 
features to create a more understandable system.  

A well-known feature extraction technique is the bag of visual 
words (BoVW) method which extends the Bag of Words 
(BoW) method from the text retrieval domain to the visual 
classification domain and can be used as an alternative to global 
image features. When using the BoW technique on a text 
document, a normalized histogram of word counts is computed 
as well as a sparse term vector where each bin corresponds to a 
term in the vocabulary. The BoVW technique [31] enables the 
generalisation of local image feature descriptors in a similar 
manner, and has been used for image classification [3,15,17]. 
Improving further on BoVW, a custom vocabulary [20] or 

codebook is a concept in which specific subsets of visual words 
are selected which represent the most important features of the 
images, rather than using the complete vocabulary created from 
a set of training images. One example of this approach is the 
dual vocabulary approach [17] where two vocabularies are 
trained on different training set classes before being run on its 
testing data in order to observe which returns the highest 
accuracy for each testing class and therefore which features are 
most important for detection and classification of these classes. 
Custom Vocabularies take this a step further by observing 
which visual words contain the most important information for 
a given task and utilize only these visual words in order to 
increase overall accuracy and also reduce overall computation 
time.  

It is also possible to combine BoVW with machine learning 
classifiers. For example, Hentschel [4] evaluated several 
different classification methods such as AdaBoost [5], SVM 
and decision trees on an image classification problem utilizing 
BoVW and found several methods that achieve high accuracy 
when combined with local feature methods.  Two popular 
image classification approaches that are widely used across 
many different fields of automated visual inspection are multi-
class SVM [7, 26] and Random forest [24]. 

  Building on previous work [16], this paper proposes a novel 
approach to defect detection and classification in 
semiconductor wafers.  We identify specific visual words that 
correspond to a defect descriptor, a custom vocabulary, and use 
these for classifying a defect within an image as close to real 
time speed as possible, whilst still retaining high levels of 
accuracy.  The remainder of this paper is organized as follows: 
Section 2 introduces the current industry inspection process 
used by our industry partner and its problems. Section 3 covers 
the proposed custom vocabulary and Section 4 discusses the 
performance evaluation of the approach. Finally, Section 5 
details the conclusion and further work. 

II. CURRENT INDUSTRY INSPECTION PROCESS 

   There are around 600 stages in the production of a single 

semiconductor wafer. In order for the wafer to fully function it 

needs to be kept free of defects which can be caused in many 

ways, including particle damage, atmospheric changes as well 

as human- and machine-error. Thus, a typical semiconductor 

production line will have many in-line inspection tools at 

various manufacturing stages in order to ensure quality control. 

Due to the size of critical parts on the wafer, some as small as 

7nm, specialised inspection equipment must be used. The 

inspection process can be conducted in various ways, for 

example using electrical fault detection and x-rays, however the 

most time-affordable systems are visual inspection systems.  

 

     Current industry practice for defect detection and 

classification is a global image matching approach where a 

direct pixel-to-pixel comparison is performed using a database 

of control images which are directly compared with the current 

product passing through the inspection system. This is 

commonly known in the industry as a ‘golden image’ approach. 

In order to prevent false detection of defects, a defect reduction 

factor is used where pixel intensities within a 3x3 pixel 



neighborhood are compared before any area is regarded as a 

defect.  

 

   The Rudolph NSX105 [1] is a commonly used industry 

standard inspection device which uses the golden image 

approach. The NSX105 inspection system uses its initial stage 

camera to strobe over the wafer comparing captured images 

with the corresponding database of golden images. The golden 

images in the database are initially manually pre-programmed. 

Hence, when a product is developed or updated, a new set of 

golden images must be created. If a defect is detected, its 

coordinates are saved into a reference file and then additional 

high-resolution images of the defect on the die are captured 

using a second inspection camera for subsequent manual 

inspection. The number of defects for which high resolution 

images are captured is capped at a level according to parameters 

set manually, typically 80 images per wafer. A critical problem 

with the NSX105’s inspection detection is that while it can 

determine a problem at a specific location, it cannot determine 

the type of defect that has been found on the die. Hence the 

severity of the defect is unknown, and this may result in more 

serious defect types, such as corrosion damage on critical parts, 

going unnoticed until later in production.  

 

    We seek to improve on this by developing an automated 

inspection system, which uses the existing inspection 

equipment output, and is focussed specifically on classifying 

high resolution defect images from the die rather than the defect 

identification stage which creates the wafer bin map.  

III. CUSTOM VOCABULARY 

In the proposed methodology the SURF interest point 
detector is used to obtain key-points 𝑘𝑛 and corresponding 
SURF descriptors 𝑑𝑛 where 𝑖 = 1 … 𝑛 such that a keypoint is 
represented as: 

𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖) 
where 𝑥 and 𝑦 are the coordinates of a point in an image. The 
SURF keypoint descriptors are of 64 dimensions. An image 
feature set 𝑆 can be represented by the set of local keypoint 
descriptors such that  

𝑆𝐼 = {𝑘1, 𝑘2, … , 𝑘𝑛}. 

where 𝐼 = 1 … 𝑚 and 𝑚 is the number of images in the image 
set. The BoVW algorithm 𝐵 is considered to quantize the 
descriptor 𝑑 ∈ 𝑅𝐼  

 𝐵: 𝑅𝐼 → [1, 𝐾]𝑑 → 𝐵(𝑑). 
The 𝐵 assigns descriptor 𝑑 ∈ 𝑅𝐼  to the appropriate cluster 𝐾, 
where each cluster represents a visual word and the set of visual 
words is the initial defect vocabulary.  

We can further refine the initial vocabulary to form a custom 
vocabulary through manual inspection of the defect images 
where only visual words that represent wafer defect features are 
retained and that is the approach used here.  

IV. PERFORMANCE EVALUATION 

  There are various defects that can occur in semi-conductor 
wafers, such as splatter, warp, scratch, rip, delamination and 

corrosion. To evaluate the proposed approach for defect 
detection, we focus on the warp defect. The warp defect occurs 
for various reasons including temperature changes, rise in 
atmospheric pressure, or human and machine error. Its main 
feature is that parts of the golden resist (or paint), also called 
the gold pad, are removed or warped in some way.  Examples 
of warp die images are presented in Figure 4 where Figure 4(a) 
illustrates the gold resist in various stages of damage from the 
warp defect and Figure 4(b) illustrates complete removal of the 
resist. All images are captured by the Rudolph NSX105 from 
one layer of one product, and all images are 648x494 pixels. All 
experiments are run using Python OpenCV and Sklearn on an 
Intel Xeon CPU E5-120 0@ 3.60 GHZ with 16 GB of RAM. 

  In the initial experiment, we evaluate the proposed approach 
using a vocabulary of 1000 visual words and various well-
known machine learning algorithms including AdaBoost, 
Random Forest, Support Vector Machines (SVM) with a range 
of kernel functions (Linear, Polynomial and Radial).  We use 
sets of warp images (Figure 4) and control images (Figure 5).  
Both the warp and control classes contain 100 images each (200 
in total), split 80/20 for training and testing.  The machine 
learning algorithms have been optimised via a grid search and 
a summary of the results is displayed in Table 1. Using 1000 
visual words, the results vary across the different machine 
learning approaches with the SVM using a Radial Basis 
Function (RBF) and C=10 providing the highest accuracy. 

 
(a) Gold resist in various stages of damage 

 
(b) Complete removal of the resist 

Figure 4.  Examples of the warp defect 



 

Figure 5.  Control image 

  While the accuracy results are promising, the system takes 
significant time to process 1000 visual words, with the training 
alone taking 7 minutes and 37 seconds.  Additionally, although 
we can determine from the BoVW histogram which visual 
words occur most often for each class, it is not possible to 
determine what initial local features make up each visual word. 
From the 1000 visual words, it was possible to isolate 106 visual 
words that corresponded solely to the warp defect, with no key 
points detected on the image background. The experiments 
were conducted again using this refined set of visual words, a 
custom vocabulary, and the results are presented in the last 
column of Table 1.  In this scenario, several machine learning 
approaches, combined with the custom vocabulary, provide an 
accuracy of 97%, hence the use of a custom vocabulary is more 
consistent and less dependent on the machine learning 
algorithm it is combined with, and the training time using this 
vocabulary is also much closer to a real time system, taking only 
28 seconds, approximately 15x faster than using 1000 words. 

Table 1 – Experimental result 

 Accuracy  

1000 visual words 

Accuracy  

106 visual words 
(custom 

vocabulary) 

AdaBoost 95% 87% 

Random Forest 79% 75% 

SVM - Linear C=1 51% 51% 

SVM – Linear C=10 53% 75% 

SVM – Linear C=100 90% 97% 

SVM – Poly C=1 51% 50% 

SVM – Poly C=10 51% 80% 

SVM – Poly C=100 56% 97% 

SVM – RBF C=1 56% 65% 

SVM – RBF C=10 100% 97% 

SVM – RBF C=100 97% 97% 

 

  The ability to identify a defect in a die image is important in 
automated inspection, and it is possible to further define the 
warp defect into 3 sub-classes. This has important 
consequences as some sub-classes of warp defect have more 
impact on the wafer production than others. The first sub-class 
denoted as Warp 1 contains erratic shapes and sharp-edged 

resist pieces that appear across the wafer image.  The second 
sub-class, denoted Warp 2, focusses on the circles that appear 
as the resist is wiped away from the wafer.  The third sub-class, 
denoted as Warp 3, has circular blobs or scratches through the 
resist. An example of each warp sub-class is illustrated in 
Figure 6.  

   Using the custom vocabulary of 106 visual words, we create 
a new custom vocabulary for each sub-class where Warp 1 
requires 63 visual words, Warp 2 requires 48 visual words and 
Warp 3 requires 29 visual words.  The custom vocabulary for 
Warp 1 contains the most unique visual words whereas the 
custom vocabulary for Warp 2 has overlap with both Warp 1 
and Warp 3. The experiments were conducted again using the 
custom vocabularies.  As the results in Table 1 demonstrated 
that AdaBoost and Random Forest do not perform as well as 
SVM, we present results only for SVM in Table 2. 

     As shown in Table 2, the linear SVM performs similar to the 
results presented in Table 1, and hence it remains the worst 
performing SVM. The polynomial kernel SVM has increased 
accuracy compared with the linear SVM, however the RBF 
kernel SVM retains the highest accuracy for all SVMs across 
the three sub-classes. The key significance of the results in 
Table 2 is that the classification accuracy is high with an 
improvement in computational efficiency due to the reduced 
feature set, the custom vocabulary. 

 

(a) Example of Warp 1 image 

 

(b) Example of Warp 2 image 

 

(c) Example of Warp 3 image 

Figure 6. Examples of warp sub-classes 

 



Table 2 - SVM Accuracy Results  

SVM  

 Warp 1 Warp 2 Warp 3  

SVM Linear C-1 51% 51% 51% 

SVM Linear C-10 92% 85% 68% 

SVM Linear C-100 97% 97% 87% 

SVM Poly C-1 70% 73% 78% 

SVM Poly C-10  85% 95% 87% 

SVM PolyC-100  100% 97% 70% 

SVM RBF C-1 87% 90% 70% 

SVM RBF C-10 97% 100% 92% 

SVM RBF C-100 100% 97% 95% 

 
Table 3 - Speed test results 

Computational 

speed Test 

Training 

Time 

Prediction 

Time 

Highest 

Classification 

Accuracy 

1000 Words 7m 37s  13s 100% 

106 words 28s 9s 97% 

Subclass 25s 6s 100% 
 

 

Another important consideration is the speed of this system, 

as it is required to operate with in-line inspection tools and 

should therefore be as close to real time as possible whilst still 

retaining a high degree of accuracy. Table 3 shows that the 

proposed approach, based on the custom vocabulary, achieves 

the fastest run-time compared with the use of a larger 

vocabulary, as well as high accuracy.  

V. MVTEC EVALUATION 

These results demonstrate that the custom vocabulary that 

corresponds to a specific defect provides high classification 

accuracies. In order to further validate this system, we use the 

MVTEC anomaly detection dataset [30]. From the dataset we 

selected the Tile Crack image set which contains 20 images, 10 

for training and 10 for testing, along with a control class, again 

using 10 for training and 10 for testing.  

  

 
(a) 

 
(b) 

Figure 7.  Examples of (a) Tile Crack Defect image and (b) Tile Control 
Image 

 

In line with the previous experiment, as the SVM performed 

best, we use only an SVM with all 1000 visual words and the 

defect only visual words, for which 69 were detected for this 

dataset. 

 

 

 

 

Table 4 – Tile Crack Results 
SVM 

 Full 

1000 

Words 

69 Defect only Words (Custom 

Vocabulary) 

SVM Linear C-1 72% 80% 

SVM Linear C-10 72% 80% 

SVM Linear C-100 72% 80% 

SVM Poly C-1 72% 80% 

SVM Poly C-10  72% 80% 

SVM Poly C-100  72% 97% 

SVM RBF C-1 72% 80% 

SVM RBF C-10 72% 80% 

SVM RBF C-100 82% 97% 

 

As illustrated in Table 4 a maximum accuracy for this 

dataset, when using 1000 visual words was 82% using an SVM, 

with the RBF kernel and C=100. However this is reproved 

significantly by using a custom vocabulary that corresponds to 

the defect only features present in the images. We can see an 

increase to 97% using both the polynomial and RBF kernels 

with C=100. This is excellent performance accuracy given the 

small dataset used and would be difficult to achieve using deep 

learning which requires a significant volume of data. This 

demonstrates the robustness of the proposed approach across 

industrial datasets.  

VI. CONCLUSION AND FURTHER WORK 

 
  We have presented an approach to semi-conductor wafer 
defect classification by utilizing the bag of visual words method 
with a custom vocabulary formed from a reduced set of visual 
words.  We have demonstrated that this novel approach 
achieves competitive accuracies when compared with the use 
of a larger set of visual words (1000) but is much more 
computationally efficient as demonstrated by the presented run-
times.   

  As the proposed approach works well, both on our industrial 
dataset and the MVTEC anomaly dataset, future work will 
investigate the design of custom vocabularies for other defect 
types, namely splatter, scratch, rip, delamination and corrosion.  
Additionally, we will explore the ability to accurately 
characterise and hence classify the warp defect images using 
only the custom vocabulary without additional machine 
learning.  The motivation for this is that, within the production 
line, if there is a design change then a neural network focused 
automated inspection system will require retraining.  However, 
if we can accurately classify defects without the use of deep 
learning and by using the custom vocabulary approach, this will 
enable the system to be readily adaptable to product changes 
and developments creating a more open and understandable 
system. 
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