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Abstract 

The need for 2D vertical graphene nanosheets (VGNs) is driven by its great potential in diverse 

energy, electronics, and sensor applications, wherein many cases a low-temperature synthesis 

is preferred due to requirements of the manufacturing process. Unfortunately, most of today’s 

known methods, including plasma, require either relatively high temperatures or high plasma 

powers. Herein, we report on a controllable synthesis of VGNs at a pushed down low-

temperature boundary for synthesis, the low temperatures (450 oC) and low plasma powers 

(30 W) using capacitively coupled plasma (CCP) driven by radio-frequency power at 

13.56 MHz. The strategies implemented also include unrevealing the role of Nickel (Ni) 

catalyst thin film on the substrates (Si/Al). It was found that the Ni catalyst on Si/Al initiates 

the nucleation/growth of VGNs at 450 °C in comparison to the substrates without Ni catalyst. 

With increasing temperature, the graphene nanosheets become bigger in size, well-structured 

and well separated. The role of Ni catalysts is hence to boost the growth rate, density, and 

quality of the growing VGNs. Furthermore, this CCP method can be used to synthesize VGNs 

at the lowest temperatures possible so far on a variety of substrates and provide new 

opportunities in the practical application of VGNs. 

Keywords: VGNs, PECVD, Raman, XPS, NEXAFS 
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1. Introduction 

Vertical graphene nanosheets (VGNs), also referred to as vertically-oriented graphene 

nanosheets (VOGN) or carbon nanowalls (CNWs) are two-dimensional graphitic platelets 

which are typically oriented vertically on a substrate [1]. Rising interest in the synthesis and 

application of VGNs emanates from their unique characteristics such as non-stacking 

morphology, high-aspect-ratio, sharp edges, and high-density reticular arrangement, etc. [2–4]. 

Besides this, excellent electrical and mechanical properties of VGNs and their derivatives 

enabling their applicability in enormous fields, including supercapacitor, battery electrodes, 

power sources, field emitters, flexible electronics, gas sensors, and catalyst supporters [5–10]. 

An individual VGN typically consist of few stacked graphene layers having a thickness of 

several few nanometres with lateral and vertical dimensions of hundreds of nanometres to tens 

of micrometres. With few exceptions where chemical vapour deposition (CVD), and sputtering 

techniques for the synthesis of VGNs are used, plasma-enhanced chemical vapour deposition 

(PECVD) methods are considered as the emerging techniques for building VGNs. Compared 

to other techniques, PECVD techniques offer a low-temperature synthesis of VGNs with 

controlled growth and morphology at a large scale. The structure and morphology of VGNs 

can be influenced by plasma sources and parameters such as substrate temperature, feedback 

gas type and composition, operating pressure and plasma power used for the synthesis 

process [11,12]. 

In a PECVD system during the growth of VGNs, the precursor gas (generally hydrocarbons) 

undergo inelastic collisions with the electrons in the plasma to form different plasma species. 

It has been already reported that the VGNs can grow on the substrate without the presence of 

catalyst particles, which indicates that the precursor dissociation by plasma and interaction of 

plasma species to the substrate surface plays a key role for the growth of VGNs. Thus, several 

studies have been carried out for successfully synthesising VGNs using various plasma sources 

such as radiofrequency inductively coupled plasma (RFICP) [13], microwave plasma [14], DC 

plasma [15], RF capacitively coupled plasma (RFCCP) assisted by radical injection [16], 

helicon plasma, and electron beam excited plasma (EBEP). Generally, a higher concentration 

of hydrogen atoms and carbon dimers (C2 radicals) are needed for the growth of VGNs [17]. 

Carbon dimers produced by the radical recombination and subsequent dissociation of CHx 

(x=1,2,3) radicals are playing a vital role in the nucleation of VGNs and hydrogen acts as the 

etching agent for the removal of amorphous carbon(a-C). It has been reported that microwave 

(MW) and ICP systems employed with CH4/H2 or CH4/H2/Ar mixture have higher C2 radical 

Page 3 of 20 AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



density for the direct nucleation for the VGN growth. On the other hand, a CCP plasma 

effectively generates CH3 radicals from the carbon precursor, but because of the deficiency of 

H atoms, CCP plasma by itself is not suitable for the growth of VGNs [18,19]. Thus, radical 

injection of H atoms and coupling of CCP with other plasma sources are used to provide 

sufficient H atoms for the growth of VGNs. 

In addition to the plasma source, the most direct and controllable parameters in the PECVD 

process that can influence the growth and morphology of VGNs are plasma power and substrate 

temperature [19,20]. Several groups successfully synthesised VGNs by employing MW plasma 

with power in the range of 350W-16 kW at a substrate temperature between 350-700°C [2,21]. 

ICP plasmas with a power range from 400 W to 1000 W at substrate temperatures of 350-

1100 °C have also been used for synthesising VGNs [21,22], as well as DC plasma and EBEP 

plasma sources by employing higher input power and temperature [23,24]. Most of all the 

reported VGN growth by CCP was assisted either by an external hydrogen source or by other 

plasma sources at different power (250-700 W) and temperature (500-700°C) [25–27]. The 

lowest temperature that has been used for the growth of VGNs so far is ~350°C using an 

ICPECVD system, where an external bias was added for the VGN growth [22]. In all other 

cases, the VGN growth was observed at a temperature above 500 °C by employing higher 

plasma power. Also, it has been demonstrated that higher temperatures and higher plasma 

power can corrugate the morphology of VGNs [28]. Therefore, the synthesis of VGNs at lower 

temperatures and lower power without using any additional plasma source or bias is still 

considered as the main challenge in the research of oriented graphene structures. 

Even though VGNs can grow on the substrate without any addition of a catalyst, several 

researchers have taken the effort to investigate the effect of catalysts (e.g., Ni) on the growth 

of VGNs [29–31]. It has been reported that the low-temperature plasma assisted treatment 

improve the catalyst substrate interaction, reduce the catalyst particles mobility and thus 

influence the growth of such 2D and 3D materials [32]. Also, during the annealing of the 

substrate, the application of plasma-pre-treatment readily transform the catalyst layer and 

reduces the size of the catalyst nanoparticles, which drastically improves the homogeneity [32]. 

Thus, the hydrogen plasma treatment is almost considered as a standard pre-treatment, and 

several morphologies have been documented by this method [33]. On the other hand, an argon 

plasma, which is more effective than hydrogen plasma for the cleaning or etching, is very rarely 

used for the pre-treatments. Therefore, revealing the effect of Ar plasma pre-treatment on the 

substrate surface for the growth of VGNs can be beneficial for future applications. 
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Herein we are reporting a successful application of a radio frequency capacitively coupled 

plasma-enhanced chemical vapour deposition (RFCCPECVD) system at lower power and 

lower temperature for the synthesis of VGNs without using any additional plasma source. 

VGNS were synthesised in a cold wall CCPECVD reactor using a very low power of 30 W at 

a substrate temperature of 450 °C to 620 °C. The influence of Ni thin film on the growth rate 

and structure quality of VGNs was also investigated. We have investigated the effect of 

substrate temperature on the structural quality of VGNs using Raman spectroscopy and 

chemical composition analysis. NEXAFS spectroscopy was used to obtain chemical, structural 

and orientation information of the nanoscale samples. To our knowledge, a successful 

application of capacitively coupled plasma to synthesis VGNs using low power and 

temperature has not been reported so far. 

2. Experimental Section 

2.1.Synthesis of VGNs 

The VGNs were synthesized using a cold-wall CVD by radio frequency capacitively coupled 

plasma (RFCCP) operated at 13.56 MHz RF power. The detailed scheme of experimental setup 

has been presented in our previous studies [33–37]. Silicon wafers covered with 200 nm thick 

aluminium (Al) are used as the substrate for synthesizing VGNs. A 10 nm thin Ni film was 

deposited by a precision etching coating system (PECS) onto the Si/Al to investigate the effect 

of catalytic materials on the growth of VGNs[31]. These values were chosen after several trial 

and error experiments and showed the best results.  The substrate was transferred into the 

PECVD reactor, and the base pressure inside the reactor was kept below 4∙10-4 Pa. Substrates 

were pre-treated at different annealing temperatures (450 °C to 620 °C) with CCP plasma. 

Argon gas (10 sccm) was inserted to the chamber at a pressure of ~29 pa for the pre-treatment 

with a ramp time of (960 s to 1200 s) and held the conditions for 1800 s. Subsequently, a 

mixture of hydrogen (H2) and ethylene (C2H4) with a flowrate of 40:20 sccm were introduced 

to the reactor at the pressure of ~100 pa and the growth of VGNs was performed for 900 s. For 

simplicity, the growth scheme of VGNs presented here is very similar to the growth of CNTs 

performed in previous studies [31,36]. 

 

2.2.Characterization techniques 

Scanning electron microscopy (SEM) by a Zeiss-Supra device was used to examine the 

morphology of VGNs. Raman spectra were recorded to study the structural organization of the 

synthesised VGNs using a Renishaw InVia Reflex Spectrometer at an excitation wavelength 
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of 514.5 nm. The spectra were collected under a Leica DM2500 optical microscope (50 

objectives/N.A.= 0.75) and a grating of 1800 l/mm. The laser power in the sample was kept at 

around 0.5 mW to avoid any heating damage. The samples were analysed at three different 

spots. The elemental composition and orientation-dependent chemical properties of VGNs 

were analyzed by X-ray photoelectron spectroscopy (XPS) and Near Edge X-ray-absorption 

fine structure (NEXAFS) spectroscopy using the HE-SGM beam line with the PREVAC end 

station at the BESSY II electron storage ring in Berlin, Germany. The elemental depth 

information during the analysis was about 2 nm by measuring the high-resolution 

photoelectron lines of the different elements at the same constant kinetic energy [38]. 

3. Results and discussion 

The SEM micrographs displayed in Figure 1 indicate a vertically standing morphology and 

uniform growth of VGNs on Si/Al and Si/Al/Ni substrates at different temperatures ranging 

from 450 to 620 °C. Even though the general morphology of VGNs is similar, the density, 

interlayer spacing, and thickness of VGNs are varying along with the temperature. A 

comparison between the growth of VGNs with and without the presence of a Ni catalyst 

suggests that the morphology of VGNs is different even for the same growth temperature. This 

could be related to differences in the nucleation steps evolving in the initial stages [31], where 

the nucleation of nanoislands during the growth of VGNs with Ni catalyst is faster than without 

Ni. 

 

Figure 1. SEM images of VGNs obtained at 620 °C (a, b), 550 °C (c, d), 480 °C (e, f), 450 °C (g, h). 

scale bar is 200 nm for all figures. 
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At lower temperatures, nucleation and initial growth of densely packed nanosheets are 

occurring due to the longer surface residence time for the different plasma species; however, 

the possible migration of plasma species on the substrate surface at low temperature is lower 

than that at higher temperature and results in smaller lateral and vertical dimensions of VGNs 

at lower temperature. The lateral dimension of the individual nanosheets is increasing with the 

temperature and highly interconnected nanosheets are observed at higher temperatures. 

Considering the fact that the density and interlayer spacing of the VGNs is varying with the 

growth temperature, the changes in the vertical dimension of the VGNs are also investigated. 

Figure 2 (a-d) exhibits the cross-sectional images of the VGNs grown at different temperatures. 

The height of VGNs on Si/Al increases from 130 nm to 270 nm for temperatures 480 °C to 620 

°C, respectively. The addition of Ni catalyst enhances the growth of VGNs as the height reaches 

150 nm to 500 nm for temperatures 480 °C to 620 °C, as displayed in figure 2 (e). The growth 

of VGNs observed on the Si/Al and Si/Al/Ni substrates at the lower temperature (480 °C) is 

having an almost similar growth rate of 520-600 nm/h. Hence with the increase in temperature 

to 620 °C, the growth rate of VGNs on Si/Al/Ni substrates (~2 µm/h) is two-times higher than 

on Si/Al (~1 µm/h). Since the plasma power is very low and maintained constant during the 

experiments, the effect of plasma heating of the substrate can be neglected. Thus, the changes 

in growth rate can be explained as a combined effect of growth temperature and catalyst 

particle. At lower growth temperature, the plasma species has high surface residence time with 

low mobility of the surface atoms. On the other hand, at higher temperatures, the migration of 

plasma generated species on the substrate surface is higher and favours the formation of 

interconnected stable nanostructures by surface chemical reactions. This results in the 

formation of well-aligned highly interconnected VGNs at higher temperatures. The presence 

of the Ni catalyst is enhancing the surface diffusion of the hydrocarbon species on the surface 

for the initial growth of graphene layers and promotes a higher growth rate on the Si/Al/Ni 

substrates. In order to gain a better understanding of the influence of temperature and Ni 

catalyst on the structural organization and chemical composition of the VGNs, the samples 

were further analysed with different surface analytical techniques. 
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Figure 2. SEM images of VGNs height comparison on Si/Al {(a) at 480 °C, (b) at 620 °C}, on 

Si/Al/Ni {(c) at 480 °C, (d) at 620 °C}, (e) variation of VGNs height with respect to growth 

temperature. 

The inner structural arrangement of the VGNs synthesised on different substrates at different 

temperatures was analysed by Raman spectroscopy. Figure 3 (a and b) displays normalised 

Raman spectra of VGNs grown on substrates with and without Ni thin films at different 

temperatures. The spectra are composed of several bands; most importantly, the D band located 

at ∼1350 cm-1 attributed to the A1g breathing mode of six-atom rings at the 1st Brillouin zone 

boundary K or K'. Due to the conservation of momentum, it becomes active only in the 

presence of defects. The G band at ∼1581 cm-1 corresponds to the one-phonon Raman 

scattering process at the 1st Brillouin zone centre and consists of the collective in-plane bond 

stretching of carbon atoms (E2g symmetry) [39,40]. The D' band at 1622 cm-1 is also a defect-

induced phonon mode near the 1st Brillouin zone centre. The G'(2D) band at ∼2700 cm-1 and 

the G" (2D') band at ∼3240 cm-1 are respectively the second orders of the D and D' bands 

originating from the scattering by two phonons with opposite wave vectors, and therefore they 

are always active by symmetry [41]. The D+D' band observed at ∼2940 cm-1 corresponds to 

the combination of phonons and also requires defects for its activation [42]. 

As the growth temperature is increasing, the recorded Raman spectra undergo several changes, 

which indicates the structural modification of the resulting VGNs. Figure 3 (c) and (d) display 

the evolution of the full width at half maximum FWHM of D and G'(2D) as a function of the 

growth temperature. Both parameters, which are the fundamental characteristics of the local 

structural order, are decreasing with a temperature towards minimum values suggesting the 

increased structural ordering of VGNs with increased growth temperature. Figure 3 (e) exhibits 

the changes in the I2D/IG ratio, which continuously increases with an increase in temperature. It 
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is the characteristic behaviour for an increase in the concentration of polyaromatic carbons. 

Moreover, the G and D' bands are merged and seen as a single band located at ~1600 cm-1 for 

the VGNs grown at 450 °C and 480 °C, which is due to the lower structural order. 

 

 

Figure 3. Raman spectra of VGNs grown at different temperatures (a) with Ni thin film (b) 

without Ni thin film, (c, d) Full widths at half maximum FWHM(D) and FWHM(2D) for 

different growth temperatures (e, f) Raman intensities comparison for different growth 

temperatures. 
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For higher growth temperatures (550 °C and 620 °C), the G band position undergoes a 

downshift towards lower wavenumbers leading to a clear distinction of D' band. All these 

variations are in good agreement with the literature regarding the characterization of sp2 

carbon-based materials with an increasing degree of ordering [19,43,44]. Figure 3(f) represents 

the variation of the ID/IG with the growth temperature, which varies with the type and 

concentration of the introduced defects [42,45,46] and exhibits opposite behaviour compared 

to what is usually seen in the literature [47]. In this specific range of structural ordering, this 

parameter is expected to continually decrease with the increase in growth temperature. 

Generally, defect density characterized by different geometries is quantified by Raman 

scattering via the number of active areas around borders or point-like defects with respect to 

the total area of the laser spot. Therefore, the variation of ID/IG provides a measure of the 

crystallite size La or a determination of the average distance between point-like defects LD. In 

the present work, there is a fundamental difference in the orientation (vertical growth) of the 

analysed graphene nanosheets. This configuration results in the exposure of the laser spot to a 

large number of graphene edges vertically aligned that satisfy the momentum conservation 

leading to the full activation of the D band. Therefore, since the D band is the breathing mode 

of polyaromatic carbon, increasing the ordering of graphene nanosheets with the growth 

temperature leads to an increase of its intensity similar to what could be observed for its second-

order band G'(2D) active by symmetry. Its asymptotic behaviour (or possible decrease) can be 

explained by the increase of the spacing between the walls in the area illuminated by the laser 

spot. One must, therefore, be careful about interpreting the Raman spectra based only on the 

ID/IG ratio. This also means that all the relationships found in literature allowing the 

determination of in-plane crystallite size (La or Ld) based on the ID/IG, should definitely not be 

used in the case of vertically aligned graphene nanosheets [48–50]. The SEM images and 

Raman analysis confirm that VGNs start to grow at the lowest temperature of 450 °C and show 

a relatively well-organized structure at 550 °C when Ni catalyst has been used whereas without 

catalyst the growth starts at a temperature of about 480 °C and a well-organized structure is 

obtained at 620 °C. 

Chemical compositions of the grown VGNs at different temperatures were investigated with 

XPS. Figure 4(a) shows XPS survey scans of the samples. The analysis suggests the existence 

of only two elements in VGNs, namely carbon and oxygen. Samples show different O 1s to C 

1s ratios for VGNs grown without Ni catalyst and with Ni catalyst. In both cases, the 

appearance of O 1s lines is probably due to chemical reactions of structural defects and 

dangling bonds upon exposure to the ambient. The analysis also indicates the reduction of 
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oxygen functional groups and an increase in carbon content with an increase in the growth 

temperature as represented in figure 4(b), possibly due to an increase of the crystallinity of the 

VGNs structure. Figure 4(c) shows the high resolution of deconvoluted C 1s spectra of VGNs 

grown with Ni catalyst at 550 °C. For the deconvolution of the C 1s line, the position at 284.5 

eV was taken as a reference, which is assigned to regular graphitic carbon atoms [51,52]. 

 

 

Figure 4. (a) Survey scan comparison of VGNs grown under different conditions (Excitation 

energy 700 eV), (b) plot of oxygen content in the near-surface region, (c) C 1s deconvoluted 

spectra of VGNs grown at 550 °C on Si/Al/Ni (excitation energy 385 eV). 

Table 1. Percentage area of the different carbon species obtained from fits of XPS C 1s spectra. 

 

 (° C) 284.5 eV 

(%) 

285.2 eV 

(%) 

286.1 eV 

(%) 

Si/Al/ VGNs 450 70.5 21.9 7.6 

 550 80.1 13.3 6.6 

Si/Al/Ni/ VGNs 450 71.4 19.4 9.2 

 550 78.9 13.6 7.5 
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C 1s of all the samples were deconvoluted into three peaks, as summarized in table 1. The main 

peak at 284.5 ± 0.2 eV corresponds to sp2-hybridized graphite-like carbon atoms (C=C), the 

peak centered at 285.20 ± 0.2 eV is an indication of sp3-hybridized carbon atoms (C–C) 

considered to originate from edges, bending, (a-C) absorbed on the graphene surface and the 

peak at 286.2 ± 0.2 eV is due to OH functional groups attached to carbon atoms (C-

OH) [53,54]. It was observed with an increase in growth temperature of VGNs, sp2 content 

increases, and sp3 decreased. These findings also support the interpretation of the results in the 

Raman analysis that the increase in the D band intensity is due to the boundary edges of 

graphene sheets and not from defects. 

To investigate the growth of VGNs at very low temperatures, the experiment conducted at 410 

oC. There is no growth of VGNs observed at these experimental conditions. However, carbon 

nanoparticles with graphitic characteristics are deposited on the substrate, as observed by the 

SEM and Raman analysis (figure 5 (a) and (b)). XPS analysis presented in figure 5 (c, d) 

indicates the significant presence of the nickel and substrate material along with the deposited 

carbon nanomaterial. 

Figure 5. Carbon nanostructures grown at 410 °C on Si/Al/Ni, (a) SEM image, (b) Raman 

Spectra, (c) XPS survey scan, (d) C 1s deconvoluted spectra. 

(a)

) \ 
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Figure 6. NEXAFS spectra of VGNs grown at 450 °C {(a) with and (b) without nickel as a 

catalyst}, at 550 °C {(c) With and (d) without nickel as a catalyst}. Angular dependence. All 

the spectra were normalized to an absorption edge jump setting the post-edge intensity at 325 

eV to 1. 

Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS) is used to lighten up more 

detailed chemical, structural, and orientation information about VGNs. The spectra were 

obtained at the C K-edge, in a partial energy electron yield (PEY) mode, with only -20 V of 

retarding potential. Raw spectra were divided by the absorption spectra of a clean, freshly 

sputtered gold sample to correct for the photon flux [55]. The energy calibration was obtained 

by using an I0 feature referenced to a C 1s →π* resonance at 284.9 eV from a fresh surface of 

graphite foil standard sample [56]. Spectra are shown after normalization of the edge-step to 

one. The spectra were collected at different angles (30-90°) of the incident linearly polarized 

synchrotron-light beam relative to the surface plane of the sample. 
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The C K edge NEXAFS spectra of the four samples (VGNs grown at two different temperatures 

450 °C and 550 °C) are quite similar to each other and represented in Figure 6 (a-d). Figures (6) 

show three main absorption features for all the samples, a sharp resonance at about 285.2 eV 

and a double-structure resonance at around 292 eV. The feature at 285.2 eV is commonly 

assigned to C 1s to π* transition of sp2 carbons in a carbon-ring structure, and the features at 

291.7 and 292.7 eV can be assigned to double resonances that come from excitonic and band-

like contributions of graphitic carbon species, respectively [57–59]. Furthermore, when Ni is 

added as a catalyst, a small feature at around 288.5 eV becomes more prominent (figure 6 (a)). 

This change can be attributed to defect states resulting from oxygenated groups and/or surface 

contaminations on VGNs, e.g., π*C=O, σ* C-H and –(HO-π*C=O) transitions [53,55,60–62] 

which is also confirmed by XPS analysis (see Table 1). 

For all four samples, there is a clear angular dependence of the C1s → π * transition at around 

285.2 eV. The differences are strongly correlated with the orientation of the transition dipole 

moments into the π * orbitals relative to the surface and therefore support the synthesis of 

VGNs consisting of graphene sheets that grow preferentially perpendicular to the substrate. In 

this case, by looking to the spectra presented in figure (6), the π* orbitals deriving from pz 

orbitals are preferentially oriented parallel to the substrate, and thus the σ* orbitals (in-plane 

graphene bonds) are oriented perpendicular to the substrate. Therefore, as the angle between 

the incident beam and surface increases, the C1s → π* resonance at 285.2 eV increases, which 

validates the SEM images of the respective samples, i.e., preferentially vertically oriented 

graphene nanosheets have been successfully synthesized. 

Thus, comprehensive studies on all the aforementioned results suggesting that VGNs growth 

is initiated at the lowest temperature of 450 °C and show a perfect structure with an increase 

in temperature. The presence of Ni catalyst enhances the growth rate and improves the 

interconnected feature of graphene nanosheets to perfectly orient on the substrate surface. 

 

4. Conclusions 

Vertical graphene nanosheets were deposited by radio frequency capacitively coupled plasma. 

SEM, Raman, XPS, and NEXAFS results affirm the growth of VGNs at the lowest substrate 

temperature of 450 °C. The use of Ni catalyst on the substrate significantly reduced the 

nucleation temperature and raised the quality and growth rate of VGNs in comparison to the 

substrates without Ni. Moreover, the increase in ID/IG ratios and D band intensities indicated 

the improvement in the structural order of graphene nanosheets with increase in synthesis 
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temperature. Furthermore, the sp2 to the sp3 ratio increased with an increase in the synthesis 

temperature. These results are further supported by NEXAFS analysis which demonstrated that 

Ni catalyst facilitates the growth of 2D VGNs at lower temperatures, which opens new horizons 

for the direct growth of vertical graphene on different substrates at low temperatures with 

application-oriented properties.  

 

Acknowledgements. 

The authors want to thank HZB for the allocation of synchrotron radiation beam time at Bessy 

II via projects 17205612ST/R, 17206156ST, 18106986ST, 191-07892-ST/R, and 191-

08281 ST/R as well as Professor Dr. Ch. Woell, Dr. A. Nefedov for providing the end station 

and A. Wagner for fruitful discussions. The authors would also like to acknowledge the 

financial support provided by the French Research Agency through the project ANR 

PlasBioSens and the Region Centre through the project APR Capt’eau. UC and NMS 

acknowledge support of Slovenian Research Agency grant no. N2-0091. This work was 

partially supported by the European Union’s Horizon 2020 research and innovation program 

(PEGASUS H2020-FETOPEN-01-2016-201-RIA 766894). 

 

References. 

[1] Mao S, Yu K, Chang J, Steeber D A, Ocola L E and Chen J 2013 Direct Growth of 

Vertically-oriented Graphene for Field-Effect Transistor Biosensor Sci. Rep. 3 1696 

[2] Wu Y, Yang B, Zong B, Sun H, Shen Z and Feng Y 2004 Carbon nanowalls and related 

materials J. Mater. Chem. 14 469 

[3] Wu Y, Qiao P, Chong T and Shen Z 2002 Carbon nanowalls grown by microwave 

plasma enhanced chemical vapor deposition Adv. Mater. 14 64–7 

[4] Hiramatsu M and Hori M 2010 Carbon nanowalls synthesis and emerging applications. 

DOI 10.1007/978-3-211-99718-5 

[5]  Russo P, Xiao M and Zhou N Y 2017 Carbon nanowalls: A new material for resistive 

switching memory devices Carbon 120 54–62 

[6]  Lehmann K, Yurchenko O, Melke J, Fischer A and Urban G 2018 High electrocatalytic 

activity of metal-free and non-doped hierarchical carbon nanowalls towards oxygen 

reduction reaction Electrochimica Acta 269 657–667 

 [7] Evlashin S A, Maksimov Y M, Dyakonov P V., Pilevsky A A, Maslakov K I, 

Mankelevich Y A, Voronina E N, Vavilov S V., Pavlov A A, Zenova E V., Akhatov I S 

and Suetin N V. 2019 N-Doped Carbon NanoWalls for Power Sources Sci. Rep. 9 6716 

Page 15 of 20 AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[8] Guzmán-Olivos F, Espinoza-González R, Fuenzalida V and Morell G 2019 Field 

emission properties of carbon nanowalls prepared by RF magnetron sputtering Appl. 

Phys. A 125 354 

[9] Kumar S, Martin P, Bendavid A, Bell J and Ostrikov Kostya (Ken) 2019 Oriented 

graphenes from plasma-reformed coconut oil for supercapacitor electrodes 

Nanomaterials 9 1679 

 [10] Yen H-F F, Horng Y-Y Y, Hu M-S S, Yang W-H H, Wen J-R R, Ganguly A, Tai Y, 

Chen K-H H and Chen L-C C 2015 Vertically aligned epitaxial graphene nanowalls with 

dominated nitrogen doping for superior supercapacitors Carbon N. Y. 82 124–34 

[11] Ghosh S, Ganesan K, Polaki S R, Mathews T, Dhara S, Kamruddin M and Tyagi A K 

2015 Influence of substrate on nucleation and growth of vertical graphene nanosheets 

Appl. Surf. Sci. 349 576–81 

[12] Fang J, Levchenko I, Kumar S, Seo D and Ostrikov Kostya (Ken) 2014 Vertically 

aligned graphene flakes on nanoporous templates: morphology, thickness, and defect 

level control by pretreatment Sci. Technol. Adv. Mater.  15 055009 (8pp). 

[13] Hiramatsu M, Nihashi Y, Kondo H and Hori M 2013 Nucleation Control of Carbon 

Nanowalls Using Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition 

Jpn. J. Appl. Phys. 52 01AK05 

[14] Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G Van, 

Vanhulsel A and Haesendonck C Van 2008 Synthesis of few-layer graphene via 

microwave plasma-enhanced chemical vapour deposition Nanotechnology 19 305604 

[15] Krivchenko V, Shevnin P, Pilevsky A, Egorov A, Suetin N, Sen V, Evlashin S and 

Rakhimov A 2012 Influence of the growth temperature on structural and electron field 

emission properties of carbon nanowall/nanotube films synthesized by catalyst-free 

PECVD J. Mater. Chem. 22 16458 

[16] Hori M, Kondo H and Hiramatsu M 2011 Radical-controlled plasma processing for 

nanofabrication. J. Phys. D: Appl. Phys 44 174027 (15pp).   

[17] Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H and Hori M 2005 Vertical 

growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition Diam. 

Relat. Mater. 14 831–4 

[18] Hiramatsu M and Hori M. 2010 Carbon Nanowalls. Chapter 2 Preparation Methods.   

DOI 10.1007/978-3-211-99718-5_2, # Springer-Verlag/Wien pp 9–30 

[19] Bo Z, Yang Y, Chen J, Yu K, Yan J and Cen K 2013 Plasma-enhanced chemical vapor 

deposition synthesis of vertically oriented graphene nanosheets Nanoscale 5 5180 

Page 16 of 20AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[20] Santhosh N, Filipič G, Tatarova E, Baranov O, Kondo H, Sekine M, Hori M, Ostrikov 

K and Cvelbar U 2018 Oriented Carbon Nanostructures by Plasma Processing: Recent 

Advances and Future Challenges Micromachines 9 565 

[21] Park J K, Kang H, Kim J H and Choi W 2018 Improvement of Electrical Properties of 

Carbon Nanowall by the Deposition of Thin Film J. Nanosci. Nanotechnol. 18 6026–8 

[22] Giese A, Schipporeit S, Buck V and Wöhrl N 2018 Synthesis of carbon nanowalls from 

a single-source metal-organic precursor Beilstein J. Nanotechnol. 9 1895–905 

[23] Bo Z, Yu K, Lu G, Wang P, Mao S and Chen J 2011 Understanding growth of carbon 

nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced 

chemical vapor deposition Carbon N. Y. 49 1849–58 

[24] Mori T, Hiramatsu M, Yamakawa K, Takeda K and Hori M 2008 Fabrication of carbon 

nanowalls using electron beam excited plasma-enhanced chemical vapor deposition 

Diam. Relat. Mater. 17 1513–7 

[25] Hiramatsu M, Shiji K, Amano H and Hori M 2004 Fabrication of vertically aligned 

carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor 

deposition assisted by hydrogen radical injection Appl. Phys. Lett. 84 4708–10 

[26] Kondo S, Kawai S, Takeuchi W, Yamakawa K, Den S, Kano H, Hiramatsu M and Hori 

M 2009 Initial growth process of carbon nanowalls synthesized by radical injection 

plasma-enhanced chemical vapor deposition J. Appl. Phys. 106 094302 

[27] Yang Q, Wu J, Li S, Zhang L, Fu J, Huang F F and Cheng Q 2019 Vertically-oriented 

graphene nanowalls: Growth and application in Li-ion batteries Diamond & Related 

Materials 91 54–63. 

[28] Wang J, Zhu M, Outlaw R A A, Zhao X, Manos D M M and Holloway B C C 2004 

Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma 

enhanced chemical vapor deposition Carbon N. Y. 42 2867–72 

[29] Malesevic A, Vizireanu S, Kemps R, Vanhulsel A, Haesendonck C V and Dinescu G 

2007 Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced 

chemical vapor deposition Carbon 45 2932–2937 

[30] Vizireanu S, Mitu B, Luculescu C R, Nistor L C and Dinescu G 2012 PECVD synthesis 

of 2D nanostructured carbon material Surf. Coatings Technol. 211 2–8 

[31] Labbaye T, Kovacevic E, Lecas T, Ammar M R, Canizarès A, Raimboux N, Strunskus 

T, Jaeger C, Simon P and Boulmer-Leborgne C 2018 Enhancement of catalytic effect 

for CNT growth at low temperature by PECVD Applied Surface Science 453 436–441 

[32] Esconjauregui S, Bayer B C C, Fouquet M, Wirth C T T, Ducati C, Hofmann S and 

Page 17 of 20 AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Robertson J 2009 Growth of high-density vertically aligned arrays of carbon nanotubes 

by plasma-assisted catalyst pretreatment Appl. Phys. Lett. 95 173115 

[33] Khalilov U, Bogaerts A, Hussain S, Kovacevic E, Brault P, Boulmer-Leborgne C and 

Neyts E C 2017 Nanoscale mechanisms of CNT growth and etching in plasma 

environment J. Phys. D. Appl. Phys. 50 184001 

[34] Pattyn C, Kovacevic E, Hussain S, Dias A, Lecas T and Berndt. J. 2018 Nanoparticle 

formation in a low pressure argon/aniline RF plasma Appl. Phys. Lett. 112 013102 

[35] Hussain S, Kovacevic E, Amade R, Berndt J, Pattyn C, Dias A, Boulmer-Leborgne C, 

Ammar M R and Bertran-Serra E 2018 Plasma synthesis of polyaniline enrobed carbon 

nanotubes for electrochemical applications. Electrochimica Acta.  268 218–225. 

[36] Labbaye T, Canizares A, Gaillard M, Lecas T, Kovacevic E, Ch Boulmer-Leborgne, 

Strunskus T, Raimboux N, Simon P, Guimbretiere G and Ammar M R 2014 In situ 

Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon 

nanotubes in plasma reactor, Appl. Phys. Lett. 105 213109. 

[37] Gaillard M, Boulmer-Leborgne C, Semmar N, Millon É and Petit A 2012 Carbon 

nanotube growth from metallic nanoparticles deposited by pulsed-laser deposition on 

different substrates Appl. Surf. Sci. 258 9237–41 

[38] Girard-Lauriault P-L, Ruiz J-C, Gross T, Wertheimer M R and Unger W E S 2011 Ultra-

Shallow Chemical Characterization of Organic Thin Films Deposited by Plasma and 

Vacuum-Ultraviolet, Using Angle- and Excitation Energy-Resolved XPS Plasma Chem. 

Plasma Process. 31 535–50 

[39] Maslova O A, Ammar M R, Guimbretiere G, Rouzaud J.-N and Simon P 2012 

Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. 

Physical Review. 86 134205 

[40] Ammar M R, Charon E, Rouzaud J.-N, Aleon J, Guimbretiere G and Simon P 2011 On 

a reliable structural characterization of polished carbons in meteorites by Raman 

Microspectroscopy Spectroscopy Letters. 44 535–538 

[41]  Park J S, Reina A, Saito R, Kong J, Dresselhaus G and Dresselhaus M S 2009 G’ band 

Raman spectra of single, double and triple layer graphene. Carbon 47 1303–1310     

[42] Pimenta A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 

Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chem. 

Chem. Phys. 9 1276–1290    

[43] Ghosh S, Ganesan K, Polaki S R, Ravindran T R, Krishna N G, Kamruddin M and Tyagi 

A K 2014 Evolution and defect analysis of vertical graphene nanosheets J. Raman 

Page 18 of 20AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Spectrosc. 

[44] Yang C, Bi H, Wan D, Huang F, Xie X and Jiang M 2013 Direct PECVD growth of 

vertically erected graphene walls on dielectric substrates as excellent multifunctional 

electrodes J. Mater. Chem. A 1 770–5 

[45] Tuinstra F and Koenig J L 1970 Raman Spectrum of Graphite J. Chem. Phys. 53 1126–

30 

[46] Ammar M R, Galy N, Rouzaud J N, Toulhoat N, Vaudey C E, Simon P and Moncoffre 

N 2015 Characterizing various types of defects in nuclear graphite using Raman 

scattering: Heat treatment, ion irradiation and polishing Carbon N. Y. 95 364–73 

[47] Kurita S, Yoshimura A, Kawamoto H, Uchida T, Kojima K, Tachibana M, Molina-

Morales P and Nakai H 2005 Raman spectra of carbon nanowalls grown by plasma-

enhanced chemical vapor deposition J. Appl. Phys. 97 104320 

[48] Cançado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, 

Magalhães- Paniago R and Pimenta M A 2006 General equation for the determination 

of the crystallite size of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 

163106. 

[49] Knight D S and White W B 1989 Characterization of diamond films by Raman 

spectroscopy J. Mater. Res. 4 385–93 

[50]  Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R 

B, Achete C A and Jorio A 2010 Quantifying ion-induced defects and Raman relaxation 

length in graphene Carbon 48 1592–1597  

[51] Kondo H, Takeuchi W, Hori M, Kimura S, Kato Y, Muro T, Kinoshita T, Sakata 

O, Tajiri H and Hiramatsu M 2011 Synchrotron x-ray analyses of crystalline and 

electronic structures of carbon nanowalls. Appl. Phys. Lett.  99 213110 

 [52] M. Santhosh N, Filipič G, Kovacevic E, Jagodar A, Berndt J, Strunskus T, Kondo H, 

Hori M, Tatarova E and Cvelbar U 2020 N-Graphene Nanowalls via Plasma Nitrogen 

Incorporation and Substitution: The Experimental Evidence Nano-Micro Lett. 12 53 

[53] Yueh C L, Jan J C, Chiou J W, Pong W F, Tsai M H, Chang Y K, Chen Y Y, Lee Y F, 

Tseng P K, Wei S L, Wen C Y, Chen L C and Chen K H 2001 Electronic structure of 

the Fe-layer-catalyzed carbon nanotubes studied by x-ray-absorption spectroscopy Appl. 

Phys. Lett. 79 3179–81 

[54] Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J and Brown N M D 2005 

High resolution XPS characterization of chemical functionalized MWCNTs and 

SWCNTs. Carbon 43, 153–161 

Page 19 of 20 AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[55]  J Stöhr. (1992) NEXAFS Spectroscopy. Springer, Berlin. 

http://dx.doi.org/10.1007/978-3-662-02853-7 

[56] Schmidt C, Breuer T, Wippermann S, Schmidt W G and Witte G 2012 Substrate induced 

thermal decomposition of perfluoro-pentacene thin films on the coinage metals. J. Phys. 

Chem. C. 116 45 24098–24106. 

[57] Tatarova E, Dias A, Henriques J, Abrashev M, Bundaleska N, Kovacevic E, Bundaleski 

N, Cvelbar U, Valcheva E, Arnaudov B, Do Rego A M B B, Ferraria A M, Berndt J, 

Felizardo E, Teodoro O M N D N D, Strunskus T, Alves L L and Gonçalves B 2017 

Towards large-scale in free-standing graphene and N-graphene sheets Sci. Rep. 7 10175 

[58] Ehlert C, Unger W E S and Saalfrank P 2014 C K-edge NEXAFS spectra of graphene 

with physical and chemical defects: a study based on density functional theory Phys. 

Chem. Chem. Phys. 16 14083–95 

[59] Zhang W, Nefedov A, Naboka M, Cao L and Wool C 2012 Molecular orientation of 

terephthalic acid assembly on epitaxial graphene: NEXAFS and XPS study. Phys Chem. 

Chem. Phys 14 10125–10131   

[60] Fischer D A, Wentzcovitch R M, Carr R G, Continenza A and Freeman A J 1991 

Graphitic interlayer states: A carbon K near-edge x-ray-absorption fine-structure study 

Phys. Rev. B 44 1427–9 

[61] Mane J M, Normand François Le, Medjo R E, Cojocaru C S, Ersen O, Senger A, Laffon 

C, Sendja B T, Biouele C M, Ben-Bolie G H, Ateba P O and Parent P 2014 Alignment 

of vertically grown carbon nanostructures studied by X-Ray absorption spectroscopy. 

Materials Sciences and Applications 5 966–983 

[62] Babaa M R, Bantignies J L, Alvarez L, Parent P, Normand F Le, Gulas M, Mane K 

Mane, Poncharal P and Doyle B P 2007 NEXAFS study of multi-walled carbon 

nanotubes functionalization with sulfonated Poly(ether ketone) chains Journal of 

Nanoscience and Nanotechnology 7 3463–3467    

 

  

 

Page 20 of 20AUTHOR SUBMITTED MANUSCRIPT - NANO-125318.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

http://dx.doi.org/10.1007/978-3-662-02853-7

