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ABSTRACT 
 

The human brain is one of the most complex systems known to mankind with 

an estimated 100 billion neurons, 0.15 quadrillion (150 thousand billion) 

synapses and around a trillion glial cells. Understanding this intricate organism 

has long been the objective of many scientists and researchers. The 

motivations for comprehending the human brain can be out of sheer curiosity, 

to cure diseases (e.g.  Alzheimer’s and depression) or to build efficient brain-

inspired computers. More recently, progress has been achieved in modelling 

the role of glia cells, a cell that was not previously recognised as a key player 

in brain repair.  To this end, mathematical models have been developed for 

predicting the behaviour of cells (neuronal and glia) under stimuli. The models 

range in complexity from highly rich in detail such as Hodgkin-Huxley to simpler 

models like Leaky-integrate and Fire (LIF). An artificial neural network is a 

grouping of neurons in a certain structure such as feed forward. Spiking Neural 

Networks (SNNs) are the third generation of neural networks and employ the 

temporal computing abilities of the human brain. Programming languages such 

as Matlab or Pynn are used to simulate SNNs however, simulations exhibit 

signification execution times for large networks. The inclusion of astrocytes, a 

type of glia cell, - in an SNN provides Spiking Astrocyte Neural Network 

(SANN). Due to the high computational and complexity of astrocytes, SANNs 

suffer from even further increased execution times.  

This PhD research addresses the issue of prolonged simulation times by 

utilizing dedicated hardware on FPGAs for accelerating SANN simulations. 

Astrocytes are incorporated into the simulated models to give the SANN the 

ability to self-repair. Since FPGAs have limited resources, a NoC-based multi-

FPGA infrastructure is developed to accommodate SANNs with resource 

demands exceeding a single FPGA. On top of that, a monitoring and 

configuration platform is implemented to configure various aspects of the 

network at the start of operation and to take data off-chip for storage and 

analysis on a PC during simulations. 

The following points summarize the major contributions of this study; 

1- Developing a new 32-bit fixed-point hardware prototype for biologically 

faithful astrocyte model.  

2- Incorporating the astrocyte prototype with hardware models of neurons and 

synapses to facilitate a self-repairing FPGA-based SANN Accelerator 

(FSA).  

3- Designing a novel NoC router, NoC infrastructure and data format to 

facilitate scalable a multi-FPGA NoC AstroByte platform. 

4- A novel FPGA Configuration and Monitoring Platform (FCMP) was utilized 

for injecting faults, configuring the AstroByte platform and capturing real 

time simulation data for monitoring and analysis on a PC. 
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Chapter 1: Introduction 
 

In this chapter, a brief background will be provided regarding the major scientific 

and engineering concepts that have been utilized in the PhD research. The key 

objectives, motivation and challenges of the research will also be presented. 

  

1.1  Background  
 

This research project is multi-disciplinary in nature incorporating the fields of 

brain-inspired computing, FPGA hardware and Networks-on-Chip (NoC) 

strategies. The major motivation behind this study is leveraging the flexibility 

provided by FPGA devices to reduce the simulation times of large SANNs to 

enable carrying out these simulations in a time-efficient manner. The PhD 

addresses the challenge of scalable acceleration of SANN applications on 

FPGA hardware. Achieving large-scale parallel simulations of such systems 

introduces two major challenges. First, establishing dedicated hardware that 

faithfully mimic complex biological processes, such as astrocytes, requires a 

significant amount of hardware resources [1], meaning that the design has to 

incorporate multiple FPGAs. Second, the challenge of communicating both 

spike event (neuron data) and numeric (astrocyte data) across significant 

interconnect pathways between astrocytes and neurons, requires an 

appropriate hardware communication mechanism. The NoC interconnection 

paradigm is a communication mechanism suitable for tackling the interconnect 

challenge. NoCs allows for massive parallel structures in hardware that 

facilitate a great number of computing nodes, while maintaining throughput 

performance under node scaling conditions [2], [3]. 

 The following sub-sections provide a brief introduction for explaining Brain-

inspired Computing, NoC paradigm and FPGAs. 

• Brain-inspired Computing 

In traditional Von Neumann computer architectures, programs are stored in a 

memory and are fetched and executed sequentially by a central processing unit 

This type of computers have functioned well so far but are facing major 

challenge in terms of power consumption and scalability. Brain-inspired 

Computing is seen as a potential replacement for traditional Von Neumann 

architectures[4]. This new trend in research is motivated by the fact that biology, 

in particular the human brain, is able to perform computations more efficiently 

in terms of power consumption, more robust to failures, and in a massively 

parallel manner. lately, SNNs have been seen as a modern way to create such 

brain-like computing systems [5].  

The ability of the human brain to perform self-repair is another significant 

feature that electronic systems designers are keen to mimic in the next 

generation of computer systems. It has been put forward lately that a specific 
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type of glial cell, namely the Astrocyte, is a key player in self-repair as it is now 

believed they have an important role in modulating synaptic activity by 

mediating direct and indirect feedback to presynaptic and postsynaptic neurons 

[6], [7]. The interactions between astrocyte and neuron cells facilitates a 

distributed self-repair capability.   

Astrocytes enwrap groups of tripartite synapses and therefore are able to 

communicate with presynaptic and postsynaptic neurons at synaptic junctions 

[6], [8]–[10]. The SANN [11] is the addition of astrocyte cells in the current SNN 

paradigm. Because of the astrocyte inclusion, SANNs introduce significant 

computational complexity along with higher exchanges of data. Previous work 

at Ulster has developed a small hardware demonstrator of a spiking astrocyte-

neuron network [12], [13], however, progress needs to be made in developing 

a method of accelerating the simulation of large-scale SANNs in hardware. 

• Networks-on-Chip 

Networks-on-Chip is an interconnection centric paradigm with a scalable 

infrastructure that can host a wide variety of subsystems and Intellectual 

properties (IPs). NoC is the answer for current bus-based architecture 

bottlenecks in terms of scalability, performance and efficiency. As the number 

of Computing Elements (CE)s are ever increasing in modern computing 

systems, sharing a single bus introduces many problems [2], [14]–[17]. NoC 

replaces highly dense point to point connections with an internet like structure. 

• FPGAs 

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware that 

through a programmable interconnection structure and Look Up tables (LUTs) 

give the designers the ability of changing the implemented logical function when 

necessary [18]–[20]. This flexibility has made FPGA extremely convenient for 

use in research environments and in applications where hardware 

reconfigurability is an advantage. Modern FPGAs can work at frequencies of 

over 500MHz with complete digital systems now able to reside on the largest, 

high-end devices. Furthermore, beside the reconfigurable elements, modern 

FPGAs contain specialized elements such as Digital Signal Processors (DSPs), 

embedded processors and high-speed transceivers. Therefore, FPGAs have 

found their way into many industrial applications such as aerospace, ASIC 

prototyping and automotive [21]. 

1.2 Motivation  
 

Prior work within the research team at Ulster has demonstrated the astrocyte-

enabled brain-inspired self-repair principle in hardware using floating-point 

implementations [12]. Implementing such SANNs in hardware allows for future 

computing tasks to self-repair in the presence of hardware failure; thereby 

providing high degrees of reliability. One key focus and contribution of this work 

is the feasibility of implementing such mechanisms on FPGAs using reduced 
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fixed-point representation, where biologically realistic accuracy can still be 

maintained. In this context, current research in self-repair has focused on 

astrocytes, which is the mechanism responsible for facilitating fine-grained self-

repair. These SANNs modulate the synaptic activities between neurons via 

distributed astrocytes in the network. This concept was proven in previous work 

when an astrocyte was integrated with an SNN [6]. Due to the complex 

mathematical nature of the astrocyte model in previous work [6], simulating the 

SANN using tools such as Matlab required long execution times, in particular 

as the astrocyte is not event based like traditional SNNs and operates over 

longer biological timescales of hundreds of seconds. This motivated the need 

for designing an FPGA-based SANN Accelerator (FSA) platform for 

accelerating simulations of SANNs through implementing dedicated astrocyte, 

neuron and synapse hardware models on FPGAs [1].  

To facilitate experimentation, a framework was required to enable fault 

injection, spike/astrocyte data recording and visualization of FPGA-based 

SANNs.  Current on-chip mechanisms such as Intel SignalTap II Logic Analyzer 

are not adequate as their capacity is limited by the amount of on-chip memory 

afforded by the FPGA.  

This is the motivation for designing a platform that enables configuration of the 

accelerator SANN- the FSA, injecting faults and sending monitoring data to a 

PC for analysis and storage. The FPGA – based Configuration and Monitoring 

Platform (FCMP) forms the second contribution of this research and is used for 

injecting configuration packets at the start and then collecting monitoring 

packets during the FSA running time. 

Accelerating simulations of massive SNNs necessitates dedicating significant 

FPGA resources for their implementations.  The inclusion of astrocytes, 

especially biologically faithful ones as in this work, into spiking neural networks, 

dramatically increases FPGA hardware usage. Furthermore, the 

communication demands increase as two types of data, namely spikes (from 

neurons) and astrocyte data, have to be exchanged. Thus, accelerating large-

scale SANNs calls for novel approaches beyond single-FPGA shared bus 

utilizations. This interesting challenge has motivated the third contribution of 

this work, which is designing a programmable multi-FPGA NoC-based 

infrastructure that is capable of accommodating large numbers of astrocytes, 

neurons and tripartite synapses and the two-fold communications 

requirements. 

AstroByte, illustrated in Figure 1:1 is a single platform that integrates all the 

above-mentioned contributions. It uses the FSA as its computing element, 

FCMP as its core component for injecting configuration packets and collecting 

data for analysis, and the multi-FPGA NoC structure for providing data 

communication infrastructure for massive parallel SANNs. AstroByte can have 

any number of nodes, Figure 1:1 shows an example 3x3 AstroByte platform. 
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1.3 Thesis Hypothesis and Contributions 
 

The main hypothesis of this research is that dedicated FPGA hardware can 

accelerate SANN simulation. The main task of this research is to prove that 

both spikes, which are discrete in nature, and astrocyte data, which is 

continues, can be generated concurrently in the same system. Furthermore, 

this work proves that efficient interconnection mechanism and data format can 

make a NoC to support both continues and discrete data exchange. 

Additionally, this study acts as evidence that despite NoC interconnection and 

data monitoring overheads, a multi-FPGA SANN platform can retain functional 

accuracy while providing up to x188 speedup when compared to an equivalent 

software model of the SANN. As will be become clearer in chapter 2, there is a 

gap in the literature regarding large-scale implementation of self-repairing 

SANNs that incorporate both continues and discrete computations for self-

repair. 

Below is the list of the major scientific and technical contributions springing from 

this research. 

1- A novel fixed-point hardware prototype for a biologically faithful astrocyte 

model [6] was developed with an appropriate numerical representation type 

and bit resolution. Results demonstrate that the astrocyte accuracy is 

comparable to equivalent software implementations. This contribution 

allows for building SANN FPGA Accelerators with high accuracy while 

reducing hardware footprint when compared to floating point 

implementations.   

Figure 1:1 AstroByte platform 
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2- The new astrocyte hardware was Integrated with neurons and synapses to 

facilitate an FPGA-based SANN Accelerator (FSA). Results indicate that 

accelerations of more than x1000 has been achieved and high accuracy 

was maintained in terms of neurons firing frequency when compared to 

equivalent Matlab models. This proves that FPGA accelerations can save 

researchers in the field of computational brain modelling a great deal of time.   

3- A novel FPGA Configuration and Monitoring Platform (FCMP) was utilized 

for injecting faults, configuring the AstroByte platform and capturing real 

time simulation data for monitoring and analysis on a PC. The FCMP helps 

bypassing the limitations of data collection of tools like SignalTap II in terms 

of the amount of data that can be monitored. Additionally, through the FCMP 

platform the user can change some attributes of the FPGA design without 

re-synthesizing the design, allowing for more time-efficient simulations. 

4- New controllers for high-speed serial transceivers to allow transmission of 

data between FPGA boards were developed, making way for large scale, 

highly parallel multi-FPGA SANN implementations. 

5- A new NoC router was developing that can function with the transceiver 

controllers to realize scalable multi-FPGA NoC infrastructure. 

6- Novel protocols were designed for ensuring integrity of data transformation 

between FPGA boards, as well as the NoC router and AstroByte 

components. This allows for maintaining the accuracy and integrity of 

simulations while large scale SANNs are mapped to the multi-FPGA NoC 

structure. 

1.4   Thesis Outline 
 

Chapter 2 provides a literature review and starts by discussing neuron models 

and then moves onto investigating astrocyte and tri-partite synapse models.  

The chapter summarizes the significant works regarding astrocyte hardware 

utilizations, both in-house models and others, together with the interconnection 

methods for astrocytic signalling in hardware. In addition, the main literature 

regarding SNNs are investigated and the most state of the art in the domain of 

ASIC implementations of SNNs are reviewed. 

Chapter 3 starts with introducing a novel FPGA SANN Accelerator (FSA) that 

has a biologically faithful astrocyte at its core, forming the first contribution of 

this work. A reduced fixed-point representation of the astrocyte process is 

implemented and discussed in detail. To strike a balance between FPGA 

resource usage and accuracy, different bit resolutions are tried and the 

appropriate one is chosen. In addition to that, the ability of FSA to perform self-

repair when exposed to various levels of faults is proved. Furthermore, high 

accuracy is maintained when weighed up against an identical Matlab model. In 

addition, the chapter provide comparisons between acceleration due to utilizing 

a SANN model on dedicated FPGA hardware and a similar Matlab 

implementation.  
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The second contribution of this research is a configuration and monitoring 

platform, called FCMP. The chapter evaluates the architecture and operation of 

FCMP in detail by providing thorough descriptions regarding each of FCMP 

components. The operation of the platform and the interactions between a Nios 

II embedded processor system and custom hardware are analysed. Data 

integrity is assessed by comparing data collected using Intel SignalTap II and 

the FCMP. The new acceleration data from the result of integrating FCMP with 

the SANN hardware are presented as well. Chapter 3 also examines methods 

to enhance FCMP performance and overall acceleration along with showing 

new acceleration figures as the result of these improvements.  

Chapter 4 presents the AstroByte platform’s multi-FPGA NoC infrastructure by 

means of detailed explanation of the AstroByte NoC data format, router 

architecture, operation and the logic blocks forming the router. Additionally, 

AstroByte programmability and the design choices that allow for this flexibility 

are investigated.  Furthermore, the FCMP Interface (FI) and the SANN Interface 

(SI) blocks that allow smooth communication between the NoC router and the 

FSA or the FCMP are discussed. FCMP from Chapter 3 is adapted for proper 

interfacing with the router through FI.  

Chapter 5 presents results and the experiment setup that was used throughout. 

The chapter introduces the example 9-FPGA AstroByte platform configuration 

used for collecting results on throughput and latency. Additionally, a prototype 

AstroByte platform is used to test the features in terms of simulation, under-

sampling and data acquisition. A subsequent section deals with integrating the 

SANN accelerator (FSA) on a 2x2 FPGA AstroByte configuration. Figures 

regarding speedup factors, at different under-sampling rates, and accuracy are 

showcased. In addition, AstroByte is compared against two other (relatively) 

similar platforms, SNAVA and Bluehive, in regard to features and capabilities. 

Chapter 6 is the thesis conclusion which includes a section discussing future 

works and another for self-critic. 

1.5 Publications 
The list of the outcome publications from this work are given below: 

Papers I have published as the first author:  

1- S. Karim et al., “FPGA-based Fault-injection and Data Acquisition of Self-

repairing Spiking Neural Network Hardware,” in 2018 IEEE International 

Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.  

(The work originates from Chapter 3) 

2- S. Karim et al., “Assessing Self-Repair on FPGAs with Biologically Realistic 

Astrocyte-Neuron Networks,” in Proceedings of IEEE Computer Society Annual 

Symposium on VLSI, ISVLSI, 2017, vol. 2017-July, pp. 421–426.  

(The work originates from Chapter 3) 



P a g e  | 19 

 

 
 
 

3- S. Karim et al., “AstroByte: A multi-FPGA Architecture for Accelerated 

Simulations of Fault-tolerant Spiking Astrocyte-Neuron Networks,” in 

Proceedings of IEEE Design, Automation & Test in Europe, DATE, 2020 

(Accepted- a virtual conference is planed pending confirmation of the date).  

(The work originates from Chapters 4 and 5) 

Other papers in which I contributed to include: 

4- A. P. Johnson et al., “Fault-Tolerant Learning in Spiking Astrocyte-Neural 

Networks on FPGAs,” in 2018 31st International Conference on VLSI Design 

and 2018 17th International Conference on Embedded Systems (VLSID), 2018, 

pp. 49–54. 

5- J. Liu et al., “Self-repairing Learning Rule for Spiking Astrocyte-Neuron 

Networks,” Lecture Notes in Computer Science, Springer 2017, pp. 384–392. 

6- A. P. Johnson et al., “Homeostatic Fault Tolerance in Spiking Neural 

Networks: A Dynamic Hardware Perspective,” IEEE Trans. Circuits Systems I: 

Regular. Paper, vol. 65, no. 2, pp. 687–699, Feb. 2018. 

7- A. P. Johnson et al., “Homeostatic fault tolerance in spiking neural networks 

utilizing dynamic partial reconfiguration of FPGAs,” in 2017 International 

Conference on Field Programmable Technology (ICFPT), 2017, pp. 195–198. 

8- J. Liu et al., “Self-repairing Learning Rule for Spiking Astrocyte-Neuron 

Networks,” Springer, Cham, 2017, pp. 384–392. 

9- A. P. Johnson et al., “An FPGA-based hardware-efficient fault-tolerant 

astrocyte-neuron network,” in 2016 IEEE Symposium Series on Computational 

Intelligence (SSCI), 2016, pp. 1–8 
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Chapter 2: Literature Review 
  

This chapter outlines the most important and relevant literature in the domain 

of this work. The main models available for both neurons and astrocytes will be 

discussed. The review will highlight the dynamics and equations of the 

astrocyte model that enables SNNs to perform self-repair. Current research 

progress in FPGA implementations of SNNs will be reviewed along with the 

state of the art in astrocytes hardware implementations. In addition, the chapter 

reviews efforts in establishing astrocyte communications using the NoC 

paradigm. Particular attention will be given to the SNN hardware architectures 

that are comparable to the multi-FPGA architecture implemented in this work.  

2.1 Neuron Models 
 

As a vital component for both understanding and modelling the human brain 

along with construction of neural networks, quantifying neurons behaviour has 

been the subject of intensive research during the last six decades. Rosenblatt’s 

perceptron model [22] is considered to be the first neuron model that has the 

ability of forming a neural networks to perform semi-autonomous tasks through 

supervised learning. Since then, the field of neuron modelling and neural 

networks has gained much attention in the scientific community for various 

purposes e.g. machine learning, computational modelling of the brain and 

power efficient computing. 

As neurons are the fundamental elements in neural networks, this section 

discusses the most widely used models available in the literature. 

2.1.1  Hodgkin-Huxley (HH) Model 
 

This is one of the most famous models as regards quantitatively reproducing 

neural action potentials [23]. This model takes into consideration the 

dependency of sodium, potassium and leak current on the membrane potential. 

Results gained from experiments show that this model can accurately represent 

action potentials together with the membrane voltage threshold and refractory 

periods in biology cells. The current through the cell membrane is given by 

𝐼 = 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝑔̅𝐾𝑛4(𝑉𝑚 − 𝑉𝐾) + 𝑔̅𝑁𝑎 𝑚3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔̅𝑙(𝑉𝑚 − 𝑉𝑙)                      (1) 

where 

𝑑𝑛

𝑑𝑡
=∝𝑛 (𝑉𝑚)(1 − 𝑛) − 𝛽𝑛(𝑉𝑚)𝑛                                                                    (2) 

𝑑𝑚

𝑑𝑡
=∝𝑚 (𝑉𝑚)(1 − 𝑚) − 𝛽𝑚(𝑉𝑚)𝑚                                                                    (3) 

𝑑ℎ

𝑑𝑡
=∝ℎ (𝑉𝑚)(1 − ℎ) − 𝛽ℎ(𝑉𝑚)ℎ                                       (4) 
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Where I is the total current of the membrane, Cm represents the membrane 

capacitance, 𝑔̅k, 𝑔̅Na and 𝑔̅L are potassium, sodium and leak maximum 

conductance, respectively. All the above-mentioned variables are per unit area. 

Vl, VK and VNa are leak, potassium and sodium reversal potentials respectively. 

Vm is the membrane potential while ∝𝑥 and 𝛽𝑥 are rate constants belonging to 

ion channel x. n and m are dimensionless quantities with values of either 1 or 0 

relating to activation of potassium and sodium channels correspondingly and h 

is of a similar nature as n and m but associated with inactivation of sodium 

channels. The HH model reproduces biological properties of membrane cells 

faithfully. However, it requires a great deal of computational power and for this 

reason simpler neuron models are generally used for modelling SNNs. 

2.1.2 Pinsky-Rinzel Model 
 

This is a non-linear two compartment neuron model in which the soma and 

dendrite are modelled in two separate compartments [24]. The equations of this 

model are as follows: -  

𝐶𝑚
𝑑𝑉𝑠

𝑑𝑡
= −𝑔̅𝐿(𝑉𝑠 − 𝐸𝐿) − 𝑔𝑁𝑎(𝑉𝑠 − 𝐸𝑁𝑎) − 𝑔𝐷𝑅(𝑉𝑠 − 𝐸𝐾) +

𝑔𝑐

𝑃
 (𝑉𝑑 − 𝑉𝑠) +

𝐼𝑠

𝑃
        (5)  

𝐶𝑚
𝑑𝑉𝑑

𝑑𝑡
=−𝑔̅𝐿(𝑉𝑑 − 𝐸𝐿) − 𝑔𝐶𝑎(𝑉𝑑 − 𝐸𝐶𝑎) − 𝑔𝐴𝐻𝑃(𝑉𝑑 − 𝐸𝐾)−𝑔𝐶(𝑉𝑑 − 𝐸𝐾) +

𝑔𝑐

1−𝑃
 (𝑉𝑠 − 𝑉𝑑) +

𝐼𝑆𝑦𝑛

1−𝑝
                                (6) 

Where Is is the current applied to soma and p is the percentage area occupied 

by the soma. EL, ECa, ENa and EK are respective leakage, Calcium, Sodium and 

Potassium equilibrium (reverse) potentials. 𝑔̅𝐿, gNa, gDR  gCa , gAHP and gc are 

leakage, Sodium, Potassium delayed rectifier, Calcium, Potassium 

(afterhyperpolarization) and coupling conductance, respectively. ISyn is the 

synaptic current. Although the model uses only two compartments, it can 

replicate a wide range of realistic activity patterns that are created as a result 

of accurate injection of current through the soma or dendrite compartments [25]. 

2.1.3 FitzHugh-Nagumo Model 
 

This model is a simplified form of the HH model. Richard Fitzhugh reduced the 

four equations describing the HH model to a two-dimensional form by making 

several observations and reductions regarding the gating variables n, m and h. 

The final equations adopted by this model are given below:  

𝑑𝑣

𝑑𝑡
= 𝑣(𝑣−∝)(1 − 𝑣) − 𝑤 + 𝐼         (7) 

𝑑𝑤

𝑑𝑡
= 𝜀(𝑣 − 𝛾𝑤)           (8) 

Where v represented the potential (fast variable) and w is the slow variable 

(gating variable of sodium). Other symbols, namely ∝, 𝜀 and γ are constants 
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[26]. The FitzHugh-Nagumo model is also referred to as a single compartment 

model [25].  

2.1.4 Leaky Integrate and Fire Neurons 
 

The Leaky Integrate-and-Fire (LIF) neuron is capable of reproducing firing of 

spikes (action potentials) when the membrane potentials level passes a certain 

threshold. This model can be represented by means of an RC circuit as shown 

in Figure 2:1. 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −

𝑉𝑖−𝐸𝑚

𝑅𝑚
+ 𝐼                      (9)  

Where Rm represents the membrane resistance, Cm is the membrane 

capacitance and I is the cellular current. Other variants of integrate-and-fire 

neurons also exist, such as Quadratic integrate and fire model [25]. 

This study uses this model for accelerating SANN simulations with FPGAs for 

two reasons. Mainly, despite its simplicity, LIF model can reproduce the basic 

characteristics of neurons that are necessary for SNN implementation in an 

efficient manner. In fact, LIF model is used widely in SNN literature because 

the model does not require a lot of computational resources. For this work, the 

characteristics that LIF can reproduce is enough for assessing the AstroByte 

platform and its capabilities in terms of acceleration, accuracy etc, nullifying the 

need of using more area and power-hungry models.  Additionally, the hardware 

implementation of SANN in this study will be compared against an equivalent 

in-house built Matlab model for assessing accuracy and speed of Astrobyte. 

The Matlab model implements LIF model, necessitating choosing LIF for the 

equivalent hardware model to permit comparisons between the two models. An 

alternative approach would be changing the neuron model both in the Matlab 

model and AstroByte, however one can’t justify spending such extra effort 

giving that the LIF model can adequately simulate self-repairing SANNs. 

  

            

                                             Figure 2:1: LIF Circuit model (a) and response (b) [25] 

. 
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2.2 Astrocyte and Tripartite Synapse  
 

Astrocytes are a type of glial cell found in the human brain in large quantities. It 

is estimated that their numbers outweigh that of neurons by 10:1 and amass 

around 25%-50% of the total brain volume. Contrary to neurons, astrocytes do 

not have axons and are unable to output action potentials. Despite the fact that 

the existence of astrocytes has been known for a long time, their functionality 

was not understood as they were thought to only provide structural support to 

neurons. Recent findings, however, indicate that astrocytes contribute to 

synaptic activity modelling and metabolic interactions with neurons  [6], [27]. 

Astrocytes are able to interact with neurons via the tripartite synapse. At a 

tripartite synapse junction, an astrocyte process surrounds both presynaptic 

and postsynaptic terminals (Figure 2:2) enabling the astrocytes to monitor and 

regulate synaptic activity between the presynaptic and postsynaptic neurons. 

Moreover, astrocytes are able to communicate to each other through 

propagation of IP3 (Inositol trisphosphate) and calcium waves [6], [9], [28], [29]. 

Although there is a form of consensus in the literature regarding the fact that 

astrocytes observe and modify synaptic activity, the exact mechanisms of this 

process are interpreted differently in the available publications. In the following 

sections, we study some of these models. 

2.2.1 Astrocyte Models 
 

The Gatekeeper model [30] views the astrocyte as a gatekeeper that controls 

the spiking rate of the presynaptic terminals that fire constantly and frequently. 

Astrocyte Intracellular calcium levels are affected by synaptic activity since 

Metabotropic Glutamate (mGlu) receptors located on astrocytes can sense 

such activities and lead to an increase in the concentrations of IP3. The 

Gatekeeper model uses the Li-Rinzel model in which IP3 levels increase upon 

release of neurotransmitters and causes IP3 mediated calcium release in the 

astrocyte cell [31].  

In addition to the Gatekeeper model, other astrocyte formulae regarding their 

impacts on both presynaptic and postsynaptic neurons can be found in the 

literature. A model developed by Nadkarni and Jung [32] has expressed 

astrocytes as synaptic activity enhancers, in contrast to the Gatekeeper model 

discussed above. In this model astrocyte activity results in synaptic potentiation. 

Here, glutamate emitted by astrocytes balances calcium in the presynaptic 

axon. The source of this calcium is different from that released as a result of 

the application of a voltage to the presynaptic terminal since it correlates with 

the astrocyte in terms of timescale. The overall effect is improving the 

probability of neurotransmitter release following an action potential. 

Other astrocyte models have focussed on the function of astrocytes in neural 

networks. Guimarães et al [33] has investigated using astrocyte for stimulating 

the impact of nicotine on attentional focus. The upshots of tripartite synapses 

absorbing glutamate imitated from astrocyte is investigated. Also, the research 
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addresses the significant capacity of astrocytes to regulate neural response 

throughout a Reward-Attention Coupled (RAC) circuit [34]. The RAC combines 

thalamocortical and reward circuitry to look into how nicotine affects attention 

focus. To this effect, a mathematical model has been developed to represent 

the mechanism of interactions between the reward and thalamocortical circuits. 

Simulations of the mathematical model have been carried out that show the 

interactions between an astrocyte and the RAC circuit and vice versa. The 

authors have come to conclusion that astrocytes enhance neural network 

transmissions. Deemyad et al [35] has investigated the relationship of astrocytic 

calcium activity with neuronal barrage firing [36], [37]. The authors have 

reported two main evidences for this phenomenon. Firstly, they have reported 

that barrage firing can still be observed in mice despite lacking necessary units 

for inducing electrical signals between neurons. The authors see this as 

evidence that astrocytes, through numerous connections at synaptic gap, could 

be the initiators of barrage firing. Secondly, inhibiting of barrage firing can be 

observed by deconcentrating extracellular calcium or closing L-Cav (L-type 

voltage gated calcium) channels. In contrary, buffering calcium in interneurons 

does not inhibit barrage firing. The authors have summarized that mechanisms 

of neural networks, both special and temporal, are being influenced by 

astrocytes through direct integration of neuronal activity and driving barrage 

firing some populations of inhibitory interneurons. 

Astrocytes have also been used to increase firing rate at tripartite synapses. In 

Abed et al [38], the internal calcium pool of the astrocyte is being excited by two 

mechanisms. The first one is a fast mechanism that is initiated by depolarization 

in postsynaptic neuron. The second one is a slow mechanism which is initiated 

by presynaptic diffusion. Both these values add to calcium volumes inside the 

astrocyte. Once a threshold is reached, an astrocyte mediator is emitted that 

affects the synaptic terminal and increases the possibility of firing in the 

postsynaptic terminal. Improved firing rate has also been investigated in a 

theoretical study of the reasons behind unusual ( extremely high or low) levels 

of gliotransmitters at synaptic connections exists [39]. The aim is to remotely 

keep gliotransmitters concentration levels by means of improving performance 

of the molecular communications that facilitate Ca2+ signalling. 

Other publications have integrated astrocytes into neural networks for 

improving the networks ability to solve classification problems. In one of such 

study, an artificial neuron-glial network (NGN) has been developed and used 

for solving classification problems [40]. The astrocyte in this model is stimulated 

when the associated synaptic junction experiences neural activity for a 

minimum of x out of y iterations (4 out of 6, for example). When the astrocyte is 

active the synaptic weights increase by 25%, otherwise they decrease by 50%.  

The authors report that the NGN performance is significantly higher than that of 

traditional neural networks. Furthermore, astrocytes have been used in artificial 

NGNs to automate the generation of the values that are usually considered as 

constant parameters in neuron-glial models. Each neuron is connected to an 
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astrocyte in this model and improvements have been reported over traditional 

Artificial Neural Networks (ANNs)  and other NGNs in terms of solving 

classification problems [41]. 

This section discussed the most prominent astrocyte models (e.g. The 

Gatekeeper and Nadkarni and Jung models). Further models of astrocytes 

were discussed to cite some of the usages of astrocytes in the literature. Finally, 

two review articles will be cited that contain more models of astrocytes, their 

calcium dynamics and their interactions with neurons [42], [43]. 

➢ SPANNER & In-house Models 

The SPANNER project explored the association between astrocytes and 

neurons to develop the next generation of algorithms and hardware with the 

capability of fine-grain fault-tolerant systems [44].   

This section discusses the state-of-the-art research in astrocyte modelling and 

their internal dynamics that have been developed at Intelligent Systems 

Research Centre (ISRC). 

Liu et al [45] proposes a biophysical model for reproducing presynaptic and 

postsynaptic neurons, A Gamma AminoButyric Acid (GABA) interneuron and 

an astrocyte. According to this model, astrocytic release of calcium from IP3 

pathways is triggered by GABA produced by GABA interneurons. In turn, the 

presynaptic transmission probability rate increases which leads to weight 

potentiation as well as an incremental uptake in postsynaptic spiking activity 

before stabilising. The authors have proven that IP3-probability rate interactions 

cause burst-firing at postsynaptic neurons before the initial phase of weight 

potentiation.   

Moreover, an astrocyte model with BSTDP learning rule has been reported [46]. 

It combines Spike Timing Dependent Plasticity (STDP) [47] and Bienenstock, 

Cooper, and Munro (BCM) [48] rules (hence the name BSTDP). In this model, 

postsynaptic neuron activity participates in potentiation of synaptic weight along 

with temporal dissimilarity between presynaptic and postsynaptic neurons firing 

times. It is proven that the height of plasticity window is governed by BSTDP 

that results in the formation of mapping of inputs to outputs during the learning 

phase as well as keeping the mapping through self-repair in case synaptic 

pathways become defective. The real-time self-repairing capabilities of the 

proposed SANN is affected by the influence of the plasticity window height on 

the firing activity of postsynaptic neurons. The self-repairing attribute of the 

SANN has been demonstrated through an obstacle avoidance application on a 

robotic platform. Furthermore, the reported simulation results reveal that 

despite fault ratios of up to 80% (not affected by fault location) the SANN 

maintains its learning manoeuvres. 

Modelling glutamate transporters of astrocytes has been explored in a different 

study [49]. Experimental data and thermodynamics fundamentals have been 

used to derive an explicit model for glutamate transporters of astrocytes, 
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focussing on glutamate-induced chemical potential on astrocyte membranes. 

The model shows that uptake in glutamate as a result of synthetize 

downregulation of glutamine causes postsynaptic quantal size because of 

gliotransmission. Also, the proposed model indicates that higher astrocytic 

glutamate levels could increase the time course of glutamate in synaptic cleft 

and modifies the slow currents produced by the astrocyte. This leads to uptake 

in frequency of postsynaptic junction and disturbing synaptic signalling. 

2.2.2 An Astrocyte Model for Self-repairing Hardware 
Research at the Intelligent Systems Research Centre (ISRC) has led to an 

astrocyte model specific to performing self-repair in SANNs. This model will be 

investigated in more detail than the others since it is used in this work for 

realizing an astrocyte module in hardware.  

The self-repair mechanism focuses on the interactions between astrocyte and 

neurons. The Ulster model for astrocytes operates within a feedback loop 

where the activity of neurons is relayed back to their associated synapses via 

astrocytes [3], [5], [19],[50].  

This self-repair mechanism is illustrated in Figure 2:2. When a synapse fails to 

release neurotransmitter, the associated neural activity falls and consequently 

the level of 2-AG decreases. The absence of the 2-AG signal, which is a 

retrograde feedback messenger from active postsynaptic neurons, causes an 

overall increase in PR at all tripartite synapses. This is because the direct 

feedback of 2-AG to the presynaptic terminal DSE has diminished leaving the 

indirect feedback signal from the astrocyte e-SP to cause a sudden increase in 

PR. It is important to note that one or more nearby active neurons will be 

sufficient to maintain the astrocyte in an excited state. Therefore, the repair-

Figure 2:2 Tripartite synapse [6] 
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capability can be viewed as distributed whereby the state of neurons is 

continually monitored locally by the nearby astrocyte. Also because the 

astrocyte coverage is up to about 105 synapses then local in biological network 

terms can be anything between 4 to 12 neurons [51]. The equations 

representing the self-repairing mechanism in the astrocyte and neuron models 

are given in equations (10)-(27).  

Whenever the postsynaptic neuron fires, an amount of 2-AG is released and 

can be represented using the following equation: 

𝑑(𝐴𝐺)

𝑑𝑡
=

−𝐴𝐺

𝜏𝐴𝐺
+ 𝑟𝐴𝐺 𝛿(𝑡 − 𝑡𝑝)                                         (10) 

Here, AG is the volume of available 2-AG, 𝜏𝐴𝐺 and 𝑟𝐴𝐺 are the decay rate and 

production rate of 2-AG, respectively. IP3 can be modelled by: 

 
𝑑(𝐼𝑃3)

𝑑𝑡
=

𝐼𝑃3∗−𝐼𝑃3

𝜏𝑖𝑝3
+ 𝑟𝑖𝑝3 𝐴𝐺                             (11) 

where 𝜏𝑖𝑝3 and 𝑟𝑖𝑝3 are IP3 decay and production rates, consecutively and 𝐼𝑃3∗ 

is the initial level of IP3. This change in IP3 quantity can trigger calcium release 

which is given by [31]: 

𝑑(𝐶𝑎2+)

𝑑𝑡
=  𝐽𝑐ℎ𝑎𝑛 −  𝐽𝑝𝑢𝑚𝑝 +  𝐽𝑙𝑒𝑎𝑘                           (12) 

Here,  𝐽𝑐ℎ𝑎𝑛 is the IP3 and Ca2+ dependent calcium release, 𝐽𝑝𝑢𝑚𝑝 is the quantity 

of Ca2+ pumped into the Endoplasmic Reticulum (ER) and 𝐽𝑙𝑒𝑎𝑘 is the total Ca2+ 

leaked from the ER. The fraction of IP3 receptors that is activated (h) is given 

by: 

𝑑ℎ

𝑑𝑡
=

ℎ∞−ℎ

𝜏ℎ
                                       (13) 

where h∞ and 𝜏ℎ are given by:  

ℎ∞ =
𝑄2

𝑄2+ 𝐶𝑎2+                    (14) 

 𝜏ℎ =
1

𝑎2(𝑄2+ 𝐶𝑎2+)
                                       (15) 

and 

𝑄2 = 𝑑2
𝐼𝑃3+𝑑1

𝐼𝑃3+𝑑3
                    (16) 

𝐽𝑐ℎ𝑎𝑛 is represented as follows: 

𝐽𝑐ℎ𝑎𝑛 = 𝑟𝐶𝑚∞
3 𝑛∞

3 ℎ3(𝐶0 − (1 + 𝐶1)𝐶𝑎2+)                                                       (17) 

where, 𝑟𝐶 is the maximum Calcium Induced Calcium Release (CICR) rate, 𝐶1 is 

the volume ratio of ER to cytoplasm and 𝐶0 is the amount of free calcium in the 

Cytoplasm, d1, d2 and d3 are constants. Moreover, 𝑚∞ and 𝑛∞ are given by: 
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𝑚∞ =
𝐼𝑃3

𝐼𝑃3+𝑑1
                                                           (18) 

and 

𝑛∞ =
𝐶𝑎2+

𝐶𝑎2++𝑑5
                              (19) 

𝑚∞ is the IP3 Induced Calcium Release channel, d5 is a constant and 𝑛∞ is the 

CICR channel. 

Equations (20) and (21) quantify the leak channel as: 

𝐽𝑙𝑒𝑎𝑘 = 𝑟𝐿(𝐶0 − (1 + 𝑐1)𝐶𝑎2+)                                                                          (20) 

and the pump channel as: 

𝐽𝑃𝑢𝑚𝑝 =
𝑣𝐸𝑅 (𝐶𝑎2+)2

𝑘𝐸𝑅
2 + (𝐶𝑎2+)2                                                                                            (21) 

Where 𝑉𝐸𝑅 is the maximum rate of Calcium pumped into the ER, 𝐾𝐸𝑅 is a 

SERCA pump activation constant and 𝑟𝐿 is the leakage rate of Calcium in the 

opposite direction. 

Depolarization induced Suppression of Excitation (DSE) is assumed to have 

the following relation with AG: 

DSE = AG * 𝐾𝐴𝐺                  (22) 

The reason for including the scaling factor 𝐾𝐴𝐺 (=-4000) is to change the 2-AG 

level to a favourable negative range. 

The internal calcium dynamics control glutamate release in this astrocyte model 

which is given as:  

𝑑(𝐺𝑙𝑢)

𝑑𝑡
=

−𝐺𝑙𝑢

𝜏𝐺𝑙𝑢
+ 𝑟𝐺𝑙𝑢 𝛿(𝑡 − 𝑡𝐶𝑎)                            (23) 

𝜏𝐺𝑙𝑢 and 𝑟𝐺𝑙𝑢 are the (respective) decay and production rates of glutamate, and 

𝑡𝐶𝑎 is the time the calcium passes a certain threshold. Lastly, eSP, increase of 

synaptic transmission Probability of Release (PR), is given by: 

𝜏𝑒𝑆𝑃
𝑑(𝑒𝑆𝑃)

𝑑𝑡
= −𝑒𝑆𝑃 + 𝑚𝑒𝑆𝑃 𝐺𝑙𝑢(𝑡)                  (24) 

Where 𝜏𝑒𝑆𝑃 is the rate of eSP decay, 𝑚𝑒𝑆𝑃 is a constant (fixed at 55*103).  

The passive LIF neuron model [52] that is used in the self-repairing SANN can 

be given as: 

𝜏𝑚
𝑑𝑣

𝑑𝑡
= −𝑣(𝑡) + 𝑅𝑚 ∑ 𝐼𝑠𝑦𝑛

𝑖 (𝑡)𝑛
𝑖=1                           (25) 

Where 𝜏𝑚,v and 𝑅𝑚 are the membrane constant, potential and resistance, 

respectively,  𝐼𝑠𝑦𝑛
𝑖  is the current injected to the neuron through synapse i.  
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A probabilistic based tripartite synapse model is used in this model where a 

random number between 0 and 1 is generated by a uniformly distributed 

pseudorandom number generator. The injected current is given by:  

𝐼𝑠𝑦𝑛
𝑖 (𝑡) = {

𝐼𝑖𝑛𝑗     𝑃𝑟𝑎𝑛𝑑  ≤ 𝑃𝑅(𝑡)

0         𝑃𝑟𝑎𝑛𝑑 > 𝑃𝑅(𝑡)
                                                                         (26) 

Where Iinj=6650pA. In the case the network suffers no faults, as seen in Figure 

2:3.a, the PR relating to each synapse is presented as: 

𝑃𝑅(𝑡) =
𝑃𝑅(𝑡0)

100
∗ 𝐷𝑆𝐸(𝑡) +

𝑃𝑅(𝑡0)

100
∗ 𝑒𝑆𝑃(𝑡)                                                   (27) 

Here, 𝑃𝑅(𝑡0) is the initial PR of each corresponding synapse. In this case each 

synapse activity is depressed by ~50% overall. When a major fault is present 

the equation can be rewritten as:               

𝑃𝑅 → (
𝑃𝑅(𝑡0)

100
∗ 𝑒𝑆𝑃(𝑡))                                                                                        (28) 

With the absence of DSE, the PR sees an increase of 200% at the associated 

healthy synapse site. In short, it means that even if N2 is silent because of one 

or more faulty synapses, other healthy synapses or the recoverable faulty 

synapses still can bring N2 back to activity due to the indirect signalling from 

N1 via the astrocyte pathway. 

This study implements the astrocyte model discussed in this section for several 

reasons. Firstly, as it is an in-house model the minute details of it is 

implementation is clear. These details are highly important when transferring 

such a complex model to hardware. Secondly, this model provides SNNs with 

self-repairing ability, making it extremely interesting for hardware 

implementation. It would be interesting to compare this model’s hardware 

implementation with those of other astrocyte models in the literature in terms of 

power consumption and area footprint, however this falls beyond the scope of 

this work. 

Figure 2:3 Interactions between the astrocyte and the two neurons between and after faults [6] 

a b 
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2.2.3 Astrocyte Hardware Implementations 
 

In this section, the efforts to realize astrocytes in hardware are reviewed. 

Research has focused on hardware implementation of astro-neuron 

interactions using resource-efficient FPGA astrocyte hardware [53] , [54]. The 

authors report that their model proves that firing rates of neurons can be 

modified by astrocytes and that astrocytes heavily regulate exchange of 

information at synaptic junctions. This is physically done my means of bi-

directional channels between neurons and astrocytes. Single Constant Multiply 

(SCM) and linear approximation techniques have been used that permit 

deploying shift registers and adders instead of more resource-heavy 

components such as multipliers.  

Linearization of the non-linear functions that represent biologically faithful 

astrocyte models has also been explored in the literature [55]. The linearization 

is done by using search algorithms for finding parameters that allow for lower 

cost hardware implementation while retaining reasonable accuracy. This 

technique has enabled the authors to implement an astrocyte hardware model 

without using DSP multipliers. Another similar work uses piecewise-linear 

approximation to eliminate the need for using multipliers while realizing 

astrocytes in FPGA hardware [56]. 

In other works [57], [58], an astrocyte model is put forward that breaks the 

synchronisation of two “Hopf” oscillators. The circuit is realized on FPGAs and 

the authors report a successful asynchronous operation of the “Hopf” 

oscillators.  

Astrocytes have been incorporated into Intel’s Loihi [59] many core 

neuromorphic processor [60] through connecting Loihi compartments and 

tuning the compartments’ internal dynamics to mimic astrocytes behaviour. 

Loihi’s original Software Development Kit (SDK) has been modified to allow for 

astrocyte implementation in the neuromorphic chip. The proposed Loihi 

Astrocyte Module (LAM) is able to reproduce the fundamental astro-neuron 

communication channels at the tripartite junctions as well as astrocytic intra-

cellular calcium changes in response to synaptic activities. The three cases in 

which the effect of the proposed LAM is demonstrated are 1) How astrocytes 

modulate neuronal activity through their calcium dynamics; 2) How STDP 

mediated by astrocytes introduce single-shot pattern memorization; 3) How the 

transition between order and chaos can be sensed by astrocytes.  

In addition to the digital implementations discussed so far, analogue realization 

of astrocytes has also been explored [8], [61],[62], [63]. Generally, analogue 

circuits are more compact and energy efficient than digital implementation. 

However, analogue circuits are more prone to noise and require more memory. 

Moreover, the existing Electronics Design Automation (EDA) tools cannot infer 

analogue circuit from HDL codes. 
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SPANNER (a hardware architecture, not to be confused with SPANNER 

project) is a hardware implementation of the astrocyte model (Section 2.2.1) 

that is used to perform self-repair in astrocyte-Neural networks [12]. In this work, 

an astrocyte monitors synaptic activities that happen in two adjacent neurons 

as shown in Figure 2:4. Encouraging results have been reported that 

demonstrates the ability of the astrocyte to recover the firing rate when faulty 

occurs on synapses. If the postsynaptic terminal is damaged beyond repair, the 

astrocyte will try to make up for the lost neural activity by increasing the rate at 

which the remaining healthy synapses belonging to the same neuron can fire. 

The SPANNER architecture has been used to implement a simple controller for 

a robotic car [64] to demonstrate the principle.  

A modified SANN has also been developed in hardware that uses STDP and 

BCM rules to facilitate learning and self-repair [65]. The astrocyte in this model 

regulates spike transmission between the two layers of the network, effectively 

acting as a frequency filter. Whenever a fault occurs (manifested by lowering of 

a target neuron’s firing rate) the learning window will be re-opened, and the 

target neuron’s frequency reaches its previous value again after the end of 

training window. The proposed SANN has been made the bases of a controller 

that allows a robotic car to avoid obstacles and follow a particular colour. This 

work has been realized using time domain multiplexing for reducing interneuron 

hardware overhead in a different publication [66]. 

Optimizing resource consumption of a hardware implementation of the 

astrocyte model [6] has been explored in SPANNER project [67]. Some of the 

biologically detailed features of the astrocyte process have been removed. The 

result is a resource-optimized astrocyte model that is less faithful in terms of 

biological dynamics but can still perform self-repair in SANNs. Further 

optimizations have been carried out through modifying equation parameters 

that allow for simpler and less resource-hungry implementation. 

Finally, research undertaken as part of SPANNER project has focussed on 

using homeostatic principle in neurons for self-repair [68], [69]. No astrocyte is 

implemented in this work as, instead, homeostatic has been achieved by; 1) 

Designing neurons with variable firing voltage threshold; and 2) Using FPGAs’ 

Partial Dynamics Feature for adjusting the operating frequency of the neurons.   
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• The limitations of the available approaches  

Apart from SPANNER [67], [70], none of the other approaches aimed at 

providing SNNs with fine-grained self-repairing ability. Several of the astrocyte 

hardware implementations do not report any applications [55], [56]. Other works 

apply astrocytes for regulating and improving neuronal activity [53], [54]. 

However, on top of inability to self-repair, no solid infrastructure has been 

provided in these works for scalability beyond one FPGA devices. Furthermore, 

the reported approaches lack re-configurability and ability of data acquisition, 

the features that are incorporated in the AstroByte platform. Other published 

applications of astrocytes are not related to SNNs [57], [58]. 

2.2.4 Hardware Interconnection Paradigms for Astrocytic Signalling  
 

The focus of this research is designing a multi-FPGA, scalable and 

programmable platform for SANN acceleration called AstroByte. Among its 

many attributes, AstroByte can send astrocytic data, namely eSP, to nearby 

neurons. This section will outline similar work that deal with the challenge of 

communicating astrocytic data through scalable structures. 

The first interconnection architecture  to be referred to is H-NoC [71]. In fact, H-

NoC, in its original form, is designed for SNNs as opposed to SANN. However, 

  Figure 2:4 SPANNER hardware architecture [12] 
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since H-NoC will be improved on by several works that will be discussed in this 

section, it will be studied here.  

H-NoC is a hierarchical and scalable NoC architecture for large scale SNN 

implementation as can be seen in Figure 2:5. At the bottom of the hierarchy 

exist the neuron facilities, each composing of a node router and four neuron 

cells. Ten such neuron facilities are interconnected using a tile router which, as 

well its ability to route spikes between neuron facilities, can also route data to 

the next layer in the hierarchy. Cluster routers are placed at the top of the 

hierarchy to create cluster facilities which route SNN packets between four tile 

facilities and other cluster facilities. Another feature of H-NoC is its utilization of 

a compression technique that enhances throughput and decreases traffic 

overhead. 

H-NoC has been modified to accommodate for astrocytic communications with 

neurons as well with each other, giving rise to HANA - Hierarchical Astrocyte 

Network Architecture [72], [73]. HANA main components are astrocyte cells and 

astrocyte tile facilities. Large scale astrocytic networks can be realized by using 

a number of astrocyte tile facilities as shown in Figure 2:6. A number of 

communication approaches have been applied which are broadcast in one tile, 

broadcast among a different tile’s astrocyte cells, point-to-point with in one tile 

and point-to-point between astrocyte cells in different tiles. This will manage 

traffic both globally and locally and achieves traffic balancing.  

Figure 2:5 H-NoC overall architecture [71] 

 



P a g e  | 34 

 

 
 
 

Further research has been carried out for establishing astro-neuron 

interconnections [74], [75]. The overall architecture is similar to the works 

mentioned above [72], [73] but differ in implementation details. Here, an 

astrocyte tile router has been used for regulating an IP3 pool among the 

astrocytes. Inter-routers have been implemented that serializes 64-bit IP3 

values from the astrocyte for internal operations and parallelizes astrocyte-

bound serial data that represents updated IP3 value. The overall architecture 

of the astrocyte tile router is shown Figure 2:7. The IP3 value from the astrocyte 

tile router is sent to all the astrocytes through an update manager that grants 

interneurons tokens for updating the IP3 pool value and then schedules 

updates to the astrocytic IP3 levels. 

2.3 SNN FPGA Implementations  
 

Simulating SNNs has traditionally been performed using a programming 

language such as MATLAB or PyNN [76] that run on single or multicore general-

purpose processors [77]–[80]. In addition, some researchers have focussed on 

implementing SNN simulations on GPUs [81]–[86]. 

FPGAs are another attractive option for simulating SNNs due to their on-field 

re-configurability and  ability to realize dedicated hardware in a parallel manner 

[10], [87]. This has made FPGAs an interesting alternative to general purpose 

CPUs and GPUs for SNN realizations, whether it is for purely simulation, 

acceleration or application purposes.  

Figure 2:6 HANA overall architecture [61] 
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To this effect, the EMBRACE architecture, an in-house custom SNN structure 

that leverages NoC paradigm for scalable SNN FPGA simulations using a 

power and area efficient neuron model has been developed [10]. Embrace 

deploys a 2D mesh NoC structure that has a programmable neural tile router 

as its building block. The neural tiles can be reconfigured via packets that 

updates an address table to store the addresses of target presynaptic 

connections, defines the synaptic weights, and choses the model implemented 

for synaptic connections. An XOR problem was successfully mapped into an 

SNN created on EMBRACE architecture to verify its functionality. An overall 

architecture of Embrace platform is shown in Figure 2:8. 

Subsequent work has realized an EMBRACE-based SNN that facilitates 32 

neurons with 32 synapses each on Xilinx Virtex II-Pro FPGA device [88]. The 

XOR problem has been solved on the SNN, which has been incorporated into                                                        

Evo Platform – a Genetic Algorithm (GA) platform that aids in evaluating SNN 

features for various applications. Further research has been carried out to re-

route traffic in the mesh interconnect in case of congestion, thanks to 

incorporating a router that is able to adapt to traffic patterns, avoiding dropped 

router packets when congestion happens [89]. A 4 x 2 EMBRACE architecture 

model was tested on an Intel Stratix II FPGA to demonstrate the new traffic-

adaptability feature. 

A different approach has been adopted in NeuroFlow [87], a scalable platform 

for SNN simulation using FPGAs. This is a specialized processor with flexible 

architecture that can be modified to suit different configurations. It uses PyNN, 

an open source, neural network simulation language that is based on Python 

for modifying the processor architecture. Necessary compilation tools ensure 

translating high-level specifications of networks to FPGA implementations. 

Different models for neurons (e.g. LIF and Izhikevich) can be chosen and using 

Figure 2:7 Astrocyte tile router [75] 
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STDP as a learning rule is optional. A platform consisting of 6 FPGAs can 

perform real-time simulations of up to 400,000 neurons. A single FPGA 

NeuroFlow system can run simulations x33.6 faster than and equivalent 

software implementation on an 8-core processor while performing x2.83 better 

than a GPU model. NeuroFlow does not create a fully specialized accelerator 

for the network to be simulated as it uses kernels for simulating networks of 

large dimensions. NeuroFlow builds on two previous works by the authors for 

leveraging FPGA hardware for parallel, large-scale SNN simulations [90], [91] 

A separate study has employed a fully connected SNN of 1024 spiking neurons 

on FPGAs [92]. Synaptic weights have been stored in block RAMs and the 

Izhikevich Neuron model [93] has been used. The authors have reported 2.2 

GFlops in double precision as a performance measure. A different research has 

also focussed on SNN simulations in real-time [94]. An FPGA platform has been 

designed on Xilinx Virtex 6 FPGA device to emulate a fully connected network 

of 256 Izhikevich neurons. The work has explored fixed-point arithmetic for fast 

and hardware-efficient employment. The hardware prototype a sampling rate of 

10 KHz to achieve “real-time” simulations in timesteps of 0.1ms.  

FPGA utilizations of polychromous SNNs has also been investigated in the 

literature [95]. In contrast to using synaptic weights for information encoding, 

polychromous [96] method depends on delays caused by axons for evaluating 

and encoding information, making polychromous SNNs “ideal” for simulating 

short-term memory for patterns that are spatio-temporal in nature. The 

hardware realization is achieved by grouping the neurons together – creating 

neuron array- and grouping axons together - axon array. Instead of modifying 

synaptic weights, axonal delays are tuned during the training phase by a delay 

adaptation algorithm depending on pre-synaptic and post-synaptic firing time, 

effectively utilizing STDP rule. Two buses that operate using a modified version 

of Address Event Representation (AER) connect the two arrays together. One 

takes AER post-synaptic spikes to the axon arrays form the neuron arrays and 

Figure 2:8 Embrace Architecture [10] 
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the other bringing pre-synaptic spikes from the axon arrays to the neuron array, 

creating a loop-like structure as shown in Figure 2:9. 

The authors reveal that 1.15 million axons (with programmable delay capability) 

and 4096 neurons can be accommodated on a Xilinx Virtex 6 FPGA through 

leveraging time multiplexing. Finally, it is indicated that >95% of spikes for 96% 

of the stored patterns can be reproduced. 

Bluehive [97] and SNAVA [98] are two multi-FPGA platforms that share several 

attributes with AstroByte platform, the contribution of this research. In 

subsequent chapters both SNAVA and Bluehive will be re-visited for 

comparison with AstroByte platform in terms of features, capabilities and 

performance. Bluehive [97] sees SNN emulation as a communication centric 

issue and tries tackling it from this perspective. It is a multi-FPGA platform for 

large-scale SNN real-time simulations. The FPGA boards used are DE4 boards 

are supplemented with Intel Stratix IV 230 FPGAs. The mapping of an 

application is done by using external DDR2 RAMs as neural netlists. The 

external DRAMs also contain parameters to be streamed to the processing 

units (called equation processor in the paper) along with the addresses of the 

destination neurons. The platform focusses on massive real time simulations 

as opposed to accelerating these simulations. The configuration given in the 

paper is 3D torus with each link having 18gb/s bandwidth. Simulation results 

are stored off chip and then read out post-simulation. Each FPGA supports real-

time simulation of 64,000 neurons and 64M synapses through time-multiplexing 

hardware resources. Bluehive has several limitations which can be summarized 

as following. Firstly, it has limited reconfigurability as only the SNN structure 

can be modified. Secondly, simulations are limited to SNNs as opposed to 

SANNs, the focus of the AstroByte platform. Furthermore, no acceleration is 

possible as Bluehive has been exclusively designed for real-time simulations. 

Figure 2:9: Architecture of the proposed polychromous SNN [95] 
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In addition, simulations have to be stopped completely before analysis data can 

be off-loaded from the platform to a PC. 

SNAVA [98] allows parallel real-time simulation of SNNs by means of a scalable 

and programmable architecture that can scale to incorporate a number of 

FPGAs. It uses AER on a shared bus to communicate spikes between different 

Processing Elements (PEs). This shared bus extends to multiple FPGA boards 

in a ring topology. A special Instruction Set Architecture (ISA) is provided that 

can; 1) Configure the programmable Central Processing Element (CPE) to a 

desired neuron and synapse model utilizing time-multiplexing technique for 

taking full advantage of the available hardware; 2) Loading configuration data 

from a host PC to SNAVA that defines the SNN architecture; 3) Storing data in 

BRAMs before sending them back to the host PC for monitoring through an 

Ethernet cable. SNAVA creates configuration files to implement the desired 

network model. Figure 2:10 presents a 2-FPGA SNAVA platform. The 

limitations of SNAVA platform are as the following. Firstly, simulations are 

confined to SNNs and astrocytes haven’t been incorporated as with the 

Astrobyte platform. Second, SNAVA focusses on real-time simulations instead 

of acceleration, which is a key feature of the Astrobyte platform. Additionally, 

only the SNN structure and neuron models are reconfigurable after synthesis. 

Finally, each FPGA board in the SNAVA platform requires a separate Ethernet 

connection for acquiring monitoring data, an approach that is less efficient than 

the one used in the AstroByte platform, requiring only one cable for acquiring 

simulation data. 

FPGAs have also been used extensively in the literature for accelerating 

Convolutional Neural Networks (CNNs) application. CNNs are widely used, 

both in academia and industry, for AI applications in the domain of feature 

recognition and object detection, to name but a few [99]–[103]. Similar to SNNs, 

CNNs are also based on neural networks however their relative literature will 

not be mentioned as the subject falls outside the scope of this study. 

                                         Figure 2:10 A 2-FPGA SNAVA platform [98] 

 



P a g e  | 39 

 

 
 
 

2.4 SpiNNaker 
 

Despite the flexibility provided by FPGAs, researchers in both academia and 

industry are still interested in ASIC implementations of SNNs [59], [104]–[107]. 

This is due to the fact that ASICs provide superior performance compared to 

FPGAs, in spite of the fact that they lack flexibility.  

SpiNNaker [108]–[110] is the most prominent SNN ASIC simulator in the 

literature and it will be described here. It is a million-core massive parallel 

computer with an interconnection architecture that is inspired by the 

mammalian brain through which SpiNNaker sends AER based packets in large 

numbers. These features pave way to simulating large scale SNNs (hundreds 

of thousands of neurons and millions of synapses) in real time. The logical 

topology is a 2-D triangular mesh with each node being an ASIC chip. In its first 

iteration, the chip contains ARM processors with local memory each and a 

shared SDRAM. A router and peripheral IPs also included in each node. There 

are more than one iteration of SpiNNaker and each provide different amount of 

processing power, cache and RAM. Several software packages have been 

developed for SpiNNaker that allow for programming, configuring and running 

applications on the platform. SpiNNaker focusses on real-time simulations while 

AstroByte focuses on accelerated simulations. SpiNNaker architecture is 

designed to support event driven simulations and the inclusion of astrocytes in 

AstroByte introduces non-event-based data (i.e. actual numeric data) which 

would require a new packet format for the SpiNNaker NoC (synchronous and 

asynchronous). In addition, the SpiNNaker CPUs are not designed for the 

highly complex operations required within the dynamics of astrocytes and 

therefore can significantly slow down SANN simulation on SpiNNaker as many 

clock cycles will be required to calculate the complex equations representing 

the astrocyte process. Further research is required to quantitively compare 

utilizing SANNs on SpiNNaker and AstroByte. 

2.5 FPGA Data Acquisition Platforms  
 

One of the contributions of this work is designing a data acquisition platform for 

acquiring real-time data from FPGAs and sending the data to a PC. This 

subsection mentions the relevant literature in this domain. In one paper an 

FPGA has been used as a bridge between an Analogue to Digital Converter 

(ADC) and an off-chip DDR3 SDRAM [111]. However, it is not clearly stated 

how the data is stored in the DDR3 SDRAM will be analysed as no method of 

transferring this data to a PC is mentioned. A different publication uses a Xilinx 

Spartan 6 FPGA for acquiring data from an ADC and sending it to a PC by using 

Ethernet for monitoring [112]. This is similar in concept to the work in this study, 

but the implementation used Xilinx FPGAs and tools. Also the application 

proposed in [112] focusses on dedicated imagers in nuclear medicine as 

opposed to SANNs, the focus of this research. Another FPGA-based monitoring 

platform has included an FPGA for the purpose of signal processing and 
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controlling multiple sensor channels in a machine condition monitoring system 

[113]. Here the FPGA doesn’t include any form of soft processor, but instead 

controls a number of monitoring channels while processing data at the same 

time. The processed data is then sent to a PowerPC based control system 

which in turn sends the data to a monitor. 

2.6 NoC Background  
 

This work utilizes NoCs for implementing a scalable and programmable SANN 

accelerator, called AstroByte. This section is dedicated to the important aspects 

that should be considered while designing NoCs. These attributes are NoC 

topologies, flow controls, routing algorithms and issues that arise as the result 

of routing. 

2.6.1 NoC Terminology  
 

The most common NoC-specific terms used in this work are clarified below. 

1- Upstream router (or node): Is the router that sends packet i.e. the source of 

the packets. 

2- Downstream router (or node): The router that receives the packets sent by 

the upstream router, i.e the receiving end of the communication link. 

3- Computing core, Internal core, Computing element: The element connected 

to port 0 where the actual computation/processing takes place. SANN in this 

research. 

4- Packetization: The process of converting data from the computing core to a 

data packet (will be studied in Section 4.4). Taking place in source nodes, a 

data word (flit) will be preceded by a header flit allowing the routers direct 

the packet to the destination node through the NoC structure. 

5- De-packetization: The reverse process which happens at the destination 

nodes. Packets will be analyzed, and data flits will be forwarded to the 

computing core while the header flit will be discarded.  

6- SANN elements/components: Astrocytes, neurons, and tripartite synapses 

are SANN elements. 

7- Neuron entity: Is a neuron along with a tripartite synapse, spike and 

probability generators.  

The following section discusses some aspects of NoC design such as NoC 

topologies and routing algorithms mainly to justify the NoC design choices 

made in this work. More detailed information about NoC design is found in the 

literature [114]–[120]. 

2.6.2 Networks-on-Chip Topologies 
 

NoCs are in essence a group of routing nodes that communicate packets from 

and to a whole host of computing cores, attached to the NoC routers. The 

routers can be interconnected in many different configurations, called 
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“Topology”. Examples of NoC topologies are Mesh, Torus and Butterfly, to 

name but a few.  

• Mesh 

Nodes forming the network are arranged into an X-Y dimension lattice. This 

network permits communication between one node and its neighboring nodes. 

This suggests that the nodes that are not on the edges of the network can 

transfer data with 4 different routers as shown Figure 2:11 [114].  

Mesh topology requires relatively simple routing engine, is easy to implement 

and scalable. Additionally, each node in the network contains a computing 

node, this means the distance between neighboring nodes is always 1 in any 

direction. These attributes along with other practical reasons(discussed in 

chapter 4) make mesh the topology of choice for the AstroByte platform.   

2.6.3 Networks-on-Chip Flow Controls 
 

Flow control mechanisms decide the way the network’s resources - channel 

bandwidth and buffers - are allocated to data packets transmitted across the 

network. If the flow-control mechanism is a good one, the network distributes 

the resources in an effective way, allowing it to achieve a high fraction of the 

network’s maximum bandwidth and packets traverse the network with 

predictable and low latency [3].  

• Buffer-less Flow Control 

The simplest mechanisms to control the data flow inside a network do not have 

any buffers. By using some arbitration technique, buffer-less flow control 

techniques give the network resources access to one of the competing 

channels while misrouting or dropping the packets which have lost the 

competition [3]. Dropping Flow Control and Circuit Switching are the main types 

of Buffer-less Flow Control. 

Packets will be directly dropped should it loses competition for an output 

channel in case of Dropping Flow Control. A high-level error control protocol 

should be used to order the transmitter to resend the packet. This is the most 

Figure 2:11 Mesh network 
[3] 
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basic flow control approach. Circuit Switching, on the other hand, creates a 

circuit from source to destination and a number of data packets are sent along 

the dedicated path which is usually dissolved by means of a tail packet. This 

method retains the packets that lose the channel contention and retransmits 

them regularly until access to the channel is granted. 

• Buffered Flow Control 

Buffered Flow Control utilizes buffers for storing packets to decouple the 

allocation of neighbouring channels. The buffers used can be either packet-

sized or flit (Flow control unit)-sized. Four types of buffered flow control will be 

examined below. 

• Store and forward flow control 

In this flow control mechanism, routers wait for the entire packet to be received 

before forwarding it to the next stage in the network, meaning each router 

should have a packet-sized buffer. Networks use this type of flow control can 

suffer from high latencies [3]. 

• Cut-through flow control 

Improves on store-and-forward flow control by sending the packet to the next 

router as soon as the header flit is received. The implication is that waiting for 

the entire packet to arrive is no longer a necessity. This is perceived as a step 

forward in terms of the latency exists in store-and forward flow control. 

• Wormhole flow control 

By allocating the network resources (such as channels and buffers) to flits as 

opposite to packets, Wormhole Flow Control increases the efficiency of buffer 

usage. However some throughput degradation should be expected when 

compared with other types of flow controls [3]. 

• Virtual Channel (VC) flow control 

By sharing the physical resources of a channel among a number of logical 

channels, VC flow control allows for more efficient usage of the bandwidth 

available by constantly using the physical links among the routers [3]. 

The AstroByte platform utilizes store and forward flow control mechanism 

because AstroByte depends on quick dispatching of short packets rather than 

waiting for long data streams to be generated, in which case other buffered 

mechanisms would be more attractive. The AstroByte throughput could be 

more improved using virtual channelling which will be discussed in the future 

works.   
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2.6.4 Routing Algorithms 
 

Routing data from a transmitter to a receiver over a network requires a routing 

algorithm that governs how packets move between source and destination. 

[117]. 

Examples of routing algorithms are XY routing and Destination-tag routing. 

➢ XY Routing:  

This is a sort of dimension order routing in which, firstly, packets of data will be 

moved forward horizontally before changing to vertical movement when the 

designated column is reached. XY can absolutely fit torus or mesh topology 

[117], [121], thus is the routing mechanism of choice in this work. 

2.7 Main Challenges  
 

This section discusses the major challenges that are left unaddressed in the 

literature that will be tackled in this work. 

2.7.1 Incorporating Astrocytes in SNNs  
  

The research approaches reviewed in this chapter that utilize FPGAs for SNN 

simulations (e.g. [10], [66], [92], [98], [122]) do not utilize astrocytes. The current 

consensus is that astrocytes contribute to neural activity [30], [32], [123]. This 

implies that without including astrocytes, SNN simulations will not be an 

accurate reflection of its biological counterpart. Integrating astrocytes into SNNs 

to create SANN, however, gives rise to two main challenges: 

1- The communication demands of SANNs is higher than that of SNNs due the 

additional signalling pathways introduced by addition of astrocytes. 

Addressing this challenge requiring novel solutions to accommodate 

astrocyte communications efficiently. 

2- The astrocyte process, especially a biologically accurate one, requires a lot 

of FPGA hardware resources. 

2.7.2 Astrocyte Process Optimization 
 

The astrocyte process has to be optimized to reduce its hardware footprint. A 

high-level optimization technique would be using fixed-point number 

representation instead of floating point. The fixed-point resolution has to be 

decided upon through research to find a balance between accuracy loss and 

hardware consumption. 

2.7.3 Networks-on-Chip Interconnection Paradigm for SANNs 
  

NoC paradigms implemented in the literature [97], [98], [124] are used for SNNs 

and do not accommodate the communication requirements of SANNs. HANA 
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[72] creates a separate network for astrocyte data communication in addition to 

the one that already exists for the SNN. A more efficient approach would be 

using one NoC interconnection structure for routing both astrocyte and spike 

data packets, an approach that has been taken in this research. Using one NoC 

means using half the number of routers and interconnections will be used, 

causing significant improvements as far as resource usage, area footprint and 

communication requirements are concerned. 

2.7.4 Methodology for Configuration and Monitoring of FPGA-based 

Hardware Accelerators  
 

Simulating SNNs or SANNs requires capturing simulation data off-chip for 

monitoring and analysis purposes by researchers. Additionally, to avoid 

continues modifications to FPGA hardware designs, modern approaches 

introduce some degree of configurability in the Register Transfer Level (RTL) 

code before FPGA realization. The techniques reported in the literature limit 

configurability to a few attributes [97], [98]. Furthermore taking data off-chip 

either requires stopping simulations completely [97] or dedicated point-to-point 

connection from the host PC to all the FPGA boards present [98]. This study 

tackles this challenge by means of the FCMP which acts as a node on the NoC 

interconnect, removing the necessity for dedicated connections or stopping 

simulation before capturing data. FCMP allows for easy C-language 

programming of configurations along with real-time data acquisition.  

2.8 Chapter Conclusion 
 

By way of conclusion, this chapter covered the major publications in the domain 

of this work. As implementing FPGA-dedicated hardware for SANNs is one of 

the main contributions of this study, the major computational models of 

neurons, astrocytes and tripartite synapses were discussed. This was followed 

by describing the published hardware models for SANNs, both in-house and 

those reported in the literature. Another contribution of this study is designing a 

multi-FPGA interconnection NoC-based infrastructure for SANNs. Therefore, 

NoC interconnect realizations for SANNs and intra-astrocyte communication 

were examined. Furthermore, main work available in the literature were cited 

that deal with SNN simulations on FPGAs. A brief summary of SpiNNaker is 

given, citing a key research project in academia that implements ASICs. To 

cover basic principles in NoC design (will be explored in Chapter 4), background 

regarding NoC topologies, flow controls and routing algorithms were presented.  

Finally, the major challenges that remain in the literature have been designated 

since these challenges are addressed in this research. 

The next chapter focuses on the hardware implementation of an SANN which 

incorporates a biologically faithful astrocyte into a neural network for 

accelerating simulations.  
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Chapter 3: A Biologically Faithful SANN 

Model for FPGAs 
 

A novel FPGA hardware implementation of a biologically faithful astrocyte-

based self-repairing mechanism for SNNs is presented in this chapter. This 

chapter looks at Astrocyte fixed-point implementation and demonstrating with 

reduced precision. Accuracy is maintained with overall reduced area of FPGAs. 

SANNs are a new computing paradigm which capture the key mechanisms of 

how the human brain performs repairs [6]. Using SANN in hardware affords the 

potential for realizing computing architecture that can self-repair. This chapter 

demonstrates that SANN in hardware have a resilience to significant levels of 

faults. The key novelty of this contribution resides in implementing a FPGA 

SANN Accelerator (FSA) using fixed-point representation and demonstrating 

graceful performance degradation to different levels of injected faults via its self-

repair capability. A fixed-point implementation of each of the astrocyte, neurons 

and tripartite synapses are presented and compared against previous hardware 

floating-point and Matlab software implementations of SANNs. Results show 

how the reduced fixed-point representation in hardware can maintain the 

biologically realistic repair capability. The reduced precision FSA will be used 

in the chapter 5 as the bases of a multi-FPGA accelerator platform, called 

AstroByte. The FSA implementation and results are the first contribution of this 

chapter and are published in the paper titled “Assessing Self-Repair on FPGAs 

with Biologically Realistic Astrocyte-Neuron Networks ” at the IEEE Computer 

Society Annual Symposium on VLSI (ISVLSI) conference in 2017 [1].  

To support the operation of FSA, the capability of fault injection to synapses 

and monitoring significant levels of neuron and astrocyte data for off-chip 

transmission to PC-based analysis, are required. The second contribution of 

this chapter is designing an FPGA-based Configuration and Monitoring 

Platform (FCMP) for injecting faults and capturing and analyzing data acquired 

from the FSA. The FCMP uses custom logic and a NIOS II based system to 

control fault injection and data monitoring on the FPGA. Results show accurate 

accelerated simulations of fault injection scenarios using FCMP with speedups 

up to 249 times greater compared with equivalent Matlab implementations. The 

FCMP is the second contribution of this chapter, published under the title 

“FPGA-based Fault-injection and Data Acquisition of Self-repairing Spiking 

Neural Network Hardware” in 2018 IEEE International Symposium on Circuits 

and System (ISCAS) conference that took place in Florence, Italy [11]. 

  

3.1 AstroByte Platform Overview 
 

AstroByte platform, shown in Figure 3:1, is a multi-FPGA NoC based platform 

for accelerating simulations of SANN. Each node on AstroByte platform is a 
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separate FPGA board that is composed of NoC router. Each router (e.g. 1,1) is 

connected to other routers as well as a computing core. The FCMP and FSA 

elements (the astrocyte, neuron and tripartite synapses) are utilized as 

computing cores in AstroByte. Each AstroByte platform utilizes one FCMP core 

that is connected to a PC (node 0,0 in Figure 3:1 above) and the rest of the 

nodes have FSA components or counters (for testing and verification purposes) 

as their computing cores. The focus of this chapter is on developing the 

computing cores. The NoC infrastructure will be detailed in the next chapter. 

3.2 Astrocyte Hardware Architecture  
In this work, the astrocyte block diagram in Figure 3:2 has been implemented 

with a fixed-point representation on a Stratix IV FPGA and verified using Intel 

SignalTap II. This astrocyte model is biologically faithful and gives accurate 

results when compared to a dual floating point MATLAB software version that 

uses the same equations as the hardware version. The PC used for all the 

experiments in this study has the following specifications; 64-bit Windows 10 

Enterprise, Intel Core i7-2600 3.4 GHz processor with 16GB RAM. Intel Quartus 

Prime 18.0 SE was used for VHDL coding, analysis, synthesis and FPGA 

programming. MATLAB R2015b was used for capturing simulation data and 

analysis. An Intel build for Eclipse Mars 2 was used with Nios II embedded 

processor.  

The mathematical equations, parameters of the astrocyte, input values and 

expected output results for both the software and the HDL versions of the 

astrocyte are obtained from the original self-repair model; i.e. this is a block 

based design with each block representing a parameter of the astrocyte 

mentioned in the original model [6]. 

In comparison to the existing literature regarding astrocyte hardware 

implementation (section 2.2.3), this work’s novelty is using a biologically faithful 

astrocyte for providing SNNs with self-repairing capability. Additionally, several 

Figure 3:1 an overview of AstroByte architecture 
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resolutions of fixed-point astrocyte are considered and one (32-bit) is chosen 

provides best balance between accuracy and FPGA resource usage.     

In software, using a large number of bits to represent the values of the 

parameters and the variables of the astrocyte model presents little performance 

issues since modern computers can compute using double floating precision 

without much effort. In hardware, however, this can prove challenging for the 

designer because using larger resolutions can significantly increase the design 

resource consumption and physical blueprint, while using a small resolution can 

affect the accuracy of the results significantly. For efficient implementation, 

fixed point arithmetic is used. We start from a resolution of 24 bits, 16 bits for 

the fraction part and the remaining 8 bits for the real part. This means all the 

sub-blocks in Figure 3:2 were reduced to fixed-point 24-bit precision. These 

values were chosen because the astrocyte values include significant fraction 

arithmetic elements. Several sample values of different parameters are as 

following; IP3 → 0.373345, m∞ → 0.7417, ∆Glu→-0.00000135079. The 

precision of the results is important since inaccurate results from any of the 

astrocyte sub-blocks in Figure 3:2 will propagate through the chain and affect 

the output result of the complete block. Figure 3:3(a) shows a 24-bit 

implementation compared against the floating-point MATLAB and fixed-point 

VHDL astrocyte models. The x-axis represents the number of iterations (the 

cycles of simulation) while the y-axis represents the calcium value which is 

obtained from the “Ca2+ generator” block in Figure 3:2. The calcium value has 

been chosen for accuracy comparison because the blocks that follow are 

threshold based. Each 1,000 iterations represent one second of biological time, 

as the Euler method is used for solving the differential equations representing 

various components of the SANN with a time constant of 1ms as per the original 

model [6]. Intel Quartus Prime software is used for synthesizing the VHDL code 

onto a Stratix IV FPGA and Intel SignalTap II is used for verifying the results. 

Figure 3:2 Astrocyte hardware block diagram [13] 
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 As can be seen from Figure 3:3 (a), for the 24-bit precision, the difference 

between the two trajectories is non-linear and fluctuates between iterations 

10,000 and 15,000 before picking up steadily until it reaches a difference of just 

over 10% at 20,000. It is believed that for a biologically faithful astrocyte, loss 

in accuracy of 10% is non-trivial. This led to increasing the resolution from 24 

bits to 32 bits with the additional 8 bits assigned to the fraction part since that 

is where the error occurs. Figure 3:3 (b) illustrates enhancement in accuracy of 

the hardware model after the resolution was increased as the trajectory of the 

hardware model is closely aligned with the Matlab software model; this 

indicates a better fit of the 32-bit resolution with the Matlab. For the 32-bit 

resolution, the difference between the two plots in Figure 3:3(b) is 0.04% after 

20,000 iterations. This error is small compared to over 10% for the 24-bit model. 

On average, for over 20,000 iterations, the percentage difference is 2.73% for 

the 24-bit implementation while it is 0.1667% for the 32-bit design. Figure 3:4 

shows hardware resource usage for 24-bit, 32-bit and 40-bit resolutions.  

Therefore, given the area and accuracy, the 32-bit resolution was chosen. In 

comparison with the Matlab software model, the error rate of the 24-bit 
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( b ) Matlab - 32-bit resolution comparison 

Figure 3:3 Comparison between the double-float Matlab astrocyte model and its fixed-
point VHDL hardware implementation 
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hardware design is unacceptable. A 40-bit resolution was also explored to 

examine area overhead compared to the 32-bit resolution. The 40-bit resolution 

doesn’t significantly enhance the accuracy over the 32-bit design while 

significantly increasing resource usage. A neuron in 32-bit resolution requires 

1840 LUTs (< 1% of device resources) and 60 DSP blocks (6% of device 

resources). It is worth noting that the resource utilization results are obtained 

using Intel Quartus tools. It is possible to command the synthesis tool to further 

optimize the resource usage or to use less DSP at the cost of using more LUTs. 

However, we show these figures for the fair comparison between the designs 

of different bit resolutions. Tradeoffs in terms of energy usage has not been 

explored in this work. 

3.3 FSA Evaluation and Hardware Implementation 
 

In this section, an FSA containing one astrocyte and two surrounding neurons 

with ten synapses each was implemented on an Intel DE4 development board 

with the Intel EP4SGX530KH40C2 device. The purpose of developing an FSA 

was to examine the effect of the reduced bit resolution on the self-repairing 

capacity of the SANN. Figure 3:5 shows the topology of this network. The 

astrocyte (A1) monitors the activity at two group of synaptic junctions, each 
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Figure 3:4 Comparison of resource utilization between the different astrocyte implementations. 



P a g e  | 50 

 

 
 
 

group containing 10 synapses that are associated with the two neurons (N1 and 

N2). The LIF model was used for describing the neurons and the tripartite 

synapses are probabilistic and based on the model developed in [6]. The inputs 

to the tripartite synapses are stimulated by means of simple shift registers 

acting like spike generators. The FSA was developed to examine the effect of 

reduced resolution in a typical larger configuration. The advantage of FSA is 

highly tolerant information processing that is resilience to high fault ratios with 

reduced fixed-point implementation. 

3.3.1 Fault modelling in SANNs 
 

For neurons, a fault means that the neuron either stops issuing spikes 

completely or its firing rate has dropped to levels below normal. Figure 3:6 

shows fault progression at the synaptic junctions. A fault for a synapse means 

that the value of PR(to) in equation (27), calculated in the Probability Calculator 

block in the figure, will be modified. PR(to) has the value of 0.5 under normal 

circumstances, however, when the synapses suffers a fault, the PR(to) changes 

to 0 in case of a severe fault and 0.1 in case of a partial fault. It worth mentioning 

that, in this study the faults, whether severe or partial, are all user-induced to 

monitor the response of the system. Additionally, the terms severe and partial 

are specific to the domain of the SANN that has been realized in this work, 

these are not standard terms that are used for hardware fault description in the 

literature. This research deals with faults that are specific to the domain of this 

work-SANNs- as opposite to standard hardware fault models. 

𝑃𝑅(𝑡) =
𝑃𝑅(𝑡0)

100
∗ 𝐷𝑆𝐸(𝑡) +

𝑃𝑅(𝑡0)

100
∗ 𝑒𝑆𝑃(𝑡)                                                   (27) 

Figure 3:5 Interactions between the astrocyte and the two neurons between and after the fault 
is injected [6]. 
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Referring to Figure 3:6, the fault affects the SANN in the following sequence. 

The user defines the faults, which will turn into hardware signals that act as the 

select signal for a multiplexer (Mux in the figure). The inputs to the Mux are 

hardwired values corresponding to no-fault (0.5), partial fault (0.1) and severe 

fault (0). The Mux output feeds into the probability calculator which calculates 

the instant probability at the tripartite synapse PR(t) according to equation (27) 

from chapter 2. The generated probability then goes into the Spike generation 

block which works according to equation (26) that was discussed in chapter 2.  

𝐼𝑠𝑦𝑛
𝑖 (𝑡) = {

𝐼𝑖𝑛𝑗     𝑃𝑟𝑎𝑛𝑑  ≤ 𝑃𝑅(𝑡)

0         𝑃𝑟𝑎𝑛𝑑 > 𝑃𝑅(𝑡)
                                                                         (26) 

A Pseudo Random Number Generator (PRNG) generates a random probability 

Prand. If there is a spike from the SR (Shit Register), the spike generator block 

compares the two probabilities. If PR(t) was larger than Prand, the synapse passes 

the spike at the input to the neuron, otherwise the synapse generates no spike. 

The effect of this process is a probability-based spike generation that depends 

on both randomness and the instant probability in equation (27).  

For instance, when the observer injects a partial fault, PR(o) will be 0.1. This 

causes a reduction in PR(t) value, causing the spike generation block to pass 

less spikes as PR(t) will be less than Prand more often than not. The effect is 

reducing the spikes that are passed to the neuron and eventually the firing rate 

of the neurons. In case of a severe fault this effect is even more extreme as the 

value of PR(t) will be zero and no spike passes from the synapse to the neuron. 

At this stage the self-repairing mechanism starts to take effect through the 

astrocyte process as discussed in section 2.2.2. 

In neural networks, each neuron normally has more than one synapse inputs 

depending on the structure of the SNN/SANN. In this study each neuron is 

connected to 10 synapses at its input. The fault percentage that will be referred 

to in the following sections refer to the 10 input synapses. When a fault of 20% 

is injected, for example, it means that 2 of the 10 input synapses are faulty. 

 

 

Figure 3:6: Fault modelling architecture in FPGA hardware 
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➢ Spike and probability generation  

To generate spikes at 10Hz, the design implements 100-bit round shift registers 

for each synapse (10/neuron). Only one bit is asserted (its value set to ‘1’) per 

shift register and the other 99 places are all zero. It worth mentioning that this 

is not an LFSR (Linear Feedback Shit Register), the ratio of 1s to zeros always 

remain the same. A 100-bit wide register has been chosen because of the Euler 

constant which is set to 1ms. This means to achieve a frequency of 10Hz 10 

spikes should be generated for each 1000 cycles- or spike 1 per 100 cycles.  

Two LFSRs generate a 64-bit pseudo random number (32 each). A sliding 
window that shift through this 64-bit input to generate 20 unique random 
probabilities for all the synapses (2 neurons- 10 synapses each). The synapses 
take in the random 32-bit numbers from the sliding windows and convert it to 
fixed-point numbers between 0-1 to act as the pseudo-random probability at the 
tripartite synapses.  
 
The effect of the spike and probability generation schemes discussed above is 
pseudo-random spike generation in hardware. The study also implements the 
same methods in Matlab software to ensure fair comparison between the two 
models.   
 

3.3.2 Self-repair - Reduced Bit Precision  
 

To demonstrate the self-repair characteristics of the SANN in hardware, an 

experiment was conducted where the network suffers a catastrophic failure, 

with 80% of synapses no longer functioning. Despite this, FSA is still able to 

maintain more than 55% of its firing rate. This is the worst-case scenario; the 

network will retain a higher amount of its frequency when the fault rate is less 

significant as is shown in Section 3.3.2. Faults were injected into hardware by 

means of physically reducing the PR value of synapses to zero (classed as 

“severe” fault), or to a value of 0.1 (“partial” fault). That means the PR values of 

the synapses were physically changed on the FPGA.  

The SANN in Figure 3:5 was implemented on an FPGA with the 32-bit astrocyte 

model. The outputs of the spike generators were fed into the presynaptic 

connections at the tripartite junctions. Average frequencies that were read from 

neuron outputs over a window of 1,000 iterations were used to assess the 

network. Average frequencies were used rather than instant frequencies 

because the output frequencies in SNNs oscillate over time. The average 

output frequencies of the network were observed from the two neurons, N1 and 

N2, as shown in Figure 3:5. Under normal circumstances, both N1 and N2 

produce the same average output frequency of 7.57 Hz. Initially, the synaptic 

junctions were all operating normally, then a severe fault was injected 

simultaneously into (8 out of the 10) synapses connected to N2. The average 

output frequency of N1 and N2 were then observed on the FPGA. Figure 3:7 

shows the average output frequency of the two neurons before and after the 

faults were injected. The values present on the x-axis represent the number of 
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iterations. The fault is injected after 200K iterations which is indicated by a 

dotted black line in Figure 3:7. As shown in the figure, the average output 

frequency of N2 is reduced to zero steeply at first, before increasing again due 

to the activation of the astrocyte self-repair mechanism. As the number of 

synapses damaged is (8 out 10) for N2, e.g. 80% failure, and the severity of 

each fault (PR forced to zero) the N2 average frequency does not fully recover 

to its previous values again. Since no fault is introduced to the synapses of N1, 

the average frequency graph fluctuates as normal. 

3.3.3 Self-repair over Varied Fault Rates 
In this section, tests are repeated with varied fault rates in the synapses, e.g. 

10%, 20%…etc. If the fault rate was 10% it would mean that one of the 10 

synapses is damaged. This is the first study in assessing the graceful 

degradation of SANNs in hardware. In essence, this enables a threshold to be 

identified where resilience of the SANN network starts to diminish as it deviates 

significantly from its original target average output frequency. ‘Severe’ and 

‘partial’ types of faults will be evaluated.  

A severe fault in the following experiments means a synapse’s probability of 

release, PR(t0) in equation (2), is reduced from an initial value of 0.5 to zero, 

while partial fault means the probability of release is reduced to 0.1 (a non-zero 

value). Faults of different percentages were injected to the SANN running on 

the FPGA and the average output frequencies were recorded. Figure 3:8 

illustrates the average output frequency of the faulty neuron (N2 of Figure 3:5) 

in response to different fault ratios and compares these values to a situation 

when no fault exists. The average frequency in this experiment is the average 

of the entire simulation duration in Figure 3:7. In Figure 3:8, The x-axis 

represents the rate of faults and the y-axis is the main average frequency of 

N2. Average frequencies of N2 for both FSA and the equivalent Matlab model 

are shown for comparison. Furthermore, the frequency of N2 is represented 

when no fault is present to demonstrate deviation of the average frequency 

Figure 3:7 Average output frequencies of N1 and N2 
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trajectory when various rates of faults are inserted from the no-fault value.  

Figure 3:8(a) demonstrates the response of the neuron (N2) with faulty 

synapses (probability of release set to 0.1). According to equation (3), the 

tripartite synapse is still able to generate PR(t) in the subsequent iterations. 

Although this value is less when compared to a situation when no fault exists, 

it still can cause the synaptic junction to pass spikes to its associated neuron 

when the value of the random probability generator is less (see equation (3)).   

It is evident from Figure 3:8(a) that even with 40% damage the output of N2 can 

still reach a value of over 7Hz which is close to the target 7.55 Hz (7.57 Hz for 

the FPGA implementation). This degradation is minimized by the self-repair 

mechanism; e.g. the astrocyte re-strengthens the remaining healthy and 

partially damaged synapses to encourage the neuron N2 to maintain its firing 

frequency. Note: neural networks are insensitive to slight variation in output 

frequencies. When all 10 synapses (100%) are deemed ‘partial’ faulty (100%), 

the neuron degrades more than 55% from its target firing frequency. However, 

this is a graceful degradation as shown in Figure 3:8(a). In Figure 3:8(b), severe 
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(b) Average neuron frequency in response to different rates of a severe fault 

 Figure 3:8 Average neuron frequencies in response to different rates of injected faults. 

(a) Average neuron frequency in response to different rates of a partial fault 
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faults are injected to the synapses and the neuron output frequency 

degradation is more significant since a severe fault reduces PR(t) to zero,  

where the faulty synapse will not propagate any spikes regardless of the value 

of the random probability generator. In this case, at 30% damage the output of 

N2 can still reach a value of over 7Hz which is acceptable to the target 

frequency of 7.57Hz. This is clearly evident in Figure 3:8(b). In addition, the 

average frequency projection falls more steeply and N2 becomes inactive when 

the fault rate is more than 80%. Figure 3:8(b) also shows that the self-repair 

mechanism helps the neuron retain more than 50% of its original average 

frequency even at 80% fault rate. Figure 3:8 also illustrates the Matlab model 

results for the same network under the same testing condition where it can be 

seen that the fixed-point hardware model provides significant accuracy when 

benchmarked against the double-float Matlab implementation [6]. The key point 

to note is the capability of the SANN hardware to still maintain operation when 

over 30% of faults in the synapses are experienced. This provides a high 

degree of tolerance to failure via self-repair, even when the core astrocyte 

model’s precision is reduced to minimize hardware resources. 

3.3.4  FSA Acceleration Performance  
 

The SANN model presented in this chapter is used as the basis for developing 

an FSA for various parameters and dimensions. Since the envisioned 

accelerator platform is expected to span multiple FPGAs, appropriate 

communication strategies will be required to ensure integral data exchange 

between the FPGAs. Table 3:1 shows the early results of the improved 

performance achieved as a result of implementing the SANN model on a 

dedicated FPGA at a frequency of 10 MHz. This is the maximum frequency at 

which the FSA can operate currently. The long combinational paths formed due 

to complex mathematical operations (multiplications etc.) in the astrocyte 

process seriously limit the operation frequency. This is due to the fact many 

DSPs are implemented along one combinational path to implement the 

astrocyte’s equations. One way to mitigate this limitation is implementing 

frequency optimization techniques such as pipelining. Optimizing the astrocyte 

process will be explored in the future work. The acceleration factor in Table 3:1 

shows the advantage the FSA has over previous SANN implementations in 

terms of simulation speedup. As can be seen, the FSA is 1,067 times faster 

than an equivalent software implementation. This is a significant speedup since 

Platform implementation Run time Acceleration factor 

Biological neural network 600 N/A 

Software simulation 64 1,067 

SPANNER 7 116.7 

FPGA SANN Accelerator 
(FSA) 

0.06 1 

Table 3:1 Speedup results using different astrocyte implementations 
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the fixed-point, area-reduced astrocyte enables larger networks to be 

implemented in a smaller area.  

➢ FPGA Performance Trade-off  

This chapter has so far made the case of using dedicated FPGA hardware for 

accelerating SANN simulations in light of accuracy and speedup gained on 

Matlab simulations. On one hand FPGAs can accurately simulate SANNs with 

high accuracy and accelerated performance. On the other hand, coding for 

FPGAs using HDLs requires more niche skills and is much more time 

consuming than programming for software such as Matlab, Python etc. On top 

of that FPGA, at least for now, is not standard in PCs. It is extra hardware which 

means extra cost. Despite these hurdles, acceleration using FPGAs can prove 

vital in reducing simulations times specifically for systems – such as SNNs- 

which are used over long periods of times and don’t require major modifications 

to the modelling beyond the initial investment. In addition, High Level Synthesis 

(HLS) tools, which depend on extracting synthesisable hardware from 

programming languages such as C and C++, can reduce the skillset required 

for FPGA development while speeding up the development process. 

3.4 FPGA-based Configuration and Monitoring Platform for Self-

repairing SANN Hardware 
 

Spiking Astrocyte-neuron Networks (SANNs) model the adaptive/repair feature 

of the human brain. They integrate astrocyte cells with spiking neurons to 

facilitate a distributed and fine-grained self-repair capability at the synaptic 

level. SANNs are more complex with the addition of astrocyte cells and require 

longer simulation times, as they are dynamic over much longer time-scales than 

traditional neural networks. Therefore, there is a need for dedicated FPGA 

accelerators that offer reductions in simulation times. To support the 

acceleration of SANNs, the capability to inject faults in synaptic pathways and 

monitoring significant levels of neuron and astrocyte data for off-chip 

transmission to PC-based analysis, are required. This chapter contribution is in 

designing an FPGA-based Configuration and Monitoring Platform (FCMP) for 

injecting faults and capturing and analyzing data acquired from the FSA. The 

FCMP uses custom logic and a NIOS II based system to control fault injection 

and data monitoring on the FPGA. Results show accurate accelerated 

simulations of fault injection scenarios using FCMP with speedups of up to 65 

times greater compared with equivalent Matlab implementations.   

In comparison to the works mentioned in Section 2.5, the novelty of the FCMP 

proposed here resides in the provision of a framework that is able to inject faults 

into SANNs on FPGA hardware and acquire real-time network data from an 

FSA [1] by means of the FCMP [11].  

The advantages of this work can be summarized in the following. 
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1- The ability to inject faults by means of software manipulation leads to 

significantly more time-efficient manipulation as opposed to re-synthesising 

the FPGA design when experimentation with a different fault rate is required. 

2- Being capable of collecting on-chip FPGA data from the SANN accelerator 

and sending the data to PC, circumvents the limitation set by relatively small 

on-chip FPGA memory for data collection. 

The rest of the chapter is structured as following. First, the background for this 

contribution through evaluating several related publications in the literature. In 

the subsequent section, the architecture and operation of the FCMP platform 

will be discussed. This will be followed by a section dedicated to experiments 

and results. Further improvements regarding the FCMP will be investigated in 

the section that follows before concluding the chapter. 

3.4.1 Architecture and Operation 
➢ Components 

Figure 3:10 shows the overall architecture of the platform. Except for the FSA 

block, all other components are part of the FCMP (FCMP itself contains two 

main blocks, the FSA Interface and the Nios II system). Besides the main 

blocks, the FCMP also contains several off-chip components that are located 

outside the FPGA. The description of FSA and the FCMP blocks are given 

below.    

The FSA [1] is a custom FPGA design that accelerates the simulation of a self-

repairing SANN based on neuron, astrocyte and synapse models reported in 

[6]. In [1], [6], an astrocyte is included in an SNN for regulating the synaptic 

activity of neurons at tripartite synapses. Each neuron is fed from ten synapses. 

Faults are injected at a specific time to one or more synapses and the average 

output frequencies of the two neurons, N1 and N2 in Figure 3:10, are monitored. 

It was verified that the network can recover from faults due to the astrocyte 

since it compensates for lack of activity at the synapses that suffered the fault. 

The FSA Interface contains several hardware sub-blocks. The two Frequency 

Calculators (FC) calculate the average spiking frequencies of the neurons over 

a time interval. The two Address Generators (AG) are essentially counters with 

an enable signal and a parameterizable start value. This is necessary because 

the Nios II based system operates as a memory mapped system thus, at least 

one of the AGs has to start from a base value other than zero. The State 

Machine (SM) is responsible for controlling the operation of the FSA and the 

FSA Interface(FI). The SM exchanges control and status signals with the Nios 

II based system. The SM operation will be discussed in more detail later in this 

section. The DRAM BUS blocks are combinational blocks that combine 

addresses generated from AGs and data from FCs along with control signals 

from the SM to form a complete bus that writes into the DRAM controllers. 

The Nios II based system is a heavily modified version of the simple socket 

server design example provided by Terasic for use with DE4 boards. The Nios 
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II based system has an Intel Nios II soft-core processor at its heart. The system 

also includes a Data and Program Memory which is an SRAM, an Intel Ethernet 

IP which is responsible for sending Ethernet packets to an off-chip PHY chip 

and DRAM Controllers for communicating with off-chip DDR2 SDRAMs. 

Additionally, a JTAG IP that allows the system to be programmed from a PC 

using Eclipse environment, and a number of command and interfacing blocks 

are also included in the Nios II system. The command and interfacing blocks 

allow the Nios II processor to communicate with the FSA Interface components 

for passing data, status, address and control signals. The command and 

interfacing blocks are Reset Controller, Nios Starter, Address range Interface, 

Fault Injection Interface, DDR Bus Interface and Operation Complete. The 

purpose of these blocks will become clear in later subsections. 

The architecture shown in Figure 3:10 allows for control over the start and end 

time of FSA simulations besides fault injections and capturing simulation data - 

average output frequencies - and sending this information to a PC. 

➢ Datapath 

As shown in Figure 3:10, the two outputs from the FSA represent the synapses 

of the two neurons, N1 and N2, which feed into the two FC blocks. Outputs from 

FCs will be combined with addresses generated by AGs and control signals 

from the SM at the DRAM BUS blocks. Next, the DRAM BUS output has to go 

through the DDR BUS Interface block since an interface is required to transfer 

data to the Nios II system. Also, the outputs of DDR BUS Interfaces will become 

part of a unified Avalon (Intel standard interface) bus before entering the DRAM 

Controller. The DRAM Controller takes address, data and control signals and 

generates appropriate outputs so that data is transferred to and from the 

external DDR2 SDRAM. 

➢ Operation 

The flow chart given in Figure 3:9 explains the operation of the FCMP. The Nios 

II processor controls the operation of the custom hardware circuit by means of 

a set of parameters, control and reset signals which are passed during the initial 

state. One of these parameters is the fault ratio, which is the number of 

damaged synapses to the total number of synapses in the FSA. Another 

parameter is the time at which the faults occur (through the Fault Injection 

Interface in Figure 3:10).  

Moreover, the amount of data to be written into the DDR2 SDRAMs can also 

be passed to the FSA Interface through the Address Range Interface. This 

value equals the number of cycles the FSA runs for. Furthermore, through the 

Nios starter block in Figure 3:10, the Nios II processor sends a start signal to 

the SM. Once this command is received, the SM enables the FCs and AGs 

along with issuing write commands to the DRAM controllers.  This commences 

writing of the average frequency data from the FCs into the external DDR2 

SDRAMs at addresses generated by the AGs. This process continues until data 
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is written into a range of addresses defined by the parameter passed from the 

Address Range Interface at the reset state. After this process, the SM sends 

Nios II a signal through the Operation Complete block and the Nios II processor 

starts to send data from the external DDR2 SDRAMs to a PC through Ethernet. 

Figure 3:11 shows a simplified sequence diagram for passing of commands 

and data between Matlab, Nios II and the FSA hardware. 

The operation of FCMP platform in Figure 3:9 is separated into 3 parts; 

handshaking, computation and data movement. The next sections reveal that 

most of the time is consumed in data movement between the Nios II system 

and the PC. The working algorithm and the architecture in Figure 3:10 indicate 

that the, despite the addition of an FPGA accelerator – the FSA – the working 

principles are still bound by Von Neuman architecture. Studies like this, 

however, can help to further understand the brain functionality with the aim of 

using the brain’s working principles to create novel efficient neuromorphic 

computers that break the bounds of Von Neuman architecture.   

 

 

 

Figure 3:9 Algorithm outlining the FMP operation 
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3.4.2 Experimentations and Results 
 

➢ Assessing Data Integrity 

Several experiments were performed to ensure that data captured using the 

FCMP is accurate and remains undistorted while transferred from the FSA to 

external memory, and then onto the PC via Ethernet. Matlab software was used 

to communicate with the Nios II soft processor which managed the fault 

injection and recording the data communication between the SANN and 

SDRAM. To validate the data management, the same experiment that was 

carried out in [1] and recorded using SignalTap II was repeated using the 

FCMP. Figure 3:12(a) shows data collected from Intel SignalTap II and the 

FCMP.  

The x-axis is the number of clock cycles, or iterations, and the y-axis represents 

the average output frequency of the neurons. The simulations were initially run 

without injecting faults. Subsequently, faults were inserted, damaging 80% of 

synapses connected to N2. As the FCMP had not been developed in previous 

work, Intel In-System Sources and Probes Editor had to be used to inject faults. 

The timing of these faults was decided before synthesizing the design from the 

HDL code. In the current work, the FCMP allows for inserting faults at different 

ratios at a time chosen by the user. The faults are indicated by a black vertical 

line in Figure 3:12(a) and Figure 3:12(b). 
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At first, neuron N2 will see a sharp decrease in average output frequency but 

then recovers as a result of the self-repair mechanism that is regulated by the 

astrocyte. Since the fault ratio is very high, i.e. 80%, the average output 

frequency does not go back to its pre-fault level. Data from this experiment was 

analysed after it was transferred to the PC. Then the data was plotted against 

data recorded by using SignalTap II in the original SANN accelerator paper [1]. 

Figure 3:12(a) shows data acquired using the FCMP. As no loss of data 

happens when using the FCMP, acquiring data using Intel SignalTap II yields a 

similar response. 

Figure 3:12(b) shows results from the Matlab implementation of SANN. Clearly, 

Figure 3:12(a) and Figure 3:12(b) show the same astrocyte behaviour, with the 

marginal difference in the trajectories of data presented in the figures due to the 

difference in implementations, i.e. the Matlab model uses double floating-point 

precision and the FSA uses an area optimized 32-bit fixed-point hardware 

implementation [1]. 

➢ Acceleration  

Table 3:2 presents a comparison between simulating a SANN using Matlab 

(software) and the FSA platform (dedicated FPGA hardware). The column 

Biology represents the actual biological timescale of the simulations; Iterations 

is the number of times the equations representing the SANN must be calculated 

or the number of cycles FSA needs to run to meet the set biological time-scale. 

This value is x1000 the biological time since a time step of 10-3 is selected [6] 

for the Euler method. Both Matlab and FSA columns show how much time a 

Matlab software model [6] and an equivalent FPGA accelerator [1] respectively, 

Figure 3:11 Interactions between Matlab, Nios II and FSA 
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take to execute the simulation for the corresponding biological time-scale. The 

Matlab software runs on Windows 10 PC with a 3.4 GHz Intel Core i7-2600 

CPU (Octa-Core), SSD drive, and 16 GB RAM.  Also, the table shows the time 

it takes the FCMP to transfer data generated by the FSA to a PC, shown under 

the FCMP column. The column FSA + FCMP provides the total time from the 

start of running the design in FSA to collecting the data on the PC side. The 

Speedup column shows the speedup gained by using FSA and the FCMP, in 

comparison to the Matlab software. The overall speedup is in the order of 

between x50-x65 depending on the number of iterations the designs are run 

for. It is worth mentioning that the values under Matlab, FCMP, FSA + FCMP 

and Speedup can vary from one PC to another and also from time to time as 

they are PC and Windows OS dependent.  

b) Data collected using FCMP and SignalTap II 

a) Matlab implementation results 

Figure 3:12 Comparison between data collected using Matlab and FCMP 
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Studying Table 3:2 shows that using the FCMP to transfer simulation data from 

the FPGA to a PC will introduce a significant overhead to the FSA time. 

However, up to x65 speedup rate is possible which is significant for a wide 

range of applications including the study of how astrocytes impact on other 

neurological conditions such as Alzheimer’s [123]. 

 

Biology 

(Sec) 

 

Iterations 

(Cycles) 

 

Matlab 

(Sec) 

FSA 

(Sec) 

 

FCMP 

(Sec) 

FSA 

+ 

FCMP 

(Sec) 

 

Speedup 

400 400 K 153.7 0.04 ~3 ~3.04 50.5 

1,000 1 M 381.5 0.1 ~6.7 ~6.8 56.0 

5,000 5 M 1960 0.5 ~30 ~30 65.2 

10,000 10 M 4095 1 ~62 ~63 65.0 

 

➢ Reducing Sampling Rate (Under-sampling) 

When simulating biology, it is possible to drop the sampling rate to one sample 

per ten computations or one sample per hundred computations as the rate of 

change in biology is slow, e.g. astrocyte dynamics operate in hundreds of 

seconds. That would allow simulating the SANN for longer periods while 

maintaining significant speedup since we would need to transfer less data to 

the PC side. Table 3:3 shows the effect of under-sampling for biology time of 

100,000 seconds. As an instance, if every one-in-ten samples are recorded, the 

overall simulation and acquisition time will be reduced from around 724 

seconds to ~63 seconds. This provides a significant reduction in the time 

communicating data off-chip with the FPGA. This feature allows the FSA to vary 

the accuracy of simulations as required. Exploring the self-repair aspect for fault 

tolerant networks can require less samples discussed above, however, for 

simulating neural experiment to study astrocyte dynamics between neurons for 

example, can require the higher data sampling rate. The under-sampling 

provides a trade-off between simulation accuracy and speedup capability. 

Table 3:3 Under-sampling evaluation 

Sampling 

 

Iterations 

(Cycles) 

FSA (Sec) FCMP 

(Sec) 

FSA +FCMP 

(Sec) 

1/1 100 M 10 ~714 ~724 

1/10 10 M 1 ~62 ~63 

1/100 1M 0.1 ~6.7 ~6.8 

 

 

Table 3:2 Acceleration gain by using DRAM 
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➢ Enhancing FCMP performance  

As can be seen from Figure 3:10, two external DRAM memories have been 

used for storing SANN simulation data before moving the data to a PC by 

Ethernet protocol implemented as part of the FCMP. In subsequent work, the 

external DRAMs were replaced with internal SRAMs similar to the program 

memory in Figure 3:10. The FPGA SRAMs have less storage capacity than the 

external DRAMs. The implication is that instead of saving the complete 

simulation data before sending it to a PC, the required amount of data has to 

be partitioned over a number of times, depending on the size of the SRAMs.  

For example, should simulation data for 10M iterations be stored and then sent 

to a PC, using the current configuration with external DRAMs (1GB each) as 

per Figure 3:9. The simulation data can be completely saved to the external 

DRAMs and then be sent to a PC via Ethernet as one patch. This is because 

storing 10M iterations with 32-bit data width requires 40MB of memory, which 

can be easily accommodated by the external DRAMs (1GB each). However, as 

an instance, when 200KB SRAMs are used, only 50K iterations can be stored 

each time, which signifies that the complete simulation data has to be sent in 

200 parts. Despite this, replacing DRAMs with SRAM significantly increased 

acceleration since the advantage gained by removing the DRAM bottleneck and 

using fast SRAMs far outweighs the time overhead introduced as the result of 

partitioning the simulation data and sending it parts. Table 3:4 shows that the 

using SRAMs result in x3.1 – x3.6 faster operation than DRAMs results reported 

in Table 3:3, both designs operating at 100 MHz. 

  Table 3:4 Acceleration gain by using SRAM at 100 MHz 

Biology 

(Sec) 

Iteration

s 

(Cycles) 

Matlab 

(Sec) 

AstroByt

e 

(Sec) 

FCMP 

(Sec) 

FSA +FMP 

(Sec) 

Speedup 

400 400 K 53.72 0.04 ~0.81 ~0.85 180.8 

1,000 1 M 381.5 0.1 ~1.9 ~2 190.75 

5,000 5 M 1960 0.5 9.2 ~9.7 202.67 

10,000 10 M 4095 1 ~18.4 ~19.4 211 

 

Another opportunity for further speeding up the simulation and data acquisition 

process was observed when the external DRAMs were replaced with SRAMs. 

This is obtained by increasing the operation frequency of the Nios II system 

from 100 MHz to 200 MHz, as shown in            Table 3:5, in which speedups of 

between x3.8 – x4.9 can be observed in comparison to the DRAM-based Nios 

II system. Comparing the acceleration of FSA without FCMP (Section 3.3.3) 

and with FCMP reveals that even in the case of using SRAM, the Nios II soft 

processor still cases significant overhead in terms of speedup gained. Finding 
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solutions to mitigate the overhead caused by FCMP will be discussed in the 

future works in Chapter 6. 

             Table 3:5 Acceleration gain by using SRAM at 200 MHz 

 

Biology 

(Sec) 

 

Iterations 

 (Cycles) 

 

Matlab 

  (Sec) 

 

AstroByte 

(Sec) 

 

FCMP 

(Sec) 

FSA + 

FCMP 

(Sec) 

 

Speedup 

400 400 K 53.72 0.04 ~0.58 ~0.62 247.9 

1,000 1 M 381.5 0.1 ~1.43 ~1.53 249.3 

5,000 5 M 1960 0.5 ~7.96 ~8.21 246.23 

10,000 10 M 4095 1 ~15.67 ~16.67 245.6 

 

3.5 Chapter Conclusion 
 

In summary, a fixed-point hardware model of an astrocyte has been 

implemented on FPGA hardware, and results comparing the astrocyte 

hardware with the software model. Based on the FPGA resource utilization and 

the accuracy of the hardware astrocyte model, a resolution of 32-bits was 

identified. This model was used in the FSA to evaluate the self-repairing 

capability in FPGAs. Results obtained directly from the FPGA using Intel 

SignalTap II demonstrates this self-repair capability together with the accuracy 

of the fixed-point hardware implementation when benchmarked against the 

double floating-point software model [6]. This provides scope for implementing 

much larger SANNs on FPGAs and integrating with existing Networks-on-Chip.  

A novel FPGA based Configuration and Monitoring Platform (FCMP) was also 

presented in this chapter which configures and captures data from FSA. 

Comparisons were made between the FSA and Matlab software, to assess the 

overall hardware speedup with FCMP inserted into the system. Results 

demonstrated over x65 speedup using hardware accelerated SANN with the 

FCMP. Additionally, using FCMP, an analysis from the effects of under-

sampling were discussed which highlighted possible trade-offs between 

reduced simulation accuracy and increased speedup. Further speedup was 

gained by replacing slow external DRAM with fast internal SRAMs. As indicated 

in            Table 3:5, the accelerated SANN with FCMP can achieve speedups 

of up to x249.3 when compared to the equivalent Matlab implementations. 

In Chapter 4, a novel NoC-based multi-FPGA platform will be implemented 

which incorporates both the FSA and FCMP developed in this chapter to create 

AstroByte. The FCMP will be used for injecting configuration packets into the 

platform and to collect monitoring data through the mechanisms explored in this 

chapter. 
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Chapter 4: A Networks-on-Chip based 

Multi-FPGA Infrastructure 
  

The Networks-on-Chip (NoC) paradigm is one popular solution to the 

performance limitations of computing architectures that utilize a shared bus. As 

the number of IP cores has increased over the last decade due to soaring 

computational demands and the variety of IP cores used, the shared bus has 

become the bottleneck of many computing systems in terms of performance, 

scalability and power consumption. On the other hand, NoCs use an internet-

like communication-centric structure that out-performs a shared bus as far as 

scalability, efficiency and re-usability are concerned [17], [125], [126].   

This research developed a NoC architecture as part of a scalable, 

programmable and re-usable multi-FPGA platform, called AstroByte. The 

platform focusses on accelerating simulations of self-repairing SANNs by using 

off-the-shelf FPGA boards that are interconnected by means of a custom 

protocol. AstroByte is the third contribution of this work. Some of the results and 

overall architecture design are published in the paper “AstroByte: A multi-FPGA 

Architecture for Accelerated Simulations of Fault-tolerant Spiking Astrocyte-

Neuron Networks” at the Design, Automation & Test in Europe (DATE) 

conference in 2020. 

This chapter presents the AstroByte platform is and the rationale for the use of 

various clock frequencies, the NoC data format, NoC router microarchitecture 

and its various components are presented. Both SANN hardware and FCMP 

interface architectures are also reported. 

The contributions presented in this chapter can be summarized as follows: 

1- A new fully scalable NoC-based multi-FPGA architecture for 

accommodating SANN hardware acceleration. 

2- A novel router for facilitating NoC data routing across multiple-FPGAs and 

clock domains. 

3- Novel interfaces for integrating FSA, FCMP and the multi-FPGA NoC 

architecture into one platform, AstroByte. 

4.1 AstroByte Platform Overview 
 

Figure 4:1 shows an overview of the AstroByte platform. It contains a NoC 

infrastructure and computing cores. Each node in Figure 4:1 is located on a 

separate FPGA board and contains a NoC router, a computing node and an 

interface between them. While chapter 3 discusses the design of the computing 

cores, this chapter details the NoC infrastructure. The IPs developed in this 
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chapter are the NoC router and the two types of interfaces that exist between 

the router in the computing core. One of the interfaces is for use with the FSA 

elements (or test counters) and the other is for use with the FCMP.  

Several practical and architectural reasons motivated the configuration in 

Figure 4:1. The AstroByte platform deploys mesh topology because of relatively 

simple routing engine and scalability. Additionally, each node in the network 

contains a computing node, this means the distance between neighbouring 

nodes is always 1 hop in any direction, reducing node-node latency. In terms of 

practicality, the DE4 boards (Figure 4:2) that this study uses have 4 SATA ports, 

which is the number of connections that is required for mesh structure per node. 

There are two HSMC (High Speed Mezzanine Card), 4 Ethernet ports and a 

PCI (Peripheral Component Interconnect) slot per board. One could utilize 

adaptor cards to convert these connections to extra connections to increase the 

channel bandwidth. Another use of extra ports would be dedicated connection 

for transferring the credit packets (discussed later) which will positively impact 

the throughput of each channel. However, this was not explored since for the 

Figure 4:1 An overview of AstroByte platform 

Figure 4:2 Terasic DE4 board 
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prototype SANN realized in this study the available bandwidth is sufficient and 

would make justifying the additional cost and effort spend difficult. It worth 

mentioning that HSMC is Terasic’s proprietary port and purchasing any form of 

adapter cards or even just cables can be costly. Furthermore, the GPIO pins 

available on the boards are too slow for giga bit transfers. In summary, the 

structure of Figure 4:1 was the most suitable considering the advantages 

provided by mesh structure, development time and funding available. 

4.2 AstroByte frequencies  
 

The AstroByte platform consists of three main blocks, the FSA, the NoC routers, 

and the FCMP, operating at respective frequencies of 10 MHz, 200 MHz and 

150 MHz. The FSA frequency is 10 MHz because of long combinational paths 

that contain several DSPs. The NoC routers operate at a frequency of 150 MHz, 

limited by the GBX blocks at input and output ports of the NoC router. 

The GBX blocks frequency are in turn limited by the SATA physical 

connections. More discussions about GBX blocks, their operation and 

frequencies are given in the appendix. 

4.3 Intel GXB transceiver IP  
Intel Gigabit Transceiver Block (GXB) is a highly reconfigurable IP for utilizing 

multi Gigabit serial communications between Intel FPGAs and external devices 

[127]. The components can be different depending on the mode and protocol 

of the transceiver. For a bespoke and low overhead utilization, AstroByte uses 

Basic mode and a custom synchronization protocol, as opposed to standard 

protocols (UART etc.). In Basic mode, the transceiver doesn’t is extremely 

flexible in terms of the features and blocks that can be included or omitted. 

The transmitter has two separate paths, one used for transmission (GXB_Tx) 

and the other for receiving data from the upstream node to achieve a full duplex 

transmission. 

The transmitter data path is responsible accepting FPGA fabric user data and 

serializing it before transmitting it off-FPGA to the downstream node. The 

receiver data path supervises converting the incoming serial data to a 32-bit 

word before forwarding to the FPGA fabric. Similar to the transmitter data path, 

the receiver data path contains several blocks.  

The appendix provides detailed information about the architecture of the 

transceivers and in-house controller modules that are necessary for the GXB 

IPs operation. 

4.4 AstroByte NoC Data Format  
 

An appropriate data format ensures that packets, whether data or control, 

traverse from the source, go through the NoC structure and arrive at the 

destination within a timeframe.  
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Figure 4:3 presents the data format in AstroByte platform which consists of two 

types of packets, namely data and credit packets.  

The Data packet consists of two flits, a header flit and a data flit. The two flits 

always move through the NoC one after each other. Apart from at the 

destination node, when the header flit is finally disposed of, at no point in the 

NoC are the two separated. This means the AstroByte platform utilizes store 

and forward flow control mechanism. It has already been discussed in section 

2.6.3 that wormhole flow control is more efficient than store and forward flow 

control. However, this applies more to cases when packets contain a header flit 

along with more than several data flits, and in most cases a tail flit. On the other 

hand, each data packet only contains two flits in AstroByte, which eliminates 

the difference to a large degree. 

A two-flit data packet was implemented since the hardware implementation of 

the FSA works at 10MHz while the NoC router operation frequency is 150MHz. 

The outputs of the FSA elements (astrocytes and neurons) are what constitute 

a data flit. If the data format was, for example, five data flits, no data could have 

been transferred until the slow FSA frequency completed five cycles. That 

would mean losing a part of the NoC bandwidth while waiting for the FSA to 

generate the necessary data. This combined with the fact that AstroByte is able 

to send spikes and 2AG from neurons to separate (multiple) destinations makes 

it more efficient to send what is calculated in cycle n to their separate 

destinations via the NoC infrastructure while the FSA calculates the iteration 

n+1. This ensures quick dispatch of data flits and packets and reduces the 

latency between source and destination nodes considerably. 

➢ Header flit  

Figure 4:3 illustrates the data packet structure. HF [1:0] (Header Flit bit positions 

1 and 0) are set to “11”. The following two bits, HF [3:2] are reserved bits and 

their values are ‘0’. 

 HF [7:4] contain the control bits. This field will be decoded at the destination 

nodes to determine what information is carried by the data flit that follows. In 

case of Start and Stop commands the data flit is all zeros because it is not 

needed. 

The control field is used by the FCMP platform to configure the FSA to 

designate the data packets it sends as 2AG or spikes in case of neurons or eSP 

when the computing core contains an astrocyte. 

HF [13:8], HF [19:14], HF [25:20] and HF [31:26] are source address X, source 

address Y, destination address X and destination address Y, respectively.  

HF [32] designates whether this word is a header word. This is used in 

conjunction with a fault recovery mechanism that will be discussed in later 

sections. 
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➢ Credit packet 

The credit packet carries information about the free buffer space at the 

downstream router. The credit packet consists of one flit, the Credit Flit (CF). 

CF [1:0] hold 01 and CF [31:26] contain the free buffer value the downstream 

router sends. CF [25:2] and CF [32] are all zeros. 

4.5 AstroByte Router Architecture  
 

This section introduces the NoC router microarchitecture. Figure 4:4 illustrates 

the router consisting of 5 ports, North, South, East, West and an internal port 

for communicating with the computing element. The computing element can be 

either an FCMP, neuron element, or an astrocyte core. There are differences 

between the components in router port 0, the internal computing port, and ports 

1-4. The justification for the difference will be discussed later in section 4.4.  

The router is comprised of several key blocks. The Input Stream Controller 

(ISC) is the first block after the transceiver’s receiver part and is responsible for 

de-multiplexing the incoming data stream, i.e. separating data and credit 

packets. Arbiter Track Table FIFO (ATT FIFO) stores the credit values while 

Input Channel FIFO (InCh FIFO) stores the data packets. The Arbiter Track 

Table (ATT) implements a specific scheme to keep track of the amount of free 

space in the downstream router’s InCh FIFO. The Arbiter utilizes a fair Round-

Robin arbitration when giving access of an output channel to the computing 

requests from the input channels. The Routing Engine (RE) block is responsible 

for decoding the address of the header packet and issues a request to the 

appropriate output port. The Crossbar switch (Xbar) implements multiplexers to 

allow the input channel to access the output channels. The Output Channel 

FIFO (OutCh FIFO) stores data packets to be forwarded to the downstream 

router. The RdCNTRL and WrCNTRL blocks perform reading from and writing 

to Inch FIFOs and OutCh FIFOs respectively. The Fault CNTRL blocks monitor 

OutCh FIFOs and InCh FIFOs to detect a particular fault that may occur if 

AstroByte platform is reset while simulations are running. The Input Channel 

Figure 4:3 an overview of AstroByte data format 
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Track Table (ICTT) block monitors the InCh FIFO usage and creates credit 

packets, then stores them in Input Channel Track Table FIFO (ICTT FIFO). 

Output Stream Controller (OSC) multiplexes the physical output channel to 

accommodate both credit packets and data packets before forwarding them to 

the transmitter part of the transceiver. Port 0 does not include ATT FIFO, ICTT 

and ICTT FIFO while ports 1-4 contain all the sub-blocks. 

The following subsections will describe each of the above-mentioned 

components in detail. 

➢ Different clock domains 

This work implements Intel’s GXB to facilitate multi-FPGA communications 

between different DE4 boards. The GXB contains two main blocks, a 

transmitter, denoted by GXB_Tx and a receiver (GXB_Rx). The NoC router has 

to receive data using the clock provided by GXB_Rx at first before crossing to 

its clock domain using clock domain crossing techniques. Similarly, in the last 

stage, the data has to cross to the clock provided by GXB_Tx before the 

transceiver can carries out transmission. 

Overall, there are 3 main clock domains per router. The GXB_Rx, GXB_Tx, and 

the router clock domain as in Figure 4:4. In actual fact, all the clock frequencies 

are the same, 150 MHz, however, there are phase differences between them 

due to the phase variations GXB_Rx and GXB_Tx recovered clocks 

experience, necessitating dealing with them as different clock domains.  

In Figure 4:4, GXB_Tx and GXB_Rx are placed at the two ends of the router 

ports 1-4 for better visualization although they are the same GXB working in 

duplex mode. 

Additionally, the figure indicates that port 0 does not make use of GXBs insofar 

it communicates with FSA via the FSA Interface (SI), both located on the same 

FPGA as the router, and both falling into the same clock domain. 

In this research, the function of DCFIFOs is decoupling different clock domains 

whenever necessary. Furthermore, the DCFIFOs have two-stage 

synchronization registers as it is the minimum requirement for Intel FIFO IP 

[128] for avoiding metastability [127] when synchronising between two 

asynchronous clocks (clocks from different sources and/or having different 

phases). The appendix provides more information about using DCFIFOs in 

clock domain crossing.
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➢ Input Stream Controller (ISC) 

The ISC is responsible for differentiating between data packets and credit 

packets (refer to section 4.3), effectively de-multiplexing the incoming data 

stream.  

The main input to ISC is the GXB receiver channel parallel output for ports 1-4 

and SI output for port 0, both are 32 bits wide. The ISC block checks the input 

stream data and designates them as either credit or data packet by checking 

Router Input (RI). As per the AstroByte data format, studied in section 4.3, the 

word is a credit packet If RI [1:0] is 01 while it is a data packet when RI [1:0] is 

11. ISC discards other words with RI [1:0] holding a different value, except for 

the second word of a data packet, the data flit. 

When the ISC detects a credit packet, (always one flit), it will de-packetize it 

and stores the credit value in the ATT FIFO. This is done by separating the 

credit value from the credit packet and forwarding it on the ATT FIFO bus along 

with pulling the associated wr_req to logic ‘1’.  

If there is a data packet, the ISC performs no de-packetization. The current flit 

and the next flit will be forwarded to the InCh FIFO since the header flit and 

data flit are always transposing together as discussed in section 4.3. This calls 

for asserting wr_req signal controlling the write operation of the InCh FIFO for 

two clock cycles.  

The ISC attaches an additional bit to the MSB in case of a data packet 

detection, denoted by H in Figure 4:3, converting both the header flit and data 

flit to 33 bits. The value for the H is 1 in case of a header flit and is 0 for data 

flit. This approach serves as a fault detection and avoidance measure that will 

be investigated in a following section dedicated to the Fault CNTRL block. 

Referring to Figure 4:4, the data path for data packets are 36 bits wide. This is 

because Intel DCFIFO IPs don’t support 33-bit words. The closest supported 

width is 36. The rest three bits are always 0.  

The ISCs belonging to ports 1-4 are clocked by the transceivers recovered clock 

belonging to this particular channel receiver (GXB_Rx). Port 0 ISC is clocked 

by the router clock. 

➢ Arbiter Track Table FIFO (ATT FIFO) 

This is a Dual Clock FIFO (DCFIFO) with depth of four words for decoupling the 

GXB_Rx clock domain, the write side, and the router frequency domain, the 

read side. It contains the credit packets sent by the downstream router and 

retrieved by ISC. The choice of four words as the depth is because the credit 

word does not have to be held for many clock cycles and will be dispatched to 

the ATT module as soon as it is available on the read side. The ISC controls 

the write side of the FIFO while the ATT controls the read side. This block is 

absent from port 0 because the SI that communicates with port 0 works on the 
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same clock domain of the router, thus cancelling the requirement of a DCFIFO 

for decoupling the two clock domains. 

➢ Input channel FIFO (InCh FIFO) 

Similar to ATT FIFO, Inch FIFO operates in dual clock mode and is used for 

clock domain crossing between the channel’s GXB_Rx clock domain and the 

router’s clock domain. Unlike ATT FIFO, however, clock domain crossing is not 

the sole purpose of Inch FIFO. As explained in section 4.3, a type of buffered 

flow control, specifically store and forward flow control, has been used, 

indicating that buffers are required in any case. Instead of decoupling the 

different clock domains using a four-word DCFIFO and then storing the data 

packets in a separate buffer, it was decided to merge the two processes into a 

64-word deep DCFIFO, acting both as decoupling mechanism and also buffer 

for packets. This approach reduces the number of accesses required to read 

data from the FIFOs and use of FIFO control blocks. 

The depth of Inch FIFO is set to 64 words deep to accommodate the 32 data 

packets, each composing of a header flit and a data flit. Selecting a depth of 64 

was carried out through experimentation as it was perceived that a depth of 32 

words (16 packets) wouldn’t fully exploit the available bandwidth while a 128 

deep FIFO would not add any improvement to the throughput. The read side of 

the InCh FIFO is controlled by RdCNTRL while the write side is controlled by 

ISC. 

The Rd_used and Wr_used indicate the number of words used available on the 

read and write sides respectively.  

➢ Read Controller (RdCNTRL) 

RdCNTRL is a relatively simple controller that accepts the Grant signal from 

one of the Arbiters and extends it for two clock cycles to fulfil the data format 

requirement of sending the stored two-flit packet.  

➢ Arbiter track table (ATT) 

Figure 4:5 shows a block diagram of the ATT. The architecture is composed of 

a Time stamp counter, a 32-word deep FIFO, a block to calculate the value of 

x (a variable that will be discussed later), a track table resister and several 

arithmetic and comparison blocks. The depth of the FIFO is 32 which is equal 

to number of packets the InCh FIFO of the downstream router can 

accommodate. 

Figure 4:6 illustrates the pseudo code representing the mechanism that 

ensures the ATT precisely tracks the number of free spaces in the downstream 

Inch FIFO. ATT accounts for the latency of the credit packet and credit value 

introduced as it goes through many components on its way to ATT input. In the 

downstream router, where the credit value is initiated and then packetized, it 

has to go through (ICTT (packetized) → ICTT FIFO → OSC → GXB_Tx). In the 
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current router-upstream it goes through (GXB_Rx → ISC (de- packetized) → 

ATT FIFO) before entering the ATT port, as per Figure 4:4. 

The operation of ATT is as follows. The timestamp counter increments each 

clock cycle: step (1) of the pseudo code. Whenever the Sent is asserted (2) the 

timestamp is added by 75 (will be explained later) and stored in the SCFIFO 

(3). If sent is not asserted, then no value is stored in the FIFO (4). As long as 

the FIFO is not empty (5), the value at its output port will be compared against 

the timestamp counter. If the time is equal or greater than this value (6), 

meaning that 75 clock cycles has passed since the data packet has been 

forwarded to the next router, a signal (Equal) is issued (7), otherwise no change 

occurs (8). Step (9) subtracts x, which is calculated in the x calculator block of 

Figure 4:5 from the credit value – it is stored in the ATT FIFO. X is a variable 

increased by 2 when a Sent signal is detected, decreased by 2 when Equal is 

logic high, and is unchanged otherwise as the net effect is zero when they are 

both ‘1’ or ‘0’ (steps 10-13). The Track table value equals the credit value from 

ATT FIFO, subtracted by X, as shown in the pseudo code. 

This arrangement ensures that when the current router forwards a data packet 

to the next router, the ATT module subtracts the Track table by 2 to account for 

the space the data packet will take in the downstream InCh FIFO. When the 

data packet reaches its destination and a credit packets returns reflecting the 

status of the InCh FIFO with the sent data packet considered (decided to take 

75 cycles), the ATT stops subtracting the Track table by 2. 

In order to allow the Arbiter to grant a request, there should be enough space 

in both the downstream router’s InCh FIFO (at least 4 words) and current 

router’s OutCh FIFO – at least 2 words. The values 4 and 2 are chosen 

conservatively to protect against writing into a full FIFO (see appendix). 

The output from ATT is a single bit control signal that the Arbiter receives. The 

ATT sets this signal to ‘0’ if it concludes that the Arbiter can answer to requests 

and to ‘1’ otherwise. 

Figure 4:5 ATT hardware block diagram 
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 As an example, if two packets are sent in clock cycles 100 and 110, then 

(timestampstored_1 = 175) and (timestampstored_2 = 185). Also (Track table = credit 

value -2) after the first packet and (Track table = credit value -4) after the second 

packet. The table updates its value in cycles 175 (Track table = credit value -2) 

and 185, (Track table = credit value). The value 75 is derived by accounting for 

the worst-case scenario delay through the routers. This includes the FIFOs and 

control blocks along the data path. For port 0, this value is 5, as its components 

are close to the interface and both are located on the same FPGA. 

➢ Routing Engine (RE) 

The RE module determines whether a word is a header flit, decodes the 

address portion of the header flit and issues a request signal accordingly to XY 

routing algorithm examined in 2.6. The RE carries out comparison between the 

address of the router and the address portion of the header flit.  

Figure 4:7 gives the pseudo code for the routing engine utilized in RE. If both X 

and Y addresses are equal, the RE asserts the Request (0) signal to ask for 

port 0, which is the internal IP port (either FCMP, an astrocyte, a neuron). In 

the case when the two addresses are not equal, firstly X-axis addresses are 

checked. In the case when the X part of the router address is smaller than that 

of the header address, Request (3) -East port- will be asserted. The RE Asserts 

Figure 4:6 ATT pseudo code 
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the Request (4) signal -West port- if the address belonging to the X-axis of the 

router is larger than that of the header flit.  

When the packet finally arrives at the same column as the destination node, 

meaning that X-axis addresses are the same, the RE assesses the Y-axis part. 

In the event the Y-axis of the router is larger than the header address, Request 

(1) – North – will be asserted and Request (2) – South - will be asserted 

otherwise.  

The RE does not process its input from the InCh FIFO if there are less than four 

packets in InCh FIFO, indicated by Rd-used input from the InCh FIFO. This 

mechanism is in place to prevent a read from an empty DCFIFO since there are 

delays on Rd-used (See Appendix). 

➢ Arbiter  

The Arbiter’s main duty is to control access to the output channel. There is an 

Arbiter per output port, and they work in parallel. The arbiter changes its priority 

in a Round-Robin fashion. The most recent port the Arbiter has served will have 

the lowest priority for the next request, which facilitates a fair arbitration [3].  

The hardware implementation of the Arbiter is memory-based. The Arbiter 

utilizes a five-word SRAM memory to store the port numbers from highest to 

lowest in terms of priority. If, as an example, address 0 in the memory contains 

the decimal number 2, it means port number 2 has the highest priority. Once it 

is serviced, the memory shifts its content by one position in a Round-Robin 

manner in counter-clockwise direction. In this case, number 2 is stored in 

address 5 (the lowest priority) and the contents of the other address locations 

move to address+1 each, increasing their priority by one. The Arbiter carries 

out competition only among the input ports that are actively requesting access 

to the output port and disregards the ports that have not asserted their request. 

As illustrated in Figure 4:4, each Arbiter has a 5-bit wide Requests signal as its 

input since every RE sends each Arbiter a request signal. Additionally, there is 

a single bit signal from ATT that indicates if the arbiter is able to process 

requests. The Arbiter ignores all the requests if this signal is at logic ‘1’. 

Figure 4:7 The routing engine pseudo code   
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A 5-bit wide out bus from the Arbiter feeds into the Xbar to decide which input 

can have access to the OutCh FIFO for the duration of two clock cycles. 

➢ Crossbar (Xbar) 

The Xbar switch contains 5 smaller switches, each controlling the access to a 

particular output channel as shown in Figure 4:8.  

Switches 0-4 are basically one-hot multiplexers with the Grants 0-4 signals 

acting as the select signals. The Grants signals are 5-bit each (one for each 

RE) and are supplied by the Arbiter module. 

Each output switch works independently, implying that all the output channels 

can be accessed simultaneously without limiting the overall throughput of the 

router.  

➢ Write Controller (WrCNTRL) 

WrCNTRL is not as complex as the other controllers in the NoC router. When 

the Arbiter controlling a specific output port issues logic ‘1’ on one of its Grant 

lines, a delay of one cycle will be introduced and the Grant input to WrCNTRL 

will be asserted. The WrCNTRL will extend this Grant signal for two clock cycles 

to write a data packet, composed of a header and a data flit, to OutCh FIFO.  

➢ Input Channel Track Table (ICTT) 

As in Figure 4:4, the ICTT module receives Rd_Used from InCh FIFO to 

determine how many more data packets the InCh FIFO can accommodate as 

per Eq.30. 

Credit value = FIFOmax_used – (Rd_Used +2)                                                  (30) 

For instance, if there are 20 words (10 packets) in the InCh FIFO, using 

equation (30) this sets Rd_Used to 20. FIFOmax_used is the maximum available 

space, which is 64. This implies; 

Credit value = 64 – (20 +2)    = 64-22 =42.                             

Ideally, using Wr_used would give a better indication of the status of the FIFO 

from the perspective of the upstream router. However, Wr_used operates in the 

GXB_Rx clock domain while ICTT uses the router clock domain. Of course, one 

could use a DCFIFO for crossing the two clock domains but that would 

introduce further delay. Due to the fact Rd_Used is the delayed version of 

Wr_used [128] and it is in the same clock domain as the router. A conservative 

approach has been taken which assumes that there is always two words more 

in the write-side as expressed in Eq.30 Although, depending on the instant 

Rd_Used is read this might not be the case.     



P a g e  | 80 

 

 
 
 

Credit value will be packetized into a credit flit/packet and be passed down to 

ICTT FIFO. The credit packet will be eventually used by the upstream router 

ATT to determine whether the Arbiter can issue grants on this port should 

requests made to it. 

This block does not exist in port 0 due to the fact that, since SI is on the same 

FPGA, InCh FIFO Wr_used will be directly forwarded to SI.  

➢ Input Channel Track Table FIFO (ICTT FIFO) 

This block is identical to ATT FIFO. It is a 4-word-deep DCFIFO that is used for 

clock domain crossing. The write side works in the router clock domain while 

the transmitter channel clock domain (GXB_Tx) clocks its read side ICTT 

controls this block for write operations while Output Stream Controller (OSC) 

manages its read side, as will be discussed later. 

Port 0, the internal computing node port, does not makes use of ICTT FIFO 

because a DCFIFO is not required when the blocks exist in the same clock 

domain. 

➢ Output channel FIFO (OutCh FIFO) 

The OutCh FIFO is used for managing clock domain crossing between the 

router clock domain and GXB_Tx. WrCNTRL controls the write side of the 

DCFIFO and OSC manages the read side. OutCh FIFO is 8 words deep to 

accommodate up to 4 packets as experimentation proved that a depth of 16 

words wouldn’t help throughput.  

Figure 4:8 Router Xbar architecture 
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➢ Output stream controller (OSC) 

The OSC multiplexes the output channel to accommodate both the data packet 

and credit packets. OSC decided when to read packets from OutCh FIFO and 

ICTT FIFO. It reads data from OutCh FIFO only when there is more than three 

words present to avoid reading from an empty DCFIFO. 

➢ Fault controller (Fault CNTRL) 

As discussed before, the NoC data packet is 36-bit wide. The MSB bit indicates 

if the data stored in the FIFO is a header flit. 

Figure 4:4 indicates the FAULT CNTRL modules located in front of InCh FIFO 

and OutCh FIFO blocks. Fault CNTRL monitors the output of the DCFIFO in 

search for a particular fault pattern that occurred, at times, as the result of 

resetting the AstroByte platform mid-operation. This is due to the unexpected 

behaviour of the DCFIFOs implemented in the NoC router architecture when 

reset while the AstroByte performs simulations. The user usually resets the 

platform - e.g. before reprogramming the platform by the FCMP to implement a 

different NoC mapping.  

This might cause a data flit, instead of a header flit, to be located at the top of 

the FIFO stack, recognized by H bit. If this occurs, the packet won’t be 

processed as it is not a header flit, causing the closure of the path and 

hampering the AstroByte operation. 

Fault CNTRL observes the top of the FIFO stack. If it detected a data flit that is 

not following a header flit, the data flit will be discarded The Fault CNTRL block 

does not forward data to any other block. 

4.6 Router Design and Operation  
 

➢ Design Choices  

Several factors affected the design choices made regarding the router 

architecture design. 

 Firstly, the fact that data has to be communicated between different FPGA 

boards dictated using transceivers -the GXB IPs. Using transceivers mean 

having to use DCFIFOs for clock domain crossing, which in turn means that 

writing and reading data from the DCFIFOs have to be considered when 

designing many of the blocks in the router. One could implement a multi-FPGA 

system without using transceivers however this would require feeding the clock 

to all the boards from a single source. This facility wasn’t available at the time 

of conducting this research, making using of GXB IPs necessary. 

Secondly, reducing the clock cycles per packet processed (hence increasing 

throughput) was another contributor to the router microarchitecture design. One 

can notice the absence of Input/output channel controllers and a main control 

block in the router design. This is due to the optimization efforts made to 
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increase throughput. Instead the functionality of these blocks are distributed 

among other smaller blocks that work in parallel. 

Optimizing the router microarchitecture for low-power consumption was not 

explored in this study. 

➢ Router Operation 

After explaining the router microarchitecture and the NoC data format, this 

section provides an overview regarding the way packets progress through the 

router.  

Data stream arrives serially at GXB_Rx. The GXB parallelizes the data and 

forwards it to the FPGA fabric using GXB_Rx clock domain. The next block is 

ISC, which separates the data and credit packets and forwards them to InCh 

FIFO and ATT FIFO, respectively. ISC also assigns each data packet flit with 

another bit to designate the word as data or header flit. 

ISC de-packetizes the credit packet to credit packets before storing it in ATT 

FIFO. Consequently, the ATT uses the stored packet to determine whether the 

Arbiter can grant access to a particular output channel. 

In terms of InCh FIFO, Rd_Used value should be at least 3 (starting from 0, 

meaning four words exist in the FIFO) in order for RE to process the header flit 

and issues a request. This approach aims at preventing reading from an empty 

FIFO which would stall the operation of the NoC.  

When enough data appears on the road side, the RE asserts an appropriate 

request signal using the routing engine. The Arbiter, with help of ATT, next 

decide when to grant the request. RdCNTRL takes the grant signal from the 

arbiter and asserts read to InCh FIFO for two clock cycles. Meanwhile the grant 

bus from Arbiter act as the select signal to the Xbar block switches.  

The grant signal out of a particular Arbiter is sent to WrCNTRL, which in turn, 

allows the data packet that has progressed through the Xbar from the Inch FIFO 

to be written to the OutCh FIFO.  

The OSC block then forwards the OutCh FIFO content to the transceiver input 

after removing the 33rd bit of the data packet, assigned by ISC at the start of 

the data path. The data words have to be changed back to 32 bits because the 

transceivers accept 32 bits wide words, before serializing the data stream and 

sending it to the downstream router. 

4.7 FSA & FCMP Interfaces 
The previous section investigated the router microarchitecture and its operation 

in detail. The router will be integrated into a mesh NoC structure as shown in 

Figure 4:9. 

The purpose of the router is to facilitate communication between the computing 

elements, (FSA or FCMP), through the network. In order to establish coherent 
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communication, both FSA and FCMP are interfaced with the NoC by means of 

the FSA Interface (SI) and FCMP Interface (FI).  

4.7.1 FCMP 
  

In Chapter 3, the FCMP architecture was discussed in detail. The architecture 

shown in Figure 3:10 had to be re-purposed for AstroByte NoC structure, 

depicted in Figure 4:10. Because the width of the data stream arriving at the 

FCMP Interface is one 32-bit bus, only one data memory is required in the 

modified FCMP version. The architecture in Figure 4:10 does not have 

controllers as the one in Figure 3:10 because SRAMs can be interfaced directly 

to the FPGA fabric as they are located on-chip. Other differences can be seen 

in re-purposing usage of parameter and interface blocks. Generally, however, 

the basic working principles are the same. 

An Intel Nios II embedded processor is used for storing data in SRAM and for 

sending simulation data to a PC. Packetizing and storing configuration data will 

be discussed in the following section. 

➢ Configuration Data Packetization 

Nios II processor is programmed using C language for packetizing configuration 

data and storing it in an SRAM memory. 

Figure 4:11 illustrates how C language pointers is used for storing configuration 

data before transferring to the destination (reconfigured node). Firstly, 

equivalent hexadecimal 32-bit data for the header flit is constructed and then 

stored, followed by the data (configuration) flit in the next memory location.  

Figure 4:9 A 3x3 mesh NoC architecture 
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Overall, there are 14 programmable attributes for the FSA elements that can 

be modified. In Figure 4:11, node (2,1) is programmed to send spike data to 

node (2,2). SenderAdd is the address of the reconfigured node (2,1) and 

SpikeAdd is the destination address for spike packets sent by SenderAdd.  

In the next sections it will be seen that all the attributes for all the NoC nodes 

will be packetized similarly and stored, before been sent to the NoC fabric by 

the FCMP Interface (FI). 

4.7.2 FCMP Interface (FI) 
 

The FI architecture is shown in Figure 4:10 along with FCMP platform. It is 

function is transfer data between FCMP and router port 0, and vice-versa. Like 

SI, proper clock domain crossing techniques have been implemented to 

decouple the router and Nios II system domains. Unlike SI, however, no 

packetization or de-packetization takes place in FI. This owes to the fact that 

complete data packets -both header and data flits, will be sent for monitoring. 

Likewise, FCMP sends whole packets to port 0. 

The next sections examine the operation of FCMP sub-modules. 

➢ The Output Controller 

It Controls data flow from the FI to router port 0. It takes into consideration the 

number of words in the Configuration Data FIFO and the router port 0 InCh 

FIFO. If there is less than 4 words in the Configuration data FIFO or more than 

60 words in the router port 0 InCh FIFO, data forwarding will be stalled. In all 

other cases, data will be continuously sent to the InCh FIFO 0. 

 

 

Figure 4:10: FCMP Interface architecture 
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➢ The Input Controller 

This module is a relatively simple one since it forwards data form router port 0 

to Monitor Data FIFO.  

4.7.3 Router Data Controller (RDC) 
The Router Data Controller has necessary data, address and control signals to 

facilitate handshaking with the FCMP. At first, the RDC block asserts the Wait 

for ready signal, informing the Nios II based system that it has come out of 

reset. This arrangement is necessitated by the fact that FCMP and FI do not 

come out of reset at the same time, a constraint which is imposed by Multi-

FPGA implementation.  

Data ready will be asserted by FCMP after storing reconfigurable packets in its 

Configuration Data SRAM. RDC then starts sending the already packetized 

data to Configuration Data FIFO until it sends a number of packets equal to 

FCMP Configuration Data Register. The algorithm for the operation is shown in 

Figure 4:12. 

4.7.4 FSA Interface (SI) 
The SI module is composed of a number of blocks. It is bi-directionally 

connected to the router port 0 on one end and FSA on the other. The first 

responsibility of SI is decoupling the frequencies between the router clock 

domain and FSA clock domain by means of DCFIFOs as shown in Figure 4:13. 

Additionally, the SI module packetizes FSA data (spikes, astrocyte, or counter 

output) and de-packetizes incoming data packets. It then forwards the data flit 

either to the configuration register files or FSA.          

 

Figure 4:11 Nios ii Configuration data packetization 
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➢ FSA Programmability  

AstroByte provides users with the ability to reconfigure various aspects of FSA 

components. A mixture of data format and architectural design approaches 

facilitate this programmability.  

Another important function of SI is decoding and storing the configuration 

attributes specified by the user. Whereas Nios II processor creates and stores 

the configuration packets by using C language as explored in section 4.6.2, 

Input controller block decodes the configuration attributes from the header flit 

and issues store commands to the configuration registers and FIFOs. Next, the 

stored attributes will be used by Output controller and FSA respectively. 
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Figure 4:12 Algorithm outlining handshaking and data transfer between FCMP and FI 
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The following table illustrates the configurable attributes, their control bits 

representation and a short description of each attribute. 

                                Table 4:1 Programmable attributes of FSA elements 

Control 
code 

Data flit Description 

0000 Dummy/Not used Not used/Used for filler packets 

0001 Spike data Spike information from source neurons  

0010 eSP/2AG data eSP/2AG from astrocyte/neurons  

0011 Spike address  Address of destination neuron 

0100 eSP/2AG address Address of destination astrocyte/neuron 

0101 Fault ratio Ratio of faults to be introduced 

0110 Data ratio Ratio of simulation to be performed 

0111 Start Control start of astrocyte/neuron simulation 

1000 Stop Control stop of astrocyte/neuron simulation 

1001 eSP/2AG addresses Number of eSP/2AG destination nodes  

1010 Spike addresses  Number of spike destination nodes 

1011 Start counter Number of cycles after Start received 

1100 Fault iteration  Number of cycles before injecting faults 

1101 Monitoring ratio Ratio of simulation data to be sent to FCMP 

1110 FCMP address Address of FCMP 

1111 Dummy /Not used Not used/Used for filler packets 

 

Next, the operation of various blocks of SI will examined. 

 

Figure 4:13 SANN Interface (SI) microarchitecture 
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➢ Input Controller (ICR) 

The ICR block acts as a decoder with registered outputs. The input to the 

decoder is the first byte of the 32-bit wide data bus (Input in the figure) from port 

0. Input [1:0] bits are the header flit designator, followed by two reserved bits 

(Input [3:2] = “00”) as per the NoC data format shown in Figure 4:14 .  

The control bits, Input [7:4], will be decoded to determine the purpose of the 

packet. The packet can hold SANN data - containing either spikes or 2AG/eSP 

- configuration data or Start/Stop control commands.  

All the ICR outputs are registered, meaning the control signals will be asserted 

in the next clock cycle when data flit arrives at register inputs, in line with the 

NoC data format.  

➢ Configuration Register File  

Figure 4:13 indicates the location of the Configuration Register File, composed 

of 7 registers, located between ICR and the Output controller block. The 

configuration registers hold the value for the configuration parameters which 

sent by FCMP and recognized and decoded by ICR. From                                 Table 

4:1, the parameters saved in the Configuration Register File include; Spike 

address, eSP/2AG address, Data ratio, eSP/2AG addresses, Spike addresses, 

Monitoring ratio, and FCMP address. 

➢ Address memory 

 The Address memory block can store up to 8 destination addresses for both 

spike data and eSP/2AG data. Each time the write signal on the memory goes 

high, a custom memory controller (not shown) will save the address in the next 

memory location.  The parameters Spike addresses and eSP/2AG addresses 

are used in conjunction with the Address memory. The OC implements a down 

counter, starting from the value stored in Spike addresses register (for sending 

spikes). Once the down counter reaches 0, the OC starts again for sending the 

Figure 4:14 AstroByte data format 
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next spike word. Similar to the write side, each time the OC asks for an address, 

the Address memory provides a different address. The operation of Address 

memory is similar to FIFO, with the difference that their entries won’t be 

discarded when read. 

➢ Configuration FIFOs  
  

The Configuration FIFOs contain two DCFIFOs for storing Fault ratio and Fault 

iteration parameters. The values stored in these FIFOs are used by SI to insert 

various fault ratios at specific cycle according to Fault iteration value.  

➢ Start/Stop controller 

This inputs to this module are Start/Stop control signals out of the ICR, the main 

input bus from router port 0 (Input) and the Start counter control signal for 

saving the attribute. When a start signal is received, the module will wait for a 

number of clock cycles specified by the Start counter value before sending Start 

command to FSA. The Stop command will be passed in the next clock cycle. 

➢ Spike & 2AG/eSP FIFOs 

The SANN component either contains an astrocyte or a neuron element. In the 

case of a neuron element, the inputs will be spikes and eSP from an astrocyte. 

In the case of an astrocyte, 2AG from the neurons will be its inputs (Figure 2:3).  

The two sets of Spike and 2SP/2AG DCFIFOs in Figure 4:13 are implemented 

to clock crossing from FSA to router and vice-versa. 

➢ Write Controller (Wr CNTRL) 

Two WrCNTRL blocks control the data flow from SANN components to Spike 

and 2AG/eSP DCFIFOs. In case there isn’t enough space in the FIFOs the 

operation of the SANN elements will be suspended by means of enable signals 

from WrCNTRL to SANN.  

➢ Output Controller (OC) 

Packetizing FSA data from the DCFIFOs will be carried out by OC block. The 

data packet are then forwarded to ISC of the router port 0. OC is regularly 

updated on the status of router InCh FIFO 0 by the Router FIFO Wr_used, 

shown in Figure 4:13. 

OC takes into account the user defined attributes stored in Configuration 

Register Files while packetizing and forwarding FSA data. 

The spike address attribute is assigned to the address part of the header flit 

when Spike data is packetized. The attribute eSP/2AG address is included in 

the header flit when sending eSP/2AG data. Data ratio decides how much of 

the available channel bandwidth is used by the core. If 50 was stored in Data 

ratio register, OC exploits half of the available bandwidth.  
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FCMP address will be used in the destination field of header flits so the packet 

is routed to FCMP. Monitoring ratio attribute will be used to decide how much 

of simulation data to be forwarded to FCMP. If this value was 100, the 

implication is all the simulation data forwarded to destination nodes is forwarded 

to FCMP as well. To this effect, the OC module does not get rid of data in the 

DCFIFOs after sending them to the destination SANN elements. It reuses them 

and packetize them for a second time with FCMP address attached. If 

monitoring ratio value is 50, every other DCFIFO entry will be sent twice, one 

for destination FSA and one for FCMP.  

Spike and eSP/2AG addresses point to the number of destination addresses 

that spike and eSP/2AG are sent to. 

4.8 Chapter conclusion  
 

This chapter was dedicated to design and implementation of AstroByte 

platform. Operation, architecture and implementation of Intel DCFIFOs and 

transceivers were examined as the IPs are used for realizing multi-FPGA 

communication infrastructure. The AstroByte data format and the NoC router 

architecture were studied. Additionally, implementation and working of the 

individual components facilitating NoC router architecture were presented. 

Lastly, architectures and operation of SI, FCMP, and FI were investigated in 

detail. The next chapter is allocated to analysis and experimentation on 

AstroByte platform. Results regarding performance parameters like throughput, 

latency, acceleration and accuracy will be presented.  
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Chapter 5: Experimentation and Results 
  

This chapter will present experimentation results from a fully connected, 

scalable and programmable AstroByte platform. The experiments include 

throughput, latency and acceleration performances. In addition, under-

sampling and accuracy performances will also be assessed. 

The structure of the chapter is as follows. Firstly, the overall setup of 

experimentation will be discussed in Section 5.1 and section 5.2. Section 5.3 

presents results on evaluating the throughput of a 3x3-FPGA system under 

different traffic rates. Examining the latency experienced by packets in the 

network will follow in section 5.4. Acceleration gained from AstroByte over an 

equivalent Matlab SANN implementation is presented in section 5.5. Section 

5.6 provides information as regards mapping the FSA to the AstroByte NoC 

nodes. Section 5.7 investigates the AstroByte platform in comparison to Matlab 

(software) in terms of accuracy and execution time. Additionally, comparison 

with two other multi-FPGA platforms will be presented in section 5.7 before 

concluding the chapter in section 5.8. 

AstroByte is the third contribution of this study. Some of the results and overall 

architecture design are published in the paper “AstroByte: Multi-FPGA 

Architecture for Accelerated Simulations of Spiking Astrocyte Neural Networks” 

at the Design, Automation & Test in Europe (DATE) conference in 2020.  

5.1 Experiment setup  
 

The PC used for all the experiments in this chapter has the following 

specifications; 64-bit Windows 10 Enterprise, Intel Core i7-2600 3.4 GHz 

processor with 16GB RAM. 

Intel Quartus Prime 18.0 SE was used for VHDL coding, analysis, synthesis 

and FPGA programming. SignalTap II and the in-house developed FCMP IP 

core/software were used for design verification through analysing data acquired 

from the FPGAs. MATLAB R2015b was used for capturing simulation data and 

analysis. An Intel build for Eclipse Mars 2 was used with Nios II embedded 

processor.  

The Terasic DE4 FPGA development and educational board was used which 

utilizes an Intel Stratix IV GX EP4SGX530 FPGA. For the AstroByte 

implementation, Ethernet, SATA, and General Input Output Pin (GPIO) 

interfaces were also used. 

5.2 Multi-FPGA Setup 
 

A 3x3-FPGA AstroByte platform was setup for experimentation as shown in 

Figure 5:1. The FPGAs are interconnected in a mesh structure using SATA 
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cables as the physical medium. Intel GXB transceivers are responsible for 

establishing integral cross-FPGA links (see the Appendix). 

General Input Output Pin (GPIO) wires serve the function of restarting the entire 

system at the start, as this is the requirement for synchronization between the 

GXB transceivers. The reset GPIO originates from the FCMP board and makes 

its way to all the nodes forming the AstroByte platform.  

The sliding switches on the DE4 boards are for choosing between different 

available configurations. The user can select between FSA and test counters 

as the computing elements. Additionally, the user can choose between 10 MHz 

or 150 MHz operation frequency should counters be used. 

The FPGA IPs support programmable address feature, using pushbuttons 

located on DE4 boards. The user can program all the FPGAs with the same IP 

(except for the FCMP node) and change the addresses using the pushbuttons. 

This saves the users a lot of time since a separate IP is not required for each 

address.  The two 7 segments show the address entered by the user at a 

particular instant. 

Figure 5:2 shows the platform working sequence. Firstly, all the FPGA boards 

will be programmed with their relative bitstream files. Then the user pulls the 

global reset signal low by a sliding switch on the FCMP board. Led signals on 

the DE4 boards indicate whether all links are synchronized. If one or more links 

had failed to synchronize, the user can simply pull the reset low again. 

Now the AstroByte platform is ready to be used. By means of Nios II 

programming, the FCMP node starts sending configuration data packets to the 

other nodes to facilitate a user defined multi-FPGA platform.  

Figure 5:1: A 3x3-FPGA AstroByte platform 
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Next, the computing elements, FSA or test counters, start sending data through 

the NoC infrastructure to its destinations. This may include FCMP as specified 

by the configuration packets.  

Figure 5:3 presents an example of the work sequence above for a prototype 

application. Firstly, configuration data packets make their way from FCMP at 

Figure 5:2: AstroByte operation protocol 
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node (1,1) to nodes (0,0) and (2,2), setting destinations addresses to (1,0) and 

(1,2) respectively- all the nodes are chosen arbitrary. Both nodes also 

programmed to send monitoring data back to FCMP. When the configuration 

phase ends the computing elements start sending data packets to destination 

nodes and FCMP as per their configuration. 

5.3 Throughput calculations  
 

Throughput calculations are carried out by inserting special hardware blocks at 

the input and output ports of the router. The blocks include two counters. One 

counts until 150,000,000 cycles (one second), starting from the first data packet 

passed through the port, and the other counts the number of data packets 

received in that duration. For example, if 15,625,000 packets pass through 

calculator block, which means 31,250,000 flits (each packet is two flit) has 

passed through the router. To get throughput this has to be multiplied by 32, 

the width of GXB parallel inputs/outputs. The results is 1000,000,000, which is 

1Gbps.  

Throughput (Gbps) =
No of Packets ∗ 2 ∗ 32 

10
9  ……………...…………………...(31) 

Figure 5:4 shows the AstroByte setup for this experiment. The FCMP platform 

is located at the router (2,2) and is used for configuring the network only, 

monitoring data is not fed back to it in this experiment. Using AstroByte 

programmability features by means of the Nios II programming, configuration 

packets carrying the destination node address and the traffic rates are sent to 

each node at start of simulation. Counters (denoted by C) were used as 

Figure 5:3 AstroByte setup for configuration, communication and acquisition phases 
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computing cores instead of FSA elements as using counters make debugging 

and observing the sequence of packets easier. 

Packets were routed from node (1,1) – source, denoted by S- to node (2,1)-

destination, denoted by D. The numbers on the upper left side of counters in 

the figure show the sequence at which the counters started inserting packets 

into the network. As an example, node (0,1) is the third node, meaning results 

for 0,1, and 2 were collected before the node starts sending traffic. The 

throughput is measured at input port 0 of the source router, at (node 1.1). 

The following figures show throughput of the AstroByte platform in various 

scenarios. In the figures, the x-axis represents the rate of traffic (the percentage 

of the maximum theoretical available bandwidth) inserted by various nodes and 

the y-axis is throughput in Gbps. One could calculate the total throughput by 

accounting for all the packets that pass through a certain node, i.e. both data 

and credit packets. Alternatively, only the credit packets can be calculated for 

capturing the throughput figures of the useful data that will be eventually used 

in SANN simulations. In this study, firstly, the figures for data packets 

throughput were calculated then the total throughput figures were obtained by 

adding 1.44Gbps.  

The results display throughput for cases when the computing cores operate at 

either 10MHz or 150MHz. The SANN in this study operates at a frequency of 

Figure 5:4 AstroByte setup for throughput 
test 
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10MHz however the infrastructure supports computing core frequencies of up 

to 150MHz-the operating frequency of the router. 

Figure 5:5 show results for a case when only node (1,1) injects traffic into the 

network while all the other nodes are silent in various cases. The maximum 

total throughputs are 3.36Gbps and 2.72Gbps for 150Mhz and 10 MHz 

respectively.  

For Figure 5:6 and Figure 5:7 the source node (1,1) is always injecting data 

packets at 100% rate while other nodes insert data packets at an incremental 

rate of 10%. As an example, the “3 ports” trajectory in Figure 5:6 is obtained 

when node (1,1) traffic rate is fixed at 100%, while nodes (1, 0), (1, 2) and (0,1) 

insert traffic at incremental steps of 10%. The trajectory starts at the maximum 

of 1.28Gbps which occurs when only node (1,1) sends traffic at 100%. The 

projectile then starts a linear decline when the other nodes start inserting traffic 

at 10% rate simultaneously. Finally, at 30%, the throughput stabilizes at 0.32 

Gbps. 

Figure 5:6a shows the throughput results for FSA operating frequency of 10 

MHz. Here the throughput figures only account for data packets, meaning credit 

packets bit transfers are not accounted for.   

Figure 5:6b displays the router throughput under the assumption that the 

computing core could be run at 150MHz, the frequency of the router. The results 

fluctuate between 1.92Gbps and 0.3031Gbps, depending on the number and 

traffic rate injected and the number of the computing nodes. Throughput results 

for 150MHz shows that the 10MHz does not take full advantage of the 

bandwidth available. As discussed in chapter 3, the rationale for using the 

10MHz frequency is due to the performance of the astrocyte process in terms 

of operation frequency. The throughput figures show that optimizing the 

astrocyte for higher frequencies will result in better throughput. The astrocyte 
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process is formed of computationally intensive hardware blocks that have 

several DSPs in their data path.  

Figure 5:7 illustrates data for the same experiment as performed above with 

throughput for credit packets accounted for alongside the data packets. Figure 

5:7 measurements are obtained by adding 1.44 to the readings in Figure 5:6. 

This is useful for calculating the transceiver link total throughput as 

approximately 1.44 Gbps of the throughput is dedicated to the credit packet per 

link. For the computing cores operating frequency of 10MHz and 150MHz, the 

maximum throughput is 2.72Gbps and 3.36Gbps respectively.    

Figure 5:6 Data packet throughput for 10MHz and 150MHz 
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5.4 Latency  
 

Figure 5:8 illustrates the latency experienced by packets while passing through 

the NoC router under various traffic ratios. The latency numbers were obtained 

using SignalTap II to record packets on input and output ports. The latency 

values are reported as the average latency.  

The experiment setup is similar to that for the throughput. The AstroByte 

platform in Figure 5:1 was used and latency was calculated by measuring the 

number of cycles packets take from an input port to and output port of node (1, 

1). The length of each simulation was 131072 cycles, which is the maximum 

capacity for SignalTap. All the packets in this time were captured at an input 

port and an output port and the latency was observed. The average latency of 

all the packets that made their way through the router was recorded.  

Figure 5:7 Data and credit packet throughput for 10MHz and 150MHz 
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Firstly, packets were routed from node (1,0) to node (1,2) at incremental rate 

without contention and the latency of packets was observed. Later, traffic 

generated by node (1,0) was fixed at 100% while nodes (0,1), (1,1) and (1,2) 

sent incremental traffic rates to node (2,1) through node (1,1). This causes 

Figure 5:8 Latency figures for AstroByte platform 
(c) FSA Interface (SI) to port latency 
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traffic at the south port of node (1,1) which is required by the experiment. The 

latency figures provided are represent the average number of clock cycles from 

an input to an output of one FPGA. If cross-FPGA latencies is required, the 

figures below have to be added by 13, the latency introduced by Intel 

transceivers [129].  

Figure 5:8(a) shows latency of packets from an external port to another external 

port (N, S, E, W). To explain the latency calculation method, latency 

measurement of “2 ports” trajectory will be described next. Ports (1,0), (1,2) and 

(0,1) were configured by FCMP to send packets to port (2,1). The latency 

figures were calculated at the router node (1,1), from input west port (receives 

the traffic of node (1,0)) to its output south port (towards the destination node 

(2,1)). The reference node was node (1,0), hence its traffic was fixed at 100%. 

The traffic rate of nodes (0,1) and (1,2) were increased at 10% rate and the 

latency was calculated. As per Figure 5:8, the latency starts from 58 (router 

cycles) and increases in a linear fashion, before stabilizing at a range of 543-

547 cycles from 40% onwards.  

Figure 5:8(b) shows latencies in the cases when packets are routed from the 

input buffers (InCh FIFOs) of the external ports to SI. The figures are 

significantly lower than the latency values reported in Figure 5:8(a). This is due 

to the difference in the architecture for port 0 as shown in Figure 4:4. The 

difference in ATT latency waiting value, which is 75 for external ports and 5 for 

port 0, affects the latency of processed packets. This because packets have to 

wait less in the InCh FIFOs before getting correct information about free spaces 

in the SI buffers by the tracking mechanism discussed in section 4.4. Figure 

5:8(c) shows the latency figures for moving packets from port 0 to the external 

ports1-4. The latency figures see a slight increase when compared to external 

port to external port latency. This is because of the proximity of InCH FIFO of 

port 0 to the FSA interface (SI). The effect is packets move to port 0 FIFO 

sooner and stay for longer before being forwarding to the destination router via 

one of the external ports.  

5.5 Simulations and Under-sampling 
 

To evaluate simulation times the 3x3-FPGA platform was exercised with data. 

Counters were used instead of FSA elements. Nodes (0,1), (1,0), (1,2), (1,2) 

send data packets to their two neighbours while sending monitoring data to the 

FCMP at node (1,1) at the same time. Results are shown in Table 5:1. 

Granularity Elapsed time 
     (Sec) 

     Iteration/Node 
          

 Biological time scale 
              (Sec) 

1 84.79 20,480,000 20,480 

10 87 204,800,000 204,800 

100 147.7 2,048,000,000 2,048,000 

1000 762.3 20,480,000,000 20,480,000 

Table 5:1 Under-sampling by running simulation for 20,480,000 cycles 
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Total data collected is 163,840,000 words, including header and data flits from 

four source nodes. This means the total simulation data collected, represented 

by the number of data flits (50% in total) is 81,920,000. Dividing this figure by 

four (the number of FPGAs that produce traffic) yields the iterations carried out 

per node, amounting for 20,480,000 cycles in the 150MHz domain/per node. In 

practice there is a slight difference between data collected from various nodes 

(< 0.05 %) because of slight variations of instant traffic experienced by the FSA 

cores at different nodes. This is caused by different FPGA clock domains and 

the status of priority at the shared destination FPGA (the FCMP core). 

Under-sampling means collecting data at a lower level of granularity (e.g. 1 in 

10 packets). Granularity of one means every data sent from source to 

destination routes has also been forwarded to the FCMP, i.e. no under-

sampling. A granularity of 1,000 means 1/1,000 of the data routed to destination 

node has been received by FCMP for monitoring. The granularity column in 

Table 5:1 represents the rate of under-sampling in this experiment. 

The under-sampling feature allows for faster simulations of large biological 

timescales however at the cost of data granularity. Using full granularity, 20,480 

seconds (~5 hrs 40 min) of biological time can be simulated in 84.79 seconds. 

However, if granularity is reduced, simulation of under 57 hours is possible in 

87 seconds (1 min 27 sec). Down sampling further would enable users to 

simulate close to 569 hours in just 147.7 seconds (2 min 27.7 sec), or 

approximately 5,689 hours in 762.3 seconds (approximately 13 minutes). 

5.6 Multi-FPGA SANN implementation  
The next set of experiments aim at evaluating performance of the AstroByte 

platform by integrating the FSA, reported in Chapter 3, into the multi-FPGA NoC 

architecture. 

Figure 5:9 Prototype AstroByte configuration 
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Figure 5:10 illustrates a four FPGA platform with FSA elements (neurons, an 

astrocyte and synapses) mapped into separate FPGA cores (C). The first 

neuron entity (N1 entity), composed of N1 and the associated tripartite 

synapses, spike and probability generators, is mapped into node (0,1) in the 

multi-FPGA NoC mesh structure. N2 entity is mapped to node (1,0) while the 

astrocyte process is mapped to node (0,0) and FCMP is located at node (1,1). 

The FCMP sends configuration packets at the start, routing information from 

SANN components to their destination. The Astrocyte process sends eSP 

signals to both neuron entities, which in turn, send the astrocyte 2AG. The 

neurons also send their average frequencies to the FCMP platform, enabling 

users to monitor the rate of firing. The FSA, as discussed in the previous 

chapters utilizes astrocyte for giving a SANN self-repairing capability. 

5.7 SANN multi-FPGA simulation 
 

Simulation data of the example SANN executing on the AstroByte platform in 

Figure 5:10 are shown in   

Unlike Table 5:1, under-sampling is carried out by collecting the same amount 

of data with reduced granularity and less time rather than collecting larger 

amount of data with reduced granularity that takes longer. 

For this experiment, 401,408,000 iterations of data are collected per FPGA. For 

under-sampling, the experiment was run for the same number of iterations to  

Figure 5:10 Prototype SANN mapping on AstroByte 
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see the impact of under-sampling on simulation time. As per Table 5:2, 

simulating 401,408,000 iterations/node takes 1044.8 seconds with no under-

sampling. With an under-sampling rate of 10, the simulation is completed in 

158.14 seconds (x6.6 speedup). Down sampling at the rate of 100 results in 

reducing the experiment time to 88.06 second (x1.8 speedup) while further 

under-sampling results in a dismal speed up of x1.064. This is because at 

higher under-sampling rate the platform comes closer to its maximum 

performance with the FCMP platform being the system bottleneck as discussed 

in chapter 3.  

 

5.7.1 Acceleration 
 

The Acceleration gained from using the prototype AstroByte platform of Figure 

5:10, will be assessed in this section.  

The same SANN structure developed in chapter 3 was used but was 

implemented on a 2x2 FPGA AstroByte structure as opposed to a single FPGA 

as in in chapter 3. Table 5:3 shows that speedup factors of between  x162-x188 

can be gained by simulating FSA on AstroByte platform, compared to an 

equivalent software Matlab implementation [6].  

The acceleration obtained from implementing SANN on a single FPGA FSA (           

Table 3:5) and that a 2x2 AstroByte platform (Table 5:3) can be compared. 

Despite the NoC interconnection overhead, the 2x2 AstroByte platform can 

maintain over 75% of the speedup factor that is possible on a single FPGA. 

Granularity Elapsed time 
     (Sec) 

     Iteration/Node 
          

 Biological time scale 
              (Sec) 

1 1044.8 401,408,000 401,408 

10 158.14 401,408,000 401,408 

100 88.06 401,408,000 401,408 

1,000 82.76 401,408,000 401,408 

Biological 
Time (S) 

Iterations 
(Cycles) 

Matlab    
(Seconds) 

AstroByte 
(Seconds) 

Acceleration 
Factor 

400 400,000 153.72 ~0.938 163.9 

600 600,000 242 ~1.4 172.9 

800 800,000 327 ~1.9196 170.3 

1,000 1,000,000 381 ~2.3448 162.5 

1,200 1,200,000 506 ~2.71 186.7 

3,600 3,600,000 1,500 ~8.1618 183.8 

5,000 5,000,000 1,960 ~10.7723 182 

10,000 10,000,000 4,095 ~21.7448 188.3 

Table 5:3 Comparison between AstroByte and software implementations 

 

Table 5:2 Under-sampling for 2x2 FPGA AstroByte by decreasing simulation cycles 

e 



P a g e  | 105 

 

 
 
 

Further mitigation of NoC interconnection overhead will be explored in future 

work. 

From Table 5:3 last entry, 2hrs:46min of biological time can be simulated in 1hr: 

8mins (4095 second) using Matlab. The same simulation takes 21.74 seconds 

using the proposed AstroByte platform, which means a speedup factor of 

x188.3 over the equivalent Matlab implementation. 

The main reason for performing comparisons with Matlab is due to the 

availability of an in-house model for the SANN. If this work dealt with SNNs, 

other software/programming languages such as C, C++ and Python could have 

been used for comparison. However, unlike neurons and synapses, standard 

models/libraries for astrocyte don’t exist for self-repairing SANNs. Overall, for 

low-level programming languages (e.g. C and C++) one would expect, purely 

based on logical reasoning, that the FPGA advantage in terms of acceleration 

would shrink. However, to which degree depends of a great many factors, such 

as the specifications for the FPGA and PC used, how optimized the algorithms 

are, how many cores are in the processor and the level of parallelism in the 

software code. Another factor is that Matlab execution times are been improved 

constantly with each new release of software and hardware, making a 

reasoning-based judgement even more difficult. Only practical research in the 

area of comparing different software can answer these questions which fall 

beyond the scope of this work. 

5.7.2 Accuracy  
 

Figure 5:11 illustrates comparison between AstroByte FSA implementation and 

equivalent Matlab software model in terms of average frequency and standard 

deviation. Frequency response trajectories for the healthy neurons and various 

ratios of faults, including no fault situation, are presented. The average 

frequency and standard deviation of the trajectories are also shown in the 

figure. It is evidence that a multi-FPGA AstroByte platform can simulate SANNs 

with high accuracy. The maximum difference between the average two 

frequencies can be seen in Figure 5:11-f, with a difference of 0.0939 Hz 

(~0.016%). 
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(b) Faulty neuron average frequency at 0% fault rate (no fault) 

(a)  

(a)  Healthy neuron average frequency 
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(c) Faulty neuron average frequency at 20% fault rate 

(d) Faulty neuron average frequency at 40% fault rate 
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(f) Faulty neuron average frequency at 80% fault rate 

(e) Faulty neuron average frequency at 60% fault rate 

Figure 5:11 Accuracy comparison between AstroByte and Matlab 
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5.7.3 Comparison with SNAVA and Bluehive 
 

This section provides a comparison of AstroByte with Bluehive [97] and SNAVA 

[98] as both share several characteristics with AstroByte. They are both multi-

FPGA platforms aimed at SNN simulations, offer some degree of 

programmability, and have mechanisms for monitoring simulation data. Despite 

these shared features, the architecture and implementation vary widely among 

the three platforms. An overview of the three platforms features is given in Table 

5:4. 

Both Bluehive and SNAVA simulate SNNs in real-time meaning that simulations 

take as long as an equivalent biological model while AstroByte achieves 

approximately x460 times speedup over its biological counterpart. In terms of 

software, all the three platforms have reported speedup gains with the highest 

being Astrobyte with X188 speedup. 

Bluehive uses off-chip DDR RAM to store a netlist for the SNN mapping, 

allowing users to implement various SNN architectures. AstroByte uses on-chip 

SRAM for storing configuration packets.  SNAVA offers programmability by 

means of a user interface and a programming language. In the reported SNAVA 

realization, each FPGA has to be connected to a dedicated Ethernet cable for 

reconfiguring purposes, putting a limitation on its scalability as will be 

dependent on the number of Ethernet ports the host PC can provide. AstroByte, 

on the other hand, uses FCMP to send configuration packets on the NoC 

interconnection, requiring only the FCMP node to be connected to a PC.  

The only reported programmable feature of Bluehive is network structure. 

SNAVA allows the user to implement different neuron models and SNN 

architectures. AstroByte offers 14 configurable attributes shown in Table 4:1, 

however the neuron model is not reconfigurable.  

Bluehive and AstroByte use SATA cables for facilitating communication 

between different boards. AstroByte implements Intel GXB transceivers and 

custom designed controllers. Bluehive, interestingly doesn’t use any 

transceivers. An approach utilizing CRC protection and replay functionality has 

been implemented. No details have been provided as how frequency mismatch 

between different boards is dealt with. SNAVA deploys SMA cables and Xilinx 

Aurora protocol for this purpose.  

Among the three platforms, only AstroByte has self-repairing capability, gained 

through incorporating an astrocyte process however at the cost of extra 

hardware. Figure 3:4 shows the resource usage for the astrocyte process in 

terms of FPGA DSPs and LUTs. These figures can be reduced by optimizing 

the astrocyte process, for example, through implementing less complex 

equations -less faithful to the biological model-that still maintains the basic 

functional behaviour of the astrocyte. Optimizing the astrocyte process would 

be an iterative process. One would have to implement an optimization 
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technique, simulate the SANN with the optimized astrocyte and observe the 

response of the system. This process would continue until finding a satisfactory 

balance between behavioural accuracy and hardware resource usage. 

Optimizing the astrocyte process falls beyond the scope of this work. 

In summary, the following distinguishes AstroByte from SANAVA and Bluehive 

work: 

1. Incorporation of astrocytes to provide SANNs with self-repairing abilities. 

2. Ability to efficiently reconfigure the SANN and capture real-time simulation 

data using the same NoC infrastructure used for data communication. 

3. Able to achieve accelerations of up to x188 while capturing full-scale real-

time simulation data. 

5.8 Chapter conclusion  
 

This chapter was focussed on the evaluation of the multi-FPGA AstroByte 

platform. Data from experiments on DE4 FPGA boards were used for 

evaluating performance matrixes of the multi-FPGA NoC. The experiment setup 

for the performance calculation was laid out. Figures representing throughput 

and latency were then presented. An example of sample AstroByte platform 

was used to test data acquisition and under-sampling characteristics. The FSA 

developed previously was integrated mapped to AstroByte to test for 

acceleration and accuracy. Results indicate that acceleration factors of x162-

x188 were possible with minimal accuracy degradation. Lastly, a comparison 

between AstroByte and each of SNAVA and Bluehive was provided and 

demonstrated that AstroByte 1) features more programmable attributes; 2) is 

the only platform to incorporate astrocytes to facilitate self-repair; 3) provides a 

less-intrusive data acquisition platform (no need for separate connections or 

stopping simulations); 4) is the only multi-FPGA platform that is dedicated for 

accelerating simulations as opposed real-time simulations. 
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Table 5:4 Comparison between AstroByte, SNAVA and Bluehive 

 AstroByte Bluehive [97] SNAVA [98] 

Topology Mesh 3D Torus Ring 

HDL language VHDL BSV- Bluespec System Verilog N/A 

Acceleration/Real-time Acceleration (x426-x460) Real-time Real-time 

Acceleration/Software Acceleration (x162-x188) X162 X129 

Self-repair/ Astrocyte Yes No No 

Configuration method By sending configuration 
packets from FCMP through 

NoC infrastructure 

By altering address DRAM 
content 

By using Ethernet from a host 
PC to program the 

configurable components 

Configurability 14 configurable attributes 
Table 4:1, Figure 4:3 

Only neural mapping is 
reconfigurable 

Neural model and Neural 
network mapping 

Result monitoring Real time data acquisition 
using NoC infrastructure 

Simulation has to stop 
completely to readout 

simulation results from off-chip 
memories. 

Real-time simulation by 
Ethernet cable. Each board 

needs an Ethernet 
connection 

Resource TDM No Yes Yes 

Board to board bandwidth 4.8 Gbps 18 Gbps N/A 
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Chapter 6: Conclusion and future work 
  

6.1 Concluding summary  
It is evident that the current Von Neuman computing architecture is facing 

obstacles regarding scalability and power efficiency. On top of that, detecting 

and recovering from faults in traditional Von Neuman machines and others are 

not intrinsic and require meticulous architectural planning that often adds to the 

complexity of these systems. Brain-inspired computing has the potential to 

address these challenges by means of massively parallel structures that 

perform computations in an extremely power efficient manner. In particular, 

self-repairing is embedded in the brain’s functionality that allows for problem-

free operation despite existence of faulty neurons in the SANN.  

Researchers have explored SNNs with the goal to firstly simulate the brain’s 

functionality and, secondly, to capture the power efficient and massively parallel 

nature of the brain in a novel, next-generation computing systems. The SANN 

implemented in this work model the self-repairing characteristics of the brain by 

incorporating astrocytes into SNNs. However, simulating SANNs in software is 

extremely time consuming due to the sequential nature of software execution 

and the complexity of astrocytes. Therefore, this work focusses on accelerating 

SANN simulations by designing dedicated FPGA Hardware and interconnect 

strategies for neurons, astrocytes and tripartite synapses. To address the 

challenge of simulating large-scale SANNs on FPGA hardware, a novel multi-

FPGA infrastructure for accommodating large-scale SANN simulations was 

developed. Additionally, hardware and software tools were developed for 

capturing simulation data for analysis.  

6.2 Main contributions 
 

1- A dedicated FPGA hardware for accelerating SANN simulations, the 

FSA, was realized. Hardware blocks were designed for neurons, 

astrocytes and the tri-partite synapses using VHDL and verified on FPGA 

hardware. The FSA has a self-repairing capability and is able to 

accelerate SANN simulations up to 1,067 times faster compared to an 

equivalent Matlab model. Fixed-point arithmetic was used as opposed to 

floating point for efficient hardware implementations. Bit resolutions of 24, 

32 and 40 were explored and comparisons were carried out as regards 

the different implementations accuracy and hardware consumption. The 

32-bit realization was chosen as it provides the best balance between 

accuracy (compared to an equivalent double floating-point arithmetic 

Matlab model) and FPGA resource usage. It is proven that the FSA has 

good resiliency to both moderate and severe faults. 

 

2- A novel FPGA Configuration and Monitoring Platform (FCMP) for 

configuring and monitor FSA simulations was developed. Nios II soft 
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processor was used to acquire data from SFA and save the data in 

memory (DDR2 SDRAMs or SRAMs).  The acquired data was then 

transferred to a PC through Ethernet cable via socket programming. 

Results showed that, if DRAMs are utilized for storing acquired data, 

speedup of up to x65 is possible when compared to Matlab. The 

acceleration gained can be improved significantly by replacing the 

DRAMs with SRAMs, in which case simulations can be run up to x249 

times faster than Matlab software. The FCMP was later adapted for 

integration with the AstroByte NoC infrastructure. The FCMP is able to 

store configuration packets in an internal memory and issue commands 

to inform the associated router to send the configuration packets to the 

other nodes on the NoC.   

 

3- A NoC router was developed to enable the implementation of a multi-

FPGA NoC platform. The router utilises four external ports (N, S, E, W) 

and one internal port for communicating with the computing core. Intel 

GBX IPs (transceivers) were integrated within the router’s architecture to 

facilitate cross-FPGA communications. Suitable techniques were utilized 

for clock domain crossing in the router. An appropriate mechanism was 

realized for updating information regarding the free buffer spaces in the 

downstream routers. A fair arbitration scheme arbitrates requests and 

controls access to the output ports.  

 

4- Two interface blocks were provided for connecting the NoC routers to the 

various computing blocks. The first interface is FI, which connects the 

internal computing core of the router to the FCMP. The second interface 

is SI and is located between the router and FSA elements (or test 

counters).  

 

5- The above-mentioned contributions were integrated in a single platform 

called the AstroByte that is able to carry out large scale SANN 

simulations. The AstroByte is able to efficiently reconfigure the FSA and 

capture real-time simulation data using the same NoC infrastructure used 

for data communication. Using a 2x2 FPGA AstroByte platform, a 

speedup of x188.3 times is possible when compared to an equivalent 

Matlab model, while capturing 100% of the data produced by FSA 

elements. AstroByte can also support computing cores that operate at a 

frequency of 150 MHz. Throughput tests proved that the AstroByte can 

communicate data at 2.72Gbps and 3.36Gbps for computing cores that 

run at 10 MHz and 150 MHz respectively.   

6.3 Future work 
In this section the proposed future works to improve this PhD research will be 

discussed.  
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➢ Optimizing the astrocyte process with a smaller footprint: Currently a 

reduced fixed-point implementation is used for the astrocyte process to 

reduce FPGA footprint. Yet there are still other opportunities to make the 

astrocyte process more hardware efficient. One such opportunity is 

implementing a less biologically faithful astrocyte model. This would allow 

for a reduction in the number of equations in hardware which leads to 

utilizing less DSPs and other FPGA resources. This has been left to future 

work as striking a balance between biological faithfulness and functional 

accuracy needs further research. 

 

➢ Optimizing astrocyte process for speed: The astrocyte process puts a limit 

of 10 MHz on the operation frequency of the FSA. The operating frequency 

can be further optimized by utilizing techniques such as pipelining. Reducing 

the accuracy of the biologically faithful astrocyte, as discussed above, will 

also help with increasing the operating frequency. This is because a less 

biologically faithful astrocyte model requires shorter combinational paths 

and allows for a higher clocking frequency. 

 

➢ Researching new FCMP architectures for gaining further acceleration 

performances: The effects of the FCMP platform on acceleration was 

discussed in Section 3.4.2. It was mentioned that using FCMP for data 

monitoring reduces the speedup gained. Several approaches can be utilized 

to reduce the overhead imposed by the FCMP. Firstly, instead of 

transferring data using software that runs on Nios IIII soft processor, data 

can be transferred at PHY level directly to the PC. This calls for 

implementing PHY IP instead of the Ethernet IP. Secondly, more than one 

connection between the PC and AstroByte can be utilized to parallelize the 

transfer of the monitoring data to speed-up the data transfer process, thus 

getting around a major bottleneck in the system. 

 

➢ Virtual channels for the routers: The current iteration of the NoC router 

design does not implement virtual channels. Virtual channelling would utilize 

a higher percentage of the available bandwidth when the NoC channels are 

congested. Virtual channelling will be useful for AstroByte platform if the 

FSA core is optimized for speed, as this would mean more data transfer and 

more congestion in the NoC.  

 

➢ Adaptive routing scheme: The current routing technique is X-Y routing. 

Packets will always follow the same path from a source to a destination 

regardless of the congestion in the network. An adaptive routing scheme 

would allow packets to choose a less congested path if there were a high 

congestion at a particular node. Again, as is the case with implementing 

virtual channelling, AstroByte would benefit from such a scheme after the 

FSA is optimized for speed. 
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➢ Modify SI (FSA Interface) to support full scale simulations: - The current SI 

has been designed to support a prototype multi-FPGA FSA implementation 

for which an equivalent Matlab model is available. However, with relatively 

mild effort, the SI can be configured to support many neurons and an 

astrocyte on each FPGA. To achieve this, the AstroByte data format needs 

to be modified to enable users to choose, for example, whether a particular 

node should be a neuron (or a multiple neuron) node or an astrocyte node. 

Additionally, the data format and SI design should give the capability of 

mapping large-scale SANNs by dedicating a specific field in the data format 

that allows addressing a particular set of synapses for a neuron or group of 

neurons. 

6.4 Self-critic  
 

While the previous section offered additional ways for improving this research, 

this section focusses more on the improvements that always seemed within 

reach and the author wished he could achieve before the project’s end. 

Firstly, the affair of improving the astrocyte process for speed always seemed 

doable within the timeframe dedicated for the PhD project. However, due to the 

time required for architectural exploration of the AstroByte platform, not enough 

time could be dedicated for optimizing the astrocyte process for speed.  

Additionally, the author observed, during designing the FCMP platform, that the 

size of buffers in the Ethernet IP is customizable. The virtual buffers that has to 

be dedicated in Matlab software for socket programming is also user-defined. 

There seem to be a potential for optimization here, e.g. finding appropriate 

values for both buffer sizes for optimizing the speed of data movement from 

FPGA hardware to the PC. Unfortunately, this also had to be sacrificed in favour 

of more crucial tasks. 

Finally, the author would like tp implement a more complex SANN than the 

prototype one for which the results has been reported. The road map was to 

test the prototype SANN available in Matlab to be able to carry out meaningful 

comparisons between the hardware and software models. Therefore, the data 

format was designed with the prototype SANN in mind however it didn’t turn out 

to be fit for larger scale implementations. This is due to the fact that the data 

format doesn’t specify the address of target synapses connected to the target 

neurons. Although this requires minor effort compared to what has already been 

achieved, the project was closing to an end and this task had to be left out for 

future works. 
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Appendix  
 

This appendix is dedicated to describing the functionality and architecture of 

two Intel IPs, namely Gigabit Transceiver Block (GXB) and Dual Clock First in 

First out (DCFIFO) memory. The reason for focussing on these two IPs is they 

have been used extensively in the design of the multi-FPGA NoC router 

described in Chapter 4. Additionally, the controllers that are designed during 

this work to synchronous between the GXB blocks will be discussed.  

Intel transceiver operation and architecture 
Intel Gigabit Transceiver Block (GXB) is a highly reconfigurable IP for utilizing 

multi Gigabit serial communications between Intel FPGAs and external devices 

[127]. 

Figure 1 presents an overall overview of the transceiver architecture used in 

this project. The components can be different depending on the mode and 

protocol of the transceiver.  

Basic mode and a custom synchronization protocol have been used in 

AstroByte. In Basic mode, the transceiver is extremely flexible in terms of the 

features and blocks that can be included or omitted. 

Figure 1 Intel Gigabit Transceiver architecture [131] 



P a g e  | 128 

 

 
 
 

The transmitter has two separate paths, one used for transmission (GXB_Tx) 

and the other for receiving data from the upstream node. 

➢ Transmitter data path 

The transmitter data path, shown in Figure 1, is responsible accepting FPGA 

fabric user data and serializing it before transmitting it off-FPGA to the 

downstream node. 

Intel GXB transceiver data path is composed of the following blocks. 

• Tx phase compensation First In first Out (FIFO) memory 

It buffers FPGA data stream at the transmitter input as well as compensating 

for the phase difference between an external clock and the transmitters 

recovered clock [127]. In AstroByte implementation no external clock is 

provided and both sides of the block are clocked by the transmitter internal 

clock. The FIFO is 8 words deep, introducing 4-5 cycle latency [130] . 

• Byte serializer  

The byte serializer converts the 32-bit (4 bytes) data bus from the Tx phase 

compensation FIFO to 16-bit (2 bytes). The purpose is to avoid exceeding the 

maximum allowed frequency at the transceiver-FPGA fabric interface 

meanwhile operating the transceiver at high data rates [127]. The Byte 

serializer input frequency is the same as that of Tx compensation FIFO 

frequency while its output operates on 2x of the value of input frequency [130].  

• B/10B Encoder 

The 8B/10B encoder converts each of the 2-byte wide data out of the Byte 

serializer block to a 10-bits wide character code according to 8B/10B 

transmission coding paradigm [127]. The purpose is to introduce sufficient 0-1 

value change before transmitting a byte to enable the receiver to recover the 

clock embedded in the serial data stream. Additionally, DC balancing can be 

achieved using this encoding scheme [131]. Since the output of the Byte 

serializer is 16 bits, two such encoders are required to provide a 20-bit output. 

The 8B/10B encoder is supplied with the same clock as the Byte serializer 

output [130]. 

• Serializer  

The Serializer is the last block on the transmitter path. It converts the 20-bit 

parallel data input to 1-bit serial data (20 serialization factor) operating at 6Gbps 

data rate in the AstroByte implementation. The parallel input is clocked through 

the Byte serializ9er clock frequency and the serial output is clocked by a 

multiplied version of its input clock [127]. The output of the serializer is 

forwarded to FPGA transceiver pins. 

➢ Receiver data path 
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The receiver supervises converting the incoming serial data to a 32-bit word 

before forwarding to the FPGA fabric. Similar to the transmitter data path, the 

receiver data path contains several blocks as illustrated in Figure 1.  

• Clock Data Recovery (CDR) 

The CDR main task is recovering the clock of the serial data stream coming 

from the upstream transmitter node. The recovered clock (fast) along with its 

slower derivative will be used by CDR to clock the next blocks on the receiver 

data path [127]. 

• Deserializer 

Deserializer transfers the serial data stream to a 20-bit wide word using the fast 

and slow recovered clocks from CDR [127]. The serial input will be clocked by 

the fast clock while the parallel 20-bit output will be synchronised to the slow 

clock [130]. 

• Word aligner 

As it has been established, data is transmitted serially by the upstream 

transmitter and then parallelized by the Deserializer block inside the 

downstream receiver. In this process, the original transmitted word boundary 

becomes lost.  It is the Word aligner’s duty to recover the correct boundary of 

the data stream [127].   

• 8B/10B decoder 

Each byte is converted to a 10-bit wide word in accordance with 8B/10B 

encoding scheme at the transmitter. The 8B/10B decoder, reverses this 

process to extract the original data [127]. Hence, two decoders is convert the 

20-bit wide input data to 16-bit output.  

• Byte deserializer 

As it is the case with transmitter data path, the receiver deserializes the Byte 

numbers to avoid violation of the GXB – FPGA interface clock rating [127]. The 

output stream is synchronized to a divided-by-2 version of its input clock [130]. 

The input is 16-bits wide while the output is a 32-bit wide bus.  

• Byte ordering 

There is a possibility that the order of the bytes gets distorted at the Byte 

deserializer output. The Byte ordering block ensures that the correct order of 

bytes are restored before forwarding the data to the next block and then to the 

FPGA fabric [127].  

• Rx phase compensation FIFO 

This is the last block before forwarding the retrieved 32-bit data to the FPGA 

fabric. The Rx phase compensation FIFO is used for buffering of data and 
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compensating for phase differences between its read and write clocks. The 

depth of the FIFO is 8 words and it has a latency of 4-5 clock cycles [127].      

➢ Transceiver synchronization  

Figure 2 illustrates two GBX blocks communicating with each other. Each 

transceiver is located on a separate FPGA. Both are controlled by a GXB 

controller, implemented in custom FPGA hardware, which assures 

synchronization with the other GXB for integral data transfer between the two 

FPGA devices. The GXB controllers are designed during the course of this 

project while the GBX blocks are Intel IPs. More specifically, the GXB controller 

blocks control the GXB transceivers by means of a set of control and status 

signals. The functionality of these signals will be given next. 

• Tx_ctrl_en 

Tx_ctrl_en is a control signal issued by the controller blocks to the 8b/10b 

encoders on the transmitter paths as per Figure 2. When this signal is high the 

decoder deals with the 8-bit data as a control byte. If it is low the encoder deals 

with the 8-bit data as a data byte. Sending a particular control byte (K28.5 

control code) orders the downstream receiver to look for an alignment pattern 

[132], [133]. This is performed by sending the hexadecimal value BC1C and 

asserting Tx_ctrl_en in the same clock cycle by the GXB Controller blocks. 

• Rx_enapatternalign 

Another control signal that is supplied by the GXB control blocks. 

Rx_enapatternalign controls whether the Word aligner block on the receiver 

path should look for the alignment pattern embedded in the data stream. The 

pattern has to be programmed into the Word aligner block through the GXB 

interface in Intel Quartus software.  

• Rx_syncstatus 

The Word aligner outputs a status signal by block on the receiver path, 

indicating the successful retrieval of the word boundary. This signal will show 

the status of the receiver channel to the GXB controller. 

• Rx_byteorderstatus  

The Byte ordering block is the source of this signal that, alongside 

Rx_syncstatus, will be used by the controllers to be informed about the status 

of the receiver path. 

Similar to the Word alignment block, the Byte ordering block depends on pattern 

recognition to recover the order of the bytes that form the recovered data 

stream. This is due to the fact that the byte order can be distorted by the Byte 

deserializer block. The pattern can be defined by user and be sent using the 

GXB controllers to be retrieved by the receiving end of the transmission. In this 

case, the exact same value that is sent from the transmitter has to be 
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programmed into the receiver as the Byte order block comes after 8B/10B 

decoder. 

• GXB Controller  

The controller issues control signals and a 32-bit wide data bus to its associated 

transceiver while reading status signals and a 32-bit data bus from the receiver. 

It is function is synchronizing with the transceiver at the other end of the link, 

also controlled by a similar controller. A detailed algorithm representing the 

working of the GXB controller blocks is demonstrated in Figure 3. 

The controller is partitioned to three state machines operating in conjunction. 

This approach was taken as it became clear that implementing the entire 

controller using one state machine will be much more challenging and prone to 

faults.   
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Figure 2 Synchronization between two transceivers 
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The output of the first state machine is Self_sync. This signal only goes high 

when Word align block has recovered the word boundary (Rx_syncstatus is at 

logic ‘1’) and the Byte ordering block has retrieved the original byte order 

(Rx_byteorderstatus is at logic ‘1’). The Self_sync is an indication that the 

receiver path belonging to the transceiver at this end has been synchronized 

with the one at the other end. 

The second state machine provides Other_sync signal, putting it at logic high 

when a particular user-defined pattern –synchronization pattern-was received 

from the other (hence the name) transceiver. Unlike other patterns used before, 

namely the word align pattern and the byte order pattern, this pattern is not 

meant to be used by the GXB block. It is for exchanging status information 

between the two GXB controllers at each end of the link. 

The third state machine accepts Other_sync and Self_sync signals and 

provides the custom FPGA fabric hardware (NoC router in AstroByte) 

GXB_synced control signal. 

GXB_synced will be asserted only when the third state machine has sensed 

logic ‘1’ on both Other_sync and Self_sync, confirming that both sides of the 

link have been synchronized. 

The third state machine starts by constantly sending the alignment pattern and 

the byte order pattern to the other transceiver. Meanwhile, it examines the 

Self_sync control signal to check if its receiver has recovered the word 

boundary and byte order, meaning that the data on the receiver channel is the 

original data sent from the GXB on the other end. 

Once logic ‘1’ is sensed on Self_sync control line, the third state machine 

checks for the synchronization pattern from the other end GXB block while 

sending the same pattern. At this stage the third state machine “assumes” or 

“hopes” that the other node is at the same stage. If its assumption was right, 

proved by receiving the synchronization pattern from the other controller, it 

means the link has successfully been established and the state machine raises 

its GXB_synced signal high, transferring the control of the link to the NoC router. 

The NoC router only comes out of its reset state after this signal is received, 

ensuring that a valid link established before starting to operate. 

As evident from Figure 3, if the synchronization pattern is not received, showing 

that the end point GXB has not recovered word boundary, byte order, or both, 

the state machine loops back to the first state to send the alignment and byte 

order patterns. It is important to point out that the two transceivers and their 

relevant controller blocks operate separately from each other in separate clock 

domains on different FPGAs.  
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Figure 3 Custom GXB controller block 
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• Transceiver overall latency  

The latency introduced by using GBX blocks to transmitter packets from one 

FPGA to another is between 10.5 cycles – 13 cycles. The transmitter part of the 

GBX blocks introduces a latency of 4-5.5 cycles while the receiver causes a 

delay of between 6.5-8.5 cycles [128],[129]. Here “cycles” mean the FPGA 

fabric’s frequency cycles as opposed to the frequencies operating internal to 

the transceivers. Experimental tests were constantly recording a delay of 13 

cycles. That is the reason behind choosing the value of 13 when accounting for 

cross-FPGA latencies in Chapter 5.   

Dual Clock FIFO (DCFIFO) memories 
 

Beside transceivers, explored in previous section, DCFIFOs are another vital 

IP for realizing coherent multi-FPGA communications, allowing for avoiding a 

phenomenon called metastability [128]. 

Depicted in Figure 4, DCFIFOs are used for moving data from a clock domain 

A to clock domain B to avoid metastability [128]. The input to the DCFIFO is 

called write side while the output is read side. Controllers are necessary to 

govern read and write operation on either side of the FIFO. 

The write controller and write side of the FIFO use the same clock (A in the 

figure), while the read controller shares the same clock  with the read side of 

the FIFO (B in the figure).  

A number of status signals are issued by the DCFIFO that can be used by the 

two controllers before performing read/write operations. From Figure 4, Wr_full 

and Wr_empty indicate whether the write side is full or empty, respectively. 

Wr_used indicates the number of words sored in the write side of the FIFO at a 

particular clock cycle. It’s a bus which has width of log2 (D), where D is the 

depth of the FIFO – the maximum number of words that can be accommodated 

by the DCFIFO. The same set of status signals are provided by the read side. 

Figure 4 DCFIFO with associated controllers 
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The read and write status signals are synchronized to their respective clock 

domains. 

Data streams moving through a FIFO experience some latency. Additionally, 

the status signals give the status of the DCFIFO after some clock cycles. Both 

of these latencies should be given serious consideration while using the FIFO. 

The most import latencies are given in the following table [128].  

In Table 1 n denotes the synchronization stages that exist between the write 

and the read side. It is the number of registers that data has to go through when 

crossing the clock boundary. Synchronisation registers are crucial for ensuring 

data integrity but also introduce latency [134].  

Wr_req to Wr_full: 1 Wr_clk 

Wr_req to Rd_full: 2 Wr_clk cycles + n Rd_clk 

Wr_req to Wr_empty: 1 Wr_clk 

Wr_req to Rd_empty: 2 Wr_clk + n Rd_clk  

Wr_req to Wr_usedw: 2 Wr_clk 

Wr_req to Rd_usedw: 2 Wr_clk + (n + 1) Rd_clk  

Wr_req to Output: 1 Wr_clk + 1 Rd_clk  

Rd_req to Rd_empty: 1 Rd_clk 

Rd_req to Wr_empty: 1 Rd_clk + n Wr_clk  

Rd_req to Rd_full: 1 Rd_clk 

Rd_req to Wr_full: 1 Rd_clk + n Wr_clk  

Rd_req to Rd_usedw: 2 Rd_clk 

Rd_req to Wr_usedw: 1 Rd_clk + (n + 1) Wr_clk  

Rd_req to Output: 1 Rd_clk 

Table 1: Latency experienced by Intel DCFIFO IP status signals 
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Controllers for DCFIFOs 
 

While using Intel DCFIFO IP for FPGAs, the write controller must assure that 

no write operation is carried out on a full FIFO. Likewise, the read controller 

should not read from an empty FIFO[128].  

Performing write while the DCFIFO is full does not change its status at best and 

can force it to an undefined state, hampering the operation of the entire circuit. 

The same is true for reading from an empty FIFO. Correspondingly, reading 

from an empty FIFO should be avoided as it will read a previously read signal 

at best or introduces unexpected behaviour, distorting the functionality of the 

circuit.  

 


