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SUMMARY 

Colorectal cancer (CRC) is the third most prevalent cancer worldwide; as it has an increasing 

incidence rate in westernised countries. This correlation has been attributed in part to poor 

diet. In contrast, individuals with high consumption of (poly)phenol rich foods such as fruit 

and vegetable have a reduced risk of CRC. Berries are a particularly rich source of 

(poly)phenols and in recent years have been associated with a range of anticancer activities. 

When consumed, these berries undergo a range of structural transformations as they are 

digested, which could alter their potential bioactivity. The aim of this thesis was to develop 

an ex-vivo model with which to produce physiologically relevant samples that represent the 

colonic contents post-raspberry consumption. Eleven post-berry ileal samples were collected 

following a human feeding study and subsequently in vitro fermented. The potential 

antigenotoxic activity of these samples was assessed in a model of normal colonic epithelium 

(CCD 841 CoN) and a cell model of colonic adenocarcinoma (HT29). The anticancer 

activity, previously demonstrated by crude berry extracts and isolated (poly)phenols, was 

retained following digestion. Both post-berry ileal samples and post-berry ileal fermentate 

samples decreased H2O2 induced DNA damage. Following this discovery, it was important to 

attempt to identify the mechanism by which this antigenotoxic activity occurs.  There was 

sufficient previous evidence to suggest that (poly)phenolic compounds have the potential to 

induce the nuclear factor-erythroid 2-related factor 2 (Nrf2)/ antioxidant response element 

(ARE) pathway and this warranted further investigation. The post-berry IFF samples showed 

the ability to significantly induce the mRNA expression of Nrf2 and its downstream targets 

heme-oxygenase 1 (HO-1), N-acetyltransferase (NAT), NADPH quinine oxidoreductase 1 

(NQO-1).  In addition to these findings a novel raspberry seed derived triterpenoid was 

identified within the post-berry ileal fluid samples. This compound was present in the original 
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raspberry seeds and survived in vivo digestion, it therefore was pertinent to assess its 

antigenotoxic capacity. As with the other raspberry metabolites investigated in this study, the 

triterpenoid rich fraction (TRF) significantly decreased H2O2 induced damage in CCD 841 

CoN and HT29 cells, in conjunction with the up-regulation of HO-1 and NQO1.  

 In conclusion, this thesis has determined that the berry metabolites produced following in 

vivo digestion and in vitro fermentation retain the antigenotoxic activity previously 

demonstrated by crude berry extracts. This activity in maybe part due to the activation of the 

Nrf2/ARE pathway. These findings further expand our understanding of the role of berry 

metabolites as potential dietary anticarcinogenic agents.  
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Chapter 1: General Introduction 
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Colorectal Cancer:  

 Colorectal cancer (CRC) is one of the leading causes of mortality and is responsible for over 

500,000 deaths a year globally. It accounts for 9% of all cancer incidence, the third most 

common cancer for men and second in females worldwide (1-3). Incidence rates of CRC 

within the USA, Australia, New Zealand and Western Europe have stabilised in recent years. 

However, countries in Eastern Europe, Asia and South America have seen rapid increases 

CRC incidence and mortality (4, 5). CRC remains an increasing burden upon the global 

community that necessitates continued research.  

 

Anatomy and Morphology of the Colon: 

 The colon is the last section of the digestive tract, extending a total of 1.5m from the caecum 

to the rectum and is comprised of 6 distinct regions; the caecum, ascending colon, transverse 

colon, descending colon, sigmoid colon and rectum. Known as the right side of the colon, the 

caecum, ascending colon and transverse colon are responsible for the absorption of water, 

nutrients and the products of bacterial fermentation. (6) The primary function of the left side 

which consists of the descending colon, sigmoid colon and rectum, is the formation, storage 

and excretion of faecal matter (7). The wall of the colon consists of several layers including; 

epithelium, lamina propria, mucularis mucosa, submucosa and muscular layer.  There are 

four main cell types present within the colon; the epithelial colonocytes, mucus-secreting 

goblet cells, peptide hormone-secreting endocrine cells and Paneth cells. The simple 

columnar epithelial cells form a single highly polarised layer with intricate cell-to-cell 

junctions. These are responsible for the absorption of nutrients and water from within the 

lumen, a process facilitated by a dense capillary network. Unlike the small intestine the colon 

does not contain villi but rather is characterised by colonic crypts. The crypts are 
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approximately 50 cells deep with 1-10 multipotent stem cells located at the base (8). These 

stem cells generate clonal daughter cells which reside in the lower third of each crypt, 

ensuring they are removed from any potentially toxic colonic contents, therefore reducing the 

exposure to mutagenic substances. Rapid replication and division by the stem cells drive 

migration and differentiation of the daughter cells as they travel up the crypts and join the 

epithelial lining, until they under go apoptosis and are shed from the lumen. This cycle from 

replication to apoptosis last approximately 5 days, this rapid turn over ensures limited contact 

with any mutagenic substances with the colon (7). 

 

Tumorigenesis: 

 Colorectal cancer (CRC) is the result of a complex multistep process, described by Fearon 

and Vogelstein, that follow the aberrant crypt foci-polyp- adenoma-carcinoma sequence of 

events that develops due to the accumulation of genetic mutations (Figure 4) (9). With cases 

of sporadic cancer these mutations develop over time and can be a result of aging or exposure 

to exogenous substances.  The disease originates in the epithelial cells of the colon and is the 

result of the alteration in a range of genes. Mutation of the APC (Adenomatous polyposis 

coli) gene has been identified in more than 75% of all sporadic CRC and causes abnormal 

cellular adhesion, proliferation and migration (10). Disruption of the gene coding for this 

tumour suppressor can result reduced cellular migration within the colonic crypt causing 

exposing already mutated cells to come in sustained contact with toxic substances, enable 

further genetic alterations and enable the formation of a polyp (11).   

  Secondary mutations which include; K-ras, DCC (deleted in colon cancer), BRAF (v-Raf 

murine sarcoma viral oncogene) and the loss of chromosome 18q promote the progression 

from a polyp to adenoma (12-16). A final late occurring event is the mutation in p53, a 
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tumour suppressor gene found on chromosome 17p (17). In normal conditions p53 is a 

transcriptional activator for several genes which regulate the cell cycle in response to DNA 

damage (18). The inactivation of this gene can therefore result a loss of cycle control and 

unchecked DNA damage, this is associated with the progression from adenoma to carcinoma 

(19). It is not necessarily the order in which these mutations occur but rather the 

accumulation over time that results in the development and progression of CRC (20, 21). 

 

Risk factors for colorectal cancer 

 CRC is a global disease but there is considerable variation between incidence rates and 

mortality statistics worldwide (23). The highest rates are seen within “westernised” countries 

with the developed world accounting for over 66% of all CRC cases (24). These statistics 

combined with the knowledge that only 5-10% of CRC are due to inherited conditions, such 

as hereditary nonpolyposis colorectal cancer (HNPCC) or familial adenomatous polyposis 

(FAP), suggests that environmental factors play a key role in the development of CRC (25). 

The correlation between environmental risk and CRC can be seen first-hand in studies which 

assess the incidence rate in migrants and their children. Those individuals who move from 

low-risk to high risk countries see the incidence of the first-generation trend towards to the 

higher rates of the host country (26).  Therefore, a portion of CRC cases are considered 

theoretically preventable as they are induced by a variety of modifiable causes (27).  As with 

other major cancers a range of lifestyle choices including; poor diet, obesity, alcohol 

consumption and exercise are contributing factors to CRC development. Diet has the ability 

to strongly influence the risk of CRC with poor food habits resulting in increased cancer 

burden.  Those diets high in fat and meat consumption have been linked to an increased rate 

of CRC (28, 29). There a few underlying mechanisms by which meat could initiate 
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carcinogenesis, but the presence of heme iron and production of heterocyclic amines and 

polycyclic aromatic carbons following cooking at high temperatures are most likely to induce 

DNA damage (30-32).  Conversely diets with a high fibre content are associated with a 

decreased risk of colorectal cancer. Fibre can act in several ways to reduce CRC which 

includes increasing the stool bulk, therefore diluting faecal carcinogens and limiting contact 

with the epithelial cells. It can also bind to the potentially carcinogenic bile acid or 

alternatively is broken down into short-chain fatty acid such as butyrate which have the 

potential to inhibit carcinogenesis (33, 34).  Diet rich in fruit and vegetables have also been 

linked to a reduction in CRC incidence. These plant-based foods are a source of fibre, 

vitamins and a range of non-nutrients. There had been a considerable interest in the 

anticancer potential of these compounds in particular phytochemicals and (poly)phenols.  

 

Anticancer effects of berries: 

 Berries are rich source of (poly)phenols which can contain up to 1000mg polyphenols per 

100g fresh weight of fruit (FW) (37, 38). There has been considerable research into the 

potential health benefits of these fruits with much focussed on the anticancer properties their 

polyphenolic constituents (39, 40). Recent evidence suggests that a large portion of theses 

phenolic metabolites have poor bioactivity, therefore pass through the small intestine 

unabsorbed and come into contact with the colonic epithelium where they can exert 

anticancer effect (42). A variety of  in vitro and in vivo  studies have shown the anticancer 

potential of berry (poly)phenols and their metabolites upon models of CRC and as a 

consequence these compounds have been considered as potential putative dietary agents 

against carcinogenesis (43).  
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Figure 1:  Multistep pathway of colorectal cancer development. * adapted from Gill et al. (22)
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Rational of thesis: 

There is a significant quantity of in vitro and in vivo evidence which describes the anticancer 

effects of berries. However, these investigations have used crude berries, berry extracts or 

berry-derived compounds and have not taken into consideration the compositional changes 

which occur due to digestion and colonic fermentation and how this may impact upon 

bioactivity. The rational of this thesis was to develop physiologically relevant samples that 

accurately represented colon-available berry metabolites, to subsequently assess the 

antigenotoxicity of compound and further elucidating a potential molecular mechanism of 

action within in vitro models of colon carcinogenesis. 

 Chapter two examines the current literature to evaluate the role of berries and berry 

metabolites within colorectal cancer in both in vitro models and human intervention studies.  

This review of recent studies showed that berry metabolites produced via in vitro digestion 

maintain the antigenotoxic potential seen with crude extracts, as well as identifying a 

potential molecular mechanism which induces this anticancer activity.    

 Chapter three describes the human feeding study and method of in vitro fermentation used to 

produce the biologically relevant samples for this study. The compositional changes which 

occurred during digestion and bath culture where analysed using HPLC LC-MS and GC-MS. 

Chapter four investigated the antigenotoxic potential of post-berry ileal fluids, post-berry ileal 

fluid fermentate and 4 individual phenolic compounds upon normal colonic (CCD 841 CoN) 

and adenocarcinoma cell lines (HT29). The comet assay was used to assess the ability of 

these sampled to decrease H2O2 induced damage. 

Chapter five focuses on the role of the Nrf2/ARE pathway in regulating antigenotoxic 

activity of berry metabolites. The effect of IFF samples and individual phenolics upon the 

expression Nrf2 and two of its downstream targets was analysed using qPCR. 
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Chapter 6 investigates the anticancer potential of a raspberry-derived triterpenoid-rich 

fraction. Using the comet assay and qPCR analysis the bioactivity of this novel extract was 

assessed.   
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Chapter 2: Literature Review: “Antigenotoxic potential of berry and berry 

metabolites: in vitro and in vivo models of Colorectal Cancer” 
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Introduction:  

  Diets containing a plentiful supply of fruit and vegetables contribute to a range of health 

benefits and can play a key role in reducing the risk of CRC (1-4).  These plant-based foods 

contain a selection of compounds including; fibre, vitamins, micronutrients and 

phytochemicals which have demonstrated protective and preventative effects upon the human 

body (5-7). They have been linked with the prevention of various disease states including 

cardiovascular disease, neurodegeneration, diabetes and cancer (8, 9).  (Poly)phenols are a 

diverse subgroup of non-nutritive phytochemicals which consist of over 8000 individual 

compounds (10, 11). These contain an aromatic ring to which one or more hydroxyl groups 

are attached but are classified by the number and orientation of their carbon atoms and are 

initially categorised as either flavonoids or non-flavonoid (12). Flavonoids can be identified 

by the presence of 15 carbons with two phenolic rings (Ring A and B) attached with a 3-

carbon bridge forming a C6-C3-C6 backbone. Flavonoids, the most abundant (poly)phenols 

in our diet, can be divided into several groups; flavonols, flavones, flavanones, isoflavones 

and anthocyanidins (13). Non-flavonoid (poly)phenols include phenolic acids, 

hydroxycinnamates and stilbenes (14). These compounds are found at high concentrations 

(100-100mg/100g) in a range of beverages; including tea, coffee and red wine, in fruit; such 

as apples, pomegranates and berries; in vegetables particularly; carrots, legumes, onions and 

tomatoes, as well as present in a variety of herbs (15). 

 

 

 

 

 



16 
 

 
 

Berry (Poly)phenols:  

Berries are a commonly consumed source of (poly)phenols these include; blackberries 

(Rubus sp.), blackcurrants (Ribes rugrum), cranberries (Vaccinium macrocarpon), blueberries 

(Vaccinium corymbosum), raspberries (Rubus ideaus) and strawberres (Fragaria ananassa) 

which can contain up to 1000mg polyphenols per 100g fresh weight of fruit (FW) (16, 17) 

whose phenolic composition differs from species to species but are comprised of 

anthocyanins, ellagitannins, flavanols and cinnamic acids (18). Blueberries for example 

contain anthocyanins (54%) including; delphindin, petunidin, malvidin derivatives; flavonols 

(11%) in the form of quercetin derivatives, and cinniamic acids (30%) such as chlorogenic 

acid, producing total (poly)phenol content between 500-800mg/100g FW (19). In contrast 

raspberries are primarily comprised of cyanidin-based anthocyanins (40%), ellagic acids and 

ellagitannins (44%) including sanguiin and lambertianin with a total (poly)phenol content of 

200mg/100g FW (20).  However the phytochemical composition of these berries can be 

influenced by a range of environmental factors and will differ from growing season to 

growing season (21, 22).  Different culitvars will also produce compositional variants, for 

example within raspberries the total anthocyanin content of 10 raspberry cultivars ranged 

from 37.5-325mg/100g FW, with total phenolic content from 118-208mg/100g FW (23). 

Irrespective of the precise (poly)phenolic content, berries have been associated with a range 

of beneficial properties including; antioxidant, anti-inflammatory, immunodulatory and 

chemopreventive potential (24).  Previous studies have illustrated the putative anticancer 

activity berries have upon models of CRC, with (poly)phenols inducing free radical 

scavenging, activating the Nrf2 pathway and modulating the signalling pathways involved in 

DNA repair, cell proliferation, apoptosis and invasion (25-28). This review aims to assess the 

in vitro and in vivo evidence for anticancer activities of berry polyphenols in relation to DNA 

damage and Nrf2 activity. 
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DNA damage:   

 Exposure to carcinogenic compounds can cause DNA damage and initiate the process of 

carcinogenesis. In CRC if this damage is permanently incorporated into the genome it can 

begin the multistep process of cancer development resulting in the activation of oncogenes 

e.g. KRAS, PIK3CA and loss of tumour suppressors e.g. SMAD4, APC, TP53 (29, 30). 

These mutations can disrupt cell signalling, cell proliferation, cell cycles resulting in 

increased cellular invasion and eventual metastasis (31, 32). Reactive oxygen species (ROS) 

which are generated under normal cellular conditions and produced during the process of 

metabolism in the form of superoxide anions (O2
-) or hydroxyl radicals (OH-), activate a 

range of cellular receptors and signalling pathways responsible for proliferation, 

differentiation and cell survival. Alternatively ROS can place cells under oxidative stress and 

result in the oxidation DNA bases, DNA strand breaks, formation of DNA lesions, disruption 

of the cell membrane and lipid peroxidation (33). This activity contributes to the development 

and progression of CRC and as a consequence greater emphasis has been placed on detection 

and reduction of DNA damage (34, 35).  

  As can be seen in Table 2 a variety of in vitro laboratory assays are utilised to assess the 

extent of cellular DNA damage. The comet assay, or single-cell gel electrophoresis is a rapid 

and relatively sensitive technique to identify DNA strand breaks within individual cells. 

Named due to the distinctive structure which forms as a spherical head of undamaged DNA 

and an elongated tail of damage DNA, several variations of this protocol exist (36).  Either a 

genotoxic agent, such as hydrogen peroxide is used to induce oxidative damage or 

alternatively a lesion-specific enzyme such as endonuclease III (EndoII) or 

formamidopyrimidine DNA glycosylase (FPG) can excise DNA at the site of oxidised 

pyrmindines or oxidised purines respectively (37-39). Alternatively rather than measure DNA 

damage the dichlorofluorescein (DCF) assay can be used to detect the levels of oxidative 
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stress within cells. Cells are treated with 2’7’-dichlorofluorescin-diacetate (DCFH-DA) 

which readily crosses the cellular membrane, in the presence of intracellular oxidative 

challenge this is converted to the highly fluorescent DCF (40).  These in vitro studies can 

utilise a range of colon cell lines, at different disease states see Table 1.  
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Table 1: Commonly used colonic cell lines 

 

 

Name Cell Type  Disease Status Clinical Origin Doubling 

time 

Mutations critical to CRC development (100-101)
 

Caco-2 Epithelial colorectal adenocarcinoma 72yr old Caucasian 

male 

62h TP53 

CCD 841 CoN Epithelial Normal 21week old female 

fetus 

96h _ 

CCD-18Co Fibroblast Normal 2.5 month old 

Black Female 

72h 
_ 

DLD-1 Epithelial Dukes' type C, colorectal 

adenocarcinoma 

Adult male 48h TP53, KRAS, PIK3CA, MSI, CIMP+ 

 

HCT 116 Epithelial Dukes’ type D, colorectal 

carcinoma 

48yr old male 18h KRAS, PIK3CA, MSI, CIMP+ 

HCT-15 Epithelial Dukes' type C, colorectal 

adenocarcinoma 

Male 20h TP53, KRAS, PIK3CA, MSI, CIMP+ 

 

HT29 Epithelial Dukes’ type C, colorectal 

adenocarcinoma 

44yr old  Caucasian 

female 

24h TP53, BRAF, CIMP+ 

NCM460 Epithelial Normal 68yr old male 26h _ 

SW480 Epithelial Dukes' type B, colorectal 

adenocarcinoma 

50yr old   

Caucasian male 

38h TP53, KRAS 
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Anticancer Activity of Berry (Poly)phenols 

  Previous in vitro studies have demonstrated the anticancer properties of a variety of berry 

extracts and berry derived (poly)phenolics, including the modulation of pathways involved in 

cell proliferation, apoptosis and cell signalling (41). However within the context of this 

review will concentrate on the role the phenolic compounds have upon oxidative stress and 

DNA damage (Table 1). Most of these investigations have used the comet assay to show 

assess how berry components reduce DNA damage, for example Olejnik et al. have shown 

the potential of both freeze dried elderberry (EB), Sambucus nigra L, and blackcurrant (BC), 

Ribes nigrum L, to induce antioxidant and antigenotoxic activity (42, 43). Both extracts 

decreased H2O2 induced DNA damage in a dose dependent manner within their respective 

cell lines. When at 0.01mg/ml, 01mg/ml and 1mg/ml EB extract decreased % tail DNA by 

12, 20 and 30% respectively within NCM460 cells challenged with 100µM H2O2.  BC extract 

followed a similar pattern in Caco-2 cells, a maximum reduction in oxidative damage was 

observed (27%) with 1mg/ml concentration. This antigenotoxic action corresponded with a 

reduction of intracellular ROS levels, which was detected using DCF assay.  Treatment with 

concentrations of 0.01, 0.1 and 1mg/ml reduced DCF fluorescence intensity; EB decreased 

this oxidative stress by 13, 20 and 40% while BC resulted in 29, 43, 48% reductions. The 

results from these papers indicate that both EB and BC extracts have anticancer potential. 

Although this activity has been linked to the (poly)phenol rich nature of the original berries, 

however HPLC-DAD-ESI-MS analysis has highlighted the compositional differences 

between both samples. EB extract contained a total of 9 distinct anthocyanins which 

accounted for 93.4% of total (poly)phenol content and were predominantly glycosylated 

cyanidin and pelargonidin compounds.  Anthocyanins contributed to 85% of all 

(poly)phenols within the BC extract, a total of 14 compounds primarily consisting of 

delphinidin and cyanidin extracts, with the remaining content comprised of hydroxycinnamic 
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acids, flavan-3-ols and flavonols. This evidence suggests that a variety of phenolic 

compounds can activate this pathway of antigenotoxicity and the presence of multiple 

(poly)phenols may be of greater benefit (42, 43).   This combined effect was further explored 

with the actions of bilberry extract (BE) (Vaccinium myrtillus L) and bilberry derived 

fractions upon Caco-2 cells. The original BE extract reduced intercellular ROS levels at 

500µg/ml and decreased Md-induced DNA damage at 5µg/ml concentration. The phenyl 

carbonic acid rich fraction (PCF) was the only bilberry derived fraction which produced a 

reduction in DNA damage at 1.5µg/ml. The anthocyanin fraction and polymeric fraction had 

no significant effect upon intercellular ROS or md-induced DNA damage (44).  In contrast to 

the protective effect of blackcurrant, elderberry and bilberry upon colon cancer cell lines, 

several studies have illustrated the reverse effect with greater concentrations of (poly)phenols 

inducing DNA damage. Several of these studies have shown that raspberry derived extracts in 

particular ellagitannins result in the fragmentation on DNA (45, 46).  However, the studies 

described in Table 1 are not of physiological relevance as they do not address the effect of 

digestion and colonic fermentation upon (poly)phenols (44-52).  Recent studies have placed a 

greater emphasis upon role of the metabolic changes which occur to (poly)phenols as they 

pass through the small intestine, enter the colon and interact with the microbiota found within 

this region (53-54).  

   After ingestion of berries the (poly)phenolic components found with the fruit undergo a 

variety of structural modifications. Human feeding studies have been used to determine the 

bioavailability of berry (poly)phenols. Analysis of urine and plasma samples collected after 

ingestion of berries has demonstrated that the parent compounds present in the fruit have low 

bioavailability. A raspberry intervention completed by Ludwig et al., identified 8 

anthocyanins, 2 ellagic, 3 ellagitannins, 1 hydroxycinnamate and 1 phenolic acid, with a total 

concentration of 553µM polyphenols within their Glen Magma raspberries (55). UHPLC-
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MS-SRM analysis of urine samples, collected post-digestion, detected 27 compounds which 

were metabolites of parent anthocyanins (benzoic acid derivates, phenylacetic acids, 

phenylpropanoid derivatives) and ellagitannins (urolithins and ellagic acid derivates) which 

only accounted for 15% of the original (43.9±8µM) of the anthocyanin intake and 7% 

(17.9±4µM) of the ellagitannin intake.  Combined with evidence from McDougall et al. 

whom identified a range of phenolic compounds present in the ileostomy fluid collected 

following consumption of 300g of raspberry puree, indicates that the majority (40% of 

phenolic intake) of raspberry polyphenols reach the large intestine (20). These compounds 

are subjected to further degradation as they are acted upon by colonic microflora which 

breakdown the flavonoid C-ring structures of the anthocyanins and ellagitannins are 

converted to ellagic acid and urolithins (14, 56, 57). To accurately assess the bioactivity of 

berry derived (poly)phenols upon colonocytes, it is important to utilise biologically relevant 

samples, which contain phenolic compounds that are readily available within the colon.  

 The complexity of human digestion has been modelled in vitro using a number of 

approaches, these can be either be static where the physical movements of digestion (mixing 

and hydration) are not simulated, or dynamic where this mechanical processes are mimicked 

(58).  Static models of in vitro digestion use the addition of enzymes (pepsin) and bile salts in 

conjunction with acidic pH (HCl) to simulate the processes in the stomach and small intestine 

(58). Generally based on the methodology developed by Miller et al. many adaptations can be 

made to customise this assay for a specific purpose for example to examine the 

bioavailability of a variety of phytochemicals including; phytosterols, (poly)phenols and 

carotenoids. (59-62). These comparatively simple models allow for high throughput with 

multiple samples run at the same time. Dynamic models of in vitro digestion can simulate the 

changes in enzyme concentration, pH and introduce the peristaltic movements that occur 

within the GI tract. Many of these systems involve multiple compartments as with the TNO 
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gastrointestinal model (TIM-1) which has separate vessels to represent the stomach, 

duodenum, jejunum and ileum (63). With TIM-1 the changes in digestive conditions are 

controlled by computer software, allowing protocols to be developed for a range of purposes 

i.e. to differentiation between infant, adult and elderly digestion as well as between humans 

and animals (64, 65). This simulation has been expanded in TIM-2 which also mimics the 

physiological conditions within the large intestine, therefore providing a combined model of 

in vitro digestion and in vitro fermentation (66). SHIME or (Simulator of the Human 

Intestinal Microbial Ecosystem), is another example of a multi-chamber model of in vitro 

digestion and fermentation, comprised of individual vessels to represent the stomach, small 

intestine, ascending colon, transverse colon and descending colon (67). Both models require 

inoculation with faecal microbiota to introduce colonic microflora into the systems (66, 67). 

Although these dynamic GI models are more expensive, with more complex set-up and 

limited throughput they are considered a more accurate representation of the in vivo digestion 

(68). Both types of model of in vitro digestion produce samples whose composition will 

differ greatly from the original crude extracts and more closely mimic the contents found in 

the colon.  

 

 A variety of the methods described above have been utilised to produce physiological 

relevant samples which mimic the digestion of berries, the antigenotoxic potential of which 

are described in Table 2.  The studies investigating elderberry and blackcurrant bioactivity 

which were conducted by Olejnik et al. and previously described above also examined the 

potential of in vitro digested berries (42, 43). In both instances the protective effects 

demonstrated by the original berry extract persisted following simulated digestion. With the 

elderberry digest (EBD) only 0.1 and 1mg/ml showed this effect, decreasing H2O2 DNA 

damage in NCM460 cells by 25 and 46% respectively, which improved upon the reduction 
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seen with pure extract (20% and 37%).  A similar pattern was seen with the blackcurrant 

digest (BCD) at 1mg/ml decreasing DNA damage in Caco-2 cells by 54%. In contrast the 

capacity of berry sample to reduced intercellular ROS was reduced following digestion; 

1mg/ml EBD resulting in 22% decrease compared to 37% in the original extracts, while 

0.1mg/ml BCD reduced ROS levels by 28% compared to the 43% decrease with the original. 

These differences are probably due to the differences in (poly)phenolic composition. 

Following digestion of both berries there was a significant reduction in the concentration of 

anthocyanins present in each sample, this is a result of (poly)phenols being broken down into 

much simpler compounds. Chen et al.  have used alternative assays to demonstrate the 

persistence anticancer and antigenotoxic activity of raspberry and blackberry extracts 

following digestion (69-71). Hoescht nuclear staining illustrated the ability of raspberry 

digest (RD) and blackberry digest (BD) to decrease ethyl carbamate (EC) induced DNA 

fragmentation within Caco-2 cells. RD and BD samples also decreased the level of 

intracellular ROS, reductive oxidative damage to the mitochondrial membrane and moderated 

EC depletion of cellular glutathione (70, 71). Brown et al. used in vitro digestion in 

conjunction with in vitro fermentation (IVF) to produce lingonberry fermentate samples 

which retained the ability to reduce (50% decrease) H2O2 induced DNA strands breaks 

following fermentation. However, this was a decrease from the in vitro digested (IVD) 

lingonberry which resulted in a 90% following pre-treatment of HT29 cells with 50µg/ml 

GAE concentration (72). This variation can be attributed to the changes in (poly)phenolic 

content with total phenol content of IVD sample equal to 670±39µg/ml while the phenol 

content for IVF samples was 158±18µg/ml. However, the IVD samples was primarily 

comprised of cyanidin and quercetin derivates while IVF contained simple phenolic 

compounds including 4-Hydroxybenzoic acid, phenylacetic acid and 3-(Phenyl)propionic 

acid. Based on the results described within Table 2 (42, 43, 69-75), it is possible to conclude 
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that although the (poly)phenolic content within berries underwent significant compositional 

changes due to digestion and fermentation these colon available extracts still maintain 

anticancer activity.  

Human intervention studies or human feeding studies have been utilised in two different 

ways to determine the protective effects. Most studies use systemic markers that are relevant 

to cancer studies, for example peripheral blood mononuclear cells (PBMCs). These consist of 

a range of lymphocytes (T-cells, B-cells and Natural-killer cells) as well as monocytes, cells 

of the innate and adaptive immune systems which have a single round nucleus (76). Several 

studies have both demonstrated the ability of blueberries to offer antioxidant protection 

against endogenous and oxidative induced DNA damage (78, 79). Ten volunteers on the 

study designed by Del Bo et al. consumed either 50g of blueberry puree or 50g of a control 

jelly, blood samples were collected before consumption then 1, 2 and 24hr following 

consumption (78). PBMCs were then separated from the blood challenged with H2O2 and a 

comet assay performed. Blood collected 1hr after ingestion of the blueberry puree decreased 

DNA damage from 52% to 43%, when compared to the control jelly. However, this effect 

was transient and blood PBMCs from later time points showed no protective activity, nor did 

the treated group demonstrate any reduction in FPG-sensitive sites (78).  Alternatively Ferk et 

al.  assessed the antigenotoxic potential following the consumption of an individual phenolic, 

gallic acid (GA).  Three days of intervention with 12mg GA dissolved in water, resulted in a 

significant decrease in the Endo III-sensitive sites and FPG-sensitive sites in the lymphocytes 

collected post study. H2O2 induced DNA damage and intracellular ROS levels were both 

significantly reduced following GA consumption (80). Although these investigations 

effectively demonstrate the antigenotoxic potential in the compounds, they are not 

specifically relevant to CRC cancer (77-81).   An alternative to the in vitro models of 

digestion is collecting samples from ileostomists following the consumption of berries. These 
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human feeding studies generally collected 2 ileal samples, 1 pre-consumption and 1 post-

consumption of the foodstuff under investigation to allow for compositional analysis these 

samples can then be used like the original berry extracts to treat colonocytes (55, 76).  Brown 

et al. were able to use this method to compare in vitro digested (IVD), in vitro fermented 

(IVF) and in vivo lingonberry samples (73). One male ileostomist, provided a pre-berry or 0h 

ileal fluid sample prior to consuming 150g of pureed lingonberries, a secondary post-berry 

sample was collected 7hr after feeding. Only 3% of the original anthocyanin content of the 

berries was contained with the 7hr ileal fluid sample. Although greatly reduced in 

concentration (6.6±0.6µM in comparison to 210±6µM) a total of 7 of the original 10 

anthocyanins where still present within the ileal fluid.  Total (poly)phenol content followed a 

similar pattern with a reduction from 943±115µM to 446±65µM.  The post-berry ileal fluid at 

200µg/ml GAE significantly reduced H2O2 induced DNA damage from 50% to 36%. This 

was a greater concentration than was required for IVD and IVF lingonberry samples to 

reduced DNA damage, 50µg/ml GAE and 16µg/ml respectively, however the ileal fluid is a 

true representation of the compounds which would enter the colon and therefore is a more 

accurate depiction of potential anticancer (82).  These studies which use ileal fluid to treat in 

vitro models accurately represent the contents which pass from the ileum into the large 

intestine, but they do not consider the effect colonic fermentation has upon the (poly)phenols. 

An ex-vivo model which incorporates collection of ileal fluid post-berry consumption and 

subsequently in vitro ferments these samples would produce the most physiologically 

relevant samples.
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Table 2: Effect of berry extracts on models of DNA damage. 

Berry or berry 

constituent 
Colonocyte cell 

line 
Dose and Duration Assay Effect Observation Reference 

Delphinidin HT29 1, 10, 50, 100µM; 30min, 

1h 

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

 

+* 

 

 

+* 

 

↓ ATX-II induced DNA damage by ~75% after 100µM 

and 30min. 

 

↓ ROS levels after 1hr incubation with concentrations of 

1, 10 and 100µM. 

 

 

(50) 

Elderberry (Sambucus 

nigra) 

NCM460 (non-

transformed, non-

tumorigenic colon 

cell line) 

0.01, 0.1, 1, 10mg/ml; 

1hr  

 

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

 

+ * 

 

 

 

+* 

 

↓ in H2O2 induced DNA damage after co-incubation with 

non-digested extract at 0.01 (↓12%), 0.1 (↓20%) and 

1mg/ml (↓37%).  

 

↓ in ROS after 0.01, 0.1 and 1mg/ml by 13, 20, 40%. 

 

 

(42) 

Blackcurrant (Ribes 

nigrum) 

Caco-2  0.01, 0.1, 1 and 10mg/ml; 

30min 

 

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

 

 

+* 

 

 

 

+* 

↓ in H2O2 induced DNA damage in a dose dependent 

manner, 1mg/ml = 27% reduction in DNA damage 

 

 

↓ROS levels after 0.01, 0.1 and 1mg/ml by 29, 43 and 

48%. 

 

(43) 

Bilberry (Vaccinium 

myrtillus.) extracts- 

Bilberry Extract (BE), 

Phenyl carbonic acid rich 

fraction (PCF), 

Anthocyanin fraction (AF),  

Polymeric fraction (PF) 

Caco-2, HT29 1.5-500µg/ml; 1hr, 24hr  

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

 

+* 

 

 

+* 

 

 

+* 

 

 

+* 

↓ Md-induced DNA damage (~55%) after 5µg/ml and 

24hr. 

 

↓ Md-induced DNA damage (~40%) after 1.5µg/ml PCF 

and 1hr. 

 

↓ ROS levels in Caco-2 after 1hr or 24hr with 500µg/ml 

BE. 

 

↓ ROS levels in HT29 cells at 1hr with 500µg/ml BE. 

 

(44) 
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Bilberry (Vaccinium 

myrtillus.) and Blueberry 

(Vaccinium corymbosum.) 

anthocyanin-rich extracts. 

 

Caco-2  0.5-50µg/L; 1hr 

incubation 

 

Intracellular ROS 

levels (CAA assay) 

 

+* 

↓ intracellular ROS after incubation with 0.5µg/L  

(45) 

 Bilberry (Vaccinium 

myrtillus) anthocyanin-rich 

extract  

Caco-2, HT29 10-500µg/ml; 1hr and 

24hr incubation  

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

levels (CAA assay)  

 

 

+* 

 

 

 

+* 

↓ in H2O2 induced DNA damage by ~50% after 50µg/ml 

and 24hr. 

 

 

↓ in ROS levels by ~30-40% in Caco-2 and HT29 after 

250µg/ml and 24hr 

   

(46) 

Quercetin  Caco-2 1µM or 100µM; 1hr and 

4hr  

Antigenotoxic 

Activity (Comet 

Assay) 

 

DNA repair (hoGG1) 

+* 

 

 

 

+* 

 

↓ in H2O2 induced DNA damage by 42% at 1µM and 

57% at 57% at 100µM and 1hr. 

 

 

↑ in mRNA expression of hOGG1 at 1hr and 4rh after 

100µM  and H2O2  

 

(47) 

Anthocyanin fraction from 

Blackberry (Rubus 

fruticosus) 

Caco-2 3.15 – 50 µg/ml; 3hr  

Intracellular 

oxidation 

 

Oxidative 

cytotoxicity 

(CellTiter-Glo assay) 

 

+* 

 

 

 

+* 

 

↓ in intracellular oxidation in a dose-dependent manner 

after 3hr  

 

in APPH induced cytotoxicity at 1.6 – 25 µg/ml and 

3hr   

(48) 

Cyanidin  

Cyanidin-3-glucoside 

Quercetin 

Human colon 

epithelial cells 

(HCEC) 

 

 

 

50 µM; 4hr 

Antigenotoxic 

Activity (Comet 

assay) 

 

+* 

 

 

+* 

 

 

+* 

↓  H2O2 induced DNA damage by  ~ 39 % at 50µM 

cyanidin and 4hr  

 

↓  H2O2 induced DNA damage by  ~ 35 % at 50µM 

cyanidin-3-glucoside and 4h r 

 

↓  H2O2 induced DNA damage by  ~ 30 % at 50µM 

quercetin and 4hr  

 

(49) 
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 Raspberry (Rubus idaeus 

L.) extracts 

Raspberry Ellagitannin 

preparation (REP), 

sanguiin H-6 (SH-6), 

lambertianin C (LC) 

Caco-2 2.5-160µg/ml REP 

 

9.3-378µM LC 

 

12.6-256µM SH-6 

Comet Assay 

 

 

-* 1hr incubation with REP ↑ DNA damage in a dose 

dependent manner from 2.5-80µg/ml (7-56% tail DNA) 

 

 1h incubation with LC ↑ DNA damage at 18.9µM (12% 

tail DNA) 

 

1 h incubation SH-6 ↑ DNA damage at 26.7µM (20% tail 

DNA) 

 

(51) 

Ellagic Acid (EA) HCT-15 60µM EA DNA Fragmentation 

 

 

ROS  

 

Annexin V-PI assay 

-* 

 

 

-* 

 

-* 

↑ in internucleosomal fragmentation of DNA. 
 

↑ in the production of ROS 

 

↑ in annexin V staining, ↑ in apoptotic cells 
 

 

(52) 
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Table 3: Effect of in vitro digested berries on models of DNA damage.  

 

Berry or berry 

constituent 

Colonocyte cell 

line 
Dose and Duration Assay Effect Observation Reference 

in vitro digested 

Elderberry (Sambucus 

nigra.) 

NCM460 (non-

transformed, non-

tumorigenic colon 

cell line) 

 

0.01, 0.1 and 1mg/ml 

digested extract; 30min, 

1hr. 

 

 

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

+* 

 

 

+* 

↓ in H2O2 induced DNA damage after with 0.1 (↓25%), 

1mg/ml (↓46%) and 1hr.  

 

↓ in ROS after  0.1 (↓9%), 1mg/ml (↓22%) and 30min. 

 

(44) 

in vitro digested 

Blackcurrant (Ribes 

nigrum.) 

 

 

Caco-2 

 

0.01, 0.1 and 1mg/ml 

digested extract; 1hr 

Antigenotoxic 

activity (Comet 

Assay) 

 

Intracellular ROS 

(DCF assay) 

+* 

 

 

 

+* 

↓ in H2O2 induced DNA damage in a dose-dependent 

manner, 1mg/ml = 54%. 

 

↓ in ROS after incubation with colon digested extract at 0.01 

(↓14%) and 0.1mg/ml (↓28%). 

 

(45) 

in vitro digested Wild 

Raspberry (Rubus hirsuts 

Thunb.) 

 

 

 

 

Caco-2 

 

 

 

2mg/ml Raspberry 

Digest; 2hr. 

Hoescht 33258 

Nuclear Staining 

 

Mitochondrial 

Membrane (MM) 

Lipid Peroxidation  

 

Cellular glutathione 

 

+* ↓ in acrylamide (AC) induced DNA damage following pre-

treatment with raspberry digest. 

 

↓ in AC induced lipid peroxidation of the mitochondrial 

membrane, demonstrated by ↑ RH123 fluorescence (21% to 

66%) 

 

↓ in AC mediated GSH depletion, demonstrated by ↑ in 

NAD (~23% to 73%) 

(69)  

in vitro digested Wild 

Raspberry (Rubus hirsuts 

Thunb.) 

 

 

 

 

Caco-2 

 

 

 

 

2mg/ml raspberry digest 

(RD); 2hr 

Hoescht 33258 

Nuclear Staining 

 

Mitochondrial 

Membrane 

Potential (MMP) 

 

Intracellular ROS 

(DCF assay)  

+* ↓ in ethyl carbamate (EC) induced DNA damage following  

pre-treatment with RD. 

 

↓ in EC induced oxidative damage to MMP, demonstrated by 

↑ in NAO fluorescence (35% to 79%) 

 

 

↓ in ROS production from 392.76% to 120% 

 

(70)  
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Cellular glutathione 

 

↓ in EC mediated GSH depletion, demonstrated by ↑ in NAD 

fluorescence (~30% to 70%) 

 

in vitro digested 

Blackberry  

 

 

 

Caco-2 

 

 

 

0.5mg/ml blackberry 

digest (BD); 2hr 

Hoescht 33258 

Nuclear Staining 

 

Mitochondrial 

Membrane 

Potential (MMP) 

 

Intracellular ROS 

(DCF assay) 

 

Cellular glutathione 

+* ↓ in ethyl carbamate (EC) induced DNA damage following 

pre-treatment with BD. 

 

↓ in EC induced oxidative damage to MMP, demonstrated by 

↑ in NAO fluorescence (20% to 91%) 

 

 

↓ in ROS production from 241% to 111% 

 

↓ in EC mediated GSH depletion, demonstrated by ↑ in NAD 

(~45% to 87%) 

 

(71) 

in vitro digested and in 

vitro fermented 

Lingonberry (Vaccinium 

vitis-idaea.) 

 

 

 

HT29 

 

IVD: 3.125-50µg/ml 

GAE  
 

IVF: 16µg/ml GAE 

 

24hr 
 

 

Antigenotoxic 

activity (Comet 

Assay) 

 

 

Mutation 

Frequency Assay 

+* 

 

 

 

 

 

+* 

↓ in H2O2 induced DNA damage at all concentrations of IVD 

(50µg/ml= ↓90%)  

 

↓ in H2O2 induced DNA damage by ~50% (16µg/ml) after 

24hr 16µg/ml IVF. 

 

↓ in relative mutation frequency following incubation with 

IVD and IVF 

 

(72) 

in vitro digested (IVD) and 

in vitro fermented (IVF) 

raspberry (Rubus idaeus), 

strawberry (Fragaria x 

ananassa), and 

blackcurrant (Ribes 

nigrum)  

 

 

 

 

HT29 

 

 

IVD: 3.125-50µg/ml 

GAE 

 

IVF: 

 raspberry-15.5µg/ml 

strawberry- 13.9µg/ml  

black currant-12.4µg/ml 

Antigenotoxic 

activity (Comet 

Assay) 

 

 

 Mutation 

Frequency Assay 

 

+ * 

 

 

+ * 

↓ in H2O2 induced DNA damage by ~40% following 24hr 

incubation with all IVD at 6.25-50µg/ml 

 

↓ in H2O2 induced DNA damage by ~30% following 24hr 

incubation with all fermentate  

 

↓ relative mutation frequency >50% following 24hr with 

IVD.  

 

↓ relative mutation frequency ~40% following 24hr with 

fermentate 

 

Significant anti-cancer activity persists following in vitro 

digestion and in vitro fermentation 

(73) 
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in vitro digested 

Blackcurrant (Ribes 

nigrum L.) 

 

 

HT29, NCM460 

 

0.01-20mg/ml of digested 

extract 

BrdU-incorporation 

 

Tunel Assay 

 

Comet Assay 

 

 

-* 

 

-* 

 

-* 

↓ in DNA synthesis in both HT29 and NCM460 after 24hr 

treatment with 10mg/ml 

↑ in DNA degradation in a dose dependent manner 

↑ in DNA strand breaks following treatment with 10mg/ml 

(9%) and 20mg/ml (19%)  

(74) 

Raspberry (Rubus idaeus) 

in vitro digested extract 

HT29 0-50µg/ml; 24hr  Antiogentoxic 

Activity (Comet 

Assay) 

+* ↓ in H2O2 induced DNA damage in a dose-dependent 

manner with 50µg/ml=↓ 50% 

(75) 
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Table 4: Effects of Supplementation of Berry Extracts/Components on Markers Of Anti-Genotoxicty in Human Intervention Studies  

 

 

 

 

 

Berry or berry 

constituent 

Subjects 

Dose and exposure 

End point Effect Observation Reference  

Lingonberries 

(Vaccinium vitis-idaea.) 

1 male 

ileostomist 

(43yrs old0 

 

150g of pureed 

lingonberries  

Antigenotoxic activity 

(Comet Assay) 

 

+* ↓in H2O2 induced DNA in HT29 cells following 24hr 

incubation with post-berry ileal fluid (↓25%) 

 

(72) 

 

 

Strawberry (Fragaria x 

ananassa)  

 

18 volunteers-8 

males, 10 

females 

(35±10years)  

 

500g strawberries 

daily for 14days 

 

Blood samples pre 

and post treatment 

 

 

Antigenotoxic activity 

(Comet Assay) 

 

 

+* 

 

↓ in H2O2 induced damage in PBMCs following strawberry 

intervention. 

 

(77) 

Bilberry 

(Vaccinium myrtillus) 

5 female 

ileostomy 

volunteers 

 

5 healthy female 

volunteers 

 

 

10g BE in 150g 

yoghurt 

Antigenotoxic activity 

(Comet Assay) 

 

 

 

 

qPCR analysis for Nrf2 

pathway 

+* 

 

 

 

 

+* 

↓ DNA damage in PBMCs  

2h post-consumption healthy control group ↓DNA damage in 

PBMCs  

 

 

NQO1 ↑ in PBMCs from 1h post-digestion, at 8hr post-

digestion relative transcription 142% 

(80) 

Blueberry puree  

10 volunteers 

(average age= 

20.8 ±1.6 years)  

Randomised 

Crossover 

 

1x 300g blueberry 

or control jelly.  

 

Blood Samples 

collected 0hr, 1hr, 

2hr, 24hr 

 

Antigenotoxic activity 

(Comet Assay) 

 

+* ↓ H2O2 induced DNA damage (18%) in MNBCs 1hr post 

blueberry consumption. 

 

No effect on H2O2 induced damage at 0hr, 2hr, 24hr.  

 

No effect on basal levels of DNA damage, 0hr, 1hr, 2hr, 24hr. 

 

(78) 
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Wild blueberry drink   

18 Male  

volunteers 

(average age= 

47.8 ±9.7 years) 

1x25g of blueberry 

powder daily for 6 

weeks, 6 weeks 

washout, 6 weeks 

placebo. 

   

Blood samples 

collected pre- and 

post-treatment 

 

Antigenotoxic activity 

(Comet Assay) 

 

+* ↓ in FPG-sensitive sites in PBMC cells following Blueberry 

treatment. (~12.5 to 9.6%) 

 

↓ in H2O2 induced DNA damage following blueberry 

treatment. (~45 to 37%). 

(79) 

 

 

 

 

Gallic Acid (GA) 

 

 

8 male 

volunteers 

(34±5years)  

8 female 

volunteers 

(32±5years) 

 

 

0.2mg/kg Gallic 

Acid dissolved in 

500ml H2O daily for 

3 days. 

 

Blood samples 

collected pre- and 

post-treatment 

Antigenotoxic activity 

(Comet Assay) 

 

 

 

 

Intracellular ROS (DCF 

assay)  

 

 

 

 

+* 

 

 

 

 

 

+* 

↓ in FPG-sensitive sites (~13%) and ENDO-III sensitive sites 

(~11%) in lymphocytes after consumption. 

 

↓ in H2O2 induced DNA damage (~11%) in lymphocytes after 

consumption  

 

 

↓ in ROS levels after consumption. 

 

 

 

(80) 

Red mixed berry juice 

(red grape, blackberry, 

sour cherry, black 

currant and elderberry) 

 

 

21 

Haemodialysis 

patients 

Parallel study 

 

200ml red berry 

juice daily for 4 

weeks (n=9) 

 

Control juice for 4 

weeks (n=9)  

 

3 week washout  

 

Blood collected at 

the end of each 

week on treatment 

 

 

 

Antigenotoxic activity 

(Comet Assay) 

 

 

+* 

 

↓ in H2O2 induced DNA damage (40%) in lymphocytes 

following treatment. 

 

(81) 
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Nrf2/ARE pathway: 

  Although the tables above have demonstrated the anticancer potential of berry (poly)phenols 

there has been limited research to identify the mechanism by which this occurs. The 

activation antioxidant response element (ARE) / nuclear factor-erythroid 2-related factor 2 

(Nrf2) pathway may contribute to the antigenotoxic activity of dietary (poly)phenols (83). 

The interaction of Nrf2 and ARE up-regulates the transcription of phase II detoxifying 

enzymes and antioxidant enzymes, critical cellular response proteins which provides 

cytoprotection against carcinogens (84, 85).  The Nrf2/ARE pathway may therefore present a 

novel approach for the prevention and treatment of CRC (86, 87). ARE is the regulatory 

element found in the promoter region of a variety of genes encoding for phase II detoxifying 

and antioxidant enzymes.  These enzymes include, -glutamylcysteine synthase (GCL), 

glutathione peroxidase (GPX),  gluthathione S-transeferase (GST), heme-oxygenase 1 (HO-

1), N-acetyltransferase (NAT), NADPH quinine oxidoreductase 1 (NQO-1), sulfiredoxin 

(SRXN), sulfotransferase (SULT), thioredoxin reductase (TrxR), UDP-

glucuronosyltransferase (UGT) (88). These cytoprotective enzymes decrease the levels of 

intracellular ROS, therefore decreasing the risk of DNA damage. The actions of these 

enzymes are discussed in greater detail in Chapter 5 but as a brief description, when up-

regulated NQO1 and HO-1 act a superoxide scavenger and reduce the production of free 

radicals (89,90).  These two have previously been connected to CRC; polymorphisms within 

NQO1 are linked with increased risk of cancer and HO-1 has been identified as a mediator of 

inflammation within the colonic mucosa (91, 92). The transcriptional activation of these ARE 

related genes is mediated by Nrf2.  

 Nrf2 a member of the CNC subfamily of transcriptional activators is a ubiquitously 

expressed protein which is sequestered within the cytoplasm under normal homeostatic 

condition.   Interaction with its cytosolic repressor protein, Keap1 creates a complex with 
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Cul3-type E3 (Cul3) ligase which ubiquitinates Nrf2 and results in degradation by the 26s 

proteasome (93, 94). However, in conditions of oxidative stress or in the presence of 

electrophilic xenobiotics the bond between Nrf2 and Keap1 is disrupted, releasing the 

transcriptional activator. Once Nrf2 translocates and accumulates in the nucleus it can bind to 

the ARE promoter region found in many genes coding for a variety of antioxidant and 

detoxifying enzymes (95,96).  Activation of these proteins reduces the amount of cellular 

ROS (reactive oxygen species), decreases genomic instability and reduces the risk of CRC 

progression (96). A negative feedback loop can be observed within this action, as oxidative 

stress results in the release of Nrf2 protein from the Keap1-Cul3 complex which in turn 

produces an up-regulation of antioxidant and phase II detoxifying enzymes and reduces the 

amount of cellular ROS.    

 This Nrf2-ARE system acts as a critical sensor for stress, protecting cells from damage 

induced by multiple sources. It has therefore emerged as an important target for 

chemotherapeutics in cancer and a range of other chronic diseases.  The significance of Nrf2 

in the progression of CRC has been demonstrated with knock-out mice models.  APCmin/+ 

mice crossed with Nrf2-/- mice produced Nrf2 knockout model (Nrf2KO) with enhanced 

tumorigenesis. The loss of Nrf2 produced a significant increase in the number and size of 

polyps formed in the intestine, resulting in a lower expression of NQO1 protein and an 

increased expression of inflammatory makers when compared to APCmin/+ mice (94). A loss 

of Nrf2 resulted in a reduction of the antioxidative stress pathway, which in turn lead to 

inflammation, increased cellular proliferation in aberrant crypts and ultimately enhanced 

carcinogenesis. If the loss of this pathway can increase the risk of cancer, can an increase the 

amount of available Nrf2 result in greater chemoprevention? 

 A variety of dietary (poly)phenols have shown the potential to stimulate the Nrf2/ARE 

pathway, the details of which are described within Chapter 5 but for completeness a few 
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examples will be discussed below. Vari et al. utilised a range of in vitro techniques to 

illustrate the activation of Nrf2 and upregulation of target genes following treatment with 

protocatechuic acid (PCA), an anthocyanin metabolite.  Murine macrophage cells, J744 A.1, 

incubated with 25µM PCA showed increased expression of GPX mRNA, after 1h of 

treatment which resulted in increased protein expression after 6hr incubation and 

corresponded to upregulation of Nrf2 mRNA and protein levels. These results were not 

replicated within Nrf2 silenced cells, therefore confirming the correlation between Nrf2 and 

GPX (97).  Similar result have been seen with models of colorectal cancer, the commonly 

consumed dietary flavonoids, quercetin and kaempferol, have demonstrated the ability to 

induce Nrf2 activity within the Caco-2 cell line. When incubated with these (poly)phenols for 

48h mRNA levels of Nrf2 and two of in target genes (NQO1 and GST) were significantly up-

regulated (98). The activation of the Nrf2/ARE pathway can also be seen within in vivo 

models of CRC. Azoxymethane (AOM)-induced Balb/C mice treated daily with 1.2mg/kg of 

the bioflavoind luteolin elevated the protein levels of Nrf2 and increased the expression of the 

phase II enzyme GST (99). The combined evidence from these studies strongly suggests that 

the Nrf2/ARE pathway is a potential target for chemotherapeutic intervention within CRC. 
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Conclusion 

 In conclusion the evidence from Tables 2+3 indicate that berry (poly)phenols have 

anticancer properties, in this instance the ability to  reduce intracellular ROS levels and 

decrease DNA damage. Studies have used a variety of approaches to assess this activity, 

Table 2 demonstrates the antigenotoxicity induced by crude berry extracts and individual 

poly(phenols) upon a range of  colonic cell lines.  These results establish the 

chemotherapeutic potential of berry derived (poly)phenols but do not represent the actual 

content and compounds which are available within the colon (42-52). In recent years a 

greater significance has been place upon the compositional changes that occur to as 

(poly)phenolics pass through the human body and how these will affect the bioavailability 

and bioactivity of these compounds  (53, 54).  

 The investigations in Table 2 attempt to improve upon the relevance of these berry samples. 

To more accurately design an in vitro study several conditions must first be met to produce 

appropriate samples. This includes taking into consideration metabolic transformations, the 

presence of multiple phenolic compounds and ensuring these are used at physiological 

concentrations. A variety of in vitro systems have been developed to mimic the process of 

digestion, with the dynamic models simulating the peristaltic movements, pH and enzyme 

changes within the GI tract considered the most accurate.  Alternatively, human feeding 

studies which collect ileal fluid post-berry consumption provide samples which truly 

represent the colonic contents (72). Regardless of the sample time the results above 

demonstrate that although the berry original (poly)phenols undergo considerable structural 

changes during digestion, the metabolites produced retain antigenotoxic activity.  However, 

with greater research further improvements could be made to these models of digestion.  
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 Although extensive research has established the anticancer properties of berry (poly)phenols 

and their metabolites upon CRC, the cellular mechanism behind this activity has yet to be 

fully understood.  The Nrf2/ARE pathway has shown potential as a target of interest. 

Activation of this pathway up-regulates a series of phase II detoxifying enzymes (e.g. NQO1, 

HO-1, GST) which have the capacity to reduce intracellular oxidative stress, reduce DNA 

damage and in turn decrease the risk of CRC. Recent research suggests that an interaction 

between the Nrf2/Keap1/Cul3 complex and (poly)phenols, or their metabolites, results in 

thiol modifications which allows the Nrf2 protein to dissociate from Keap1 and translocate to 

the nucleus. Once in the nucleus, Nrf2 acts as a transcriptional activator for ARE-related 

genes. Such evidence implies that Nrf2 is a promising target from chemotherapeutic 

intervention.  

 Based on the literature reviewed above it is possible to conclude that berry (poly)phenols and 

their metabolites demonstrate antigenotoxoicity, and could be considered as a dietary agent of 

anticancer activity. However, further research is required to entirely comprehend the 

metabolic transformation which occur during digestion and how this alters the (polyphenol 

concentration and composition within the colon.   
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Chapter 3: Bioavailability of Raspberry (Poly)phenols 
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Introduction: 

  Berries are a particularly rich source of phytochemicals which have demonstrated a range of 

chemopreventive properties, with the potential to reduce the risk of a variety of cancers, 

including colorectal cancer (CRC) (1, 2).  This anti-cancer activity is widely attributed to the 

abundance of (poly)phenols found within these fruits. Raspberries, for instance, are primarily 

comprised of a range of anthocyanins (cyanidin-3-O-sophoroside, cyanidin-3-(2′′-O-

glucosyl)rutinoside, cyanidin-3-O-glucoside) and ellagitannins (sanguiin H-10, sanguiin H-6,  

lambertianin C) with other phenolic compounds such as flavonols, hydroxycinnamic acids 

and hydroxybenzoic acids found at much lower concentrations (3-5).  The total 

(poly)phenolic content and composition of the fruit varies dependant on the variety of 

raspberry, the environmental conditions, storage and processing of the berries (6-8). As 

raspberries are consumed and digested the phytochemical content changes as the fruit is 

degraded to its constituent parts. Therefore, these values do not represent the composition or 

concentration of the bioavailable and bioactive compounds within the body (3, 4). As with 

the majority of (poly)phenolics, both anthocyanins and ellagitannins have poor bioavailability 

and are not readily absorbed in the small intestine (9, 10). These two groups of compounds 

undergo considerable molecular changes as a consequence of digestion, but due to their 

diverse chemical structures the pathways of degradation are different for each (Figure 1A and 

B).  

 Anthocyanins are subgroup of flavonoids, which contribute on average 42% of the total 

(poly)phenols within raspberries, they are comprised of 2 aromatic rings (A and B) linked by 

a 3-carbon bridge to a heterocyclic ring (C), bound to sugar moiety (6, 11). There are a wide 

range of anthocyanins with six of these highly pigmented compounds; Pelargonidin (Pg), 

Peonidin (Pn), Cyanidin (Cy), Malvidin (Mv), Petunidin (Pt) and Delphinidin (Dp) 

commonly found in fruit and vegetables (12). These primarily occur as glycosides of 



55 
 

 

aglycones bonded to sugar moieties such as glucose, galactose, rhamnose and arbainsose as 

mono-, di or trisaccharides (13).  Anthocyanins are highly reactive molecules that are 

sensitive to degradation and as such are susceptible structural changes with passage through 

the gastrointestinal tract. Unlike other flavonoids anthocyanins are sensitive to pH and as a 

consequence of this are found as a stable red flavylium form in the acidic conditions of the 

stomach, while in the small intestine at a basic pH a colourless carbinol is formed. Food 

digestion begins in the oral cavity (pH 5.6-7.9) where biotransformation of anthocyanins 

commences, but it is the intestinal tract (pH 6.7-7.4) where the anthocyanins are fully 

degraded into low molecular weight phenolics (14).  Due to limited absorption in the small 

intestine, anthocyanins are not readily metabolised to glucuronide, sulfate or methylated 

derivates (15). Raspberry feeding studies have illustrated that 40% of the total anthocyanin 

intake remains in the ileal fluid and therefore has the potential to enter the large intestine 

(16). Under the anaerobic conditions of the colon the microflora act upon the cyanidin 

aglycone resulting in C-ring fission and the release of phenolic acids from both A and B rings 

(See Figure 1). 

  Ellagitannins are a group of nonflavonoids which make up an average of 57% of the 

raspberry phenolic content; and consist of gallic acid and hexahydroxyphenol units linked to 

glucose moieties which form dimers or oligomers (6, 17). This gives rise to a range of 

structurally diverse compounds found in a variety of food sources, for example, sanguiin H6, 

sanguiin H10 and lambertianin C are most commonly found in berries, while punicalagins 

and punicalins have been identified in pomegranates (10,18).  Due to their complex chemical 

structure these compounds are relatively unstable and are susceptible to hydrolysis, which 

results in the production of ellagic acid.  Both ellagitannins and ellagic acid have poor 

bioavailability, passing through the gastrointestinal tract un-absorbed and are subject to 

extensive metabolism by gut microbiota (19).  
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A) 

 

B) 

 

 

Figure 1: Proposed pathway for the conversion of A) red raspberry anthocyanins to phenolic 

acids.   B) Proposed pathway for the conversion of red raspberry ellagitannins to ellagic acid and 

urolithins. *Adapted for González-Barrio et al.(16)  
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    Ellagic acid is degraded through decarboxylase and dehydroxylase activity resulting in the 

loss of one lactone and successive removals of hydroxyl groups, producing dibenzopyran-6-

one derivates which are more commonly known as urolithins (20).  This group of benzo-

coumarins are more readily absorbed than their parent compounds and therefore may 

contribute significantly to the health benefits previously ascribed to ellagitannins and ellagic 

acid (19, 21).  The exact mechanism of urolithin production is not fully understood but the 

reaction is known to be catalysed by presence of gut microbiota. Tannases (tannin acyl 

hydrolase), produced by lactic acid bacteria e.g L. plantarum, L. parplantarum and 

L.pentosus, hydrolyse the ester bonds present in ellagitannins. This reaction produces 

hexahydroxy-diphenic acid, which is spontaneously converted to ellagic acid.  Further 

bacterial enzymes cleave the lactone-ring and promote decarboxylation and dehydroxylation 

creating ellagic acid metabolites known as nasutins (10). Alternatively, breaking one of the 

lactone rings within ellagic acid releases the luetic acid which is immediately decarboxylated 

to create Urolithin M-5 a pentahydroxy-urolithin (Uro-M5), a key intermediary metabolite 

which is required to produce further urolithins. The removal of one hydroxyl group from 

distinct positions on the lactone of Uro-M5 creates one of three tetrahydroxy-urolithins, Uro-

D, Uro-M6 or Uro-E (22). Loss of additional hydroxyl groups results in formation of the 

trihydroxy-urolithins (Uro-C and Uro-M7), which in turn are converted to dihydroxy-

urolithins (Uro-A and IsoUrolithin-A) and the monohydroxy-urolithin, Uro-B (23). This 

pathway of metabolism is catalysed by gut microbiota, the specific bacteria involved in this 

process were recently identified as two strains, G. urolithinfaciens and G. pamelaea, both 

urolithin-producing species of Gordonibacter (24, 25).   

  The anti-cancer properties of native, parent berry (poly)phenols has been well established, 

with the compounds demonstrating the ability to modulate cellular functions and signalling 

pathways associated with antioxidant, antiangiogenic, anti-metastatic, and anti-inflammatory 
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mechanisms (1).   However, these studies have not considered the effect of digestion or 

colonic fermentation upon the raspberry phytochemicals (20, 26). As described above the 

(poly)phenols under-go a variety of structural changes as they pass through GI tract. The cells 

within the colon are exposed to a mixture of (poly)phenols predominantly consisting of 

conjugated metabolites produced after phase II metabolism, as well as the simple and 

aromatic phenolics produced by colonic catabolism. It has become necessary to reassess the 

anti-genotoxic properties attributed to (poly)phenolic compounds using physiologically 

relevant samples.  To produce such samples several groups have utilised various models of in 

vitro digestion to mimic the (poly)phenolic metabolites that pass through gastrointestinal tract 

(27-29). Simulated gastrointestinal digestion is generally more rapid, more cost effective and 

does not have the same ethical restrictions associated human intervention or feeding studies. 

These protocols utilise digestive enzymes, pH, salt concentration and digestion time to mimic 

in vivo conditions and can be either simple static models or complex dynamic models (30). 

Often these models only represent the metabolism that occurs in the upper GIT and small 

intestine and are therefore supplemented with in vitro fermentation to mimic the processes 

which occur within the large intestine (31, 32).  

  In recent years there has been much investigation into the health benefits of berry 

(poly)phenolics with a focus on the prevention of colorectal cancer. However, many of these 

studies have negated to consider which compounds are present within colon and are available 

to act upon the epithelial cells.  The overall aim of this chapter is to produce and characterise 

a sample which is representative of this complex mixture of native (poly)phenols, phase II 

metabolites and colonic catabolites.  In an attempt to improve upon previous models, our lab 

has developed an ex vivo model, which is a combination of a ileostomate human feeding 

study to produce raspberry enriched ileal fluid followed by 24hr batch culture model was 

utilised to mimic the changes which occur during digestion and fermentation. 
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Methods: 

 

Ileostomy Feeding Study 

The protocol for the raspberry feeding study (11/NI/0012) has previously been described in 

detail by McDougall et al. (4). In brief, following a low-(poly)phenol diet for 48hr and an 

overnight fast, baseline ileal fluid (T0hr) was taken from 11 ileostomists, The participants 

then consumed 300g of  raspberry purée (R.ideaus, Glen Ample variety) and subsequently 

provided a second post-raspberry ileal sample (T8hr). Ileal fluid samples were collected, 

processed, aliquoted into falcon tubes (45g) and stored at -80°C  

 

In vitro fermentation 

To produce biologically relevant samples, i.e. representative of the substrate within the colon, 

ileal fluid samples were subjected to in vitro fermentation in the presence of faecal inoculum.  

All reagents used were purchased from Sigma-Aldrich (Poole, Dorset, UK). 

 Prior to performing 24hr batch culture basal nutrient media was prepared by dissolving; 

Petone water (2g), yeast extract (2g) NaCl (0.1g), K2HPO4 (0.04g), KH2PO4 (0.04g), 

MgSO4.7H2O (0.01g), CaCl2.6H2O (0.01g), NaHCO3 (2g), Tween 80 (2ml), Hemin (0.05g), 

Vitamin K (10µl) and L-cysteine HCl (0.5g) in 2000ml of distilled water. The resulting 

media was aliquoted in glass bottles and autoclaved. This sterile medium was added to pre-

sterilised fermentation vessels (see Figure 2 for glassware set-up) connected to a water-bath 

and a continuous nitrogen gas supply. The pH of each solution was monitored using an 

electrode and maintained at pH 6.6 with drop-wise addition of acid (0.5M HCl) or base (0.5M 

NaOH).  This set-up left overnight to achieve 37°C temperature and anaerobic conditions. 
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 The fermentation experiment was performed, in accordance with method used by Koutsos et 

al., supplemented with faecal inoculum from a healthy volunteer, with no history of 

gastrointestinal disorders, provided a weekly stool sample (33). Stool samples were diluted 

1:10 with sterile PBS and placed in a stomacher (Seward, Norfolk, UK) for 2min to 

homogenise. 50ml of ileal fluid sample and 15ml of faecal slurry was added to the basal 

media in each fermentation vessel to produce a final volume of 150ml and allowed to mix 

thoroughly before the pH was adjusted. Cultures were maintained for 24hr with a 10ml 

aliquot taken at 0h and 50ml collected at 24hr stored in sterile 50ml falcon tube at -80°C until 

required. 

 

Targeted Analysis of Raspberry Phenolics in Ileal Fluids  

 Anthocyanins, ellagic acids and ellagitannins in the ileal fluid samples were purified and 

analysed as previously described by McDougall et al. (4). LC-MSn analysis was performed 

using HPLC system comprised of Acella PDA detector coupled to an LTQ Orbital XL mass 

spectrometer and operated with Xcalibur software. Anthocyanins, ellagic acids and 

ellagitannins were identified by comparing exact mass and retention time to available 

standards. Anthocyanins were quantified from their chromatographic peak areas recorded at 

520 nm and expressed as cyanidin 3-O-glucoside equivalents, ellagitannins detected at 260 

nm were expressed as punicalagin equivalents, and ellagic acid and ellagic acid conjugates 

monitored at 365 nm were quantified in ellagic acid equivalents. 
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Figure 2: Glassware setup for in vitro fermentation 
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Non-targeted LC-MSn analysis 

The nontargeted LC–MS was performed using the same HPLC system as described above 

with data from the Orbitrap analysis deconvolved using the SIEVE software program to 

produce a list of retention time (RT) m/z pairs along with an associated extracted ion 

chromatogram based on peak area for each sample. The data was analysed statistically and a 

subset was defined of components whose patterns of abundance were increased after 

supplementation in all 11 subjects 

 

GC-MS Analysis of phenolic acid catabolites in ileal fluid fermentate samples  

The method for extraction and analysis of phenolic compounds from fermented samples was 

carried out by G.Pereira-Caro (Glasgow University) and performed using an established 

method (34). In summary, samples were purified using Styrene divinyl benzene solid phase 

extraction (SPE) cartridges (Strata SDB-L 200 mg), (Phenomenex, Macclesfield, U.K.). Prior 

to use the SPE cartridges were activated with 3ml of ethyl acetate, conditioned with 3ml 

methanol followed by 3ml 0.1M HCl. The ileal fluid fermentates (IFF) were acidified with 

3ml of 0.2M hydrochloric acid (HCl) and spiked with an internal standard of 60µg 2’, 4’, 5’-

trimethoxycinnamic acid (TCMA). Each sample was then added to the SPE cartridge, washed 

with a further 3ml 0.1M HCl and dried with nitrogen gas for 20min prior to the elution of 

phenolic acids with 3ml ethyl acetate. The eluate was reduced to dryness under nitrogen gas 

at 35°C, with the dried extract silyated with 300µl of pyridine and N-methyl-N-

(trimethylsily) trifluoroacetamide (MSTF) (1:4, v:v) on an 80°C heat block for 20min. 

Samples were then cooled in a desiccator prior to Gas Chromatography- Mass Spectroscopy 

(GC-MS). A 6890 gas chromatograph fitted with a 5973 mass spectrometer (Agilent 

Technologies, Berkshire, U.K.), a 7683S autosampler and equipped with ZB-5MS Zebron 
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30m x0.25mm x 0.25µM (i.d.) capillary column (Phenomenex, Cheshire, U.K.) and a helium 

carrier gas (1.2ml/min) was used to identify phenolic catabolites from the purified ileal fluid 

fermentates. The following conditions were used for GC-MS; injection volume injection 

volume (1µL), split ratio (1:25), initial temperature 40 ºC raised to 160 ºC at 20 ºC/min, to 

200 ºC at 1.5º C/min, to 250 ºC at 10º C/min and a final temperature of 300 ºC at 40º C/min, 

held for 5 min. Injector temperature was maintained at 220 ºC, the MS transfer line was 150 

ºC and the ion source was 230 º C. Mass spectra were scanned at m/z 50-470 with an 

ionization energy of 70 ev. Phenolic compounds were identified according to their retention 

time and mass spectra of authentic standards. When standards were not commercially 

available, identification was achieved though the integrated NIST mass spectral library, with 

confidence of 90% or above. Quantification was based on calibration curves of the ratio 

between the target ion (m/z) of the standard of interest and the target ion of the TCMA 

internal standard.   
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Results: 

 Overview of raspberry and ileal compositional analysis  

 The results of from this part of the investigation can be seen in greater detail in the 

previously published paper by McDougall et al. but are briefly explained below (4).  A total 

of 11 ileostomists, (with a mean age of 44 ± 12yrs) participated in the study, each providing 

two ileal samples; one baseline sample (T0hr) and one post-raspberry consumption (T8hr). 

The group mean ileal fluid sample mass at (T0hr) was 187.8 ± 73g (range of 107.4 - 318.0g), 

while the group mean mass of (T8hr) samples showed a significant increase at 268.0 ± 108g 

(range of 62.0 – 470.0g). This pattern was repeated with the group mean pH of both sample 

sets; (T0hr) had a group mean pH of 5.6 ± 0.4 (range 5.0 - 6.3) and (T8hr) with a 

significantly increased group mean pH of 6.6 ± 0.6 (range 5.3 - 7.5).  

  LC-MS analysis of the original raspberry extract identified a total of 8 anthocyanins, 2 

ellagic acids and 3 ellagitannins (Table 1),  which where all absent from baseline T0h ileal 

fluid samples.  In contrast, a range of these (poly)phenolic compounds were detected in the 

post-raspberry ileal fluid collected from the 11 subjects (See Table 2).  A total of 5 major 

anthocyanins were consistently identified within these samples; cyanidin 3-O-sophoroside, 

cyanidin 3-O-(2″-O-glucosyl)rutinoside,  pelargonidin 3-O-sophoroside, cyanidin 3-O-

glucoside and cyanidin 3-O-rutinoside. Total anthocyanin concentration varied across the 

post-berry samples and ranged from 0.55 ± 0.09µM in S05 to 10.2 ± 1.5µM in S01 with an 

average of 6.30±1.22µM.  Cyanidin 3-O-sophoroside was the most abundant anthocyanin 

within both the original raspberry sample and the (T8hr) ileal fluid samples.  

 Ellagitannins, consisting of sanguiin H-10, sanguiin H-6 and lambertianin C, contributed the 

most to the total (poly)phenolic content of both the raspberry extract and post-raspberry 

(T8hr) ileal samples. The total amount of ellagitannin varied greatly from subject to subject, 

ranging from 1.0 ± 0.1µM in S05 to 53.0 ± 9.0µM in S09. Sanguiin H-6 was the most 
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abundant of the ellagitannins, found at 61.0±3.0µM in the raspberry extract with an average 

recovery of 30.5% from the ileal samples.  

 Ellagic acids, comprised of ellagic acid and ellagic acid-O-pentoside, were the only 

(poly)phenol group present at a higher concentration in the (T8hr) ileal samples than in the 

original raspberries, an average of 8.8±1.6µM compared to 6.0±0.2µM. Concentration found 

in ileal samples ranged from 0.8 ± 0.1µM (S05) to 14.6 ± 0.1µM (S03) which corresponded 

to percentage recoveries of 17-304% and an average of 175.7. There was considerable 

variation in the concentration and composition of the post-raspberry ileal fluid samples, 

emphasising the inter-individual variation which exists between the participants.  

 Non-targeted LC-MS analysis revealed that the concentration of two unknown compounds 

was increased in all 11 post-raspberry ileal fluid samples, compound 1 (m/z 355) and 

compound 2 (m/z 679) (Figure 3). Further investigation as described by McDougall et al. 

determined these compounds are structurally related, with compound 2 most likely as dimer 

of compound 1 which was putatively identified as an ursolic acid-based triterpenoid (35).  

 

Compositional analysis of ileal fluid fermentate  

 GC-MS analysis of the ileal fluid fermentate (IFF) illustrated the degradation of 

(poly)phenolic compounds to simple and aromatic phenolics. A total of sixteen simple 

phenolics where detected consistently throughout pre  and post raspberry IFF samples with 

benzoic acid and catechol the most abundant compounds within all sample types (Table 3). 

Compositional analysis of post-berry 24hr IFF samples revealed that all the subjects showed 

an increase in 2 or more simple phenolics when compared to 0hr samples.  Seven of the 

individual phenolics were increased in over half the 24h fermentate samples with, 4-

(hydroxybenzoic acid, 3-phenyllactic acid and 3-(3-hydroxyphenyl) propionic acid each 
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increased in 8 of the 11 subjects.  Benzoic acid and 4-hydroxyphenyllatic acid were detected 

at greater concentrations in 7 of the 11 subjects, and catechol and 3-(4-hydroxyphenyl) 

propionic acid increased in 6 subjects. Only (S05) showed an increase in all 7 of these 

aromatic compounds after fermentation, as well as greater concentrations of 3-

phenylpropionic acid, 4-hydroxyphenylacetic acid, 3,4-hydroxybenzoic acid, dihydroferulic 

acid and 4-coumaric acid.   This was a total of 12 individual phenolics which increased in 

concentration from (S05) 0hr-24hr, a pattern also seen with subject 4 but with increased 3-

hydroxyphenylacetic acid rather than benzoic acid.  When the average concentration for each 

individual phenolic was calculated 6 compounds in found in the IFF samples increased from 

0hr to 24hr, these included benzoic acid, catechol, 3-phenylactic acid, 3-phenylpropionic 

acid, 3-(3-hydroxyphenyl) propionic acid and 4-hydroxyphenylactic acid. Catechol 

demonstrated the largest increase concentration from an average of 385µM at 0h to 594µM at 

24hr IFF (a total of 209µM), followed by benzoic acid with a 64µM increase from (0h 

(76µM) to 24hr (140µM). The remaining 4 phenolics had increases of 20µM or less. 

 As was demonstrated by the ileal fluid samples, the consumption of raspberry purée 

increased the total (poly)phenolic content (TPC) in the post-raspberry IFF samples of several 

subjects. (S01, 02, 04, 10 and 11) all demonstrated increased TPC in post-berry 0hr IFF 

samples when compared to pre-raspberry 0h IFF. In contrast S01, S02, S06, S09 and S12 

increased in TPC following 24hr fermentation. The total phenolic content in both post 

raspberry 24hr IFF samples was increased in 8 out of the 11 subjects (S01, 03, 04, 05, 06, 08, 

09, 10 & 12). There was considerable inter-individual variation within each sample set; the 

phenolic content of pre-raspberry 0hr IFF ranged from 155 ± 46µM (S10) to 848±109µM 

(S02) with an average of 513 µM. With pre-berry 24hr fermentation this discrepancy was 

further extended with total phenolic content differing from 95 ± 17µM (S01) to 1622 ± 

178µM (S05) (average of 789µM). Post-raspberry samples also demonstrate this variation 
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with the phenolic content of post-berry IFF 0hr samples ranging from 55 ± 21µM (S08) to 

1618 ± 187µM (S02) with an average of 555µM. The overall concentration of phenolics with 

this group increased after 24hr fermentation but the variation between samples remains; with 

phenolic content from 94 ± 9µM (S03) to 1893 ± 227µM (S06).   
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Compound Concentration (µmol/300g) 

cyanidin 3,5-O-diglucoside 0.6 ± 0.1 

cyanidin 3-O-sophoroside 22 ± 1.0 

cyanidin 3-O-(2″-O-glucosyl)rutinoside 4.2 ± 0.3 

pelargonidin 3-O-sophoroside 0.25 ± 0.01 

cyanidin 3-O-glucoside 9.0 ± 1.0 

cyanidin 3-O-(2″-O-xylosyl)rutinoside 0.3 ± 0.1 

cyanidin 3-O-rutinoside 2.2 ± 0.2 

pelargonidin 3-O-glucoside 0.1 ± 0.1 

Total anthocyanins 38.2 ± 3.2 

ellagic acid O-pentoside 1.2 ± 0.1 

ellagic acid 4.8 ± 0.1 

Total ellagic acid 6.0 ± 0.2 

sanguiin H-10 43.0 ± 3.0 

sanguiin H-6 61.0 ± 3.0 

lambertianin C 20.0 ± 2.0 

Total ellagitannins 124.0 ± 8.0 

Table 1: Identification of phenolic compounds detected within raspberries* 

*Adapted from McDougall (4) 

Data in column 2 is expressed as mean values ± SD (n=2) 
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Compound S01 % S02 % S03 % S04 % S05 % S06 % 

Cy-3-O-sophoroside 8.0 36 4.2 19 7 33 6.6 30 0.41 2 6 27 
Cyanidin-3-O-(2"-O-
glucosyl)rutinoside 

1.7 40 1.6 38 1.7 39 1.7 40 0.11 3 1.6 38 

Pelargonidin-3-O-
sophoroside 

0.1 40 0.1 40 0.1 40 0.08 32 nd 0 0.08 32 

Cyanidin-3-O-glucoside 0.1 1 0.4 4 0.06 1 0.12 1 nd 0 0.09 1 
Cyanidin-3-O-rutinoside 0.3 14 0.1 4 0.04 2 0.03 1 0.03 1 0.2 9 

Total anthocyanins 10.2±1.5 27 6.4±0.6 17 8.9±2.7 23 8.5±1.1 22 0.55±0.09 1 7.9±2.5 21 

Ellagic acid-O-pentoside 0.3 25 0.5 42 0.50 42 0.6 50 0.05 42 0.5 42 
Ellagic acid    7.2 150 10 208 14.6 304 12 250 0.8 17 12 250 

Total Ellagic acid 7.5±0.7 125 10.5±3.1 175 15.1±0.1 252 12.6±6.3 210 0.85±0.11 14 12.5±3.2 208 

Sanguiin H-10 13.5 31 6 14 8 19 6.5 15 0.6 1 8 19 
Sanguiin H-6 8.5 14 17 28 32 52 29 47 0.4 1 19 31 
Lambertianin Nd 0 0.7 4 2.4 12 4 20 nd 0 nd 0 

Total Ellagitannins 22.0±2.3 18 23.7±8.6 19 42.4±8.7 34 39.5±21.2 32 1.0±0.1 0.8 27±5 22 

Compound S08 % S09 % S10 % S11 % S12 % 

Cy-3-O-sophoroside 4 18 6.8 31 6.3 29 3.5 16 4.03 19 
Cyanidin-3-O-(2"-O-
glucosyl)rutinoside 

1.0 24 1.66 39 1.51 36 0.9 21 1 24 

Pelargonidin-3-O-
sophoroside 

0.05 20 0.10 40 0.07 28 0.04 16 0.02 8 

Cyanidin-3-O-glucoside 0.3 3 0.07 1 0.06 1 0.11 1 0.09 0.3 
Cyanidin-3-O-rutinoside 0.4 18 0.11 5 0.9 41 0.02 1 0.57 23 

Total anthocyanins 5.7±1.4 15 8.7±0.2 23 8.8±0.6 23 4.6±1.3 12 5.7±1.7 15 

Ellagic acid-O-pentoside 0.5 40 0.4 33 0.5 40 0.13 11 0.8 33 
Ellagic acid    8.6 179 13 271 9 187 7.3 152 7 83 

Total Ellagic acid 9.1±0.6 152 13.4±1.1 223 9.5±1.1 158 7.4±0.7 124 8±2.3 134 

Sanguiin H-10 4 9 7 16 7.4 17 6 14 5 13 
Sanguiin H-6 23 38 39 64 19 31 26 43 12 20 
Lambertianin 0.4 2 7 35 2.3 12 1 5 1.1 6 

Total Ellagitannins 27.4±6.2 22 53±9 43 28.7±7.9 23 33±4 27 27±5 15 

 

 

Table 2: Recovery of Anthocyanins, Ellagic Acid, Ellagitannins in Ileal fluid collected 8hr post raspberry consumption. * 

*Adapted from McDougall (4) 

The data for each subject presented in column one are expressed as mean values in µM, while the column two represents the amount recovered 

as percentage of the quantity ingested.  
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Figure 3: Comparison of abundance of selected MS signals in ileal fluids before and after 

raspberry intake.  Panel A = m/z 934 = sanguiin H-6 at RT 17.9 min; B = m/z 679 at RT 

23.5; C = m/z 355 at RT 12.7. Peak areas are in arbitrary MS units.  

* Adapted from McDougall et al. (35) 
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Compound  µM S01 S01 S02 S02  S03 S03  

  Pre-Berry Post-Berry  Pre-Berry Post-Berry  Pre-Berry Post-Berry  

 0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  

Benzoic acid 141.0 155.7 118.9    208.2* 90.2 53.3 49.2 229.5* 50.8 61.5 123.0 70.5 

Catechol 618.2   1009.1 1527.3* 554.5 11.8 1563.6 9.1 233.6 3.6 172.7   

3-phenylpropionic acid     6.0 9.3* 10.0 4.7 6.0 144.0* 4.7 108.0 6.0 4.7 

Pyrogallol 9.1   7.3 7.3 5.5 2.7 4.5 3.6 3.6 2.7 4.5 3.6 

3-phenyllactic acid 5.4   6.6 136.7* 5.4 42.8 14.5 3.0 14.5 30.1 1.2 11.4* 

3-hydroxyphenylacetic acid 21.1   85.5   52.6 3.3 3.3 2.6 7.2   1.3   

4-hydroxybenzoic acid 74.6 58.0 50.7 19.6 17.4 46.4 9.4 43.5* 44.9 5.1 3.6 39.1* 

4-hydroxyphenylacetic acid 54.6 37.5 190.8   121.1 10.5 11.2 5.9 65.8 5.9 3.9 5.3* 

3-(2-hydroxyphenyl)propionic acid                         

3-(3-hydroxyphenyl)propionic acid       9.0*   4.2   12.0* 2.4 33.1 9.6 4.8 

3(4-hydroxyphenyl)propionic acid     4.2   3.0   1.8     16.3   2.4* 

3,4-dihydroxybenzoic acid     32.5   18.8   3.9         6.5* 

Dihydroferulic acid     17.3   10.7 6.6       30.6   1.5 

4-hydroxyphenyllactic acid       39.5*   23.0     6.6 2.0   12.5* 

3(3,4-dihydroxyphenyl)propionic acid                         

4-coumaric acid     14.6   9.8 4.9     4.3   4.9 2.4 

Caffeic acid           8.9     13.3       

Isoferulic acid       5.2*   9.3     2.6       

Dihydrocaffeic acid     51.1   39.6 42.3     4.9 4.9     

Total 783±41 95±17 1475±406 1753±33 848±109 221±26 1618±187 223±28 408±21 242±11 207±10 94±9 

Table 3B: Recovery of simple phenolics in 0hr and 24hr ileal fluid fermentates pre-raspberry and post-raspberry consumption 

Concentration of each phenolic measure in µM 

*significant increase in concentration between Post-Berry 0hr and 24hr  
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Compound  µM S04 S04  S05 S05  S06 S06  

  Pre-Berry Post-Berry  Pre-Berry Post-Berry  Pre-Berry Post-Berry  
  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  
Benzoic acid 97.5 123.0 76.2 71.3 32.0 131.1 32.8 172.1* 65.6 18.9 24.6 123.0* 
Catechol 327.3 1272.7 481.8 909.1* 572.7 1245.5 154.5 327.3* 227.3 1154.5 181.8 1600.0* 
3-phenylpropionic acid 2.0 24.7 2.7 10.0* 4.0 4.7 4.0 11.3* 4.0 4.7 4.0 20.7* 
Pyrogallol 3.6   4.5 0.9 10.9 8.2 10.0 8.2   3.6   4.5* 
3-phenyllactic acid 7.8 26.5   16.3*   54.2   26.5* 18.1 15.7 24.1 18.7 
3-hydroxyphenylacetic acid       3.3*                 
4-hydroxybenzoic acid 50.7 95.7 12.3 26.1*       5.8* 36.2 21.7 29.0 50.7* 
4-hydroxyphenylacetic acid 5.3 2.6   9.9* 111.8 105.3 9.2 11.8 13.2   26.3 15.8 
3-(2-hydroxyphenyl)propionic acid 0.0   3.6                   
3-(3-hydroxyphenyl)propionic acid 3.6 13.3 5.4 6.0* 19.3 30.1 12.7 84.3*   15.1   22.98* 
3(4-hydroxyphenyl)propionic acid   4.8 3.6 8.4*   8.4   9.0*       6.0* 
3,4-dihydroxybenzoic acid     1.9 2.6       2.6*     19.5 1.9 
Dihydroferulic acid   21.4   5.1*   2.6   13.8* 30.6 11.2 7.7 18.4* 
4-hydroxyphenyllactic acid 3.3 10.5   9.2* 11.2 32.9   17.8* 6.6 17.8   10.5* 
3(3,4-dihydroxyphenyl)propionic acid 3.6               17.9 8.3     
4-coumaric acid       3.7*       11.6*   11.0     
Caffeic acid                         
Isoferulic acid                         
Dihydrocaffeic acid                         

Total 504±55 1595±77 592±24 1081±209 761±178 1622±178 223±51 702±98 419±109 1282±306 316±48 1893±227 

Table 3B: Recovery of simple phenolics in 0hr and 24hr ileal fluid fermentates pre-raspberry and post-raspberry consumption 

Concentration of each phenolic measure in µM 

*significant increase in concentration between Post-Berry 0hr and 24hr  
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Compound  µM S08 S08  S09 S09 S10 S10  

  Pre-Berry Post-Berry  Pre-Berry Post-Berry  Pre-Berry Post-Berry  
  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  
Benzoic acid 196.7 196.7 32.8 82.0* 73.8 90.2 13.9 131.1* 65.6 82.0 82.0 357.4* 
Catechol 45.5 763.6 3.6 54.5* 363.6   163.6 142.7 63.6 1263.6 300.0   
3-phenylpropionic acid 1.3 3.3 1.3 0.7 2.0   2.0   4.7   2.0   
Pyrogallol 3.6 3.6 4.5 2.7 2.7 6.4 0.9 1.8 1.8   0.9 0.9 
3-phenyllactic acid 9.0 26.5     6.6     7.8* 1.8 41.6   41.6* 
3-hydroxyphenylacetic acid   2.0                 30.9   
4-hydroxybenzoic acid       3.6*     13.0 4.3 1.4 6.5 1.4 13.8* 
4-hydroxyphenylacetic acid 5.3 6.6   3.3*   46.7     13.2   70.4   
3-(2-hydroxyphenyl)propionic acid                         
3-(3-hydroxyphenyl)propionic acid 6.0 10.8 7.8 10.8*   14.5     3.0 61.4   72.9* 
3(4-hydroxyphenyl)propionic acid               2.4   11.4 0.6 25.9* 
3,4-dihydroxybenzoic acid     5.2 3.9     3.2       17.5 1.3 
Dihydroferulic acid   2.6               26.5 2.6 12.8* 
4-hydroxyphenyllactic acid 4.6 11.2               9.2   5.9* 
3(3,4-dihydroxyphenyl)propionic acid 5.4 6.0         4.2       3.6   
4-coumaric acid 7.9                       
Caffeic acid                     3.9   
Isoferulic acid                         
Dihydrocaffeic acid                         

Total 285±504 1032±179 55±21 161±47 448±16 157±21 200±16 290±45 155±46 1502±42 515±72 532±19 

Compound  µM S11 S11  S12 S12  

  Pre-Berry Post-Berry  Pre-Berry Post-Berry  
  0hr  24hr  0hr  24hr  0hr  24hr  0hr  24hr  
Benzoic acid 41.0 196.7 245.9 65.6 52.5 8.2 35.2 30.3 
Catechol 409.1 200.0 190.9 109.1 172.7   18.2 672.7* 
3-phenylpropionic acid 2.7 29.3 33.3 18.7 24.0   0.7   
Pyrogallol 1.8 5.5 2.7   1.8   0.9 0.9 
3-phenyllactic acid 15.1 37.3 16.3 22.9* 12.0     2.4* 
3-hydroxyphenylacetic acid                 
4-hydroxybenzoic acid   5.8 87.0 20.3 65.9 92.8   5.8* 
4-hydroxyphenylacetic acid 131.6 150.0 48.0 43.4 37.5   3.3   
3-(2-hydroxyphenyl)propionic acid           44.0     
3-(3-hydroxyphenyl)propionic acid   77.7 15.7     7.8   3.6* 
3(4-hydroxyphenyl)propionic acid   4.2 51.2 12.7   6.0     
3,4-dihydroxybenzoic acid     33.1       13.6   
Dihydroferulic acid     38.3   25.0 40.8     
4-hydroxyphenyllactic acid 12.5 27.6   19.7* 5.3       
3(3,4-dihydroxyphenyl)propionic acid 20.8   27.4       5.4   
4-coumaric acid     37.8           
Caffeic acid         26.7       
Isoferulic acid                 
Dihydrocaffeic acid           2.2     

Total 635±43 734±30 827±90 312±127 423±39 201±18 77±35 715±41 

Table 3C: Recovery of 

simple phenolics in 0hr and 

24hr ileal fluid fermentates 

pre-raspberry and post-

raspberry consumption 

Concentration of each phenolic 

measure in µM 

*significant increase in 

concentration between Post-

Berry 0hr and 24hr  
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Discussion: 

 There has been much use of in vitro models to research the bioactivity and anticancer 

properties of berry derived phytochemicals, investigations which have primarily used whole 

berry, berry extracts or purified (poly)phenols (1, 2, 36).  These studies have highlighted the 

potential health benefits of such compounds; however, it is important to consider the 

biological relevance of such interactions. The colonic epithelia will encounter a complex 

mixture of compounds, consisting primarily of simple and aromatic phenolics (produced from 

colonic fermentation) combined with much lower concentrations of native berry 

(poly)phenols and secondary metabolites (produced during digestion). To create a more 

physiologically relevant material, ileal fluid was collected from a raspberry feeding trial, this 

in vivo digested material was fermented in a gut model to simulate the interaction with 

colonic microflora. Thus, creating an ex-vivo model of greater physiological value than in 

vitro modelling alone. 

 The initial analysis of the raspberry purée used within the feeding study identified multiple 

(poly)phenolic compounds, the composition of which was comparable to that detected in 

previous research which utilised the Glen Ample variety of the fruit (3, 6, 37). The 8 

anthocyanins (cyanidin 3,5-O-diglucoside, cyanidin 3-O-sophoroside, cyanidin 3-O-(2-O-

glucosyl) rutinoside, pelargonidin 3-O-glucoside, cyanidin 3-O-(2”-O-xylosyl)runtinoside, 

cyanidin 3-O-rutinoside and pelargonigin 3-O-glucoside) 2 ellagic acid (ellagic acid O-

pentoside and ellagic acid)  and 3 ellagitannins (sanguiin H-10, sanguiin H-6 and 

lambertianin C) where present in all the prior studies. However, the total amount of ellagic 

acids and anthocyanins were significantly reduced within the raspberries used for the study.  

Glen Ample raspberries analysed by González-Barrio et al. presented with greater than 5 

times the anthocyanin content as in this study (3). This pattern was also seen with ellagic 

acid, which was double the concentration detected in our samples at 17µM. Although the 
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total ellagitannin concentrations in both studies were very similar the profiles differed with 

the results from this investigation showing much lower levels of sanguiin H-6 but higher 

levels of sanguiin H-10 and lambertianin C.  These are a reflection of the environmental 

conditions in which the fruit was grown and as such anthocyanin levels suggest that the 

berries where at differing stages of ripeness when harvested (37-39). The starting 

(poly)phenolic composition and concentration of these berries ultimately dictated the 

compounds which are available to act upon the colonic epithelium.  

 The raspberry feeding study and subsequent collection of ileal fluid highlighted 

compositional changes which occur due to digestion and identified those (poly)phenolic 

compounds which reach the large intestine. Although the total number of anthocyanins 

present was reduced from 8 to 5, all three ellagitannins where detected in the post-raspberry 

ileal fluid and ellagic acid content showed a substantial increase. This abundance of ellagic 

corresponds to the breakdown of ellagitannins, whose complex structures are readily 

hydrolysed during digestion. A similar pattern of results was observed in the study conducted 

by González-Barrio et al., which examined (poly)phenolic composition of 10 post-raspberry 

ileal fluid samples (3). They detected a total of 8 anthocyanins with and overall concentration 

of 81±4µM and 2 ellagic acids, ellagic acid (19 ±3µM) and sanguiin H-6 (23±1µM). These 

concentrations were higher than those detected within our study, however this can be partially 

attributed to the greater initial (poly)phenolic content of the raspberry fruit.  

  The results from this study combined with previous publications indicate that a considerable 

proportion of the anthocyanins pass through the upper gastrointestinal tract unabsorbed and 

enter the colon. The lack of anthocyanins present in both the plasma (<1nM) and urine 

(21.4nM) of 9 participants after consumption of raspberries (containing 292µM total 

anthocyanins) indicates that these compounds have poor bioavailability (18). In fact, the only 

parent compound detected within the urine sample was cyanidin O-glucuronide, while the 



76 
 

 

other constituents were analogues such as peonidin 3-O-glucosides. As most anthocyanins are 

found as di and tri-saccharides sugar moieties, they are unlikely to be cleaved by the enzymes 

found in the brush epithelia of the small intestine. The ellagitannin and ellagic acid profiles 

also give some indication as to the changes which occur in vivo.  The poor bioavailability of 

the ellagitannins is due to their large molecular structure and highly polar nature, preventing 

them from entering the circulation. However, as the compositional analysis above indicates, 

these compounds reduce in concentration as they pass through the GI tract, with only 21.2% 

reaching the large intestine and much lower concentration found in the faeces (40). This is in 

direct contrast to ellagic acid which increases in concentration. The phenolic profile of the 

ellagitannins present also changes from the original raspberry sample to the ileal fluid, with a 

decrease in lambertianin C and sanguiin H-6, while sanguiin H-10 increases. These patterns 

are due to the catabolism of ellagitannins; hydrolysis of the large molecule lambertianin C 

produces sanguiin H-6, which in turn can be broken down to sanguiin H-10 and ultimately 

these compounds are all degraded to ellagic acid (17).  The ileal fluid samples collected are 

representative of the changes which occur to (poly)phenolic compounds due to digestion and 

passage through the small intestine. To mimic the action of colonic microbiota these samples 

were subjected to in vitro fermentation for 24hr. 

 The colonic catabolism of (poly)phenolic compounds is not yet fully comprehended with 

many of the pathways involved in this procedure yet to be elucidated. The phenolic 

metabolites produced during bacterial fermentation will depend upon the initial (poly)phenol. 

With anthocyanins the end-products are phenolic acids, while ellagitannins produce ellagic 

acid and urolithins. In vitro fermentation models are utilised to predict these breakdown 

pathways is an attempt to further our understanding. The data produced from this 

investigation illustrates how the more complex anthocyanin structures are degraded to 

produce simple and aromatic compounds. As many of the (poly)phenolic compounds reach 
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the colon, microbiota play a key role in their degradation and the production of phenolic 

metabolites. Raspberry anthocyanins incubated anaerobically in faecal suspensions for 48hr 

resulted in the production of a range of phenolic acids which were also present in the post-

raspberry IFF samples described above. These included compounds such as catechol, 4- 

hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, tyrosol and 3-(3’-hydroxyphenyl) propionic 

acid. The presence of such phenolics suggests that they follow the breakdown pathway 

described by Gonzalez-Barrio et al. (16). During fermentation, the anthocyanins are degraded 

through the cleavage of sugar moiety, cleavage of the C-ring and breakdown of A and B rings 

to produce simple and aromatic phenolics (Figure 1).  The phenolic compounds produced as 

the result of 24hr fermentation reached concentrations between 94-1893µM with over half 

the subjects producing total phenolic concentrations greater than 500µM. Concentrations of 

benzoic acid were greater than 50µM in 11 of out the 12 post-berry IFF samples. These 

values are consistent with the concentrations of those few studies which have utilised 

biologically relevant phenolics to assess potential health benefits (41, 42). The specific 

bioactivity of the samples produced within this investigation are discussed in greater detail in 

Chapters 4 and 5. 

The findings of this experiment somewhat mirror those of Correa-Betanzo et al. whose study 

simulated the digestion of wild blueberries (Vaccinium angustifolium) using a three-step in 

vitro model (31). They demonstrated a reduction in recovery of (poly)phenols and 

anthocyanins from the 94% and 97% (2.0 and 1.4mg GAE/g fresh weight equivalent) after 

gastric digestion to a final recovery of 42% and 1.5% (0.91 and 0.023mg GAE/g fresh weigh 

equivalent) following simulated intestinal digestion and colonic fermentation. As with our 

study this overall loss of (poly)phenol content corresponded to changes in sample 

composition with the more complex (poly)phenolics (chlorogenic acid, quercetin arabinoside 

and syringetin-3-galactoside) and anthocyanins (including delphinidins, cyanidins, 
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petunidins) within the crude extract and present after gastric and intestinal digestion, while 

the fermentate samples were primarily composed of simple and aromatic phenolics (syringic 

acid, hippuric acid, protocatechuic acid).   

 The colonic degradation of ellagitannins, as described above and illustrated in Figure 2, is 

dependent upon metabolic phenotype, dictated by the microflora present within the large 

intestine. This metabolic pathway is further complicated with inter-individual and intra-

individual variation, which is dependent upon the differing compositions of gut microbiota 

within the human population (43). Individuals can be grouped based upon the level of 

urolithins present within urine samples and classified as either producers or non-producers 

(44, 45). However prolonged exposure to a diet containing high concentrations of 

ellagitannins or ellagic acid can activate non-producers, i.e. they start to produce urolithins; 

these are then classified as responders and those who are not activated are non-responders 

(47, 48).  Individuals can also be grouped into 3 by phenotypes or metabotypes, which are 

differentiated based upon their end-point of ellagitannin metabolism. The most common 

group or “phenotype A”, excrete only Uro-A metabolites, while the second group or 

“phenotype B” produced Uro-A, IsoUro-A and Uro-B. The final group are referred to as 

“phenotype 0” and do not excrete any detectable levels of Uro-A, IsoUro-A or Uro-B. These 

individuals may be activated with long-term exposure to ellagitannins and ellagic acid, i.e. 

are responders or may simply be non-producers (48). This inter-individual variation had been 

attributed to differences in gut microbiota, a theory which is corroborated with correlation 

between Gordonibacter and Uro-A production (49) Romo-Vaquero et al.  suggested that 

higher levels of Gordonibacter were present in individual with “phenotype 1” (50). 

Previous studies have readily demonstrated the conversion of ellagic to urolithins following 

anaerobic incubation with faecal slurry, with approximately 80% of the total ellagic acid 

converted to a range of urolithins, dependent upon the phenotype of the faecal donor (16).  
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In order to minimise variation as a result of metabotype, a single faecal donor was used to 

provided samples (weekly), to inoculuate the batches of in vitro fermentation models. The 

absence of ellagic acid metabolites, specifically urolithins suggests an absence of 

Gordonibacter, the species of gut microbiota which catalyses this pathway (24, 25, 26). The 

results from this chapter show a lack of detectable urolithins in the IFF samples, suggesting 

the individual faecal donor was “phenotype 0”. If this study was repeated it would be 

beneficial to screen the donors prior to producing faecal slurry, use of different donors with 

other phenotypes could create a greater variety of ellagitannin breakdown products, allowing 

the inclusion of urolithins A, B and iso-urolithins. In isolation or in combination with ellagic 

acid in vitro assays with these compounds have demonstrated antioxidant, antiproliferative 

and antimutagenic potential (51-54).   

  The overall aim of this chapter was to produce substrates representative of the metabolic 

breakdown of raspberry (poly)phenolics as they travel through the digestion system. This was 

a two-step process, the initial collection of 0hr and 8hr ileal fluid from 11 participants of a 

raspberry feeding study. These samples were subjected to 24hr in vitro fermentation 

producing ileal fluid fermentate, to mimic the compounds present within the large intestine 

after degradation by colonic microbiota. The HPLC and GC-MS analysis of the subsequent 

samples provided us with a greater understanding of the metabolic degradation which occurs 

as (poly)phenols pass through the digestive system. Both the ileal fluid and ileal fluid 

fermentate samples have provided us with biologically relevant substrates with which to 

reassess the bioactivity and potential health benefits of berry (poly)phenols.    
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Chapter 4: Bioactivity of in vivo digested and in vitro fermented raspberries 
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Introduction: 

Epidemiological studies have attributed a wide range of health benefits to a diet rich in fruit 

and vegetables, including, decreased risk of cancer, cognitive disorders and type-2 diabetes 

(1-4). These plant based foods contain a variety of bioactive compounds, including fibre, 

vitamins, minerals and numerous phytochemicals (5).  Phytochemicals or (poly)phenols are a 

diverse group of secondary plant compounds which many health benefits have been attributed 

(6).  The richest sources of dietary (poly)phenols are found in highly coloured fruit, such as 

berries, which are comprised of a range of (poly)phenolic compounds including, phenolic 

acids, tannins, stilbenes, flavonoids and ligands (7). 

Many studies have demonstrated the anti-cancer properties which these berry (poly)phenols 

possess including; inhibition of tumour cell proliferation, induction of cell cycle arrest, 

apoptosis, anti-angiogenesis and anti-genotoxic activity (8). Such research has used a variety 

of in vitro and in vivo models to determine the mechanisms by which berry (poly)phenols 

induce these chemopreventive and chemoprotective effects. These investigations have 

primarily focussed on the anticancer properties of berry extracts or purified compounds. For 

example, black raspberry derived anthocyanins used at 0.5 and 5µg/ml to inhibit the aberrant 

tumorigenic activity of DNA methyltransferases in Caco-2 and HCT116 cells (9). In vivo 

models have also demonstrated the protective effects of berry extracts, e.g.  an AIN-76A diet 

supplemented with 5% strawberry extract reduced tumour incidence in AOM/DSS treated 

mice by 66% (10).   However, few studies have taken into consideration the effect of 

digestion and colonic fermentation upon the parent (poly)phenolic compounds.  
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  It is important to consider the bioavailability of these berry (poly)phenols; if bound within 

the food structure they are of little nutritional value. Although average daily (poly)phenol 

intake is ~1g, only a small percentage (5-15%) of these compounds are excreted in urine (11). 

This combined with low levels of parent compounds found within the blood, contributes to 

the understanding that many dietary phytochemicals have poor bioavailability. Recent studies 

have developed a greater understanding of the absorption, disposition, metabolism and 

excretion pathways which play a key role in bioavailability (11, 12).   

 

 These compounds are subjected to a series of metabolic events as they pass through the 

gastro-intestinal tract, which results in the production of secondary metabolites. Although 

these metabolites are more bioavailable, a substantial portion (~40%) still pass through the 

small intestine unabsorbed (13).  Once in the large intestine these compounds are further 

modified through the action of a variety of enzymes produced by colonic microbiota. This 

fermentation process generates a range of new (poly)phenol metabolites which may not have 

been present in the original berry (14).  Colonic epithelial cells are more likely to be exposed 

to a complex mixture of berry (poly)phenols and secondary metabolites. It is therefore 

essential to utilise physiological relevant samples when investigating the effect of dietary 

phytochemicals within in vitro models.   

 

  To produce physiologically relevant samples, berry enriched ileal fluid was collected from 

11 ileostomates following a raspberry feeding study (see Chapter 3 for details), the 

subsequent samples were representative of raspberries post-gastric digestion.  To simulate 

lower GI digestion, colonic fermentation and further the breakdown of aromatic phenolics to 

simple phenolics, ileal samples were placed in a 24hr-batch culture model under anaerobic 

conditions with a controlled pH and temperature (see Chapter 3). A process facilitated by the 
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presence of colonic microflora, in the form of a faecal inoculum which provided the 

microorganisms for fermentation (15). This ex-vivo model allowed to us determine whether 

the processes of digestion and colonic fermentation enhanced the anti-cancer properties of 

berry phytochemicals as demonstrated in other studies (16). Unlike most other investigations, 

the anti-genotoxic potential of ileal fluid and ileal fluid fermentate (IFF) was assessed in vitro 

using models of both colon cancer (HT29) and normal colonocytes (CCD 841 CoN). The 

overall aim of this chapter was to assess whether the antigenotoxic properties previously 

assigned to berry (poly)phenolics  is retained following digestion and colonic fermentation. 
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Methods: 

 

Tissue Culture 

Two colonic cell lines were used within this investigation to represent both normal and 

carcinogenic cells.  CCD 841 CoN cells (normal colonic epithelial) were obtained from 

American Type Culture Collection (ATCC) and cultured in Minimum Essential Media 

(MEM) supplemented with 10% Foetal Bovine Serum (FBS), 100U/L 

penicillin/streptomycin, 1% sodium pyruvate, 1% non-essential amino acids. HT29 cells 

(colonic adenocarcinoma) obtained from European Collection of Cell Cultures (ECACC) and 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS 

and 100U/L penicillin/streptomycin.  Both cell lines were grown as monolayers in roux flasks 

incubated at 37°C and 5% CO2  and sub-cultured every 3-4 days or when cells had reached 

75% confluence. Cells were passaged by thrice washing with Dulbeco’s phosphate-buffered 

saline (DPBS) and incubation with trypsin (0.25% trypsin-ethylenediaminetetraacetic acid) at 

37°C for 5min. Trypsin was neutralised with equal volume of media and cells spun at 

1200rpm for 3min, supernatant was removed and cells re-suspended in the fresh growth 

media.  Both cells lines were used between passage 25-40. 

 

Cell treatments 

 Three types of samples were used to treat the 2 cell lines in this investigation. 22 samples of 

ileal fluid; 11x 0hr baseline and 11x 8hr post-raspberry consumption were obtained from the 

raspberry feeding study described in Chapter 3. 44 samples of ileal fluid fermentate (IFF); 

11x baseline 0hr fermentation, 11x post raspberry 0hr fermentation, 11x baseline 24hr 

fermentation and 11x post raspberry 24hr fermentation produced using in vitro batch culture 

(see Chapter 3). Four individual phenolics; 3-(3-Hydroxyphenyl) propionic acid (3HPPA), 3-



93 
 

 

phenylpropionic acid (3PPA), 4-Hydroxbenzoic acid (4HBA) and Benzoic Acid (BA) with a 

concentration range of 10-100µM were chosen based upon compositional analysis of 

raspberry ileal fluid fermentate (see Chapter 3). Each powdered phenolic was dissolved in 

0.5% DMSO v/v DPBS to produce a 5mM stock solution.  

 

Cytotoxicity Assay 

To establish a sub-cytotoxic dose for each treatment cell-viability was determined using the 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay (14). 

This assay is based upon the ability of mitochondrial dehydrogenase in living cells to 

metabolise the pale-yellow tetrazolium salt into dark blue formazan. The number of viable 

cells is directly proportional to formazan concentration (17).  Cells were seeded into 96-well 

plates at a concentration of 1.5x104 HT29 cells per well or 3.0x104 CCD 841 CoN cells per 

well and incubated for 48h at 37℃. Media was then removed and replaced with treatment; 10, 

25 or 40% v/v Ileal Fluid with media, 10, 25 or 40% v/v IFF with media or 10-100µM 

individual phenolic in media. After 24h treatment was removed, cells washed with DPBS and 

incubated for a further 4hr with 100µl fresh growth media and 15µl MTT dye (5mg/ml in 

DPBS).  100 µl of solubilising solution was added to each well, releasing the formazan 

product from cells.  The concentration of the formazan was measured on a microtiter plate 

reader (Alpha, SLT Rainbow Thermo) at 570nm with a reference of 650nm.  Each plate had 

an untreated control (growth media only) and a positive cytotoxic control (500 µM 

deoxycholic acid). Due to the limited volume of Ileal Fluid and IFF 1 subject was chosen to 

assess potential cytotoxic effects of each treatment. Only CCD 841 CoN cells were used to 

determine IFF cytotoxicity because of the finite amount of sample. Cytotoxicity of ileal fluid 

and individual phenolics was examined in both cell lines.  Each treatment was replicated in 
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quadruple and each experiment repeated independently 3 times.  Mean results were expressed 

as % cell survival normalised to the untreated control.  

 

COMET Assay  

The anti-genotoxic effects of each treatment was assessed using this well-established model 

for colonocyte DNA damage (18). Both HT29 and CCD 841 CoN cells were incubated for 

24hr at 37℃ with either 20% Ileal Fluid v/v in media, 20% IFF v/v in media or 10-100µM 

individual phenolic in media. Cells were then harvested and placed under oxidative challenge 

by treatment with hydrogen peroxide (75 µM for HT29 and 25 µM for CCD 841 CoN) for 

5min at 4℃. Each experiment included a negative control (DPBS) and positive known anti-

genotoxic control (100nM CDDO). After centrifugation at 1500rpm, 4℃ for 10min, 

supernatant was discarded and cell pellet re-suspended in 0.85% low melting point agarose 

and added to pre-cast 1% normal-melting point agarose beads on fully frosted slides.  Slides 

were placed in lysis buffer (2.5M NaCl, 100mM Na2EDTA, 10mM Tris HCl) for 1hr at 4℃ 

to disrupt cellular and nuclear membranes. Immersion in an alkaline buffer (0.3M NaOH, 

1mM EDTA) for 20min at 4℃ allowed DNA un-coiling prior to electrophoresis at 25V, 

300mA for 20min. Gels were washed 3x 5min in a neutralisation buffer (0.4M Tris-HCl, pH 

7.5) and stained with 20µl of ethidium bromide (2µg/ml in distilled water).  Slides were 

analysed using Nikon eclipse 600 epi-fluorescent microscope at 400x total magnification.  

Images were scored using Komet 5.0 software (Kinetic Imaging Ltd, Liverpool, UK), a total 

of 50 cells per slide with a mean % tail DNA calculated from triplicate gels. Each experiment 

was repeated 3 independent times. 
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Statistical Analysis  

Data was analysed as the mean of 3 independent experiments. D’Agostino & Pearson 

omnibus was used to test for normality. Analysis of variance was applied to test for 

significant differences between means and assessed with Dunnett’s Multiple comparison 

post-hoc test. Significance was accepted at p<0.05. Analysis was performed using Prism 5 

(version 5.01 for Windows). 
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Results: 

Cytotoxicity  

 To establish a non-cytotoxic dose of each treatment a MTT cytotoxicity assay was 

performed, measuring cell viability after 24hr incubation with each treatment. Extracts which 

resulted in a loss of cell viability greater than 50% were considered highly cytotoxic. 

 No significant cell loss was observed for either baseline and post-berry ileal fluid at 10, 25 

and 40% (v/v)   when compared to media control (Abs= 1.45±0.05) (Figure 1A). However, 

when tested with CCD 841 CoN cells the Ileal Fluid demonstrated significant cell death at 

40%. Baseline ileal fluid reducing cell viability to 54% and post-raspberry ileal fluid reducing 

cell viability to 62% when compared to media control (Abs= 1.39±0.03) (Figure 1B). Based 

on these results the sub-cytotoxic concentration of 20% ileal fluid (v/v) with media was 

selected for subsequent assays. 

Raspberry IFF, both 0hr fermentation and 24hr fermentation showed no cytotoxicity upon 

CCD 841 CoN when incubated for 24hr at 10, 25 or 40% (v/v). Pre-berry 24hr ileal fluid 

fermentate had no significant effect on cell viability. In contrast pre-berry 0hr IFF at 40% 

(v/v) significantly decreased cell viability to 42% when compared to the media control (Abs= 

0.87±0.08) (Figure 2). As a consequence, 20% was selected as the appropriated concentration 

to assess anti-genotoxicity.    

 The individual phenolics, 3HPPA, 3PPA, 4HBA and BA showed no evidence of cytotoxicity 

when pre-incubated for 24hr with HT29 (Abs=1.68±0.22) or CCD 841CoN (Abs=0.79±0.08) 

at any of the chosen concentrations of 10, 50 or 100µM (Figure 3).  Further experiments 

could be performed using all the above concentrations.  
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Figure 1: Cytotoxic effect of different concentrations of Raspberry Ileal Fluid (10, 25, 40%) 

on HT29 cells (A) and CCD841 cells (B). Data presented is mean of 3 independent 

experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, ***p<0.001, 

significance is compared to media control. 

 

 

 



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Cytotoxic effect of different concentrations of Raspberry Ileal Fluid Fermentate 

(10, 25, 40%) on CCD841 cells. Data presented is mean of 3 independent experiments +SD. 

One-way ANOVA and Dunnett’s Multiple Comparison test, **p<0.01, significance is 

compared to media control.   
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Figure 3: Cytotoxic effect of different concentrations of 4 individual phenolics on HT29 

cells (A) and CCD841 cells (B). Data presented is mean of 3 independent experiments +SD. 

One-way ANOVA and Dunnett’s Multiple Comparison test.  No Cytotoxic effects found 

after 24hr pre-incubation when compared to media control. 
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Anti-genotoxic activity  

 All the treatments described above; post-berry ileal fluid, post-berry IFF and individual 

phenolics resulted in some degree of anti-genotoxic activity within both cell lines.  

 When compared to corresponding baseline ileal fluid five of the eleven post-raspberry ileal 

fluid samples demonstrated anti-genotoxic activity, in HT29 cells challengend with 75µM 

H2O2  (Figure 4A).  Subjects 1, 3, 4, 8 and 10 all showed significant (p<0.001) decrease in % 

tail DNA.  Treatment  with subject 1 created the most dramatic reduction of damage ~50% 

compared to subjects 5 and 12 which demonstrated no anti-genotoxic activity. The average 

reduction of all 11 subjects ~23%. When used to pre-treat CCD 841 CoN cells for 24hr prior 

to challenge  25µM H2O2 , 8/11 post-berry ieal samples reduced DNA damage, compared to 

base line ileal fluid (Figure 4B). Subjects 1, 2, 4, 6, 8, 10 and 11 significantly decreased % 

tail DNA.  As with HT29 cells the greatest reduction in damage was from subject 1 with a 

40% decrease in tail DNA. The average reduction of tail DNA within this cell line was  

similar to that of HT29 at 25%.  Four of the 11 subjects (S01, S04, S08 & S10) resulted 

decreased DNA damage in both cell lines. 

 Due to the limited volume of IFF the anti-genotoxic activity of these samples was only tested 

on CCD 841 CoN cells. A total of 7 out of the 11 subjects post- berry  0hr IFF samples 

reduced DNA damage when pre-incubated for 24hr prior to oxidative challenge (Figure 5A). 

Subjects (2, 3, 5, 8, 11) all significantly decreased % Tail DNA (p<0.001) with a further 2 

subjects (S04 and S10) reducing damage (p<0.01) when compared to pre-berry 0hr IFF.  

(S08) post-berry showed the greatest reduction of DNA damage by 27, an average decrease 

of 20% across all 11 subjects. (S02, S04, S8, S10 and S11) retained their anti-genotoxic 

activity from post-raspberry ileal samples. Two samples  proved to be cytotoxic, (S01) pre-

berry 0hr IFF  and (S12) post-berry IFF caused significant cell death, therefore no statistical 

analysis could be performed on these two.  
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  After 24hr fermentation (Figure 5B) 9 out of the 11 post-raspberry IFF  samples reduced 

DNA damage when compared to pre-berry IFF 24hr samples. ( S01, S02, S03, S04, S05, S06, 

S08, S11 and S12) significantly decreased % tail DNA (p<0.001). (S12) produced the 

greatest reduction with a 47% decrease in % tail DNA and an  overall average reduction of 

30% for all 11 subjects.  Four of the 11 (S02, S04, S08, 11) subjects maintained anti- 

genotoxic properties from 0-24hr fermentation and a further 2 maintained activity from ileal 

fluid (S01 and S08).  

 Antigenotoxic activity of the four individual phenolics; 3HPPA, 3PPA, 4HBA and BA, was 

assessed over a range of concentrations (10, 50 and 100µM) in both cell lines HT29 (Figure 

6) and CCD 841 CoN (Figure 7). All four phenolics reduced  DNA damage across both cell 

lines but to differing effects.   When compared to medi control, pre-incubation of 3HPPA for 

24hr at all 3 concentrations significantly reduced % Tail DNA in HT29 cells. The 50µM 

concentration was the most effective, reducing DNA damage by 31% (p<0.001).  3PPA 

treated HT29 cells only proved  significantly antigenotoxic (p<0.001) at 50µM reducing 

DNA damage by 36%. 4HBA and BA reduced % Tail DNA across all 3 concentrations.  

10µM 4HBA created 44% decrease in damage with 50 and 100µM 4HBA producing 40% 

reduction. BA at 100µM was the most effective of all the phenolic treatments for HT29 cells 

with 47% decrease in tail DNA, while 10µM BA reduced damage by 15% and 50µM by 

32%. BA was the only individual phenolic that followed a dose dependent respond  within 

HT29 cells.  

  CCD 841 CoN cells responded in a dose dependent manner when treated wih any of the 

individual phenolics, and as a consequence 100µM concentration produced the greatest 

antigenotoxic activity. Treatment with 3HPPA significantly decreased % Tail DNA at 10µM 

(p<0.05), 50µM (p<0.05) and 100µM (p<0.001), with 100µM producing a ~55% reduction in 

DNA damage.  50µM and 100µM concentrations of 3PPA resulted in signifcant 
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antigenotoxic activity (p<0.001) within CCD 841 CoN cells creating ~40% and ~50% 

decrease in tail DNA.  4HBA resulted in a significant reduction in DNA damage (p<0.001) at 

all 3 concentrations with a ~36% decrease of tail DNA at 10µM and 50µM, and  ~50% 

decrease at 100µM.   The pattern was repeated with BA 10µM (p<0.01), 50µM (p<0.001) 

and 100µM (p<0.001) all resulting in significant anti-genotoxic activity. 10µM produced a 

~21% decrease, 50µM a ~32% decrease and 100µM a ~52% decrease of Tail DNA. All of 

the phenolics result in a greater decrease of % Tail DNA in CCD841 than HT29. 
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Figure 4:  Anti-genotoxic effects of Ileal fluids both Baseline and Post-Raspberry feed at 

20% ileal (v/v) in growth media, after 24hr pre-incubation at 37℃ on A) HT29 cells 

challenged with 75µM H2O2 and B) CCD 841 cells challenged with 25µM H2O2. Postive 

control CDDO, Negative control PBS. Data presented is as mean of 3 independent 

experiments +SD. One-way ANOVA and Bonferroni’s multiple comparisons test, **p<0.01, 

***p<0.001, significance is compared to baseline.   
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Figure 5:  Anti-genotoxic effects of baseline and post-raspberry feed Ileal fluid fermentate 

A) 0h fermentation and B) 24h fermentation at 25% ileal (v/v) in growth media, after 24hr 

pre-incubation at 37℃ on CCD 841 cells challenged with 25µM H2O2. Postive control 

CDDO, Negative control PBS. Data presented is as mean of 3 independent experiments +SD. 

One-way ANOVA and Bonferroni post-tests, *<p0.05 **p<0.01, ***p<0.00, significance is 

compared to baseline.
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Figure 6: Anti-genotoxic effects of individual phenolics at a range of concentrations (0-100µM) after 24hr pre-incubation at 37℃ on HT29 cells 

challenged with 75H2O2. Data presented is as mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparison 

test, *<p0.05 **p<0.01, ***p<0.001, significance is compared to media control. 
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Figure 7: Anti-genotoxic effects of individual phenolics at a range of concentrations (0-100µM) after 24hr pre-incubation at 37℃ on CCD 841 

cells challenged with 25H2O2. Data presented is as mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple 

Comparison test, *<p0.05 **p<0.01, ***p<0.001, significance is compared to media control.



107 
 

 

Discussion: 

 

In this chapter we have demonstrated that the antigenotoxic potential of berry phytochemicals 

is retained following in vivo digestion and in vitro fermentation. These protective effects were 

observed in both models of colon cancer and normal colonic epithelium. Using the same 

model, we have illustrated the anticancer action of a range of berry phenolics at 

concentrations of 10, 50 and 100µM, comparable to those found after fermentation (19, 20). 

Previous studies have used a range of in vitro models to identify the chemopreventive and 

anti-genotoxic potential of purified phenolics and berry extracts (16). To the best of our 

knowledge this is the first study that utilised both in vivo digestion and an ex vivo 

fermentation model to assess the anti-genotoxic potential of these berries and their 

metabolites. Few investigations have utilised physiologically appropriate samples and 

therefore the data presented here can be considered more relevant for further investigation 

(21-23).     

 

 The human digestive tract can be sub-divided into 4 distinct processes which correspond to; 

the mouth, the stomach, the small intestine and the large intestine. As food passes through 

this system it is altered by a variety of mechanisms from physical cutting and grinding of the 

teeth, acid hydrolysis in the stomach, enzymatic reactions in the small intestines and 

anaerobic fermentation in the colon. This complex multistep procedure releases the nutrient 

from the food matrix making them more readily bioavailable (24). Many investigations have 

used in vitro models based on the work of Gil-Izquierdo et al. to simulate the process of berry 

digestion and the release of (poly)phenolic compounds (25). There have been discrepancies 

in the reported (poly)phenol bioavailability when utilising these in vitro models of digestion.  

McDougall et al. reported bioavailability of ~10% for (poly)phenols following in vitro 
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digestion of raspberries (26). In contrast the 2-step model utilised by Bermúdez-Soto et al. to 

digest chokeberries, recorded bioavailability of 15-30% for individual berry (poly)phenols 

(27). These approaches to in vitro digestion have provided a necessary starting point to gain 

an understanding of (poly)phenolic degradation, however such models can only go so far in 

simulating the dynamic nature of the human gastrointestinal tract. It was therefore decided a 

human feeding study would produce more biologically relevant samples and be of greater 

benefit to our investigation.  

 

  The human feeding studying (described in chapter 3) produced samples which more 

accurately represent the process of digestion. In the mouth, food is subjected to mechanical 

processing, cutting and grinding by the teeth, followed by interactions with salivary 

amylases. As our participants consumed a raspberry puree the meal would have been 

swallowed with little oral processing.  The stomach is a highly acidic (pH 2) vessel into 

which a variety of gastric enzymes are secreted e.g. pepsin, lipases and amylases which act 

upon the food matrix (24). Most (poly)phenols are released from their plant structure within 

the gastric phase of digestion, digestive enzymes in conjunction with peristaltic movement 

and low pH break (poly)phenol crosslinks with carbohydrates, organic acids and other 

(poly)phenols (28). The digesta is subjected to further breakdown within the small intestine 

as pH is increased to 7 and a series of enzymes are secreted by the pancreas and bile (28).  

These changes in conditions convert anthocyanins into colourless chalcone pseudobases and 

phenolic compounds are deglycosylated and hydrolysed to produce aglycones (29). It is this 

stage of digestion which (poly)phenols may be absorbed across the brush border of the small 

intestine. Metabolites can pass through the portal vein to the liver, undergo further 

metabolism and may be recycled back into the small intestine (30).  Although a variety of 
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(poly)phenols are absorbed in the small intestine analysis of ileal fluid (see chapter 3) 

indicates that a substantial portion passes into the large intestine.  

  This process of degradation continues within the large intestine, where conjugated moieties 

are cleaved by colonic microbiota and converted into simple and aromatic phenolics (12). 

This exposes the epithelial cells within the colon to a complex mixture of (poly)phenolic 

compounds. Unlike ileal fluid it is not possible to obtain a biological sample; in order to  

produce physiologically representative samples the collected ileal fluids where subjected to in 

vitro fermentation (see chapter 3). This batch culture model consisted of incubating the ileal 

fluids with basal media in the presence of 10% faecal slurry, at 37℃ and in anaerobic 

conditions. The faecal inoculum provided a source of colonic bacteria which acted upon the 

(poly)phenols present within each sample.  This model produces samples with compositions 

comparabl to that found in vivo. Few studies have utilised batch culture models to produce 

biologically relevant samples, for example Mosele et al. used in vitro digestion and 

fermentation models to study the stability of pomegranate (poly)phenols, while Correa-

Betanzo et al. assessed the biological activity of colon-available wild blueberries phenolics 

with a similar two-step in vitro process (31, 29).  Other studies such as Pereira-Caro et al. 

simply assessed the colonic catabolism of individual (poly)phenols rather than the breakdown 

of the whole fruit (32). The compositional analysis described in chapter 3 demonstrated the 

difference between ileal fluid and ileal fluid fermentate while emphasising the significance of 

using both for further investigation and the need to assess antigenotoxic potential of both 

types of sample. 

When compared to the original raspberry extract, compositional analysis of post-berry ileal 

fluids revealed an overall loss of total anthocyanin and total ellagitannin content after transit 

through the upper gastrointestinal (see chapter 3). Even with these changes in (poly)phenolic 

content antigenotoxic activity was observed in HT29 cells treated with 5/11 ileal samples and 
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in CCD841 CoN cells treated with 8/11 ileal samples. These results indicate that the 

antigenotoxic properties previously attributed to berries and berry extracts are retained 

following digestion (33). 

The bioactivity of in vitro digested (poly)phenols has previously been examined by Chen et 

al. whom conducted 2 investigations, one with blackberry extracts and one with raspberry 

extracts (23, 34). They concluded that the berry digesta protected Caco-2 cells against Ethyl 

Carbamate induced damage, reduced nuclear fragmentation and scavenged ROS more 

effectively than their equivalent berry extract. In contrast to our results this study observed an 

increase in the total phenolic content from 118.43mg/GAE to 254.60mg/GAE following 

digestion and attributed the increased antigenotoxic activity to the additional bioactive 

components. Marhuenda et al. demonstrated a reduction in total (poly)phenolic and 

anthocyanin content following in vitro digestion of strawberries, blackberries, raspberries and 

blueberries (35).  There was a correlation between the phenolic content of the samples and 

the antioxidant activity, the greater the concentration of phenolics the greater the antioxidant 

effects.  Although the original extracts had greater antioxidant potential than the digesta, 

(poly)phenol concentrations remained high enough to exert a positive effect. As our study has 

no direct comparison to the antigenotoxic properties of the original raspberry extract it is not 

possible to make such a conclusion. However these results however do confirm that 

gastrointestinal digestion creates (poly)phenol breakdown products which have significant 

protective effects against oxidative challenge.  

  The antigenotoxic potential displayed by raspberry enriched ileal fluid samples was 

maintined following in vitro fermentation. Although the samples have been subjected to 

further degradation with the (poly)phenolics converted to simple and aromatic compounds, 

the fermentate samples produced following this process still possess anti-cancer activity. 

Post-berry 24hr IFF samples showed a similar reduction in DNA damage as post-raspberry 
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ileal fluid samples.  As pre-treatment for CCD 841 CoN cells prior to H2O2 challenge, 9 out 

of 11 IFF samples significantly reduced DNA damage when compared to pre-berry IFF 

samples, with an average decrease of 29%. A total of 8/11 post-raspberry ileal fluid samples 

decreased single strand DNA breaks, with an average reduction of 25% when compared to 

corresponding baseline ileal fluid. On face value these results suggest that the fermentation 

process has had an insignificant effect upon the antigenotoxic potential of the ileal samples, 

however the pattern of samples which demonstrate protective benefits differed within the 

treatment groups. Only 6 of the 11 subjects produced both post-raspberry ileal samples and 

post-berry 24hr IFF samples which reduced DNA damage ((S01, 02, 04, 06, 08 and 11). A 

further 2 post-raspberry ileal samples (S09 and 10) significantly decreased %Tail DNA 

while, 3 other post-berry 24hr IFF samples proved to be cytoprotective (S03, S05 and S12).  

The variation found within the two sample groups can partly be explained on the differences 

in phenolic composition, as Chapter 3 demonstrated the post-berry ileal fluid is comprised 

primarily of anthocyanins, ellagic acid and ellagitannins while the post-berry 24hr IFF 

samples consisted of a range of simple phenolics including BA, 4HBA, 3PPA an 3HPPA. 

  Previous research by Brown et al. showed more dramatic antigenotoxic effects when 

assessing the bioactivity of lingonberry digest and fermentate (36). HT29 cells pre-treated 

with 13µg/ml GAE in vitro digest or 16µg/ml GAE in vitro fermentate reduced % tail DNA 

after  H2O2 by ~50% when compared to untreated control samples, a much greater reduction 

than what the raspberry enriched samples from our study produced but when examining the 

antigenotoxic effects of lingonberry enriched ileal fluid they only produced ~14% reduction 

in DNA damage. It appears in this instance the in vitro digestion model may result in an over 

estimation of the antigenotoxic potential of berry metabolites. This is most likely due to the 

difference in (poly)phenol content, with ~3% total anthocyanin content in the ileal fluid but 

25% in the in vitro digested sample.  
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 The importance of phenolic content in relation to anti-carcinogenic activity was previously 

identified when comparing the bioactivity of in vitro digested and fermented blueberries to 

the original fruit extract (29).  Following digestion, a decrease of ~50% in total (poly)phenols 

and ~80% anthocyanins corresponded with a decrease in DDPH and superoxide activity, 

while the fermentate sample lacked any significant scavenging activity. It is also important to 

note that the blueberry digest and fermentate inhibited cell proliferation in HT29 cells. A 

pattern that may reflect why the two 0hr IFF samples from our study demonstrated 

cytotoxicity. It is probable that the that additional components from the basal media, faecal 

inoculum and bile salts results in cellular inhibition and cell death.   

  The antigenotoxicity of 4 individual phenolics; BA, 4HBA, 3HPPA and 3PPA, which were 

increased in over half the raspberry enriched IFF samples was assessed in both the normal 

and carcinogenic cell lines. As the results above indicate all 4 phenolics had the potential to 

reduce H2O2 induced DNA damage. The concentration chosen for investigation were based 

on the values found after compositional analysis (see chapter 3) and those from previous 

raspberry studies (20, 21). The pattern above suggests that the individual phenolics are more 

effective at reducing DNA damage, with overall % reduction almost double that of the 

raspberry enriched ileal and IFF.  The results from Taner et al. who demonstrated the 

antigenotoxic potential of 2 individual phenolics, vanillic acid and cinnamic acid reflected 

our findings (37). After pre-incubation with either compound H2O2 induced damage in 

lymphocytes was reduced by 40-50%. These extracts, even when used at a physiologically 

relevant concentration, may produce greater anti-carcinogenic effects than the berry enriched 

ileal and IFF because they are pure samples and do not contain any biological contaminants. 

One possibility to consider for future study however is the synergistic effect of multiple pure 

phenolic extracts, which appears to play a key role in the action of ileal and IFF samples. 
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 We have demonstrated that the berry-enriched ileal fluid, IFF samples and individual 

phenolics at biologically relevant concentrations, have the ability to protect against H2O2 

induced damage in a model that reflects the initiation of tumour development.  As cells where 

washed prior to Comet Assay, removing any remaining treatment, it is the phenolic 

compounds which have entered the cells are stimulating this protective effect. They are not 

acting as direct antioxidants but rather mediating a cellular response against the challenge. 

The potential mechanism by which this activity is not fully understood and is the subject of 

chapter 5. 

 

 In conclusion, this investigation has shown that biologically relevant dietary (poly)phenols 

and phenolic metabolites from berry enriched ileal fluid and IFF can modulate cellular 

processes in both colon cancer cells and normal colonocytes. The ex-vivo model which 

combined digestion and fermentation produced samples representative of those compounds 

found in the colon following raspberry consumption. We have demonstrated that although the 

berry phytochemicals undergo significant changes as digestion progresses they still retain 

their antigenotoxic capacity.  Compositional analysis has also identified 4 colon-available 

individual phenolics which show greater anti-cancer properties than the IFF.  Our 

investigation, supported by that of others, indicates that biologically relevant berry 

metabolites may be able to reduce the risk of CRC development.   
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Chapter 5: The role of Nrf2-ARE pathway in antigenotoxicity 
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Introduction: 

 Dietary phytochemicals are compounds associated with many health benefits. This diverse 

group of bioactive compounds are found in a wide variety of fruit and vegetables and warrant 

considerable investigation as a strategy for reducing cancer incidence (1). (Poly)phenols are 

one category of phytochemical which have demonstrated anti-carcinogenic properties and the 

ability to promote antigenotoxic activity (2, 3). Chapter 4 demonstrated the ability of simple 

phenolics, berry enriched ileal and ileal fluid fermentate (IFF) to reduce H2O2 induced DNA 

damage. Normal colonic cells (CCD 841 CoN) and colonic adenocarcinoma cells (HT29) 

pre-treated with these samples showed significant decrease in single strand DNA breaks 

when compared to media control samples.  This antigenotoxic activity is corroborated by 

several previous studies, including, Giampieri et al., Ceccarini et al., and Brown et al., who 

have shown the ability of a range of berry extracts (strawberry, goii berry and lingonberry) to 

protect cells in response to oxidative stress and prevent DNA damage (4, 5, 6).  

 Although many investigations have identified the antigenotoxic properties of berry 

phytochemicals, the mechanism of action behind these protective effects has yet to be fully 

elucidated. One pathway of particular interest is the activation of the Nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2) – Antioxidant Response Element (ARE) system.  Nrf2 is a 

transcription factor that regulates the expression of a range of antioxidant and phase II 

detoxifying enzymes. ARE is the promoter region found within the DNA sequence coding for 

these protective proteins. This system is activated in response to oxidative or electrophilic 

stress and results in the up-regulation of a range of genes including; NAD(P) H:quinone 

oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutathione S-transferase (GST) and 

glutamate-cysteine ligase (GCL),  each of which help maintain cellular homeostasis (7). Due 

to the ability to regulate the expression of a variety of antioxidant and anti-genotoxic genes, 

Nrf2 is considered a promising target for the prevention of carcinogenesis (8).   
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NQO1 and HO-1 are two of the genes activated by the Nrf2-ARE pathway, which we have 

chosen to investigate. NQO1 is a cytosolic flavoenzyme with multiple biochemical roles, 

which can protect against cancer promotion and initiation (9, 10).  The main role of this two-

electron reductase is the detoxification of highly reactive quinone substrates that can form 

ROS and induce carcinogenesis and neurodegeneration. Quinones are reduced to more stable 

hydroquinones which undergo conjugation and are more easily excreted from the body (11).  

This reductase activity aids in maintaining endogenous antioxidants by reducing them to their 

active form, such as, α-tocopherolquinone to α-tocopherolhydroquinone which protects 

against lipid membrane peroxidation (10, 12). The tumour suppressor p53 is critical in the 

control of carcinogenesis, but under normal conditions it is rapidly degraded. NQO1 

stabilises this protein, promoting the accumulation of p53 and maintaining anti-cancer action.  

A more direct role, is the ability of the NQO1 protein to scavenge superoxides in an NAPDH-

dependent manner and therefore reduce the amount of cellular ROS (10, 13).  HO-1 is one of 

two heme-oxygenase isoforms found in mammals which catalyse the degradation to heme to, 

biliverdin, carbon monoxide and iron. The combined effects of the removal of heme, a pro-

oxidant iron chelate, and the generation of biologically active end products contribute to HO-

1’s cytoprotective activity (14, 15).  The released carbon monoxide exerts potent anti-

inflammatory properties, while bilverdin and bilirubin act as peroxy radical scavengers (16, 

17).  Under oxidative stress, HO-1 translocates to the nucleus, interacts with and stabilises 

Nrf2. This process results in further transcriptional activation of phase II antioxidant and 

detoxifying genes (18).  There is considerable evidence that these two genes and their 

subsequent translated proteins are up-regulated in response to dietary phytochemicals (19).   

  Many (poly)phenols have been found to regulate the Nrf2/Keap1 pathway, either indirectly 

by activating other cellular modulators or by directly interacting with the protein complex.  

Phytochemicals can activate and up-regulate a range of different protein kinases and induce 
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post-translation regulation of Nrf2 (20). Quercetin (3,3’,4’,5,7-pentahydroflavone) is a 

flavonoid extract found in a range of fruit and vegetables, particularly in red wine and teas,  

which has previously demonstrated the ability to induce Nrf2 pathway. Treatment of L-02 

(normal human liver) cells with 50µM quercetin induced the phosphorylation of JNK (c-Jun 

N-terminal kinase), ERK1/2 (extracellular regulated kinase) and p38 MAPK (mitogen-

activated protein kinase) in a time dependent manner. Cells in which these kinases where 

inhibited did not respond in the same manner when treated with quercetin and showed a 

reduced expression of  HO-1, GCLC (catalytic subunit of glutamate-cysteine ligase) and 

GCLM (modify subunit of glutamate-cysteine ligase), thus proving their importance in the 

Nrf2/ARE pathway (21).  The true role of these kinases with regards to Nrf2 pathway is not 

fully understood, but appears to be dependent upon which specific protein kinase is activated. 

PKC (protein kinase C) activates Nrf2 by phosphorylating Ser40 located in the binding 

domain between Nrf2-ARE, disrupting this interaction and promoting translocation (22).  

Whereas, PI3K (phosphoinostide 3-kinase) which is activated in response to oxidative and 

electrophilic stimuli, causes the depolymerisation of actin microfilaments and facilitates the 

nuclear translocation of Nrf2 (23).  

Alternatively, the (poly)phenolics can interact directly with the Nrf2-Keap1 binding complex. 

Both quercetin and Epigallocatechin-3-gallate (EGCG) can bind to and modify the cysteine 

residues within Keap1, resulting in dissociation of Nrf2, preventing proteasomal degradation 

and promoting nuclear translocation (7, 23, 24). Curcumin a diarylheptanoid found in the 

rhizomes of turmeric, is an extensively studied activator of Nrf2. This curcuminoid 

compound contains 2 unsaturated carbon groups that act as Michael acceptors and interact 

with the cysteine residues of Keap1, causing the dissociation of Nrf2 (25, 26).  

  As the evidence above illustrates, several studies have demonstrated the role of individual 

(poly)phenols or (poly)phenolic extracts upon the Nrf2-ARE system. Some investigations 
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have examined the effects of gut metabolites and berry breakdown products such as 

protocatechuic acid (3,4-dihydroxybenzoic acid) or phloroglucinol aldehyde (2,4,6-

triddroxybenzaldhye) upon this pathway and established that these secondary metabolites 

retain the potential to activate Nrf2 and its down-stream genes. However, are these samples 

truly representative of the compounds which come in contact and interact with the colonic 

epithelium? Chapter 3 describes how we produced biologically relevant samples, comprised 

of compounds found after gastrointestinal digestion and colonic fermentation of raspberries. 

Compositional analysis revealed that they contained a wide range of berry metabolites 

including; benzoic acid (BA), 4-hydroxyphenyllatic acid (4HPL) and 3-(3-hydroxyphenyl 

)propionic acid (3HPPA) at various concentrations. Within this investigation we will 

determine whether the structural changes to the raspberry (poly)phenols that occurred during 

in vivo digestion and in vitro fermentation alters the ability to induce Nrf2 activity. 

 Real time PCR (qPCR) was used to examine the change in expression of Nrf2 and two of its 

downstream targets, NQO1 and HO-1. CCD 841 CoN cells were pre-treated with either 

raspberry enriched IFF or simple phenolics for 24hr. After this period of incubation RNA was 

collected, converted in cDNA and real-time PCR (qPCR) performed. The overall aim of this 

investigation was to establish if the Nrf2-ARE system was related to the antigenotoxic 

activity exhibited by our samples in Chapter 4.  
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Methods: 

 

Tissue Culture 

  Tissue Culture was performed as described in Chapter 4. 

Cell treatments 

HT29 & CCD 841 CoN cells were seeded into 25cm3 roux flasks at 1x106 or 8x105 cells 

respectively, incubated for 72hr prior to treatment with either IFF or simple phenolics. As a 

consequence of the limited volume of IFF, only CCD841 CoN cells were pre-treated with 

these samples prior to RNA extraction, while phenolics were used to treat both cell lines.  

Subsequently cells were treated for 24hr with either 20% ileal fluid fermentate (IFF) v/v in 

media or 10, 50 or 100µM individual phenolic in media.     

Ileal Fluid Fermentate (IFF): Twenty-two samples of ileal fluid fermentate (IFF); n=11 pre-

berry IFF 24hr and n=11 post raspberry IFF 24hr produced using in vitro batch culture (see 

Chapter 3) were only used to treat CCD 841 CoN cells due to limited volume. 

 Four individual phenolics; 4-Hydroxybenzoic acid (4HBA), Benzoic Acid (BA), 3-(3-

Hydroxyphenyl)propionic acid (3HPPA) and 3-phenylpropionic acid (3PPA), with  

concentrations of 10, 50 or 100µM were chosen based upon compositional analysis of 

raspberry ileal fluid fermentate (see Chapter 3). Phenolic treatment was carried out on both 

cell lines. 

  In total, there were 3 independent experiments for each treatment, n=3 for each IFF sample 

and n=3 for each concentration of simple phenolic, carried out with a media control and 

known positive anti-genotoxic control (100nM CDDO).  
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RNA isolation and cDNA synthesis 

 After 24hr incubation with either IFF or individual phenolics, cells were collected and 

centrifuged at 1200rpm for 3min. Supernatant was removed and cell pellets placed on ice for 

5min prior to homogenisation using QIAshredder (Qiagen, UK). RNA was extracted with the 

RNeasy Mini Plus Kit (Qiagen, UK) as per the manufacturer’s instructions.  The 

concentration and quality of RNA samples was determined via NanoDrop ND-100 UV/Vis 

spectrophometer and verified by gel electrophoresis. RNA samples with A260/A280 and 

A260/A230 between 1.8 and 2.0 were deemed acceptable for downstream use. Standard PCR of 

isolated RNA confirmed the absence of genomic contamination.  Using 1µg RNA and 

anchored-oligo(dT)18 in conjunction Transcriptor First Strand cDNA synthesis Kit (Roche) 

20µl of cDNA was produced as per the manufacturer’s instructions for reverse transcription. 

PCR using 1µl of cDNA as a template and the housekeeping gene, hypoxanthine 

phosphoribosyltransferase, HPRT (primer sequence shown below in Table 1) as a control, 

confirmed the absence of unspecific products. cDNA was stored a -20˚C until required.  

 

Real-time PCR (qPCR) 

 Primers were designed for those genes of interest involved in the antioxidant response 

pathway (Nrf2, NQO1, HO-1) and 2 reference genes (HPRT, β-Actin) by utilising the online 

software OligoPerfect (http://tools.lifetechnologies.com/content.cfm?pageid=9716) in 

correlation NCBi Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 

1). Real-time qPCR was performed using the Lightcycler 480II (Roche) in accordance with 

the manufacturer’s instructions. Each 10µl PCR reaction contained 0.5µM forward primer, 

0.5µM reverse primer, 5µl LightCycler 480 SYBR Green I Master (Roche), 2µl nuclease-free 

http://tools.lifetechnologies.com/content.cfm?pageid=9716
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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water, and 1µl cDNA template. Cycling conditions were as follows: 95˚C for 10min, 50 

cycles of 95˚C for 10sec, 57˚C for 10sec, and 72˚C for 10sec. Product specificity for each 

gene was confirmed by melt curve analysis, only artefact free reactions were considered 

valid. Negative control reactions (no template control and negative reverse transcriptase) 

were run on the same plate for all experiments. cDNA standards (in triplicate) were produced 

by five-fold dilution of pooled cDNA, and used to create cDNA calibration curve slopes. 

LightCycler software (version 1.5) generated primer efficiencies for each gene (primers 

shown in Table 1), calculated by using the equation E = 10[-1/slope]. cDNA templates used 

for target runs were diluted to within the standard curve linear range, in this case 1:10. Only 

primers with an efficiency of 90–100% were used for target analysis (Table 1) 

Expression was calculated using the following equation: 

𝐶𝑜𝑛𝑐. 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒

𝐶𝑜𝑛𝑐. 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑠
 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙): 

𝐶𝑜𝑛𝑐. 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒

𝐶𝑜𝑛𝑐. 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑠
 (𝑠𝑎𝑚𝑝𝑙𝑒) 

 

 Each cDNA target sample was normalized to two reference genes (HPRT and β-actin) and 

calculated as a ratio of the untreated control samples. All target cDNA samples were run as 

technical triplicates, n=3.  

 

Statistical Analysis  

 Data was analysed as the mean of 3 independent experiments. D’Agostino & Pearson 

omnibus was used to test for normality. Analysis of variance was applied to test for 

significant differences between means and assessed with Dunnett’s multiple comparison post-

hoc test. Significance was accepted at p<0.05. Analysis was performed using Prism 5 

(version 5.01 for Windows). 
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Table 1: Oligonucleotide primers used for PCR amplification and qPCR to assess the change in expression after treatment 

Gene Full Name Forward 

Primer Sequence (5’→3’) 

Reverse 

Primer Sequence (3’→5’) 

Product 

Size (bp) 

       

Nrf2 Nuclear factor (erythroid-

derived 2)-like 2 Nrf2-F AAACCAGTGGATCTGCCAAC 

 

Nrf2-R GCAATGAAGACTGGGCTCTC 

190 

  
  

   

  
  

   

HO-1 Heme oxygenase 1 HO-1-F ATGACACCAAGGACCAGAGC HO-1-R GTGTAAGGACCCATCGGAGA 153 

  
  

   

  
  

   

NQO1 NAD(P)H dehydrogenase, 

quinone 1 NQO1–F AGGACCCTTCCGGAGTAAGA 

NQO1-R AGGCTGCTTGGAGCAAAATA 279 

  
  

   

  
  

   

HPRT hypoxanthine 

phosphoribosyltransferase HPRT-F AGCTTGCGACCTTGACCAT 

HPRT-R GACCAGTCAACAGGGGACAT 166 

  
  

   

  
  

   

β-Actin Actin, beta β-Actin-F GGACTTCGAGCAAGAGATGG β-Actin-R AGCACTGTGTTGGCGTACAG 234 
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Results: 

Regulation of gene expression by raspberry enriched ileal fluid fermentate (IFF) 

 The investigation in Chapter 4 demonstrated the antigenotoxic potential of raspberry- 

enriched ileal fluid fermentate (IFF). When used to pre-treat CCD 841 CoN cells 9/11 post-

berry IFF 24hr samples significantly decreased H2O2 induced DNA damage, when compared 

to their pre-berry IFF 24hr counterpart. To establish the mechanism by which this protective 

effect occurs qPCR was used to determine whether IFF samples activated the Nrf2/ARE 

system. We measured the change of expression in Nrf2 and two target genes, NQO1 and HO-

1. As a consequence of the limited volume of IFF samples, only CCD841 CoN cells were 

pre-treated prior to RNA extraction. The majority of the post-berry ileal fluid fermentate 

(IFF) samples showed the ability to induce expression of one or more of the target genes 

within CCD 841 CoN cells (Figure 1). 

Nrf2: (Figure 1A)  

 Nrf2 expression was significantly upregulated by 6 of the 11 post-berry IFF 24hr samples 

(S02, 3, 5, 6, 11 and 12), with (S03) post-berry IFF (24hr) producing the smallest change 

(1.42-fold, p<0.05) and (S06) post-berry creating the greatest increase (2.21-fold, p<0.05), 

when compared to media control. However 7 out the 11 pre-berry IFF 24hr samples (S01, 2, 

3, 4, 5, 6 and 8) had the ability to significantly decrease Nrf2. Treatment with S01 pre-berry 

IFF resulted in the largest reduction in Nrf2 (1.60-fold, p<0.05) while S08 pre-berry caused a 

much smaller fold change (1.04-fold, p<0.05). In contrast to the other samples (S10) 

significantly down-regulated Nrf2 expression with both pre-berry (1.78-fold, p<0.05) and 

post-berry (1.34-fold, p<0.05).  
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NQO1: (Figure 1B)  

 In a similar pattern to the outcome of Nrf2 qPCR analysis post-berry IFF samples up-

regulated NQO1 expression while pre-berry IFF samples resulted in down-regulation. A total 

of 8/11 post-berry IFF samples (S01, 2, 3, 4, 5, 6, 11, 12) and 10/11 pre-berry IFF samples 

(S01, 2, 3, 4, 5, 6, 8, 9 11 and 12) resulted in significant differential expression of NQO1. 

CCD 841 cells treated with 4/11 post-berry IFF 24hr samples demonstrated greater than 2-

fold increase in NQO1, with S04 post-berry inducing the greatest induction (3.13-fold, 

p<0.05).  While S05 pre-berry IFF created the largest reduction in NQO1 expression (2.27-

fold, p<0.05) the remaining 9 samples resulted in at least 1-fold down-regulation. As seen 

with Nrf2, both (S10) post-berry IFF (1.27-fold, p<0.05) and (S10) pre-berry IFF (1.55-fold, 

p<0.05) significantly decrease the target gene.   

HO-1: (Figure 1C)  

  Post-berry IFF 24hr treatment produced the most dramatic changes with HO-1 expression. 

Although only 7/11 (S02, 3, 4, 5, 6, 11 and 12) subjects significantly increased the target 

expression, greater fold changes where observed within these samples. (S05) post-berry 

resulted the largest up-regulation (6.87-fold, p<0.05) when compared to media control. This 

is more than double the expression change for NQO1 or Nrf2. Six out of eleven pre-berry 

samples (S01, 2, 8, 9, 11 and 12) induced a significant down-regulation of HO-1 after 

treatment, (S02) with the largest reduction (1.34-fold, p<0.05).  Continuing the trend both 

(S10) samples reduced HO-1 expression, post-berry S10 (1.41-fold, p<0.05) and pre-berry 

(1.64-fold, p<0.05). 

 Six of the 11 post-berry ileal fermentate samples (S02, 3, 5, 6, 11 and 12) significantly up-

regulated all 3 target genes after 24hr treatment, while two of the pre-berry samples (S8 and 

9) consistently down-regulated all 3 target genes.  The general pattern presented by these 
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results shows that berry-enriched ileal fluid fermentate samples increased target gene 

expression, while ileal fluid without the raspberry metabolites down-regulated the target 

genes.  

 

Regulation of gene expression by simple phenolics -     

  The antigenotoxic activity of the individual phenolics, 4-hydroxbenzoic acid (4HBA), 

Benzoic Acid (BA),3-(3-hydroxyphenyl) propionic acid (3HPPA) and 3-phenylpropionic 

acid (3PPA) has been established in Chapter 4. All 4 simple phenolics demonstrated the 

ability to reduce DNA damage in both HT29 and CCD 841 CoN cells over a range of 

biologically relevant concentrations (10, 50 and 100µM). Real-time PCR (qPCR) was used to 

establish the role of Nrf2-ARE in this chemoprotection.  Both cell lines were pre-treated with 

the individual phenolics for 24hr prior to collection of RNA and subsequent qPCR. Each of 

the tested phenolic acids induced the expression of target genes in both cell lines, however 

the patterns of up-regulation differed from phenolic compound to phenolic compound.  

Nrf2: (Figure 2 and 5) 

 The individual phenolic compounds induced a differential pattern in the expression of Nrf2, 

a key gene in the ARE pathway. A significant dose response effect was evident for HT29 

cells treated with Benzoic acid, as concentration increased from 10 - 100µM (Figure 2B), 

with the greatest change in expression (2.27-fold, p<0.05) was observed at 100µM. In 

contrast, 4-hydroxybenzoic acid displayed (figure 2A) an inverse dose response that mirrors 

the pattern of benzoic acid as maximum induction of gene expression (2.48-fold, p<0.001) 

observed at the lowest concentration (10µM) tested, while cells treated with 100 µM were not 

significantly different from the untreated control. 3HPPA induced significant changes in gene 

expression at 10 µM (1.73-fold, p<0.05) and 50 µM (2.15-fold, p<0.01) respectively (Figure 
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2C). For 3PPA only 50µM significantly increased Nrf2 expression in HT29 cells (1.71-fold, 

p<0.001), whereas 10µM (1.30-fold, p<0.001) and 100µM (1.46-fold, p<0.01) resulted in 

significant decrease in Nrf2 gene expression (Figure 2D). 

 CCD 841 CoN cells treated with the simple phenolics responded in dose dependent manner, 

with an increase in concentration directly correlating to the increase in Nrf2 expression. 4-

hydroxybenzoic acid induced a significant up-regulation of Nrf2 from 10-100µM with the 

greatest increase shown at 100µM (2.57-fold, p<0.01) (Figure 5A). Treatment with BA 

significantly increased gene expression at 50µM (1.89-fold, p<0.05) and 100µM (2.29-fold, 

p<0.01) when compared to the untreated control (Figure 5D). 3PPA followed the same 

pattern up-regulating Nrf2 at 50µM (1.93-fold, p<0.05) and 100µM (2.05-fold, p<0.001) 

(Figure 5D). However, for 3HPPA only 100µM produced a significant increase in Nrf2 

expression (2.26-fold, p<0.01) (Figure 5C).  

NQO-1: (Figure 3 and 6) 

 The differential expression of NQO1, a downstream target of the Nrf2-ARE pathway, 

produced within HT29 cells after treatment with benzoic acid and 3PPPA mirrored the 

pattern seen with Nrf2 expression. Benzoic acid significantly induced NQO1 expression in 

HT29 cells at 50µM (1.64-fold, p<0.05) and 100µM (2.52-fold increase p<0.001) (Figure 

3B). Treatment with 50µM 3PPA resulted in an increase of NQO1 expression (1.96-fold, 

p<0.001), while 10µM (1.35-fold, p<0.001) and 100µM (1.30-fold, p<0001) induced down-

regulation (Figure 3D). In contrast, 4HBA and 3HPPA deviated from the results seen with 

Nrf2 expression. 4-hydroxybenzoic acid increased gene expression at 10µM (1.89-fold, 

p<0.05) and 50µM (1.91-fold, p<0.05), while 100µM (1.43-fold, p<0.001) reduced NQO1 

expression (Figure 3A). Only 10µM 3HPPA (2.46-fold, p<0.01) treatment proved effective in 

significantly inducing gene expression (Figure 3C).   
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    The dose dependent trend demonstrated by Nrf2 expression in CCD 841 CoN cells is 

repeated here with NQO1. Three of the individual phenolics significantly induced NQO1 

expression at 50µM and 100µM with the higher concentration producing the greater up-

regulation, 4HBA (1.51-fold, p<0.01) (Figure 6A), BA (2.44-fold, p<0.001) (Figure 6B), 

3PPA (2.40-fold, p<0.001) (Figure 6D). As with HT29 cells, only 100µM concentration of 

3HPPA significantly induced NQO1 expression (3-fold, p<0.001) (Figure 6C). 

 

HO-1: (Figure 4 and 7) 

 Heme-oxygenase-1 the gene encoding for the cytoprotective enzyme which catalyses the 

degradation of heme, is another target of the Nrf2-ARE pathway which is regulated by 

(poly)phenols. All four of the individual phenolics significantly induced expression of this 

gene within HT29 cells when compared to untreated counterpart. BA and 4HBA proved 

effective at all three concentrations, with the greatest increases of HO-1 seen with 50µM 

4HBA (3.17-fold, p<0.001) (Figure 4A) and 100µM BA (3.07-fold, p<0.001) (Figure 4B). 

24hr pre-treatment of HT29 cells with 3HPPA significantly up-regulated HO-1 expression at 

10µM (1.65-fold, p<0.01) and 50µM (1.39-fold, p<0.05) (Figure 4C).  As demonstrated with 

the previous target genes, 50µM 3PPA significantly increased expression of HO-1 (2.04-fold, 

p<0.001) while, 10µM (1.31-fold, p<0.001) and 100µM (1.46-fold, p<0.001) resulted in a 

down-regulation of the gene (Figure 4D).  

Benzoic acid, 4-hydroxybenzoic acid, 3-(3-hydroxyphenyl) propionic acid and 3-

phenylpropionic acid significantly induced dose-dependent differential expression of HO-1 in 

CCD 841 CoN cells. 4HBA and BA produced significant up-regulation of HO-1 expression 

at 10, 50 and 100µM concentrations with the highest concentration creating the greatest up-

regulation, 100µM 4HBA (2.07-fold, p<0.001) (Figure 7A) and 100µM BA (2.13-fold, 
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p<0.001) (Figure 7B).  3HPPA significantly increased gene expression at 50µM (1.62-fold, 

p<0.05) and 100µM (2.28-fold, p<0.001) (Figure 7C).  CCD 841 CoN cells treated with 

3PPA followed a similar trend with up-regulation of HO-1 after incubation with 50µM (1.87-

fold, p<0.001) and 100µM (2.17-fold, p<0.001) (Figure 7D). 

 Treatment of CCD 841 CoN with individual phenolics was as effective as the positive 

control, 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid or CDDO, a known activator of the 

Nrf2-ARE pathway. Treatment with 100nM of CDDO induced NQO1 expression by 1.71-

fold, a change similar to most of the simple phenolics. However, 100µM of 3HPPA produced 

a greater 3.0-fold increase in NQO1.  HO-1 induction after CDDO treatment induced a 2.08-

fold increase which was equal to that shown by the individual phenolics. In contrast the 

positive control was much more effective than simple phenolic treatment in HT29 cells. 

100nM CDDO induced NQO1 by 2.9-fold and HO-1 by 4.44-fold, while the greatest increase 

in NQO1 expression was produced by 10µM 3HPPA (2.46-fold) and 100µM BA created the 

largest HO-1 increase (3.07-fold).     
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Figure 1: Effect of ileal fluid fermentates on ARE pathway in CCD841 cells after 24hr 

treatment. A) Nrf2, B) NQO1, C) HO-1. Data presented is mean of 3 independent experiments 

+SD. One-way ANOVA and Dunnett’s Multiple Comparisons test. * p<0.05, significance is 

compared to media control.
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Figure 2: Change in Nrf2 expression in HT29 cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, C), 3HPPA, 

D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, *p<0.05, ** 

p<0.01, ***p<0.001, significance is compared to media control.  
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Figure 3: Change in NQO1 expression in HT29 cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, C), 

3HPPA, D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, 

*p<0.05, ** p<0.01, ***p<0.001, significance is compared to media control.  
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Figure 4: Change in HO-1 expression in HT29 cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, C), 

3HPPA, D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, 

*p<0.05, ** p<0.01, ***p<0.001, significance is compared to media control.  
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Figure 5: Change in Nrf2 expression in CCD 841 CON cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, 

C), 3HPPA, D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, 

*p<0.05, ** p<0.01, ***p<0.001, significance is compared to media control.  

  

   



139 
 

 

 

Figure 6: Change in NQO1 expression in CCD 841 cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, C), 

3HPPA, D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, 

*p<0.05, ** p<0.01, ***p<0.001, significance is compared to media control.  
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Figure 7: Change in HO-1 expression in CCD 841 CON cells treated with either 10µM, 50µM or 100µM individual phenolic; A) 4HBA, B) BA, 

C), 3HPPA, D) 3PPA. Data presented is mean of 3 independent experiments +SD. One-way ANOVA and Dunnett’s Multiple Comparisons test, 

*p<0.05, ** p<0.01, ***p<0.001, significance is compared to media control.  
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Discussion:                                                                                                                                

  

  Nuclear factor (erythroid-derived-2)-like 2 (Nrf2) is a ubiquitously expressed transcription 

factor which activates a range of antioxidant and detoxifying enzymes in response to cellular 

stress (27). As a consequence, Nrf2 is considered a key regulator of cytoprotection, cellular 

defence and cell survival. This transcriptional activator may be regarded as a tumour 

suppressor, as it has been shown to inhibit the progression of carcinogenesis and plays a role 

in cancer chemoprevention (28). Although the activation of the Nrf2-ARE system is a 

complex multistep pathway which is not yet fully understood, there has been much research 

based on identifying possible inducers. However, most of these studies have only investigated 

the potential of (poly)phenolic extracts or individual (poly)phenols to induce the Nrf2-ARE 

pathway, few have considered the implications of digestion upon these compounds.  This 

chapter has examined the ability of raspberry enriched ileal fluid fermentates (IFF) to affect 

the Nrf2-ARE dynamic and activate the downstream target genes. These IFF samples 

represent the breakdown products of digestion and colonic fermentation each with a unique 

composition, comprised of a varied mixture of simple phenolics. The results from chapter 4 

demonstrate the antigenotoxic ability of these IFF samples to reduce DNA damage, while the 

outcome from this study suggests that this may in part be due to the induction of Nrf2-ARE 

pathway. 

 A total of 6 out 11 (S02, 3, 5, 6, 11 and 12) post-berry IFF 24hr samples showed the ability 

to up-regulate all three target genes, increasing the expression of Nrf2, NQO1 and HO-1. The 

relationship between comet assay results, activation of Nrf2-ARE genes and the phenolic 

content of each sample is complex. When compared to the corresponding pre-berry IFF, 

(S06) post-berry IFF 24hr significantly induced all 3 target genes. This correlated with a 

significant decrease % tail DNA (25% reduction) (see Chapter 4), an increase in total 
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(poly)phenol content (1282 ± 306µM to 1893 ± 228µM) and an increase in the concentration 

of all 4 individual phenolics (BA, 4HBA, 3PPA and 3HPPA) (see Chapter 3). (S06) post-

berry IFF 24hr was the only sample to activate Nrf2-ARE system, while reducing % tail 

DNA in-conjunction with an increase in total and individual phenolics. The other 5 samples 

induced all three target genes and reduced DNA damage but had various trends in phenolic 

concentration. Sample S12 post-berry IFF 24hr, when compared to (S12) pre-berry IFF 24hr, 

followed a similar pattern by significantly inducing all 3 target genes, in-conjunction with 

decreased % tail DNA (48% reduction) (Chapter 4) and increased total phenolic 

concentration (202 ± 19µM to 716 ± 42µM).  In this instance only 1 of the individual 

phenolics (BA) was increased after berry enrichment (Chapter 3). CCD 841 CoN cells treated 

with (S02, 3, 5 and 11) post-berry IFF 24hr samples, demonstrated significantly increased 

expression of all 3 target genes and decrease in % tail DNA (Chapter 4) when compared to 

the corresponding pre-berry IFF.  However, compositional analysis of these samples did not 

show an increase total phenolic concentration but did indicate increased amounts of 

individual phenolics. (S02 and S05) post-berry IFF 24hr showed a greater concentration of 

BA, 3PPA and 3HPPA; while (S03) exhibited an increase in the concentration of BA and S11 

showed more 4HBA in the post-berry sample (Chapter 3). This illustrates the ability of post-

berry IFF samples to induce expression of the target genes. These results combined with 

compositional analysis, imply there is a correlation between the total phenolic content, 

induction of Nrf2-ARE pathway and subsequent antigenotoxic activity. 

  In contrast, sample (S08) post- berry IFF 24hr significantly decreases DNA damage but 

does not significantly induce any of the target genes. This is potentially due to phenolic 

composition of the post-berry sample, as (S0)8 pre-berry IFF 24hr has greater total phenolic 

concentration (1032.9 ± 179.9µM) than its post-berry counterpart (161.1 ± 47.6µM) and has 

larger amounts of 2 out of the 4 individual phenolics (BA and 3PPA). Samples collected from 
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subject 10, both (S10) pre-berry and (S10) post-berry IFF 24hr, significantly reduced 

expression of Nrf2, NQO1 and HO-1 when compared to untreated control. These fermentates 

also failed to provide any antigenotoxic protection from H2O2 challenge. As with (S08),( S10) 

post-berry (532.4 ± 19.2µM) has a lower total phenolic concentration than its pre-berry 

counterpart (1502.3 ± 42.4µM), but does show a greater concentration in 3 out of the 4 

phenolics (4HBA, BA and 3HPPA).  These variations from the previous pattern shown with 

samples (S08 and S10) demonstrate that the relationship between phenolic content, Nrf2 

activation and antigenotoxic activity requires further investigation. As the compositional 

analysis was concentrated upon phenolic compounds and only detected 18 simple phenolics 

of interest there is a chance we have not identified all the other components in the samples, 

some of which may also act upon the Nrf2-ARE pathway.      

  The synergistic actions of berry (poly)phenols potentially play a key role in the activation 

Nrf2. It is hypothesised that the complex mixture of phytochemicals found within the whole 

fruit is of greater benefit than an individual isolated compound (29).  These purified 

compounds may lose their bioactivity or behave differentially than when they are present in a 

food complex or mixture. Saw et al. (2014) have attempted to demonstrate the significant of 

synergistic activity with their treatment of HepC2-C8 cells (hepatocellular carcinoma) with 3 

berry constituents, quercetin, kaempferol and pterostilbene (30).  Cells incubated with 25µM 

kaempferol for 24hr showed a significant induction of Nrf2 mRNA, while 25µM quercetin 

and 12.5µM kaempferol increased Nrf2 and HO-1 respectively but the induction was not 

significant.  In contrast cells treated with multiple compounds increased mRNA expression of 

several genes at much lower concentrations; 3.12µM kaempferol/quercetin mixture 

significantly induced Nrf2 and GSTM2 (gluthione S-transferase Mu 2), while 6.26µM 

pterostilbene/kaempferol mixture increased HO-1 expression (30). These results suggest that 

the Nrf2/ARE system has some role in mediating the activity of berry constituents and their 
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synergism. The potential synergism of (poly)phenolics, combined with the structural changes 

which occur during digestion emphasise the importance of examining biologically relevant 

samples. As shown in Chapter 3 each of the IFF samples have a unique (poly)phenolic 

composition, containing a variety of simple phenolics at a range of concentrations. It is the 

diversity of phenolics which could explain the varying efficacies of the IFF samples  

  As the results from this study illustrate there is much potential for further investigation into 

the role of phytochemicals in the regulation of the Nrf2-ARE system. Several groups have 

demonstrated how this translates to in vivo models. The human intervention study performed 

by Kropat et al. (2013) used similar methodology to this chapter, to examine the effects of 

bilberry extracts upon the Nrf2-ARE pathway within peripheral blood mononuclear cells 

(PBMC) (31). The relative transcriptional levels of Nrf2, NQO1 and HO-1 of PBMC where 

compared in two cohorts, a control group and an ileostomy group, over 4 time points post-

bilberry consumption. In the control group NQO1 was significantly increased 1hr after 

consumption. This induction continued to 142 ± 23% relative transcription level at 8hr post-

consumption, while both Nrf2 and HO-1 expression were supressed at all 4 time points post-

consumption. In contrast PBMC cells collected from the ileostomy group had significantly 

reduced Nrf2 expression at 2-8hr but produced no significant change in either NQO1 or HO-1 

expression. Only the control group, the participants with intact colons, demonstrated the 

ability to activate the Nrf2-ARE pathway, a pattern seen again with the results from 

subsequent comet assay. Two-hour post-consumption the PBMC from the control group was 

able to reduce DNA damage, while PBMC samples from ileostomy group showed no 

significant change in DNA damage. This suggests that colonic fermentation and subsequent 

break-down of (poly)phenols within the lower intestine is necessary to produce metabolites 

capable of inducing antigenotoxic activity. On face-value when compared to the results of our 

study the bilberry extract in this investigation did not prove to be as effective at inducing 
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antigenotoxicity or activating the Nrf2-ARE pathway. However, Kropat et al. (2013) 

examined the in vivo consequences of bilberry extracts, concentrating on the effect of 

phytochemicals upon the PBMC, and as such have demonstrated the potential of bioavailable 

phenolics, i.e. those that have entered the bloodstream (31). The outcome of this investigation 

corroborates the low bioavailability of many (poly)phenols and when combined with the 

results from this chapter indicates that direct interaction between colonic cells and phenolic 

compounds is a more effective means of chemoprevention for CRC.   

  Few human feeding studies have been used to examine the relationship between dietary 

(poly)phenol the induction of Nrf2 and its target genes. Animal models are more a more 

common means of investigating this pathway in vivo.  The anti-carcinogenic potential of 

cocoa (poly)phenols with regards CRC prevention was illustrated using a BALB/c mice 

model (32). After challenge with AOM/DSS (azoxymethane/ dextran sodium sulfate) mice 

which consumed a diet containing either 5% or 10% cocoa, showed reduced tumour size and 

tumour branching when compared to those fed a control diet. This correlated with a 

significant increase in Nrf2 protein levels within the colonic tissue and up-regulation of two 

Nrf2-ARE target genes, NQO1 and UDP-GT (UDP glucuronosyltransferase family 1 

member).  As this increase in Nrf2 target genes corresponds to the outcome shown in our in 

vitro investigation, this study emphasises the possible role of other dietary phytochemicals, 

e.g. raspberry (poly)phenols, have within in vivo models.   

  The impact of berry (poly)phenols upon the Nrf2-ARE system has been demonstrated in 

other models of chronic disease, including atheroscerlosis. Wild-type (WT) C57BL/6 mice 

fed on a high fat (21%) diet (HFD) supplemented with ellagic acid (0.5g/kg) have less 

atherosclerotic deposits than those fed on HFD alone. Western blot analysis illustrated that 

this protective effect was likely due to the up-regulation of Nrf2 and HO-1 protein levels 

within the aorta (33), which highlights the probable health benefits of berry extracts in 
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multiple disease states and the need to investigate this interaction on a protein level. While 

Sharma et al. (2016) demonstrated the potential benefits of apple (poly)phenols within liver 

disease. Mice were feed with apple pomace aqueous extract (APE) at 200mg/kg, 400mg/kg 

or a control diet prior to being treated with carbon tetra-chloride (CCl4) to induce liver injury.  

Liver sections of APE treated mice were observed to have significant dose-dependent up-

regulation of Nrf2 protein expression when compared to control mice (34).   

   Although the results from IFF samples have indicated that the complex mixture of simple 

phenolics plays a key role in the activation of the Nrf2-ARE pathway, it was important for us 

to attempt to identify any antigenotoxic potential within individual phenolics. Figures 2-7 

illustrate that simple phenolics could significantly induce mRNA expression of Nrf2 and its 

target genes, NQO-1 and HO-1, in normal colonic epithelial cells (CCD 841 CoN) and 

carcinogenic colonic cells (HT29). The effect upon CCD 841 CoN cells was concentration 

dependent, with the 100µM concentration of each phenolic producing the greatest increase in 

mRNA expression for all three genes. This directly correlates with the reduction in DNA 

damage seen in Chapter 4. An increased phenolic concentration produced increased 

expression of protective genes and decreased % tail DNA after H2O2 challenge. These results 

are corroborated with the results of Li et al. (2016) and Ferrari et al. (2016) which 

demonstrated correlation between increased (poly)phenol concentration and increased mRNA 

expression (35, 36).  The former study illustrated that incubating HAEC (human aortic 

endothelial cells) with quercetin for 18hr increased expression of HO-1 and NQO1 mRNA. 

As the concentration increased from 5-20µM the fold change doubled from 2 to 4-fold 

increase of HO-1 mRNA (35).  While the later showed the effect of cyanidin-3-O-glucoside 

(C3G) upon TNF-α (tumour necrosis factor) within Caco-2 cells (colorectal 

adenocarcinoma). The increasing concentration of C3G from 20-40µM induced further 
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expression of HO-1 mRNA (from 1-3-fold increase) and NQO1 mRNA (from 3-7-fold 

increase) (36).  

The pattern with HT29 cells is not so clear, with only Benzoic acid and 3-phenylpropionic 

acid demonstrating a direct correlation with the antigenotoxic activity observed during the 

Comet Assay (see Chapter 4). BA acted in the same concentration dependent manner as was 

seen with CCD 841 CoN cells. However, 3PPA resulted in an increase of mRNA expression 

for Nrf2, NQO1 and HO-1 at 50µM concentration, the only concentration which significantly 

reduced DNA damage after oxidative challenge (see Chapter 4). There was no definitive 

pattern with 4HBA and 3HPPA and no direct correlation with antigenotoxic activity.  

 Several studies have concentrated on the action of purified (poly)phenolics and 

(poly)phenolic extracts upon the Nrf2 pathway within colorectal cancer (CRC).  Previous 

studies examined the effect of rosemary phenolic extracts upon colonic cells (37, 38).  When 

used at 10µM concentration to treat HT29 and SW480 (colorectal adenocarcinoma) cells for 

24hr, the (poly)phenol rich rosemary extract produced in the first investigation resulted in the 

upregulation of HO-1 and OSGIN1 (oxidative stress induced growth inhibitor), two 

downstream targets of Nrf2. Treatment proved more effective on SW480 cells with an 

increase in HO-1 (24.6-fold, p<0.0001) and OSGIN1 (3.6-fold, p<0.0001) (37). A more 

recent study investigated the effects of rosemary extract and carnosic acid (the predominant 

(poly)phenol in rosemary) upon HCT 116 (colorectal carcinoma) and SW480 cells 

connecting the up-regulation of anti-genotoxic genes with Nrf2-ARE pathway. The changes 

in protein expression were measured with the use of western blotting.  Rosemary extract at 

20µg/ml and carnosic acid at 30µM increased the expression of Nrf2 in both cell lines and 

promoted nuclear translocation of the protein.  Rosemary extract also significantly up-

regulated the expression Sestrin-2, a stress-inducible metabolic regulator regulated by Nrf2-

ARE system, in HCT 116 and SW480 cells (37). The results from Valdés et al. mirrored the 
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findings of our investigation and identified the role of phase II detoxifying and antioxidant 

genes in the antigenotoxic effects of phytochemicals. This emphasises the chemopreventive 

potential of dietary (poly)phenols within a range of CRC cell lines. The outcome of the 

second study by Yan et al. suggested that the differential expression of the target genes seen 

within our results corresponds to an up-regulation of Nrf2 on a protein level and as such high-

lights the need for further investigation into the role of berry (poly)phenolics and their 

metabolites (38). 

 In summary, this chapter demonstrated the potential of raspberry (poly)phenols, both as 

individual phenolics and as berry metabolites within IFF to activate the Nrf2-ARE pathway. 

The induction of Nrf2 and its two target genes, NQO1 and HO-1 suggests that up-regulation 

of these antioxidant enzymes could be the underlying mechanism for the reduction in DNA 

damage, illustrated in Chapter 4. The Nrf2-ARE system and its downstream genes may 

contribute to the overall anticarcinogenic potential of raspberries. It would however be 

necessary to use proteomics to establish if this increase in mRNA expression translates to an 

induced protein expression and confirm the relationship between raspberry treatment and 

antigenotoxicity. 
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Introduction: 

     The health benefits associated with raspberries have primarily been attributed to the 

presence of anthocyanins and ellagitannins, within the fruit, and the bioactivity associated 

with these compounds (1-3).  However, (poly)phenols are not the only components found 

within berries and other chemical constituents such as the many lipid groups (unsaturated 

fatty acids, sterols and terpenoids) may contribute to these protective effects (4, 5). One such 

group of interest are triterpenoids (TTPNs), a diverse group of isopentyl pyrophosphate 

oligomer metabolites which are present in a wide range of plant-based foods (6).  TTPNs can 

be classified as either oleane (oleanolic acid, erythrodiol, β-amyrin), ursane (ursolic acid, 

uvaol) or lupane (lupeol, betulin, betulinic acid) triterpenes (7). Such compounds are 

primarily found in the skin of fruit and are prominent components of the waxy cutin-based 

tissue which forms a protective layer against the surrounding environment (8, 9). As with 

(poly)phenols the composition of TTPNs will differ from fruit to fruit but they are found in 

abundance within olives, tomatoes, grapes and apples (10). Olives contain a variety of TPPNs 

including; oleanolic acid, uvaol, erythrodiol and maslinic acid which are found in the fruit, 

leaves and within virgin olive oil (11, 12).  The cutin of apple fruits is comprised of a range 

of TTPNs with over 30 constituent acids including ursolic acid ((3β)-3-hydroxyurs-12-en-28-

oic acid) and oleanoic acid (3β-hydroxyolean-12-en-28-oic acid) derivatives (13-15).  In 

contrast other fruits contain a predominant TPPN; for grapes this is oleanic acid derivatives, 

while lupeol (a lupane TTPN) is found within mangoes (16-18). Triterpenes have also been 

identified in a range of berries, specifically those from the Vaccinium sp., which include 

blueberries, cranberries, bilberries and lingonberries (19-22). TPPNs are present in the fruit 

of several species from the Rubus family such as, R. rosifolius and R. corneanus and are also 

present in the as the non-edible leaves and roots from R.imperialis and R. parvifolius (23-26).  
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  TPPNs have been linked with a range of anticancer activities, for example the tetracyclic 

and pentacyclic triterpenoids found within hawthorn berries demonstrate antiproliferative and 

antioxidant potential. A total of 15 TTPNs were isolated from the berries and included 

compounds such as ursolic acid, corosolic acid, uvaol, oleanolic acid and crataegolic acid, the 

majority of which produced potent antiproliferative effects when incubated with HepG2 

(hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) and MDA-MB-231(breast 

adenocarcinoma) cells. Three of these compounds, (3β,6β,18β-trihydroxy-olean-12-en-28-

oic acid, 2α,3β,19α-trihydroxy-olean-12-en-28-oic acid and 2α,3β,19α,23-tetrahydroxy-

olean-12-en-28-oic acid) showed further bioactivity and promoted potent peroxyl radical 

scavenging activity (PSC) (27). Similarly, the antioxidant potential associated with the 

“Stevens” and “Franklin” cultivars of cranberry (Vaccinium Macrocarpon L) correlated with 

high concentrations of TTPNS particulary oleanolic and urosolic acids (28).  

   These previous publications have demonstrated the potential health benefits of 

triterpenoids, however, for TTPNs to be of relevance within our model of investigation these 

compounds must be present within the ileal fluid that enters the large intestine.  Targeted LC-

MS analysis, described in Chapter 3 and previously published by McDougall et al., identified 

a range of (poly)phenolic compounds consisting primarily of anthocyanins and ellagitannins 

which were present in post-raspberry ileal fluid samples (29). Non-targeted analysis of the 

same samples detected 2 previously unknown components (m/z 355 and m/z 679) which were 

up-regulated in all 11 post-berry samples.  Further analysis was required to assess the 

chemical nature of these compounds, which concluded that both components are structurally 

related, with m/z 67900 most likely as dimer of m/z 355. Subsequent investigation putatively 

identified the unknown compound (m/z 355) as an ursolic acid-based triterpenoid most likely 

derived from the raspberry seed coat (30). Due to the ability to survive within the 

gastrointestinal tract it was important to ascertain whether this TPPN contributed to the 
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bioactivity and antigenotoxic activity ascribed to the raspberry enriched ileal fluid as 

previously discussed in Chapter 4 and 5.   
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Methods: 

Bulk Raspberry Seed Extraction and Purification 

Bulk raspberry seed extraction, performed at the James Hutton Institute, Glasgow, was used 

to produce sufficient quantities of the triterpenoid rich fraction. Batches (250g x 32) of 

raspberries where pureed and sieved to isolate the seeds (seed yield ~4%). 250g of seeds were 

extracted following incubation with 1L of 0.1% formic acid for 60min at 5°C, 90rpm (orbital 

rotation) and filtration through a glass sinter (porosity 3). This was followed by further 

purification; the entire methodology is described in full by McDougall et al. but for 

completeness it is briefly described here (30). Additional extractions were performed using a 

70ml Sephadex LH20 column (GE Healthcare, Buckinghamshire, UK) and C18 solid phase 

extraction (Strata C18-E, GIGA units, 10 g capacity; Phenomenex, Ltd., Macclesfield, U.K), 

with the total phenolic content assessed using the Folin-Ciocalteu and the content in the final 

triterpenoid rich-fraction (TRF) was estimated as tenuifolin equivalents by peak areas.  

   

Tissue Culture  

 Both HT29 (adenocarcinoma) and CCD 841 CoN (normal epithelial) were cultured and 

maintained as described in Chapter 4. The cell lines were treated with either a known inducer 

of the Nrf2/ARE pathway, 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) or a 

triterpenoid-rich fraction (TRF) at 100nM.      
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Cytotoxicity Assay 

 The potential cytotoxic effects of CDDO and TRF upon both HT29 and CCD841 CoN cells 

were assessed using the MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

colorimetric assay, the protocol for which was previously described in Chapter 4. 

Concentrations of 100, 200 and 300nM of TRF and CDDO were determined, with each 

treatment performed in octuplet and 3 independent experiments carried out. Cell viability for 

media control samples was set a 100% with both treatments compared back to this value. 

COMET assay 

Single-cell gel electrophoresis or comet assay, the method for which was previously 

describes in Chapter 4, was used to determine the antigenotoxic potential of CDDO and TRF 

upon both HT29 and CCD841 CoN cells. The effect of 100, 200 and 300nM concentrations 

of each treatment were examined with each experiment repeated 3 independent times.  

Real time PCR (qPCR) 

Real-time qPCR was performed with the Lightcycler 480 in accordance with the 

manufactures instructions, the full methodology can be found in Chapter 5.   

Statistical Analysis  

Data was analysed as the mean of 3 independent experiments. D’Agostino & Pearson 

omnibus was used to test for normality. Analysis of variance was applied to test for 

significant differences between means and assessed with Dunnett’s Multiple comparison 

post-hoc test. Significance was accepted at p<0.05. Analysis was performed using Prism 5 

(version 5.01 for Windows). 
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Results: 

 Non-targeted LC-MS analysis revealed that the concentration of two unknown compounds 

was increased in all 11 post-raspberry ileal fluid samples (Figure 1), compound 1 (m/z 355) 

and compound 2 (m/z 679).  Greater analysis determined that m/z 679 is a dimer of m/z 355, 

an ursolic acid-based triterpenoid derived from the seeds of the raspberry fruit. Bulk 

extraction of raspberry seeds isolated the triterpenoid rich fraction and produced an adequate 

amount to assess the bioactivity of this extract upon normal colonic epithelial cells (CCD 841 

CoN) and colonic adenocarcinoma cells (HT29).  

   Prior to assessing the antigenotoxic potential of the purified TRF the cytotoxicity of the 

compound was determined using the MTT assay (Figure 1).  Both cell lines were treated with 

three concentrations (100, 200 and 300nM) of the TRF for 24hr before cell viability was 

examined.  The same pattern was seen with HT29 and CCD 841 CoN, an increased 

concentration of TRF increased correlated with a decreased cell viability. This dropped from 

89% (100nM) to 72% (300nM) in HT29 and 90% (100nM) to 64% (300nM) in CCD 841 

CoN cells, however this loss in cell viability was not significant. As a result, it was decided to 

proceed with 100nM concentration of the TRF for subsequent analysis.  

  The comet assay was used to examine any potential antigenotoxic properties, following 24hr 

incubation with HT29 or CCD 841 CoN cells, both the TRF and synthetic control (CDDO) 

displayed protective effects against H2O2 induced damage (Figure 2). In HT29 cells DNA 

damage measured by % tail DNA was significantly reduced from ~53% to 30% following 

treatment with TRF, which corresponded to 28% tail DNA after CDDO treatment. A similar 

pattern was seen with CCD 841 CoN cells pre-treated prior to challenge with 25µM H2O2, 

with a significant reduction of ~50-55% for both CDDO and TRF treatment. 
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  To determine whether this reduction in DNA damage was due to activation of the Nrf2/ARE 

pathway, RNA was collected from CCD 841 CoN and HT29 cells after incubation with the 

TRF or synthetic CDDO. Following reverse transcription to produce cDNA, qPCR was 

performed to assess whether treatment altered the expression of Nrf2 (Nuclear factor 

(erythroid-derived 2)-like 2) and two of the downstream targets of the ARE pathway, 

NQO1(NAD(P)H:quinone oxidoreductase 1 ) and HO-1 (heme oxygenase 1) (31-33). A 

distinct pattern was evident after 24hr incubation with CDDO, with a significant increase in 

NQO1 (2.46-fold, p>0.01) and HO-1(5.73-fold, p>0.01) with HT29 cells (Figure 3A). With 

CCD841 CoN cells the changes in NQO1 (1.35-fold, p>0.01) and HO-1 (1.80-fold, p<0.001) 

expression were less dramatic but remained statistically significant.   In contrast, Nrf2 

expression within both cell lines was reduced significantly at 1.68-fold (p<0.001) for HT29 

and 6.13-fold (p<0.01) in CCD 841 cells. These results are most likely a consequence of the 

time-frame of treatment selected for this study.  The cells within this experiment were 

incubated with CDDO for 24hr to correspond with the exposure time used within the 

antigenotoxicity studies. As Figure 4 demonstrates cell lines treated over a shorter period 

demonstrate Nrf2 upregulation, with HT29 cells significantly up-regulated incubation of 2hr, 

4hr, 6hr (3.23-fold, 8.24-fold and 3.29-fold, p>0.001) and as significant increase in target 

gene expression for CCD 841 CoN cells after 4hr and 6hr (7.07-fold and 3.02-fold, p<0.001). 

The changes in expression following treatment with TRF do not follow the same pattern as 

shown with the synthetic triterpenoid (Figure 3B).  Incubation with 100nM of TRF induced 

an increase of Nrf2 expression in HT29 cells (1.84-fold, p>0.001) and a small but significant 

up-regulation of NQO1 activity in CCD 841 cells (1.19-fold, p<0.0001).  However, NQO1 

expression was significantly decreased in HT29 cells after TRF treatment (1.33-fold, 

p>0.001), while HO-1 was significantly decreased in CCD 841 cells (1.77-fold, p>0.001).  
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Figure 1: Cytotoxic effect of different concentrations of TRF on HT29 cells (A) and 

CCD841 cells (B). Data presented is mean of 3 independent experiments +SD. One-

way ANOVA and Dunnett’s Multiple Comparisons test, ***p<0.001, significance is 

compared to media control. 
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Figure 2: Anti-genotoxic effects of 100 nM CDDO and TRF after 24 h pre-incubation 

on DNA damage in (A) HT29 and (B) CCD 841 cells challenged with H2O2. Data is 

presented as mean of 3 independent experiments ± SD compared to the untreated cells 

as control.  One-way ANOVA and Post Hoc test Dunnett’s T * p < 0.05.    
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Figure 3: Effect of (A) CDDO and (B) TRF on ARE pathway in HT29 and CCD841 cells.  Graphs show the change in gene 

expression when compared to the control normalised untreated cells. Data presented is mean of 3 independent experiments +SD. 

One-way ANOVA and Dunnett’s Multiple Comparisons test. * p<0.05, ** p<0.01, ***p<0.01. 
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Figure 4: Time-course treatment of HT29 and CCD841 cells with 100nM CDDO. Graphs show 

absolute fold change values in Nrf2 gene expression, (i.e. change in gene expression when 

compared to normalised untreated cell as control). Data is presented as the mean of 3 individual 

experiments (n=3) ± SD. Student t-test.  * p<0.01, ** p<0.001. 
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Discussion: 

 The initial targeted LC-MSn
 analysis of ileal fluid samples collected post-raspberry 

consumption, as described in chapter 3 and by McDougall et al., provided an insight into the 

metabolic pathway for anthocyanins and ellagitannins (29). We identified the phenolic 

compounds which, in an individual with an intact instestine, reach the colon and have the 

potential to interact with gut microbiota and colonic epithelial cells (34). To produce a more 

comprehensive  overview of the chemical composition of the ileal fluid samples non-targeted 

LC-MSn was performed. In this instance 2 unknown components where detected within all 11 

of the post-raspberry ileal samples, m/z 355 and 679. Both compounds were present in whole 

raspberry puree and unseeded puree but where found at a greater concentration in within seed 

extracts. The combined results from analysis of the raspberry sample and ileal samples 

identifed m/z 679 as a dimer of m/z 355 and putatively identified this compound as an ursolic 

acid-based triterpenoid (30).  

  This novel TRF  extracted from raspberries proved to be effective in reducing H2O2-induced 

DNA damage in both a normal colonic epithelial cell line (CCD 841 CoN) and a colonic 

adenocarcinoma cell line (HT29).  We have attempted to elucidate the method by which this 

antigenotoxic occurs through use of qPCR analysis. Results from this investigation illustrated 

that, 24hr incubation with TRF resulted in a significant increase in Nrf2 expression within 

HT29 cells and significant up-regulation of NQO1 in CCD 841 cells.  The synthetic 

triterpenoid control, CDDO, is a known inducer of the Nrf2/ARE pathway (35). This was 

confirmed by the results above as demonstrated by the statistically significant up-regulation 

in NQO-1 and HO-1 expression in both HT29 and CCD 841 cells. The discrepancy between 

the bioactivity of the two treatments could be attributed to the variation in concentrations of 

the pure CDDO and the fractionated mixture of the triterpenoid-rich extract. However, 

differences in the chemical structure of these two compounds could also contribute to the 
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divergence of results. The activation of the Nrf2-ARE pathway is time-dependent as shown 

above with CDDO time-course treatment (Figure 4) and therefore the actions of TRF upon 

this system have may not have been captured at the 24hr time-point. Few studies have 

established the role that triterpenoids play in the reduction of oxidative damage and up-

regulation of the Nrf2/ARE pathway.    

 There is however considerable evidence to suggest that the naturally occurring triterpenoids 

and their synthetic counterparts can induce protective effects in a range of disease states (10, 

36, 37). One compound of significance ursolic acid (UA), or 3B-hydroxy-urs-12-en-28-oic-

acid, a pentacyclic triterpenoid which has demonstrated both anti-inflammatory and anti-

cancer effects (38). This is of interest as the TRF investigated within this chapter has been 

putatively identified as UA-based. A range of herbs (peppermint, thyme, rosemary, lavender) 

and berries (blackberries, blueberries) contain UA, often found in conjunction with a second 

triterpenoid, oleanolic acid (OA, 3B-hydroxyolean-12-en-28oic acid) (39, 40). The 

chemopreventive effects of UA have been demonstrated across a range of cancer types, 

including colorectal carcinomas. The mechanism behind this action is not yet fully 

understood but the triterpenoid can induce apoptosis, inhibit proliferation and inhibit 

metastasis in both in vitro and in vivo models of CRC (41-43). One action of significance is 

the inhibitory effect of UA upon the activation NF-κB and therefore the has the potential to 

suppress carcinogenesis (44). It is therefore possible that the TRF in this chapter uses a 

similar mechanism of action, which we had not previously considered.  

 In contrast OA has been shown to increase the nuclear translocation of Nrf2 and 

subsequently induce the transcription of many antioxidant and phase II detoxifying genes 

(45).  Activating both Nrf2-dependent and Nrf2-independent signalling cascades, OA inhibits 

proliferation of carcinogenic cells and induces apoptosis in a range of cancers including; 

hepatocellular, glioblastoma, breast, prostate and colorectal (46-50).  Due to the anticancer 
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potential and pharmacological activity of OA, a variety of synthetic derivatives have been 

created, through modifications to the original compound a wide range of potent oleanane 

based triterpenoids have been produced (51).   Two compounds of note are CDDO (2-cyano-

3,12-dioxooleana-1,9(11)-dien-28-oic acid) and its methyl ester, CDDO-Me. These facts 

could also explain the discrepancies in antigenotoxic activity seen in the result above, as 

CDDO and the TRF are derived from different parent compounds therefore mechanisms of 

action may differ. It is possible that the TRF, as it is ursolic acid-based may also affect the 

NF-κB pathway, which is therefore a potential area for further research.  

  Many triterpenoid-based compounds have previously been linked with a range of 

chemopreventive properties which have proved effective upon models of colorectal cancer.  

Ursolic acid significantly reduced single strand DNA breaks in Caco-2 cells following 2hr 

incubation at concentrations of 5-10µM (52).  Maslinic acid, the pentacyclic triterpene, 

isolated from the leaves and fruit of Olea europaea L., can inhibit HT29 cell proliferation and 

induce apoptosis through activation stress-related signalling as the p53 and JNK pathways 

(53).  Fractions from Rubus coreanus Miquel (the Korean black raspberry) which contains 

19α-hydroxyursane-type triterpenoids significantly reduced disease activity in the DSS-

induced colitis mouse model (54).  The triterpenoid rich fraction reduced macrophage 

infiltration and supressed pro-inflammatory cytokines within the murine model, while 

treatment of LPS-induced RAW macrophages downregulated activation of NF-κB and p38 

MAPK signalling to reducing inflammation pathways. When combined with these previous 

publications the analysis from this investigation heavily suggests that the bioactivity of 

triterpenoids, both natural and synthetic, is an area of great potential with regards to the 

treatment and prevention of CRC.  

 In contrast to other these other studies the TRF we investigated is derived from the fruit and 

seeds of the raspberry, which are part of the normal diet and readily consumed.  It is therefore 
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possible to conclude that the anticancer effects attributed to raspberry phytochemicals in 

previous investigations and described in Chapter 4 and 5 may in some part be due to the 

presence of triterpenoids (55, 56).   Further investigation by McDougall et al. has resulted in 

the isolation of ursolic-based triterpenoid fractions within a range of raspberry genotypes, 

however the concentration and composition varied from berry to berry (57). The survival of 

the TRF within the gastrointestinal tract and their ability to induce anti-genotoxic activity at 

submicromolar concentration (100nM) further confirms the potential that these compounds 

have exert protective effects within the large intestine. However further investigation is 

required to provide a more comprehensive understanding of these novel raspberry 

components and their potential health benefits.  
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Chapter 7: General Discussion 
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 The evidence from previous studies has concluded that berries demonstrate a range of 

anticancer properties which included inducing the signalling pathways involved with; free 

radical scavenging, DNA repair, cell proliferation, apoptosis and invasion (1-4). This activity 

has been attributed to the abundant (poly)phenolic compounds found within berries. Chapter 

2 reviewed the in vitro and in vivo studies which illustrated this anti-carcinogenic potential 

within models of colorectal cancer. The overall aim of this thesis was to build upon these 

findings, by producing a more physiologically relevant sample with which to identify the 

mechanism behind these anitgenotoxic effects.  

 Recently, a greater emphasis has been placed upon the significant effect digestion has upon 

the (poly)phenolic composition of the consumed berries (5, 6). The comparisons between the 

phenolic content of whole raspberries versus digested berries, as ileal fluid collected from 11 

participants following a human feeding study demonstrated changes in (poly)phenol content 

(see Chapter 3). The crude berries contained a higher concentration and variety of 

anthocyanins than the post-berry ileal fluid, which in contrast had a greater amount of ellagic 

acids. Through use of these in vivo samples, the analysis of the post-raspberry ileal fluid more 

accurately represented the berry metabolites produced during digestion than the previous in 

vitro models. To further improve upon this system an ex-vivo model was developed as the 

ileal fluid samples were placed in 24hr batch culture and subjected to in vitro fermentation. In 

the presence of colonic microbiota, supplied in the form of a faecal inoculum the complex 

(poly)phenolic structures were converted to more simple metabolites.  Anthocynanins were 

converted to simple and aromatic phenolics including catechol, 4- hydroxybenzoic acid, 3,4-

dihydroxybenzoic acid, tyrosol and 3-(3’-hydroxyphenyl)propionic acid, while ellagitannins 

were converted into ellagic acids. In contrast to previous studies the absence of ellagic acid 

metabolites, in the form of urolithins, indicates that the chosen faecal donor lacked the 

necessary species of Gordonibacter to further degrade these compounds (7, 8). The 
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compositional analysis from Chapter 2 confirmed the dramatic changes in phenolic content 

following digestion.  

  In order to assess if these changes in composition impact the anticancer activity of berry 

extracts it was necessary to assess the bioactivity of these samples.  Other investigations 

which relied upon in vitro models of digestion have demonstrated that these samples maintain 

anticancer activity following (poly)phenolic metabolism. To ensure these findings translated 

to the more physiologically relevant samples used in this thesis a series of in vitro assays 

were utilised. The results from Chapter 4 showed that both the post-berry ileal fluid samples 

and ileal fluid fermentate samples have the ability to reduce H2O2 induced damage. When 

compared to baseline ileal fluid samples, post-berry ileal fluid significantly reduced DNA 

damage by ~25% in both colonic cell lines. This activity was also seen following in vitro 

fermentation with post-berry IFF 24h sample decreasing DNA damage in CCD 841 CoN 

cells by 30%. Using the findings from this chapter combined with the compositional analysis 

in Chapter 4 the bioactivity of the individual phenolics; 3-(3-Hydroxyphenyl)propionic acid 

(3HPPA), 3-phenylpropionic acid (3PPA), 4-Hydroxbenzoic acid (4HBA) and Benzoic Acid 

(BA) was also assessed. All 4 of these compounds showed the ability to reduce DNA damage 

in both cell lines.  These results confirm that although berry phenolic composition changes 

dramatically following digestion and colonic fermentation these berry metabolites still 

possess the ability to induce anticancer activity and in turn reduce the risk of CRC.    

  The mechanism by which these chemoprotective actions occur was investigated in Chapter 

5. Using the findings of previous studies which have indicated that the Nrf2/ARE pathway 

can be induced via (poly)phenolic compounds, the effect of these biologically relevant 

samples upon this system was assessed via real-time qPCR analysis. A total of 6/11 post-

berry IFF 24hr samples demonstrated the ability to up-regulate Nrf2 and two of its 

downstream targets NQO-1 and HO-1. Such results suggest that the complex mixture 
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poly(phenols) found within the IFF samples plays a key role in the activation of Nrf2.  It was 

also important to attempt to identify any antigentoxic potential within individual phenolics. 

All 4 individual phenolics (3HPPA, 3PPA, 4HBA, BA) showed the ability to increase mRNA 

expression across both cell lines. Further analysis of the results from Chapters 4 and 5 

illustrate that there is a complex relationship between phenolic concentration, reduction in 

DNA damage and activation of the Nrf2 pathway. Only one IFF sample showed a significant 

decrease in % tail DNA and an increase all 3 genes of interest which also correlated with an 

increase in total (poly)phenol content. With the isolated phenolic compounds and CCD 841 

CoN cells there was a direct correlation between concentration, reduction in DNA damage 

and increased expression of the target genes, with 100µM (the highest concentration) proving 

the post effective. This did not translate to HT29 cells and as such implies that further 

investigation is required to gain a greater understanding about this mechanism of action.  

Overall the findings from the Chapters 3-5 confirmed that the berry metabolites produced 

following digestion retain the bioactivity previously demonstrated by whole berry extracts. 

These samples can reduce DNA damage within colonic epithelial cells and colonic 

adenocarcinoma, with activation of the Nrf2/ARE pathway playing a key role in this 

antigenotoxic activity. Such results indicate berry (poly)phenols have the potential to act as 

dietary agents for anticarcinogenic activity. 

  Chapter 6 combined the techniques used within the previous chapters to assess the 

bioactivity of a novel triterpenoid which was detected following compositional analysis of 

post-berry ileal fluids. This triterpenoid-rich fraction (TRF) found within the raspberry seeds 

was putatively identified as a urosolic acid-based triterpenoid.  TRF demonstrated the ability 

to reduce H2O2 induced DNA damage within both CCD 841 CoN and HT29 cells which 

correlated with up-regulation of NQO1 and HO-1 mRNA levels.   To the best of our 
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knowledge this was the first study to identify a raspberry seed-derived triterpenoid which 

demonstrated antigenotoxic potential through activation of the Nrf2/ARE pathway.  

 The findings of this thesis have confirmed that berry (poly)phenols retain their 

chemoprotective activity following digestion and colonic fermentation. All the tested samples 

be that post-berry ieal fluid, post-berry IFF, individual phenolics or TRF demonstrated the 

ability to reduce DNA damage, an action which corresponded with the up-regulation of 

mRNA levels of Nrf2 or its target genes NQO1 and HO-1. These observations have 

highlighted the importance of understanding the role gastrointestinal digestion has upon 

(poly)phenolic composition and has ultised a unique ex-vivo model to produce 

physiologically relevant samples. As a consequence, we were able to identify a potential 

mechanism by which these compounds induce chemoprotective action. 
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Summary of findings: 

 The phenolic content of raspberries changed significantly as a result of in vivo 

digestion and in vitro fermentation; complex (poly)phenols such as anthocyanins and 

ellagitannins were converted to simple phenolics and ellagic acids. 

 

 Samples retained antigenotoxic potential following digestion with both post-berry 

ileal and post-berry IFF samples significantly inhibiting H2O2 induced DNA, in in 

vitro models of normal colon (CCD 841 CoN) and colonic adenocarcinoma (HT29).      

 

 

 Post-berry IFF samples activated the Nrf2/ARE pathway; inducing increased 

expression of Nrf2, NQO1 and HO-1 mRNA. 

 

 4 individual phenolics (3HPPA, 3PPA, 4HBA, BA) increased in concentration 

following in vitro fermentation. These compounds decreased H2O2 induced DNA 

damage and up-regulated the target genes in both cell models. 

 

 Raspberry seeds contain a ursolic-acid based triterpenoid, which reduced DNA 

damage and up-regulated NQO1 and HO-1 within CCD 841 CoN and HT29 cells. 
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Suggested Further Work 

 Due to the available volume of ileal fluid fermentate (IFF) the amount of experiments 

performed was limited. However, it would have been beneficial to assess antigenotoxic 

potential of these samples and the role Nrf2 plays upon a model of colon cancer (HT29 cells). 

If time had not played a limiting factor with this thesis qPCR analysis would have been used 

to assess the effect of ileal fluid samples upon the three target genes. This would allow for 

greater comparisons between the post-digestion and post-fermentation samples. 

 In addition to gene expression analysis, measurement of cellular protein changes would have 

provided a greater insight in to the cellular signalling pathways which played a role in the 

antigenotoxic activity. Western blot analysis of Nrf2, NQO1 and HO-1 would analyse if the 

up-regulation of mRNA translated to an increase in protein expression. In conjunction with 

this it would be valuable to quantify the induction of ARE via a luciferase reporter assay.  

Generation of  Nrf2 knock-out cells through use of siRNA would confirm whether the 

Nrf2/ARE pathway was the only system activating induction of the phase II detoxify 

enzymes which reduced DNA damage within the cells. 

  

Alternatively, it would be advantageous to repeat these experiments with another type of 

berry for example blueberries and assess how the different starting (poly)phenolic 

composition impacts the downstream results.   
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