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Research on human mobility drives the development of economy and society. How to predict when and where one will go

accurately is one of the core research questions. Existing work is mainly concerned with performance of mobility prediction

models. Since accuracy of predict models doesn’t indicate whether or not one’s mobility is inherently easy to predict, there has

not been a deinite conclusion about that to what extent can our predictions of human mobility be accurate. To help solve this

problem, we describe the formalized deinition of predictability of human mobility, propose a model based on additive Markov

chain to measure the probability of exploration, and further develop an information theory based method for quantifying the

predictability considering exploration of human mobility. Then we extend our method by using mutual information in order

to measure the predictability considering external inluencing factors, which has not been studied before. Experiments on

simulation data and three real-world datasets show that our method yields a tighter upper bound on predictability of human

mobility than previous work, and that predictability increased slightly when considering external factors such as weather and

temperature.

CCS Concepts: ·Human-centered computing→ Ubiquitous and mobile computing theory, concepts and paradigms;

Additional Key Words and Phrases: Human mobility, Predictability, Information entropy, Human behavior prediction

1 INTRODUCTION

Move behavior, as the most basic human activity, appears in every aspect of social life. Understanding the internal

principles of human mobility will profoundly promote the development of economy and society [43]. For instance,

temporal and spatial patterns on human mobility are of great theoretical signiicance in disease transmission,

traic low control, abnormal behavior monitoring [40], personalized recommendation system [42] and so on.

The rapid development of mobile location services, wireless communication and mobile Internet technologies
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has made it easier to obtain large-scale, long-term data about individual mobility at much ine-grained temporal

and spatial levels, which sparked a wave of research into human mobility.

One main area that existing research on human mobility has focused on is about prediction algorithm, which

includes building speciic prediction models, adjusting optimization strategies and other methods to improve

performance of models. However, human behavior has its inherent uncertainty, which makes it impossible for an

algorithm to predict human behavior completely accurately, no matter how optimized it is. Therefore accuracy of

the predictions that have been made so far does not tell us how accurately human mobility can be predicted.

Predictability, as a metric of how predictable a time series of mobility is, indicates the upper bound of accuracy of

predictions on it. Under this deinition, predictability should be an internal feature of data and independent of

any speciic predictive model. For example, no matter how good a predictive algorithm is, the accuracy will be

theoretically no more than 85% while the predictability is 85%.

Previous research have reported two other kinds of the deinition of predictability. One can be seen as the

magnitude of error propagation, which is related to the performance of the speciic algorithm used. The growth

rate of the error is mainly represented using Lyapunov exponents [24], perturbations are added to the model, and

its error growth rate is calculated if the initial conditions are diferent from a small random perturbation. And it

is not easy to split the predictability problem into components related to the initial error and components related

to the model error. The other is based on complexity measurement. Their value has no exact physical meaning

and can only help us understand the diiculty of prediction from a qualitative point of view. Permutation entropy

is used to quantify a special human mobility behavior - the outbreak of infectious diseases[29]. The permutation

entropy is regarded as the probability of the unpredictable part of the sequence. However, because the calculation

of permutation entropy needs to set parameters: dimensions, and time delay, meanwhile, the results deviate

greatly from the theoretical values and tend to zero as the sequence length increases. Therefore, this method is not

suitable for quantifying the predictability of human mobility. Predictability that meets the quantitative deinition

we mentioned in the previous paragraph was irst measured by Song [32]. But their method is a general method

that can be used for any time series. They got gross to overestimate without considering any characteristics of

human mobility, like exploration. What’s more, a large number of factors afecting human mobility (like weather)

have not been taken into consideration in existing methods for predictability quantiication.

It is still a challenge to quantify the predictability of human mobility. To provide better insights, we summarize

the diiculties as follows:

(1) Measures of predictability in previous research were either not quantitative or not accurate. No one has yet

developed a speciic method to more accurately measure the predictability combined with the characteristics

of human mobility.

(2) External factors (e.g. temperature, weather, etc.) have a signiicant impact on human behavior but have

been mostly ignored in previous research. It is an open issue to investigate how to quantify the inluence

of external factors on the predictability of human behavior.

Motivated by the above observations, we propose a quantiication method for the predictability of human

mobility based on information theory and additive Markov chain and show how external factors afect the

predictability. The main contributions of this work include:

• We describe the formalized deinition of the predictability of human mobility, propose a model based on

an additive Markov chain to measure the probability of exploration, and further develop an information

theory-based method for quantifying the predictability considering the exploration of human mobility.

We provide the complete process of mathematical derivation as a theoretical foundation for the proposed

method.

ACM Trans. Knowl. Discov. Data.
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• We analyze the inluence of external factors on predictability and extend our method by using mutual

information in order to measure the predictability considering external inluencing factors, which has not

been studied before.

• We evaluate our method on simulation data and three real-world datasets. The results demonstrate that

our method yields a tighter upper bound on the predictability of human mobility than previous work, and

that predictability increased slightly when considering external factors such as weather and temperature.

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 describes the concept

of predictability and related problems. Section 4 shows the method we proposed and its derivation. We evaluate

the method and analyze experimental results in Section 5. Finally, we conclude our paper in Section 6.

2 RELATED WORK

2.1 Human Behavior Prediction

Research on the predictability of time series is inseparable from forecasting algorithms. The performance of

forecasting algorithms can be used to evaluate the quality of the proposed predictability quantiication method

to some extent. Modeling time-series data for the purposes of prediction dates back to Yule’s 1927 invention of

autoregression [45]. Since then, a lot of strategies have been developed for a wide variety of prediction tasks.

Human behavior prediction can be seen as a time series forecasting problem. And there are many existing

time series models, including univariate Autoregressive (AR), univariate Moving Average (MA), Autoregressive

Integrated Moving Average (ARIMA) model [20] [30] and Vector Autoregressive model [49]. These classic models

can be used to capture the dependency of time series. In addition to these models, Markov Chains is a popular

model, which assumed that the probability of the next behavior only depends on the current behavior. Lu

[21] applied the Markov Chain model to a mobile dataset from Côte d’Ivoire, and their prediction goal was to

estimate the inal location in a day. Yan [38]proposes a weighted Markov prediction model based on mobile user

classiication, the trajectory information of a user is extracted by analyzing real mobile communication data,

and all users are classiied with machine learning algorithms, the step threshold and the weighting coeicients

of the weighted Markov prediction model are optimized, the result improves the performance of the weighted

Markov prediction model. Another popular prediction framework is based on the Naive Bayes model, in which

the probability of next position is decomposed into independent probabilities of multiple context variables. Gao

[12] applied this method with time and location features to the Nokia Data Challenge dataset [18] and obtained

about 50% accuracy. A number of more complex methods have also been explored in the literature, including

non-linear time series [21], Principal Component Analysis [27], Gaussian Mixtures [4] and Dynamic Bayesian

Networks[27].

Moreover, the study regularity of human mobility further provides a theoretical thesis for the prediction

algorithm. Human mobility spans the entire space and has diferent regularity at diferent spatio-temporal

scales, Austin [1] collected a data set of almost 15 million observations from 19 adults spanning up to 5 years of

unobtrusive longitudinal home activity monitoring, inding that in-home mobility is not well represented by a

universal scaling law, but that signiicant structure (predictability and regularity) is uncovered when explicitly

accounting for contextual data in a model of in-home mobility, and mobility patterns of older individuals in their

home also show a high degree of predictability and regularity in human home-space mobility when context

is taken into account. Human movement outside the home space will contact diferent individuals, Wang [35]

proposed a hybrid predictive model integrating both the regularity and conformity of human mobility as well

as their mutual reinforcement. In addition, it learned location proiles from heterogeneous mobility datasets

based on a gravity model, capturing users’ regular movement patterns and their occasional visits inluenced

by others. Within this regular movement pattern there is a special phenomenon, Leng [19] collected a data

set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home

ACM Trans. Knowl. Discov. Data.
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activity monitoring, inding that in-home mobility is not well represented by a universal scaling law, but that

signiicant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data

in a model of in-home mobility, and mobility patterns of older individuals in their home also show a high degree

of predictability and regularity in human home-space mobility when the context is taken into account. As human

mobility expands to the urban scale, Oliveira [23] presented a system model, which uniies diferent datasets

into a common representation of urban scenarios and analysed the visiting patterns. It has results about human

mobility: people have a tendency to use the shortest path when moving around, and their mobility is conined, in

addition, regular patterns found in human mobility are not restricted by the scale of the dataset.

With the success of neural networks and machine learning in computer vision and natural language un-

derstanding, people are gradually applying them to time series forecasting problems [39]. Recurrent Neural

Network(RNN) has achieved great success in sequence learning, which can be used to mine long short-term

correlations of sequences. It can also be combined with Convolutional Neural Networks, the inluence of external

factors on time sequence is further considered to improve the accuracy of sequence prediction. Dang [6] introduce

the graph convolution and dual-attentive mechanism to handle the sparsity and inaccuracy of the trajectory data

and the high-order sequential nature in the problem of human mobility prediction, GCDAN achieves signiicant

performance gain compared with state-of-the-art baselines. There are also many studies on human behavior

based on the above models, including the mining of human behavior patterns [15] [44] [46]. And there are some

studies[2] [25] that predict the movement trajectory of users based on the historical location of human beings,

as well as predict traic low[22] [11] and traic congestion[10]. Kong[16] adopt a multi-pattern approach to

predict the bus passenger low by taking advantage of graph learning, it proposes a multi-pattern passenger

low prediction framework, MPGCN, based on Graph Convolutional Network (GCN), to learn human mobility

knowledge from ixed travel behaviors, this work is based on frequent and consistent travel, but it may not be

suitable for the infrequently used transport mode. The basic idea of these studies is to construct feature models

by machine learning algorithms to predict human behavior. The main drawback is that these studies cannot give

a reasonable upper limit of human behavior prediction, and therefore cannot prove whether the algorithm or

model proposed is really good.

2.2 Time Series Predictability

Quantifying predictability has been studied before in many ields, such as climate [17] and stock returns [28].

Most solutions can be divided into two categories: model-based error analysis method [14] and model-free

information theory-based method [7].

The methods in the irst category mainly quantify predictability by analyzing the error of a speciic predict

model [8]. They cannot draw a conclusion about the degree to which a time series can be predictable, which can

be used to evaluate other forecast methods. The method proposed in this paper falls into the second category

in which methods are to mine the inherent predictability of a time series by analyzing the characteristics of

the sequence itself [13]. Existing model-free information theory-based methods can be further divided into two

categories Ð sequence complexity-based and information entropy-based [32].

2.2.1 Predictability Based on Sequence Complexity. Intuitively, we generally believe that for a time series, the

more complex the less predictable, which means high complexity corresponds to low predictability, and low

complexity corresponds to high predictability conversely. Inspired by this, a measure of predictability based on

permutation entropy [29], [26] has been studied, where permutation entropy is considered as the complexity of

the sequence. This process involves several steps Ð calculate the permutation entropy of a sequence, convert the

permutation entropy to a 0-1 interval (normalization), and then the predictability of the corresponding sequence

is obtained by one subtract complexity. However, its result is only from a qualitative perspective and not a direct

measure of predictability.

ACM Trans. Knowl. Discov. Data.
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2.2.2 Predictability Based on Information Entropy. In this kind of method, the intuitive understanding of pre-

dictability remains the same, that is, the more complex a time series is, the lower the predictability is. The

diference is that predictability is linked to a speciic metric Ð the upper limit of accuracy that predictions based

on a time series can achieve. The method proposed in [32] establishes for the irst time a rigorous quantitative

relationship between this speciic metric and the sequence uncertainty (entropy). This method modeled an

individual’s movement pattern as a stochastic process deined a new inherent uncertainty of a time series called

real entropy, and proposed a formula for calculating the upper bound of predictability from real entropy. This

work was widely followed up in analyzing the predictability of various time series. Some problems remained

open, for example, articles [36], [31] pointed out that the upper bound of predictability in [32] is an over-estimate,

and also the efects of external factors on human behavior predictability has never been considered.

The work presented here difers substantially from previous research in that it integrated preferential return

and random exploration [5] existed in human mobility into the model of the upper bound of predictability in [32].

Our reinement results in a tighter and more realistic upper bound. In addition, we also consider the inluence of

external factors (weather and temperature, etc.) on predictability as an extension of this method.

3 PROBLEM DESCRIPTION

Here we present relevant deinitions and problem descriptions.

Deinition 1 (Predictability). Given a time series � = {�1, �2, ..., �� , ..., ��} where �� denotes the status at time �

and a prediction algorithm set � = {� (� )}, if ∃ �� ∈ [0, 1], such that � � ≤ �� for ∀ � ∈ � , where � � is the overall

predictive accuracy of the entire sequence by � , and meanwhile ∃ � ∈ � such that �� − � � < � (∀� > 0), then �� is

deined as predictability for the time series � .

The above is the formalized deinition of predictability for time series � = {�1, �2, ..., �� , ..., ��}. What we

want to emphasize is that predictability is an inherent feature of a time series that characterizes the ability to be

predicted, in other words, the upper bound on the extent to which � can be accurately predicted. Predictability

does not depend on a particular sequence prediction algorithm. A sequence is completely unpredictable while its

predictability is 0 and is completely deterministic while its predictability is 1.

Problem 1 (Human Mobility Predictability). Let {1, 2, ..., �, ...,� } be time points in a time range, given a user’s

location series � = {�1, �2, ..., �� , ..., �� } during the time period, how to quantify the overall predictability of this

location series?

Many existing human mobility prediction algorithms consider not only regularity or correlation within

sequences but also external inluence factors. Therefore, simply quantifying the predictability of a mobility

sequence itself cannot evaluate these algorithms, which leads to the following problem.

Problem 2 (Human Mobility Predictability Considering External Factors). Given location series � =

{�1, �2, ..., �� , ..., �� } and external factor variation series� = {�1, �2, ..., �� , ..., �� } during the time period {1, 2, ..., �, ...,� },

how to quantify the overall predictability of this location series?

Note that unless otherwise speciied, symbols used in this article are derived from Table I.

4 MEASURE PREDICTABILITY OF HUMAN MOBILITY

Here we present the framework for analyzing the predictability of human mobility.

4.1 Predictability without External Factors

The predictability �� calculated by our method consists of two parts Ð �� , the predictability of time series

without considering exploration, which is quantiied by the method proposed in [32], and �� , the reduction in

predictability due to exploration in human mobility. What is called exploration is a visit to a location that has

ACM Trans. Knowl. Discov. Data.
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Table 1. Description of Notation

Symbol Description

� Location series relecting human mobility

�� Historical sequence in time of 1 −�

� Size of action space

�� Probability of exploration

�� The predictability without considering exploration

�� The predictability considering exploration

� (� ) Entropy of time series �

� External factors

� Set of prediction algorithms

never been visited before and therefore doesn’t appear in the historical series, which represents the completely

unpredictable part of predicting human mobility.

For the prediction of movement at time � + 1, given the past history �� = {�1, �2, ..., �� } where �� is the user’s

behavior at time � , the probability distribution at time � + 1 based on history is � (��+1 = � |�� ), which is the

probability that the next location is � . Therefore, probability of correctly predicting is � (��+1 = �̂�+1 |�� ) while

the real location at time � + 1 is �̂�+1.

Let ��� be the most likely location the person is going to in the prediction at time � + 1 given history �� and

��� be the corresponding probability. We have

��� = max
�

{� (��+1 = � |�� )} (1)

For any prediction algorithm, � ∈ � let �� (��+1 = �̂�+1 |�� ) be the probability distribution of locations at

the next moment predicted by the algorithm � . Let �� (��+1 |�� ) be the real probability distribution. Then the

probability of correctly predicting is given as

� (��+1 = �̂�+1 |�� ) =
︁

�

�� (� |�� ) × �� (� |�� ) (2)

Since ��� ≥ �� (� |�� ) and
∑

� � � (� |�� ) = 1, we have

� (��+1 = �̂�+1 |�� ) ≤
︁

�

��� × � � (� |�� )

= ���

(3)

Equation (3) shows that the accuracy of any prediction algorithm based on historical series is lower than ��� ,

which means ��� is the maximal accuracy.

Theorem 1. Given a location series, there exist an algorithm � for that ��� − � � < � (� > 0) .

Proof. Let us consider a predictor �̂ Ð at any time step � + 1 according to the given historical sequence �� its

prediction output is ��� , which means �
�̂
(��� |�� ) = 1 and �

�̂
(� |�� ) = 0(� ≠ ���). Then the accuracy of �̂ is

ACM Trans. Knowl. Discov. Data.
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given as

�
�̂
(��+1 = �̂�+1 |�� ) =

︁

�

�� (� |�� ) × �
�̂
(� |�� )

= ���

(4)

This proves that at time � +1 given a particular history�� , the maximal accuracy of prediction ��� is theoretical

achievable. Then the predictability at time � + 1 for any history is given as

�� (�) =
︁

��

� (�� ) × ��� (�� ) (5)

where � (�� ) is the probability of a particular history �� . Then the overall predictability �� for any time step is

calculated by

�� = lim
�→∞

1

�

�︁

�=1

�� (�) (6)

As a direct measure of the amount of information, entropy can measure the complexity of time series from a

quantitative perspective. With the chain rule, the entropy of human mobility is deined as

� (� ) = −
︁

�∈�

� (�)log2� (�)

= lim
�→∞

1

�
� (�1, �2, ..., �� )

= lim
�→∞

1

�

�︁

�=1

� (��+1 |�� )

(7)

where � (�) = �� {�� = �} is the probability that �� = � given �� .

Based on the history behavior �� , �� (��+1 |�� ) which is the probability of exploration at the time � + 1 indicates

the probability of visiting a new location that never visited before, that is, ��+1 ∉ �� . So ��� (��+1 |�� ) =

1 − �� (��+1 |�� ) is the probability of visiting an old location, which can be calculated based on additive Markov

chain [34].

��� (��+1 |�� ) =

�︁

�=1

�� (��+1, �� , � + 1 − �) (8)

where�� (��+1, �� , � + 1− �) is the Additive Contribution of �� to ��� (��+1 |�� ). In the First-Order Markov model,

we regard the additive contribution of �� as the transition probability of �� to ��+1. Compared with �1, �� has a

greater impact on the movement at time � + 1, so we give a weight coeicient� (�� ) to every �� in �� , which

represents the series delay weight with the delay rate � ≥ 0.

� (�� ) = 2−�· (�−� ) (9)

In experiments, we give an appropriate value � = 2, which makes the results obtained by our method are closer

to the theoretical predictability on simulation data.

Let �� (�� , � � ) be the transition probability from location �� to � � , and we get �� (�� , � � ) by the frequency

appeared in history sequence.

�� (�� , � � ) =
� �� (�� → � � )

� �� (�� )
(10)

�� (��+1, �� , � + 1 − �) =
� (�� ) · �� (�� , ��+1)∑�

�=1� (�� )
(11)

ACM Trans. Knowl. Discov. Data.
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By uniting equations (8) and (11), we get

��� (��+1 |�� ) =

�︁

�=1

�� (��+1, �� , � + 1 − �)

=

�︁

�=1

� (�� ) · �� (�� , ��+1)∑�
�=1� (�� )

(12)

To get �� on the entire time series, we take the average of probabilities of exploration of every step.

�� =
1

� − 1

�−1︁

�=1

�� (��+1 |�� )

=
1

� − 1

�−1︁

�=1

(1 − ��� (��+1 |�� ))

(13)

Algorithm 1 Exploration Probability Computation

Require: �� = {�1, �2, ..., �� }, �

Ensure: �� (��+1 |�� )

1: set M = 0, D = 0, �� = 0

2: for � = 1, ...,� − 1 do

3: for each �� ∈ �� do

4: �� (�� , ��+1) = � �� (�� → ��+1)/� �� (�� )

5: � = 2−�· (�−� )

6: �+ = � · �� (�� , ��+1)

7: �+ = �

8: end for

9: ��� = �/�

10: ��+ = (1 − ��� )

11: end for

12: �� = ��/(� − 1)

13: return ��

Next, we calculate the probability �� , which represents the upper bound of successfully predicting human

movement for any predictor without considering exploration.

Given a history �� , the real probability distribution of the next location �� (��+1 |�� ) can be expressed as

�� (��+1 |�� ) = (� (�1), � (�2), ..., ���, ..., � (�� )) (14)

where N is the size of the action space. Then, we create a new distribution �� (��+1 |�� ) where all locations are

uniformly distributed except ��� .

�� (��+1 |�� ) = (
1 − ���

�
,
1 − ���

�
, ..., ���, ...,

1 − ���

�
) (15)

According to the property of information entropy, the more uniform the distribution is (the more scattered the

values are), the higher the entropy is. Therefore we have

�� (��+1 |�� ) ≤ �� (��+1 |�� ) (16)

ACM Trans. Knowl. Discov. Data.



An Information Theory Based Method for uantifying the Predictability of Human Mobility • 9

To simplify the formula, let � = ��� (�� ). The entropy of the new distribution we create at time � + 1 given ��

can be calculated as

�� (��+1 |�� ) = −
︁

�∈�

�� × log2 (�� )

= −�log2� −
︁ 1 − �

� − 1
log2 (

1 − �

� − 1
)

= −�log2� − (1 − �)log2 (
1 − �

� − 1
)

= −[�log2� + (1 − �)log2 (1 − �)]

+ (1 − �)log2 (� − 1)

(17)

Now we deine � (�) as

� (�) = −[�log2� + (1 − �)log2 (1 − �)] + (1 − �)log2 (� − 1) (18)

Then we have

�� (��+1 |�� ) ≤ �� (��+1 |�� ) = � (�) (19)

which is satisied for the particular history �� . So the entropy at time � + 1 for any history is given as

�� (�) =
︁

��

� (�� ) × �� (��+1 |�� )

≤
︁

��

� (�� ) × � (�)

≤ � (
︁

��

� (�� ) × �)

= � (
︁

��

� (�� ) × ��� (�� ))

= � (�� (�))

(20)

where we’re using Jensen’s inequality and the concave property of � (�). Similarly, we continue to get the entropy

of the entire location series � (� ).

� (� ) = lim
�→∞

1

�

�︁

�=1

�� (�)

≤ lim
�→∞

1

�

�︁

�=1

� (�� (�))

≤ � ( lim
�→∞

1

�

�︁

�=1

�� (�))

= � (�� )

(21)

There exists ��
�� for which the equation below holds:

� (� ) = � (��
�� ) ≤ � (�� ) (22)

As the function � monotonically decreases with �� , we have

��
�� ≥ �� (23)
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So the solution ��
�� of (24) is the upper bound of predictability �� .

� (� ) = � (��
�� )

= −��
�� log2 (��

�� ) − (1 − ��
�� )log2 (1 − ��

�� )

+ (1 − ��
�� )log2 (� − 1)

(24)

As mentioned before, �� represents the completely unpredictable part of predicting human mobility, which is

the reduction in predictability when considering exploration in human mobility. Then we can get a tighter upper

bound of predictability ��
�� by

��
��

= ��
�� − �� (25)

Based on the formulas above, given a historical series of human mobility, we can calculate the upper bound of

its predictability.

4.2 Predictability Considering External Factors

The predictability without considering external inluencing factors can only evaluate those prediction algorithms

utilizing regularity or correlation within sequences, such as Markov Chain and autoregressive model. Actually,

many prediction algorithms proposed, such as Neural Network [39], utilize the information of external factors

(e.g. weather, holiday) to improve the accuracy of sequence prediction further. Therefore, a noticeable problem is

how to quantify the predictability considering external factors.

The deinition of predictability considering external factors is the upper bound of the accurate rate that a

prediction algorithm utilizing external factor variation data can achieve theoretically.

We have explained that the predictability of time series is directly related to information entropy as it can

capture the uncertainty of time series. The purpose of taking external factors into consideration is to complement

original information. For example, a isherman goes to the sea on sunny days and rests on rainy days. Considering

external factors would reduce uncertainty, and therefore increase predictability. Existing work has also analyzed

the predictability of adding external factors, which was as contextual information to reduce the uncertainty of the

time series. Actually, researchers have studied this issue from diferent aspects. For example, Context-Transition

Entropy is used to calculate predictability by considering external factors[47], which increases the certainty of

predictability of time series, it is larger than the upper bound of predictability proposed by song et al[32]. In this

paper, the exploration behavior of human movement is considered, and the exploration rate of humans is added

to the calculation of predictability, without changing the method of calculating the entropy of predictability.

Therefore, our method makes the predictability upper bound tighter. When considering the predictability of

external factors, partly researchers focus primarily on the routine component with the goal of showing that there

are patterns in one’s hard-to-predict [9]. In order to quantify predictability, this paper creates a baseline sequence,

by comparing it with the person’s actual mobility trace to obtain the deviation of predictability between the

original sequence and the baseline. The deviation refers to the impact of the exploration part of the human

routine on predictability. However, in real life, human mobility is not entirely afected by exploration which is

the probability of exploration at the time indicates the probability of visiting a new location that never visited

before, but may also be due to other factors, such as weather, holidays, and so on. We incorporate its probability

into the calculated predictability of the next position, using a higher-order Markov chain to obtain this value.

There are also diferent ways to deal with the time series which adding external factors, it is not incorporate

external factors directly into the formula when calculating predictability [33], Instead, using sequence-splitting

and sequence-merging methods to process sequences, but we directly add Mutual Information to calculate the

inluence of external factors on predictability. Because adding external factors according to experience will

increase predictability, the original method of predictability has expanded the upper bound of prediction, so the

increase of exploration makes it closer to real human movement.
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To measure the extent of uncertainty reduced by external factors, we are going to introduce Mutual Information

(MI). In probability theory and information theory, MI quantiies the "amount of information" obtained about a

random variable through observing another random variable. In other word, MI is the decreasing quantity of

entropy of a random variable knowing another one.

Based on the chain rule of information entropy, the mutual information of random variables� and � is

� (� ;� ) = � (� ) − � (� |� )

= � (� ) + � (� ) − � (�,� )
(26)

where � (�,� ) is joint entropy. Given a time series of external factor � , the conditional entropy of location

sequence � is

� (� |� ) = � (� ) − � (� ;� )

= � (�,� ) − � (� )
(27)

By replacing � (� ) in (24) with � (� |� ), we get the quantitative formula for predictability with external factors:

� (� |� ) = � (��
�� )

= −��
�� log2 (��

�� ) − (1 − ��
�� )log2 (1 − ��

�� )

+ (1 − ��
�� )log2 (� − 1)

(28)

Note that exploration should also be considered. So the upper bound of predictability with external factors is

calculated by uniting (25) and (28).

5 EXPERIMENTS

In this section, we will introduce the datasets, settings and results of our experiments. In addition, we discuss the

evaluation results from some typical predictors.

5.1 Datasets

We do experiments on simulation data and three real-world datasets. Here we irstly introduce the generation

method of simulation data, and then introduce the three real-world datasets.

The simulation data we generate is a Markov chain, where the agent chooses the location to visit at each

time step with nearly the same probability distribution, which ensures that the theoretical predictability of the

sequence generated is a deinite value we preset. Our generation model has three inputs Ð the size of action

space� (which is the number of locations available at each step), the length of the sequence generated � and

the predictability preset � (� ≥ 1/�). At each step, the agent visit ��� with probability � and visit other� − 1

locations with equal probability (1 − �)/(� − 1). Note that ��� at each step is determined by a deterministic rule

Ð for example, let all the locations in action space be arranged in number order to be ��� in turn. According to

our deinition of predictability, the theoratical predictability of the simulation sequence generated by this method

is � . Compared with real-world data, simulation data has the advantage that theoretical predictability is known.

All three real-world datasets we adopted can relect human mobility, two of which are based on Call Detail

Records (CDRs) and the other one is based on GPS location information.

The irst CDR dataset [3] is from Data for Development Challenge (D4D), collected in Côte d’Ivoire from

50,000 mobile phone users during 150 days. To protect user privacy, continuous records of the same user are

limited to a maximum of two weeks. So we use a part of data from March 26,2012 to April 8,2012. Each record

contains the user ID, timestamp and the ID of base station used for this communication. To improve data quality,

we deleted data from users with too little action space (� ≤ 2) and too little frequency of communication

(� < 0.5�����/ℎ��� ). Then we rebuilt the dataset into hourly ixed-frequency continuous sampling data. If the
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sampling moment is not recorded, the position record of the previous moment is used, which means the user is

set to be stationary by default.

The second CDR dataset [41] is mobile phone App network request data from Tsinghua University, which

include anonymous cellular data captured from 1000 users by the Deep Packet Inspection (DPI) device during a

week. Each record contains the user ID, timestamp, and the ID of the base station used for this network connection.

Similarly, we resample the data with a frequency of 2 records/minute and assume the user still lacks a record.

Finally, we analyze the GPS-based dataset [48] collected in the Geolife project from April 2007 to August 2012.

The dataset contains 182 individual trajectories and each trajectory contains the latitude, altitude, and timestamp

of the collected data point. The majority of data in this dataset were collected in Beijing, and the remaining are

from 36 cities in China as well as a few cities in the USA, South Korea, and Japan. Some individuals’ trajectories

are so short that we cannot get their statistical features, so we only consider users with enough track points (n ≥

20).

The trajectory information in the dataset is the latitude and longitude collected by GPS. In order to obtain a

user’s location sequence and to examine the user’s mobility at the grid scale, we quantize the area into small

discrete grid cells. We used a grid to rasterize the map of Beijing, and we tagged the label of each cell from 1 to

1200, as shown in Fig. 1.

What’s more, we collected the holiday information of each timestamp and the weather conditions such as

sunny and rainy of each cell in order to study the inluence of external factors on predictability.

cell id: 452
timestamp:2010-04-01 10:23:19
weather:sunny
holiday:no
temperature:23℃

cell id: 423
timestamp:2010-04-03 13:23:19
weather:sunny
holiday:Sunday
temperature:24℃

h
eig
h
t

width

Fig. 1. Mobile behavior series: The map is partitioned into cells by a����ℎ ∗ ℎ���ℎ� grid, and a user’s longitude and latitude

coordinates are mapped to a cell ID to get the user behavior sequence. At the same time, the corresponding weather

information, holiday information, temperature information, and other external factors are obtained.

5.2 Experimental Setings

We conduct our experiments from the following aspects:

• Calculate the predictability of human mobility using our proposed method on simulation data and three

real-world datasets, and compare the performance with baseline methods for quantifying predictability to

explain that our method gives a tighter and more realistic upper bound of predictability.

• Calculate the predictability considering external factors (such as weather and holidays) to discuss the

inluence of external factors and to demonstrate the extensibility of our method on external factors.
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• Compare our predictability with the accuracy of the state-of-the-art predictors on human mobility series to

prove its basic reasonableness.

5.2.1 Baseline Methods for Comparison. Our method which quantiies the Predictability of human mobility

Considering the Probability of Exploration (PCPE), is compared with four state-of-the-art methods for calculating

predictability as follows:

• The method based on the Real Entropy and Fano’s inequality in information theory (RE-based) proposed in

[32], which is a classic method that irstly derives a rigorous quantitative relationship between predictability

and entropy.

• The method based on the Real Entropy gives a reined upper bound on the predictability of human mobility

(RE-reined) proposed in [31], which is a typical improvement on the above method. This method gives a

more precise result to some extent by optimizing the measurement of action space.

• The method based on Multi-Scale Entropy (MSE-based) proposed in [37], which replaces the real entropy

in the irst baseline method with multi-scale entropy. This method has good performance in quantifying

the predictability of travel time. The scale factor � is set to 1, the embedding dimension� is set to 2 and

the tolerance � is the standard deviation of sequence multiplied by 0.2 in our experiments.

• The method based on Permutation Entropy (PE-based) used in [29], [26], which captures the complexity

between local sequences and the predictability of sequence is quantiied by one subtract the complexity.

The window size � is set to 3 and delay � is set to 1 in our experiments.

5.2.2 Human Mobility Predictors. According to Deinition 1, predictability is the upper limit of the probability

that a sequence can be accurately predicted, and therefore it can be used to evaluate the performance of a

prediction algorithm. Conversely, the accuracy of good prediction algorithms on this sequence can prove the

basic reasonableness of predictability quantiied to some extent. We use four diferent time-series prediction

algorithms to evaluate our method. The details of these algorithms are as follows:

• Auto Regressive Integrated Moving Average model (ARIMA) can be used to forecast future values based on

its own past values.

• AMarkov Random Field (MRF) is an undirected probabilistic graphical model representing random variables

and their conditional dependencies.

• The Recurrent Neural Network (RNN) is a class of neural networks that allows previous outputs to be used

as inputs while having hidden states, and can be used to predict the next state based on a history sequence.

• Long-Short-Term-Memory network (LSTM) is a kind of time recurrent neural network, which is suitable

for processing and predicting with very long intervals and delays in time series.

We have adjusted the parameters of these prediction algorithms based on the dataset used so that they can

achieve the best prediction performance.

5.3 Results

5.3.1 Efectiveness of Predictability Measurement. Fig. 2 shows the result of the simulation experiment. We

generate simulation data of eight diferent sequence lengths, which are 24 211. As previously mentioned, the

generated sequences are Markov chains whose theoretical predictability is a ixed value that can be preset.

Without loss of generality, we set the theoretical predictability to 0.45, which is represented by the black straight

line in the igure. The dots in diferent colors represent the results obtained by diferent methods as shown in the

legend. Each value is the average of the results of 20 repetitions. Note that the predictability quantiied by our

method (green dots) is closest to the theoretical value, which indicates that our method is more accurate than

others.
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24 25 26 27 28 29 210 211

Length of sequence

0.0

0.2

0.4
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RE-based
RE-refined
PCPE(Ours)
MSE-based
PE-based

Fig. 2. The values of predictability calculated by diferent methods at diferent sequence lengths on simulation data, which

consists of generated Markov chains whose theoretical predictability is 0.45. Each value is the average of the results of 20

repetitions.

In addition, the method based on Permutation Entropy (PE-based) gives results that deviate greatly from the

theoretical values and tend to zero as the sequence length increases. In view of this, we believe that this method

is not suitable for quantifying the predictability of human mobility and therefore only compare our method with

the other three baseline methods on the real-world datasets.

The probability distributions of predictability on D4D dataset, Tsinghua dataset and Geolife dataset are shown

in Fig. 3 respectively Fig. (a), Fig. (b), and Fig. (c). For any predictability value � , the higher the y value is in these

igures, the more users there are whose predictability of mobility is � . In previous work, the predictability value

with the highest probability was usually taken as the predictability of the whole dataset [32]. In this sense, our

method gives the lowest result on every dataset. So we can conclude that our method quantiies a tighter upper

bound of predictability of human mobility.

Note that our method is the combination of the RE-based method and our quantifying for the probability of

exploration. Therefore, we can see intuitively how exploration reduces predictability by comparing the results

obtained by the RE-based method and our method. As can be seen from the igures, when exploration probability

is taken into account, predictability decreases by 5.1% on D4D dataset, 16% on Tsinghua dataset and 5.7% on

Geolife dataset.

5.3.2 Influence of External Factors. With the development of deep learning, more and more prediction algorithms

begin to consider the inluence of external factors, such as weather, which will greatly afect people’s travel. As a

result, the application of simply measuring the predictability of the time series itself is limited. By considering

the inluence of external factors on the predictability of human mobility, it can be used to evaluate the quality of

relevant prediction algorithms. After capturing weather, holiday, and temperature information, we can obtain

predictability with external factors by (28).

We conduct the experiments using the RE-based method and our method PCPE. As shown in Fig. 4, the

predictability calculated by our method increases 1%, 0.7%, and 0.5% respectively while considering weather,
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Fig. 3. Fig(a) shows the result of the probability distributions of predictability measured on the D4D dataset. The predictability

given by our method is 90.2% while 95.3%, 94.9%, and 99.6% are given by the other three methods. Fig(b) shows the result of

the probability distributions of predictability measured on Tsinghua dataset. Fig(c) shows the result of the predictability given

by our method is 79.1% while 95.1%, 93.6%, and 99.3% are given by the other three methods. The probability distributions of

predictability were measured on Geolife dataset. The predictability given by our method is 82.8% while 88.5%, 85.1%, and

96.7% are given by the other three methods.
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holiday, and temperature. The predictability is improved by 1.5% with all external factors, which is also indicated

by Table II.

Fig. 4. The predictability of integrating external factors. We integrate our MI-based method to consider external factors into

the RE-based method and compare it with our proposed method. We can intuitively see the influence of external factors on

predictability in the figure.

Table 2. Predictor Accuracy and Behavior Predictability

Accuracy Predictability(��)

ARIMA MRF RNN LSTM MSE-based RE-reined RE-based PCPE(Ours)

No Factors 0.641 0.713 0.746 0.753 0.967 0.851 0.885 0.828

With Factors 0.701 0.819 0.795 0.806 0.975 0.863 0.896 0.843

5.3.3 Evaluate Predictability with Predictors. Besides the comparison of predictability methods, we also evaluate

our method by comparing the predictability to the accuracy of other human mobility predictors, i.e. ARIMA,

MRF, RNN and LSTM. We have trained the model to obtain parameters that make the algorithm achieve the best

performance.

Table II shows the accuracy and predictability measured by diferent methods. We can see that Whether

external factors are considered or not, the predictability calculated by the method we proposed is higher than

the accuracy of the state-of-the-art predictors, which illustrates the validity and reasonableness of predictability

proposed for one side.

6 CONCLUSION

The predictability of human mobility is a fundamental characteristic of the movement sequence. In this paper, we

have proposed a model based on additive Markov chains to measure the probability of exploration and developed a

method for quantifyingmobility predictability.We use mutual information to measure the reduction in uncertainty
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caused by external factors, and further propose a calculation method for predictability considering external

factors. Experiments on simulation data and three real-world datasets proved that our result is a tighter and

more accurate upper bound of predictability of human mobility. On the other hand, the incorporation of external

factors increased predictability by reducing the uncertainty of behavior (caused a 1.5% raise in predictability). In

future, we will consider the inluence of other characteristics of human mobility on predictability. How to apply

our methods to other time series and how to use predictability to guide the design of prediction algorithms are

open problems.
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