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Abstract: The potential for enhancing brain tumor segmentation with few-shot learning is enormous.
While several deep learning networks (DNNs) show promising segmentation results, they all take
a substantial amount of training data in order to yield appropriate results. Moreover, a prominent
problem for most of these models is to perform well in unseen classes. To overcome these challenges,
we propose a one-shot learning model to segment brain tumors on brain magnetic resonance images
(MRI) based on a single prototype similarity score. With the use of recently developed few-shot
learning techniques, where training and testing are carried out utilizing support and query sets of
images, we attempt to acquire a definitive tumor region by focusing on slices containing foreground
classes. It is unlike other recent DNNs that employed the entire set of images. The training of
this model is carried out in an iterative manner where in each iteration, random slices containing
foreground classes of randomly sampled data are selected as the query set, along with a different
random slice from the same sample as the support set. In order to differentiate query images from
class prototypes, we used a metric learning-based approach based on non-parametric thresholds. We
employed the multimodal Brain Tumor Image Segmentation (BraTS) 2021 dataset with 60 training
images and 350 testing images. The effectiveness of the model is evaluated using the mean dice score
and mean IoU score. The experimental results provided a dice score of 83.42 which was greater than
other works in the literature. Additionally, the proposed one-shot segmentation model outperforms
the conventional methods in terms of computational time, memory usage, and the number of data.

Keywords: magnetic resonance imaging; few-shot learning; foreground prototypes

1. Introduction

Brain tumors are one of the most dangerous tumors. The most frequent primary brain
tumor is gliomas, and it comprises about 2% of all malignancies [1,2]. Over the course of a
year, registrations in the neuro-oncology clinic at a tertiary care facility were thoroughly
analyzed from hospital-based databases tracking CNS (central nervous system) cancers.
For people aged 15 to 39, the 5-year survival rate nears 72%. In India, the prevalence of
brain tumors is from 5 to 10 per 100,000 people and is on the rise. Hence, brain tumors are
needed to be identified as early as possible for early treatment and recovery. In several
applications of computer-aided diagnosis, medical image segmentation is crucial. The
region of interest is extracted automatically without involving any manual segmentation
procedures and is regarded as the most crucial step in medical imaging procedures.

The conventional structural MRI image segmentation and analysis of brain tumors is
an onerous and time-consuming task.

In general, three theoretical categories are used for automated brain segmentation
techniques utilizing MR images: intensity-based, machine learning, and hybrid. The highly
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heterogeneous appearance of brain tumors, especially sub-regions, makes segmentation
difficult [3]. Furthermore, aberrations such as motion and/or field in homogeneity can make
the problem even worse. There are several deep learning techniques that have already been
implemented in automatic segmentation. However, these processes call for an extensive
amount of training data to detect tumors thus make the process computationally expensive.
CNN-based models [4,5], being the most common in deep learning architectures, use three-
dimensional filters or custom filters to optimize themselves for tumor foreground regions.

State-of-the-art architectures in this field tend to be U-Net and PANet, which show
the likelihood of high accuracy scores but on the downside, they use more training data.
The use of multi-task networks [6] utilizes the model cascade strategy to develop a solution
for class imbalances. Despite its outstanding performance, this method leads to undesired
complexity in the model. The use of shared parameters to learn joint features is effective
but requires a good size of training data and task-specific parameters which makes it
computationally heavy to train. Ref. [6] has shown that they perform much better than other
architectures (including a few-shot based) but use ensemble models and post-processing
approaches, which adds time required to evaluate each image. The use of transformer-
based learning is also one of the most widely used methods to extract and fuse multi-scale
features. Ref. [7] has adopted a similar squeeze-and-expansion transformer at the core
as a segmentation framework. Having an enormous number of parameters and loading
three-dimensional images makes it very computationally inefficient to train and test. Such
networks required extensive training in the model. The winner of the BraTS 2018 challenge
has performed segmentation using autoencoder regularizations [8]. Although that network
proved considerable results, due to its large network width, it required a heavy GPU to
assess the large number of parameters.

In order to reduce the complexity of the model, we propose using a few-shot learning
technique to segment brain tumors. Generally, unique and distinct classes are chosen
for validation and the base data are set in the few-shot model so that the generalization
performance is assessed on new classes. We are partially inspired by the state-of-the-art
model by Hansen [9] to segment brain tumors. Few-shot learning is a part of meta-learning,
which is making the model learn to identify the similarities between the image and support
set and label the query image. As it uses only a few labeled samples to segment the query
image, the training data required to perform the computation decreases significantly; thus,
it reduces the number of network parameters and computational costs.

In this work, we used prototype-based few-shot learning, i.e., the support images are
selected and their features are extracted and embedded in a vector space. The features of
the query image are then extracted and the similarity score is calculated using the cosine
score. In contrast to the conventional frameworks, our segmentation method utilizes a
one-shot learning method. As far as we know, this is the first study to implement one-shot
learning that uses a single prototype for modeling the foreground class for the segmentation
of tumor regions from the MRI images of the brain.

The contribution of this study can be summarized as follows:

1. Propose a one-shot learning segmentation model by considering the foreground
prototypes for brain tumor detection on brain MRI that transcends the current deep
learning-based tumor segmentation models in regard to the size of the training data.

2. Adopt the VGG-16-based encoder with pre-trained weights from Resnet101 trained
on MS COCO datasets as our few-shot learning model.

3. Experiment with different N-shot K-way methods to show the effectiveness of the
proposed single prototype for modeling the foreground classes based on its uniformity.

4. Compare the performance of the proposed approach to architectures that are used for
brain tumor segmentation.

5. Evaluate the performance of our methods by using the dice similarity coefficient and
intersection over union.
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2. Related Work
2.1. Deep Learning-Based Brain Tumor Segmentation

Deep learning-based brain tumor segmentation methods utilize various CNN-like
neural networks to segment the tumor regions, as they can occur anywhere in any shape or
size and so as to automate the process. Ref. [10] has implemented a CNN-based network
for glioblastoma. The method in [11] proposed to work only a small part of the image
containing the tumor using a C-CNN that utilized two different paths for extracting local
and global features. Ref. [12] used nested structures to tackle segmenting different image
modalities. Ref. [13] has made use of BCM-CNN and utilized a sine–cosine grey fitness
algorithm for tuning. The method in [14] applied U-Net to segment tumor images. It
utilized an ensemble of various models with different hyper-parameters to obtain better
results and reduce random errors. The method in [15] developed a 3D-Dense-UNet model
to simplify complex multi-class segmentation problems. These methods do not work
very well on unseen tumor classes and also take a lot of processing time as well. The
method in [16] proposed a unique CNN and probabilistic neural network architecture to
segment the tumor effectively. Cascaded CNNs were implemented by [17] on three tumor
regions, thus implementing multiclass segmentation. However, almost all of these DNN
learning models are classification-based models. A comparative analysis of existing tumor
segmentation methods [18] shows that they require a large amount of training data to
accurately segment the tumor images effectively, and its supervised learning performance
on unseen classes is not effective. However, our one-shot-based learning can understand
the similarities and differences that work well in unseen classes.

2.2. Self-Supervised Learning

Self-supervised learning learns to identify one part of the input through another by
eliminating the need for labels. The few-shot learning (FSL) model is a fully unsupervised
model which performs semantic segmentation, and it improved the mIoU score of the
previous model. The method in [19] carried out self-supervised depth estimation by
utilizing diverse in-depth features and the difficulty in learning the depths. Ref. [20]
predicted the position by analyzing the anatomy of cardiac MR images. Context restoration
has also been used for medical image segmentation [21,22]. Our proposed model also fits
the criteria of the self-supervised learning paradigm. Our model extracts the features of the
query prototype and embeds them into the feature vector space where the similarity scores
of the feature vector and support vector are compared. Subsequently, the query image is
segmented, making the process semi-self-supervised. The support images in our model are
introduced in batches and thus the model learns to find the similarity scores between the
query and support images in a semi-supervised manner.

2.3. Few-Shot Learning

In medical-based image segmentation, fewer datasets are available. Therefore, we
are using few-shot learning, a method in which the model learns to segment the query
images using a small set of images which reduces the training data. It performs well
on unseen classes as it works on similarity scores between support and query images.
The method in [19] has stated that few-shot classification learns classifiers from just a
few samples of each class that have been tagged. Multi-feature comparison utilizing two
branches is also an effective mechanism for the few-shot learning model [23]. The method
in [24] stated that there are two types of few-shot learning methods: inductive, in which
only the support images are introduced to the classifier, and transudative, in which both
support and query sets are utilized by the classifier. Model agnostic meta-learning is a
technique for discovering any standard model’s parameters through meta-learning in
order to prepare that model for quick adaptation [25]. Matching networks introduced
by [26] have an embedded space in which the weighted nearest neighbors classifiers are
applied. Prototypical neural networks revolve around developing an embedding space
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that points the clusters around a single prototype [27]. The method in [28] has applied
few-shot learning on natural language processing very efficiently.

2.4. Few-Shot Segmentation

Semantic segmentation forms clusters of images which belong to the same object class
at the pixel level. The method in [4] used a model which comprises two commanding
modules. The first module determines if the support and query image visually correspond,
while the second dictates the network to focus on the targeted query objects. The method
in [29] proposed a novel strategy that automated the process of matching query prototype
and query image which are obtained by high-profile query image predictions. The tumor
intensity, shape, and location may differ from image to image. However, identifying them
requires pixel-level classification. Utilizing both foreground and background features at the
pixel level provided optimum results in implementation [30,31]. Ref. [32] proposed a one-
shot image segmentation technique similar to ours. The method in [29] utilized a Gaussian
mixture model to evaluate prototypical clusters of different classes. The method in [33]
has implemented a few-shot-based U-Net architectures for detecting radiographic patterns
and obtained an improvement in accuracy. Path aggregation network (PANet) is a unique
metric learning-based model that utilizes a prototype alignment network. In the embedding
space, PANet learns by extracting specific prototypes of each class from a small number of
support images and segments the query images by matching each pixel to the prototypes
it has learned. PANet provides high-quality prototypes that are discriminative for many
classes and representative of each semantic class via non-parametric metric learning [34].
ADnet main [9] used a model and utilized the homogeneity of the foreground prototype by
computing anomaly scores. It is reported to use one foreground prototype and, therefore,
outperforms state-of-the-art models for abdominal organ and heart segmentation. Our
model utilizes prototype-based learning using one-shot learning that is different from the
aforementioned models.

3. Proposed Methodology

In this work, we propose a similarity-measured prototypical one-shot segmentation
model to classify tumor regions in MRI images. Using a common feature extractor between
query and support sets of images, metric learning-based segmentation is performed in the
target domain. We solely focus on slices containing foreground classes, unlike many other
recent deep learning algorithms that employ the entire set of images.

3.1. Problem Foundation

We aim to obtain a segmentation model trained using few-shot learning methods
which can learn faster than traditional learning methods and require only a few labeled
images from the same classes. In this model, images containing distinct training classes
Ctrain (e.g.,: Ctrain = NCR/NET—label 1, ED—label 2, ET—label 4) and testing Ctest are ob-
tained from the training and testing dataset Dtrain and Dtest, respectively. The segmentation
model M is trained on Ctrain and tested on Ctest.

Taking Ctrain as the training and Ctest as the testing set, the model is trained in an
episodic way. Each episode consists of a group {S, Q} (a set of support images and a set of
query images). These pairs of {Si, Qi }N

i=1, where N denotes the total number of images in
the dataset, sum up the whole dataset. Considering the C-shot K-way segmentation learn-
ing task for each episode pair {Si, Qi }, we obtain the output as the predicted query mask.
The support set S = {(x1, y1), .., (xC×K, yC×K)} consists of C× K number of image mask
pairs {x, y}, where x, y ∈ RX×Y are slices of each image having X × Y image dimensions.
The query set Q = {x́, ý} contains an image mask pair with a single slice.

3.2. Few-Shot Learning Model

Given a set of labeled images, our few-shot learning-based model aims to learn
adaptation to new classes when trained under very few labeled samples. The training of the
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model is carried out in an iterative manner where in each iteration, random slices containing
foreground classes of randomly sampled data are selected as the query set along with a
different random slice from the same sample as the support set. Unlike previous methods
for obtaining prototypes for classes in both the foreground and background [35,36], we are
only considering the foreground prototypes. This eliminates the possibility of overtraining
the large black background class. The process summarizing the model training is shown in
Figure 1.
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Figure 1. A pipeline of the proposed prototypical one-shot segmentation model to separate brain
tumor regions.

3.2.1. Preprocessing and the Extraction of Prototype Features

A brain tumor is highly heterogeneous in respect of pixel intensity, size, and location.
It results in highly imbalanced data, as the number of health voxels constitutes 98% of
all voxels [10]. To overcome this challenge, our model uses prototype representations
of labeled classes. Before that, each T2 multi-parametric MRI (mpMRI image) and its
corresponding label is first pre-processed. The bright ends of each image are cut off to
alleviate the off-resonance issue. Images and labels are then resampled to unify spacing.
The ROIs of each image are then cropped out according to the label to unify image sizes.

Once the dimensionality of images is reduced, the feature encoder fθ extract features
for both query fθ(x) : Q→ χq and support images fθ(x) : S→ χs . As our aim is to model
only the foreground class in each episode, we considered only the prototypical features of
foreground class s to be extracted. The feature map χq is then resized to mask dimensions
(X, Y). Each foreground prototype ρ in embedding space is calculated using masked
average pooling (MAP) for each foreground class:

ρ = ∑
c

∑(i,j) χ
q(i, j).[η(i, j) = c]

∑(i,j)[η(i, j) = c]
(1)

where (i, j) indexes the spatial locations of query slice and η(i, j) denotes the Dirac measure
which represents the almost sure probability outcome in the sample space. The Dirac
measure is computed by:

η(i,j)(Z) = lZ(i, j) =
{

0, ∀(i, j) /∈ Z
1, otherwise

(2)

where Z(i,j) ←
[

Q(i,j) = c
]

is a sampling function that extracts given spatial coordinates
(i, j) from query image Q having c foreground class. Figure 2 shows samples of multi-
parametric MRI images from the dataset depicting Flair, T2, T1ce, T1 modalities, and label.
The yellow, green, and red regions on the label denote the tumor regions of different levels.
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from the BraTS 2021 dataset depicting Flair, T2, T1ce, T1 modalities, and label. The yellow, green, and
red regions on the label indicate the tumor regions of different levels.

3.2.2. Similarity Feature-Based Segmentation

In order to differentiate query images c from class prototypes, we used a metric
learning-based approach based on non-parametric thresholds. This is performed using a
similarity measure R (Tucker’s congruence coefficient) to compute similarities between
foreground prototype feature class ρ and query feature χq, which is computed by:

R(i,j) = −α
χ

q
(i,j).ρ√(

χ
q
(i,j)

)2
.ρ2

(3)

where α is a scaling factor whose value is set to 20. Studies [9,34] indicated that multiplying
Tucker’s congruence coefficient by α attains considerable performance compared to using
Euclidean distance for similarity measures. It enables incongruent query feature vectors to
receive a relative score of α. To obtain the final dense predicted mask, we performed soft
thresholding with sigmoid function σ(.) along with an evaluated parameter β:

Mq
(i,j) = 1− σ

(
R(i,j) − β

)
(4)

This enables the query feature vectors with a similarity score below β to achieve a
minimum foreground probability which is set to 0.5, whereas feature vectors above 0.5
obtain a foreground probability below β.

Having an end-to-end network to be trained in an iterative manner, where each
episode Qi,Si is taken as input. We calculated the binary cross-entropy segmentation
loss as:

Lseg =
−1
N ∑

(i,j)
∑
pcερ

[η(i, j) = c].log(M)
q
(i,j) (5)

where pc represents prototype features of class c. Following [34], we have also added
a prototype alignment regularization loss which reverses the query and supports set
predictions enabling the information to flow both ways. This greatly helps the model to
align queries and support prototypes. It is computed by:

LPAR =
−1
XY ∑

(i,j)
∑
pq

c ερ

[η(i, j) = c].log(M)
q
(i,j) (6)
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where pq
c represents query features of class c. PAR helps the model to learn in the embedding

space consistently and to align the prototypes generated from the support set.
Thus, the total loss for our model can be formulated as:

LTotal = Lseg + λLPAR (7)

where λ works as a controlling parameter for the effect of PAR loss. In our experiments,
different values of lambda did not lead to significant improvements in score, and hence λ
was kept at 1.

The Algorithm 1 pertaining to foreground prototypes based on few-shot segmentation
is shown below in Figure 3.

Algorithm 1. Foreground prototypes based on few-shot segmentation

Require: Pre-processing of images, such as identifying and cropping out ROI regions of the
image.
Require: Base feature encoder model fθ .
1. Sample Dtrain and Dtest from pre-processed images
2. Initialize {Ctrain, Ctest} empty
3. for Image set {Itrain, Itest} in {Dtrain, Dtest} do
4. cur← 0
5. while i = 0 to C x K do
6. index← i + curr
7. Sample slice u, v from {Itrain [index], Itest[index]}
8. Su ← {xu, yu}//where xu is T2 image and yu is its corresponding
label
9. Qv ← {xv, yv}
10. {Ctrain, Ctest}← {{ Strain, Qtrain} , {Stest, Qtest}} ∈ {Su, Qv}
11. end while
12. end for
13. for {Ci_train, Ci_test} in {Ctrain, Ctest} do
14. Q ← {Ci_train, Ci_test} ∈ Query set
15. S ← {Ci_train, Ci_test} ∈ Support set
16. χq ← fθ(Q)
17. χs ← fθ(S)
18. end for
19. for k = 0 to len(χs) do
20. P[k] ← ρ

(
χs

k
)

// ρ = masked average pooling function (MAP)
21. end for
22. for n = 0 to len(χq) do
23. Predictions[n]← R(P[n], χs

n)
24. Result[n] ← σ (Predictions[n]) // σ = Threshold function to eliminate small
artifacts
25. end for

Here, C x K refers to C-shot K-way based segmentation. C stands for the number of
classes and K for the number of samples from each class to train on. Su and Qv represents
support and query sets for slice u and slice v, respectively. χq and χs are the features
extracted from the query and support set, respectively. R (x,y) represents the cosine
similarity between x and y objects.

The pseudocode logic for training our few-shot segmentation model is shown in
Algorithm 2.
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Figure 3. Demonstration of the procedure for determining the portion of the tumor in each slice.
Here, the first column of each image contains the serial number according to the BraTS dataset and
the corresponding random slice with an intensity threshold > 0.5. The second column contains the
corresponding label of each scan. The third column depicts the layered structure of labels highlighting
tumor levels, area, and mean intensities (MI). The fourth column contains the binarized form of
label data.

Algorithm 2.

Pseudocode for training one-shot segmentation model.
Define the size and dimension of images in the dataset.
Initialization:
Support set S = (x, y), Query set Q = {x́, ý} contains image mask pair having a single slice.
Choose a backbone architecture as a feature encoder model fθ with multi-class identification
having θ parameters.
For epoch in S steps / I iterations.

For each image label pair in the train dataset.
Divide image label pairs into query and support sets containing random slices from

the image. Both the query and support set contain one slice and its corresponding label image.
Pass both sets through the feature encoder model to extract their features.
Calculate support prototypes using masked average pooling of the support features

set.
Perform segmentation based on similarities found between query features and

support prototypes.
Update total loss consisting of segmentation and PAR loss.

End for
End for

4. Experimental Settings
4.1. Dataset

We employed the multimodal Brain Tumor Image Segmentation 2021 (BraTS)
dataset [37–39] as a benchmark to evaluate our model. It contains 1470 NIfTI files of
3D mpMRI scans with an average of 150 slices each. Out of these, 1250 were labeled and
220 were unlabeled validation sets. Only the T2-weighted NIfTI files of each scan were used
for evaluation. In pre-processing, the following steps were carried out: (1) eliminate the
0.5% intensities as an effort to reduce the sharpness in the high end of the intensity curve,
(2) re-sample the number of slices to around 20, preserving the same spatial resolution, and
(3) resize the image to 256 × 256 in order to standardize the dimensions. Furthermore, each
slice is replicated thrice in order to accommodate the RGB channels in our network. To
increase the variability of the data, image transformations (shearing, geometrical changes,
rotations, translations) were applied randomly on slices before feeding them to the network
without augmenting the data.
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4.2. Parameter Settings

We initialized the VGG-16-based encoder with pre-trained weights from Resnet101
trained on MS COCO [40]. The model is trained in an end-to-end manner with a stochastic
gradient descent with a momentum of 0.9, a batch size of 1, a learning rate of 10−3, and
a decay rate of 0.97 per 1000 epochs. Additionally, another weight decay of 5 × 10−4 is
used over 50 k iterations. Weights are applied on foreground classes (1.0) and background
regions (0.2) with cross-entropy loss to address the class imbalances. Out of 1250 MRI scans,
only 60 MRI scans were used for training purposes. The training process as a whole takes 2
h on a Nvidia RTX 3060 GPU. During testing, results are averaged based on a 5-fold cross-
validation of over 1000 iterations per epoch. Foreground classes are produced as a form of
mask over the background region in a binarized format. as shown in Figures 3 and 4.
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Figure 4. Qualitative results of our model with different support sets on two slices of different query
images along with their ground truths. In these figures, tumor regions are depicted in green. The
proposed learning method achieves desirable segmentation results which can be verified with their
corresponding ground truth images.

4.3. Evaluation Metrics

We have utilized dice score and IOU score as metrics to evaluate our model. Dice
similarity coefficient or dice score D is a reproducibility validation metric between segmen-
tations X and Y, and is defined as:

D(X, Y) =
2 ∗ |X ∩Y|
|X|+ |Y| (8)

We used intersection over union (IoU) score to understand the ratio of the predicted
segmentation area to the underlying ground truth. This helps us to understand the amount
of overlap and mean average precision of our model. Precision is another valuable metric
to identify the correctness of our predicted segmentation mask for foreground classes. It is
calculated by dividing the number of correctly predicted tumor region pixels by the sum of
correctly and incorrectly classified tumor region pixels.

4.4. Evaluation Protocols

In the inference stage, query scans are segmented episode-wise based on annotated
support data. The position of the foreground class varies largely. Therefore, an evaluation
protocol that does not depend on the target volume is required. Here, we sampled each
slice from the support foreground volume and used this data to segment the whole query
scan. To effectively carry out this technique, we selected a random slice from the middle of
the support volume which contains a high amount of information regarding the foreground
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class. For effective classification between foreground and background classes, we have
clustered the different levels of tumors in a single class and it is fed forward into the neural
network as a singular target feature. Scores are calculated based on the accuracy of the
mask generated by our model for the target region.

5. Results and Discussion

The experimental results obtained from our FSS model based on training on the
BraTS 2021 dataset (60 training images and 350 testing images) for different N-shot K-way
methods are shown in Table 1. It is observed that in practicality, increasing N and K values
results in a slight-to-no increase in score metrics. This could be due to the random extraction
of slices for the support set which may or may not contain many similarities with the query
images. Moreover, an increasing number of sample images (N-shot) increases the potential
of sampling drastically different sizes, shapes, and intensity tumor regions of different
scans which can affect the score in a negative way.

Table 1. Encoding shape (spatial) and memory usage statistics along with a feature encoding shape
of (1,5,10)—shot (1,5)—way learning models.

Method Input Size (MB) Forward/Backward Pass Size (MB) Estimated Total Size (MB) Encoding Shape

1-shot 1-way 17.56 21,038.63 21,228.29 (22,256,32,32)
1-shot 5-way 21.76 24,863.83 25,057.69 (26,256,32,32)
5-shot 1-way 21.76 24,863.83 25,057.69 (26,256,32,32)
5-shot 5-way 42.73 43,989.76 44,204.69 (46,256,32,32)
10-shot 1-way 27.00 29,645.34 29,844.44 (31,256,32,32)
10-shot 5-way 68.95 67,897.39 68,138.44 (71,256,32,32)

The similarity between ground truth and predicted segmentation is assessed by two
major comparison metrics. We used the mean and maximum dice score and mean and
maximum intersection over union (IOU) score to assess our findings. The maximum metric
of these scores is considered in order to quantify the extent to which our proposed one-shot
segmentation proves to be effective. The performance metrics with 1-shot 1-way show
a high average dice core of 83% and an average IOU of 80.9% compared to the other
increasing number of samples carried out in the conventional studies. Model predictions
along with their ground truths are depicted in Figure 4.

In a typical CNN, the number of features in each feature map is the constant times the
number of input pixels n (typically the constant is <1). Convolving a fixed size filter across
an image with n pixels takes O(n) time since each output is just the sum product between
k pixels in the image and k weights in the filter, and k does not vary with n. Similarly,
any max. or avg. pooling operation does not take more than linear time in the input size.
Therefore, the overall runtime is still linear.

The total trainable parameters in our few-shot model are estimated to be 59,215,000,
with a size of 172 MB. This is subject to change based on the feature encoder model used.
The encoding shape represents the shape of χq and χs after query set (Q) and support set
(S) is passed through fθ , respectively. Table 1 shows the encoding shape and memory usage
statistics of the proposed model.

The experimental results obtained from several deep learning segmentation methods
for brain tumor segmentation are listed in Table 2. We compared our model with these
frameworks, as there are no other few-shot models for brain tumor segmentation. The
OM-Net [6] resolves the imbalance problem of the tumor segmentation class but utilized
more training data. Segtran [7] generated effective receptive fields but had a more complex
architecture. The use of autoencoders in NVDLMED [8] for segmentation makes it more
computationally expensive. In comparison to these models [41], our proposed approach
contains fewer parameters and is not much computationally expensive. Furthermore, our
one-shot segmentation model took a very low inference time for each image, which makes
it very suitable to test unseen images in clinical settings.
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Table 2. Comparative table showing dice scores (in percentage) of different deep learning methods
with the amount of training data (number of MRI scans) used along with dataset names.

Method Training Data Dice (%) Dataset

OM-Net + CGap 559 91.59 BraTS 2015 + BraTS 2018
3DCNN + CRF 338 90.10 BraTS 2015 + ISLES 2015

Segtran 335 81.70 BraTS 2019
NVDLMED 285 87.04 BraTS 2018

AFN-6 274 89.30 BraTS 2015
CNN + 3D filters 274 80.00 BraTS 2015
Few-shot-based 60 83.42 BraTS 2021

Additionally, the proposed approach allows extracting the data required to classify the
definition of borders between foreground and background classes, which can be trained
using very few training images. This unlocks the possibilities of obtaining effective results
in medical imaging applications where a sizable amount of data may not be present. Few-
shot learning models have been proven to be effective in various other domains including
mask aggregation [30], semantic scene segmentation [42], image classification [43], and text
generation [44]. Using minimal data, the few-shot learning technique is able to achieve
significant results in several scenarios. Table 3 shows the dice score results of 1 shot, 5-shot,
and 10-shot for 1-way and 5-way segmentation.

Table 3. Results of (1, 5, 10)-shot (1, 5)-way segmentation on the BraTS 2021 dataset using mean
and maximum dice and IoU metrics (in percentage). Scores are obtained from the validation of
250 randomly sampled volume datasets.

Method
Score Metrics

Avg. Dice Max. Dice Avg. IOU Max. IOU Precision

1-shot 1-way 83.42 ± 0.35 83.85 ± 1.14 80.97 ± 1.12 81.57 ± 1.23 61.03 ± 0.38
1-shot 5-way 83.78 ± 1.14 82.67 ± 2.81 80.99 ± 1.16 81.39 ± 1.61 60.78 ±0.82
5-shot 1-way 83.28 ± 2.27 82.50 ± 3.13 79.44 ± 2.29 80.97 ± 0.25 60.45 ± 1.05
5-shot 5-way 83.41 ± 2.30 81.23 ± 3.43 79.64 ± 2.44 80.22 ± 1.68 60.61 ± 1.75

10-shot 1-way 82.89 ± 2.78 81.45 ± 2.25 79.59 ± 2.54 80.98 ± 3.02 79.62 ± 1.68
10-shot 5-way 83.40 ± 3.28 80.23 ± 4.17 80.02 ± 2.69 80.82 ± 2.93 59.88 ± 2.19

The critical aspect of this study is to identify the largely homogeneous foreground
class in terms of size, shape, and intensity values. This sporadically leads to arbitrary
or inaccurate identification of foreground region in volumes where tumor pixel intensity
(MI < 200) and the background brain region have almost similar values. Our approach of a
single prototype for modeling the foreground classes is based on its uniformity. However,
if this uniformity is not met, and the foreground consists of multiple distinct regions with
strong edges, and then one prototype may not suffice. One option to capture multiple
foreground regions during inference is to take inspiration from [45] and cluster the features
into consolidate multiple foreground classes into one region.

6. Conclusions

In this work, we proposed a prototypical one-shot learning framework to segment
brain tumors on MRI scans. The proposed method is able to extract robust prototypes and
performed segmentation of the foreground class using non-parametric distance calculation.
It is observed that despite using a small fraction of data, we are able to generate almost
equal results compared to the other deep learning approaches. As it is a metric learning-
based approach, it is not bound to be used on a particular type of MRI-scanned image.
Furthermore, it is not required to set a large number of support images as, it is observed that
a single support image (1-shot, 1-way) proves to be effective for segmentation. Moreover,
increasing the support set size reduces the performance slightly. This may be due to
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differences in similarity scores obtained across various heterogeneous-sized foreground
classes. Therefore, we conclude that the foreground prototype-based few-shot learning
approach proposed reduces the amount of training and testing time significantly compared
to conventional deep learning methods. With this model, we prove that significant results
can be obtained in clinical settings where a high amount of data may not be present. Future
work will be in the direction of developing a generic framework that is not bound to any
specific dataset across the healthcare domain.
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