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Abstract 

 

Introduction: Obesity is recognised as a major healthcare challenge. Following years of slow 

progress in discovery of safe, effective therapies for weight management, recent approval of 

glucagon-like peptide 1 receptor (GLP-1R) mimetics, liraglutide and semaglutide, for obesity 

has generated considerable excitement. It is anticipated these agents will pave the way for 

similar application of tirzepatide, a highly effective glucose-dependent insulinotropic 

polypeptide receptor (GIPR), GLP-1R co-agonist recently approved for management of type 2 

diabetes mellitus. 

Areas covered: Following promising weight loss in Phase III clinical trials, liraglutide and 

semaglutide were approved for weight management without diabetes. Tirzepatide has attained 

Fast Track designation for obesity management by the US Food and Drug Association. This 

narrative review summarises experimental, preclinical and clinical data for these agents and 

related GLP-1R/GIPR co-agonists, prioritising clinical research published within the last 10 

years where possible. 

Expert Opinion: GLP-1R mimetics are often discontinued within 24-months, owing to 

gastrointestinal side-effects, meaning long-term application of these agents in obesity is 

questioned. Combined GIPR/GLP-1R agonism appears to induce fewer side-effects, indicating 

GLP-1R/GIPR co-agonists may be more suitable for enduring obesity management. After years 

of debate, this GIPR-biased GLP-1R/GIPR co-agonist highlights the therapeutic promise of 

GIPR modulation for diabetes and obesity. 
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1. Introduction  

According to their most recently published global figures in 2016, the World Health 

Organisation (WHO) estimates there are over 1.9 billion adults currently overweight, while 

650 million are considered clinically obese [1]. Given the uncurbed prevalence of excess body 

weight gain, it is likely these figures will have been exceeded at the time of writing. Indeed, 

according to more recent estimates from the World Obesity Atlas 2022, it is predicted that over 

1 billion people will be clinically obese by 2030 [2], equating to 1 in 5 women and 1 in 7 men 

globally. More recent regional WHO data for Europe indicate a rise in overweight and obesity 

prevalence in children and adolescents during the COVID-19 pandemic, which have been 

compounded by decreases in physical activity and increases in the consumption of foods high 

in fat, sugar and salt [3]. Importantly, the report indicates that obesity will surpass smoking as 

the major risk factor for preventable cancer in many European countries in the coming decades 

[3].  

 

1.1 Pharmacological management of obesity 

While recognised as a major risk factor for stroke and cardiovascular disease [4], type 2 

diabetes mellitus (T2DM) [5] and now increasingly implicated as an environmental driver of 

cognitive decline in the development Alzheimer’s Disease [6, 7], the American Medical 

Association and National Institutes of Health officially recognise obesity as a complex, chronic 

disease in its own right [8, 9]. As such, pharmacological intervention for obesity is becoming 

increasingly accepted.  

 However, it is important to note that lifestyle intervention, namely increasing physical 

activity and reducing calorie intake, remains the first line option for managing patients with 

obesity [10]. While bariatric surgery can also be employed in more extreme cases [11], it is 

usually reserved for patients with a BMI of 40 kg/m2 or more or patients with a BMI of 35 
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kg/m2 or above and a comorbidity such as type 2 diabetes or high blood pressure [12]. Thus, 

pharmacological intervention is a more universally applicable option if lifestyle intervention 

fails. Unfortunately, prescribing options have remained remarkably limited for obesity, owing 

to a chequered past of many small molecule agonists previously employed for the disease. 

Agents such as sibutramine, lorcaserin and rimonabant have been withdrawn in the vast 

majority or regions, due to safety concerns such as increased cardiovascular risk and adverse 

behavioural effects [13-15]. Until relatively recently, the lipase inhibitor orlistat, has been the 

only universal mainstay in obesity management [16]. However, the well documented 

unpleasant gastrointestinal (GIT) side-effects of orlistat limit patient uptake and compliance. 

Thus, there has been real optimism following the recent demonstrated effectiveness and 

approval of glucagon-like peptide-1 (GLP-1) mimetics, liraglutide and semaglutide [17, 18], 

for management of obesity, with hope that the genuine success of these peptide agents in type 

2 diabetes (T2DM) can be translated to obesity.  

 

2.0 Glucagon-like peptide-1 mimetics  

GLP-1 is a gut-derived, 29 amino acid residue hormone, released post-prandially from 

intestinal L-cells, particularly following meals rich in fat and carbohydrate [19, 20]. GLP-1 

secretion is biphasic, with an early phase occurring 10-15 min after meal ingestion and a 

second, more prolonged, phase occurring 30-60 min post meal [21]. The primary biologically 

active form of the peptide is GLP-1(7-36)-amide, generated by tissue-specific post-

translational processing of the proglucagon gene by prohormone convertase enzymes [22]. 

Upon binding to the GLP-1 receptor (GLP-1R) on pancreatic beta-cells, GLP-1 promotes 

glucose-dependent insulin secretion via stimulation of intracellular cAMP-mediated events and 

also encourages glucose-induced biosynthesis of insulin, resulting in replenishment of insulin 

stores within beta-cells [21, 23; Figure 1]. Furthermore, there is evidence to suggest that GLP-
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1R activation enhances pancreatic beta-cell growth and survival, at least in rodents [25, 26; 

Figure 1]. In addition, GLP-1 is also known to supress glucagon secretion, with some debate 

as to whether this is related to a direct effect on alpha-cells or mediated indirectly through 

increased somatostatin secretion from islet delta-cells [24]. As a result of these combined 

positive effects on glucose modulating islet-derived hormones, sustained activation of GLP-

1R has seen successful clinical application in the management of T2DM.  

 

2.1 GLP-1 mimetics in type 2 diabetes 

Endogenous GLP-1 is subject to extremely rapid N-terminal degradation by the ubiquitous 

serine protease dipeptidyl peptidase-4 (DPP-4) [27], which cleaves an N-terminal dipeptide to 

generate GLP-1(9-36), a weak GLP-R antagonist. Ultimately, this means that the insulinotropic 

effects of the native peptide are rapidly lost in the circulation, rendering it unsuitable for 

therapeutic utilisation.  

 In order to combat this rapid enzymatic inactivation, various long-acting GLP-1 

analogues have been developed for the management of T2DM. The first such analogue was 

exendin-4, originally isolated from the saliva of the venous Gila monster (Heloderma 

suspectum) lizard [28]. Exendin-4 is a potent agonist for mammalian GLP-1Rs, effectively 

bringing about GLP-1R-mediated benefits on glycaemia [28, 29], and importantly also 

possesses inherent resistance to DPP-4 inactivation [30]. Synthetic exendin-4, exenatide, 

attained clinical approval for T2DM in 2005 (Byetta), and has since become a widely 

prescribed second- and third-line agent for this disease. Subsequent medicinal chemistry and 

drug formulation innovation has seen the successful development of liraglutide, which is a 

stable once-daily GLP-1 mimetic based on the structure of human GLP-1, and even longer-

acting GLP-1 analogues that allow for once weekly delivery. These second-generation drugs 

include exenatide extended-release as well as semaglutide and dulaglutide analogues that are 



6 
 

based on the sequence of human GLP-1 [31-33]. While all these GLP-1 mimetics are injectable 

agents, it is noteworthy that an oral version of semaglutide (Rybelsus) formulated with sodium 

N-(8-[2-hydroxybenzoyl] amino) caprylate to protect against stomach degradation, is now 

available as a once-daily tablet [34], but requires extremely high doses of semaglutide to 

provoke effective glucose-lowering actions.   

 

2.2 GLP-1 mimetics in obesity 

In addition to the positive effects of GLP-1 on insulin secretion and beta-cell survival [21, 23; 

Figure 1], the hormone has long been understood to play an important role in delaying gastric 

transit and promoting satiety [Figure 1]. These actions are linked to activation of GLP-1Rs at 

central and peripheral enteric neurons to slow gastric emptying and intestinal transit, as well as 

suppress appetite at the level of the hypothalamus, together influencing a mechanism termed 

the “ileal brake” [35; Figure 1]. It is clear that a complex gut-brain relationship is at play given 

the presence of releasable stores of GLP-1 and its target receptors in both peripheral and central 

locations [35,36; Figure 1]. Indeed, satiety is influenced by activation of GLP-1R present in 

both the central nervous system, while the gut is further modulated by vagal-derived 

cholinergic signals [36]. It has been suggested that centrally, modulation of the anorexigenic 

proopiomelanocortin (POMC) neurons is responsible for satiating effects, given they possess 

GLP-1Rs and are present in the nucleus tractus solitarius (NTS), the site of GLP-1 production 

in the brain [36]. This complex interplay likely explains why an intact vagus nerve is required 

for the satiating effects of exogenous GLP-1 when delivered by intraperitoneal injection, but 

not when delivered intravenously [35,36]. Promotion of satiety has been demonstrated to 

impart significant weight loss in T2DM patients receiving GLP-1 analogues [36], hence 

enthusiasm in repurposing of GLP-1 analogues as anti-obesity agents, in the absence of T2DM.  
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Such exploitation was realised in 2020 following the approval of liraglutide (marketed 

as Saxenda for obesity) as the first GLP-1 mimetic to gain regulatory consent for management 

of obesity, without concurrent diabetes [17]. Related phase III clinical trials (Satiety and 

Clinical Adiposity – Liraglutide Evidence in non‐diabetic and diabetic individuals; SCALE) 

demonstrated a sustained 2-year weight loss of 5-10% in non-diabetic participants receiving 

liraglutide, when employed in addition to patient education on increased physical activity and 

some restriction of food intake [37; Table 1]. The increased dose of liraglutide for obesity as 

compared to diabetes, 1. 8 mg vs. 3.0 mg, respectively, has been a topic of some concern [17, 

38]. As such, the SCALE trials indicated that when liraglutide was employed at a dose of 3.0 

mg it was subject to largely the same GIT side-effects as the 1.8 mg dose used in T2DM but 

the incidence of severe adverse effects was increased [17]. Moreover, the trial confirmed that 

any positive effects in terms of decrease in body weight are lost upon drug discontinuation, 

necessitating long-term therapy. In this respect, in T2DM as many as 70% of patients in the 

US receiving GLP-1 therapies discontinue within 24 months, largely due to GIT related side-

effects [39]. In good agreement, a related study indicated that over 60% of patients cite feelings 

of nausea or GIT discomfort as the primary reason for discontinuation of GLP-1 mimetics [40]. 

In that regard, it will be interesting to track how this adverse effect profile affects translation 

of longer-term GLP-1 benefits on obesity in the real-world setting, especially since both 

liraglutide and semaglutide are used at higher doses in obesity than for T2DM. 

Following the successful approval of liraglutide for obesity, Phase III clinical trials 

(Semaglutide Treatment Effect in People with obesity; STEP) demonstrated that once weekly 

semaglutide induced an average weight loss of 14.9% following 68 weeks treatment in obese 

and overweight adults, with an acceptable adverse effect profile linked to anticipated GIT 

actions [41; Table 1]. Previous studies had already indicated that semaglutide elicited superior 

weight loss than liraglutide [42]. Injectable semaglutide gained FDA approval for obesity in 
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2021 (marketed as Wegovy), with subsequent approval by the MHRA and EMA following in 

2022. As with liraglutide, the dose for obesity of 2.4 mg, is higher than the 2.0 mg employed 

in T2DM [43]. However, an 18-week titration window with injectable semaglutide may help 

partially alleviate discontinuation issues, by potentially reducing troublesome GIT adverse 

effects. Additionally, oral semaglutide has now been approved for T2DM and demonstrates 

promising body weight reductions and tolerability in the PIONEER 8 trials in T2DM patients 

[44]. Phase III clinical trials in obese individuals are set to be conducted in 2023, investigating 

the effects of 50 mg of oral semaglutide daily over a 68-week period [45; Table 1]. The 

significant dose increase from T2DM to obesity is notable but relates to the poor oral 

bioavailability of oral semaglutide, reported to be in the region of 0.8% [46].  

 

3.0 GIP mimetics 

Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid peptide hormone 

secreted from intestinal K-cells of the duodenum and proximal jejunum [47]. Like GLP-1 [19, 

20; Figure 1,2], GIP is released in response to macronutrient load in the gut, working together 

with GLP-1 to induce the ‘incretin-effect’. As such, GIP enhances glucose-stimulated insulin 

secretion following binding to GIP receptors (GIP-R) on the beta-cell [48; Figure 1], 

augmenting adenyl cyclase signal transduction pathways [49], similar in many respects to GLP-

1 [50]. Further overlap exists with GLP-1, as GIP is also subject to rapid degradation by DPP-

4, generating the inactive GIP(3-42) metabolite [51]. Indeed, this DPP-4 degradation fragment 

may even function as a weak GIPR antagonist, especially at high concentrations [52; 53]. 

Additionally, GIP and its receptor have been evidenced within the brain, with GIPR expression 

in the hypothalamus being implicated in the modulation of feeding, particularly within arcuate, 

paraventricular, and dorsomedial nuclei, hypothalamic regions associated with energy balance 

[54, 55; Figure 1] however the exact mechanisms at play within these regions are yet to be 
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confirmed. Moreover, the peripheral actions of GIP in improving insulin sensitivity in 

adipocytes and modulate overall lipid metabolism positively influence overall energy balance 

and can benefit weight loss [55]. Thus, given the complementary actions of these hormones, 

the development of a dual-acting GIPR/GLP-1R agonist is entirely logical.  

In that respect, the antidiabetic efficacy of several first-generation GIP compounds with 

N-terminal modifications at positions Tyr1 or Ala2 were documented some 20 years previously 

[56]. These GIP analogues were highly effective in the preclinical setting using animal models 

of obesity and diabetes [57-59]. Furthermore, second-generation acylated versions of these GIP 

analogues with extended biological half-lives also exhibited impressive antidiabetic profiles in 

animal models of diabetes [60-63]. Moreover, advocation of GIPR agonist therapies in T2DM 

is supported by early studies that confirm GIP as the major incretin hormone [64, 65]. However, 

concerns over a postulated lack of bioactivity of GIP in human T2DM hindered clinical 

progression [66]. 

 

4.0 Tirzepatide, a GLP-1R/GIPR co-agonist  

Considerable excitement has surrounded Eli Lilly & Co’s next-generation peptide therapeutic 

for T2DM, namely tirzepatide (Mounjaro). Not unlike some of the above-mentioned therapies, 

tirzepatide is a synthetic, linear peptide containing 39 amino acids, also incorporating a C20 

diacid fatty acid that directly contributes to a half-life of approximately 5 days [67; Figure 2], 

allowing for weekly dosing. However, tirzepatide sets itself apart from earlier peptide therapies 

through a dual-acting biological profile, functioning as an agonist at both GLP-1 and GIP 

receptors to elicit its biological actions [67]. Indeed, the structure of tirzepatide has strong 

parallels with GIP, together with sequence modifications to also encourage GLP-1R binding 

and activation [Figure 2], thus building on early preclinical work with GIP therapeutics [68].  



10 
 

In that regard, tirzepatide attained US Food and Drug Association (FDA) approval for 

the management of T2DM in May 2022 following impressive Phase III (SURPASS-3) clinical 

trial data, where the peptide induced superior HbA1c reductions than dulaglutide (2.4-2.8% 

compared to 1.3%) following 52 weeks treatment [69; Table 1]. Interestingly, HbA1c reductions 

were noted to be largely independent of age [70]. However, in this regard it is important to note 

that while over 1200 participants in the SURPASS program achieved HbA1c levels of below 

5.7%, these individuals tended to be both younger and have had a shorter duration of disease 

[71]. Doses of 5, 10 and 15 mg were employed in the SURPASS trials and the current 

recommended dose is 5 mg daily which can be titrated to a maximum dose of 15 mg in 2.5 mg 

increments [72].  

Beyond glycaemic benefits, tirzepatide has been demonstrated to induce profound 

reductions in body weight. Phase II clinical trials in T2DM patients indicated highly impressive 

body weight reductions of 5-10% alongside substantial reductions in waist-circumference 

following 12 weeks administration [73]. Tirzepatide-induced reductions of body weight were 

over three times greater than with dulaglutide, being attributed to complementary benefits of 

GIPR/GLP-1R modulation on inhibition of appetite and gastric emptying, as well as the ability 

of GIPR to curb GLP-1 induced emesis, leading to improved overall effectiveness and 

tolerability [67]. It is important to note that appetite reduction was measured as a self-reported 

score, hence further study will be required to elucidate synergistic mechanisms between GLP-

1/GIP centrally and in the periphery in regulating appetite. Such findings are supported by data 

arising from Phase III clinical trials (SURPASS-3), that demonstrated a 7.6-11.2% weight loss 

in participants receiving tirzepatide, in comparison to 5.7% induced by semaglutide alone 

[73,74]. Hence, tirzepatide is claimed to be a potential game changer in terms of 

pharmacological interventions for obesity. Indeed, on October 6th 2022, the FDA granted Fast 

Track designation for tirzepatide in obesity management, with the results of a current Phase III 
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clinical trial (SURMOUNT-MMO; 75), anticipated to be completed in April 2023, being the 

primary factor relating to how expedited this process will actually be.  

 Given the strong similarity of tirzepatide with the amino acid sequence of GIP [Figure 

2], it is not unsurprising that in vitro mechanistic studies reveal strong bias towards the GIPR, 

activating this receptor with equipotency to native GIP whilst having 5-fold weaker affinity 

than native GLP-1 at GLP-1R [76; Figure 2]. This poses a question as to the importance of 

each receptor interaction in driving the pro-glycaemic and weight-loss effects of tirzepatide. 

When investigated in murine pancreatic islets lacking GLP-1R’s, tirzepatide-stimulated insulin 

secretion was abolished when co-cultured with a GIPR antagonist [67]. Additionally, in islets 

from GIPR knock-out (KO) mice, tirzepatide-stimulated insulin secretion is completely 

blocked by GLP-1R antagonism [67], indicating the importance of both receptors for beneficial 

effects of the peptide in relation to insulin secretion. Although species-specific activity of GIP 

amino acid sequences [77], that is not observed with GLP-1, may make it difficult to interpret 

and translate exact receptor selectivity importance of tirzepatide from the rodent setting to 

humans. In addition, additive or even synergistic benefits of combined GLP-1R/GIPR 

signalling would not be fully quantifiable when using receptor KO models of individual 

receptor pathways, since signalling pathway interactions are unable to be examined. A similar 

paradigm has been noted when attempting to understand the additive benefits of GLP-1 

alongside other related gut derived hormones, such as cholecystokinin or gastrin [78,79]. This 

could be particularly important when it comes to the side-effect profile of tirzepatide and long-

term tolerability in patients. For example, it has been suggested that anti-emetic effects GIPR 

agonism combined with GLP-1R agonism improves tolerability of tirzepatide when compared 

to GLP-1 mimetic monotherapy [80], especially given the higher doses employed for GLP-1 

mimetic monotherapy in obesity management. That said, the incidence of GIT side-effects 

were only modestly reduced in tirzepatide receiving subjects than in those receiving 
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semaglutide [74]. Although in this study, semaglutide was employed at a lower dose than is 

now recommended for obesity, meaning tirzepatide may have a competitive edge in this 

respect.  

 

5.0 Further GLP-1R/GIPR co-agonists in development  

While representing the first major success in terms of the clinical application of GLP-1/GIP-R 

co-agonism, it is important to note that tirzepatide builds on a considerable body of previous 

work exploring this combination. Indeed, the first chimeric GLP-1/GIP chimeric peptides were 

first described over 25 years ago [81], with other related dual-acting peptides only being 

characterised several years after this [82-84].  

 In this regard, preclinical studies in genetically obese-diabetic (ob/ob) mice indicated 

that combination therapy with a stable, N-terminally acylated GIP analogue, N-AcGIP, with 

the GLP-1R agonist exendin-4, elicited superior improvements in glucose tolerance and insulin 

sensitivity than exendin-4 alone [85]. Notably, no body weight reduction was observed over 

the sub-chronic, 14-day study with combined N-AcGIP and exendin-4 therapy [86]. However, 

the relatively short treatment period could be a factor in terms of lack of effect of the GIPR and 

GLP-1R agonist combination therapy on adiposity in the ob/ob mice. Indeed, the effectiveness 

of this approach was further endorsed through later studies utilising administration of an 

acylated GLP-1 and GIP preparations in the same mouse model [87]. The initial promise of 

GIPR and GLP-1R combination therapies led to the generation of a unimolecular molecule, 

termed N-Ac(d-Ala2)GIP/GLP-1-exe, combining a N-AcGIP molecule with exendin-4 [84], 

which brought about significant body weight reduction in addition to improved glucose 

handling and insulin sensitivity in diet-induced obese (DIO) mice. Although, the receptor 

balance profile of N-Ac(d-Ala2)GIP/GLP-1-exe has not yet been fully explored, making it 
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difficult to determine the relative impact of GIPR and GLP-1R signalling in these observed 

metabolic improvements [85,86].  

 Intriguingly, a balanced GLP-1/GIPR unimolecular co-agonist has been described in 

the literature, with development appearing to run largely in tandem with that of tirzepatide. 

Denominated in the literature as RG7697, or NNC0090-2746, this molecule was designed on 

a glucagon-based core, with residues from native GIP, GLP-1 and also exendin-4 incorporated 

into the sequence, to produce a balanced GIPR/GLP-1R binding profile [82; Table 1], although 

modest affinity for the glucagon receptor (GCGR) was retained. The molecule progressed as 

far as Phase II clinical trials [87; Table 1], with comparison against liraglutide (1.8 mg) noting 

similar reductions in HbA1c following 12 weeks administration in subjects with T2DM, 

although body weight reductions were significantly improved over liraglutide [88]. While both 

molecules were employed at 1.8 mg, it is important to note that this is considerably lower than 

3.0 mg currently utilised for liraglutide in obesity management [17]. It is unclear why RG7697 

has not progressed further, but higher rates of discontinuation with RG7697 as compared to the 

liraglutide may be a factor [88], as well as requirement for once daily injection [67, 89, 90]. In 

addition, the combined impact of GIPR, GLP-1R and GCGR activation on the cardiovascular 

system, particularly in relation to elevated heart rate [74], could also be a factor that requires 

consideration. Moreover, it appears that Novo Nordisk is currently attempting to emulate their 

success with oral semaglutide, through the development of an oral GLP-1/GIPR agonist, 

reported to be undergoing Phase I trials [91, 92], but information on this molecule is sparse at 

the time of writing. 

 Beyond obesity and diabetes, it is worth documenting that GLP-1/GIPR co-agonism is 

also being explored in neurodegenerative diseases [Figure 1]. This is noteworthy given that 

obesity is becoming increasingly recognised as a risk factor for neurodegenerative disorders 

[6, 7]. A unimolecular GLP-1/GIPR co-agonist, DA5-CH, which crosses the blood brain barrier 
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(BBB) [93], was shown to improve cognition, memory retention and motor function in a 

superior manner to exendin-4, liraglutide or semaglutide in rodent models of Alzheimer’s and 

Parkinson’s disease [94, 95]. While no metabolic data was published for DA5-CH within these 

studies, it would be interesting to assess potential benefits in relation to glycaemia and weight 

loss, particularly given the increasing role assigned to obesity in the pathophysiology of 

neurodegenerative disorders [6, 7, 93]. In support of this, work with DA5-CH actually builds 

on findings relating to the neurological benefits of the aforementioned N-Ac(d-Ala2)GIP/GLP-

1-exe dual acting peptide, that was demonstrated to augment recognition memory, hippocampal 

neurogenesis, synapse formation and reduce neuronal oxidative stress in DIO mice, alongside 

benefits on metabolism [84]. In good harmony, earlier work had already confirmed cognitive 

benefits of up-regulation of either GIPR [96; Figure 1] or GLP-1R [97; Figure 1] signalling in 

obese mice with impaired memory and cognition.  

Finally, there are established benefits of GIP on bone formation in both animal models 

and humans with T2DM [98, 99; Figure 1], with a suggestion that GLP-1 may also positively 

impact bone composition [100]. Indeed, similar to the picture with neurodegenerative 

disorders, obesity is also noted to have a negative impact on the osteocyte network and overall 

bone quality [101]. Thus, dual GIPR/GLP-1R activation may also lead to improvements in 

bone homeostasis as documented with DPP-4 inhibitors [102], which is relevant since T2DM 

is linked with increased bone fragility [103].     

 

6.0 Conclusion  

 The approval of semaglutide and liraglutide for weight management has been met with 

considerable excitement [17, 18]. Conversely, given high discontinuation rates observed in 

T2DM [39], application of these medications for long-term management of obesity remains 

unclear. Importantly however, their successful clinical application has likely paved the way for 
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use of the first GLP-1R/GIP-R co-agonist, tirzepatide, in obesity [67, 75], following recent 

approval of this molecule in T2DM. Moreover, the success of this GIPR-biased molecule has 

finally highlighted the potential of GIPR-modulation for the treatment of obesity and T2DM 

[67], after decades of debate. Once considered the poorer relative of GLP-1, these new and 

exciting observations with GIPR modulation confirm the longstanding belief that GIP possess 

translatable benefits for human disease [68].  

 

7.0 Expert Opinion  

Amid many years of stagnation in the approval of new, safe and effective therapies for obesity, 

the considerable excitement surrounding the recent approval of GLP-1R mimetics liraglutide 

and semaglutide in 2021[Table 1] for the management of the condition is understandable. 

Indeed, such has been the popularity of these therapies for weight loss that global shortages of 

semaglutide have been witnessed in 2022, likely compounded by prior off-label use of the 

GLP-1R mimetic before regulatory approval of semaglutide in 2021 [43, 104]. In addition, the 

increased dose requirement for obesity, as well as for oral application in T2DM, have likely 

compounded semaglutide peptide supply issues. Furthermore, it is important to note that 

application of GLP-1 therapies for obesity is in relative infancy, with considerable intrigue 

surrounding the longevity of these agents, given the already high drug discontinuation rates in 

T2DM coupled with elevated doses employed for weight management [18, 37, 39]. In this 

respect, a reduced GIT side-effect profile with tirzepatide in T2DM is encouraging [74], 

suggesting prolonged treatment within the confines of obesity may be more achievable with 

tirzepatide than GLP-1 monotherapy counterparts. 

Ethnic differences may play an important role in the universal application of GLP-1 

mimetics for obesity. As such, in relation to T2DM management, concern over the use of GLP-

1R mimetics has been noted in Asian populations who appear to be at increased risk of 
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sarcopenia [105], while the same could also be true for the elderly. Thus, GLP-1 induced 

weight-loss has thus far been primarily reported as a crude percentage of body weight or BMI 

reduction, rather than specific fat mass loss [18, 36]. In addition, the WHO BMI classifications 

have been defined as inappropriate for Asian populations [106]. Thus, the relative “quality” of 

GLP-1 mimetic induced weight loss, i.e., fat mass over lean or muscle mass reductions, may 

be pertinent in this regard. More positively, a recent study in rodents indicated semaglutide 

specifically reduced the accumulation of intramuscular fat, promoted muscle protein synthesis, 

increased skeletal muscle proportion and improved muscle function in DIO mice [107], 

although translation to the human setting is still required.  

As highlighted above, the recent approval of GLP-1R mimetics for management of 

obesity will likely pave the way for application of tirzepatide in weight management. Assumed 

uptake of tirzepatide in the diabetes and obesity clinic may also lead to realisation of more 

complex unimolecular agonists, that modulate pathways beyond that of only GLP-1R and 

GIPR. In that respect, multiagonism more closely emulates the hormonal changes 

demonstrated following Roux-en-Y gastric bypass (RYGB) surgery, following which 

numerous gut hormones are upregulated and are becoming more recognised as major dictators 

of the T2DM remission and  profound weight loss seen post-surgery [108]. Indeed, the 

therapeutic potential of other unimolecular peptidic agents has been reviewed recently [109]. 

Nonetheless, it appears that after many years of debate, tirzepatide has endorsed the therapeutic 

promise of GIPR modulation for diabetes. In addition, it is well recognised that obesity is as a 

major risk factor for stroke and cardiovascular disease as well as certain kinds of malignancy, 

thus GLP-1 mimetics or related dual agonists such as tirzepatide will likely improve outcomes 

in this respect. In keeping with this, GLP-1R mimetics are known to improve cardiovascular 

risk in T2DM, largely independent of their antihyperglycemic actions [110]. 
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Interestingly, the discovery of GIP was made over a decade prior to that of GLP-1 [111, 

112], hence it poses the question as to why its therapeutic application has taken this long to be 

realised? The answer is probably two-fold, and relates to a documented inefficacy of GIP in 

patients with T2DM [66], although this phenomenon appears to be reversible when glycaemia 

is returned to more normal values [113]. Secondly, a continuing debate remains as to whether 

GIPR agonism or antagonism is of most benefit in T2DM and obesity? In this regard, GIP was 

once referred to as an “obesity hormone”, due to direct actions on GIPR present on adipocytes 

that promote lipid accumulation [114]. Additionally, GIPR KO mice were reported to be 

resistant to the adipogenic effects of a high fat diet [115], but this is also true for GLP-1R KO 

mice [116]. Conversely, the hormone has been demonstrated to also possess a lipolytic effect 

[117], albeit in in vitro settings. Either way, it is clear that GIP exerts important direct actions 

on lipid metabolism that merit further investigation [118, 119].  

Taken together, modulation of GIP action presents something of a conundrum, in that 

antidiabetic and anti-obesity benefits of GIPR agonism and antagonism have been 

demonstrated. Indeed, obesity and hyperphagia are attenuated by central and/or peripheral 

injection of a GIPR-neutralising antibodies and GIPR antagonist peptides [120-123], while in 

preclinical studies, benefits of sustained GIPR blockade have been demonstrated alone and in 

combination GLP-1R mimetics. Thus, the partial GIPR antagonist, (Pro3)GIP, has originally 

been demonstrated to improve obesity-related diabetes, reducing islet hypertrophy and 

improving insulin sensitivity [124], while also eliciting 8% weight loss following 

administration alone in obese mice [125]. These observations have been largely confirmed by 

others employing GIPR monoclonal antibodies [126]. Interestingly, there is a suggestion that 

the metabolic benefits of chronic GIPR agonism are related to desensitisation of the GIPR, thus 

mimicking GIPR antagonism [127]. Although, this GIPR desensitisation theory still requires 

significant further investigation and confirmation. 
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 In terms of a combination approach for GIPR antagonism and GLP-1R agonism, 

related investigations demonstrate that co-administration of GIPR monoclonal antibody, with 

various GLP-1R mimetic therapies, elicits superior weight-loss over monotherapy in obese 

mice and non-human primates [128]. Similar, but less pronounced benefits of a peptide based 

GIPR antagonist in combination with liraglutide have subsequently been noted in DIO mice 

[129]. More recently, the peptidic GIPR antagonist, [Nα-Ac, L14, R18, E21] hGIP(5-31)-

K11(γE-C16) has been described as potentiating the weight loss benefits of semaglutide alone, 

when administered over 28 days in DIO mice [130]. Furthermore, preclinical studies suggest 

an optimised scheduling to annul GIPR signalling and promote GLP-1R signalling at specific 

times during the day may be important for therapeutic benefits, interchanging between GIPR 

blockade during periods of inactivity and GLP-1R agonism during the active hours [131]. 

However, a more recent study has characterised a bi-specific antibody that combines GIPR 

antagonism and GLP-1R agonism within the same compound and revealed beneficial weight 

reducing actions in mice and monkeys [132], arguing against a scheduled daily dosing pattern.  
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Article Highlights  

Approval of GLP-1R mimetics liraglutide and semaglutide for weight management paves the 

way for peptide therapies in obesity.  

FDA approval of tirzepatide for type 2 diabetes management has been met with considerable 

excitement owing to significant glycaemic and weight loss benefits.  

It is anticipated tirzepatide will ultimately find clinical application in obesity management. 

Debate remains as to whether GIPR agonism or antagonism is of most metabolic benefit, but 

the pendulum is swinging towards agonism.  

The therapeutic potential of GIPR modulation may now be realised in management of 

metabolic disease.  

 

Figure legends 

Figure 1. An overview of the biological actions of endogenous glucagon-like peptide-1 (GLP-

1) and glucose-dependent insulinotropic peptide (GIP) in man. Tissue-specific effects of GLP-

1 and GIP are provided for relevant organs in green or blue, respectively.  

 

Figure 2. A peptidic structure analysis of glucose-dependent insulinotropic peptide (GIP) (1-

42), glucagon-like peptide-1 (GLP-1) (7-36) and tirzepatide, a dual GIP/GLP-1 receptor co-

agonist. Amino acid residues are provided as their single-letter abbreviations. Residues shared 

with GIP(1-42) are shaded in blue, shared with GLP-1(7-36) are shaded in green, residues 

shared with both GLP-1 and GIP are indicated in orange and those unique to tirzepatide are 

shaded in grey. The fatty acid modification of tirzepatide is indicated in yellow. Receptor 

affinities are also indicated based on values reported in the literature [75].  
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Table 1. A summary of GLP-1R mimetics and GLP-1/GIPR co-agonists studied in obesity management 

  
Therapeutic 

Name 
Administration 

Route 
Mechanism 

of Action 
Regulatory 

Approval/Development 
Stage 

Study Duration 
(months) 

Cohort 
Size 

Endpoints 
Assessed 

Weight Loss 
Outcome (%bw 

loss) 

Reference 

Liraglutide 
(Saxenda) 

Injectable GLP-1R 
agonist 

2019 24 846 BMI, WC, 
HbA1c, 

FPG, FPH, 
FPL, QOL 

5-10 37 

Semaglutide 
(Wegovy) 

Injectable GLP-1R 
agonist 

2021 5.5 1961 BW, BC, 
QOL 

14.9 41 

Semaglutide 
(Rybelsus) 

Oral GLP-1R 
agonist 

Phase III (commencing 
2023) 

5.5 198* BMI, WC, 
VFM, 

HbA1c, 
FPL 

- 45 

Tirzepatide Injectable GLP-
1R/GIPR 
co-agonist 

Phase III (T2DM) 12 1879 BMI, WC, 
QOL, 

FPL, FPG, 
HbA1c, 

HOMA-IR 

7.6-11.2 74 

RG7697 Injectable GLP-
1/GIPR co-

agonist 

Phase II 3 108 BW, 
HbA1c, 

FPG, FPL, 
FPH 

2.86 88 

 
Assessed endpoints include body mass index (BMI), waist circumference (WC) measurement, glycated haemoglobin (HbA1c), fasting plasma 
glucose (FPG), fasting plasma hormones (FPH) encapsulating insulin, glucagon and c-peptide measurements, quality of life (QOL) questionnaires, 
body composition (BC) as measured by dual-energy X-ray absorptiometry, visceral fat measurement (VFM) as measured by CT-scan and 
homeostatic model assessment for insulin resistance (HOMA-IR).
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