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Computer networks form much of the infrastructure supporting day-to-day life in this digital age. Computer 
networks, however, are prone to attack and therefore require intrusion detection systems. Intrusion detection 
systems provide a mechanism to detect network attacks at an early stage and generate alerts. These systems, 
however, are far from a panacea. Rather, they tend to overwhelm their operators with alerts, which in more 
than 90% of cases can be false positives. As such, the problem of false positives in intrusion detection systems 
is a costly issue. This paper presents research to design a hierarchical network intrusion detector, using deep 
learning, which protects against raising vast numbers of false positives through the design and implementation 
of a hierarchical NIDS. This paper presents a valuable advancement in performance by reducing the occurrence 
of false alarms by 87.52%. The research contained in this paper presents three contributions to knowledge. The 
first of these is the comparison between hierarchical systems and non-hierarchical systems to understand which 
would yield fewer false alarms. The second contribution is the formulation of a hierarchical approach, which 
was able to reduce false alarms by 87.52%. Lastly, the proposed hierarchical model was deployed in a live IoT 
environment, exposed to genuine threats, and the performance in this environment was analysed.
1. Introduction

Networked systems are in a state of continual growth, and are the 
backbone of much of our modern day infrastructure and services. From 
smart homes, to connected health, all the way to interconnected self-

driving cars, network infrastructure forms a crucial part of our everyday 
lives. This growth is only likely to accelerate with the emergence of the 
Internet of Things (IoT), meaning that billions of small devices will be 
equipped with the ability to communicate with eachother in a seamless 
manner (Čolaković & Hadžialić, 2018).

This stark increase in the amount of network traffic, combined with 
an increase in the amount of valuable data and services supported by 
networked infrastructure, leads to an increase of cyber-security threats 
due to the massively increased attack surface. These threats can result 
in severe consequences where large amounts of personal data may be 
leaked or stolen, such as was the case with the recent attack on Virgin 
Media (Kleinman, 2020). Attack consequences can be severe, beyond 
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the initial issues of losing data or having service outages. For example, 
companies can be subject to large fines in the case of a data breach, such 
as was the case when an international airline was fined £20 million 
for a data breach in 2018 (Statement, 2019). Moreover, when a data 
breach occurs it often results in a reduction of the customer’s trust in 
the company, thereby reducing their loyalty (Chen & Jai, 2019). The 
consequences of a network attack have also been known to propagate 
into wide areas, if the hacker is clever enough with how they deploy 
their exploit. Such was the case with the massive Distributed Denial of 
Service (DDoS) attack of 2016, where networked security cameras were 
leveraged as a BotNet army to eventually bring down the internet across 
the entire east coast of the U.S.A. (Hay Newman, 2016). The VMware 
Global Threat report, (VMware, 2020), indicated that the COVID-19 
pandemic had led to a large increase, with 91% of respondents noting 
an increase in cyber-attacks. This can be attributed to many employees 
now working from home.
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With network attacks now growing at an unprecedented rate, net-
work security engineers are tasked with developing and deploying 
methods of detecting and preventing these attacks. One such way of 
detecting attacks on a networked system is through the deployment of 
a Network Intrusion System (NIDS) (Chaabouni et al., 2019), which 
analyses network traffic and raises alerts if an attack is thought to have 
occurred. Once an alert is raised, it is usually sent to an operator to pro-
cess and determine the severity of the threat, meaning that operators 
can be tasked with dealing with very high volumes of alerts to potential 
threats (McElwee et al., 2017). These network attacks could be from a 
variety of sources, and may be varied in their characteristics. The at-
tacks may range from reconnaissance techniques such as port scanning, 
all the way to Denial of Service (DoS) attacks. These varying attacks 
manifest themselves differently within the network traffic. For exam-
ple, with a DoS attack, we may see repeated requests from a malicious 
attacker to connect to a service on the target system (Schuba et al., 
1997). In the case of a port scan attack, we may see half-open TCP 
handshakes, effectively characterising an attacker’s attempt to under-
stand if the service answers the request (Hartpence & Kwasinski, 2020). 
The scans often occur on ports which are known to have security im-
plications, such as default SSH or HTTP ports. These port scans may 
also originate from a number of addresses in the network, or be spaced 
out over a long period of time, while still being part of the same attack 
(Griffioen & Doerr, 2020). These characteristics make this particular 
type of attack often difficult to detect. Therefore, with a range of attack 
types which can often be difficult to identify, research into the devel-
opment of NIDS is a growing field which continues to gain interest. 
Moreover, as network usage increases for critical tasks, the attacks in-
crease in tandem, leading to an increased number of security measures 
being deployed. Inevitably, however, these methods are eventually cir-
cumvented by unscrupulous hackers, meaning that security engineers 
must develop new solutions of detecting and mitigating the new at-
tacks. Therefore, NIDS is a field of growing and evolving research, and 
is the central subject of this research paper.

Of particular concern within the research area of intrusion detection 
is the notion of handling false alarms. Large networks may be respon-
sible for generating extremely verbose data, which may range up to 
millions of events per second. This constitutes a vast sea of data, most 
of which is benign in nature. The challenge then arises when trying to 
detect malicious behaviour amid this vast set of data. As a result, any 
system engineered to detect these minority patterns in data must be 
extremely sensitive to any potential threat. This then leads to the detec-
tion systems generating a vast number of false alarms, which can easily 
overwhelm a cyber-security operator (Treinen & Thurimella, 2006). 
Moreover, often more than 90% of the alerts generated can be false, or 
related to non-malicious root causes (Julisch, 2003). With these chal-
lenges in mind, it is then essential that we not only build NIDS which 
are capable of detecting alerts in a highly sensitive manner, but also 
that we build NIDS which do not raise a high volume of false alarms.

This paper addresses the pervasive problem of high volumes of false 
alarms through the introduction of a hierarchical deep learning system, 
while comparing the results on false alarm reduction against a standard 
deep learning model. The research found that the hierarchical approach 
successfully reduced the number of false alarms, versus the standard 
deep learning approach. This research presents three valuable contribu-
tions to knowledge; firstly a comparison of hierarchical versus standard 
deep learning systems, and secondly a method to reduce false alarms 
using hierarchical models for intrusion detection. Lastly, the model de-
signed in this experiment is deployed in a live IoT environment, and 
exposed to a range of genuine threats, in order to determine its effec-
tiveness in a real world scenario.

The remainder of this paper is structured as follows; Section 2
presents the background information on NIDS along with the related 
work available in the research literature. Section 3 then presents the 
design of the 3-phase experiment conducted and presented in this pa-
2

per, followed by the methodology adopted for the research in Section 4. 
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Section 5 then presents the results of the experiment and discusses the 
performance of each of the models. Finally, Section 6 offers a conclu-

sion and outlines some areas for further research.

2. Background

NIDS are an important aspect of security in networked systems. 
There are various different types of NIDS which are common in both 
research and practice. This section will review the main types of NIDS 
according to the research literature, and also review relevant work in 
the current literature.

2.1. Knowledge and data driven methods for intrusion detection

Generally, a NIDS falls into one of three main categories; Signature-

based (knowledge-based), Anomaly-based (behaviour-based), and State-

ful protocol analysis (specification-based) (Liao et al., 2013). More 
broadly, both Signature-based methods and stateful protocol analysis 
may be categorised as “knowledge-driven” methods, while anomaly-

based methods can be categorised as “data driven” methods. With these 
two categorisations in mind, some important distinctions need to be 
considered between these two types of approaches.

A knowledge-based IDS uses a set of rules or a knowledge base which 
is developed by a domain expert and deployed onto a network environ-

ment. The rules may consist of empirical thresholds, exception lists of 
known bad hosts, lists of firmware deemed as risky by the expert, ping 
attempts and connections to device, to name but a few. These rules are 
typically static in nature, are difficult to write, and require extensive 
knowledge of possible attack scenarios (Hubballi & Suryanarayanan, 
2014). The network traffic is observed and compared against the list of 
rules on a given time interval. If an exception is found, then an alert is 
raised stating the potential issue. These rules can range from being very 
generic, to being very specific and can be targeted to identify particular 
attack types, such as brute force or ping scan.

A data-driven IDS, on the other hand, either learns the pattern of 
an attack by observing some set of training data, or uses conventional 
statistical techniques to determine abnormal variation in the data-flow 
(Viinikka et al., 2009). In a statistical approach, such as with Change-

point Detection, no learning is required since the model will analyse 
the presence of variation in the Probability Density Function given by 
observing a certain volume or pattern of traffic (Tartakovsky et al., 
2013). On the other hand, these approaches are implemented as para-

metric models where the fine tuning of certain parameters cannot be 
performed automatically and requires human expertise. In contrast, in 
the supervised learning-based scenario, the IDS would require a train-

ing phase to learn which traffic patterns constitute “normal” traffic, 
and which patterns constitute anomalous “attack” traffic (Sultana et 
al., 2019). Assuming the presence of a large labelled dataset, the train-

ing process can be performed using machine learning (ML) training 
algorithms, with the advantage of producing a model as a result of a 
standard training process. This trained model, usually comprising of a 
set of weights and activation functions in the case of neural network 
based approaches, can then be saved and deployed onto a network en-

vironment. The saved model is then capable of processing input vectors 
comprising of live network traffic. These input vectors, when passed 
through the model, then lead to a classification result of the likelihood 
that the input vector matches a known attack behaviour. This binary 
class problem can then often be extrapolated into specifying a specific 
type of attack, such as Distributed Denial of Service (DDoS) or Port 
Scans (Koc et al., 2012). This would require the training and implemen-

tation of a multi-class model to classify the input vectors and produce a 
likelihood that the behaviour matches a known attack or that the traffic 

constitutes normal network behaviour.
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2.2. Use of flow-based traffic data

A crucial element when adopting a data-driven approach for NIDS is 
related to the characteristics of the dataset, including, quality, size, and 
how it is representative of the conditions that the model is expected to 
face when it is deployed in the final environment (Ring, Wunderlich, 
et al., 2019). Otherwise, data-driven methods can generally be exposed 
to overfitting or in the worst possible case to underfitting. This data, in 
the context of intrusion detection, generally takes the form of network 
traffic flows. Generally speaking, a flow would show details of commu-

nications sent between hosts on a network. These details will include 
various pieces of information such as: ports, IP address, protocol, flags, 
and size.

There are two mainstream approaches to collecting datasets for 
network intrusion systems; packet-based and flow-based (Ring, Wun-

derlich, et al., 2019). Packet-based data shows information related to a 
single packet being transmitted on a network (Seth et al., 2012). This 
method is known to show deep levels of detail about the network traffic, 
and is considered the more granular of the two approaches. Flow-based 
traffic, on the other hand, summarises the packets sent between two 
hosts in a single connection in the network (Sharma et al., 2018). There-

fore, one vector of flow-based traffic data corresponds to many packets. 
By this, some granular detail is lost in the data related to the details of 
individual packets.

Both packet based and flow-based data capture have their strengths 
and applications, and also weaknesses. The flow-based approach does 
lose some granularity, however, the major advantage it gains is in scal-

ability. Indeed, it is highly impractical, perhaps infeasible, for a large 
network (such as an enterprise network) to collect and hold all network 
traffic at a packet level, due to limitations on data storage capacity (Gi-

otis et al., 2014). Moreover, for an anomaly-based model to train on 
a large set of packet-based data, with the hopes of finding anomalies 
is a very difficult task. Anomaly detection from network traffic data, 
is a highly imbalanced task with the majority being the benign class. 
Most importantly, flow-based traffic is scalable. Enterprise networks 
can experience up to 500,000 network events per second, so it becomes 
essential that data is collected and used at a higher level than packet 
based. Furthermore, many network attacks tend to evolve over multiple 
packets. Consider, for example, a port scan; this may manifest itself as a 
device on a network transmitting TCP SYN flags in an attempt to check 
which ports return an ACK flag, thus indicating an open port. There-

fore, a packet will show this behaviour with one or more of these flags 
activated. Nevertheless, a single port scan is not necessarily indicative 
of an attack occurring, because scanning for an open port is a regular 
behaviour of network devices. Rather, malicious port scans are the case 
when a device, or group of devices, issue many thousands of port scans 
to try to map out the open port space of a network, often zoning in on 
interesting ports such as Telnet. Moreover, hackers are often clever in 
how they go about this task, and can slow the port scans down so that 
they occur over a much longer time span (Ring et al., 2018). This slow 
scan scenario would make it extremely difficult to detect this attack on 
a packet-by-packet basis, and requires a much more high-level view of 
the data. Flow-based data, on the other hand, summarises this informa-

tion at a much higher level. This means that a classifier, when fed a 
row of flow-based traffic as an input vector, has a much better picture 
of whether or not this flow constitutes an intrusion attempt, as opposed 
to looking at a single packet.

Given the limitations of packet-based network data collection, in 
terms of data size and scalability, combined with the advantages given 
for choosing a anomaly-based detection approach in terms of adapt-

ability and scalability, the models in this paper will focus on flow and 
3
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2.3. Deep learning in NIDS

When it comes to selecting an approach to use for an anomaly-based 
IDS using flow-based traffic data, ML emerges as a potentially viable 
solution, considering the large volume of data in this context, whereas 
application of ML approaches in different contexts may be severely lim-
ited by the lack of a dataset large enough for training a large model 
without the risk of incurring the overfitting or underfitting phenom-
ena. Deep neural networks tend to work well only when trained using 
large datasets, as is the case with network intrusion data. Deep neu-
ral networks are able to train on data, extracting representations of the 
data and extracting efficient features (Roy & Cheung, 2019). This learn-
ing benefit is amplified further, when considering the scenario of deep 
learning, where the more complex network structure allows the model 
to extract features which are more efficient at discriminating between 
the target classes. In effect, this makes the learning algorithms less 
dependent on feature engineering, which might allow the designer to 
achieve high classification accuracy without needing to know in-depth 
domain knowledge (Lecun et al., 2015), (Choi et al., 2019). Given the 
advantages discussed in this section, the models investigated in this 
paper will focus on deep learning approaches for network intrusion de-
tection.

2.4. Datasets for intrusion detection

There are several datasets currently available for the task of training 
and evaluating intrusion detection systems. These datasets have a range 
of varying characteristics including timespan, types of attack, method 
of collection, emulation and size. As discussed previously, this experi-
ment will only consider flow-based data, and so the dataset chosen for 
the experiment should be in this format. Several popular flow-based op-
tions exist and are used in other investigations, such as CIDDS-001 (Ring 
et al., 2017), CIDIDS-2017 (Sharafaldin et al., 2018) and UNSW-NB15 
(Moustafa et al., 2019). A survey by (Ring, Wunderlich, et al., 2019) 
evaluated the current options for selecting a dataset for model evalu-
ation and suggested that, while the perfect dataset cannot be found, 
that a dataset which is a good candidate will; span an appropriate time 
frame and have appropriately timed attacks. In particular, authors posit 
that the dataset selected should have a long enough timespan that the 
data can be placed into subsets, as opposed to cross-validation, because 
using cross-validation would potentially harm generalisation, further-
more, defining subsets such as week one and week two to split into 
training and testing helps address the issue of concept drift. It should 
also be noted, that in the case of using network flow data to train an 
intrusion detection model, if the data is split using a folded training, 
validation and testing split, then vectors corresponding to the same at-
tack will appear in both the training and testing set. Primarily, this is 
because a single attack will manifest over many flow records in any 
given dataset. Given the conditions described here, the only dataset to 
the authors’ knowledge which satisfies these important criteria is the 
CIDDS-001 dataset, and thus it has been selected for use in this experi-
ment.

2.5. Data preparation

The CIDDS-001 Coburg Intrusion detection dataset (Ring et al., 
2017), (Ring, Schlör, et al., 2019) was used in this experiment. CIDDS-
001 is a fully labelled, flow-based dataset for the purposes of evaluating 
intrusion detection models. The data was generated through the simula-
tion of a small business environment using OpenStack. The data consists 
of unidirectional NetFlow (Claise et al., 2004) data collected over the 
course of four weeks. In total, there are 32 million flows contained in 
the dataset, with 31.3 million of these flows representing OpenStack 
data and the remaining 0.7 million captured at the external server. The 
dataset contains a total of 92 attacks, with 70 of these executed in-

side the OpenStack environment, and 22 aimed at the external server. 
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Table 1

Table summarising the attacks contained in the CIDDS-001 dataset (Ring, 
Schlör, et al., 2019).

OpenStack External Server

Port Ping Brute Port Ping Brute

Scan Scan DoS Force Scan Scan DoS Force

Week 1 16 10 11 5 0 0 0 0

Week 2 8 6 7 7 2 0 0 4

Week 3 0 0 0 0 5 0 0 7

Week 4 0 0 0 0 1 0 0 3

The attacks, and which weeks they occurred on, are summarised in Ta-
ble 1. This experiment focuses on using the OpenStack dataset to create 
a multi-class classifier for classifying all five classes in the data.

2.6. Related work

Several works have been published using the CIDDS-001 dataset, 
these works have been identified by searching for works citing (Ring 
et al., 2017). These works, their methods and their results will be dis-
cussed in this section.

He et al. (2019) developed ensemble feature selection methods 
aimed at improving classification accuracy within network intrusion 
detection. This study focused more heavily on the process of feature 
selection, as opposed to the classification task itself. The authors imple-
mented four classifiers in the experiment; Decision Tree, kNN, ANN and 
SVM. Performance of classification was measured using these classifiers 
predicting whether a flow was normal, suspicious, victim, or attacker. 
The highest accuracy result achieved was 99.40%. Verma and Ranga 
(2018) also assessed the performance of machine learning classifiers on 
three datasets, one of which was CIDDS-001. The authors implemented 
the following models; Random Forest, AdaBoost, Gradient Boosted Ma-
chine, Extreme Gradient Boosting, Extremely Randomised Trees, Classi-
fication and Regression Trees and a Multi-layer Perceptron. Accuracies 
as high as 0.995 were recorded in the work. In both of these works, 
no methodology was given to describe how the dataset imbalance was 
treated. It is also the case in both of these studies that an imbalanced ac-
curacy metric was used to evaluate the models, meaning that preference 
is given to the model guessing the much more likely normal class.

Tama and Rhee (2017) developed methods to classify network at-
tacks in IoT networks using a deep neural network combined with three 
different data sampling techniques. The authors used three datasets to 
test their models: UNSW-NB15, CIDDS-001 and GPRS. The authors em-
ployed three approaches to validating and training the network: cross-
validation (comprising of ten folds), repeated cross validation (com-
prising of five executions of 2-fold cross-validation), and sub-sampling 
(comprising of ten iterations of the dataset being split into 70% training 
and 30% testing). The authors validated the results using metrics of ac-
curacy, precision, recall and False Positive Rate (FPR). Results obtained 
for the models on the CIDDS dataset showed an accuracy of 99.997%. 
Again, an imbalanced accuracy metric was used for measurement here. 
Moreover, the authors of this paper developed a binary classification 
model, and thus the results are not comparable to the multi-class clas-
sification results proposed in this paper.

Abdulhammed et al. (2018) investigated the effect of class imbal-
ance in anomaly-based intrusion detection using the CIDDS dataset us-
ing deep and shallow learning methods. The authors employed several 
models through WEKA in the work: three deep neural networks (each 
with varying model structures), Random Forest, Voting and Stacking. 
In particular, the authors examined model performance both with and 
without class balancing techniques. The techniques employed to handle 
the imbalance were: up-sampling the minority class, down-sampling the 
majority class, spread sub-sampling, and a class balancer. The metrics 
used to evaluate the work were, accuracy, geometric mean, false alarm 
4

rate, detection rate, and combined metric. Accuracies of 99.99% were 
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achieved here due to the use of an unbalanced accuracy metric. Similar 
to the previous paper, this paper performed binary classification.

Idhammad et al. (2018) developed a distributed intrusion detection 
system for cloud environments using data mining techniques. The au-
thors used week 1 only of the CIDDS-001 dataset, and split the data 
into training and testing using a configuration of 60% for training and 
40% for testing. The model is in a layered architecture and makes use of 
both Naive Bayes and Random Forest classification techniques to detect 
anomalies. The results were evaluated using the following metrics: ac-
curacy, false positive rate, running time, ROC curves and AUC curves. 
Overall, the model achieved accuracies of 97.05%, and a false alarm 
rate of 0.21%. Again, an imbalanced accuracy metric was used to eval-
uate the model.

Nicholas et al. (2018) employed LSTM models in order to investigate 
the sequential relationship between flows in detecting network anoma-
lies in flow-based traffic. The authors used the OpenStack portion of 
the CIDDS-001 dataset to evaluate the performance of their LSTM mod-
els. The models performed several classification tasks, which classified 
the data into: binary classes, a three-class scenario, a five-class scenario 
and a nine-class scenario. In total, four LSTM models were tested against 
these classification scenarios, each with a varying model structure. The 
ADAM loss function was used, along with gradient clipping to control 
exploding gradients. The authors measured performance using precision 
and sensitivity metrics, however, a false alarm rate was not presented. 
The authors found that the LSTM models were adequately able to clas-
sify most attacks, however, they struggled to differentiate between port 
scans and brute force attacks. The authors of Su et al. (2020) proposed 
a model combining a Bidirectional Long Short-term Memory (BLSTM) 
model with an attention mechanism. The attention mechanism was em-
ployed to screen network vectors generated by the BLSTM model, which 
was used to generate features for the network, as opposed to hand craft-
ing features. The model achieved an accuracy of 84.25% when tested 
on the KDD dataset.

Althubiti et al. (2019) also employed a LSTM method to detect net-
work intrusions on the CIDDS-001 dataset. The authors of this work did 
not classify types of attack, and only classified the flows as normal, sus-
picious, unknown, attacker and victim. The data was split using a 67% 
training and 33% testing split, and the authors noted that the accuracy 
for the LSTM model was 0.8483. The best false alarm rate observed in 
this paper was the MLP model, which achieved a FAR of 0.1325. The 
authors of Zhang et al. (2019) proposed a CNN-LSTM model, which 
combined the CNN Le-Net architecture with an additional LSTM model. 
When tested on the CICIDS-2017 dataset, this approach achieved an 
unbalanced accuracy of 99.82%, using a binary classification approach.

Bovenzi et al. (2020) proposed a hierarchical approach based upon 
deep auto-encoders to perform a two-stage classification. The first stage 
of the classification identified if in input vector was deemed to be an at-
tack or not, while the second layer determined which type of attack was 
present in the case of a positive identification from the first layer. The 
authors were able to achieve a reduction in false alarms by 40% through 
adopting the hierarchical approach. Nonetheless, the proposed model 
was designed to operate with packet-based traffic, which does not scale 
well to enterprise networks, leaving a need to explore hierarchical ap-
proaches on a flow-based dataset. Auto-encoders were also used in 
Shone et al. (2018), where the authors developed a non-symmetric 
deep auto-encoder (NSDAE), for unsupervised feature learning. In this 
work, the auto-encoders were stacked into a deep learning hierarchy, 
which enabled the model to learn complex relationships between the 
different features of the dataset. When tested on the KDD dataset, this 
approach achieved an unbalanced accuracy metric of 98.81%. Auto-
encoders were also employed in Al-Qatf et al. (2018). In this work, the 
authors proposed a self-taught learning (STL) approach based on auto-
encoders, which was then combined with a Support Vector Machine 
(SVM) model. The authors found that the auto-encoders were able to 
automatically learn features effectively from the data, and the model 

achieved an unbalanced accuracy metric of 95.09% when tested on the 
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KDD dataset. These works, based on auto-encoders, present valuable 
research demonstrating that deep learning can successfully engineer 
features from network intrusion data.

The works surveyed in this Section demonstrate several important 
efforts in the research area of detecting intrusions in networked sys-
tems using data-driven methods. Several of the surveyed works per-
formed binary classification, and in general these results presented 
lower incidences of false alarms. This suggests that perhaps a hierar-
chical approach which leveraged this binary classification could reduce 
the number of false alarms generated, while still providing a multi-
class output. In general, few of these methods suggested a suitable 
data-preparation and training protocol which would allow the model 
to generalise well in the real world. Another note to make is that the 
research papers reviewed here did not actually deploy their models in 
live environments, but rather focused solely on overall classification ac-
curacy using publicly available network intrusion datasets. While, from 
a training standpoint this is a viable method, without actually deploy-
ing the model in a live environment, it is not possible to say for sure 
if the model has been effectively developed. The risk always exists in 
this case that the model simply becomes an expert at detecting alerts 
only of the type found in the dataset, rather than being able to handle 
the heterogeneous and unpredictable data generated on the internet. 
Therefore, by validating the model in a live environment, we can be-
gin to understand how it responds to new threats and retrain if needed. 
Lastly, none of these methods placed particular focus in reducing the 
number of false positives identified by the model. Rather, these meth-
ods were focused solely on the classification performance of the model 
on public datasets. With these short-comings in mind, there is a gap 
to address in the research field with respect to reducing false alarms, 
and also to prove the effectiveness of the model in a live environment. 
The research conducted in this paper seeks to fill both of those gaps in 
knowledge associated with this problem.

As such, the research in this paper sought to fill the following gaps 
in knowledge. First, given that deep learning appears to be an effective 
method for feature engineering and alert detection in IDS, an under-
standing is needed as to which methods are most effective. Second, the 
problem of false alarms is still prevalent in IDS, and only one of the 
works reviewed was able to report a reduction in false alarms, there-
fore, research should be conducted to improve this area in IDS. Lastly, 
none of the reported works in this section were able to deploy their 
models in a live environment, and as such this remains a gap to be ad-
dressed in the literature.

Therefore, given the identified gaps in the literature identified from 
this review, we pose the following research questions.

1. Which deep learning methods are the most effective in IDS?
2. Can deep learning be leveraged in a hierarchical fashion to develop 

a method to reduce the number of false alarms raised?
3. Can we deploy the proposed system in a live environment and anal-

yse its performance when faced with genuine threats?

These research questions are answered in the remainder of this pa-
per. In this research, a comparison is presented between common deep 
learning methods to understand which of them offers the best perfor-
mance in terms of reducing the number of false alarms raised. Following 
this, the best performing model is then expanded into a hierarchical 
approach, which successfully reduced the false alarms versus the non-
hierarchical approaches. Lastly, the hierarchical model is deployed in a 
live IoT environment, and the performance is analysed against real and 
unseen internet threats.

3. Experimental design

The aim of this experiment is to deploy data-driven deep learning 
models to detect network intrusion attempts on a networked system 
5

with a high degree of accuracy and special consideration for reducing 
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false alarms and then test this model in a live environment. As men-
tioned earlier in this paper, false alarms are a significant problem in 
this area of computing, and as such the models proposed throughout 
this experiment are designed with intent to reduce the vast numbers 
of these false alarms. The experiment took place over three phases, the 
first phase aimed to ascertain the applicability of deep learning to the 
problem of network intrusion, the second phase built upon the findings 
of the first phase by selecting the best candidate for further research and 
evolving the hierarchical system from it, and the final phase demon-
strated the hierarchical system’s live deployment. These three phases 
are described in detail in the following sections.

3.1. Phase 1: initial investigation

In the initial stage of the experiment, models from three categories 
were selected for investigation; Convolutional Neural Network (CNN), 
Multi-layer Perceptron (MLP) and a hybrid CNN-LSTM network. These 
models were chosen because they are known to be suitable choices for 
the task of NIDS (Lee et al., 2018, Thakkar & Lohiya, 2020). Within each 
of these categories a broad range of structures and hyper-parameters 
were tested, to get a broad view of how each model performed. The 
aim of this stage of the experiment was to test a range of combinations 
of hyper-parameters within these models in order to determine how 
each model performed with respect to the task of detecting intrusions 
while maintaining a relatively low rate of false alarms. The models in 
this phase were tested using the CIDDS-001 dataset, which also serves 
to determine a benchmark for the model developed in phase two to 
compare against.

3.2. Phase 2: development of a hierarchical model for intrusion detection

Results from the first experiment were examined and analysed to see 
which approach would provide the potential for further investigation. 
The results of this analysis then lead to the development of a hierar-
chical model which is comprised of two separate MLP models which 
determine if a vector represents a threat in a filtered hierarchical fash-
ion. This phase represents the scientific bulk of the experiment, and it 
is where the final model was designed and finalised. A specialised high-
performance computing facility located in the British Telecoms Ireland 
Innovation Centre (BTIIC) at Ulster University was used to test and de-
ploy the final model. The model was then tested in detail on the CIDDS 
dataset, and then the results compared to the initial benchmark set by 
the models from phase one.

3.3. Phase 3: deployment in real-world environment

It is often seen to be a further area for research within the cyber-
security community that models developed using public data need to 
be validated in a real world scenario. More specifically, there is a short-
age of NIDS being deployed in live IoT environments (Chaabouni et 
al., 2019). After the model was designed and tested against the CIDDS 
dataset, it was deployed in a live IoT testbed in order to investigate this 
crucial research area and validate that the model can generalise beyond 
the bounds of the public data, which is often seen to be a key determi-
nant of a model’s success. The live environment used was an Internet 
of Things (IoT) cyber-security testbed supported by BTIIC and located 
at the Ulster University in Northern Ireland. While the IoT is gener-
ally considered to be distinct from traditional enterprise networking in 
terms of it’s application and device layer, large portions of the network 
and TCP/IP stack are common across the two fields. Therefore, it is a 
reasonable approach to employ a model trained on network flow data 
in this IoT context. The testbed allows the collection and analysis of 
network flow traffic, which was then fed into a flask API service de-
signed for the model designed in phase two. The model was deployed 
here and exposed to genuine threats and bots on the internet via several 

open ports, including SSH, VNC, HTTP and HTTPS. This final phase of 
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the experiment bridges the divide that is often found between research 
and engineering, which is an important way to demonstrate real-world 
impact from the research.

4. Methodology

The research for this paper was designed and conducted in three 
phases, which were discussed in Section 3. Beyond the design of the 
phases a more specific methodology was needed to handle the data and 
design and test the IDS which were developed throughout the course 
of this research. The remainder of this Section provides details on the 
specific methodology employed to handle the data, and design of the 
deep-learning hierarchical intrusion detection system.

4.1. Handling of data imbalance

The CIDDS-001 is an extremely imbalanced dataset with the strong 
majority class being the “normal” or negative class in this case. The 
level of imbalance in datasets for classification tasks can be measured 
using a 𝜌 value (Buda et al., 2018, Johnson & Khoshgoftaar, 2019), 
which is calculated as shown in Equation (1), where 𝐶𝑖 represents a set 
of samples of class 𝑖. The OpenStack CIDDS-001 dataset is very heavily 
imbalanced, with the majority class (normal) totalling 28,051,906 and 
the minority class (brute force) totalling 4,992, thereby resulting in a 𝜌
value of 5,619.

𝜌 =
𝑚𝑎𝑥

𝑖
{|𝐶𝑖|}

𝑚𝑖𝑛
𝑖
{|𝐶𝑖|}

(1)

Various methods exist for redressing imbalanced data using sam-
pling techniques, for example Random Under Sampling (RUS) and Ran-
dom Over Sampling (ROS). These methods are generally referred to as 
data-level techniques, because they either generate new data samples 
or remove data samples from the training and validation sets. These 
methods have been shown to increase model performance (Burnaev et 
al., 2015). Nevertheless, (Johnson & Khoshgoftaar, 2019) in their sur-
vey on imbalanced deep learning found that these data-level techniques 
can often result in over-fitted models with increased training times. The 
authors also suggested that the benefits of sampling methods are likely 
only able to perform well on smaller datasets, and will not scale to large 
datasets, such as the one used in this experiment. For this reason, data-
level techniques were avoided in this experiment. The imbalance was 
instead treated by applying class weights to the training of the mod-
els, which in the case of the deep models, modified the loss function to 
penalise the minority classes more heavily in the case of an incorrect 
prediction, as given by the weight of a class. The formula for calculat-
ing class weights is presented in Equation (2), where 𝑤 represents the 
class weight, 𝑗 represents a given class, 𝑠 represents the number of data 
samples, and 𝑐 represents the number of classes in the data.

𝑤𝑗 =
𝑠

(𝑐 × 𝑠𝑗 )
(2)

4.2. Data pre-processing

In order to convert the data into a form that could be interpreted 
by the deep learning models, some data pre-processing scripts were de-
signed in Python using the sklearn library (Buitinck et al., 2013). The 
CIDDS-001 dataset contains a mix of text, categorical and numeric data, 
which is summarised in Table 2 as described in Ring et al. (2017).

The OpenStack data from CIDDS-001 is provided in the format of 
four CSV files, each corresponding to a week of data collected. The 
data was then split into files containing no more than 250,000 rows in 
order to allow the Python script to multi-thread the data loading onto 
multiple CPU cores in order to avoid slow loading times.

Once the data was loaded, features were considered with regard to 
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how they might influence classification. Several columns were removed 
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from the dataset because they do not provide salient information to 
the task of identifying network attacks. These columns were; IP address 
information and date of flow. Once these columns were removed, the 
labels were then separated from the features to enable the model to 
learn from the features without observing the label. Features in the 
datasets were then normalised through the use of one-hot encoding and 
standard scaling as appropriate.

4.3. Training, validation and testing

The OpenStack CIDDS-001 dataset consists of four weeks of data 
containing five classes. Two of these weeks contain no attacks and con-
sist entirely of the benign class, as presented in Table 1, with the other 
two weeks each containing samples of all four types of attack. This cre-
ates some difficulty when it comes to training and validating the model. 
In general, three approaches were available to handle this. The first ap-
proach would be to use a percentage split, which would separate a given 
percentage of the data for training and testing. This method randomises 
its selection of input vectors and does not preserve the order of the data. 
The next method would be to use cross-fold validation (Kohavi et al., 
1995), which trains and tests the model over a given amount of folds. 
Again, this does not preserve the order of the data. The final approach 
is to preserve the data in its natural order and use records in their pre-
served order for training, testing and validation. In detail, this would 
consist of taking a selection of data, generally occurring over a few 
days or weeks, and then using this selection of data to train the model, 
with a separate consecutive selection also chosen for validation. This is 
particularly import for CNNs and LSTMs which model locality and se-
quential relationships in the data respectively. The difficulty with this 
final approach, however, is that in the selection of data for both training 
and testing there needs to be a representation of each attack contained 
in the selection, which can often be difficult to produce. In the scenario 
of detecting network intrusion attempts from network flow data, this is 
the most optimum scenario. Principally, this is because some network 
intrusions evolve over the course of many input vectors, for example 
a DoS attack or a Brute Force attack. This holds especially true in the 
case of this work, given that some of the models take an input vector of 
more than one row, and therefore to split the records up and not pre-
serve their order has an influence on the temporal nature of the models. 
For this purpose, the latter approach was selected as the training, val-
idation and testing method in this work. The allocation of the data is 
summarised in Table 3.

4.4. Training & validation process

Training a neural network typically involves two key aspects; train-
ing and validation. For this purpose, two separate datasets are allocated 
for each component respectively and used in each epoch of training. At 
the outset, the weights of the model are given a random initialisation. 
Within each epoch, which we can represent as 𝑖, a batch of training 
data is selected and shuffled according to batch size 𝑘 and used to up-
date the weights, 𝑊 of the model through back-propagation from the 
loss function. In the case of this work, each model was trained with a 
maximum of 500 epochs and a batch size of 256, using stochastic gra-
dient descent (SGD) as the loss function. Each epoch allows the model 
to save new weights if a given metric has improved, thereby increas-
ing the performance of the model. Various options exist here regarding 
the choice of the metric to be used. For example, we might choose to 
use the accuracy, and save the model each time this metric improves. 
The issue with selecting a metric like training accuracy for this process 
is that it would encourage the model to over-fit on the training set if 
the weights are saved every 𝑖𝑡ℎ epoch when the training accuracy im-
proves. Rather, a more optimal approach to take, is to save the model 
only when the validation loss decreases. This approach means that dur-
ing epoch 𝑖 the new model weights 𝑊𝑖, which are determined by the 

training data, are only saved if a positive effect is seen on the separate 
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Table 2

Table describing the properties of the available attributes in the CIDDS-001 dataset (Ring, Schlör, et al., 
2019).

Name Description

Src IP Source IP address

Src port Source port

Dest IP Destination IP

Dest port Destination port

Proto Transport protocol (e.g. ICMP, TCP, or UDP)

Date first seen Start time flow first seen

Duration Duration of the flow

Bytes Number of transmitted bytes

Packets Number of transmitted packets

Flags OR concatenation of all TCP Flags

Class Class label (normal, attacker, victim, suspicious or unknown)

AttackType Type of Attack (portScan, dos, bruteForce, —)

AttackID Unique attack ID. All flows which belong to the same attack carry the same attack id.

Attack Description Provides additional information about the set attack parameters

(e.g. the number of attempted password guesses for SSH brute force attacks)

Table 3

Table summarising the allocation of training, validation and testing data from the CIDDS-001 dataset.

No. Port Ping Brute

Week Records Normal Scan DoS Scan Force

Train 1 8,451,520 7,010,897 183,511 1,252,127 3,359 1,626

Validate 2 1,500,000 1,343,288 852 153,369 732 1,759

Test 2 8,810,733 7,172,041 81,555 1,553,531 1,999 1,607

Fig. 1. Process flow depicting the data-splitting and training process employed for each model in the first phase of experimentation.
validation set which has not influenced 𝑊𝑖. Taking this approach pro-
tects the model from over-fitting on the training dataset and results in a 
model that is likely to perform better when moved into production, and 
as such, it has been applied to this work.

After the data was split into its respective groups for training, test-
ing and validation, and an appropriate loss function approach was 
designed, each of the models were trained and deployed as depicted 
in Fig. 1. This same approach was deployed for all of the models used 
in phase one of the experiment. The model designed in phase two, how-
ever, follows a different approach in order to train the classifier which 
is detailed in the following section.

5. Results & discussion

The experiment was conducted in three distinct phases, as described 
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in Section 3. The results for each phase are documented in the remain-
der of this Section. The primary objective of the experiment was to 
establish an understanding of which deep learning model performed 
best in the expected conditions. In particular, on this experiment, the 
objective was to produce a model or a system which minimized the 
level of false positives generated, while also maintaining a high accu-
racy metric. In some respects, achieving a high accuracy for a model 
can be a straightforward task, especially when using a fixed dataset. 
In general terms, if enough training and validation samples are pro-
vided during training, the classes are distinct in their nature, and the 
training is supervised well, then accuracy will be high. Moreover, if ac-
curacy is not satisfactory, then it can usually be improved by simply 
supplying more training samples. Focusing solely, however, on improv-
ing accuracy is not always the most productive approach. Primarily, this 
is because taking such an approach tends to produce a model which 
is an expert at handling the dataset it was trained and tested on, but 

does not generalise well into new environments, ultimately meaning 
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Table 4

Table of results generated for the CNN, CNN-LSTM and MLP models developed in phase 1 of the experiment.

Class Precision Recall FPR F-Measure Support

CNN Normal 0.9943 0.9474 0.0526 0.9703 1152289

Port Scan 0.6996 0.7127 0.2873 0.7061 47760

Brute Force 0.0111 0.5459 0.4541 0.0217 1132

DoS 0.9977 0.9800 0.0200 0.9888 265429

Ping Scan 0.3245 0.9221 0.0779 0.4801 1822

Macro Avg 0.6054 0.8216 0.1784 0.6334 1468432

Normal 0.9936 0.9452 0.0548 0.9688 1373195

Port Scan 0.5351 0.6523 0.3477 0.5879 48535

CNN Brute Force 0.0297 0.5985 0.4015 0.0566 2864

LSTM DoS 0.9949 0.9826 0.0174 0.9887 291431

Ping Scan 0.3039 0.9372 0.0628 0.4589 2403

Macro Avg 0.5714 0.8231 0.1769 0.6122 1718428

MLP Normal 0.9994 0.9584 0.0416 0.9785 7172011

Port Scan 0.6734 0.9265 0.0735 0.7800 81555

Brute Force 0.0014 0.1655 0.8345 0.0028 1607

DoS 0.9527 0.9998 0.0002 0.9756 1553525

Ping Scan 0.3682 0.8869 0.1131 0.5204 1999

Macro Avg 0.5990 0.7874 0.2126 0.6515 8810697
that it may be of limited use outside of the scientific research commu-
nity (Aleesa et al., 2019). Furthermore, accuracy can be a misleading 
statistic, in that it does not necessarily account for false alarms being 
raised. False alarms, as discussed earlier in this paper, can have a high 
cost in the real world, and thus reducing these false alarms should be 
as much a focus for designers as improving the accuracy of the model. 
Therefore, this experiment aimed to establish two things; a model which 
was accurate and raised fewer false alarms, and a model which would 
demonstrably perform well in an unknown and untrained environment. 
Therefore, the metric which is of particular interest to this work is the 
False Positive Rate (FPR) on the normal class. This is because by aiming 
to minimize this metric to the lowest possible value, we reduce the num-
ber of false alarms raised. In this case, we are not primarily concerned 
with the attack-type classes, but rather whether or not the system raises 
an alert or not for an engineer to investigate. Therefore, FPR on the nor-
mal class is the metric which we will evaluate model performance with 
in this work.

5.1. Phase one results

In the first phase of experimentation, three models were investi-
gated, a CNN, CNN-LSTM and a MLP. The summarised results from the 
test set identified in Table 3 across all of these models are presented in 
Table 4, within this table the FPR of the normal class is emphasised as 
the metric which is targeted for optimisation. A range of model hyper-
parameters were tested for each model, along with a range of model 
depths, in order to determine the model which was best suited for the 
task at hand. Determining the optimum hyper-parameters was not nec-
essarily an objective of this experiment, and therefore is not focused 
upon in the Results Section. Nevertheless, a grid-search style of ap-
proach was conducted to determine these optimum hyper-parameters.

5.1.1. CNN model results

The CNN model achieved a macro f-measure of 63.34. The weighted 
f-measure and overall accuracy scores are considerably higher, 96.37% 
and 94.54% respectively, however, they are not presented in the table 
given that they can at times be a misleading statistic by favouring the 
prediction of the majority class. In such an imbalanced dataset as this, it 
is best to view these statistics with a critical view. The CNN achieved an 
f-measure of 97.03% on the normal class, which is by far the majority 
class. The lowest performing class was the brute force attack. This is 
unsurprising, because in the CIDDS-001 dataset the brute force class is 
the minority class by a large margin. The other lower performing class 
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is the ping scan attack, which again is likely hampered by there being 
so few training samples. Finally, the CNN observed a False Positive Rate 
(FPR) of 5.26%, which attests to the proportion of alarms raised by the 
NIDS which were false.

5.1.2. CNN-LSTM model results

The CNN-LSTM model achieved similar performance to the CNN, 
achieving a macro f-measure of 61.22%. Weighted f-measure and ac-
curacy for the CNN-LSTM were 94.92% and 94.27% respectively. The 
CNN-LSTM suffered an even more severe degradation in performance 
when considering the two minority classes, brute force and ping scan. 
Nonetheless, the CNN-LSTM still maintained a high performance on the 
normal class, with an f-measure of 96.88%. The normal class FPR on the 
CNN-LSTM was slightly worse than the CNN, scoring 5.48%. In general, 
the CNN-LSTM performed well, however, it underperformed when com-
pared to the CNN.

5.1.3. MLP model performance

The MLP model improved on both the CNN and the CNN-LSTM, 
achieving a macro f-measure of 65.15%. The weighted f-measure for 
the MLP was 97.61%, and the accuracy metric was 96.21%, both of 
which were an improvement on the two previous models. With regard 
to the minority classes, the MLP was outperformed in the DoS and Brute 
force classes by the CNN and CNN-LSTM, nevertheless, the MLP outper-
formed both of these models with respect to Port Scan and Ping Scan 
classification. The MLP, most interestingly, outperformed both of the 
other models with respect to classifying the normal class, showing an 
f-measure of 99.94%. The FPR on the normal class, thereby the rate of 
false alarms, was also best on the MLP model at 4.16%.

5.1.4. Analysis & discussion

The three models did perform well in general in the task of clas-
sifying network attacks, and all three make a suitable candidate for 
implementation or further research. The most interesting aspect ob-
served in this phase of the experiment was the performance of the MLP 
on the normal class, versus the CNN and CNN-LSTM. The MLP achieved 
better FPR, precision and accuracy scores than the other two models. 
There could be several reasons for the MLP performing better in this 
context, for example, it may suggest that modelling the sequential rela-
tionship in the data is perhaps not important to the task of classifying 
network intrusion. This may help to explain why the CNN and the CNN-
LSTM both performed similarly (in the case of attacks) or slightly worse 
(in the case of false alarms) to the MLP, given that the MLP takes a sin-
gle input vector, while the other models take multiple vectors of input. 

Nevertheless, this observation could form the basis of some interesting 
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future work in trying to determine the impact of the sequential relation-
ships of the vectors. The superior performance of the MLP also raised an 
interesting question - does the MLP generally classify the normal class 
more accurately than other ML models? From a theoretical standpoint, 
it makes sense that if the model was trained and tested on only normal 
and abnormal class labels (thus transmuting the problem into a binary 
classification one) would result in better performance on these two 
classes, because the imbalance would be reduced on the training and 
testing data. Moreover, reducing the number of labels that the classifier 
needs to select from in the output layer also increases the chances of the 
model making a correct prediction against the normal class. Ultimately, 
a model which performs better in this class, while still performing well 
in the other classes, will raise fewer false alarms and therefore waste 
less time for the human operator. Lastly, if the MLP model can accu-
rately classify the normal class, even when choosing from a range of 5 
possible classes, would the performance be improved even further if the 
model only had two possible classes, normal and attack? These impor-
tant questions formed the basis of the research conducted in phase two 
of the experiment, which is documented in the following section.

5.2. Design & implementation of a hierarchical NIDS

A hierarchical model was designed and deployed in phase two of the 
experiment which built upon the findings observed in phase 1. A novel 
model was then constructed which took advantage of the strengths ob-
served in the MLP. Naturally, it would also be possible to engineer a 
hierarchical approach using the CNN or the CNN-LSTM at either stage 
of the hierarchy, but at this point the MLP has been selected due to its 
superior performance in generating a lower FPR than the other models. 
As such, a hierarchical framework was developed which used two MLP 
models to classify vectors in a two stage approach. The first stage of this 
approach consisted of a trained MLP making a binary classification on 
a vector as to whether it pertained to an attack or not. Then, if an at-
tack was deemed likely (as given by the SoftMax probability) the vector 
was passed into the second stage of the model which would make a fur-
ther classification on the vector as to which specific type of attack was 
detected.

The structure for this hierarchical NIDS framework is shown in 
Fig. 1. The process begins with an input vector 𝑋 = 𝑓0, 𝑓1...𝑓12, where 𝑋
represents a single feature vector consisting of 13 features represented 
by 𝑓 . This feature vector 𝑋 is then given as input to a 7-layer deep 
learning MLP model which produces output probability 𝑝(𝑘, 𝑗), which is 
a tuple of Softmax probability is denoted by 𝑝 and the reciprocal prob-
abilities of each output label (0 and 1, meaning normal or attack) are 
denoted by 𝑘 and 𝑗. Next the value of 𝑝 is tested against an empirically 
identified threshold, which was identified as 0.8. If the value of 𝑝 is 
beneath this threshold, then the vector is labelled as normal in output 
label 𝑦. The test vector x is then supplied as input to the 5-class 7-layer 
MLP classifier. This 5-class classifier will give an output label y which 
corresponds to one of the attack classes. It is worth noting that even at 
the 5-class classification stage, it is still possible that a vector may be la-
belled as normal. This second step in the hierarchy was designed as an 
attempt of further reducing the likelihood of producing false alarms, by 
processing all ambiguous cases through a second model in the second 
layer before assigning the final classification (Fig. 2).

Given that a set of records are expected to be filtered out in the hi-
erarchical model, it was necessary to adopt a different training protocol 
to prepare the MLP model at the second layer. Primarily, this is because 
only high-likelihood vectors will be passed into the second layer of the 
model. This means that the imbalance of the dataset shifts completely in 
the opposite direction, where the majority class is now the attack class. 
The process for achieving this is depicted in Fig. 3. As such, the model 
should be exposed in training to the conditions that it is expected to op-
erate in when in testing. To accommodate for this, this meant passing 
both the training and the validation sets through the binary classifier in 
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order to retrieve a SoftMax probability and to filter out records which 
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fell beneath the chosen threshold. Then this filtered set, which now in-
cludes the SoftMax probability, were used to train the weights of the 
model in the second layer of the hierarchical framework.

5.3. Phase two results

Given the findings established from phase one, further research was 
conducted in the second phase of experimentation to determine if the 
reduction in false alarms could be enhanced by engineering a new 
framework which leveraged the natural qualities of the MLP in this 
area.

5.3.1. Binary MLP performance

One of the research questions raised after analysing the results from 
the first phase was to understand if the MLP’s ability to correctly classify 
the normal class, thereby reducing false alarms, could be enhanced by 
turning the classification task into a binary format. As such, a 7-layer 
MLP was designed to perform binary classification between attacks and 
normal traffic using the CIDDS-001 dataset. The process for training 
the model adhered to the same process deployed in the first phase of 
experimentation, which is represented in Fig. 1. The results for this 
model are displayed in Table 5. A large improvement can be seen here 
with respect to the correct classification of the normal class, with an f-
measure of 99.59% for the normal class. Crucially, a large improvement 
was also seen in the model’s performance with respect to false alarms, 
with a score of 0.69% for FPR on the normal class. This recall metric is 
a substantial improvement compared with all of the other models from 
the first phase of experimentation, with the best FPR from the previous 
phase being 4.16% on the MLP.

5.3.2. Hierarchical NIDS performance

The need to classify into individual attack classes while still main-
taining the benefits of the MLP binary classifier culminated in the design 
of a unique two-layer framework for intrusion detection. The design and 
operation of this framework were described in detail in Section 5.2. 
This model was then trained and tested using the sample training/vali-
dation/testing split on the CIDDS-001 dataset from the previous phases 
(Table 6). The training process itself, however, was different given the 
unique structure of the framework. This training process is also depicted 
and described in Section 5.2.

The hierarchical network intrusion detection system (H-NIDS) per-
formed better than all other models tested in this experiment on the 
CIDDS-001 dataset, which is presented in Table 7, where the highest 
performance in each category across all models is highlighted in bold 
text. The hierarchical model outperformed the other models tested in 
precision, false alarms raised and f-measure. The total macro f-measure 
was 68.43%, which was more than 3% improved from the best model in 
phase one. The weighted f-measure and accuracy also improved for this 
model versus those in phase one, with 99.40% and 99.38% respectively. 
Similar struggles were found in the minority classes, but the results were 
comparable with the other models tested in this experiment. Most cru-
cially, the H-NIDS model was able to maintain its large improvement in 
correctly classifying the normal class. The normal class f-measure was 
99.64%, which is more than 4% improved than the best model from 
phase one. Lastly, and most importantly, the H-NIDS model managed 
to maintain its much-improved false alarm ratio, by achieving a FPR of 
0.59% on the normal class, which was again more than 4% improved 
compared to the best model from phase one.

5.3.3. Comparison to related work

By way of comparison, the proposed model achieved the best per-
formance in terms of FAR when compared against the related work. Of 
those works using the CIDDS-001 in a 5-class classification approach, 
the lowest FPR was observed in Althubiti et al. (2019), which achieved 
a FPR of 13.25%, while the FPR observed in this work was 0.59%. More-

over, Bovenzi et al. (2020) reported a reduction in false alarms of 40%, 
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Fig. 2. Process flow for the hierarchical approach developed in phase two of experimentation.

Fig. 3. Process flow describing the process of training the second layer of the hierarchical model.

Table 5

Results for the Binary 7-Layer MLP model.

Class Precision Recall FPR f1-score Support

Normal 0.9988 0.9931 0.0069 0.9959 7172011

Attack 0.9705 0.9948 0.0052 0.9825 1638686

Macro Avg 0.9846 0.9939 0.0061 0.9892 8810697
10
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Table 6

Table of results for the hierarchical NIDS on the CIDDS-001 dataset.

Class Precision Recall FPR f1-Score Support

Normal 0.9988 0.9941 0.0059 0.9964 7172011

Port Scan 0.9131 0.8792 0.1208 0.8958 81555

Brute Force 0.1150 0.4661 0.5339 0.1845 1607

DoS 0.9796 0.9997 0.0003 0.9895 1553525

Ping Scan 0.3813 0.3327 0.6673 0.3553 1999

Macro Avg 0.6776 0.7344 0.26564 0.6843 8810697

Table 7

Table of results comparing all four models proposed in this paper for precision, recall, false alarms and 
f-measure. Best results in each category are highlighted in bold type.

Model Precision Recall False Alarms F1

CNN 0.6054 0.8216 0.0526 0.6334

CNN-LSTM 0.5714 0.8231 0.0548 0.6122

MLP 0.5990 0.7874 0.0416 0.6515

Hierarchical Model 0.6776 0.7344 0.0059 0.6843
while the model proposed in this research reduced the number of false 
alarms by 87.52%. As such, the model presented in this paper achieved 
a higher general performance in terms of the FPR than the approaches 
in the related work.

5.3.4. Analysis & discussion

Overall, in this phase of the experiment, a novel framework was 
established which greatly enhanced both the performance of the DL al-
gorithm in detecting attacks, but also managed to significantly improve 
the models handling of the normal class, thereby reducing the num-
ber of false alarms. While the improvement of 4% might seem nominal, 
when we observe the numbers in detail we can understand how im-
portant this improvement is with respect to false alarms. Using the MLP 
model from phase one, which was the best performer in this area, a total 
number of 381,485 false alarms being generated by the model. By con-
trast, the H-NIDS only generated a total of 42,315 false alarms, which 
is a total reduction in false alarms of 339,170, thereby accounting for 
an overall decrease in false alarms of 87.52%.

5.4. Phase three - live deployment

In order to effectively test the generalisation capabilities of the 
model, it was deployed into a live IoT security testbed located at Ul-
ster University in Northern Ireland. This testbed consisted of live IoT 
edge nodes, comprised of Raspberry Pi machines, which were located 
in a distributed fashion across Northern Ireland and Spain. These edge 
nodes had exposed services on ports 443, 80 and 22, making them a 
popular target for various internet crawlers and potential hackers. The 
edge nodes also connected a range of IoT sensors, including tempera-
ture, barometer and light sensors. The edge nodes generated a regular 
footprint of traffic by sending these IoT readings to a central node, 
located at Ulster University. The testbed collected network traffic us-
ing Tranalyzer (Burschka & Dupasquier, 2017), which was deployed on 
each of the Raspberry Pi devices to collect the traffic. A process was 
then constructed to automatically feed the traffic from Tranalyzer into 
the Hierarchical IDS, which was deployed on the central server node to 
analyse the incoming traffic collected by Tranalyzer. If the IDS detected 
an alert, it generated an alert record and forwarded it to a dashboard 
component for a cyber-security analyst to perform further analysis on. 
This availability of information then can assist with the development 
and refinement of rules to manage devices on the network. This sec-
tion will analyse the effectiveness of the model in the real-world by 
analysing the alerts generated by the IDS, which was only trained on 
the CIDDS data, from real internet traffic generated by the testbed. This 
part of the research bridged an important divide between the theoret-
11

ical component of IDS development and the actual applicability of the 
model in a real scenario, helping to prove the effectiveness of the tech-
nique in a non-research scenario.

A qualitative analysis was then performed on the deployed IDS to 
understand how accurate the alerts were that it was generating. Given 
that the IDS was deployed in a live and open environment, there was 
no labelled data. This meant that the analysis in this section was not 
capable of producing actual numbers of true and false positives, given 
that there is no ground truth available. This meant that the best way 
to analyse the performance was by looking at the alerts generated by 
the IDS and comparing them against public tools available which keep 
records of the behaviour of IP addresses on the internet. Furthermore, 
dependant upon the type of attack, we may be able to compare the IDS 
alert against the logs of some other reputable intrusion detectors such as 
fail2ban. The data analysed in this section pertains to the observations 
made upon a full day’s deployment of the IDS on the test bed on the 2𝑛𝑑

of November 2020.

5.4.1. Comparison with Internet storm centre

The Internet Storm Centre (ISC) is a popular online tool used to keep 
records of the behaviour of IP addresses on the internet. The ISC mon-
itors this behaviour by collating reports submitted by users when they 
note suspicious activity from a given IP address. Therefore, IP addresses 
which show a history of scanning or attempting to exploit other services 
on the internet can be assumed to be potential threats. All alerts gener-
ated by the IDS were searched on the ISC to ascertain if the alert was 
from a known threat or not. In all cases all of the alerts generated by 
the IDS on our testbed were tied back to a history of other alerts on ISC. 
While this is not conclusive evidence of the system’s true performance 
in the real world, it is an important indicator that the IDS is generating 
realistic alerts in an environment that it was not specifically trained on. 
Moreover, the fact that none of the alerts generated related to a non-
threat reinforces the finding in this work that the hierarchical model is 
effective in reducing the problematic issue of false alarms in network 
intrusion detection.

5.4.2. Multi-step attacks

On a deeper dive of the data, some threats when analysed were from 
related sources. The data for these threats is presented in Table 8. For 
privacy reasons the observed IP addresses were anonymised as IP A, B 
and C. Each of these sources generated more than one type of attack 
on our testbed, according to the IDS that we deployed. By analysing 
the types of threats detected for each IP source, we can see the pattern 
adheres to the typical early stages of a multi-step attack. In more detail, 
this means that we were able to observe that an attacker, or a bot, 
first performed a reconnaissance phase such as a port scan to determine 

services that were open, and then followed this up with a Brute Force 
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Table 8

Table showing potential multi-step attacks observed from the deployment of the IDS.

IP Address Country # of Alerts Types of Alerts

IP_A - 196 Port Scan, Brute Force

IP_B md 14 Port Scan, DoS

IP_C cn 6 Port Scan, DoS
or a DoS attempt. Again, in all cases, the analysis was corroborated by 
findings on the ISC.

6. Conclusion and future work

The research presented in this paper provides progress towards en-

gineering more trustworthy and feasible intrusion detection systems 
which effectively handle the pervasive problem of high volumes of false 
alarms. This paper presented three major contributions to the research 
field on intrusion detection systems. Firstly, the research evaluated the 
efficacy of several machine learning approaches, focusing specifically 
on deep learning. Within this, a conclusion was drawn that a MLP model 
was a high performer versus the other models tested. Secondly, the 
research showed that adopting a hierarchical approach to intrusion de-

tection yields higher performance in reducing false alarms, reducing the 
total number of false alarms by 87.52%. Lastly, this work presented the 
development of a novel hierarchical intrusion detection system which 
combined two separately trained deep MLP models to classify threats 
on a network, and steps towards proving the effectiveness of this model 
in the real world was taken by implementing the model in a live, open 
and real IoT network testbed. The novel MLP-based hierarchical model 
proposed in this research was capable of achieving high classification 
performance (73.44% recall), while balanced with a low FPR of 0.59%.

The work raises several viable areas for continued research. Firstly, 
the hierarchical model yielded impressive results in reducing the num-

ber of false alarms generated by the model, nonetheless, the classifica-

tion accuracy is still an area for improvement, especially with respect to 
the minority class. As such, more research should be undertaken to in-

vestigate methods of improving the classification of the minority class 
without damaging the recall of the normal class, indeed, Multi-task 
Learning may prove a suitable method for enhancing the performance 
of this model. The results in this paper also concerned using deep learn-

ing based models, it may also be of benefit to conduct a study using 
approaches other than deep learning. Furthermore, the model was de-

ployed into a live environment, which allowed the researchers to gain 
valuable insight into how the model would perform on data and in 
an environment that it had never seen before. While these results are 
initially very impressive, they are by no means conclusive. More re-

search is needed in this live environment to understand how the model 
behaves and performs with respect to detecting known attacks and han-

dling false alarms. One potential direction here would be to deploy it 
alongside another well-researched IDS to determine if they raise similar 
kinds of alerts. A further future study could also be conducted to de-

velop a system based on ensembles to determine if a reduction in false 
alarms can be observed. The ensembles may be deployed in a hierar-

chical fashion. Lastly, while the model performs well in detecting the 
types of attacks that it was trained on, more work is required to intro-

duce some new attack types to the model, or perhaps to splinter the 
model into several different versions capable of detecting these other 
attacks.
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