

An efficient contradiction separation based automated deduction algorithm for
enhancing reasoning capability

Liu, P., Chen, S., Liu, J., Xu, Y., Cao, F., & Wu, G. (2023). An efficient contradiction separation based automated
deduction algorithm for enhancing reasoning capability. Knowledge-Based Systems, 261, 1-13. Article 110217.
https://doi.org/10.1016/j.knosys.2022.110217

Link to publication record in Ulster University Research Portal

Published in:
Knowledge-Based Systems

Publication Status:
Published (in print/issue): 15/02/2023

DOI:
10.1016/j.knosys.2022.110217

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 09/04/2024

https://doi.org/10.1016/j.knosys.2022.110217
https://pure.ulster.ac.uk/en/publications/8cf6654c-2a98-46a0-8f4d-8924329576fc
https://doi.org/10.1016/j.knosys.2022.110217

1

An Efficient Contradiction Separation Based Automated Deduction

Algorithm for Enhancing Reasoning Capability

Peiyao Liua d, Shuwei Chena d , Jun Liub d, Yang Xua d,Feng Caoc d and Guanfeng Wua d

a School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China
b School of Computing, Ulster University, Belfast BT15 1ED, Northern Ireland, UK
c School of Information Engineering, Jiangxi University of Science and Technology,

Ganzhou 341000, China
 d National-Local Engineering Laboratory of System Credibility Automatic Verification,

Southwest Jiaotong University, Chengdu 611756, China

Abstract

Automated theorem prover for first-order logic, as a significant inference engine, is one of the hot research areas in

the field of knowledge representation and automated reasoning. E prover, as one of the leading automated theorem

provers, has made a significant contribution to the development of theorem provers for first-order logic, particularly

equality handling, after more than two decades of development. However, there are still a large number of problems

in the TPTP problem library, the benchmark problem library for automated theorem provers, that E has yet to solve.

The standard contradiction separation rule is an inference method introduced recently that can handle multiple clauses

in a synergized way and has a few distinctive features which complements to the calculus of E. Binary clauses, on

the other hand, are widely utilized in the automated deduction process for first-order logic because they have a

minimal number of literals (typically only two literals), few symbols, and high manipulability. As a result, it is feasible

to improve a prover's deduction capability by reusing binary clause. In this paper, a binary clause reusing algorithm

based on the standard contradiction separation rule is firstly proposed, which is then incorporated into E with the

objective to enhance E’s performance, resulting in an extended E prover. According to experimental findings, the

performance of the extended E prover not only outperforms E itself in a variety of aspects, but also solves 18 problems

with rating of 1 in the TPTP library, meaning that none of the existing automated theorem provers are able to resolve

them.

Keywords: Knowledge representation; Automated reasoning; First-order logic; Automated theorem prover; Standard

contradiction rule; E prover

1 Introduction

In the real world, knowledge plays a crucial role in intelligence as well as creating artificial intelligence (AI) [1]. For

an AI system to behave accurately in response to some input, it must possess knowledge about the input. In other words,

knowledge is necessary for intelligent behavior. Knowledge representation and reasoning (in short KR&R) [2] is a research

focus in the field of artificial intelligence dedicated to expressing knowledge about world in a computer tractable form so

that it can be used to enable AI systems to perform well [3]. Knowledge representation suggests an approach to

understanding intelligent behavior that is radically different from other ways, such as psychology [4], neuroscience [5] and

philosophy [6]. KR&R focuses on what humans know, i.e., knowledge, instead of studying humans very carefully, i.e.,

knower.

 Corresponding author.

 E-mail addresses: swchen@swjtu.edu.cn (S. Chen), liupeiyao@my.swjtu.edu.cn (P. Liu)

2

In order to solve the complex problems encountered in AI, one generally needs a large amount of knowledge, and

suitable mechanism for representing and manipulating all that knowledge. Knowledge is best represented through a

knowledge representation language [7] which determine the computational objects, relations and inference available to a

programmer. Apparently, natural language [8] is a knowledge representation language, in addition, programming

languages [9], semantic networks [10] and logic [11] are also knowledge representation languages. Logic language

represented by first-order logic (FOL) as a declarative language uses expression in formal logic to represent knowledge

[12,13], and FOL calculus is one of the most important logical representation schemes for knowledge representation [14].

On the other hand, knowledge representation is inseparable from automated reasoning, which is to study how to infer

conclusion based on given hypotheses, because one of the main purposes of knowledge representation is to be able to infer

new knowledge [15]. Thus, automated reasoning plays a central supporting role in the field of knowledge representation.

Almost all knowledge representation languages have a corresponding reasoning or inference engine. For example, the

inference engine corresponding to FOL is called automated theorem prover (ATP) [16].

A knowledge-based system [17] is a system that uses AI techniques in problem-solving processes to support human

decision-making, learning, and action, and it has two distinguishing central components: a knowledge base that represents

facts about the world and an inference engine that is responsible for the application of knowledge base to the problem on

hand. A good knowledge-based system needs an appropriate representation language. The trade-off between effectiveness

and efficiency is the key to measuring whether a representation language is good or not. In terms of expressiveness and

compactness, FOL has unparalleled advantages. In addition, FOL has several significant advantages. First of all, FOL is a

formal method of reasoning and a mathematical representation formula, and it studies entailment relations, formal

languages, truth conditions, semantics and inference. Many propositions can be translated into first-order logical symbolic

representations, and computers can easily manipulate these symbolic formulas to infer various facts. After all, there is no

more powerful formalism than mathematical formula used to define general propositions. Secondly, FOL guarantees the

soundness and completeness of the corresponding reasoning methods. Therefore, FOL is an appropriate knowledge

representation language for many AI problems and mathematical problems, and the corresponding ATP is an essential and

powerful inference engine. Currently, ATPs are commonly applied in the field of knowledge representation [18-21], but

also in other fields; for instance, program verification [22,23], the operating systems [24,25] and the design of compliers

[26,27].

Both theoretical research and applications in the field of ATP has developed rapidly and achieved fruitful results since

Robbinson proposed resolution principle [28] in 1965, which is still the mainstream inference method of theorem proving

nowadays. It’s the basic idea of resolution principle is to select two clauses from the given clause set, with one literal from

each selected clause forming a complementary pair of literals, for resolution in each deduction step, and then a new clause

(called resolvent) is obtained as the disjunction of the remaining literals of the two clauses after eliminating the

complementary pair of literals. This deduction process continues until an empty clause is obtained. After superposition

rule [29] was proposed, which is essentially a combination of resolution principle and paramodulation [30], most

resolution-based provers adopt superposition rule for equality handling [31], e.g., Vampire [32], E [33], GKC [34] and

Prover9 [35], etc.

As one of the representative ATPs, E is a state-of-the-art prover for FOL with equality entirely based on superposition

rule [36], which has been developed for more than twenty years. E has participated on its own in CADE ATP System

Competition (CASC) [37] every year since 1999, and has performed well in the full first-order, clause normal form, and

unit equality proof categories, often coming in as one of the top three in FOF division of CASC [38].

The deduction framework of most current ATPs for FOL adopts saturation algorithm framework, typically OTTER

[39] and DISCOUNT [40]. E introduces a modified version of the DISCOUNT algorithm, one of the variants of the given-

clause algorithm [36]. The basic idea of the DISCOUNT algorithm is to divide the clause set into two disjoint subsets, the

processed clause set P and the unprocessed clause set U. Initially, set P is empty and all clauses of the clause set are put

into U. At each iteration of the main loop, the ATP selects a given clause from U according to the heuristic strategies and

puts it into P, then performs all inference rules between this given clause and all clauses in P. The resulting new clauses

are put into U. It can be found that the number of clauses of P grows rapidly when the number of iterations keeps increasing.

Therefore, the ATPs adopting DISCOUNT algorithm rely on a lot of heuristic strategies such as term ordering [41-43],

literal and clause selection [44-46], to reduce the search space. This is one crucial problem to be solved for the ATPs such

as E adopting DISCOUNT algorithm. On the other hand, there are a number of problems which cannot be solved by E,

javascript:;

3

especially problems with rating of 1 meaning that none of the current ATPs are able to resolve them [47], in the latest

released version (TPTP-v7.5.0) of the TPTP (Thousands of Problems for Theorem Provers) benchmark library [48].

Therefore, there is still space for improving the performance of E.

Aiming at enhancing the inference ability of resolution principle, Xu et al. [49] proposed a dynamic multi-clause

synergized deduction theory, standard contradiction separation (S-CS) rule in 2018 motivated by the idea from multi-

valued logic, which is perceived as a theoretical development of resolution principle. Specially, at each the deduction step

of S-CS rule, multiple (two or more) clauses are selected as parent clauses of this deduction, and multiple (one or more)

literals from each parent clause are selected to construct a contradiction, then a new clause formed as the disjunction of

the non-selected literals of the parent clause is inferred [50]. The most obvious difference from resolution principle is that

there are multiple (two or more) clauses participate the deduction at each deduction step of S-CS rule. In addition, S-CS

rule has several abilities that resolution principle doesn’t have, e.g., synergized ability, controllability and clause-reusing

ability [51], where the clause-reusing ability, in particular, is the focus of this paper. Therefore, S-CS rule has the advantage

of solving the crucial problem mentioned above and acts as a complement to E to a certain extent, while this part of content

will be analyzed in detail in Section 3. At the same time, we have an idea of applying S-CS rule to E, expecting that S-CS

rule can enhance the performance of E.

There are two motivations behind the research: 1) to build a novel deduction algorithm based on the capabilities of the

S-CS rule; 2) to enhance E’ performance by using the S-CS rule, especially the performance to solve a specific number of

problems with a rating of 1. Consequently, we need to develop a more effective deduction algorithm based on S-CS rule,

and a reasonable extended architecture of E for applying S-CS rule. In this paper, we design an effective implementation

of S-CS rule, i.e., binary clause reusing algorithm, then this deduction algorithm is incorporated into E, to form an extended

ATP of E, dubbed E_BCR. We design two groups of experiments to evaluate the performance of this extended prover

E_BCR. According to experimental findings, the performance of E_BCR outperforms E itself in a variety of aspects,

reflecting that binary clause reusing algorithm based on the S-CS rule is an effective deduction algorithm. Notably, reusing

binary clause deduction algorithm has been initially implemented on the ATP CSE_E 1.3, which won the 3rd place in FOF

division of CASC-28 (2021) [52]. Meanwhile, CSE_E 1.3 solved the same number of problems as iProver 3.5, that was

the runner-up in FOF division of CASC-28 (2021). The contributions of the research work in this paper has three points:

we have 1) studied S-CS rule and explore the distinctive features of S-CS rule in more depth; 2) further verified the

implementation and effectiveness of S-CS rule; 3) proposed an innovative deduction algorithm, and significantly enhanced

the ability of E.

The remainder of this paper is organized as follows. Section 2 introduces the preliminaries of FOL and S-CS rule. In

Section 3, the binary clause reusing algorithm based on S-CS rule is proposed and its advantages are analyzed, then some

heuristic strategies related to this algorithm are introduced. The extended architecture of E for applying S-CS rule is

detailed in Section 4. The related experiments and the analysis of experimental results are studied in Section 5. In Section

6, we give conclusions of this paper and our future work plans.

We note that a short version of this paper appeared in the 2021 IEEE International Conference on Intelligent Systems

and Knowledge Engineering (ISKE 2021) [53]. Our initial conference paper just introduced the basic idea of the binary

clause reusing algorithm, while neither the detailed analysis of the proposed algorithm and related experimental results,

nor the related heuristic strategies were provided. This manuscript addresses these issues and provides more extensive

experimental studies and analyses to illustrate the performance of the extended ATP of E.

2 Preliminaries

In this section, we firstly provide some basic concepts of FOL, and the readers are referred to Ref. [54] for a detailed

introduction. Secondly, we give the preliminaries of S-CS rule and the basic method of constructing contradiction.

2.1 Preliminaries of First-order Logic

We focus on conjunctive normal form (CNF) of first-order logic excluding quantifiers. A CNF formula is built from

variables, function symbols, predicate symbols and conjunction symbols [54].

4

Definition 1 [54] (Term) A term is either a variable or an expression 𝑓(𝑡1, 𝑡2, ⋯ , 𝑡𝑛), where 𝑓 is a function symbol of arity

n and 𝑡1, 𝑡2, ⋯ , 𝑡𝑛 are terms.

𝑇𝑒𝑟𝑚(𝐹, 𝑉) is to denotes the set of terms over an enumerable set 𝐹 of function symbols with associated arities and set

𝑉 of variables. A 0-ary function is called constant. We use 𝑡 (possibly primed or subscripted) to denote a term, e.g., 𝑡′, 𝑡1, 𝑡2,

𝑥 (possibly primed or subscripted) for a variable, e.g., 𝑥′, 𝑥11, 𝑥21, 𝑓 (possibly primed or subscripted) for a non-constant

function symbol, e.g., 𝑓′, 𝑓1, 𝑓2, and 𝑎 for a constant, e.g., 𝑎′, 𝑎1, 𝑎2. A term 𝑡 is called ground term if it contains no variable.

Definition 2 [54] (Atom) An atom is an expression 𝑃(𝑡1, 𝑡2, ⋯ , 𝑡𝑛) , where 𝑃 is a predicate symbol of arity n and

𝑡1, 𝑡2, ⋯ , 𝑡𝑛 are terms.

We use 𝑃 (possibly primed or subscripted) to denote a predicate symbol, e.g., 𝑃′, 𝑃1, 𝑃2.

Definition 3 [54] (Literal) A literal is an expression 𝐴 (a positive literal) or ~𝐴 (a negative literal), where 𝐴 is an atom.

Two literals 𝐴 and ~𝐴 are said to be complementary.

We use 𝑙 (possibly primed or subscripted) to denote a literal, e.g., 𝑙′, 𝑙1, 𝑙2.

Definition 4 [33] (Clause) A clause is set of literals, sometimes written as 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 and interpreted as the

disjunction of its literals.

Multiple occurrences of the same clause are usually considered as distinct clauses and we implicitly assume that any

two clauses do not share the same variable. We use 𝐶 (possibly primed or subscripted) to denote a clause, e.g., 𝐶′, 𝐶1, 𝐶2.

A clause 𝐶 with n literals is called n-ary (n ∈ ℕ) clause. Specially, a 1-ary clause is called unit clause, 2-ary clause is called

binary clause, and a 0-ary clause is empty clause denoted by ∅.

We usually use an uppercase bold letter (possibly primed or subscripted) to denote a clause set, e.g., 𝑺, 𝑻𝟏, 𝑹′.

Definition 5 [55] (Substitution) A substitution is a function 𝜎: 𝑉 → 𝑇𝑒𝑟𝑚(𝐹, 𝑉) with property that {𝑥|𝜎(𝑥) ≠ 𝑥} is finite,

where 𝑥 ∈ 𝑉. A substitution 𝜎 also be written as 𝜎 = {𝑡1 𝑥1⁄ , 𝑡1 𝑥1⁄ , ⋯ , 𝑡𝑛 𝑥𝑛⁄ }, where 𝑡𝑖 ∈ 𝑇𝑒𝑟𝑚(𝐹, 𝑉), 𝑥𝑖 ∈ 𝑉 and 𝑡𝑖 ≠

𝑥𝑖 (𝑖 = 1,2, ⋯ , 𝑛}). If 𝑡𝑖 is a ground term, then 𝜎 is called a ground substitution.

In this paper, a substitution is denoted by a lowercase Greek letter (possibly primed or subscripted), e.g., 𝜎, 𝜃. The

same clause or literal with different substitutions is regarded as different clauses or literals.

2.2 Preliminaries of S-CS Rule

Some concepts of S-CS rule are introduced as follows. We only recall some basic concepts, and readers are referred to

Ref. [49] for a detailed introduction.

Definition 6 [49] (Contradiction) Let 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} be a clause set in FOL If ∀(𝑙1, 𝑙2, ⋯ , 𝑙𝑚) ∈ ∏ 𝐶𝑖
𝑚
𝑖=1 , there exists

at least one complementary pair among {𝑙1, 𝑙2, ⋯ , 𝑙𝑚}, then 𝑺 = ⋀ 𝐶𝑖
𝑚
𝑖=1 is called a standard contradiction (in short, SC).

Definition 7 [49] Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. The following inference rule that produces a new

clause from 𝑺 is called a standard contradiction separation rule, in short, an S-CS rule:

For each 𝐶𝑖 (𝑖 = 1,2, ⋯ , 𝑚), firstly apply a substitution 𝜎𝑖 to 𝐶𝑖 (𝜎𝑖 could be an empty substitution but not necessary

the most general unifier), denoted as 𝐶𝑖
𝜎𝑖; then separate 𝐶𝑖

𝜎𝑖 into two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that

(1) 𝐶𝑖
𝜎𝑖 = 𝐶𝑖

𝜎𝑖−
∨ 𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 have no common literals;

(2) 𝐶𝑖
𝜎𝑖+

 can be an empty clause itself, but 𝐶𝑖
𝜎𝑖−

 cannot be an empty clause;

(3) ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a standard contradiction, that is ∀(𝑥1, 𝑥2, ⋯ , 𝑥𝑚) ∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , there exists at least one complementary

pair among {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}.

The resulting clause ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 , denoted as ℂ𝑚
𝑠𝜎(𝐶1, ⋯ , 𝐶𝑚), is called a standard contradiction separation clause (CSC)

of 𝐶1, ⋯ , 𝐶𝑚, and ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is called a separated standard contradiction (SC).

5

The deduction sequence based on S-CS rule, the soundness and completeness of S-CS rule are described as follows.

Definition 8 [49] Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. Φ1, Φ2, ⋯ , Φ𝑡 is called a standard contradiction

separation based dynamic deduction sequence (S-CS deduction) from 𝑺 to a clause Φ𝑡, denoted as 𝐷𝑠, if

(1) Φ𝑖 ∈ 𝑺, 𝑖 ∈ {1,2, ⋯ , 𝑡}; or

(2) there exist 𝑟1, 𝑟2, ⋯ , 𝑟𝑘𝑖
< 𝑖, Φ𝑖 = ℂ𝑘𝑖

𝑠 (Φ𝑟2
, Φ𝑟2

, ⋯ , Φ𝑟𝑘𝑖
).

Theorem 1 [49] (Soundness) Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. Φ1, Φ2, ⋯ , Φ𝑡 is a S-CS based dynamic

deduction from 𝑺 to a clause Φ𝑡. If Φ𝑡 is an empty clause, then 𝑺 is unsatisfiable.

Theorem 2 [49] (Completeness) Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. If 𝑺 is unsatisfiable, then exists an S-

CS based dynamic deduction from 𝑺 to an empty clause.

The crucial point of S-CS rule is the construction of the SC. During the process of S-CS deduction, each clause 𝐶

participating the deduction is separated into the two parts, i.e., 𝐶𝜎+ and 𝐶𝜎−, under a certain substitution 𝜎, where 𝐶𝜎+ is

the sub-clause of the CSC of the deduction and 𝐶𝜎− is put into the corresponding SC. In other words, a SC is constructed

through a series of separating clauses. Therefore, the problem how to construct the SC is equivalent to the problem how to

separate the clauses that participate the S-CS deduction.

Furthermore, there is one literal from each clause participating the S-CS deduction is called decision literal [56] that

plays an important role on determining the SC, and thus the SC has a set of decision literals written as 𝑫𝒍 in this paper. In

fact, which clause is selected to construct the SC is determined by 𝑫𝒍 during the process of constructing the SC. Therefore,

we introduce the concept of pairing condition.

Definition 9 (Pairing condition) Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a SC, and the set 𝑫𝒍 = {𝑙𝑑1, 𝑙𝑑2, ⋯ , 𝑙𝑑𝑚} is a decision literal set in

⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

, 𝑖 = 1,2, ⋯ , 𝑚 and 𝜎𝑖 is a substitution corresponding to 𝐶𝑖. There exist a literal 𝑙𝑝 in a clause

𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 and a substitution 𝜃, and the literal 𝑙𝑝
𝜃 can be put into the 𝐶𝜃− when the clause 𝐶 participates the S-

CS deduction. If 𝑙𝑝 satisfies the following condition:

There exists a literal 𝑙𝑑𝑖 ∈ 𝐷𝑙 and a substitution 𝜃, such that 𝑙𝑝
𝜃 = ~𝑙𝑑𝑖

𝜃 , i.e., 𝑙𝑑𝑖 and 𝑙𝑝 can form a complementary pair

after substitution 𝜃, then this condition is called a pairing condition.

In order to make the deduction more efficient, we stipulate that any two literals in 𝑫𝒍 cannot form a complementary

pair. Pairing condition is considered the most fundamental condition for a clause to participate the S-CS deduction, namely

a clause must satisfy at least pairing condition to be eligible to participate the S-CS deduction. If a clause does not have a

literal that satisfies pairing condition, this clause cannot participate the S-CS deduction. Consequently, clause separation

method of S-CS rule is introduced as follows.

Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a constructed SC and ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 is the corresponding CSC, and the set 𝑫𝒍 = {𝑙𝑑1, 𝑙𝑑1, ⋯ , 𝑙𝑑𝑚} is

a decision literal set in ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

, 𝑖 = 1,2, ⋯ , 𝑚 and 𝜎𝑖 is a substitution corresponding to 𝐶𝑖. A clause

𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 as an upcoming clause that will participates the S-CS deduction, then the process of separating clause

𝐶𝜃 into two parts 𝐶𝜃− and 𝐶𝜃+ after a substitution 𝜃 is shown as follows.

Step 1: If the literal 𝑙
𝑗

𝜃𝑗
 (𝑗 = 1,2, ⋯ , 𝑛) that satisfies pairing condition after a substitution 𝜃𝑗, then it is put into 𝐶𝜃−;

otherwise, 𝑙
𝑗

𝜃𝑗
 is added to 𝐶𝜃+;

Step 2: If 𝐶𝜃+ has no literal or 𝐶𝜃+ satisfies user-defined deduction conditions then end the separation of clause 𝐶;

otherwise, go to Step 3.

Step 3: Select a literal 𝑙𝑑 from 𝐶𝜃+ to put into 𝐷𝑙 as a new decision literal, then remove 𝑙𝑑 from 𝐶𝜃+ and put 𝑙𝑑 into

𝐶𝜃−.

The SC ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 will be updated to ⋀ 𝐶𝑖
𝜎𝑖−𝑚+1

𝑖=1 where 𝐶𝑚+1
𝜎𝑚+1−

= 𝐶𝜃−, since 𝐶𝜃− is put into the SC. And the CSC

⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 also will be updated to ⋁ 𝐶𝑖
𝜎𝑖+𝑚+1

𝑖=1 where 𝐶𝑚+1
𝜎𝑚+1+

= 𝐶𝜃+, since 𝐶𝜃+ is put into the CSC.

The following example illustrates the process of S-CS deduction, especially the separation of each clause.

6

Example 1 Let 𝑺 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8} be a clause set, where

𝐶1 = ~𝑃1(𝑥11, 𝑥12, 𝑥13) ∨ ~𝑃2(𝑥11, 𝑥13),

𝐶2 = 𝑃1(𝑥22, 𝑥21, 𝑥23) ∨ ~𝑃1(𝑥21, 𝑥22, 𝑥23),

𝐶3 = 𝑃2(𝑥31, 𝑥34) ∨ ~𝑃3(𝑥31) ∨ ~𝑃1(𝑥32, 𝑥33, 𝑥34) ∨ ~𝑃2(𝑥31, 𝑥32) ∨ ~𝑃2(𝑥31, 𝑥33),

𝐶4 = 𝑃1(𝑥41, 𝑥41, 𝑓1(𝑥41)) ∨ ~𝑃2(𝑥41, 𝑎1),

𝐶5 = ~𝑃1(𝑓1(𝑥51), 𝑥51, 𝑥52) ∨ 𝑃1(𝑥51, 𝑎2, 𝑥53) ∨ 𝑃2(𝑥53, 𝑥51, 𝑥53),

𝐶6 = 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)),

𝐶7 = 𝑃3(𝑎1), 𝐶8 = 𝑃2(𝑎1, 𝑎2).

Here 𝑎𝑖 (𝑖 = 1,2) is constant, 𝑓1 is function symbol, 𝑥𝑖 (𝑖 = 11, ⋯ ,53) is variable, 𝑃𝑖 (𝑖 = 1,2,3) is predicate symbol.

Applying S-CS rule to the clause set 𝑺, and using clause separation method to 𝐶7, 𝐶8, 𝐶6, 𝐶1, 𝐶3, 𝐶4 in sequence. We

obtain a CSC involving 6 clauses: 𝐶9 = ~𝑃2(𝑎2, 𝑎1), and the corresponding SC is shown in Table 1. The corresponding

substitution and decision literal of each clause is shown in Table 2.

Table 1 Separation the 𝐶𝑖
𝜎𝑖 for Example 1

𝑖 𝐶𝑖
𝜎𝑖−

 𝐶𝑖
𝜎𝑖+

7 𝑃3(𝑎1) ∅

8 𝑃2(𝑎1, 𝑎2) ∅

6 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∅

1 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑓1(𝑎2)) ∅

3 𝑃2(𝑎1, 𝑓1(𝑎2)) ∨ ~𝑃3(𝑎1) ∨ ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∅

4 𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ~𝑃2(𝑎2, 𝑎1)

Table 2 Corresponding substitution 𝜎𝑖 and decision literal of clause 𝐶𝑖 for Table 1

𝑖 𝜎𝑖 Decision literal

7 ∅ 𝑃3(𝑎1)

8 ∅ 𝑃2(𝑎1, 𝑎2)

6 ∅ 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2))

1 {𝑎1 𝑥11, 𝑓1(𝑎1) 𝑥12⁄⁄ , 𝑓1(𝑎2) 𝑥13⁄ } ~𝑃2(𝑎1, 𝑓1(𝑎2))

3 {𝑎1 𝑥31, 𝑎2 𝑥32⁄⁄ , 𝑎2 𝑥33⁄ , 𝑓1(𝑎2) 𝑥34⁄ } ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2))

4 {𝑎2 𝑥41⁄ } ∅

3 Binary Clause Reusing Algorithm Based on S-CS Rule

This section discusses the theory of binary clause reusing and proposes the deduction algorithm based on binary clause

reusing, and introduces the heuristic strategies associated with this deduction algorithm.

3.1 Binary Clause Reusing Algorithm

From Section 2, the core of S-CS rule is constructing the SC and thus obtaining the CSC. According to Ref. [51], we

know that S-CS rule has at least ten featured characteristics, such as guidance and clause-reusing. Ref. [57] proposed a

clause reusing deduction framework based on S-CS rule, which can take better advantage of guidance ability. In this paper,

based on this framework, we then propose a binary clause reusing algorithm based on S-CS rule which fully takes

advantage of deduction ability of binary clause.

First of all, we introduce the concept of clause reusing and the advantages of clause reusing in S-CS deduction.

According to Definition 9, we know that the set of decision literals 𝑫𝒍 is crucial for the S-CS deduction. Intuitively,

the more literals in 𝑫𝒍 , the more likely an upcoming clause that will participate in the S-CS deduction meets paring

condition. On the other hand, if a literal 𝑙 in an upcoming clause 𝐶 that will participate in the S-CS deduction can form a

complementary pair with a literal of 𝑫𝒍 after a certain substitution, then the literal 𝑙 will be put into the contradiction.

Therefore, the more literals in 𝑫𝒍, the more likely the 𝐶𝜎+ after a clause 𝐶 participating in the S-CS deduction under a

7

substitution 𝜎 is an empty clause. The number of literals in 𝑫𝒍 has positive impact on improving the performance of S-CS

rule.

At the same time, a literal in the upcoming clause that expects the S-CS deduction may form different complementary

pairs with multiple literals of 𝑫𝒍 respectively, so this upcoming clause may participate the S-CS deduction multiple times,

i.e., clause reusing. During the construction of a SC, each deduction of this upcoming clause will generate a new decision

literal, so clause reusing will increase a number of decision literals.

We've then come to two conclusions: 1) it is able to effectively generate different decision literals when reusing clauses

in one SC creation process; 2) it is able to generate an empty clause in the development of this SC when there are more

different decision literals in the SC.

In theory, a clause is reused until there is no literal in it that can form a complementary pair with a decision literal of

𝑫𝒍. However, it is not achievable for each clause in a clause set to be fully reused, since resources available to a prover in

practice, e.g., the running time and memory resources, is limited. Therefore, we introduce the concept of well separation

to characterize a “good” separation of a clause in the S-CS deduction.

Definition 10 (Well separation) There is a constructing SC. A n-ary clause 𝐶 as an upcoming clause that is going to

participate the S-CS deduction. The separation that divides the clause 𝐶 into 𝐶𝜃− and 𝐶𝜃+ by applying clause separation

method under a substitution 𝜃 is called well separation, if 𝐶𝜃+ is an empty clause.

This paper proposes binary clause reusing algorithm (in short BCR algorithm) based on S-CS rule, the main reasons

why binary clauses are reused are based on the following analysis.

1. Empirically, both binary resolution and S-CS rule prefer short clauses, especially unit clause or binary clause, during

the deduction process. Meanwhile, unit clauses and binary clauses usually occupy a significant number of clauses in a

clause set. Therefore, it is reasonable to highlight the reusing of binary clause.

2. S-CS rule has the feature of reusing clause, that is, the deduction based on S-CS rule is a clause-reusing deduction.

During the process of constructing a SC, one clause can participate in the S-CS deduction multiple time, i.e., reusing the

clause, such that this clause may generate multiple different decision literals. The more and different decision literals, the

better constraints on the CSC (fewer literals or symbols) and the higher synergy of the deduction. Therefore, reusing binary

clause can effectively generate abundant decision literals.

3. According to Definition 10, the separation of a binary clause 𝐶 must be well separation as long as a literal in 𝐶 can

form a complementary pair with a certain decision literal under the substitution 𝜎, i.e., 𝐶𝜎+ = ∅. If the unit clauses and

binary clauses are selected to participate in S-CS deduction in priority, the CSCs are all unit clauses during the period.

These unit CSCs make the deduction path more optimal in the subsequent deduction, and some clauses in the clause set

can be removed if they are subsumed by the unit CSCs which alleviates the search space expansion.

4. Compared to n-ary (n > 2) clause, binary clause is more manipulative, in other word, using binary clause could

reduce the complexity of the deduction algorithm.

Therefore, reusing binary clause is a reasonable method for the S-CS deduction, which does not contribute any literal

to the CSC. BCR algorithm based on S-CS rule is introduced as follows.

BCR algorithm is introduced in detail in the following steps, and the corresponding pseudo-code of BCR algorithm is

provided in Algorithm 1.

Step 1: 𝑺 is a given clause set. Before applying S-CS rule, 𝑺 is divided into three subsets, i.e., 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, where 𝑺𝒖

stores unit clauses, 𝑺𝒃 holds binary clauses and the remaining clauses are stored in 𝑺𝒆. Then according to the heuristic

strategies, sort the clauses of 𝑺𝒖.

Step 2: The processed clause participated the S-CS deduction after a certain substitution is stored in the clause set 𝑷,

the set 𝑫𝒍 stores the decision literals during the S-CS deduction. The corresponding literal of each clause of 𝑺𝒖 is put into

𝑫𝒍 in sequence, i.e., the literal of each unit clause is used to initialize 𝑫𝒍. Then each clause of 𝑺𝒖 is put into 𝑷.

Step 3: Traverse each clause 𝐶𝑏 of the set 𝑺𝒃 sequentially. If the traversal is completed, go to Step 6.

Step 4: Check whether there is a literal of the clause 𝐶𝑏 that satisfies paring condition.a If not, go to Step 3.

a To avoid endless loop, BCR algorithm stipulates that a complementary pair that is formed with a literal 𝑙 of an upcoming clause and a literal of 𝑫𝒍 is

only allowed appeared once with respect to the literal 𝑙 during the S-CS deduction.

8

Algorithm 1 BCR algorithm

Input:

a given clause set 𝑺

a set of unit clauses 𝑺𝒖 (initially empty)

a set of binary clauses 𝑺𝒃 (initially empty)

a set of n-ary (n ≥ 3) clauses 𝑺𝒆 (initially empty)

a set of processed clauses 𝑷 (initially empty)

a set of decision literals 𝑫𝒍 (initially empty)

a threshold 𝑁𝑢𝑚

Output:

a set of new generated CSCs 𝑹

1: classifySet(𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆);

2: sortSet(𝑺𝒖);

3: initialDecisionSet(𝑺𝒖, 𝑫𝒍);

 4: 𝑷 = 𝑷 ∪ 𝑺𝒖;

 5: for each 𝐶𝑏 ∈ 𝑺𝒃

6: if FALSE == paringCondition(𝐶𝑏, 𝑫𝒍) goto 5;

 7: 𝐶𝑟 = separateCla(𝐶𝑏, 𝑷, 𝑫𝒍);

 8: if 𝐶𝑟 == ∅

 9: return UNSAT;

10: updateDecisionSet(𝐶𝑏, 𝑫𝒍);

11: 𝑹 = 𝑹 ∪ {𝐶𝑟};

12: 𝑷 = 𝑷 ∪ {𝐶𝑏};

13: goto 6;

14: end for

15: 𝑘 = 0 ;

16: while (𝐶𝑔 = selectGivenCla(𝑺𝒆)) ≠ null begin

17: if FALSE == paringCondition(𝐶𝑔, 𝑫𝒍) goto 16;

18: 𝐶𝑟
′ = separateCla(𝐶𝑔, 𝑷, 𝑫𝒍);

19: if 𝐶𝑟
′ == ∅

20: return UNSAT;

21: if TRUE == invalidSeparation(𝐶𝑟
′ , 𝐶𝑔, 𝑹, 𝑺)

22: rollbackPath(𝐶𝑟
′ , 𝐶𝑔, 𝑷, 𝑫𝒍);

23: goto 15;

24: if TRUE == stopDeduction(𝐶𝑟
′) goto end while;

25: updateDecisionSet(𝐶𝑔, 𝑫𝒍);

26: 𝑹 = 𝑹 ∪ {𝐶𝑟
′};

27: 𝑷 = 𝑷 ∪ {𝐶𝑔};

28: if (𝑘 = 𝑘 + 1) < 𝑁𝑢𝑚 goto 16;

29: else goto 5;

30: end while

31: for each 𝐶𝑟
′′ ∈ 𝑹

32: backwardSubsumed(𝑺, 𝐶𝑟
′′);

33: end for

34: 𝑺 = 𝑺 ∪ 𝑹;

35: output 𝑹;

Step 5: Apply clause separation method of S-CS rule to the clause 𝐶𝑏 and the two sets 𝑷 and 𝑫𝒍, separate the clause

𝐶𝑏, and generate a CSC 𝐶𝑟. If 𝐶𝑟 is an empty clause, then output UNSAT, exit! If not, select a literal from the clause 𝐶𝑏 as

9

a new decision literal, and put it into 𝑫𝒍. 𝐶𝑟 is put into the clause set 𝑹 that is used to store new generated CSCs during the

S-SC deduction. The clause 𝐶𝑏 is put into 𝑷. Go to Step 4.

Step 6: Select a clause from the clause set 𝑆𝑒 as the next clause 𝐶𝑔 to participate in the deduction according to the

heuristic strategies. If there is no clause in 𝑆𝑒 qualifying as the next clause 𝐶𝑔, go to Step 10.

Step 7: Check whether there is a literal of the clause 𝐶𝑏 that satisfies paring condition. If not, go to Step 6.

Step 8: Apply clause separation method of S-CS rule to the clause 𝐶𝑔 and the two sets 𝑷 and 𝑫𝒍, separate the clause

𝐶𝑔, and generate a CSC 𝐶𝑟
′. If 𝐶𝑟

′ is an empty clause, then output UNSAT, exit! If not, check the clause 𝐶𝑟
′ to determine

whether this deduction step is valid, where the determination method is introduced in the following. If this deduction step

is invalid, perform the procedure of deduction path rollback, then go to Step 6.

Step 9: Check the exit condition of the deduction. If the exit condition is satisfied, go to Step 10. Otherwise, the new

generated clause 𝐶𝑟
′ is put into the clause set 𝑅 that is used to store new generated CSCs during the S-SC deduction. The

clause 𝐶𝑔 is put into 𝑃. When every 𝑁𝑢𝑚 (a predefined threshold and set as 10 by default according to our empirical

experience) clauses of the set 𝑆𝑒 have participated in the S-CS deduction, go to Step 3. Otherwise, go to Step 6.

Step 10: Traverse each clause 𝐶𝑟
′′ of the clause set 𝑹. Then check each clause of the clause set 𝑺 whether it is subsumed

by the clause 𝐶𝑟
′′. If yes, delete the subsumed clauses from each clause set.

Step 11: Each clause of 𝑹 is put into 𝑺, then output 𝑹.

The functions of the pseudo-code are described as follows.

• classifySet(𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆): This function divides the clause set 𝑺 into three subsets, i.e., 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, where 𝑺𝒖 stores unit

clauses, 𝑺𝒃 holds binary clauses and the remaining clauses are stored in 𝑺𝒏. Suppose that there are 𝑚 clauses in the set

𝑺, the time complexity of this function is 𝑂(𝑚).

• sortSet(𝑺𝒖): It sorts the clauses of the clause set 𝑺𝒖 according to the heuristic strategies. Suppose that there are 𝑚𝑢

clauses in the set 𝑺𝒖, the time complexity of this function is 𝑂(𝑚𝑢log𝑚𝑢).

• initialDecisionSet(𝑺𝒖, 𝑫𝒍): It puts the corresponding literal of each clause of the unit clause set 𝑺𝒖 into 𝑫𝒍 in sequence,

i.e., the literal of each unit clause is used to initialize 𝑫𝒍. Suppose that there are 𝑚𝑢 clauses in the set 𝑺𝒖, the time

complexity of this function is 𝑂(𝑚𝑢).

• paringCondition(𝐶𝑏, 𝑫𝒍): Return TRUE if and only if there is a literal 𝑙 of the clause 𝐶𝑏 can form a complementary

pair with a literal in the set 𝑫𝒍, and this complementary pair is the first occurrence with respect to the literal 𝑙 during

the S-CS deduction. Suppose the clause 𝐶𝑏 has 𝑛 literals and the set 𝑫𝒍 has 𝑥 literals, the time complexity of this

function is 𝑇(𝑛, 𝑥) = 𝑛 ∗ 𝑥 = 𝑂(𝑛𝑥).

• separateCla(𝐶𝑏, 𝑷, 𝑫𝒍): It applies clause separation method of S-CS rule with the clause 𝐶𝑏 and the two set 𝑷, 𝑫𝒍,

separate the clause 𝐶𝑏 into 𝐶𝑏
𝜎+ and 𝐶𝑏

𝜎− under a substitution 𝜎, and generate a CSC 𝐶𝑟. Then 𝐶𝑏
𝜎− is used to extend

the SC. Suppose the clause 𝐶𝑏 has 𝑛 literals and the set 𝑫𝒍 has 𝑥 literals, the time complexity of this function is

𝑇(𝑛, 𝑥) = 𝑛𝑥 = 𝑂(𝑛𝑥).

• updateDecisionSet(𝐶𝑏, 𝑫𝒍): According to the heuristic strategies, this function selects a literal from the clause 𝐶𝑏 after

the separation as a new decision literal, then put the new decision literal into the literal set 𝑫𝒍. Suppose the clause 𝐶𝑏

has 𝑛 literals and only one literal in 𝐶𝑏 is separated into 𝐶𝑏
−, the time complexity of this function is 𝑇(𝑛) = 𝑛 − 1 =

𝑂(𝑛).

• selectGivenCla(𝑺𝒆): According to the heuristic strategies, it selects a clause from the clause set 𝑺𝒆 as the next clause

to participate in the deduction. The time complexity of this function is 𝑂(1).

• invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺): Return TRUE if and only if the deduction step generated the clause 𝐶𝑟

′ satisfies any

one of the five conditions of invalid separation. (1) The clause 𝐶𝑟
′ is subsumed by one clause from the clause set 𝑺 or

the clause set 𝑹; (2) The clause 𝐶𝑟
′ is tautology; (3) The maximum term depth of clause of the clause 𝐶𝑟

′ exceeds the

set threshold; (4) The number of literals of the 𝐶𝑔
+ part of 𝐶𝑔 after the separation exceeds the set threshold; (5) The

maximum term depth of literal of each literal in the 𝐶𝑔
+ part of 𝐶𝑔 after the separation exceeds the set threshold.

Suppose the clause 𝐶𝑟
′ has 𝑟 literals, the clause 𝐶𝑔 has 𝑛 literals and the set 𝑺 or 𝑹 has 𝑚 clauses, the time complexity

of this function is 𝑇(𝑟, 𝑛, 𝑚) = 𝑟𝑚 + 𝑟(𝑟 − 1) + 𝑟 + (𝑛 − 1) + (𝑛 − 1) = 𝑂(𝑟𝑚 + 𝑟2).

• rollbackPath(𝐶𝑟
′ , 𝐶𝑔 , 𝑷 , 𝑫𝒍): Clear and restore the corresponding information of the deduction. (1) Clear the

substitutions corresponding to the deduction step generated the clause 𝐶𝑟
′; (2) Clear the deduction identifiers of the

clause participated in the deduction step that generated the clause 𝐶𝑟
′; (3) Delete the generated clause 𝐶𝑟

′; (4) Remove

10

the 𝐶𝑔
− part of 𝐶𝑔 from the corresponding CSC and the 𝐶𝑔

+ part of 𝐶𝑔 from the corresponding SC. Suppose the clause

𝐶𝑟
′ has 𝑟 literals, the clause 𝐶𝑔 has 𝑛 literals and the set 𝑺 or 𝑹 has 𝑚 clauses, the time complexity of this function is

𝑇(𝑟, 𝑛, 𝑚) = 𝑟 + 1 + 𝑟 + 𝑛 = 𝑂(𝑟 + 𝑛).

• stopDeduction(𝐶𝑟
′): Return TRUE if and only if the generated clause 𝐶𝑟

′ during the deduction step satisfies the five exit

conditions. (1) The clause 𝐶𝑟
′ is an empty clause, i.e., UNSAT found; (2) The number of literals in the clause 𝐶𝑟

′ reaches

the set threshold; (3) The maximum term depth of clause in the clause 𝐶𝑟
′ reaches the set threshold; (4) The running

time reaches the set threshold; (5) The consumed memory reaches the set threshold. Suppose the clause 𝐶𝑟
′ has 𝑟 literals,

the time complexity of this function is 𝑇(𝑟, 𝑛, 𝑚) = 1 + 1 + 𝑟 + 1 + 1 = 𝑂(𝑟).

• backwardSubsumed(𝑺, 𝐶𝑟
′′): Remove the clause that is subsumed by the clause 𝐶𝑟

′′ from the clause set 𝑺. Suppose the

clause 𝐶𝑟
′′ has 𝑟 literals and the set 𝑆 has 𝑚 clauses, the time complexity of this function is 𝑇(𝑟, 𝑛, 𝑚) = 𝑟𝑚 = 𝑂(𝑟𝑚).

Suppose the clause set 𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆 have at most 𝑚, 𝑚𝑢, 𝑚𝑏, 𝑚𝑒 clauses, respectively, in the deduction process, and

the decision literal set 𝑫𝒍 has at most 𝑥 literals in the deduction process. Combining the above analysis of the time

complexity of each function, we do a further time complexity analysis of Algorithm 1.

 (1) Line 5 – 14: The set 𝑺𝒃 holds binary clauses, then the number of literals in any clause 𝐶𝑏 is 2 and the time

complexity of the function updateDecisionSet(𝐶𝑏, 𝑫𝒍) is 𝑂(1). Therefore, the time complexity of line 5 – 14 is a function

of the variables 𝑚𝑏, 𝑥, and the corresponding time complexity is shown in formula (1).

 𝑇(𝑚𝑏 , 𝑥) = 𝑚𝑏 + 𝑚𝑏2𝑥 + 𝑚𝑏2𝑥 = 𝑂(𝑚𝑏𝑥) (1)

(2) Line 16 – 30: Suppose the longest clause in the set 𝑺𝒆 has 𝑛 literals, the clause 𝐶𝑟
′ has at most 𝑟 literals. Therefore,

the time complexity of lint 16 – 30 is a function of the variables 𝑚𝑒, 𝑚𝑏 , 𝑛, 𝑥, 𝑟, and the corresponding time complexity

is shown in formula (2).

𝑇(𝑚𝑏 , 𝑚𝑒, 𝑛, 𝑥, 𝑟) = 𝑚𝑒 + 𝑚𝑒(𝑛𝑥 + 𝑟𝑚 + 𝑟2 + 2𝑟 + 2𝑛 + 𝑟 + 𝑚𝑏𝑥)

 = 𝑂(𝑚𝑒𝑛𝑥 + 𝑚𝑒𝑟𝑛 + 𝑚𝑒𝑟2 + 𝑚𝑒𝑚𝑏𝑥) (2)

(3) Line 30 – 33: Suppose the set 𝑹 has 𝑚𝑟 clauses and the longest clause in the set 𝑹 has 𝑟 literals. Therefore, the

time complexity of lint 30 – 33 is a function of the variables 𝑚, 𝑚𝑟, 𝑟, and the corresponding time complexity is shown in

formula (3).

 𝑇(𝑚, 𝑚𝑟 , 𝑟) = 𝑚𝑟(𝑟𝑚) = 𝑂(𝑚𝑚𝑟𝑟) (3)

From the above analysis, the time complexity of BCR algorithm is a function of the variables 𝑚, 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒, 𝑚𝑟, 𝑛,

𝑥, 𝑟. The sets 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, 𝑹 are actually subsets of the set 𝑺 in the deduction process, so it is feasible for the variable 𝑚 to

replace the four variables 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒, 𝑚𝑟. Therefore, the time complexity of BCR algorithm is shown in formula (4).

 𝑇(𝑚, 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒 , 𝑚𝑟 , 𝑛, 𝑥, 𝑟) = 𝑇(𝑚, 𝑛, 𝑥, 𝑟)

 = 𝑚 + 𝑚𝑢log𝑚𝑢 + 𝑚𝑢 + 𝑚𝑏𝑥 + 𝑚𝑒𝑛𝑥 + 𝑚𝑒𝑟𝑛 + 𝑚𝑒𝑟2 + 𝑚𝑒𝑚𝑏𝑥 + 𝑚𝑚𝑟𝑟

 = 𝑂(𝑚2𝑥 + 𝑚2𝑟 + 𝑚log𝑚 + 𝑚𝑟2 + 𝑚𝑛𝑥 + 𝑚𝑟𝑛) (4)

Different from the DISCOUNT algorithm, BCR algorithm has the multiple advantages introduced as follows.

(1) Multi-clause and dynamic deduction. In the function separateCla(𝐶𝑏 , 𝑷, 𝑫𝒍), there are more than two clauses

participated in the deduction, including the clause 𝐶𝑏, and the clauses whose decision literal forms the complementary pair

with the literal of 𝐶𝑏. At the same time, at least one literal is eliminated in each clause participated in the deduction. The

number of clauses and literals at each deduction step is determined according to how many decision literals of 𝑫𝒍 form

complementary pairs with the literals in the clause 𝐶𝑏. Therefore, each deduction of BCR algorithm is multi-clause and

dynamic.

(2) Controllable deduction. BCR algorithm can control the deduction process and deduction results flexibly through

the implementation of the two functions, invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) and stopDeduction(𝐶𝑟

′). In the two functions, we

set some conditions and thresholds to get the clauses that satisfy the set requirements. For example, if the threshold

11

mentioned in condition (5) of invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) is set as 1, then each deduction generates unit clause. Of

course, we can add or remove the condition according to some specific requirements in the two functions. For example, if

the deduction needs the clauses without equality literal, then we add a condition that the clause 𝐶𝑟
′ has at least one equality

literal in the function invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺).

(3) Binary clause reusing deduction. In Step 5 of BCR algorithm, the deduction sequence goes to Step 4 when the

deduction on a binary clause 𝐶𝑏 has completed and the generated CSC is not empty, then the clause 𝐶𝑏 will be checked

again whether there is a literal of 𝐶𝑏 that satisfies paring condition. If yes, 𝐶𝑏 will be reused. This iterative process will

continue, i.e., reuse the clause 𝐶𝑏 continuously until there is no literal in 𝐶𝑏 satisfying paring condition. On the other hand,

this iterative process will generate a lot of unit clauses, due to reusing binary clauses. Accordingly, some new decision

literals will be generated during this iterative process.

(4) Guided deduction. The function updateDecisionSet(𝐶𝑏 , 𝑫𝒍) can select a literal from the clause 𝐶𝑏 after the

separation as a new decision literal according to the heuristic strategies. Significantly, these decision literals can

synergistically determine the selection of the clause participating in the deduction and the selection of eliminated literals.

That is to say, the deduction path can be guided by the decision literals. We can set specify heuristic strategies to optimize

the deduction path.

(5) No need for a lot of heuristic strategies. Because BCR algorithm has the above advantages, it can allow multiple

clauses to participate in the deduction while eliminating more literals at each deduction step. As a result, the algorithm

does not require a lot of heuristics to select clauses or literals to generated qualified clause, e.g., the unit clause with

equality literal. At the same time, the algorithm can generate many short (unit or binary) clauses, thus it can reduce some

simplification strategies.

3.2 Related heuristic strategies

From the description of BCR algorithm, we can see that there are some heuristic strategies which are divided into three

categories such as global threshold strategy, clause selection strategy, decision literal selection strategy.

3.2.1 Global threshold strategy

The global thresholds of BCR algorithm is set ahead according to the global threshold strategy. These global thresholds

are mainly implemented in the stage of deduction evaluation, specifically the two functions invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹,

𝑺) and stopDeduction(𝐶𝑟
′), and they are introduced in the following.

(1) Global threshold of the maximum term depth. There is minor difference about the definition of the maximum term

depth between clause and literal in BCR algorithm.

Suppose a n-ary clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛, the maximum term depth of the clause 𝐶 is equal to the maximum value

of the maximum term depth of its literals, and the corresponding calculation formula.

 𝑀𝑇𝐷(𝐶) = 𝑚𝑎𝑥(𝑀𝑇𝐷(𝑙𝑖)) , 1 ≤ 𝑖 ≤ 𝑛 (5)

The maximum term depth of the literal 𝑙𝑖 is equal to the sum of function nesting depths of all terms in 𝑙𝑖, and the

corresponding calculation formula.

 𝑀𝑇𝐷(𝑙𝑖) = ∑ 𝐿𝑎𝑦𝑒𝑟(𝑡𝑗) (6)

According to our empirical experience, the global threshold of the maximum term depth of clause does not greater than

1.3 ∗ 𝑚𝑡𝑑, where 𝑚𝑡𝑑 is the maximum term depth of clause in the original clause set, and the global threshold of the

maximum term depth of literal is set to 6.

(2) Global threshold of the number of literals of the 𝐶𝑔
+ part of a clause 𝐶𝑔 after the separation (𝐺𝐿𝑒𝑓𝑡𝑁𝑢𝑚). This

threshold is dynamically adjusted as the deduction progresses. In order to preferentially generate short clauses, the

threshold is initially set to 1 by default, then gradually increased by 1, but generally not greater than 4.

(3) Global threshold of the number of literals in CSC. This threshold does not greater than 1.2 ∗ 𝐿𝑖𝑡𝑁𝑢𝑚 according to

our empirical experience, where 𝐿𝑖𝑡𝑁𝑢𝑚 is the maximum number of literals of a clause in the original clause set.

12

(4) Global threshold of the running time. This threshold is maximum time for BCR algorithm to prove a single problem,

where the units are seconds.

(5) Global threshold of the consumed memory. This threshold is maximum consumed memory for BCR algorithm to

prove a single problem, where the units are megabytes.

3.2.2 Clause selection strategy

Clause selection strategy is used to select a clause from a given clause set as the next clause to participate the deduction,

realized by the function selectGivenCla(𝑺𝒆). The selection principle is based on some features or assigned weights of

clause. Therefore, we introduce the features or weights of clause.

(1) Symbol-counting of a clause. This feather refers to Ref. [55]. The three symbols, i.e., function, variable and constant,

are respectively assigned three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐. Then the calculation formula of symbol-counting of a clause 𝐶.

 𝑆𝑦𝑚(𝐶) = 𝑛𝑢𝑚𝑓(𝐶) ∗ 𝑤𝑓 + 𝑛𝑢𝑚𝑣(𝐶) ∗ 𝑤𝑣 + 𝑛𝑢𝑚𝑐(𝐶) ∗ 𝑤𝑐 (7)

Where 𝑛𝑢𝑚𝑓(𝐶) , 𝑛𝑢𝑚𝑣(𝐶) , 𝑛𝑢𝑚𝑐(𝐶) are the number of function symbols, variable symbols, constant symbols

respectively. According to specific requirements, the three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐 can be set to required values. For example,

if the deduction needs a clause with more constants, then 𝑤𝑓 = 1, 𝑤𝑣 = 1, 𝑤𝑐 = 2.

(2) Invalid weight of a clause. This weight considers three features of a clause 𝐶 participated the deduction, the number

of invalid separations, the maximum term depth of clause and the number of literals in 𝐶+ part. The invalid separation is

the deduction step that does not satisfy any one of the five conditions of invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺). The corresponding

calculation formula is as follows.

 𝐼𝑊(𝐶) = 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑇𝐷(𝐶)

𝑚𝑎𝑥𝑇𝐷
+

𝐿𝑁(𝐶)

𝑚𝑎𝑥𝐿𝑁
 (8)

Where 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶) is the number of invalid separations in which clause 𝐶 has participated (the separation of clause 𝐶

turned to be an invalid separation once, 𝐼𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 is increased by 1), 𝑇𝐷(𝐶) is the max term depth of clause in

𝐶+ part of 𝐶 after this invalid separation, and 𝐿𝑁(𝐶) is the number of literals in 𝐶+ part of 𝐶 after this invalid separation.

(3) Valid weight of a clause. This weight is the opposite of invalid weight of a clause. This weight considers also three

features of a clause 𝐶 participated in the deduction, the number of valid separations, the maximum term depth of clause

and the number of literals in 𝐶+ part. The valid separation is the deduction step that does not satisfy the five conditions of

invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺). The corresponding calculation formula is as follows.

 𝑉𝑊(𝐶) = 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑇𝐷(𝐶)

𝑚𝑎𝑥𝑇𝐷
+

𝐿𝑁(𝐶)

𝑚𝑎𝑥𝐿𝑁
 (9)

Where 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶) is the number of valid separations in which clause 𝐶 has participated (the separation of clause 𝐶

turned out to be valid once, 𝐼𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 will be increased by 1), 𝑇𝐷(𝐶) is the max term depth of clause and 𝐿𝑁(𝐶)

is the number of literals in 𝐶+ part of 𝐶 after this valid separation.

(4) The number of literals in a clause. S-CS rule can eliminate multiple literals from a clause participated in the

deduction at a S-CS deduction step. Therefore, if the clause with fewer literals preferentially participate the deduction, the

generated CSC is more likely to be a clause with fewer literals.

3.2.3 Decision literal selection strategy

Decision literal selection strategy is used to select one literal from a clause to participate in the deduction as a new

decision literal in the function updateDecisionSet(𝐶𝑏, 𝑫𝒍). Similar to clause selection strategy, decision literal selection

strategy considers some assigned weight of literal as well.

(1) Symbol-counting of literal. Similar to symbol-counting of clause, the three symbols, i.e., function, variable and

constant, are respectively assigned three weights 𝑤𝑓 , 𝑤𝑣 , 𝑤𝑐 in literal. The calculating formula is the same as that of

symbol-counting of clause, thus we do not describe here.

13

(2) The number of times a literal becoming decision literals (𝑁𝑢𝑚𝐷). This count records how many times a literal

works as a decision literal during the deduction process. In order to make the literals in the decision literal set 𝑫𝒍 as

different as possible or avoid falling into the local optimum, a literal with smaller 𝑁𝑢𝑚𝐷 is selected preferentially to

become a new decision literal in a clause.

(3) The ratio of independent variables to shared variables (independent-shared ratio) in a literal. Precisely, this ratio is

that the ratio of the number of independent variables to the number of shared variables in a literal. A variable is called

shared variable if it exists in more than one literal in a clause, otherwise it is called independent variable. In the process

of S-CS deduction, if an independent variable is changed under a certain substitution, this will not affect other literals in a

clause. Therefore, a literal with larger independent-shared ratio is preferred in the S-CS deduction.

4 Extended ATP of E with Binary Clause Reusing Algorithm

In order to improve the performance of E, BCR algorithm is integrated into the architecture of E as an independent

algorithm module so as to form an extended ATP of E, dubbed E_BCR. The purpose of adopting this extended mode is to

avoid affecting other modules of E.

On the other hand, for better interaction between BCR algorithm and E, we have made some modifications to the

source code of the output module of E so that E can output the intermediate clauses that generated during the deduction

process. BCR algorithm can receive the clauses generated from previous procedure of E_BCR, then output the generated

CSCs to subsequent procedure of E_BCR.

At the same time, in order to generate more effective clauses for E during the S-CS deduction, we add some conditions

to the function invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) in BCR algorithm. (1) If the clause 𝐶𝑟

′ contains no equality literal, this

deduction is invalid. (2) If the clause 𝐶𝑟
′ is generated by the goal clauses of the original clause set, this deduction is invalid.

(3) If the symbol-counting of the clause 𝐶𝑟
′ exceeds the maximum symbol count of the clause in the original clause set,

this deduction is invalid. In addition to these three conditions, we fix some thresholds of heuristic strategy. (1) Global

threshold of the maximum term depth of clause is set to the maximum term depth of clause in the original clause set. (2)

Global threshold of the maximum term depth of literal is set to 6. (3) 𝐺𝐿𝑒𝑓𝑡𝑁𝑢𝑚 is fixed to be not greater than 2. (4)

Global threshold of the number of literals in CSC is equal to the maximum number of literals of the clause in the original

clause set. (5) The three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐 in the calculation formula of symbol-counting of clause or literal are set to 1,

1, 2 respectively.

Specifically, suppose 𝑺 is a given clause set, the workflow of the extended ATP E_BCR for proving 𝑺 is described as

follows.

Step 1: E is performed to find the proof search for the clause set 𝑺. If the proof is not found successfully, E outputs the

clauses generated during the deduction process, then these generated clauses are put into the clause set 𝑺. Otherwise, exit!

Step 2: The procedure of BCR algorithm is executed to the clause set 𝑺 for the S-CS deduction. If the deduction

generates an empty clause, then exit! Otherwise, these generated CSCs are put into the clause set 𝑺.

Step 3: E is performed again to find the proof search for the clause set 𝑺 from Step 2. If the proof is found, output

UNSAT. Otherwise, exit!

Step 3 is the key part for improving the performance of E, since BCR algorithm offers many effective clauses for E in

Step 2, which is illustrated by the experimental results in Section 5. Fig. 1 shows the flow chart of the extended E_BCR.

Fig. 1. The flow chart of the extended E_BCR

14

In order to facilitate BCR algorithm to accept the output clauses from E and perform operations on terms, BCR

algorithm module uses a three-level structure of term storage.

1. Global shared level. Based on the idea of WAM-terms storage structure [58], a global table is used to store all the

ground terms in the original clause set and deduction process, and another global table is used to store all symbols in the

clause set, i.e., predicate symbols, function symbols and constant symbols.

We use the data structure shown in Fig. 2 to store the ground terms. In Fig. 2, we use Hash-Consing [59] technology

to quickly generate and store ground terms, and adopt a splay tree to address hash conflicts when then same hash code

occurs; the structure of each ground term is a chain table, where each node is a ground term, including the index code in

the symbol table and an array of sub-term pointers; the symbol table uses an array to store all symbols, including predicate

symbols, functions symbols and constant symbols. Meanwhile, we also use a splay tree to store all symbols in order to

find a given symbol quickly or reduce the time complexity of finding symbol (specifically, 𝑇(𝑛) = 𝑂(𝑛) of the array and

𝑇(𝑛) = 𝑂(log 𝑛) of the splay tree).

2. Literal shared level. BCR algorithm module places the composite terms and literals containing variables in literal

shared level. In FOL, the set of variables between clauses does not intersect, that is, the variables in each clause are not the

same. Therefore, the variables in a new inferred clause need to be renamed during the deduction process. For example,

there are two clauses 𝐶1 = 𝑃1(𝑥1) ∨ 𝑃3(𝑎) , 𝐶2 = 𝑃2(𝑥1) ∨ ~𝑃3(𝑎) , the variable 𝑥1 in 𝐶1 and 𝐶2 are essentially two

different terms, although they have the same symbol, and therefore, the inferred clause 𝑅(𝐶1, 𝐶2)= 𝑃1(𝑥1) ∨ 𝑃2(𝑥1) could

be renamed to 𝑃1(𝑥101) ∨ 𝑃2(𝑥102). For efficiency, each clause independently maintains a table of variables and a table of

composite terms and literals containing variables. We also use hash table like Hash-Consing and splay tree to store

composite terms and literals containing variables.

3. Clause shared level. Each clause has an independent array to store all variable terms in this clause. According to this

array, the system can quickly identify independent variables and shared variables, as well as easily manipulate the

substitution terms of the variables.

The advantages of this three-level structure are: (1) Avoiding frequent traversal and copy operations of composite

terms due to variable renaming operations. (2) Ground terms are shared globally, and atom terms are shared in a clause.

(3) Efficiently construct literals and find specified terms. (4) Efficiently delete specified clauses.

5 Experimental Studies

In order to evaluate the performance of E_BRC, we set two experimental groups: 1. The experiment of CASC

competition problems and problems with status of theorem in the TPTP-v7.5.0; 2. The experiment of problems with rating

of 1 in the TPTP-v7.5.0. Notably, TPTP is a standard library of test problems for ATP, which covers dozens of scientific

research domains. The rating of a problem denotes the difficulty of this problem in TPTP benchmark library, which is a

real number in the range 0.0 to 1.0, where the problem with rating of 0.0 means the easiest, and the problem with rating of

1.0 means that cannot be solved by all provers, i.e., the hardest problem [48].

The experiments are implemented on a PC with 3.6GHz Inter(R) Core (TM) i7-7700 processor and 16 GB memory,

OS Ubuntu 20.04 64-bit. For one single problem, the CPU time limit is 300 seconds. In the experiments, the version of E

to be extended is 2.6 that is latest version of E, thus the extended prover from E 2.6 is called E_BCR 2.6. In order to

guarantee the correctness of proof search of BCR algorithm, the well-known prover, Prover9, is used to verify the

deduction path.

Fig. 2. The representation of the data structure of

ground term

15

The parameter settings of the heuristic strategy used for the experiment are described in the third paragraph of Section

4. In addition, for one single problem, the CPU time limit for Step 1 in the workflow of E_BCR is 25 seconds, and the

CPU time limit for Step 2 in the workflow of E_BCR is 25 seconds, and the remaining of 250 seconds is the CPU time

limit for Step 3 in the workflow of E_BCR.

5.1 The experiment on CASC competition problems and problems with status of theorem

Actually, this experimental group is divided into two experiments according to the type of problems. First experiment

uses CASC FOF division problems (2016-2021) with a total number of 3000 problems (500 problems per year). Second

experiment uses all problems with status of theorem in TPTP-v7.5.0, a total of 6537. Two experiments are comparison

experiments between E_BCR 2.6 and E 2.6. Incidentally, the status of problem refers to the that every model of the axioms

(and other non-conjecture formulae, e.g., hypotheses and lemmas), and there are some such models, is a model of all the

conjectures [48].

We first present the results of the experiment on CASC competition problems below. Fig. 3 shows a comparison on

performance of E 2.6 versus E_BCR 2.6 for data from 2016 to 2021, and it can be seen that E_BCR 2.6 outperforms E 2.6

both in terms of average run time and number of solved problems. From the 25 seconds point onwards, the trends of the

two scatter lines in Fig. 3 begin to diverge, the scatter line representing E_BCR 2.6 is further down than the scatter line

representing E 2.6. The trend of the two scatter lines also shows that E_BCR’s performance outperforms E, while the BCR

algorithm does improve the ability and efficiency of E after 25 seconds. Statistics of the experimental are shown in Table

3. The row “E 2.6” shows the number of problems solved by E 2.6; the row “E_BCR 2.6” shows the number of problems

solved by E_BCR 2.6; the row “gap” shows the number of problems solved by E_BCR 2.6 more than E 2.6. We can see

that the number of problems solved by E_BCR 2.6 is more than the number of problems solved by E 2.6 from the

experimental results on each year CASC problems from 2016 to 2021. Notably, for the data in 2020, E_BCR 2.6 solved

417 problems with 28 more than E 2.6, and for the data in 2017, the number of problems solved by E_BCR 2.6 is 427, the

maximum for data of six years. From the column “mean” of Table 3, the number of problems solved by E_BCR 2.6 is 420

for the data of six years, an average of 21 more than E 2.6 per year.

The results are further analyzed as follows. E 2.6 did not solve 602 problems out of 3000 problems, but some of 602

problems are the same. The number of unsolved problems by E 2.6, in fact, is 383, while among these problems, E_BCR

2.6 solved 106 problems accounting for 27.68% of these 383 problems.

Fig. 3. Performance of E 2.6 versus E_BCR 2.6 over problems data 2016 to 2021

16

Table 3 Comparison of the number of problems solved by E 2.6 and E_BCR 2.6

 2016 2017 2018 2019 2020 2021 Mean

E 2.6 408 412 401 392 390 395 399

E_BCR 2.6 425 427 419 418 418 418 420

Gap 17 15 18 26 28 23 21

Table 4 The list of 106 problems solved by E_BCR 2.6 but not by E 2.6

No Problem Name Rating No Problem Name Rating No Problem Name Rating No Problem Name Rating

1 AGT007+1 0.75 28 GEO450+1 0.67 55 LCL680+1.010 0.93 82 SWB068+1 0.72

2 AGT007+2 0.75 29 GEO502+1 0.61 56 NUM314+1 0.83 83 SWB081+1 0.89

3 AGT008+2 0.78 30 GEO506+1 0.75 57 PRO016+2 0.69 84 SWB082+1 0.89

4 AGT011+2 0.78 31 GEO512+1 0.69 58 REL016+2 0.87 85 SWB088+1 0.94

5 AGT012+2 0.64 32 GEO513+1 0.83 59 REL016+3 0.87 86 SWB093+1 0.89

6 AGT013+1 0.75 33 GRP620+2 0.89 60 REL017+4 0.87 87 SWB094+1 0.92

7 AGT013+2 0.81 34 GRP655+1 0.65 61 REL041+1 0.87 88 SWB095+1 0.94

8 AGT026+2 0.69 35 GRP720+1 0.83 63 SCT102+1 0.81 89 SWB098+1 0.89

9 BIO002+1 0.81 36 ITP003+1 0.97 63 SCT115+1 0.69 90 SWB102+1 0.97

10 BIO005+1 0.81 37 ITP004+4 0.83 64 SCT123+1 0.69 91 SWB107+1 0.92

11 COM148+1 0.81 38 ITP005+4 0.86 65 SCT169+3 0.97 92 SWB108+1 0.94

12 CSR179+1 0.81 39 ITP020+4 0.86 66 SCT170+3 0.94 93 SWV448+1 0.61

13 CSR191+1 0.97 40 KLE169+1 0.72 67 SCT170+6 0.94 94 SWV458+1 0.67

14 CSR215+1 0.89 41 KRS261+1 0.36 68 SET690+4 0.69 95 SWV459+1 0.61

15 CSR240+1 0.97 42 LAT286+2 0.78 69 SET796+4 0.56 96 SWV467+1 0.58

16 GEO273+1 0.64 43 LAT347+2 0.89 70 SET948+1 0.94 97 SWV472+1 0.61

17 GEO276+1 0.78 44 LAT349+1 0.97 71 SEU206+2 0.81 98 SWW096+1 0.75

18 GEO291+1 0.72 45 LCL557+1 0.92 72 SEU383+2 0.94 99 SWW218+1 0.67

19 GEO292+1 0.67 46 LCL564+1 0.86 73 SEU420+1 0.78 100 SWW470+5 0.64

20 GEO295+1 0.72 47 LCL570+1 0.94 74 SEU420+4 0.86 101 SWW470+7 0.72

21 GEO296+1 0.81 48 LCL642+1.015 0.36 75 SEU449+4 0.94 102 SWW474+7 0.78

22 GEO309+1 0.92 49 LCL652+1.015 0.64 76 SEV521+1 0.67 103 SYN076+1 0.75

23 GEO316+1 0.86 50 LCL652+1.020 0.79 77 SWB010+1 0.83 104 SYO604+1 0.21

24 GEO322+1 0.92 51 LCL660+1.005 0.36 78 SWB012+1 0.86 105 TOP025+3 0.81

25 GEO323+1 0.86 52 LCL660+1.010 0.43 79 SWB020+1 0.92 106 TOP035+2 0.89

26 GEO324+1 0.86 53 LCL660+1.015 0.43 80 SWB025+1 0.67

27 GEO442+1 0.89 54 LCL660+1.020 0.57 81 SWB027+1 0.86

Table 5 The experimental results of problems with status of theorem

 E 2.6 E_BCR 2.6 Advantage

[0.0, 0.2) 1982 1985 3

[0.2, 0.4) 1196 1215 19

[0.4, 0.6) 911 982 71

[0.6, 0.8) 690 863 173

[0.8, 1.0] 338 612 274

Total 5117 5657 540

Solving rate 78.28% 86.54% 8.26%

17

Table 6 The list of 18 problems with rating of 1 solved by E_BCR 2.6

No Problem Name Time(s) No Problem Name Time(s)

1 ALG001-1 192.74 10 NUM657+4 238.93

2 CSR224+1 186.74 11 NUM658+4 241.96

3 GEO326+1 146.43 12 NUM659+4 241.92

4 ITP003+4 237.44 13 NUM726+4 284.17

5 LAT215-1 287.48 14 RNG027-10 180.22

6 LCL042-10 299.18 15 SET032-3 169.91

7 NUM428+1 247.68 16 SET033-3 152.82

8 NUM640+4 281.66 17 SET279-6 122.18

9 NUM642+4 284.23 18 SWB020+3 279.84

Table 4 lists the name and rating of these 106 problems, which shows that the average rating of these 106 problems is

0.78, and we can see that the problems that cannot be solved by E 2.6 but can be solved by E_BCR 2.6 are quite difficult.

There are even 22 problems with rating greater than 0.9, and 58 problems with rating greater than 0.8 accounting for 54.72%

of the 106 problems. On the other hand, these 106 problems cover 24 scientific domains (the domain corresponds to the

first three letters of the problem name [48]), 44 of which respectively are GEO (representing Geometry), SWB

(representing Semantic Web) and LCL (representing Logic Calculi, a branch of logic), accounting for majority of the 106

problems.

In the following, we present the results of the experiment problems with status of theorem. Table 5 shows the

experimental results, and we divided the experimental results into 5 columns according to rating of problems. For these

6537 problems, E_BCR 2.6 solves 5657 problems with 540 more than E 2.6 which solves 5117 problems. When the

experimental results converted to percentages, E_BCR 2.6 solves 86.54% of 6537 problems, while E solves 78.28% of

6537 problems. From this perspective, the BCR algorithm improves the performance of E 2.6 by 8.26%. Furthermore,

from the statistics about the rating range, the number of problems solved by E_BCT 2.6 in the range of [0.6, 1.0]

substantially exceeds that of E, especially for the more difficult problems, i.e., the range of [0.8, 1.0].

In general, the problems in CASC FOF division and the problems with status of theorem are plain problems, namely

there are very few problems with rating of 1.0 or 0.0. Therefore, the experimental results illustrate the performance of the

extended prover E_BCR is stronger than that of E for the plain problem solving, especially in the three domains problems

of GEO, SWB and LCL, and shows BCR algorithm has strong universality.

5.2 Experiments on problems with rating of 1

From the analysis of Table 4 and Table 5, E_BCR initially shows the ability to solve the hard problems, in order to

further evaluate this ability, we set up the experiment of problems with rating of 1. This experiment uses all problems with

rating of 1 in TPTP-v7.5.0 that is the latest release of TPTP benchmark library, a total of 1584 problems. According to

query of TSTP library (a library of solutions to problems for TPTP library), the problems with rating of 1 are not solved

by any current theorem provers including E, and we also tested these 1584 problems using E in this experimental

environment and found no problems solved by E. Therefore, only results of E_BCR 2.6 are listed as follows.

Table 6 lists the experimental results which shows that E_BCR 2.6 solved 18 problems. The average time for E_BCR

2.6 to solve each problem is 226.42 seconds. These 18 problems cover 10 scientific domains, 7 of which are NUM

(representing number theory, a branch of mathematics), accounting for majority of the 18 problems. It’s worth mentioning

that the problem with rating of 1 is the most difficult problem in the TPTP benchmark library, which also means that no

provers can solve it. Therefore, the ability of a prover to solve the problem with rating of 1 is a key indicator of the

performance of the prover. The experimental results of E_BCR 2.6 solving 18 problems with rating of 1 are quite

significant. The experimental results not only show that E_BCR can solve some problems that cannot be solved by all the

other provers, but also illustrate that BCR algorithm can effectively improve the performance of E.

18

5.3 Analysis of experimental results

In conclusion, the experimental results shows that E_BCR is a powerful extended E prover. BCR algorithm not only

improves the ability of E to solve plain problems, but also aids E in solving 18 of the hardest problems, i.e., problem with

rating of 1. These fully illustrate that BCR algorithm is an effective deduction algorithm based on S-CS rule, and E_BCR

is a successful extended E prover to improve the performance of E. BCR algorithm implements S-CS rule, so the multiple

advantages of S-CS rule are inherited and implemented by BCR algorithm. The reasons for the increase of E_BCR are

analyzed as follows.

1. In the BCR algorithm, the decision literals generated by the S-CS deduction can guide subsequent deduction paths.

In one S-CS deduction, more different decision literals are generated, and these literals continuously optimize the

subsequent deduction paths, i.e., more generated clauses with good characteristics, such as fewer literals, lower symbol-

counting, fewer term depths.

2. When the S-CS deduction produces a certain number of decision literals, a binary clause reused in the deduction is

capable of producing multiple (two or more) SCS, and these deductions involving the binary clause are well deductions.

Meanwhile, the deduction process of reusing binary clause can generate a large number of unit clauses. The unit clauses

are filtered by the heuristic strategy and then fed to E. In the calculus of E, the number of literals in the deduction step in

which the unit clause is involved does not additionally increase the number of literals of generated clause, so these unit

clauses can enhance the ability of E to generate empty clause.

3. The deduction in the BCR algorithm is a controllable deduction. According to set the heuristic strategy, BCR

algorithm can control the deduction process and obtain the required decision literals and SCSs. Therefore, E can obtain

eligible clauses from BCR algorithm, such as the clause with fewer literals and equality literals.

4. It is easier for BCR algorithm that is able to eliminate more than two literals from multiple clauses at each deduction

and to generate the clause with fewer literals, especially, unit clauses. BCR algorithm can remove the clauses are subsumed

by the generated unit clauses from the clause set and control the number of literals in the generated clauses, which can

effectively alleviate the search space expansion to a certain extent.

The above analysis explains partly why BCR algorithm can effectively improve the performance of E.

6 Conclusions and Future Work

In the field of knowledge representation and reasoning, automated reasoning plays a central supporting role, and first-

order logic as the basis of automated reasoning is an important knowledge representation language for many AI problems

and mathematical problems. ATP is the essential and powerful inference engine corresponding to first-order logic. In the

field of ATP, E is one of the most acclaimed ATPs, due to its excellent performance for the first-order logic problem.

However, there are still a lot of unsolved problems by E in the latest release of TPTP benchmark library, especially the

hard problems. S-CS rule is a novel inference method for automated reasoning, it has some abilities that E does not possess

such as multi-clause, clause-reusing and controlled abilities. In the present work, we have proposed a binary clause reusing

algorithm based on S-CS rule, dubbed BCR algorithm, along with some related heuristic strategies of BCR algorithm. This

algorithm takes took better advantage of the abilities of the S-CS rule, especially clause-reusing ability. At the same time,

BCR algorithm can obtain the preferred clauses according to its ability to control the features of generated clauses and

eliminate more than two literals from multiple clauses at each the deduction step. We have proposed an extended ATP of

E with BCR algorithm, dubbed E_BCR, to boost E's performance even further. In the architecture of E_BCR, BCR

algorithm is integrated into E as an independent algorithm module. The CASC FOF division problems (2016-2021),

problems with status of theorem and problems with rating of 1 in TPTP library have been used to evaluate the performance

of E_BCR. The experimental results have shown that BCR algorithm can effectively improve the performance of E and

can serve as an important complement to E. For the CASC FOF division problems, the number of problems solved by

E_BCR is more than the number of problems solved by E 2.6 from the experimental results on each year CASC problems

from 2016 to 2021. For the problems with status of theorem, the BCR algorithm has improved the performance of E 2.6

by 8.26%. Especially, E_BCR has solved 18 problems with rating of 1, which are unsolved by any current ATP. In

particular, BCR algorithm can help E solve more problems in many scientific domains such as Geometry, Semantic Web

and Logic Calculi.

javascript:;

19

BCR algorithm effectively improves the performance of E and has significant reasoning capability, while it still has

some shortcomings and potential for improvement. For example, the number of heuristic strategies in the strategy library

of BCR algorithm is much lower than that of other state-of-the-art ATPs, and BCR algorithm is weak for equality handling.

For future work, we intend to further explore more superior inference mechanism based on S-CS rule and more related

heuristic strategies from three aspects, so as to further improve the efficiency of provers. Firstly, we plan to further explore

the mechanism of reusing clauses based on S-CS rule, and hope to extend this mechanism to non-binary clauses. Secondly,

we will delve into the various types of strategies that can effectively enhance ability of S-CS deduction. Thirdly, we plan

to investigate new integration modules for BCR algorithm with other leading ATPs, such as Vampire and E, to enable

better interaction between BCR algorithm module and other modules of other leading ATPs. Finally, we will explore other

applications of BCR algorithm in the field of knowledge representation. Specifically, our team has researched on group

theory, therefore we plan to use knowledge-based reasoning in the SUMO (Suggested Upper Merged Ontology) to convert

the axioms and theorems in group theory into TPTP format, and then use the ATP based BCR algorithm to prove related

problems or theorem in our research.

Abbreviations

AI Artificial intelligence

KR&R Knowledge representation and reasoning

FOL First-order logic

ATP Automated theorem prover

CASC CADE ATP System Competition

TPTP Thousands of Problems for Theorem Provers

S-CS Standard contradiction separation

CNF Conjunctive normal form

CSC Standard contradiction separation clause

SC Separated standard contradiction

BCR Binary clause reusing

SUMO Suggested Upper Merged Ontology

CRediT authorship contribution statement

Peiyao Liu: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing – Original Draft,

Writing – Review & Editing. Shuwei Chen: Conceptualization, Methodology, Visualization, Funding acquisition, Writing

– Review & Editing. Jun Liu: Visualization, Writing – Review & Editing, Supervision. Yang Xu: Conceptualization,

Resources, Supervision, Project administration. Feng Cao: Software, Validation, Data Curation, Funding acquisition.

Guanfeng Wu: Data Curation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgments

20

This work is supported by the Natural Science Foundation of China (Grant Nos. 61976130, 62106206), and the General

Research Project of Jiangxi Education Department (Grant No. GJJ200818).

References

[1] R. Davis, H. Shrobe, P. Szolovits, What is a knowledge representation? AI Mag. 14 (1) (1993) 17-33.

https://doi.org/10.1609/aimag.v14i1.1029.

[2] J. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks Cole Pulishing Co., 1999.

[3] T.V. Avdeenko, E.S. Makarova, I.L. Klavsuts, Artificial intelligence support of knowledge transformation in knowledge management

systems, in: 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering

(APEIE), 2016, pp. 195-201. https://doi.org/10.1109/APEIE.2016.7807053.

[4] A. Ruf, M. Berges, P. Hubwieser, Classification of programming tasks according to required skills and knowledge representation, in:

International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP 2015), 2015, pp. 57-68.

https://doi.org/10.1007/978-3-319-25396-1_6.

[5] P. Di Maio, System level knowledge representation for metacognition in neuroscience, in: International Conference on Brain

Informatics (BI 2021), 2021, pp. 79-88. https://doi.org/10.1007/978-3-030-86993-9_8.

[6] W.T. Balke, K. Mainzer, Knowledge representation and the embodied mind: Towards a philosophy and technology of personalized

informatics, in: Biennial Conference on Professional Knowledge Management/ Wissensmanagement (WM 2005), 2005, pp. 586–597.

https://doi.org/10.1007/11590019_67.

[7] W. Yin, Standard model of knowledge representation, Front. Mech. Eng. 11 (2016) 275–288. https://doi.org/10.1007/s11465-016-

0372-3.

[8] E. Cambria, B. White, Jumping NLP curves: A review of natural language processing research, IEEE Comput. Intell. Mag. 9 (2) (2014)

48-57. https://doi.org/10.1109/MCI.2014.2307227.

[9] M.M. Dastani, K.V. Hindriks, P. Novak, N.A.M. Tinnemeier, Combining multiple knowledge representation technologies into agent

programming languages, in: International Workshop on Declarative Agent Languages and Technologies (DALT 2008), 2008, pp. 60-

74. https://doi.org/10.1007/978-3-540-93920-7_5.

[10] W. Zheng, X. Liu, X. Ni, L. Yin, B. Yang, Improving visual reasoning through semantic representation, IEEE Access, 9 (2021) 91476-

91486. https://doi.org/10.1109/ACCESS.2021.3074937.

[11] R. Peñaloza, A brief roadmap into uncertain knowledge representation via probabilistic description logics, Algorithms 14 (10) (2021).

https://doi.org/ 10.3390/a14100280.

[12] S. Roychowdhury, M. Diligenti, M. Gori, Regularizing deep networks with prior knowledge: A constraint-based approach,

Knowledge-Based Syst. 222 (2021) 106989. https://doi.org/10.1016/j.knosys.2021.106989.

[13] J. Schneider, D. Basin, S. Krstić, D. Traytel, A formally verified monitor for metric first-order temporal logic, in: International

Conference on Runtime Verification (RV 2019), 2019, pp. 310-328. https://doi.org/10.1007/978-3-030-32079-9_18.

[14] K.H. Yang, D. Olson, J. Kim, Comparison of first order predicate logic, fuzzy logic and non-monotonic logic as knowledge

representation methodology, Expert Syst. Appl. 27 (4) (2004) 501-519. https://doi.org/10.1016/j.eswa.2004.05.012.

[15] A. Bundy, The interaction of representation and reasoning, Proc. R. Soc. A-Math. Phys. Eng. Sci. 469 (2013) 20130194.

https://doi.org/10.1098/rspa.2013.0194.

[16] D.W. Loveland, Automated theorem proving: a logical basis, North-Holland, Amsterdam, 1978. https://doi.org/10.1016/0378-

4754(80)90081-6.

[17] M.L. Gueye, Modeling a knowledge-based system for cyber-physical systems: Applications in the context of learning analytics, in:

International Conference on Computational Collective Intelligence (ICCCI 2019), 2019, pp. 568-580. https://doi.org/10.1007/978-3-

030-28374-2_49.

[18] L. Bellomarini, D. Benedetto, G. Gottlob, E. Sallinger, Vadalog: A modern architecture for automated reasoning with large knowledge

graphs, Inf. Syst. 105 (2022) 101528. https://doi.org/10.1016/j.is.2020.101528.

[19] L. Ramos, Semantic web for manufacturing, trends and open issues: Toward a state of the art, Comput. Ind. Eng. 90 (2015) 444–460.

https://doi.org/10.1016/j.cie.2015.10.013.

[20] P. Quaresma, Automatic deduction in an AI geometry book, in: International Conference on Artificial Intelligence and Symbolic

Computation (AISC 2018), 2018, pp. 221-226. https://doi.org/10.1007/978-3-319-99957-9_16.

[21] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. von Henke, O. Noppens, Real-world reasoning with OWL, in: European Semantic

Web Conference (ESWC 2007), 2007, pp. 296-310. https://doi.org/10.1007/978-3-540-72667-8_22.

[22] S. Böhme, M. Moskal, Heaps and data structures: A challenge for automated provers, in: International Conference on Automated

Deduction (CADE 2011), 2011, pp. 177-191. https://doi.org/10.1007/978-3-642-22438-6_15.

[23] L. Kovács, Symbolic computation and automated reasoning for program analysis. in: International Conference on Integrated Formal

Methods (IFM 2016), 2016, pp. 20-27. https://doi.org/10.1007/978-3-319-33693-0_2.

[24] H. Tuch, G. Klein, A unified memory model for pointers, in: International Conference on Logic for Programming Artificial Intelligence

and Reasoning (LPAR 2005), 2005, pp. 474–488. https://doi.org/10.1007/11591191_33.

[25] G. Klein, Operating system verification—An overview, Sadhana 34 (2009) 27–69. https://doi.org/10.1007/s12046-009-0002-4.

https://doi.org/10.1609/aimag.v14i1.1029
https://doi.org/10.1109/APEIE.2016.7807053
https://doi.org/10.1007/978-3-319-25396-1_6
https://doi.org/10.1007/978-3-030-86993-9_8
https://doi.org/10.1007/11590019_67
https://doi.org/10.1007/s11465-016-0372-3
https://doi.org/10.1007/s11465-016-0372-3
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1007/978-3-540-93920-7_5
https://doi.org/10.1109/ACCESS.2021.3074937
https://doi.org/%2010.3390/a14100280
https://doi.org/10.1016/j.knosys.2021.106989
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1016/j.eswa.2004.05.012
https://doi.org/10.1098/rspa.2013.0194
https://doi.org/10.1016/0378-4754(80)90081-6
https://doi.org/10.1016/0378-4754(80)90081-6
https://doi.org/10.1007/978-3-030-28374-2_49
https://doi.org/10.1007/978-3-030-28374-2_49
https://doi.org/10.1016/j.is.2020.101528
https://doi.org/10.1016/j.cie.2015.10.013
https://doi.org/10.1007/978-3-319-99957-9_16
https://doi.org/10.1007/978-3-540-72667-8_22
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-319-33693-0_2
https://doi.org/10.1007/11591191_33
https://doi.org/10.1007/s12046-009-0002-4

21

[26] P. Curzon, A verified compiler for a structured assembly language, in: 1991 International Workshop on the HOL Theorem Proving

System and Its Applications, 1991, pp. 253-262. https://doi.org/10.1109/HOL.1991.596292.

[27] X. Leroy, Formal verification of a realistic compiler, Commun. ACM 52 (7) (2009) 107–115.

https://doi.org/10.1145/1538788.1538814.

[28] J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM. 12 (1965) 23–41.

https://doi.org/10.1145/321250.321253.

[29] L. Bachmair, H. Ganzinger, Rewrite-based equational theorem proving with selection and simplification, J. Logic Comput. 4 (1994)

217–247. https://doi.org/10.1093/logcom/4.3.217.

[30] G. Robinson, L. Wos, Paramodulation and theorem-proving in first-order theories with equality, in: J.H. Siekmann, G. Wrightson

(Eds.), Automation of Reasoning, Springer, Berlin, 1983, pp. 298-313. https://doi.org/10.1007/978-3-642-81955-1_19.

[31] J.A. Navarro Pérez, A. Rybalchenko, Separation logic + superposition calculus = heap theorem prover, ACM Sigplan Not. 46(6) (2011)

556–566. https://doi.org/10.1145/1993316.1993563.

[32] A. Riazanov, A. Voronkov, Vampire 1.1 (system description), in: International Joint Conference on Automated Reasoning (IJCAR

2001), 2001, pp. 376-380. https://doi.org/10.1007/3-540-45744-5_29.

[33] S. Schulz, E - a brainiac theorem prover, AI Commun. 15(2-3) (2002) 111–126. https://dl.acm.org/doi/10.5555/1218615.1218621.

[34] T. Tammet, GKC: A reasoning system for large knowledge bases, in: International Conference on Automated Deduction (CADE 2019),

2019, pp. 538-549. https://doi.org/10.1007/978-3-030-29436-6_32.

[35] W. McCune, Prover9 manual. https://www.cs.unm.edu/~mccune/prover9/manual/2009-02A/, 2020 (accessed 8 April 2022).

[36] S. Schulz, S. Cruanes, P. Vukmirović, Faster, higher, stronger: E 2.3, in: International Conference on Automated Deduction (CADE

2019), 2019, pp. 495-507. https://doi.org/10.1007/978-3-030-29436-6_29.

[37] G. Sutcliffe, The CADE ATP system competition — CASC. AI Mag. 37 (2016) 99–101. https://doi.org/10.1609/aimag.v37i2.2620.

[38] S. Schulz, Awards. https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/Awards.html, 2022 (accessed 8 April 2022).

[39] W. McCune, L. Wos, Otter - the CADE-13 competition incarnations, J. Autom. Reasoning 18 (1997) 211–220.

https://doi.org/10.1023/A:1005843632307.

[40] J. Denzinger, M. Kronenburg, S. Schulz, DISCOUNT - a distributed and learning equational prover, J. Autom. Reasoning 18(2)

1997 189–198. https://doi.org/10.1023/A:1005879229581.

[41] B. Löchner, Things to know when implementing lpo, Int. J. Artif. Intell. Tools 15(1) (2006) 53–79.

https://doi.org/10.1142/S0218213006002564.

[42] B. Löchner, Things to know when implementing KBO, J. Autom. Reasoning 36 (2006) 289–310. https://doi.org/10.1007/s10817-006-

9031-4.

[43] S. Schulz, Fingerprint indexing for paramodulation and rewriting, in: International Joint Conference on Automated Reasoning (IJCAR

2012), 2012, pp. 477-483. https://doi.org/10.1007/978-3-642-31365-3_37.

[44] S. Schulz, M. Möhrmann, Performance of clause selection heuristics for saturation-based theorem proving, in: International Joint

Conference on Automated Reasoning (IJCAR 2016), 2016, pp. 330-345. https://doi.org/10.1007/978-3-319-40229-1_23.

[45] K. Hoder, G. Reger, M. Suda, A. Voronkov, Selecting the selection, in: International Joint Conference on Automated Reasoning

(IJCAR 2016), 2016, pp. 313--329. https://doi.org/10.1007/978-3-319-40229-1_22.

[46] B. Gleiss, M. Suda, Layered clause selection for saturation-based theorem proving, in: Proceeding of Practical Aspects of Automated

Reasoning and Satisfiability Checking and Symbolic Computation Workshop, 2020, pp. 34–52.

[47] G. Sutcliffe, The TPTP world – infrastructure for automated reasoning, in: International Conference on Logic for Programming

Artificial Intelligence and Reasoning (LPAR 2010), 2010, pp. 1–12. https://doi.org/10.1007/978-3-642-17511-4_1.

[48] G. Sutcliffe, The TPTP problem library and associated infrastructure. J. Autom. Reasoning 59 (2017), 483–502.

https://doi.org/10.1007/s10817-017-9407-7.

[49] Y. Xu, J. Liu, S. Chen, X. Zhong, X. He, Contradiction separation based dynamic multi-clause synergized automated deduction, Inf.

Sci. 462 (2008) 93–113. https://doi.org/10.1016/j.ins.2018.04.086.

[50] F. Cao, Y. Xu, J. Liu, S. Chen, J. Yi, A multi-clause dynamic deduction algorithm based on standard contradiction separation rule, Inf.

Sci. 566 (2021) 281–299. https://doi.org/10.1016/j.ins.2021.03.015.

[51] Y. Xu, S. Chen, J. Liu, X. Zhong, X. He, Distinctive features of the contradiction separation based dynamic automated deduction, in:

Proceedings of the 13th International FLINS Conference (FLINS 2018), 2018, pp. 725-732.

https://doi.org/10.1142/9789813273238_0092.

[52] G. Sutcliffe, The CADE ATP system competition (CASC-28). https://tptp.org/CASC/28/, 2022 (accessed 8 April 2022).

[53] P. Liu, G. Wu, Y. Xu, F. Cao, Extending E prover with fully use binary clauses algorithm based on standard contradiction separation

rule, in: 2021 16th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 2021, pp. 11-14.

https://doi.org/10.1109/ISKE54062.2021.9755439.

[54] L. Bachmair, H. Ganzinger, D. McAllester, C. Lynch, Chapter 2 - Resolution theorem proving, in: A. Robinson, A. Voronkov (Eds.),

Handbook of Automated Reasoning, North-Holland, 2001, pp. 19–99.https://doi.org/10.1016/B978-044450813-3/50004-7.

[55] S. Schulz, Learning search control knowledge for equational deduction, Dissertation, Technische Universität München (2000).

[56] S. Chen, Y. Xu, Y. Jiang, J. Liu, X. He, Some synergized clause selection strategies for contradiction separation based automated

deduction, in: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 2017, pp. 1–6.

https://doi.org10.1109/ISKE.2017.8258741.

https://doi.org/10.1109/HOL.1991.596292
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/321250.321253
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1007/978-3-642-81955-1_19
https://doi.org/10.1145/1993316.1993563
https://doi.org/10.1007/3-540-45744-5_29
https://dl.acm.org/doi/10.5555/1218615.1218621
https://doi.org/10.1007/978-3-030-29436-6_32
https://www.cs.unm.edu/~mccune/prover9/manual/2009-02A/
https://doi.org/10.1007/978-3-030-29436-6_29
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/Awards.html
https://doi.org/10.1023/A:1005843632307
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1142/S0218213006002564
https://doi.org/10.1007/s10817-006-9031-4
https://doi.org/10.1007/s10817-006-9031-4
https://doi.org/10.1007/978-3-642-31365-3_37
https://doi.org/10.1007/978-3-319-40229-1_23
https://doi.org/10.1007/978-3-319-40229-1_22
https://doi.org/10.1007/978-3-642-17511-4_1
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1016/j.ins.2018.04.086
https://doi.org/10.1016/j.ins.2021.03.015
https://doi.org/10.1142/9789813273238_0092
https://tptp.org/CASC/28/
https://doi.org/10.1109/ISKE54062.2021.9755439
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org10.1109/ISKE.2017.8258741

22

[57] S. Chen, Y. Xu, J. Liu, F. Cao, Y. Jiang, Clause reusing framework for contradiction separation based automated deduction, in:

Proceedings of the 13th International FLINS Conference (FLINS 2020), 2020, pp. 284–291.

https://doi.org/10.1142/9789811223334_0035.

[58] T. P. Dobry, An abstract prolog machine, in: A High Performance Architecture for Prolog, Springer, Boston, 1990, pp.23-59.

https://doi.org/10.1007/978-1-4613-1529-2_2.

[59] T. Braibant, J.H. Jourdan, D. Monniaux, Implementing and reasoning about hash-consed data structures in Coq. J. Autom. Reasoning

53 (2014) 271–304. https://doi.org/10.1007/s10817-014-9306-0.

https://doi.org/10.1142/9789811223334_0035
https://doi.org/10.1007/978-1-4613-1529-2_2
https://doi.org/10.1007/s10817-014-9306-0

