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Abstract 

Automated theorem prover for first-order logic, as a significant inference engine, is one of the hot research areas in 

the field of knowledge representation and automated reasoning. E prover, as one of the leading automated theorem 

provers, has made a significant contribution to the development of theorem provers for first-order logic, particularly 

equality handling, after more than two decades of development. However, there are still a large number of problems 

in the TPTP problem library, the benchmark problem library for automated theorem provers, that E has yet to solve. 

The standard contradiction separation rule is an inference method introduced recently that can handle multiple clauses 

in a synergized way and has a few distinctive features which complements to the calculus of E. Binary clauses, on 

the other hand, are widely utilized in the automated deduction process for first-order logic because they have a 

minimal number of literals (typically only two literals), few symbols, and high manipulability. As a result, it is feasible 

to improve a prover's deduction capability by reusing binary clause. In this paper, a binary clause reusing algorithm 

based on the standard contradiction separation rule is firstly proposed, which is then incorporated into E with the 

objective to enhance E’s performance, resulting in an extended E prover. According to experimental findings, the 

performance of the extended E prover not only outperforms E itself in a variety of aspects, but also solves 18 problems 

with rating of 1 in the TPTP library, meaning that none of the existing automated theorem provers are able to resolve 

them. 

Keywords: Knowledge representation; Automated reasoning; First-order logic; Automated theorem prover; Standard 

contradiction rule; E prover

1 Introduction 

In the real world, knowledge plays a crucial role in intelligence as well as creating artificial intelligence (AI) [1]. For 

an AI system to behave accurately in response to some input, it must possess knowledge about the input. In other words, 

knowledge is necessary for intelligent behavior. Knowledge representation and reasoning (in short KR&R) [2] is a research 

focus in the field of artificial intelligence dedicated to expressing knowledge about world in a computer tractable form so 

that it can be used to enable AI systems to perform well [3]. Knowledge representation suggests an approach to 

understanding intelligent behavior that is radically different from other ways, such as psychology [4], neuroscience [5] and 

philosophy [6]. KR&R focuses on what humans know, i.e., knowledge, instead of studying humans very carefully, i.e., 

knower. 
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In order to solve the complex problems encountered in AI, one generally needs a large amount of knowledge, and 

suitable mechanism for representing and manipulating all that knowledge. Knowledge is best represented through a 

knowledge representation language [7] which determine the computational objects, relations and inference available to a 

programmer. Apparently, natural language [8] is a knowledge representation language, in addition, programming 

languages [9], semantic networks [10] and logic [11] are also knowledge representation languages. Logic language 

represented by first-order logic (FOL) as a declarative language uses expression in formal logic to represent knowledge 

[12,13], and FOL calculus is one of the most important logical representation schemes for knowledge representation [14]. 

On the other hand, knowledge representation is inseparable from automated reasoning, which is to study how to infer 

conclusion based on given hypotheses, because one of the main purposes of knowledge representation is to be able to infer 

new knowledge [15]. Thus, automated reasoning plays a central supporting role in the field of knowledge representation. 

Almost all knowledge representation languages have a corresponding reasoning or inference engine. For example, the 

inference engine corresponding to FOL is called automated theorem prover (ATP) [16].  

A knowledge-based system [17] is a system that uses AI techniques in problem-solving processes to support human 

decision-making, learning, and action, and it has two distinguishing central components: a knowledge base that represents 

facts about the world and an inference engine that is responsible for the application of knowledge base to the problem on 

hand. A good knowledge-based system needs an appropriate representation language. The trade-off between effectiveness 

and efficiency is the key to measuring whether a representation language is good or not. In terms of expressiveness and 

compactness, FOL has unparalleled advantages. In addition, FOL has several significant advantages. First of all, FOL is a 

formal method of reasoning and a mathematical representation formula, and it studies entailment relations, formal 

languages, truth conditions, semantics and inference. Many propositions can be translated into first-order logical symbolic 

representations, and computers can easily manipulate these symbolic formulas to infer various facts. After all, there is no 

more powerful formalism than mathematical formula used to define general propositions. Secondly, FOL guarantees the 

soundness and completeness of the corresponding reasoning methods. Therefore, FOL is an appropriate knowledge 

representation language for many AI problems and mathematical problems, and the corresponding ATP is an essential and 

powerful inference engine. Currently, ATPs are commonly applied in the field of knowledge representation [18-21], but 

also in other fields; for instance, program verification [22,23], the operating systems [24,25] and the design of compliers 

[26,27]. 

Both theoretical research and applications in the field of ATP has developed rapidly and achieved fruitful results since 

Robbinson proposed resolution principle [28] in 1965, which is still the mainstream inference method of theorem proving 

nowadays. It’s the basic idea of resolution principle is to select two clauses from the given clause set, with one literal from 

each selected clause forming a complementary pair of literals, for resolution in each deduction step, and then a new clause 

(called resolvent) is obtained as the disjunction of the remaining literals of the two clauses after eliminating the 

complementary pair of literals. This deduction process continues until an empty clause is obtained. After superposition 

rule [29] was proposed, which is essentially a combination of resolution principle and paramodulation [30], most 

resolution-based provers adopt superposition rule for equality handling [31], e.g., Vampire [32], E [33], GKC [34] and 

Prover9 [35], etc. 

As one of the representative ATPs, E is a state-of-the-art prover for FOL with equality entirely based on superposition 

rule [36], which has been developed for more than twenty years. E has participated on its own in CADE ATP System 

Competition (CASC) [37] every year since 1999, and has performed well in the full first-order, clause normal form, and 

unit equality proof categories, often coming in as one of the top three in FOF division of CASC [38].  

The deduction framework of most current ATPs for FOL adopts saturation algorithm framework, typically OTTER 

[39] and DISCOUNT [40]. E introduces a modified version of the DISCOUNT algorithm, one of the variants of the given-

clause algorithm [36]. The basic idea of the DISCOUNT algorithm is to divide the clause set into two disjoint subsets, the 

processed clause set P and the unprocessed clause set U. Initially, set P is empty and all clauses of the clause set are put 

into U. At each iteration of the main loop, the ATP selects a given clause from U according to the heuristic strategies and 

puts it into P, then performs all inference rules between this given clause and all clauses in P. The resulting new clauses 

are put into U. It can be found that the number of clauses of P grows rapidly when the number of iterations keeps increasing. 

Therefore, the ATPs adopting DISCOUNT algorithm rely on a lot of heuristic strategies such as term ordering [41-43], 

literal and clause selection [44-46], to reduce the search space. This is one crucial problem to be solved for the ATPs such 

as E adopting DISCOUNT algorithm. On the other hand, there are a number of problems which cannot be solved by E, 

javascript:;
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especially problems with rating of 1 meaning that none of the current ATPs are able to resolve them [47], in the latest 

released version (TPTP-v7.5.0) of the TPTP (Thousands of Problems for Theorem Provers) benchmark library [48]. 

Therefore, there is still space for improving the performance of E. 

Aiming at enhancing the inference ability of resolution principle, Xu et al. [49] proposed a dynamic multi-clause 

synergized deduction theory, standard contradiction separation (S-CS) rule in 2018 motivated by the idea from multi-

valued logic, which is perceived as a theoretical development of resolution principle. Specially, at each the deduction step 

of S-CS rule, multiple (two or more) clauses are selected as parent clauses of this deduction, and multiple (one or more) 

literals from each parent clause are selected to construct a contradiction, then a new clause formed as the disjunction of 

the non-selected literals of the parent clause is inferred [50]. The most obvious difference from resolution principle is that 

there are multiple (two or more) clauses participate the deduction at each deduction step of S-CS rule. In addition, S-CS 

rule has several abilities that resolution principle doesn’t have, e.g., synergized ability, controllability and clause-reusing 

ability [51], where the clause-reusing ability, in particular, is the focus of this paper. Therefore, S-CS rule has the advantage 

of solving the crucial problem mentioned above and acts as a complement to E to a certain extent, while this part of content 

will be analyzed in detail in Section 3. At the same time, we have an idea of applying S-CS rule to E, expecting that S-CS 

rule can enhance the performance of E. 

There are two motivations behind the research: 1) to build a novel deduction algorithm based on the capabilities of the 

S-CS rule; 2) to enhance E’ performance by using the S-CS rule, especially the performance to solve a specific number of 

problems with a rating of 1. Consequently, we need to develop a more effective deduction algorithm based on S-CS rule, 

and a reasonable extended architecture of E for applying S-CS rule. In this paper, we design an effective implementation 

of S-CS rule, i.e., binary clause reusing algorithm, then this deduction algorithm is incorporated into E, to form an extended 

ATP of E, dubbed E_BCR. We design two groups of experiments to evaluate the performance of this extended prover 

E_BCR. According to experimental findings, the performance of E_BCR outperforms E itself in a variety of aspects, 

reflecting that binary clause reusing algorithm based on the S-CS rule is an effective deduction algorithm. Notably, reusing 

binary clause deduction algorithm has been initially implemented on the ATP CSE_E 1.3, which won the 3rd place in FOF 

division of CASC-28 (2021) [52]. Meanwhile, CSE_E 1.3 solved the same number of problems as iProver 3.5, that was 

the runner-up in FOF division of CASC-28 (2021). The contributions of the research work in this paper has three points: 

we have 1) studied S-CS rule and explore the distinctive features of S-CS rule in more depth; 2) further verified the 

implementation and effectiveness of S-CS rule; 3) proposed an innovative deduction algorithm, and significantly enhanced 

the ability of E. 

The remainder of this paper is organized as follows. Section 2 introduces the preliminaries of FOL and S-CS rule. In 

Section 3, the binary clause reusing algorithm based on S-CS rule is proposed and its advantages are analyzed, then some 

heuristic strategies related to this algorithm are introduced. The extended architecture of E for applying S-CS rule is 

detailed in Section 4. The related experiments and the analysis of experimental results are studied in Section 5. In Section 

6, we give conclusions of this paper and our future work plans. 

We note that a short version of this paper appeared in the 2021 IEEE International Conference on Intelligent Systems 

and Knowledge Engineering (ISKE 2021) [53]. Our initial conference paper just introduced the basic idea of the binary 

clause reusing algorithm, while neither the detailed analysis of the proposed algorithm and related experimental results, 

nor the related heuristic strategies were provided. This manuscript addresses these issues and provides more extensive 

experimental studies and analyses to illustrate the performance of the extended ATP of E. 

2 Preliminaries 

In this section, we firstly provide some basic concepts of FOL, and the readers are referred to Ref. [54] for a detailed 

introduction. Secondly, we give the preliminaries of S-CS rule and the basic method of constructing contradiction. 

2.1 Preliminaries of First-order Logic 

We focus on conjunctive normal form (CNF) of first-order logic excluding quantifiers. A CNF formula is built from 

variables, function symbols, predicate symbols and conjunction symbols [54]. 
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Definition 1 [54] (Term) A term is either a variable or an expression 𝑓(𝑡1, 𝑡2, ⋯ , 𝑡𝑛), where 𝑓 is a function symbol of arity 

n and 𝑡1, 𝑡2, ⋯ , 𝑡𝑛 are terms. 

𝑇𝑒𝑟𝑚(𝐹, 𝑉) is to denotes the set of terms over an enumerable set 𝐹 of function symbols with associated arities and set 

𝑉 of variables. A 0-ary function is called constant. We use 𝑡 (possibly primed or subscripted) to denote a term, e.g., 𝑡′, 𝑡1, 𝑡2, 

𝑥 (possibly primed or subscripted) for a variable, e.g., 𝑥′, 𝑥11, 𝑥21, 𝑓 (possibly primed or subscripted) for a non-constant 

function symbol, e.g., 𝑓′, 𝑓1, 𝑓2, and 𝑎 for a constant, e.g., 𝑎′, 𝑎1, 𝑎2. A term 𝑡 is called ground term if it contains no variable. 

Definition 2 [54] (Atom) An atom is an expression 𝑃(𝑡1, 𝑡2, ⋯ , 𝑡𝑛) , where 𝑃  is a predicate symbol of arity n and 

𝑡1, 𝑡2, ⋯ , 𝑡𝑛 are terms. 

We use 𝑃 (possibly primed or subscripted) to denote a predicate symbol, e.g., 𝑃′, 𝑃1, 𝑃2. 

Definition 3 [54] (Literal) A literal is an expression 𝐴 (a positive literal) or ~𝐴 (a negative literal), where 𝐴 is an atom. 

Two literals 𝐴 and ~𝐴 are said to be complementary. 

We use 𝑙 (possibly primed or subscripted) to denote a literal, e.g., 𝑙′, 𝑙1, 𝑙2. 

Definition 4 [33] (Clause) A clause is set of literals, sometimes written as 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 and interpreted as the 

disjunction of its literals. 

Multiple occurrences of the same clause are usually considered as distinct clauses and we implicitly assume that any 

two clauses do not share the same variable. We use 𝐶 (possibly primed or subscripted) to denote a clause, e.g., 𝐶′, 𝐶1, 𝐶2. 

A clause 𝐶 with n literals is called n-ary (n ∈ ℕ) clause. Specially, a 1-ary clause is called unit clause, 2-ary clause is called 

binary clause, and a 0-ary clause is empty clause denoted by ∅. 

We usually use an uppercase bold letter (possibly primed or subscripted) to denote a clause set, e.g., 𝑺, 𝑻𝟏, 𝑹′. 

Definition 5 [55] (Substitution) A substitution is a function 𝜎: 𝑉 → 𝑇𝑒𝑟𝑚(𝐹, 𝑉) with property that {𝑥|𝜎(𝑥) ≠ 𝑥} is finite, 

where 𝑥 ∈ 𝑉. A substitution 𝜎 also be written as 𝜎 = {𝑡1 𝑥1⁄ , 𝑡1 𝑥1⁄ , ⋯ , 𝑡𝑛 𝑥𝑛⁄ }, where 𝑡𝑖 ∈ 𝑇𝑒𝑟𝑚(𝐹, 𝑉), 𝑥𝑖 ∈ 𝑉 and 𝑡𝑖 ≠

𝑥𝑖 (𝑖 = 1,2, ⋯ , 𝑛}). If 𝑡𝑖 is a ground term, then 𝜎 is called a ground substitution. 

In this paper, a substitution is denoted by a lowercase Greek letter (possibly primed or subscripted), e.g., 𝜎, 𝜃. The 

same clause or literal with different substitutions is regarded as different clauses or literals. 

2.2 Preliminaries of S-CS Rule 

Some concepts of S-CS rule are introduced as follows. We only recall some basic concepts, and readers are referred to 

Ref. [49] for a detailed introduction. 

Definition 6 [49] (Contradiction) Let 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} be a clause set in FOL If ∀(𝑙1, 𝑙2, ⋯ , 𝑙𝑚) ∈ ∏ 𝐶𝑖
𝑚
𝑖=1 , there exists 

at least one complementary pair among {𝑙1, 𝑙2, ⋯ , 𝑙𝑚}, then 𝑺 = ⋀ 𝐶𝑖
𝑚
𝑖=1  is called a standard contradiction (in short, SC). 

Definition 7 [49] Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. The following inference rule that produces a new 

clause from 𝑺 is called a standard contradiction separation rule, in short, an S-CS rule: 

For each 𝐶𝑖  (𝑖 = 1,2, ⋯ , 𝑚), firstly apply a substitution 𝜎𝑖 to 𝐶𝑖 (𝜎𝑖 could be an empty substitution but not necessary 

the most general unifier), denoted as 𝐶𝑖
𝜎𝑖; then separate 𝐶𝑖

𝜎𝑖 into two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that 

(1) 𝐶𝑖
𝜎𝑖 = 𝐶𝑖

𝜎𝑖−
∨ 𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 have no common literals; 

(2) 𝐶𝑖
𝜎𝑖+

 can be an empty clause itself, but 𝐶𝑖
𝜎𝑖−

 cannot be an empty clause; 

(3) ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a standard contradiction, that is ∀(𝑥1, 𝑥2, ⋯ , 𝑥𝑚) ∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , there exists at least one complementary 

pair among {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}. 

The resulting clause ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 , denoted as ℂ𝑚
𝑠𝜎(𝐶1, ⋯ , 𝐶𝑚), is called a standard contradiction separation clause (CSC) 

of 𝐶1, ⋯ , 𝐶𝑚, and ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is called a separated standard contradiction (SC). 
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The deduction sequence based on S-CS rule, the soundness and completeness of S-CS rule are described as follows. 

Definition 8 [49] Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. Φ1, Φ2, ⋯ , Φ𝑡  is called a standard contradiction 

separation based dynamic deduction sequence (S-CS deduction) from 𝑺 to a clause Φ𝑡, denoted as 𝐷𝑠, if  

(1) Φ𝑖 ∈ 𝑺, 𝑖 ∈ {1,2, ⋯ , 𝑡}; or 

(2) there exist 𝑟1, 𝑟2, ⋯ , 𝑟𝑘𝑖
< 𝑖, Φ𝑖 = ℂ𝑘𝑖

𝑠 (Φ𝑟2
, Φ𝑟2

, ⋯ , Φ𝑟𝑘𝑖
). 

Theorem 1 [49] (Soundness) Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. Φ1, Φ2, ⋯ , Φ𝑡  is a S-CS based dynamic 

deduction from 𝑺 to a clause Φ𝑡. If Φ𝑡 is an empty clause, then 𝑺 is unsatisfiable. 

Theorem 2 [49] (Completeness) Suppose a clause set 𝑺 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. If 𝑺 is unsatisfiable, then exists an S-

CS based dynamic deduction from 𝑺 to an empty clause. 

The crucial point of S-CS rule is the construction of the SC. During the process of S-CS deduction, each clause 𝐶 

participating the deduction is separated into the two parts, i.e., 𝐶𝜎+ and 𝐶𝜎−, under a certain substitution 𝜎, where 𝐶𝜎+ is 

the sub-clause of the CSC of the deduction and 𝐶𝜎− is put into the corresponding SC. In other words, a SC is constructed 

through a series of separating clauses. Therefore, the problem how to construct the SC is equivalent to the problem how to 

separate the clauses that participate the S-CS deduction. 

Furthermore, there is one literal from each clause participating the S-CS deduction is called decision literal [56] that 

plays an important role on determining the SC, and thus the SC has a set of decision literals written as 𝑫𝒍 in this paper. In 

fact, which clause is selected to construct the SC is determined by 𝑫𝒍 during the process of constructing the SC. Therefore, 

we introduce the concept of pairing condition. 

Definition 9 (Pairing condition) Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a SC, and the set 𝑫𝒍 = {𝑙𝑑1, 𝑙𝑑2, ⋯ , 𝑙𝑑𝑚} is a decision literal set in 

⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

, 𝑖 = 1,2, ⋯ , 𝑚 and 𝜎𝑖 is a substitution corresponding to 𝐶𝑖. There exist a literal 𝑙𝑝 in a clause 

𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 and a substitution 𝜃, and the literal 𝑙𝑝
𝜃 can be put into the 𝐶𝜃− when the clause 𝐶 participates the S-

CS deduction. If 𝑙𝑝 satisfies the following condition: 

There exists a literal  𝑙𝑑𝑖 ∈ 𝐷𝑙  and a substitution 𝜃, such that 𝑙𝑝
𝜃 = ~𝑙𝑑𝑖

𝜃 , i.e.,  𝑙𝑑𝑖  and  𝑙𝑝 can form a complementary pair 

after substitution 𝜃, then this condition is called a pairing condition. 

In order to make the deduction more efficient, we stipulate that any two literals in 𝑫𝒍 cannot form a complementary 

pair. Pairing condition is considered the most fundamental condition for a clause to participate the S-CS deduction, namely 

a clause must satisfy at least pairing condition to be eligible to participate the S-CS deduction. If a clause does not have a 

literal that satisfies pairing condition, this clause cannot participate the S-CS deduction. Consequently, clause separation 

method of S-CS rule is introduced as follows. 

Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a constructed SC and ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1  is the corresponding CSC, and the set 𝑫𝒍 = {𝑙𝑑1, 𝑙𝑑1, ⋯ , 𝑙𝑑𝑚} is 

a decision literal set in ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

, 𝑖 = 1,2, ⋯ , 𝑚 and 𝜎𝑖 is a substitution corresponding to 𝐶𝑖. A clause 

𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 as an upcoming clause that will participates the S-CS deduction, then the process of separating clause 

𝐶𝜃 into two parts 𝐶𝜃− and 𝐶𝜃+ after a substitution 𝜃 is shown as follows. 

Step 1: If the literal 𝑙
𝑗

𝜃𝑗
 (𝑗 = 1,2, ⋯ , 𝑛) that satisfies pairing condition after a substitution 𝜃𝑗, then it is put into 𝐶𝜃−; 

otherwise, 𝑙
𝑗

𝜃𝑗
 is added to 𝐶𝜃+; 

Step 2: If 𝐶𝜃+ has no literal or 𝐶𝜃+ satisfies user-defined deduction conditions then end the separation of clause 𝐶; 

otherwise, go to Step 3. 

Step 3: Select a literal 𝑙𝑑 from 𝐶𝜃+ to put into 𝐷𝑙  as a new decision literal, then remove 𝑙𝑑 from 𝐶𝜃+ and put 𝑙𝑑 into 

𝐶𝜃−. 

The SC ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  will be updated to ⋀ 𝐶𝑖
𝜎𝑖−𝑚+1

𝑖=1  where 𝐶𝑚+1
𝜎𝑚+1−

= 𝐶𝜃−, since 𝐶𝜃− is put into the SC. And the CSC 

⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1  also will be updated to ⋁ 𝐶𝑖
𝜎𝑖+𝑚+1

𝑖=1  where 𝐶𝑚+1
𝜎𝑚+1+

= 𝐶𝜃+, since 𝐶𝜃+ is put into the CSC. 

The following example illustrates the process of S-CS deduction, especially the separation of each clause. 
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Example 1 Let 𝑺 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8} be a clause set, where 

𝐶1 = ~𝑃1(𝑥11, 𝑥12, 𝑥13) ∨ ~𝑃2(𝑥11, 𝑥13),  

𝐶2 = 𝑃1(𝑥22, 𝑥21, 𝑥23) ∨ ~𝑃1(𝑥21, 𝑥22, 𝑥23),  

𝐶3 = 𝑃2(𝑥31, 𝑥34) ∨ ~𝑃3(𝑥31) ∨ ~𝑃1(𝑥32, 𝑥33, 𝑥34) ∨ ~𝑃2(𝑥31, 𝑥32) ∨ ~𝑃2(𝑥31, 𝑥33),  

𝐶4 = 𝑃1(𝑥41, 𝑥41, 𝑓1(𝑥41)) ∨ ~𝑃2(𝑥41, 𝑎1),  

𝐶5 = ~𝑃1(𝑓1(𝑥51), 𝑥51, 𝑥52) ∨ 𝑃1(𝑥51, 𝑎2, 𝑥53) ∨ 𝑃2(𝑥53, 𝑥51, 𝑥53), 

𝐶6 = 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)),  

𝐶7 = 𝑃3(𝑎1), 𝐶8 = 𝑃2(𝑎1, 𝑎2). 

Here 𝑎𝑖 (𝑖 = 1,2) is constant, 𝑓1 is function symbol, 𝑥𝑖 (𝑖 = 11, ⋯ ,53) is variable, 𝑃𝑖  (𝑖 = 1,2,3) is predicate symbol. 

Applying S-CS rule to the clause set 𝑺, and using clause separation method to 𝐶7, 𝐶8, 𝐶6, 𝐶1, 𝐶3, 𝐶4 in sequence. We 

obtain a CSC involving 6 clauses: 𝐶9 = ~𝑃2(𝑎2, 𝑎1), and the corresponding SC is shown in Table 1. The corresponding 

substitution and decision literal of each clause is shown in Table 2. 

Table 1 Separation the 𝐶𝑖
𝜎𝑖 for Example 1 

𝑖 𝐶𝑖
𝜎𝑖−

 𝐶𝑖
𝜎𝑖+

 

7 𝑃3(𝑎1) ∅ 

8 𝑃2(𝑎1, 𝑎2) ∅ 

6 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∅ 

1 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑓1(𝑎2)) ∅ 

3 𝑃2(𝑎1, 𝑓1(𝑎2)) ∨ ~𝑃3(𝑎1) ∨ ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∅ 

4 𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ~𝑃2(𝑎2, 𝑎1) 

Table 2 Corresponding substitution 𝜎𝑖 and decision literal of clause 𝐶𝑖 for Table 1 

𝑖 𝜎𝑖 Decision literal 

7 ∅ 𝑃3(𝑎1) 

8 ∅ 𝑃2(𝑎1, 𝑎2) 

6 ∅ 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) 

1 {𝑎1 𝑥11, 𝑓1(𝑎1) 𝑥12⁄⁄ , 𝑓1(𝑎2) 𝑥13⁄ } ~𝑃2(𝑎1, 𝑓1(𝑎2)) 

3 {𝑎1 𝑥31, 𝑎2 𝑥32⁄⁄ , 𝑎2 𝑥33⁄ , 𝑓1(𝑎2) 𝑥34⁄ } ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) 

4 {𝑎2 𝑥41⁄ } ∅ 

3 Binary Clause Reusing Algorithm Based on S-CS Rule 

This section discusses the theory of binary clause reusing and proposes the deduction algorithm based on binary clause 

reusing, and introduces the heuristic strategies associated with this deduction algorithm. 

3.1 Binary Clause Reusing Algorithm 

From Section 2, the core of S-CS rule is constructing the SC and thus obtaining the CSC. According to Ref. [51], we 

know that S-CS rule has at least ten featured characteristics, such as guidance and clause-reusing. Ref. [57] proposed a 

clause reusing deduction framework based on S-CS rule, which can take better advantage of guidance ability. In this paper, 

based on this framework, we then propose a binary clause reusing algorithm based on S-CS rule which fully takes 

advantage of deduction ability of binary clause. 

First of all, we introduce the concept of clause reusing and the advantages of clause reusing in S-CS deduction. 

According to Definition 9, we know that the set of decision literals 𝑫𝒍 is crucial for the S-CS deduction. Intuitively, 

the more literals in 𝑫𝒍 , the more likely an upcoming clause that will participate in the S-CS deduction meets paring 

condition. On the other hand, if a literal 𝑙 in an upcoming clause 𝐶 that will participate in the S-CS deduction can form a 

complementary pair with a literal of 𝑫𝒍 after a certain substitution, then the literal 𝑙 will be put into the contradiction. 

Therefore, the more literals in 𝑫𝒍, the more likely the 𝐶𝜎+ after a clause 𝐶 participating in the S-CS deduction under a 
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substitution 𝜎 is an empty clause. The number of literals in 𝑫𝒍 has positive impact on improving the performance of S-CS 

rule. 

At the same time, a literal in the upcoming clause that expects the S-CS deduction may form different complementary 

pairs with multiple literals of 𝑫𝒍 respectively, so this upcoming clause may participate the S-CS deduction multiple times, 

i.e., clause reusing. During the construction of a SC, each deduction of this upcoming clause will generate a new decision 

literal, so clause reusing will increase a number of decision literals. 

We've then come to two conclusions: 1) it is able to effectively generate different decision literals when reusing clauses 

in one SC creation process; 2) it is able to generate an empty clause in the development of this SC when there are more 

different decision literals in the SC. 

In theory, a clause is reused until there is no literal in it that can form a complementary pair with a decision literal of 

𝑫𝒍. However, it is not achievable for each clause in a clause set to be fully reused, since resources available to a prover in 

practice, e.g., the running time and memory resources, is limited. Therefore, we introduce the concept of well separation 

to characterize a “good” separation of a clause in the S-CS deduction. 

Definition 10 (Well separation) There is a constructing SC. A n-ary clause 𝐶 as an upcoming clause that is going to 

participate the S-CS deduction. The separation that divides the clause 𝐶 into 𝐶𝜃− and 𝐶𝜃+ by applying clause separation 

method under a substitution 𝜃 is called well separation, if 𝐶𝜃+ is an empty clause.  

This paper proposes binary clause reusing algorithm (in short BCR algorithm) based on S-CS rule, the main reasons 

why binary clauses are reused are based on the following analysis. 

1. Empirically, both binary resolution and S-CS rule prefer short clauses, especially unit clause or binary clause, during 

the deduction process. Meanwhile, unit clauses and binary clauses usually occupy a significant number of clauses in a 

clause set. Therefore, it is reasonable to highlight the reusing of binary clause. 

2. S-CS rule has the feature of reusing clause, that is, the deduction based on S-CS rule is a clause-reusing deduction. 

During the process of constructing a SC, one clause can participate in the S-CS deduction multiple time, i.e., reusing the 

clause, such that this clause may generate multiple different decision literals. The more and different decision literals, the 

better constraints on the CSC (fewer literals or symbols) and the higher synergy of the deduction. Therefore, reusing binary 

clause can effectively generate abundant decision literals. 

3. According to Definition 10, the separation of a binary clause 𝐶 must be well separation as long as a literal in 𝐶 can 

form a complementary pair with a certain decision literal under the substitution 𝜎, i.e., 𝐶𝜎+ = ∅. If the unit clauses and 

binary clauses are selected to participate in S-CS deduction in priority, the CSCs are all unit clauses during the period. 

These unit CSCs make the deduction path more optimal in the subsequent deduction, and some clauses in the clause set 

can be removed if they are subsumed by the unit CSCs which alleviates the search space expansion. 

4. Compared to n-ary (n > 2) clause, binary clause is more manipulative, in other word, using binary clause could 

reduce the complexity of the deduction algorithm. 

Therefore, reusing binary clause is a reasonable method for the S-CS deduction, which does not contribute any literal 

to the CSC. BCR algorithm based on S-CS rule is introduced as follows.  

BCR algorithm is introduced in detail in the following steps, and the corresponding pseudo-code of BCR algorithm is 

provided in Algorithm 1. 

Step 1: 𝑺 is a given clause set. Before applying S-CS rule, 𝑺 is divided into three subsets, i.e., 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, where 𝑺𝒖 

stores unit clauses, 𝑺𝒃 holds binary clauses and the remaining clauses are stored in 𝑺𝒆. Then according to the heuristic 

strategies, sort the clauses of 𝑺𝒖. 

Step 2: The processed clause participated the S-CS deduction after a certain substitution is stored in the clause set 𝑷, 

the set 𝑫𝒍 stores the decision literals during the S-CS deduction. The corresponding literal of each clause of 𝑺𝒖 is put into 

𝑫𝒍 in sequence, i.e., the literal of each unit clause is used to initialize 𝑫𝒍. Then each clause of 𝑺𝒖 is put into 𝑷. 

Step 3: Traverse each clause 𝐶𝑏 of the set 𝑺𝒃 sequentially. If the traversal is completed, go to Step 6.  

Step 4: Check whether there is a literal of the clause 𝐶𝑏 that satisfies paring condition.a If not, go to Step 3. 

 
a To avoid endless loop, BCR algorithm stipulates that a complementary pair that is formed with a literal 𝑙 of an upcoming clause and a literal of 𝑫𝒍 is 

only allowed appeared once with respect to the literal 𝑙 during the S-CS deduction. 
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Algorithm 1 BCR algorithm 

Input:  

a given clause set 𝑺 

a set of unit clauses 𝑺𝒖 (initially empty) 

a set of binary clauses 𝑺𝒃 (initially empty) 

a set of n-ary (n ≥ 3) clauses 𝑺𝒆 (initially empty) 

a set of processed clauses 𝑷 (initially empty) 

a set of decision literals 𝑫𝒍 (initially empty) 

a threshold 𝑁𝑢𝑚 

Output: 

a set of new generated CSCs 𝑹 

1: classifySet(𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆); 

2: sortSet(𝑺𝒖); 

3: initialDecisionSet(𝑺𝒖, 𝑫𝒍); 

  4: 𝑷 = 𝑷 ∪ 𝑺𝒖; 

  5: for each 𝐶𝑏 ∈ 𝑺𝒃 

6:     if FALSE == paringCondition(𝐶𝑏, 𝑫𝒍)    goto 5; 

  7:     𝐶𝑟 = separateCla(𝐶𝑏, 𝑷, 𝑫𝒍); 

  8:     if 𝐶𝑟 == ∅     

  9:         return UNSAT; 

10:     updateDecisionSet(𝐶𝑏, 𝑫𝒍); 

11:     𝑹 = 𝑹 ∪ {𝐶𝑟}; 

12:     𝑷 = 𝑷 ∪ {𝐶𝑏}; 

13:     goto 6; 

14: end for 

15: 𝑘 = 0 ; 

16: while (𝐶𝑔 = selectGivenCla(𝑺𝒆)) ≠ null begin 

17:     if FALSE == paringCondition(𝐶𝑔, 𝑫𝒍)    goto 16; 

18:     𝐶𝑟
′ = separateCla(𝐶𝑔, 𝑷, 𝑫𝒍); 

19:     if 𝐶𝑟
′ == ∅     

20:         return UNSAT; 

21:     if TRUE == invalidSeparation(𝐶𝑟
′ , 𝐶𝑔, 𝑹, 𝑺) 

22:         rollbackPath(𝐶𝑟
′ , 𝐶𝑔, 𝑷, 𝑫𝒍); 

23:         goto 15; 

24:     if TRUE == stopDeduction(𝐶𝑟
′)    goto end while; 

25:     updateDecisionSet(𝐶𝑔, 𝑫𝒍); 

26:     𝑹 = 𝑹 ∪ {𝐶𝑟
′}; 

27:     𝑷 = 𝑷 ∪ {𝐶𝑔}; 

28:     if (𝑘 = 𝑘 + 1) < 𝑁𝑢𝑚    goto 16; 

29:     else    goto 5; 

30: end while 

31: for each 𝐶𝑟
′′ ∈ 𝑹 

32:     backwardSubsumed(𝑺, 𝐶𝑟
′′); 

33: end for 

34: 𝑺 = 𝑺 ∪ 𝑹; 

35: output 𝑹; 

Step 5: Apply clause separation method of S-CS rule to the clause 𝐶𝑏 and the two sets 𝑷 and 𝑫𝒍, separate the clause 

𝐶𝑏, and generate a CSC 𝐶𝑟. If 𝐶𝑟 is an empty clause, then output UNSAT, exit! If not, select a literal from the clause 𝐶𝑏 as 
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a new decision literal, and put it into 𝑫𝒍. 𝐶𝑟 is put into the clause set 𝑹 that is used to store new generated CSCs during the 

S-SC deduction. The clause 𝐶𝑏 is put into 𝑷. Go to Step 4. 

Step 6: Select a clause from the clause set 𝑆𝑒 as the next clause 𝐶𝑔 to participate in the deduction according to the 

heuristic strategies. If there is no clause in 𝑆𝑒 qualifying as the next clause 𝐶𝑔, go to Step 10. 

Step 7: Check whether there is a literal of the clause 𝐶𝑏 that satisfies paring condition. If not, go to Step 6. 

Step 8: Apply clause separation method of S-CS rule to the clause 𝐶𝑔 and the two sets 𝑷 and 𝑫𝒍, separate the clause 

𝐶𝑔, and generate a CSC 𝐶𝑟
′. If 𝐶𝑟

′ is an empty clause, then output UNSAT, exit! If not, check the clause 𝐶𝑟
′ to determine 

whether this deduction step is valid, where the determination method is introduced in the following. If this deduction step 

is invalid, perform the procedure of deduction path rollback, then go to Step 6. 

Step 9: Check the exit condition of the deduction. If the exit condition is satisfied, go to Step 10. Otherwise, the new 

generated clause 𝐶𝑟
′ is put into the clause set 𝑅 that is used to store new generated CSCs during the S-SC deduction. The 

clause 𝐶𝑔 is put into 𝑃. When every 𝑁𝑢𝑚 (a predefined threshold and set as 10 by default according to our empirical 

experience) clauses of the set 𝑆𝑒 have participated in the S-CS deduction, go to Step 3. Otherwise, go to Step 6. 

Step 10: Traverse each clause 𝐶𝑟
′′ of the clause set 𝑹. Then check each clause of the clause set 𝑺 whether it is subsumed 

by the clause 𝐶𝑟
′′. If yes, delete the subsumed clauses from each clause set. 

Step 11: Each clause of 𝑹 is put into 𝑺, then output 𝑹. 

The functions of the pseudo-code are described as follows. 

• classifySet(𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆): This function divides the clause set 𝑺 into three subsets, i.e., 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, where 𝑺𝒖 stores unit 

clauses, 𝑺𝒃 holds binary clauses and the remaining clauses are stored in 𝑺𝒏. Suppose that there are 𝑚 clauses in the set 

𝑺, the time complexity of this function is 𝑂(𝑚). 

• sortSet(𝑺𝒖): It sorts the clauses of the clause set 𝑺𝒖 according to the heuristic strategies. Suppose that there are 𝑚𝑢 

clauses in the set 𝑺𝒖, the time complexity of this function is 𝑂(𝑚𝑢log𝑚𝑢). 

• initialDecisionSet(𝑺𝒖, 𝑫𝒍): It puts the corresponding literal of each clause of the unit clause set 𝑺𝒖 into 𝑫𝒍 in sequence, 

i.e., the literal of each unit clause is used to initialize 𝑫𝒍. Suppose that there are 𝑚𝑢 clauses in the set 𝑺𝒖, the time 

complexity of this function is 𝑂(𝑚𝑢). 

• paringCondition(𝐶𝑏, 𝑫𝒍): Return TRUE if and only if there is a literal 𝑙 of the clause 𝐶𝑏 can form a complementary 

pair with a literal in the set 𝑫𝒍, and this complementary pair is the first occurrence with respect to the literal 𝑙 during 

the S-CS deduction. Suppose the clause 𝐶𝑏  has 𝑛 literals and the set 𝑫𝒍  has 𝑥 literals, the time complexity of this 

function is 𝑇(𝑛, 𝑥) = 𝑛 ∗ 𝑥 = 𝑂(𝑛𝑥). 

• separateCla(𝐶𝑏, 𝑷, 𝑫𝒍): It applies clause separation method of S-CS rule with the clause 𝐶𝑏 and the two set 𝑷, 𝑫𝒍, 

separate the clause 𝐶𝑏 into 𝐶𝑏
𝜎+ and 𝐶𝑏

𝜎− under a substitution 𝜎, and generate a CSC 𝐶𝑟. Then 𝐶𝑏
𝜎− is used to extend 

the SC. Suppose the clause 𝐶𝑏  has 𝑛 literals and the set 𝑫𝒍  has 𝑥  literals, the time complexity of this function is 

𝑇(𝑛, 𝑥) = 𝑛𝑥 = 𝑂(𝑛𝑥). 

• updateDecisionSet(𝐶𝑏, 𝑫𝒍): According to the heuristic strategies, this function selects a literal from the clause 𝐶𝑏 after 

the separation as a new decision literal, then put the new decision literal into the literal set 𝑫𝒍. Suppose the clause 𝐶𝑏 

has 𝑛 literals and only one literal in 𝐶𝑏 is separated into 𝐶𝑏
−, the time complexity of this function is 𝑇(𝑛) = 𝑛 − 1 =

𝑂(𝑛). 

• selectGivenCla(𝑺𝒆): According to the heuristic strategies, it selects a clause from the clause set 𝑺𝒆 as the next clause 

to participate in the deduction. The time complexity of this function is 𝑂(1). 

• invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺): Return TRUE if and only if the deduction step generated the clause 𝐶𝑟

′ satisfies any 

one of the five conditions of invalid separation. (1) The clause 𝐶𝑟
′ is subsumed by one clause from the clause set 𝑺 or 

the clause set 𝑹; (2) The clause 𝐶𝑟
′ is tautology; (3) The maximum term depth of clause of the clause 𝐶𝑟

′ exceeds the 

set threshold; (4) The number of literals of the 𝐶𝑔
+ part of 𝐶𝑔 after the separation exceeds the set threshold; (5) The 

maximum term depth of literal of each literal in the  𝐶𝑔
+ part of 𝐶𝑔 after the separation exceeds the set threshold. 

Suppose the clause 𝐶𝑟
′ has 𝑟 literals, the clause 𝐶𝑔 has 𝑛 literals and the set 𝑺 or 𝑹 has 𝑚 clauses, the time complexity 

of this function is 𝑇(𝑟, 𝑛, 𝑚) = 𝑟𝑚 + 𝑟(𝑟 − 1) + 𝑟 + (𝑛 − 1) + (𝑛 − 1) = 𝑂(𝑟𝑚 + 𝑟2). 

• rollbackPath( 𝐶𝑟
′ , 𝐶𝑔 , 𝑷 , 𝑫𝒍 ): Clear and restore the corresponding information of the deduction. (1) Clear the 

substitutions corresponding to the deduction step generated the clause 𝐶𝑟
′; (2) Clear the deduction identifiers of the 

clause participated in the deduction step that generated the clause 𝐶𝑟
′; (3) Delete the generated clause 𝐶𝑟

′; (4) Remove 
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the 𝐶𝑔
− part of 𝐶𝑔 from the corresponding CSC and the 𝐶𝑔

+ part of 𝐶𝑔 from the corresponding SC. Suppose the clause 

𝐶𝑟
′ has 𝑟 literals, the clause 𝐶𝑔 has 𝑛 literals and the set 𝑺 or 𝑹 has 𝑚 clauses, the time complexity of this function is 

𝑇(𝑟, 𝑛, 𝑚) = 𝑟 + 1 + 𝑟 + 𝑛 = 𝑂(𝑟 + 𝑛). 

• stopDeduction(𝐶𝑟
′): Return TRUE if and only if the generated clause 𝐶𝑟

′ during the deduction step satisfies the five exit 

conditions. (1) The clause 𝐶𝑟
′ is an empty clause, i.e., UNSAT found; (2) The number of literals in the clause 𝐶𝑟

′ reaches 

the set threshold; (3) The maximum term depth of clause in the clause 𝐶𝑟
′ reaches the set threshold; (4) The running 

time reaches the set threshold; (5) The consumed memory reaches the set threshold. Suppose the clause 𝐶𝑟
′ has 𝑟 literals, 

the time complexity of this function is 𝑇(𝑟, 𝑛, 𝑚) = 1 + 1 + 𝑟 + 1 + 1 = 𝑂(𝑟). 

• backwardSubsumed(𝑺, 𝐶𝑟
′′): Remove the clause that is subsumed by the clause 𝐶𝑟

′′ from the clause set 𝑺. Suppose the 

clause 𝐶𝑟
′′ has 𝑟 literals and the set 𝑆 has 𝑚 clauses, the time complexity of this function is 𝑇(𝑟, 𝑛, 𝑚) = 𝑟𝑚 = 𝑂(𝑟𝑚). 

Suppose the clause set 𝑺, 𝑺𝒖, 𝑺𝒃, 𝑺𝒆 have at most 𝑚, 𝑚𝑢, 𝑚𝑏, 𝑚𝑒 clauses, respectively, in the deduction process, and 

the decision literal set 𝑫𝒍  has at most 𝑥  literals in the deduction process. Combining the above analysis of the time 

complexity of each function, we do a further time complexity analysis of Algorithm 1. 

 (1) Line 5 – 14: The set 𝑺𝒃  holds binary clauses, then the number of literals in any clause 𝐶𝑏  is 2 and the time 

complexity of the function updateDecisionSet(𝐶𝑏, 𝑫𝒍) is 𝑂(1). Therefore, the time complexity of line 5 – 14 is a function 

of the variables 𝑚𝑏, 𝑥, and the corresponding time complexity is shown in formula (1). 

 𝑇(𝑚𝑏 , 𝑥) = 𝑚𝑏 + 𝑚𝑏2𝑥 + 𝑚𝑏2𝑥 = 𝑂(𝑚𝑏𝑥) (1) 

(2) Line 16 – 30: Suppose the longest clause in the set  𝑺𝒆 has 𝑛 literals, the clause 𝐶𝑟
′ has at most 𝑟 literals. Therefore, 

the time complexity of lint 16 – 30 is a function of the variables 𝑚𝑒, 𝑚𝑏 , 𝑛, 𝑥, 𝑟, and the corresponding time complexity 

is shown in formula (2). 

𝑇(𝑚𝑏 , 𝑚𝑒, 𝑛, 𝑥, 𝑟) = 𝑚𝑒 + 𝑚𝑒(𝑛𝑥 + 𝑟𝑚 + 𝑟2 + 2𝑟 + 2𝑛 + 𝑟 + 𝑚𝑏𝑥) 

                                                                     = 𝑂(𝑚𝑒𝑛𝑥 + 𝑚𝑒𝑟𝑛 + 𝑚𝑒𝑟2 + 𝑚𝑒𝑚𝑏𝑥) (2) 

(3) Line 30 – 33: Suppose the set 𝑹 has 𝑚𝑟 clauses and the longest clause in the set 𝑹 has 𝑟 literals. Therefore, the 

time complexity of lint 30 – 33 is a function of the variables 𝑚, 𝑚𝑟, 𝑟, and the corresponding time complexity is shown in 

formula (3). 

 𝑇(𝑚, 𝑚𝑟 , 𝑟) = 𝑚𝑟(𝑟𝑚) = 𝑂(𝑚𝑚𝑟𝑟) (3) 

From the above analysis, the time complexity of BCR algorithm is a function of the variables 𝑚, 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒, 𝑚𝑟, 𝑛, 

𝑥, 𝑟. The sets 𝑺𝒖, 𝑺𝒃, 𝑺𝒆, 𝑹 are actually subsets of the set 𝑺 in the deduction process, so it is feasible for the variable 𝑚 to 

replace the four variables 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒, 𝑚𝑟. Therefore, the time complexity of BCR algorithm is shown in formula (4). 

 𝑇(𝑚, 𝑚𝑢, 𝑚𝑏 , 𝑚𝑒 , 𝑚𝑟 , 𝑛, 𝑥, 𝑟) = 𝑇(𝑚, 𝑛, 𝑥, 𝑟) 

 = 𝑚 + 𝑚𝑢log𝑚𝑢 + 𝑚𝑢 + 𝑚𝑏𝑥 + 𝑚𝑒𝑛𝑥 + 𝑚𝑒𝑟𝑛 + 𝑚𝑒𝑟2 + 𝑚𝑒𝑚𝑏𝑥 + 𝑚𝑚𝑟𝑟 

 = 𝑂(𝑚2𝑥 + 𝑚2𝑟 + 𝑚log𝑚 + 𝑚𝑟2 + 𝑚𝑛𝑥 + 𝑚𝑟𝑛) (4) 

Different from the DISCOUNT algorithm, BCR algorithm has the multiple advantages introduced as follows. 

(1) Multi-clause and dynamic deduction. In the function separateCla(𝐶𝑏 , 𝑷, 𝑫𝒍), there are more than two clauses 

participated in the deduction, including the clause 𝐶𝑏, and the clauses whose decision literal forms the complementary pair 

with the literal of 𝐶𝑏. At the same time, at least one literal is eliminated in each clause participated in the deduction. The 

number of clauses and literals at each deduction step is determined according to how many decision literals of 𝑫𝒍 form 

complementary pairs with the literals in the clause 𝐶𝑏. Therefore, each deduction of BCR algorithm is multi-clause and 

dynamic. 

(2) Controllable deduction. BCR algorithm can control the deduction process and deduction results flexibly through 

the implementation of the two functions, invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) and stopDeduction(𝐶𝑟

′). In the two functions, we 

set some conditions and thresholds to get the clauses that satisfy the set requirements. For example, if the threshold 
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mentioned in condition (5) of invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) is set as 1, then each deduction generates unit clause. Of 

course, we can add or remove the condition according to some specific requirements in the two functions. For example, if 

the deduction needs the clauses without equality literal, then we add a condition that the clause 𝐶𝑟
′ has at least one equality 

literal in the function invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺). 

(3) Binary clause reusing deduction. In Step 5 of BCR algorithm, the deduction sequence goes to Step 4 when the 

deduction on a binary clause 𝐶𝑏 has completed and the generated CSC is not empty, then the clause 𝐶𝑏 will be checked 

again whether there is a literal of 𝐶𝑏 that satisfies paring condition. If yes, 𝐶𝑏 will be reused. This iterative process will 

continue, i.e., reuse the clause 𝐶𝑏 continuously until there is no literal in 𝐶𝑏 satisfying paring condition. On the other hand, 

this iterative process will generate a lot of unit clauses, due to reusing binary clauses. Accordingly, some new decision 

literals will be generated during this iterative process. 

(4) Guided deduction. The function updateDecisionSet(𝐶𝑏 , 𝑫𝒍 ) can select a literal from the clause 𝐶𝑏  after the 

separation as a new decision literal according to the heuristic strategies. Significantly, these decision literals can 

synergistically determine the selection of the clause participating in the deduction and the selection of eliminated literals. 

That is to say, the deduction path can be guided by the decision literals. We can set specify heuristic strategies to optimize 

the deduction path. 

(5) No need for a lot of heuristic strategies. Because BCR algorithm has the above advantages, it can allow multiple 

clauses to participate in the deduction while eliminating more literals at each deduction step. As a result, the algorithm 

does not require a lot of heuristics to select clauses or literals to generated qualified clause, e.g., the unit clause with 

equality literal. At the same time, the algorithm can generate many short (unit or binary) clauses, thus it can reduce some 

simplification strategies. 

3.2 Related heuristic strategies 

From the description of BCR algorithm, we can see that there are some heuristic strategies which are divided into three 

categories such as global threshold strategy, clause selection strategy, decision literal selection strategy.   

3.2.1 Global threshold strategy 

The global thresholds of BCR algorithm is set ahead according to the global threshold strategy. These global thresholds 

are mainly implemented in the stage of deduction evaluation, specifically the two functions invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 

𝑺) and stopDeduction(𝐶𝑟
′), and they are introduced in the following. 

(1) Global threshold of the maximum term depth. There is minor difference about the definition of the maximum term 

depth between clause and literal in BCR algorithm.  

Suppose a n-ary clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛, the maximum term depth of the clause 𝐶 is equal to the maximum value 

of the maximum term depth of its literals, and the corresponding calculation formula. 

 𝑀𝑇𝐷(𝐶) = 𝑚𝑎𝑥(𝑀𝑇𝐷(𝑙𝑖)) , 1 ≤ 𝑖 ≤ 𝑛 (5) 

The maximum term depth of the literal 𝑙𝑖 is equal to the sum of function nesting depths of all terms in 𝑙𝑖, and the 

corresponding calculation formula.  

 𝑀𝑇𝐷(𝑙𝑖) = ∑ 𝐿𝑎𝑦𝑒𝑟(𝑡𝑗) (6) 

According to our empirical experience, the global threshold of the maximum term depth of clause does not greater than 

1.3 ∗ 𝑚𝑡𝑑, where 𝑚𝑡𝑑 is the maximum term depth of clause in the original clause set, and the global threshold of the 

maximum term depth of literal is set to 6. 

(2) Global threshold of the number of literals of the 𝐶𝑔
+ part of a clause 𝐶𝑔 after the separation (𝐺𝐿𝑒𝑓𝑡𝑁𝑢𝑚). This 

threshold is dynamically adjusted as the deduction progresses. In order to preferentially generate short clauses, the 

threshold is initially set to 1 by default, then gradually increased by 1, but generally not greater than 4. 

(3) Global threshold of the number of literals in CSC. This threshold does not greater than 1.2 ∗ 𝐿𝑖𝑡𝑁𝑢𝑚 according to 

our empirical experience, where 𝐿𝑖𝑡𝑁𝑢𝑚 is the maximum number of literals of a clause in the original clause set. 
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(4) Global threshold of the running time. This threshold is maximum time for BCR algorithm to prove a single problem, 

where the units are seconds. 

(5) Global threshold of the consumed memory. This threshold is maximum consumed memory for BCR algorithm to 

prove a single problem, where the units are megabytes. 

3.2.2 Clause selection strategy 

Clause selection strategy is used to select a clause from a given clause set as the next clause to participate the deduction, 

realized by the function selectGivenCla(𝑺𝒆). The selection principle is based on some features or assigned weights of 

clause. Therefore, we introduce the features or weights of clause. 

(1) Symbol-counting of a clause. This feather refers to Ref. [55]. The three symbols, i.e., function, variable and constant, 

are respectively assigned three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐. Then the calculation formula of symbol-counting of a clause 𝐶. 

 𝑆𝑦𝑚(𝐶) = 𝑛𝑢𝑚𝑓(𝐶) ∗ 𝑤𝑓 + 𝑛𝑢𝑚𝑣(𝐶) ∗ 𝑤𝑣 + 𝑛𝑢𝑚𝑐(𝐶) ∗ 𝑤𝑐 (7) 

Where 𝑛𝑢𝑚𝑓(𝐶) , 𝑛𝑢𝑚𝑣(𝐶) , 𝑛𝑢𝑚𝑐(𝐶)  are the number of function symbols, variable symbols, constant symbols 

respectively. According to specific requirements, the three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐 can be set to required values. For example, 

if the deduction needs a clause with more constants, then 𝑤𝑓 = 1, 𝑤𝑣 = 1, 𝑤𝑐 = 2. 

(2) Invalid weight of a clause. This weight considers three features of a clause 𝐶 participated the deduction, the number 

of invalid separations, the maximum term depth of clause and the number of literals in 𝐶+ part. The invalid separation is 

the deduction step that does not satisfy any one of the five conditions of invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺). The corresponding 

calculation formula is as follows. 

 𝐼𝑊(𝐶) = 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑇𝐷(𝐶)

𝑚𝑎𝑥𝑇𝐷
+

𝐿𝑁(𝐶)

𝑚𝑎𝑥𝐿𝑁
 (8) 

Where 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶) is the number of invalid separations in which clause 𝐶 has participated (the separation of clause 𝐶 

turned to be an invalid separation once, 𝐼𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 is increased by 1), 𝑇𝐷(𝐶) is the max term depth of clause in 

𝐶+ part of 𝐶 after this invalid separation, and 𝐿𝑁(𝐶) is the number of literals in 𝐶+ part of 𝐶 after this invalid separation.  

(3) Valid weight of a clause. This weight is the opposite of invalid weight of a clause. This weight considers also three 

features of a clause 𝐶 participated in the deduction, the number of valid separations, the maximum term depth of clause 

and the number of literals in 𝐶+ part. The valid separation is the deduction step that does not satisfy the five conditions of 

invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺). The corresponding calculation formula is as follows. 

 𝑉𝑊(𝐶) = 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑇𝐷(𝐶)

𝑚𝑎𝑥𝑇𝐷
+

𝐿𝑁(𝐶)

𝑚𝑎𝑥𝐿𝑁
 (9) 

Where 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶) is the number of valid separations in which clause 𝐶 has participated (the separation of clause 𝐶 

turned out to be valid once, 𝐼𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 will be increased by 1), 𝑇𝐷(𝐶) is the max term depth of clause and 𝐿𝑁(𝐶) 

is the number of literals in 𝐶+ part of 𝐶 after this valid separation.  

(4) The number of literals in a clause. S-CS rule can eliminate multiple literals from a clause participated in the 

deduction at a S-CS deduction step. Therefore, if the clause with fewer literals preferentially participate the deduction, the 

generated CSC is more likely to be a clause with fewer literals.  

3.2.3 Decision literal selection strategy 

Decision literal selection strategy is used to select one literal from a clause to participate in the deduction as a new 

decision literal in the function updateDecisionSet(𝐶𝑏, 𝑫𝒍). Similar to clause selection strategy, decision literal selection 

strategy considers some assigned weight of literal as well. 

(1) Symbol-counting of literal. Similar to symbol-counting of clause, the three symbols, i.e., function, variable and 

constant, are respectively assigned three weights 𝑤𝑓 , 𝑤𝑣 , 𝑤𝑐  in literal. The calculating formula is the same as that of 

symbol-counting of clause, thus we do not describe here. 
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(2) The number of times a literal becoming decision literals (𝑁𝑢𝑚𝐷). This count records how many times a literal 

works as a decision literal during the deduction process. In order to make the literals in the decision literal set 𝑫𝒍 as 

different as possible or avoid falling into the local optimum, a literal with smaller 𝑁𝑢𝑚𝐷 is selected preferentially to 

become a new decision literal in a clause. 

(3) The ratio of independent variables to shared variables (independent-shared ratio) in a literal. Precisely, this ratio is 

that the ratio of the number of independent variables to the number of shared variables in a literal. A variable is called 

shared variable if it exists in more than one literal in a clause, otherwise it is called independent variable. In the process 

of S-CS deduction, if an independent variable is changed under a certain substitution, this will not affect other literals in a 

clause. Therefore, a literal with larger independent-shared ratio is preferred in the S-CS deduction. 

4 Extended ATP of E with Binary Clause Reusing Algorithm 

In order to improve the performance of E, BCR algorithm is integrated into the architecture of E as an independent 

algorithm module so as to form an extended ATP of E, dubbed E_BCR. The purpose of adopting this extended mode is to 

avoid affecting other modules of E.  

On the other hand, for better interaction between BCR algorithm and E, we have made some modifications to the 

source code of the output module of E so that E can output the intermediate clauses that generated during the deduction 

process. BCR algorithm can receive the clauses generated from previous procedure of E_BCR, then output the generated 

CSCs to subsequent procedure of E_BCR.  

At the same time, in order to generate more effective clauses for E during the S-CS deduction, we add some conditions 

to the function invalidSeparation(𝐶𝑟
′, 𝐶𝑔, 𝑹, 𝑺) in BCR algorithm. (1) If the clause 𝐶𝑟

′ contains no equality literal, this 

deduction is invalid. (2) If the clause 𝐶𝑟
′ is generated by the goal clauses of the original clause set, this deduction is invalid. 

(3) If the symbol-counting of the clause 𝐶𝑟
′ exceeds the maximum symbol count of the clause in the original clause set, 

this deduction is invalid. In addition to these three conditions, we fix some thresholds of heuristic strategy. (1) Global 

threshold of the maximum term depth of clause is set to the maximum term depth of clause in the original clause set. (2) 

Global threshold of the maximum term depth of literal is set to 6. (3) 𝐺𝐿𝑒𝑓𝑡𝑁𝑢𝑚 is fixed to be not greater than 2. (4) 

Global threshold of the number of literals in CSC is equal to the maximum number of literals of the clause in the original 

clause set. (5) The three weights 𝑤𝑓, 𝑤𝑣, 𝑤𝑐 in the calculation formula of symbol-counting of clause or literal are set to 1, 

1, 2 respectively. 

Specifically, suppose 𝑺 is a given clause set, the workflow of the extended ATP E_BCR for proving 𝑺 is described as 

follows. 

Step 1: E is performed to find the proof search for the clause set 𝑺. If the proof is not found successfully, E outputs the 

clauses generated during the deduction process, then these generated clauses are put into the clause set 𝑺. Otherwise, exit! 

Step 2: The procedure of BCR algorithm is executed to the clause set 𝑺 for the S-CS deduction. If the deduction 

generates an empty clause, then exit! Otherwise, these generated CSCs are put into the clause set 𝑺. 

Step 3: E is performed again to find the proof search for the clause set 𝑺 from Step 2. If the proof is found, output 

UNSAT. Otherwise, exit! 

Step 3 is the key part for improving the performance of E, since BCR algorithm offers many effective clauses for E in 

Step 2, which is illustrated by the experimental results in Section 5. Fig. 1 shows the flow chart of the extended E_BCR. 

Fig. 1. The flow chart of the extended E_BCR 
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In order to facilitate BCR algorithm to accept the output clauses from E and perform operations on terms, BCR 

algorithm module uses a three-level structure of term storage. 

1. Global shared level. Based on the idea of WAM-terms storage structure [58], a global table is used to store all the 

ground terms in the original clause set and deduction process, and another global table is used to store all symbols in the 

clause set, i.e., predicate symbols, function symbols and constant symbols. 

We use the data structure shown in Fig. 2 to store the ground terms. In Fig. 2, we use Hash-Consing [59] technology 

to quickly generate and store ground terms, and adopt a splay tree to address hash conflicts when then same hash code 

occurs; the structure of each ground term is a chain table, where each node is a ground term, including the index code in 

the symbol table and an array of sub-term pointers; the symbol table uses an array to store all symbols, including predicate 

symbols, functions symbols and constant symbols. Meanwhile, we also use a splay tree to store all symbols in order to 

find a given symbol quickly or reduce the time complexity of finding symbol (specifically, 𝑇(𝑛) = 𝑂(𝑛) of the array and 

𝑇(𝑛) = 𝑂(log 𝑛) of the splay tree). 

2. Literal shared level. BCR algorithm module places the composite terms and literals containing variables in literal 

shared level. In FOL, the set of variables between clauses does not intersect, that is, the variables in each clause are not the 

same. Therefore, the variables in a new inferred clause need to be renamed during the deduction process. For example, 

there are two clauses 𝐶1 = 𝑃1(𝑥1) ∨ 𝑃3(𝑎) , 𝐶2 = 𝑃2(𝑥1) ∨ ~𝑃3(𝑎) , the variable 𝑥1  in 𝐶1  and 𝐶2  are essentially two 

different terms, although they have the same symbol, and therefore, the inferred clause 𝑅(𝐶1, 𝐶2)= 𝑃1(𝑥1) ∨ 𝑃2(𝑥1) could 

be renamed to 𝑃1(𝑥101) ∨ 𝑃2(𝑥102). For efficiency, each clause independently maintains a table of variables and a table of 

composite terms and literals containing variables. We also use hash table like Hash-Consing and splay tree to store 

composite terms and literals containing variables. 

3. Clause shared level. Each clause has an independent array to store all variable terms in this clause. According to this 

array, the system can quickly identify independent variables and shared variables, as well as easily manipulate the 

substitution terms of the variables. 

The advantages of this three-level structure are: (1) Avoiding frequent traversal and copy operations of composite 

terms due to variable renaming operations. (2) Ground terms are shared globally, and atom terms are shared in a clause. 

(3) Efficiently construct literals and find specified terms. (4) Efficiently delete specified clauses. 

5 Experimental Studies 

In order to evaluate the performance of E_BRC, we set two experimental groups: 1. The experiment of CASC 

competition problems and problems with status of theorem in the TPTP-v7.5.0; 2. The experiment of problems with rating 

of 1 in the TPTP-v7.5.0. Notably, TPTP is a standard library of test problems for ATP, which covers dozens of scientific 

research domains. The rating of a problem denotes the difficulty of this problem in TPTP benchmark library, which is a 

real number in the range 0.0 to 1.0, where the problem with rating of 0.0 means the easiest, and the problem with rating of 

1.0 means that cannot be solved by all provers, i.e., the hardest problem [48]. 

The experiments are implemented on a PC with 3.6GHz Inter(R) Core (TM) i7-7700 processor and 16 GB memory, 

OS Ubuntu 20.04 64-bit. For one single problem, the CPU time limit is 300 seconds. In the experiments, the version of E 

to be extended is 2.6 that is latest version of E, thus the extended prover from E 2.6 is called E_BCR 2.6. In order to 

guarantee the correctness of proof search of BCR algorithm, the well-known prover, Prover9, is used to verify the 

deduction path. 

Fig. 2. The representation of the data structure of 

ground term 
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The parameter settings of the heuristic strategy used for the experiment are described in the third paragraph of Section 

4. In addition, for one single problem, the CPU time limit for Step 1 in the workflow of E_BCR is 25 seconds, and the 

CPU time limit for Step 2 in the workflow of E_BCR is 25 seconds, and the remaining of 250 seconds is the CPU time 

limit for Step 3 in the workflow of E_BCR. 

5.1 The experiment on CASC competition problems and problems with status of theorem 

Actually, this experimental group is divided into two experiments according to the type of problems. First experiment 

uses CASC FOF division problems (2016-2021) with a total number of 3000 problems (500 problems per year). Second 

experiment uses all problems with status of theorem in TPTP-v7.5.0, a total of 6537. Two experiments are comparison 

experiments between E_BCR 2.6 and E 2.6. Incidentally, the status of problem refers to the that every model of the axioms 

(and other non-conjecture formulae, e.g., hypotheses and lemmas), and there are some such models, is a model of all the 

conjectures [48]. 

We first present the results of the experiment on CASC competition problems below. Fig. 3 shows a comparison on 

performance of E 2.6 versus E_BCR 2.6 for data from 2016 to 2021, and it can be seen that E_BCR 2.6 outperforms E 2.6 

both in terms of average run time and number of solved problems. From the 25 seconds point onwards, the trends of the 

two scatter lines in Fig. 3 begin to diverge, the scatter line representing E_BCR 2.6 is further down than the scatter line 

representing E 2.6. The trend of the two scatter lines also shows that E_BCR’s performance outperforms E, while the BCR 

algorithm does improve the ability and efficiency of E after 25 seconds. Statistics of the experimental are shown in Table 

3. The row “E 2.6” shows the number of problems solved by E 2.6; the row “E_BCR 2.6” shows the number of problems 

solved by E_BCR 2.6; the row “gap” shows the number of problems solved by E_BCR 2.6 more than E 2.6. We can see 

that the number of problems solved by E_BCR 2.6 is more than the number of problems solved by E 2.6 from the 

experimental results on each year CASC problems from 2016 to 2021. Notably, for the data in 2020, E_BCR 2.6 solved 

417 problems with 28 more than E 2.6, and for the data in 2017, the number of problems solved by E_BCR 2.6 is 427, the 

maximum for data of six years. From the column “mean” of Table 3, the number of problems solved by E_BCR 2.6 is 420 

for the data of six years, an average of 21 more than E 2.6 per year.  

The results are further analyzed as follows. E 2.6 did not solve 602 problems out of 3000 problems, but some of 602 

problems are the same. The number of unsolved problems by E 2.6, in fact, is 383, while among these problems, E_BCR 

2.6 solved 106 problems accounting for 27.68% of these 383 problems.  

 

Fig. 3. Performance of E 2.6 versus E_BCR 2.6 over problems data 2016 to 2021 
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Table 3 Comparison of the number of problems solved by E 2.6 and E_BCR 2.6 

 2016 2017 2018 2019 2020 2021 Mean 

E 2.6 408 412 401 392 390 395 399 

E_BCR 2.6 425 427 419 418 418 418 420 

Gap 17 15 18 26 28 23 21 

Table 4 The list of 106 problems solved by E_BCR 2.6 but not by E 2.6 

No Problem Name Rating No Problem Name Rating No Problem Name Rating No Problem Name Rating 

1 AGT007+1 0.75 28 GEO450+1 0.67 55 LCL680+1.010 0.93 82 SWB068+1 0.72 

2 AGT007+2 0.75 29 GEO502+1 0.61 56 NUM314+1 0.83 83 SWB081+1 0.89 

3 AGT008+2 0.78 30 GEO506+1 0.75 57 PRO016+2 0.69 84 SWB082+1 0.89 

4 AGT011+2 0.78 31 GEO512+1 0.69 58 REL016+2 0.87 85 SWB088+1 0.94 

5 AGT012+2 0.64 32 GEO513+1 0.83 59 REL016+3 0.87 86 SWB093+1 0.89 

6 AGT013+1 0.75 33 GRP620+2 0.89 60 REL017+4 0.87 87 SWB094+1 0.92 

7 AGT013+2 0.81 34 GRP655+1 0.65 61 REL041+1 0.87 88 SWB095+1 0.94 

8 AGT026+2 0.69 35 GRP720+1 0.83 63 SCT102+1 0.81 89 SWB098+1 0.89 

9 BIO002+1 0.81 36 ITP003+1 0.97 63 SCT115+1 0.69 90 SWB102+1 0.97 

10 BIO005+1 0.81 37 ITP004+4 0.83 64 SCT123+1 0.69 91 SWB107+1 0.92 

11 COM148+1 0.81 38 ITP005+4 0.86 65 SCT169+3 0.97 92 SWB108+1 0.94 

12 CSR179+1 0.81 39 ITP020+4 0.86 66 SCT170+3 0.94 93 SWV448+1 0.61 

13 CSR191+1 0.97 40 KLE169+1 0.72 67 SCT170+6 0.94 94 SWV458+1 0.67 

14 CSR215+1 0.89 41 KRS261+1 0.36 68 SET690+4 0.69 95 SWV459+1 0.61 

15 CSR240+1 0.97 42 LAT286+2 0.78 69 SET796+4 0.56 96 SWV467+1 0.58 

16 GEO273+1 0.64 43 LAT347+2 0.89 70 SET948+1 0.94 97 SWV472+1 0.61 

17 GEO276+1 0.78 44 LAT349+1 0.97 71 SEU206+2 0.81 98 SWW096+1 0.75 

18 GEO291+1 0.72 45 LCL557+1 0.92 72 SEU383+2 0.94 99 SWW218+1 0.67 

19 GEO292+1 0.67 46 LCL564+1 0.86 73 SEU420+1 0.78 100 SWW470+5 0.64 

20 GEO295+1 0.72 47 LCL570+1 0.94 74 SEU420+4 0.86 101 SWW470+7 0.72 

21 GEO296+1 0.81 48 LCL642+1.015 0.36 75 SEU449+4 0.94 102 SWW474+7 0.78 

22 GEO309+1 0.92 49 LCL652+1.015 0.64 76 SEV521+1 0.67 103 SYN076+1 0.75 

23 GEO316+1 0.86 50 LCL652+1.020 0.79 77 SWB010+1 0.83 104 SYO604+1 0.21 

24 GEO322+1 0.92 51 LCL660+1.005 0.36 78 SWB012+1 0.86 105 TOP025+3 0.81 

25 GEO323+1 0.86 52 LCL660+1.010 0.43 79 SWB020+1 0.92 106 TOP035+2 0.89 

26 GEO324+1 0.86 53 LCL660+1.015 0.43 80 SWB025+1 0.67    

27 GEO442+1 0.89 54 LCL660+1.020 0.57 81 SWB027+1 0.86    

Table 5 The experimental results of problems with status of theorem 

 E 2.6 E_BCR 2.6 Advantage 

[0.0, 0.2) 1982 1985 3 

[0.2, 0.4) 1196 1215 19 

[0.4, 0.6) 911 982 71 

[0.6, 0.8) 690 863 173 

[0.8, 1.0] 338 612 274 

Total 5117 5657 540 

Solving rate 78.28% 86.54% 8.26% 
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Table 6 The list of 18 problems with rating of 1 solved by E_BCR 2.6 

No Problem Name Time(s) No Problem Name Time(s) 

1 ALG001-1 192.74 10 NUM657+4 238.93 

2 CSR224+1 186.74 11 NUM658+4 241.96 

3 GEO326+1 146.43 12 NUM659+4 241.92 

4 ITP003+4 237.44 13 NUM726+4 284.17 

5 LAT215-1 287.48 14 RNG027-10 180.22 

6 LCL042-10 299.18 15 SET032-3 169.91 

7 NUM428+1 247.68 16 SET033-3 152.82 

8 NUM640+4 281.66 17 SET279-6 122.18 

9 NUM642+4 284.23 18 SWB020+3 279.84 

Table 4 lists the name and rating of these 106 problems, which shows that the average rating of these 106 problems is 

0.78, and we can see that the problems that cannot be solved by E 2.6 but can be solved by E_BCR 2.6 are quite difficult. 

There are even 22 problems with rating greater than 0.9, and 58 problems with rating greater than 0.8 accounting for 54.72% 

of the 106 problems. On the other hand, these 106 problems cover 24 scientific domains (the domain corresponds to the 

first three letters of the problem name [48]), 44 of which respectively are GEO (representing Geometry), SWB 

(representing Semantic Web) and LCL (representing Logic Calculi, a branch of logic), accounting for majority of the 106 

problems.  

In the following, we present the results of the experiment problems with status of theorem. Table 5 shows the 

experimental results, and we divided the experimental results into 5 columns according to rating of problems. For these 

6537 problems, E_BCR 2.6 solves 5657 problems with 540 more than E 2.6 which solves 5117 problems. When the 

experimental results converted to percentages, E_BCR 2.6 solves 86.54% of 6537 problems, while E solves 78.28% of 

6537 problems. From this perspective, the BCR algorithm improves the performance of E 2.6 by 8.26%. Furthermore, 

from the statistics about the rating range, the number of problems solved by E_BCT 2.6 in the range of [0.6, 1.0] 

substantially exceeds that of E, especially for the more difficult problems, i.e., the range of [0.8, 1.0]. 

In general, the problems in CASC FOF division and the problems with status of theorem are plain problems, namely 

there are very few problems with rating of 1.0 or 0.0. Therefore, the experimental results illustrate the performance of the 

extended prover E_BCR is stronger than that of E for the plain problem solving, especially in the three domains problems 

of GEO, SWB and LCL, and shows BCR algorithm has strong universality.  

5.2 Experiments on problems with rating of 1 

From the analysis of Table 4 and Table 5, E_BCR initially shows the ability to solve the hard problems, in order to 

further evaluate this ability, we set up the experiment of problems with rating of 1. This experiment uses all problems with 

rating of 1 in TPTP-v7.5.0 that is the latest release of TPTP benchmark library, a total of 1584 problems. According to 

query of TSTP library (a library of solutions to problems for TPTP library), the problems with rating of 1 are not solved 

by any current theorem provers including E, and we also tested these 1584 problems using E in this experimental 

environment and found no problems solved by E. Therefore, only results of E_BCR 2.6 are listed as follows. 

Table 6 lists the experimental results which shows that E_BCR 2.6 solved 18 problems. The average time for E_BCR 

2.6 to solve each problem is 226.42 seconds. These 18 problems cover 10 scientific domains, 7 of which are NUM 

(representing number theory, a branch of mathematics), accounting for majority of the 18 problems. It’s worth mentioning 

that the problem with rating of 1 is the most difficult problem in the TPTP benchmark library, which also means that no 

provers can solve it. Therefore, the ability of a prover to solve the problem with rating of 1 is a key indicator of the 

performance of the prover. The experimental results of E_BCR 2.6 solving 18 problems with rating of 1 are quite 

significant. The experimental results not only show that E_BCR can solve some problems that cannot be solved by all the 

other provers, but also illustrate that BCR algorithm can effectively improve the performance of E.  
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5.3 Analysis of experimental results 

In conclusion, the experimental results shows that E_BCR is a powerful extended E prover. BCR algorithm not only 

improves the ability of E to solve plain problems, but also aids E in solving 18 of the hardest problems, i.e., problem with 

rating of 1. These fully illustrate that BCR algorithm is an effective deduction algorithm based on S-CS rule, and E_BCR 

is a successful extended E prover to improve the performance of E. BCR algorithm implements S-CS rule, so the multiple 

advantages of S-CS rule are inherited and implemented by BCR algorithm. The reasons for the increase of E_BCR are 

analyzed as follows. 

1. In the BCR algorithm, the decision literals generated by the S-CS deduction can guide subsequent deduction paths. 

In one S-CS deduction, more different decision literals are generated, and these literals continuously optimize the 

subsequent deduction paths, i.e., more generated clauses with good characteristics, such as fewer literals, lower symbol-

counting, fewer term depths. 

2. When the S-CS deduction produces a certain number of decision literals, a binary clause reused in the deduction is 

capable of producing multiple (two or more) SCS, and these deductions involving the binary clause are well deductions. 

Meanwhile, the deduction process of reusing binary clause can generate a large number of unit clauses. The unit clauses 

are filtered by the heuristic strategy and then fed to E. In the calculus of E, the number of literals in the deduction step in 

which the unit clause is involved does not additionally increase the number of literals of generated clause, so these unit 

clauses can enhance the ability of E to generate empty clause.  

3. The deduction in the BCR algorithm is a controllable deduction. According to set the heuristic strategy, BCR 

algorithm can control the deduction process and obtain the required decision literals and SCSs. Therefore, E can obtain 

eligible clauses from BCR algorithm, such as the clause with fewer literals and equality literals. 

4. It is easier for BCR algorithm that is able to eliminate more than two literals from multiple clauses at each deduction 

and to generate the clause with fewer literals, especially, unit clauses. BCR algorithm can remove the clauses are subsumed 

by the generated unit clauses from the clause set and control the number of literals in the generated clauses, which can 

effectively alleviate the search space expansion to a certain extent. 

The above analysis explains partly why BCR algorithm can effectively improve the performance of E. 

6 Conclusions and Future Work 

In the field of knowledge representation and reasoning, automated reasoning plays a central supporting role, and first-

order logic as the basis of automated reasoning is an important knowledge representation language for many AI problems 

and mathematical problems. ATP is the essential and powerful inference engine corresponding to first-order logic. In the 

field of ATP, E is one of the most acclaimed ATPs, due to its excellent performance for the first-order logic problem. 

However, there are still a lot of unsolved problems by E in the latest release of TPTP benchmark library, especially the 

hard problems. S-CS rule is a novel inference method for automated reasoning, it has some abilities that E does not possess 

such as multi-clause, clause-reusing and controlled abilities. In the present work, we have proposed a binary clause reusing 

algorithm based on S-CS rule, dubbed BCR algorithm, along with some related heuristic strategies of BCR algorithm. This 

algorithm takes took better advantage of the abilities of the S-CS rule, especially clause-reusing ability. At the same time, 

BCR algorithm can obtain the preferred clauses according to its ability to control the features of generated clauses and 

eliminate more than two literals from multiple clauses at each the deduction step. We have proposed an extended ATP of 

E with BCR algorithm, dubbed E_BCR, to boost E's performance even further. In the architecture of E_BCR, BCR 

algorithm is integrated into E as an independent algorithm module. The CASC FOF division problems (2016-2021), 

problems with status of theorem and problems with rating of 1 in TPTP library have been used to evaluate the performance 

of E_BCR. The experimental results have shown that BCR algorithm can effectively improve the performance of E and 

can serve as an important complement to E. For the CASC FOF division problems, the number of problems solved by 

E_BCR is more than the number of problems solved by E 2.6 from the experimental results on each year CASC problems 

from 2016 to 2021. For the problems with status of theorem, the BCR algorithm has improved the performance of E 2.6 

by 8.26%. Especially, E_BCR has solved 18 problems with rating of 1, which are unsolved by any current ATP. In 

particular, BCR algorithm can help E solve more problems in many scientific domains such as Geometry, Semantic Web 

and Logic Calculi. 

javascript:;
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BCR algorithm effectively improves the performance of E and has significant reasoning capability, while it still has 

some shortcomings and potential for improvement. For example, the number of heuristic strategies in the strategy library 

of BCR algorithm is much lower than that of other state-of-the-art ATPs, and BCR algorithm is weak for equality handling. 

For future work, we intend to further explore more superior inference mechanism based on S-CS rule and more related 

heuristic strategies from three aspects, so as to further improve the efficiency of provers. Firstly, we plan to further explore 

the mechanism of reusing clauses based on S-CS rule, and hope to extend this mechanism to non-binary clauses. Secondly, 

we will delve into the various types of strategies that can effectively enhance ability of S-CS deduction. Thirdly, we plan 

to investigate new integration modules for BCR algorithm with other leading ATPs, such as Vampire and E, to enable 

better interaction between BCR algorithm module and other modules of other leading ATPs. Finally, we will explore other 

applications of BCR algorithm in the field of knowledge representation. Specifically, our team has researched on group 

theory, therefore we plan to use knowledge-based reasoning in the SUMO (Suggested Upper Merged Ontology) to convert 

the axioms and theorems in group theory into TPTP format, and then use the ATP based BCR algorithm to prove related 

problems or theorem in our research. 
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