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Abstract 

 

Due to recent advancements and the incessant progression of wireless sensor 

networks, conducting Human Activity Recognition (HAR) research within smart 

environments has become a widely explored domain.  Nevertheless, whilst extensive 

research has been carried out, HAR remains a highly intricate and challenging task.  

Each stage of the data-driven HAR process contributes to the overall performance, 

thus, optimisation within each stage has driven research endeavors.   

This Thesis presents an end-to-end methodology for the optimisation of HAR, 

which involves investigations into enhancing performance at various key stages of 

the process.  A publicly available HAR dataset was utilised throughout to evaluate 

and demonstrate the effectiveness of the proposed approach. 

Initial explorations focused upon the pre-processing stage, within which the 

impact of data quality upon activity classification was explored using data-driven 

approaches to HAR.  Findings demonstrated the negative impact of noise upon 

classification performance, with a significant performance increase of 12.97% when 

using cleaned data.  This work led to providing recommendations as to how data 

should be pre-processed to prevent reductions in performance.  Subsequent 

explorations focused upon enhancing HAR performance during the feature selection 

stage, within which a new hybrid feature selection method was produced.  Findings 

revealed the effectiveness of the developed method which achieved an enhanced 

HAR performance of 83.24%, in addition to demonstrating the benefits of performing 

feature selection.  A considerable trade-off was revealed between the classification 

performances achieved and the number of redundant features identified and removed, 

in comparison to the evaluated well-stablished feature selection techniques.  Finally, 

research endeavours focused upon optimising HAR performance during the 

classification stage, within which both novel homogeneous and heterogeneous 

ensemble methods were produced.  Findings demonstrated the effectiveness of the 

proposed ensembles, in particular the heterogeneous method which outperformed 4 

benchmarked classifiers achieving an overall classification performance of 84.13%.   
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Chapter 1  

 

Introduction 

 

 

1.1 Overview 

 

Demographic concerns pertaining to the ageing population have been 

recognised by the World Health Organisation (WHO) stating that “In 2019, the 

number of people aged 60 years and older was 1 billion, and this number will 

increase to 2.1 billion by 2050” [1].  The prevalence of health decline amongst the 

ageing generation, such as the emergence of chronic illnesses and disability, has 

contributed to the continually increasing cost of healthcare provision, whilst also 

placing greater strain upon healthcare providers due to staff shortages [2].  Thus, 

due to the continually increasing healthcare costs, the need for an alternative cost-

effective means of providing care has emerged.   
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The demographic issues outlined, in addition to the prevalence of health 

decline amongst the ageing population, have formed a need to promote the concept 

of “ageing in place” to enhance quality of life of the ageing generation [2].  

“Ageing in place” supports the ageing in that they may remain in their own homes 

for longer, living independently, which is vital in protecting their mental health as 

well as decelerating their physical decline as opposed to residing in an 

institutionalised care facility [3].  According to [4], a large portion of the ageing 

population would prefer to remain in their own homes rather than living in 

dedicated care facilities, thus supportive measures need to be further developed to 

support such desires. 

The specified concerns are being addressed through a large number of 

solutions, one of which involves conducting smart environment research in relation 

to ambient intelligence and the production of assistive technologies.  Ambient 

Assisted Living (AAL) is a technology focused approach aimed at supporting 

independent living and enhancing the wellbeing of inhabitants.  These technologies 

may be beneficial in promoting and improving the self-management of health 

issues, for example, through providing reminders for inhabitants to take their 

medication and through monitoring and supporting their mobility within their 

home setting [4].  Furthermore, AAL technologies may promote the safety of smart 

environment inhabitants, for example, through fall detection implementations, as 

fall risk of the ageing is particularly prevalent, often leading to significant injuries 

[4].  Nevertheless, a number of acknowledged concerns regarding AAL technology 

adoption have emerged.  For example, even though many of the ageing population 

are willing to attempt the use of such new technologies, they often lack 

understanding and confidence to effectively use them, thus obstructing continued 

adoption [3].  Privacy concerns regarding AAL technologies also restrict their 

adoption, for example, many of the ageing population are hesitant of the 

installation of visual-based solutions [5].  Alternatively, sensor-based solutions 

may be deployed to address privacy issues.  For example, environmental sensors 

may be deployed within the home to monitor smart environment inhabitants 

unobtrusively [5].               
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1.2 Motivation for HAR Research 

 

Human Activity Recognition (HAR) can be defined as the ability to 

recognise and interpret human activity automatically through the deployment of 

sensors and subsequent processing of the collected sensor data [6].  It is a dynamic 

and challenging research area [7] as human activities are intricate, highly diverse 

and also person specific, for example walking styles can largely vary in terms of 

speed and gait length depending on various factors, for example age [8].  The 

monitoring of Activities of Daily Living (ADL) within smart environments is a 

significant consideration for assessing the health status of inhabitants, thus the 

automatic detection of these activities is the core motivation for conducting HAR 

research [9].  ADLs are considered as an assessment of wellbeing, where an 

inhabitant’s cognitive and/or physical abilities to independently accomplish basic 

activities are evaluated, for example, preparing a meal, personal grooming, 

dressing, and taking medication.  The ability to perform ADLs are essential in 

ensuring a person can reside and function adequately within their home setting 

[10], [11].  Thus, HAR research is essential in improving AAL technologies to 

assist with independent living, and consequently improving the quality of life of 

smart environment inhabitants, in addition to alleviating some of the burden placed 

upon care providers.   

Due to advancements and the continuous progression of unobtrusive 

wireless sensor networks, activity monitoring within smart environments has 

become common within which sensors are deployed to collect information [12].  

Nevertheless, a critical concern has been identified in that no cohesive standards 

exist for the collection and formatting of sensor data [12], which has led to a 

scarcity in high quality, publicly available datasets.  This lack of available data 

continues to hinder HAR research, particularly within the realms of data-driven 

approaches as these rely on good quality data for classification [13].  Thus, the 

need to develop clear data collection and storage standards exists to encourage 

researchers to effectively generate and disseminate high quality datasets to support 

the research community in evaluating their approaches to HAR.   

The HAR process normally consists of 5 fundamental stages for data-

driven approaches, including pre-processing, data segmentation, feature extraction 
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and selection and classification.  Whilst extensive research has been conducted 

within these areas in recent years [14], HAR remains a challenging task with vast 

scope for further investigations and improvement [12].  This Thesis considers 

various vital stages of the HAR process, as presented in Figure 1.1, which 

highlights the pre-processing stage including data cleaning, scrubbing and 

wrangling, feature extraction and selection, and classification.  Data cleaning and 

scrubbing refers to the process of removing inaccurate data, whereas wrangling 

typically involves transforming the format of data, for example, through achieving 

consistent naming conventions [15].  Particularly, discovering methods of 

enhancing performance at each of the identified stages is the key motivation 

driving their exploration, as according to [16] each stage of the HAR process 

contributes an effect upon the overall performance.  Within the following Sections, 

rationale has been identified as to how performance enhancements can be achieved 

at each stage. 

 
 

Figure 1.1 - The HAR process, adapted from [16], which highlights key areas explored within this Thesis. 
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1.2.1 Pre-Processing 

 

During the data pre-processing stage which involves data cleaning, 

scrubbing and wrangling, data is prepared for further processing by reducing noise 

and data redundancy [7].  The reduction/removal of noise is an important 

consideration within HAR, as noise can negatively impact upon classification 

performance [17].  Two types of noise may transpire, namely attribute noise and 

class noise [18].  Attribute noise may be introduced during data collection where 

one or more attribute values become erroneous or corrupt, whereas class noise may 

be introduced during labelling and annotation, for example, mislabelling data 

instances [18].  According to [19], attribute noise is more harmful and more 

challenging to address, however, research into attribute noise has been notably 

neglected in recent years, thus achieving little progression [19].  This has provided 

the impetuous for investigations into the effects of attribute noise, as good quality 

data is essential for optimal classification performance [18].      

 

1.2.2 Feature Selection 

 

Within the feature selection stage of the HAR process, the key objective is 

to discover an optimal subset of features capable of effectively distinguishing 

between various activities during classification.  Particularly, within the realms of 

environmentally deployed sensors within smart environments, feature selection 

provides additional value in that redundant sensors can be identified and removed, 

thus reducing costs.  It has been recognised that the discovery and removal of 

irrelevant features can improve classification performance [20], thus emphasising 

the importance of attentively considering the feature extraction and selection stage 

of the HAR process.  Conventional approaches, such as applying filters and 

wrappers, have proven beneficial within many recent studies [21]–[25].  

Nevertheless, hybrid methods have more recently been attracting research interest 

which involve combining conventional approaches, for example hybrid filter-

wrapper techniques, and have subsequently demonstrated promising results [26]–

[29], thus indicating scope for further investigations.     
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1.2.3 Classification 

 

Classification is the final stage of the HAR process, within which the 

previously selected features are used as inputs to a classification model.  Numerous 

well-established classification algorithms exist and have demonstrated their 

effectiveness when applied to HAR problems, for example Support Vector 

Machine (SVM) [30]–[33], Decision Tree (DT) [34]–[37], Naïve Bayes (NB) 

[38]–[40], k-Nearest Neighbour (kNN) [41]–[43] and Neural Networks (NN) [44]–

[46].  Particularly, NNs have attracted interest for HAR tasks due to their predictive 

performance and their ability to model complex, non-linear relationships which is 

a valuable quality within the HAR domain [47]. 

Nevertheless, ensemble methods have been explored more recently which 

involve the combination of conventional classifiers due to their perceived 

effectiveness in further improving classification performance, which have recently 

demonstrated success [48], [49].  According to [50], the limitations of individual 

classifiers can be diminished through effectively combining multiple classifiers 

within an ensemble method, thus further enhancing classification performance and 

generalisation capabilities.  Diversity has been recognised as an essential 

consideration in generating an effective ensemble method through achieving 

dissimilar decisions, which has been explored at both data and/or classifier levels 

[51].  Nevertheless, according to [51] diversity within ensemble methods has scope 

for further investigations.  For example, through diversifying the inputs to base 

classifiers and/or diversifying the chosen classifiers through employing different 

classification algorithms.        

 

1.3 Research Aim and Research Questions 

 

 Section 1.2 identified various areas within the HAR process providing 

opportunity for further research investigations.  Through improving each of these 

areas, the overall HAR performance will be collectively improved, thus forming 

motivation for research endeavours within this Thesis. 
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Aim 

The aim of this research is to improve the performance of HAR within smart 

environments.  

 

Research Questions: 

1 What are the research challenges associated with HAR that may hinder 

classification performance? 

2 To what extent does data quality impact upon HAR performance? 

3 Can hybrid feature selection methods offer additional benefits in 

producing an optimal subset of features for HAR? 

4 Can generating diversity within ensemble methods effectively enhance 

HAR performance?  

 

1.4 Key Research Contributions 

 

 Following the motivation behind the set of Research questions identified, 

an end-to-end framework for the optimisation of HAR is presented within this 

Thesis.  This framework focusses on optimising performance at various 

fundamental stages of the HAR process to accomplish the aim of this Thesis of 

improving the overall HAR performance.  The areas focussed upon within this 

Thesis include pre-processing, feature extraction and selection and classification, 

as previously presented in Figure 1.1.  A publicly available dataset, containing 

ADLs performed within a smart environment, is explored at the previously 

identified stages of the HAR process within which various methods are 

investigated in an endeavour to optimise performance.  This Thesis provided the 

following contributions to knowledge: 

 

• Recommendations for pre-processing data to improve the performance of data-

driven approaches to HAR. 

• Produced a new approach to select an optimal subset of features for HAR. 

• A new homogeneous ensemble classification model that introduces diversity at 

a data level. 
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• A new heterogeneous ensemble classification model that introduces diversity 

at both data and classifier levels. 

 

1.5 Thesis Structure 

 

The remaining 7 Chapters of this Thesis are summarised as follows: 

 

• Chapter 2:  Literature Review 

 

This Chapter presents a comprehensive review of the literature pertaining to 

HAR research in an attempt to identify future trends and research opportunities. 

This Chapter involves a review of the typical 5 stage HAR process, including data 

acquisition, pre-processing, data segmentation, feature extraction and selection and 

classification.  Various application domains for HAR are identified and various 

challenges associated with HAR research are discussed.  Furthermore, a range of 

classification algorithms are evaluated.     

 

• Chapter 3:  The Impact of Dataset Quality on the Performance of Data-Driven 

Approaches to HAR 

 

This Chapter considers the impact of data quality upon activity classification 

using data-driven classification models.  Various classification algorithms were 

applied to produce models for HAR, where the importance of data quality was 

emphasised by evaluating the effects of noisy data through generating comparisons 

between the performances of raw and subsequently cleaned, HAR data.  

Experimental results obtained within this Chapter demonstrated the adverse impact 

of noise upon classification performance, as well as emphasising the importance 

of attentively adhering to a data collection protocol to diminish the introduction of 

noise.      

 

• Chapter 4:  Recommendations for Pre-Processing Publicly Available HAR 

Datasets   
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This Chapter involves assessing, and improving, the quality of an openly 

available HAR dataset for the purpose of data-driven HAR through identifying a 

range of data challenges and subsequently restructuring the data to enhance its 

quality for further processing.  Recommendations for pre-processing data are also 

provided, based upon the findings from Chapters 3 and 4.  The findings within this 

Chapter support and reinforce the need for investigations into the development of 

unified standards pertaining to data collection and sharing, which will aid the 

progression of HAR research.  The data introduced within this Chapter is processed 

throughout all subsequent Chapters, thus providing an end-to-end methodology. 

 

• Chapter 5: Selecting an Optimal Subset of Features 

 

This Chapter investigates the impact of various well-established filter and 

wrapper feature selection methods upon binary sensor-based HAR data.  This 

Chapter also involves explorations into a new hybrid feature selection method to 

ascertain an optimal subset of features for the purpose of HAR in an endeavor to 

enhance classification performance.  Findings within this Chapter demonstrate the 

effectiveness of the explored hybrid feature selection method, where a considerable 

trade-off has been recognised between the classification performance obtained and 

the number of redundant features removed when compared to the initially explored 

filter and wrapper methods.  This Chapter ultimately demonstrates the benefits of 

performing feature selection, as all explored methods demonstrate enhanced HAR 

performance in comparison to no feature selection being applied. 

 

• Chapter 6:  Homogeneous Neural Network Ensemble for Human Activity 

Recognition   

 

Within this Chapter, a new homogeneous ensemble of NNs is explored, as well 

as various methods to resolving conflicts that may occur between base models in 

ensemble classifiers that have been trained on unique classes.  This Chapter 

explores diversity at a data level only through diversifying the inputs to each NN 

base classifier.  Two data distributions are explored in generating the complement 



Introduction 

   

10 

class per base model, which involve distributing data at a class level or a model 

level, and various conflict resolution techniques are explored.  Findings within this 

Chapter demonstrate the effectiveness of the class level data distribution technique 

to effectively generate a complement class per base model.  It is also found that the 

proposed homogeneous NN ensemble outperforms two of the four benchmarked 

classifiers.      

 

• Chapter 7:  Heterogeneous Ensembles for Human Activity Recognition 

 

This Chapter further explores ensemble classifiers.  Previously, homogeneous 

ensemble classifiers were explored, thus, this Chapter involves explorations of 

heterogeneous ensemble classifiers to investigate diversity further.  Within this 

Chapter, diversity has been achieved at both a data and classifier level through 

additionally selecting and generating diverse base classifiers, whereas within the 

previous Chapter, diversity was achieved at a data level only.  Two diverse 

heterogeneous ensemble methods are explored within this Chapter, with 

experimental findings demonstrating the effectiveness of the second method.  Both 

heterogeneous ensembles outperform the homogeneous NN ensemble, indicating 

that diversity introduced amongst diversifying the base classifiers is an effective 

approach.  Generating heterogeneous ensembles also outperformed all four 

benchmarked classifiers, thus achieving the most superior HAR performance.    

 

• Chapter 8: Conclusion and Future Work 

 

This Chapter discusses the key findings and conclusions generated throughout 

this Thesis.  A summary of the key research contributions is presented and 

discussed, as well as outlining limitations encountered and further research areas 

to explore.   

 

1.6 Publications 

 

The following are a list of publications associated with this PhD: 
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• N. Irvine, C. Nugent, S. Zhang, H. Wang, and W. Y. NG.  “Neural Network 

Ensembles for Sensor-Based Human Activity Recognition Within Smart 

Environments”, Wearable and Unobtrusive Biomedical Monitoring, Sensors 

(2020), 20(1), 216. https://doi.org/10.3390/s20010216.  [Journal contribution] 

• N. Irvine, C. Nugent, S. Zhang, H. Wang, W. Y. NG, I. Cleland, and M. 

Espinilla. “The Impact of Dataset Quality on the Performance of Data-driven 

Approaches for Human Activity Recognition”, Proceedings of the 13th 

International FLINS Conference on Data Science and Knowledge Engineering 

for Sensing Decision Support, pp. 1300-1308, (2018).  [International 

conference]  

• M. Espinilla, J. Medina, N. Irvine, I. Cleland, and C. Nugent.  “Fuzzy 

Framework for Activity Recognition in a Multi-Occupant Smart Environment 

based on Wearable Devices and Proximity Beacons”, Proceedings of the 13th 

International FLINS Conference on Data Science and Knowledge Engineering 

for Sensing Decision Support, pp. 1292-1299, (2018).  [International 

conference] 

• M. Espinilla, J. Medina, A. Salguero, N. Irvine, M. Donnelly, I. Cleland, C. 

Nugent.  “Human Activity Recognition from the Acceleration Data of a 

Wearable Device.  Which Features Are More Relevant by Activities?” 

Proceedings of the 12th International Conference on Ubiquitous Computing and 

Ambient Intelligence, 2(19), 1242, (2018).  [International conference] 

• S. Zhang, W. Y. NG, J. Zhang, C. Nugent, N. Irvine, T. Wang.  “Evaluation of 

Radial Basis Function Neural Network Minimising L-GEM for Sensor-based 

Activity Recognition”, Journal of Ambient Intelligence and Humanized 

Computing, (2019). https://doi.org/10.1007/s12652-019-01246-w.  [Journal 

contribution]  

 

The “Neural Network Ensembles for Sensor-Based Human Activity 

Recognition Within Smart Environments” publication was based upon the 

methodology and results obtained through developing a novel homogeneous NN 

ensemble classifier within Chapter 6 of this Thesis.  Furthermore, “The Impact of 

Dataset Quality on the Performance of Data-driven Approaches for Human 

Activity Recognition” publication was based upon the findings within Chapter 3.  
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The remaining publications listed underpinned the work involved with this Thesis.  

They were representative of contributions made within a collaborative endeavor 

along with external researchers.  However, through gaining the opportunity to 

collaborate with external researchers throughout the duration of this PhD, relevant 

and valuable domain knowledge and experience was acquired which supported the 

design of methodologies within Chapters 3, 5, 6 and 7.  Figure 1.2 presents an 

outline of the research studies undertaken and their produced publications. 

Figure 1.2. Outline of research studies undertaken and their resulting publications



   
 

   

 

 

 

 

 

 

Chapter 2  

 

Literature Review  

 

 

2.1 Overview 

 

A comprehensive review of the literature involving HAR is presented in this 

Chapter.  Discussions include a review of the HAR process from the perspective of 

5 fundamental stages, namely data acquisition, pre-processing, data segmentation, 

feature extraction and selection, and classification.  The various application domains 

for HAR are also discussed, in addition to the identified challenges associated with 

conducting HAR investigations.  

Section 2.2 involves an overview of HAR.  Section 2.3 introduces HAR 

application domains, Section 2.4 describes each stage of the HAR process, Section 

2.5 describes various classification algorithms, and Section 2.6 describes challenges 

which have been openly identified.  Finally, Section 2.7 concludes this Chapter. 
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2.2 Human Activity Recognition 

 

 HAR can be generally deemed within two categories of deployed 

technologies: either sensor-based or vision-based activity recognition [52].  

Particularly, due to advancements with wireless sensor networks and sensing 

technologies, sensor-based activity recognition has attracted considerable research 

interest [53].  It is promising within health and wellbeing application domains as 

sensor-based approaches can better address privacy and ethical issues, in comparison 

to vision-based approaches to HAR that can be deemed obtrusive to users [54].  

Furthermore, it has been recognised that vision-based approaches are limited in that 

blurred motion may occur, visual angle and path obstruction issues may hinder data 

gleaning, and fluctuating illumination occurs within complex environments [52].   

 

2.2.1 Sensor-based HAR 

 

 There are generally two categories of sensor-based activity recognition: data-

driven and knowledge-driven approaches [54].  Data-driven approaches learn activity 

models through the use of data mining and machine learning techniques with large-

scale datasets [54].  Their ability to handle uncertainty and temporal information is 

deemed advantageous, though large-scale datasets are required for their 

implementation and the learnt models are generally difficult to apply to a range of 

people, resulting in reusability concerns [54].  Nevertheless, the large-scale datasets 

required to implement data-driven approaches are often difficult to obtain, as a 

shortage in publicly available, high quality, annotated datasets has been recognised 

as a challenge that continues to hinder HAR research [13].  Alternatively,  

knowledge-driven approaches exploit rich prior knowledge in the domain of interest 

to build activity models [55].  Reusability issues are eliminated through the 

implementation of knowledge-driven techniques as the models built are generic, thus 

they can be applied to various users.  Nevertheless, models from knowledge-driven 

approaches are weak at handling uncertainty and temporal information [55], in 

addition to often possessing a weak ability in handling complex activity data as 

providing predefined human knowledge upon simplistic activities, which involve the 

basic steps required to perform activities, can be insufficient in representing and 
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capturing their fine-grained components [56].  Furthermore, there is a low availability 

of domain knowledge provided by experts.  Another approach has been emerging in 

recent years, namely the hybrid method, which incorporates both data-driven and 

knowledge-driven techniques.  The aim of this combined method is to overcome 

identified limitations of individual approaches, for example, an acknowledged 

limitation of knowledge-driven techniques is that the models built are static in that 

they cannot adjust to user preferences automatically, and it is challenging to define 

comprehensive activity models [57].  Thus, through combining data-driven with 

knowledge-driven approaches, the activity models produced are capable of 

continuously adjusting and learning various user preferences [57].  For example, a 

hybrid technique proposed in [55] demonstrates the combined method by primarily 

generating knowledge-based activity models which contain only the basic, essential 

steps required to complete certain activities.  Subsequently, these initially generated 

activity models are extended through incorporating data produced by various users 

performing these activities in various ways, thus, complete and personalised activity 

models are learnt.  Nevertheless, due to the identified limitations of knowledge-

driven approaches, and particularly the identified lack of available expert knowledge, 

this research focuses on data-driven approaches to HAR. 

              

2.3 Application Domains 
 

HAR is a fundamental component to a broad range of application areas 

including smart homes and AAL, connected health and pervasive computing [54].  It 

is commonly used in rehabilitation systems for monitoring the activities of elderly 

residents to support the management, and also the prevention, of chronic disease.  In 

relation to promoting physical activity, HAR is applied in rehabilitation centers that 

focus on stroke rehabilitation and those with motor disabilities [6].  Further to this, 

another common application area is HAR within smart environments, as a key 

motivation behind HAR research is to monitor the health of smart home inhabitants 

by tracking their daily activities.       

 Smart environments are defined in [58] as those that can “acquire and apply 

knowledge about the environment and its inhabitants in order to improve their 

experience in that environment”.  These environments are an application of 
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ubiquitous computing that rely on sensor data to perceive the environment, reasoning 

through data processing to assess how the environment could be changed, and 

actuators to make changes if required, presented in Figure 2.1.  Several factors 

pertaining to the imperative development of AAL technologies have emerged and 

continue to rise, such as the cost of healthcare, the ageing population, and the need 

to support ‘ageing in place’ [59].  AAL is concerned with the provision of remote 

services and intelligent products to enhance wellbeing and enable independent living 

for disabled and elderly people through increasing their autonomy and assisting them 

in carrying out ADLs [12].  The benefits of AAL include increasing quality of life, 

extending the duration of time people can reside at home by increasing their 

independence, and providing support for self-care and self-management.  Within this 

domain, numerous smart home projects have been established to promote AAL for 

the elderly and disabled, for example CASAS [60], Aware Home [61], Gator Tech 

[62], DOMUS [63], and MavHome [64].  

 

  

 

Figure 2.1. Smart environment which involves sensors, data processing and actuators [65] 

 

CASAS is a non-invasive environment developed at Washington State 

University that is used to analyse the daily activities of inhabitants.  This is achieved 

through the deployment of sensors and the implementation of machine learning and 

data mining techniques for pattern discovery [7].  Sensors deployed within dedicated 

CASAS smart environments include motion, temperature, light and door sensors 
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[66].  An abundance of smart environment datasets generated by CASAS have been 

made publicly available for research communities to utilise [66].  The Aware Home 

located within Georgia Institute of Technology is aimed toward assisting the elderly 

in carrying out ADLs to promote ageing in place.  A range of sensors have been 

deployed for this project, including the use of assistive robots and smart floors to 

support research, whilst also delivering an authentic domestic atmosphere [67].  

Gator Tech was designed to create assistive environments to promote the safety and 

comfort of inhabitants through the integration of various smart devices [54].  These 

devices include a smart bed that monitors sleep patterns, a smart bathroom which 

includes a temperature regulated shower to prevent scalding, smart kitchen 

appliances and a cognitive assistant to assist inhabitants in performing tasks or to 

remind them to take their medication, for example [68].  The DOMUS project which 

operates in the Tuscany region of Italy provides an environment where inhabitants 

can assess a range of integrated assistive devices [63].  This environment contains in 

excess of 150 sensors, information providers such as data processors, and actuators 

[69].  MavHome is a smart environment project deployed at the University of Texas 

which aims to create an environment simulating an intelligent agent and promotes 

the comfort of occupants [64].  To achieve this, the environment must be capable of 

making predictions, reasoning and adapting to the inhabitants [64].       

These environments all employ a large number of sensors that capture activity 

data from a range of sensor modalities.  They possess the common aim of supporting 

smart home inhabitants in carrying out ADLs and providing them with non-intrusive 

environments to promote their independence and quality of life.     

 

2.4 HAR Process 
 

 A number of fundamental stages exist within the data-driven HAR process as 

presented in Figure 2.2.  These include data acquisition through sensors, preparation 

of the raw sensor data through pre-processing, data segmentation, feature extraction 

and selection, and finally, classification.  
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Figure 2.2. The HAR process which includes data acquisition, pre-processing, data segmentation, feature 

extraction and selection, and classification, adapted from [17] 

  

Section 2.4.1 discusses data acquisition from sensors, Section 2.4.2 discusses 

data pre-processing which involves identifying types of noise that may emerge and 

noise handling mechanisms, and Section 2.4.3 outlines data segmentation 

approaches.  Following this, feature extraction and selection are discussed in Section 

2.4.4, and finally, Section 2.4.5 considers various classification algorithms.   

 

2.4.1 Data Acquisition 

 

 During the data acquisition stage, raw data is acquired from sensors located 

on the body or placed in the environment [70].  Body-worn sensors typically include 

accelerometers, gyroscopes, and magnetometers [6].  Recently HAR via signals 

collected from smartphones have attracted the attention of many researchers [71] due 

to their ubiquitous nature and as they usually contain embedded sensors such as 

accelerometers, gyroscopes and magnetometers [72], [73].   

An accelerometer is a small electromechanical device used to measure 

acceleration through responding to vibrations pertaining to movement which are 

calculated as the alteration in velocity over time [74].  Both static and dynamic 
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acceleration forces can be measured, for example, a static force depicts the 

continuous force of gravity, whereas dynamic forces sense vibrations or movements.  

Triaxial accelerometers are most commonly deployed, where acceleration is 

measured upon three axis, X, Y, and Z.  Figure 2.3 presents an example of the signals 

produced through performing various static and dynamic activities with a triaxial 

accelerometer adorned upon the wrist.  The static activities within this example 

include standing, sleeping, and watching TV, whereas the dynamic activities include 

multiple stand-to-sit and sit-to-stand transitions, multiple stand-to-walk and walk-to-

stand transitions, multiple lie-to-sit and sit-to-lie transitions, walking, running, and 

sweeping. 

 

 

 

Figure 2.3. Accelerometer signals produced through performing static and dynamic activities 

      

In [75], body-worn inertial sensors were utilised to collect data for the 

classification of 12 daily activities performed by 6 participants, which included a 

combination of static and dynamic activities such as walking, running, lying down, 

standing, sitting, and ascending stairs.  The performance of seven classifiers were 

compared, with the best results achieved by the kNN classifier, followed by the 

Random Forest and Support Vector Machine classifiers.  Furthermore, in a recent 

study conducted by [52], data produced by a waist-mounted smartphone with an 

embedded accelerometer was utilised to glean activity data for classification of 12 

commonly performed activities. These activities included, however, were not limited 
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to, standing, sitting, walking, ascending stairs, and combined activity transitions such 

as stand-to-sit.  This study included a wide range of participants (30) with ages 

ranging from 19-48 to introduce a large degree of variability in the data acquired.  

Experimental results achieved a classification performance of 96.81%, 

demonstrating the effectiveness of utilising body-worn sensors for the recognition of 

the aforementioned activities. 

Alternatively, environmental sensors are those attached to objects in the 

environment rather than the individual performing the activity [76]–[78].  These 

typically include Passive Infrared (PIR) sensors, contact switches, 

temperature/light/humidity, vibration, pressure and Radio-Frequency Identification 

(RFID) sensors [74].  Figure 2.4 presents an example of environmental sensors 

deployed within a smart environment, consisting of contact switches, motion 

detectors, and pressure sensors.  

 

Figure 2.4. Environmentally deployed sensors, including contact switches, motion detectors and pressure 

sensors [79]   

 

In a study conducted by [76], a range of binary sensors were deployed, 

comprising both PIR and door sensors, to recognise 4 ADLs.  These included meal 

preparation, eating, relaxing and transitioning from the bed to toilet.  Data was 

streamed over a vast period of 21 months.  The large quantity of collected data proved 



Literature Review 

   

21 

beneficial for training the proposed classifier, however, it was recognised that a 

greater number of classes could have been explored.  Experimental results achieved 

99.36% accuracy when evaluated with a Deep Convolutional Neural Network 

(DCNN).  Another study [77] incorporated data gleaned via binary sensors in the 

form of motion detectors, contact switches, pressure sensors and float sensors to 

recognise various ADLs within a smart apartment setting.  

It has been recognised that data collection is becoming a vital concern 

amongst the vast range of challenges within the HAR domain [80].  It has also been 

recognised that a shortage of large, high-quality HAR datasets exist [13].  According 

to [81], investigations into generating such refined datasets are required to support a 

greater availability of data.  Table 2.1 presents identified HAR datasets collected 

through body-worn and environmental sensors, nevertheless, [81] has stated the 

quality of publicly available datasets is often unclear. 

 

 

Table 2.1. Identified HAR datasets collected through body-worn and environmental sensors 

Data Source Acquisition Activities 
No. of 

participants 

Opportunity 
Body-worn, object and 

ambient sensors 
ADLs 12 

Ulster PCH Body-worn 18 ADLs 141 

PAMAP2 Body-worn 
18 physical 

activities 
9 

WISDM Body-worn smartphone 
6 physical 

activities 
29 

UCI HAR Body-worn smartphone 
6 physical 

activities 
30 

HASC Body-worn 
6 physical 

activities 
116 

CASAS - Aruba Environmental sensors 11 ADLs 1 

SICA Body-worn 26 ADLs 4 

Skoda Body-worn 10 gestures 1 

PSRG Body-worn smartphone 
6 physical 

activities 
4 

UCAmI Cup Environmental sensors 24 ADLs 1 
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2.4.2 Pre-processing 
  

 During the data pre-processing stage, raw data is prepared by handling 

missing values, reducing noise and data redundancy, and aggregating and 

normalising the data [7].  Noise may be introduced by the users and sensors during 

data acquisition which can adversely affect the performance of data-driven 

techniques, therefore reducing/removing noise is important [17].  Two types of noise 

exist in the realms of supervised learning, namely class noise and attribute noise [18], 

described in Section 2.4.2.1 and Section 2.4.2.2, respectively. 

 

2.4.2.1 Class-level Noise 

 

 Noise presented at a class level may be introduced during class labelling and 

annotation.  For example, an incorrect label could be assigned to an instance of data, 

which is commonly known as a labelling error within HAR data acquisition.  The 

prevalent occurrences of class noise appear as either contradictory instances, or 

misclassification [19].  Contradictory instances emerge when the dataset contains 

some instances that are the same and occur more than once in the dataset, however 

they have been assigned different class labels, whereas misclassification noise may 

emerge when the dataset contains some instances belonging to different classes that 

have similar characteristics, and consequently are mislabeled as belonging to the 

same class [82].  In a recent study conducted by [19], class noise materialising 

through misclassification was examined with specific focus on assessing the 

robustness of classifiers against this nature of noise.  A robustness metric was utilised 

during investigations, namely Equalised Loss of Accuracy (ELA) which considers 

both a robustness factor and an initial accuracy factor together, to ascertain the level 

of robustness of each classifier when evaluated on 10 noisy datasets.  Additionally, 

the quantity of class noise varied between 0-20% per dataset.  Experimental results 

were compared across the suite of classifiers utilised, with the SVM classifier proving 

the most resilient to noise in comparison to the kNN and Decision Tree algorithms.  

Further to this, in a recent study conducted by [82], the influence of class noise was 

evaluated in terms of assessing classification performance with models trained upon 

low quality, mislabeled class data.  Experiments involved injecting twenty levels of 

class noise, ranging from 5% to 100% and incrementing by 5% per level, into various 
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authentic and synthetic datasets and two classifiers, namely, SVM and Random 

Forest.  Results demonstrated that as the level of class noise grows, classification 

performance decreases further.  Conclusions stated that the Random Forest model 

was more robust to class noise in comparison to the SVM classifier, whilst also 

stating this may have been due to the superior generalisation ability of the Random 

Forest classifier and its lower likelihood of overfitting in comparison to other models.  

Furthermore, the number of classes within the evaluated datasets had a substantial 

influence on performance, as those with lower numbers of classes were more affected 

by noise than those with several classes, for example, the fewer classes, the quicker 

model performance decreased, as noise levels had risen.  In a recently conducted 

HAR study [83], the effects of class label noise were explored with activity data 

collected through a smartphone device.  An automatic class annotation method was 

proposed to eliminate the large time consumption required in manually assigning 

class labels to HAR datasets, and the effects of noisy class data were evaluated on 

various supervised classifiers to ascertain their robustness to noise.  Both the 

automatic and manual annotation of HAR data were compared to determine the 

effectiveness of their automatic labelling method, with results demonstrating a 

promising 80-85% precision rate.  Nevertheless, the adverse effects of class noise 

were also demonstrated, as the presence of noise could lead to a decrease in f-score 

of up to 64-74% particularly when evaluated on SVM and Nearest Centroid 

approaches.                       

 

2.4.2.2 Attribute-level Noise 

 

 Noise presented at an attribute level may be introduced during data collection 

where one or more representative attribute values become corrupt or erroneous 

during data generation, storage, reading, transmission, or processing [18].  

Additionally, attribute noise may materialise as missing or incomplete values.  For 

example, sensor failure could result in incomplete or missing data streams being 

generated and stored.  According to [19], attribute noise is more challenging to handle 

than class noise, and more effort in the machine learning research community needs 

to be conducted to improve the methods and techniques used in relation to this 

problem, as very few methods exist in handling attribute-level noise due to its high 

complexity [18].  A recent study conducted by [84] aimed to examine the effects of 
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attribute noise on classification accuracy, whilst also improving performance through 

the application of a simplistic noise reduction algorithm.  Various levels of arbitrary 

attribute noise were introduced to the datasets.  Data was first binned per attribute, 

and subsequently data within each bin was converted into their related z-scores.  Data 

skewness of each attribute was then measured to provide information pertaining to 

data distributions, and was subsequently transformed through removing attribute 

noise.  Conclusions of this study stated that a negative influence of attribute noise 

evidently exists, as classification performance was consequently hindered.  The 

effectiveness of the proposed noise handling method was demonstrated as 

classification performance had improved following its implementation.  

Additionally, considering the classification models evaluated, the Random Forest 

classifier had proven most resilient to attribute noise.               

 
Through reviewing the literature, it was found that pre-processing data is an 

important aspect of the activity recognition process as data-driven approaches rely 

on good quality data for optimal activity classification.  Additionally, according to 

[18] exploration into data quality, noise detection, and handling mechanisms have 

enormous scope for investigation to ensure researchers perform accurate data 

handling.   

 

2.4.3 Data Segmentation 

  

 During the data segmentation stage of the HAR process, sensor data is divided 

into smaller segments to identify the portions of data that are most likely to contain 

relevant information pertaining to activities being performed [70].  Data 

segmentation is a challenging task as the beginning and end points of an activity are 

often difficult to clearly define, and due to human nature multi-tasking and 

consecutively performed activities regularly occur [70].  Additionally, certain 

activities may be performed in an interleaved manner.  For example, someone could 

begin a cooking activity, pause to answer a telephone, then continue with the cooking 

activity.  Various segmentation approaches have been established, such as time-based 

windowing and event-based windowing.   

 Time-based windowing involves dividing the entire dataset into equal time 

segments that each comprise a fixed quantity of data per window [74].  An identified 
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challenge with this approach exists in ascertaining an optimal window length, as a 

window length that is too small may not include enough representative data to 

adequately define an activity, whereas a window length that is too large may include 

an abundance of data spanning more than one activity, thus resulting in a 

misrepresentative activity window.  Consequently, time-based windowing is often 

preferred in scenarios where a constant sampling rate is employed, for example 

within accelerometer based HAR [74].  Contrarily, event-based windowing involves 

dividing the dataset into windows that are comprised of an equal number of sensor 

events [9].  This technique is often utilised within smart environment research in 

which environmental sensors are deployed, for example binary state-change sensors 

in the form of motion detectors or contact switches.  The occurrence of high and low 

event-driven periods cause issues with this technique, as there may be too few or too 

many occurring interactions with sensors to adequately represent activities [9].  

Furthermore, a substantial time lag may occur within a single window, for example 

during a sleep activity very few sensor activations occur, thus this activity may 

become embedded within an event window dominated by another activity, and may 

therefore become misrepresented and overlooked during classification [74].  Figure 

2.5 presents a binary data snippet demonstrating both time and event-based 

windowing, where the time-based window of 15 seconds incorporated 3 sensor 

events, whereas the event-based window of 15 events incorporated 15 sensor events, 

regardless of the time period. 

 

Figure 2.5. Examples of time and event-based windowing on binary data, where a 15 second time window is 

displayed, along with an event-based window comprising 15 events, adapted from [85] 
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In a study conducted by [9] various approaches to data segmentation were 

investigated including exploration into both time and event-based techniques.  A 

baseline sliding time window method (fixed length) was compared to various 

approaches based upon a pre-defined number of sensor events per window.  These 

techniques were evaluated upon 3 smart apartment datasets comprising a number of 

binary sensors, and classification of activities involved the implementation of an 

SVM model.  Experimental results demonstrated that classification performance 

peaked when 10-20 sensor events per window were defined, thus also outperforming 

the baseline time windowing approach.  In another study recently conducted [85], 

time-based windowing outperformed the explored event-based technique when 

evaluated on a smart home, binary sensor-based dataset.  The time period per window 

was set to 15 seconds, whereas the number of events per window was set to 20.  

Furthermore, in an attempt to diminish the recognised limitations existing with both 

time and event-based windowing, dynamic windowing techniques have been 

emerging in recent years where predefined thresholds and rules may influence the 

adaptive window size and adjust it accordingly to capture data specific to an activity 

[74], [85].      

Based upon the literature it was acknowledged that the selection and 

utilisation of segmentation techniques vary depending on the nature of the sensor 

data gleaned to represent activities.  For example, considering the classification of 

physical activities using wearable sensors with a constant sampling rate, time-based 

windowing is utilised, whereas considering ADL recognition in smart environments, 

both time-based and event-based windowing may occur.     

             

2.4.4 Feature Extraction and Selection 
 

 Feature extraction may occur in both the time and frequency domains [71].  

Due to their high interclass variability, simplistic nature and substantial performance 

across a range of HAR problems, statistical features are commonly used by HAR 

researchers in the time domain for the classification of motion signals [71].  These 

may include calculating the mean, mode, median, variance and standard deviation, 

as with previous efforts made by [25], [86].  Further to this, frequency domain 

features such as spectral energy and spectral entropy can be used to provide different 

perspectives of these signals, and commonly, a combination of both time and 
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frequency features are extracted [74].  Feature extraction in the time domain is 

relatively more popular as it requires less computational cost than features extracted 

in the frequency domain [71].  

  In a recent study conducted by [87], multi-level feature learning was 

proposed.  The implemented framework consisted of 3 phases of information 

gathering from data gleaned through a wearable sensor.  Phase 1 involved signal 

analysis to extract low-level features, for example, those extracted from the time and 

frequency domains as low-level features are prevalent due to their simplistic nature 

and their adequate performance achieved for HAR tasks.  Phase 2 involved the 

extraction of mid-level features to derive structural signal information as these were 

deemed more discriminative in representing intricate activities.  According to [87], 

mid-level features describe those that learn the composition of the action.  Thus, the 

Bag of Words (BOW) dictionary learning technique was implemented at this stage 

to produce mid-level features.  Finally, Phase 3 involved the extraction of high-level 

features to derive semantic information through applying Max-margin Latent Pattern 

Learning (MLPL).  Experimental results had proven the effectiveness of the proposed 

feature learning framework as state-of-the-art performance was attained on 3 well-

established HAR datasets, namely Opportunity [88], Skoda [89] and WISDM [90].                

 Feature selection involves identifying an optimal subset of discriminative 

features that can most effectively distinguish activities during classification.  A 

feature vector comprising of those with a high discriminative ability is important as 

an optimally selected set of features may prove beneficial in diminishing the effects 

of identified HAR challenges, namely intraclass variability and interclass similarity 

[87].  Furthermore, the detection and removal of redundant features may enhance 

classification performance, whilst also decreasing unnecessary computational 

demands and data complexity [20].  Common feature selection techniques include 

filters and wrappers, with numerous previously conducted studies stating the 

implementation of wrapper methods for feature selection outperformed filtering 

techniques during their experimentation [21]–[25].  Filtering techniques assign a rank 

to each of the extracted features and are independent of the chosen classifier, whereas 

wrapper techniques evaluate various feature subsets to discover the optimal feature 

set specific to the chosen classifier [20], [23], [91].  Further to this, hybrid feature 

selection approaches have also been proposed more recently and have demonstrated 

promising results [26]–[29].  
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2.4.4.1 Filter 

 
Filtering approaches rank the extracted features in terms of their 

discriminative power and relevance based on statistical criteria, independent of the 

classifier employed [20], [23], [91].  The features with the highest scores are retained 

whilst the remaining irrelevant features are discarded.  Benefits of this approach 

include simplicity and time consumption as each filter method is only applied once 

to the dataset.  Nevertheless, an identified limitation of these methods are that feature 

dependencies are not considered as each feature in the dataset is evaluated separately 

[20].  Common filtering methods include Relief-F, Information Gain, and Correlation 

Feature Selection (CFS) [86], [92].  Figure 2.6 presents each step in the filtering 

process, where the full feature vector is evaluated through applying a chosen filter 

method, and an optimal subset is subsequently defined following the removal of 

redundant features.  This subset is then applied to the chosen classifiers, and finally 

the performance of each model is measured.     

 
Figure 2.6. The Filter Process [20] 

In [92] an evaluation of three filtering methods was presented, namely Relief-

F, Gain Ratio and Information Gain.  A NN was used to classify the selected input 

features following the application of each method, where the 20 highest ranking 

features were retained in each case, representing around a third of the original 

features extracted in the full dataset.  Results of this study revealed the Information 

Gain filter performed significantly better than the Relief-F and Gain Ratio 

techniques.   

In a recent study conducted by [93], a large quantity of filter methods were 

analysed in terms of their operation, computational efficiency and predictive quality 

with regard to classification accuracy.  The predominant aim of this study was to 

provide application recommendations to ascertain which filters generally perform 

better than others through conducting experiments on 16 datasets generated from 

various domains.  Experiments involved evaluating the feature subsets produced by 

each filter method on 3 well-established classifiers, namely kNN, LR, and SVM.  

Conclusions stated that whilst no filter or group of similar filters consistently or 
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unanimously outperformed the other methods, there were certain filters that 

performed well on a substantial quantity of the datasets.  Thus, recommendations 

were made based upon this finding.  The best performing filters across the collection 

of datasets included Information Gain and Permutation methods, however, it was also 

stated that the effectiveness of the filter methods implemented largely depended on 

the dataset. 

 

2.4.4.2 Wrapper 

 

Wrapper methods determine the most suitable features by evaluating various 

subsets [23].  These methods search for the subsets most relevant to a specified 

classifier in order to improve classification performance whilst also considering 

feature dependencies [20].  The computation time required to execute wrapper 

methods is, however, large as each identified feature subset needs to be classified to 

discover which set provides the best classification accuracy [25], and only simplistic 

classification algorithms may be utilised effectively due to the computational 

complexity surrounding wrapper methods [94].  Figure 2.7 presents each step 

involved in the wrapper process, where various subsets of features are derived from 

the full feature vector and evaluated on the chosen classifier repeatedly until an 

optimal subset is determined.  Following this, the final classification performance is 

measured.  

 

Figure 2.7. The Wrapper Process [20] 

 

Common wrapper approaches include Sequential Forward Selection (SFS), 

Sequential Backward Selection (SBS) and Single Feature Classification (SFC) [23].  
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In [22], classification performances following the application of two wrappers (SFC 

and SFS) and one filtering technique (Relief-F) were compared for a HAR task.  The 

SFS wrapper performed best using the identified top 50 features followed by the SFC 

and Relief-F methods, although the wrapper techniques required more computation 

time.  

Furthermore, in a study conducted by [95], three wrapper methods were 

considered, which included SFS, SBS and an evolutionary method.  These were each 

evaluated on ensemble methods, specifically Bagging and AdaBoost, based upon two 

classification algorithms, namely a DT and NB.  Experiments were conducted on 13 

multidimensional datasets from various domains.  Findings stated that the 

combination of using the SFS search method along with DT Bagging achieved the 

best performance in terms of classification accuracy in comparison to other methods.  

Whilst classification accuracy improved with the ensemble wrapper methods, it was 

stated that the ensembles required considerably more time for computation in 

comparison to single classifier methods.      

In a recent comparison study conducted by [96], filters and wrappers were 

assessed and subsequently evaluated with an SVM classifier.  The well-established 

filters utilised in this study included Information Gain, Principle Component 

Analysis (PCA) and Correlation, whereas the wrapper methods included Genetic 

Algorithm (GA), Artificial Bee Colony (ABC), and Particle Swarm Optimization 

(PSO).  These methods were compared in terms of their classification performance 

on a multidimensional dataset, with experimental results demonstrating higher 

classification accuracies following the removal of redundant features using the 

wrapper approaches, in comparison to the filter methods.   

In a study conducted by [25], a NB wrapper method was compared to eight 

filters to ascertain which approach was better for selecting optimal feature subsets.  

These extensively include CFS, Chi Square, Info Gain, Fisher Score, Fast 

Correlation-Based Filter (FCBF), T-Test, Minimum Redundancy Maximum 

Relevance and Kruskal-Wallis filters.  A HAR dataset was used in this study which 

contained accelerometer data representing 8 activities.  Initially 50 features were 

extracted from both the time and frequency domains, then subsets were formed 

following the application of each technique.  A NN was used for classification with 

results showing features selected via the wrapper method outperformed all filtering 

techniques.  
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2.4.4.3 Hybrid 

 

 According to [26], less effort has yet been explored with hybrid approaches 

to feature selection in comparison to the common filter and wrapper methods.  

However, more recently, hybrid approaches involving the combination of well-

known feature selection methods, have been emerging in various research domains 

due to their perceived benefits.  For example, hybrid filter-wrapper methods aim to 

exploit the advantages of both techniques through developing a method achieving 

enhanced classification performance whilst reducing the computational time required 

[27].   

 A study conducted by [27] proposed a hybrid filter-wrapper method to select 

an optimal subset of features for their chosen high-dimensional dataset, stating the 

primary aim of their approach was to enhance classification accuracy, whilst also 

improving robustness.  The first stage of their hybrid method involved filtering the 

entire dataset with Pearson’s Correlation to remove redundant features.  

Subsequently, the next stage of their hybrid method involved the implementation of 

a wrapper with the SBS search technique along with a Bayesian network to evaluate 

subsets of the remaining features.  Other feature selection techniques, namely 

Information Gain, Gain Ratio, and Relief-F were evaluated to compare against the 

hybrid method, with experimental results demonstrating the effectiveness of the 

proposed method against all others in terms of classification accuracy.      

 Further to this, [28] recently explored a hybrid filter-wrapper technique based 

on an Information Gain filter followed by a wrapper employing the SFS search 

method.  The wrapper method involved ensemble learning based upon two 

classifiers, namely DT and NB models, with which Bagging and Boosting techniques 

were explored.  The approach was evaluated on two multi-dimensional medical 

datasets and compared against an individual form of the Information Gain filter, and 

also an individual SFS wrapper.  Experimental results demonstrated the benefits of 

hybrid feature selection as these outperformed the singular filter and wrapper 

methods.  It was also stated that the hybrid methods not only improved classification 

accuracy, however, also reduced computational costs.         

 Hybrid techniques are not limited to filter-wrapper approaches, and may 

involve combinations of similar feature selection methods, for example, two filter 

methods may be combined to exploit each of their benefits.  Recently, [29] conducted 
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a study in which two filter methods were combined to reduce the dimensionality of 

the data through the removal of irrelevant or redundant features, whilst also 

maintaining or improving classification performance.  The two filters chosen for 

experimentation were Information Gain and Chi-Square with the anticipated outcome 

of combining the derived scores from each method to develop an improved feature 

selection metric.  The proposed hybrid-filter approach was evaluated with two 

classifiers, namely a C4.5 tree and JRIP rule-based algorithm. Subsequently, the 

proposed hybrid-filter approach of Information Gain combined with Chi-Squared 

was compared to their individual filter counterparts.  The hybrid-filter method 

outperformed the singular filter approaches in terms of achieving a higher 

classification accuracy with the resulting feature subset, proving the benefits of 

combining these techniques.   

 Based upon the literature, it is apparent that feature selection is a fundamental 

stage within the HAR process.  Previous efforts have been explored most commonly 

with time and frequency domain features derived through signals produced by 

wearable sensors, however relatively less effort has been recognised in exploring 

feature selection pertaining to environmentally deployed binary sensors.  

Additionally, the exploration of hybrid feature selection has been emerging more 

recently, thus the opportunity for further exploration exists.   

 

2.4.5 Classification 

 

 Activity classification and performance evaluation is the final stage of the 

HAR process, within which the set of features extracted in the previous HAR stage 

are used as inputs to a classification model.  With supervised learning, a training 

phase is required where the classification algorithm is presented with feature vectors 

along with their corresponding class labels available as ground truth [70].  Once a 

model is trained, the classification step utilises this trained model to map newly 

presented feature vectors to a set of predicted class labels [70].  Data driven 

classification algorithms can be generally deemed as either generative or 

discriminative models [54].  Generative models aim to produce a complete 

representation of the input space, commonly through the use of probabilistic models 

such as the simplistic Naïve Bayes (NB) algorithm [55].  Discriminative models map 
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representative input data to their outputs, commonly through the implementation of 

rule-based algorithms such as Decision Trees (DT), or through Neural Networks 

(NN) and Support Vector Machines (SVM), for example [54].  Table 2.2 presents 

comparisons generated between each of the considered classifiers, which are 

discussed further in the following Section. 



    

   

Table 2.2. Data-driven classification algorithms 

 Model Description Advantages Disadvantages 

Generative 

Models 

Naïve Bayes 

(NB) 

Probabilistic model based upon Bayes theorem that 

involve calculating posterior probabilities within 

activity classes [75] 

Easy to build and implement as these 

models do not require intricate iterative 

parameter estimations [97] 

These models do not possess the 

ability to model temporal data 

explicitly 

Hidden Markov 

Model (HMM) 

Creates hidden states from data observations and 

aims to discover relationships between these states 

and their corresponding observations [98] 

Highly capable of modelling temporal 

data dependencies found in simple 

activity sequences [70] 

Can find more complex activities 

difficult to recognise, for example 

ADLs [8], and also concurrent or 

interleaved activities [8] 

Discriminative 

Models 

Support Vector 

Machine (SVM) 

Based on statistical learning theory [74] 

Attempts to increase accuracy and robustness, whilst 

avoiding the problem of overfitting [74] 

Highly accurate 

Highly robust 

Poor kernel choice may affect 

optimal SVM configuration [99] and 

models can experience confusion 

when classifying similar activities 

[100] 

Decision Trees 

(DT) 

Favored for inductive inference [74] 

Presented in a tree structure where each node 

(branch) represents an input feature, and each leaf 

represents a class label [71] 

Their low complexity and non-intricate 

implementation are beneficial for HAR 

tasks [17] 

Can experience difficulty in handling 

non-linear relationships [17] 

k-Nearest 

Neighbour 

(kNN) 

Very simplistic classifier that is known as a “lazy 

learner” as no training stage is executed, and 

therefore, no model is pre-built [101] 

Highly accurate and robust [102] 

Model performance largely depends 

upon the distance measure applied 

[102] and requires high 

computational costs [103] 

Neural 

Networks (NN) 

Connectionist models that map inputs to their 

corresponding outputs.  NNs are based on layers of 

nodes (neurons) that are connected to one another, 

with weights and bias determined for each connection 

NNs are capable of modelling complex, 

non-linear relationships which is 

valuable for application in the HAR 

domain [47] 

Require high computational costs 

during training 
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2.5 Classification Algorithms 
  

 This Section provides further, comprehensive descriptions of the 

classification algorithms previously introduced in Table 2.2.  The generative models, 

namely NB and HMM, are discussed in Section 2.5.1.  Contrarily, the discriminative 

models, namely SVM, DT, kNN, and NN are described in Section 2.5.2.  Finally, 

Section 2.5.3 discusses ensemble methods for classification.  

 

2.5.1 Generative Models 

 
The NB classifier is a generative approach that has produced encouraging 

results for HAR [9].  This simplistic model is based upon Bayes theorem and involves 

calculating posterior probabilities within activity classes, therefore during the testing 

stage using unseen data, the class with the highest probability is considered most 

likely to be correctly classified [75].  This classifier makes assumptions of the 

independence and normality of the input features [104].  According to [101], NB 

classifiers are easy to implement and are computationally efficient, though 

classification performance may be hindered if too few data instances exist.  This 

classifier was implemented within HAR studies in [38]–[40].  In a study conducted 

by [40], temporal patterns of actions were identified to subsequently recognise a 

series of actions that represent full activities.  A HAR dataset, namely Opportunity, 

was evaluated within which 4 participants performed 5 activities, including, relaxing, 

eating, and cleaning.  For classification of these activities, 3 well-established 

classifiers were implemented and compared, namely a NB, an SVM, and a kNN.  

Experimental results demonstrated the effectiveness of the NB model which 

outperformed all other classifiers, achieving an accuracy of 98.0%.  Further to this, 

in [105] various classifiers, such as a NB, DT, and Random Forest, were implemented 

to recognise 6 activities gleaned through a smartphone-embedded accelerometer.  

These activities included walking, ascending stairs, descending stairs, standing still, 

lying down and sitting.  Experimental results showed the NB model was most 

efficient in terms of time taken to construct the model, however the Random Forest 

model was most effective in terms of classification accuracy achieved.   
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Hidden Markov models (HMM) are another example of generative 

probabilistic approaches commonly used for HAR tasks [70].  HMMs create hidden 

states from data observations and aim to discover relationships between these states 

and their corresponding observations [98].  Two parameters, namely, the State 

Transition Probability and State Emission Probability are considered to achieve this 

[98].  HMM classifiers are very capable of modelling temporal data dependencies 

found in simple activity sequences [70], however, they can find more complex 

activities difficult to recognise, for example recognising ADLs [8].  HMMs have 

been used in [98], [106]–[108] for HAR tasks.  In [98] 5 participants were tasked to 

perform various activities with 4 body-worn accelerometers attached to both ankles, 

their belt, and their chest.  The activities included those of a static nature, such as 

standing and sitting, as well as transitional activities, such as transitioning from a 

sitting position to standing still.  An HMM was implemented to recognise these 

activities, where HAR performance was evaluated in terms of accuracy achieved.  

Results obtained demonstrated superiority of the ankle-worn sensors in comparison 

to the belt and chest locations, where the left and right ankle locations achieved 

59.52% and 55.92%, respectively.  Further to this, in a recent study [106] a two-phase 

HAR framework using hierarchical HMMs was proposed in an AAL setting.  Within 

Phase 1, specifically the “Detection” phase, online data streams were segmented and 

real-time HAR was performed per activity instance received through implementing 

an HMM.  Phase 2 was deemed the “Correction” phase in which a Joint Probabilistic 

Distribution Function was extracted, per class.  This was then used to estimate the 

probability of each activity instance belonging to each class.  The HAR framework 

was evaluated on two non-public datasets, which involved various ADLs such as 

eating a meal, sleeping, taking medication and personal hygiene.  Results 

demonstrated the effectiveness of the proposed HAR framework, achieving 65.20% 

accuracy with Dataset 1, and 60.00% accuracy with Dataset 2.  Nevertheless, 

conclusions stated some activities were more difficult to discriminate due to the same 

sensors being activated, for example, the enter home and leave home activities.            
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2.5.2 Discriminative Models 

  

 A notable discriminative classification algorithm is the SVM.  This algorithm 

is based on statistical learning theory, and attempts to increase accuracy and 

robustness, whilst avoiding the problem of overfitting [74].  In their most basic form, 

SVMs are presented as linear binary classifiers, where the algorithm attempts to 

discover a suitable hyperplane within the feature space to linearly separate data 

presented from two possible output classes [99].  Adjustments may be made to 

simplistic SVMs in order to generate predictions for multiclass classification tasks, 

as many problems, including HAR, typically contain multiple classes [99].   For 

example in a study conducted by [109], an Error-Correcting Output Code (ECOC) 

method was implemented to enable multiclass classification through the SVM 

classifier.  Kernel choice is an important consideration when optimising SVMs, as 

kernels are used to handle the inseparability problem through introducing extra 

variables [99].  SVMs are increasingly being implemented within HAR studies, such 

as [30]–[33].  In [33], SVMs were chosen for HAR through body-worn sensor data, 

in which multiple accelerometer sensors and placements were explored to estimate 

energy expenditure whilst performing activities of various intensity levels.  The 

stated rationale for classifier choice was based upon promising results achieved in 

their previous works, within which SVMs were employed with a polynomial kernel.  

Experimental results indicated that energy expenditure was optimally estimated 

through the deployment of a single accelerometer positioned in close proximity to 

the center of mass, for example, located either on the participants chest or waist.  

Furthermore, in [32] comparisons were made between various SVM configurations 

aimed at recognising 6 commonly investigated activities of both static or dynamic 

nature, namely, lying down, sitting, standing, walking, ascending stairs, and 

descending stairs.  The proposed SVM, using a One-vs-One (OVO) method and a 

linear kernel, was compared to an SVM involving a polynomial kernel, in addition 

to an SVM using a gaussian kernel.  Experimental results produced during this study 

revealed that the polynomial kernel achieved the best classification performance, 

followed by the linear kernel when evaluated on wearable sensor data.   

DTs are another example of discriminative models that are favored for 

inductive inference [74].  These classifiers are presented in a tree structure where 
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each node (branch) represents an input feature and each leaf represents a class label 

[71].  According to [110], there are three important aspects to consider whilst 

implementing DTs, namely, splitting, stopping and pruning.  Splitting involves 

dividing parent nodes into child nodes with enhanced purity relating to the target 

class and based upon the input features.  The splitting aspect ceases when a stopping 

criteria is achieved, which is usually applied to prevent the built model becoming too 

complex, and thus, overfitting.  As an alternative, instead of applying stopping 

criteria, pruning may be applied to a complex tree to ascertain the optimal size.  

Pruning involves removing nodes that provide the minimal necessary information, 

specifically redundant nodes, to reduce the size of the tree, and consequently, reduce 

its complexity.   DTs are commonly used for HAR due to their low complexity and 

non-intricate implementation, though difficulty has been found in handling non-

linear relationships [17].  DTs have been investigated in [34]–[37].  In [36], HAR 

was explored with wearable sensors to detect 4 common activities, namely, lie, sit, 

walk and jog, within an IoT scenario.  Two classifiers were initially considered, 

namely DT and NB classifiers, however, through initial experimentation stages, the 

DT was deemed most suitable in terms of complexity and computational efficiency, 

thus, further experiments were conducted with this algorithm.  The DT model 

achieved 95.83% accuracy during classification, thus demonstrating its effectiveness.  

In another study [37], a HAR system was implemented based upon an accelerometer 

within a smartphone.  A total of 12 ADLs were performed by 66 participants, which 

included, for example, standing, walking, sitting, jogging and ascending stairs.  A 

J48 DT, kNN, Logistic Regression (LR) and an NN were implemented and the HAR 

performances of each were compared, within which the DT and kNN models proved 

most effective in classification performance overall. 

 The kNN classifier is known as one of the longest-established, most 

simplistic, and accurate models for classification and regression tasks [102].  kNNs 

are known as “lazy learners” as they do not execute an explicit training stage, instead, 

the training data is stored and all computation is conducted during the test stage [101].  

This classifier is highly robust to noise and no prior knowledge of the data is required 

for classification, for example, data distribution information [102], though high 

computational costs are required for utilisation, and the classification performance 

achieved is largely reliant upon the applied distance measure [102], [103].  kNN 

models have been implemented for HAR tasks in [41]–[43].  In [41], 5 common 
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ADLs were classified using a kNN classifier in an AAL scenario.  Data was gleaned 

through a smartphone-embedded accelerometer and gyroscope, where a total of 10 

participants performed the 5 activities, namely, sitting down, standing still, walking, 

ascending stairs, and descending stairs.  The effectiveness of the kNN classifier was 

demonstrated during this study, with experimental results attaining a classification 

accuracy of 88.00%.  Further to this, real-time HAR was explored recently using 

wearable sensors in [42], within which the performance of 5 classifiers were 

compared, namely a kNN, NN, SVM, DT and NB.  A total of 15 participants were 

tasked to perform 8 common activities, such as sitting, standing and walking.  Results 

demonstrated the superiority of the kNN model, which achieved the highest 

classification accuracy of 96.70%, followed by the SVM classifier.           

NNs have been attracting attention recently and are becoming a popular 

classifier for HAR tasks [111].  NNs are discriminative models defined by [112] as a 

“biologically-inspired programming paradigm which enables a computer to learn 

from observational data”.  The Multi-Layer Perceptron (MLP) is a notable type of 

NN often used for activity recognition tasks [44]–[46] which consists of an input 

layer, one or more hidden layers, and an output layer [113].  They are capable of 

modelling complex, non-linear relationships, which is valuable for application in the 

HAR domain, and have been established as one of the most effective NN methods 

for predictive power [114].  In a HAR study conducted by [115], explorations into 

designing an optimal MLP classifier were conducted to recognise 6 common 

activities.  According to [115], the classification performance achieved by NNs are 

largely reliant upon selecting the optimal number of neurons in the hidden layer, thus 

a new hidden neuron selection method based on convergence theorem was proposed 

to enhance HAR performance.  The effectiveness of the proposed formula to define 

an optimal NN architecture was demonstrated, as experimental results obtained 

98.32% accuracy when evaluated on a publicly available UCI HAR dataset.             

Due to recent advancements with technology, the computational capacities 

required by more complex NN architectures can be attained as modern GPU clusters 

can provide better performance and support [116], and since the emergence and 

success of deep learning in domains such as natural language processing [117], image 

recognition [118], and speech recognition [119], these methods are now being 

applied to HAR problems.  Though according to [120] the efficiency of deep 

architectures in comparison to simple NNs remains unclear.  Deep Neural Networks 
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(DNNs) can be perceived as a traditional NN with many hidden layers [119].  These 

additional layers enable automatic and complex feature learning combined with the 

classification phase [121] which is anticipated to be beneficial for HAR problems 

involving the recognition of intricate ADLs within smart environments, previously 

attempted by [122], [123]. 

Two commonly implemented, complex NN architectures are Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).  CNNs are 

becoming a popular method for HAR as they provide two core advantages for 

application in time-series HAR scenarios: local dependency and scale invariance 

[120].  CNNs are capable of preserving feature scale invariance due to the inclusion 

of a pooling layer, therefore variations of an activity, for example due to different 

walking styles or paces, can be effectively captured [124].  CNNs are also able to 

capture local dependencies of activity signals in the convolution layers, which means 

correlation is likely to occur for signals collected nearby [124].  In a recent study 

conducted by [76] a Deep Convolutional Neural Network (DCNN) was implemented 

for the classification of 4 commonly performed ADLs within a home monitoring 

environment.  These activities included meal preparation, eating, relaxing and 

making a transition from bed to toilet.  The DCNN architecture consisted of two 

convolutional layers each followed by max-pooling layers, and subsequently two 

fully connected layers.  The process involved converting binary sensor data produced 

by 31 wireless passive infrared (PIR) motion sensors and 4 door sensors, into 

representative activity images for each of the activities defined.  These images were 

then used to train and test the proposed DCNN classifier which produced an accuracy 

of 99.36% for ADL recognition.  Although results produced are substantial, a larger 

number of activity classes could be investigated.  As for the RNN models, these have 

proven beneficial in handling sequential input data and exploiting temporal 

relationships, which is fundamental for successfully recognising human activities 

[125].  These networks are recurrent in that a cycle is formed between some 

connections to consider previous time steps whilst computing the current state of the 

network [126].  In a recent study by [127], RNNs with LSTM are used to recognise 

activities in groups of participants, for example whilst playing a game of volleyball, 

with the intention of recognising events and interactions occurring between subjects, 

and actions performed by individual subjects.  The network architecture developed 

in the study is named “Confidence-Energy Recurrent Network (CERN)” as it 
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involves a confidence measure and an energy layer.  Results show that the CERN 

architecture achieves better performance than other previous efforts made to 

recognise group AR via RNNs, which also performs well with uncertainty.           

As previously mentioned, the efficiency of deep architectures in comparison 

to more simplistic NN models remains unclear [120].  In a HAR study conducted by 

[44], 11 ADLs were classified by both an NN and a DNN, in which the NN 

outperformed the deep architecture.  Conclusions stated the DNN performance may 

have suffered due to the low amount of training data available, as a large amount of 

data is required to demonstrate the potential of DNNs.  According to findings in 

[128], the implementation of a simplistic NN architecture comprising two or three 

layers can be most effective for HAR tasks.  Their experiments involved evaluations 

upon two HAR datasets, namely, WARD and UCI_DB, in which several NN 

architectures were explored.  Experimental results demonstrated the effectiveness of 

a shallow NN which achieved 99.2% and 99.7% in terms of classification accuracy 

on the WARD and UCI_DB datasets, respectively.  In comparison, the best 

performing deep NN architecture was that of a CNN model, which achieved 97.7% 

and 94.2% on the aforementioned datasets, respectively.  Conclusions of these 

investigations recommended the implementation of shallow NN architectures for 

HAR tasks rather than exploring deeper architectures, particularly in cases where a 

large amount of data is not available.   

 

2.5.3 Ensemble Methods 

 

Ensemble methods have attracted considerable research attention recently 

due to their ability of improving classification performance [48].  In [50], it was 

recognised that the goal of enhancing generalization capabilities is the primary 

motivation towards exploring ensemble methods.  This approach involves combining 

several base models to generate an ensemble, instead of depending solely on the 

predictive capability of a single classifier [74].  Ensemble learning includes two main 

considerations: ensemble generation and ensemble integration [129].  The generation 

phase involves ascertaining the size of the ensemble and subsequently generating the 

chosen base models.  If the models are generated through implementing a consistent 

induction algorithm, it is recognised as a homogeneous method, whereas a 
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heterogeneous ensemble method involves generating base models through 

implementing diverse algorithms [130].  In [131], an ensemble of random forest 

classifiers was proposed with the aim of generating a more accurate, stable classifier 

to recognise activities from the PAMAP physical activity dataset.  HAR performance 

attained was 93.44% accuracy, and the generalization capability of the produced 

classifier had improved significantly.  In [132], multiple HMM base models were 

combined using a decision template method to recognise activities collected by a 

smartphone-embedded triaxial accelerometer.  Their approach addressed the 

interclass similarity and intraclass variability HAR challenges, with results showing 

that the ensemble generated performed significantly well with data representing six 

activity classes and collected by 30 participants.  Further to this, in [133] an anomaly 

detection method within ensembles was explored, in that faulty base models were 

identified and removed from the ensemble method to enhance HAR performance.  

Two methods were explored at a fusion level to identify faulty base models: the first 

method involved comparing the class decision outputs provided by each base model 

with the final fused output through Mahalanobis distance, whereas the second 

method involved evaluating the mutual information between all base models within 

the ensemble.  Results demonstrated the effectiveness of the proposed approach, as 

the implemented methods revealed performance improvements with both evaluated 

HAR datasets in comparison to retaining all original base models. 

More recently, ensemble methods based upon deep learning techniques have 

been explored in areas including video/audio based HAR, which have demonstrated 

promising results.  For example, [134]–[136] proposed deep learning ensemble 

techniques for HAR, which demonstrated enhanced robustness and achieved 

promising results.  In [134] a hybrid deep NN ensemble for vision-based HAR is 

proposed.  Multiple CNN base models, each trained with diversified input data and 

varying model initialisation parameters, were combined using a fusion function to 

ascertain the final class output.  Results demonstrated very high HAR performance, 

specifically 99.68%, when evaluating the proposed approach with the UCF50 dataset, 

thus outperforming all benchmarked comparison studies.  Further to this, [135] 

proposed an ensemble of deep NNs to recognise voice-based activity detection in 

which the final output decision was determined by fusing the estimated class output 

produced by each base model through a weighted combination method.  The 

proposed approach outperformed the benchmarked conventional algorithms 
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evaluated, namely an SVM and a single deep NN, thus demonstrating its 

effectiveness.  In [136] an ensemble comprising of multiple deep LSTM base models 

was proposed for the purpose of HAR using wearable sensors.  The effectiveness of 

the proposed approach was demonstrated during their experimentation, as the 

proposed ensemble of deep LSTMs outperformed the benchmarked single deep 

LSTM model when evaluated on 3 wearable HAR datasets, namely Skoda, 

Opportunity and PAMAP2.  Nevertheless, deep learning methods require a large 

quantity of training samples to demonstrate their potential and improve classification 

performance [137].  

 

2.5.3.1 Ensemble Generation 

 

During ensemble generation, data partitioning is a commonly considered 

approach aimed towards diversifying the input data of the base models so that the 

subspaces of inputs become complementary [138].  Two commonly implemented 

data partitioning ensemble methods include Boosting and Bagging, which are 

implemented to combine several classifiers that have been trained on various diverse 

subsets of the training data [74].  Boosting involves the combination of multiple base 

classifiers to generate a strong committee classifier that may provide significantly 

enhanced performance in comparison to the base classifiers, achieved through 

reweighting the misclassified data samples and therefore boosting their performance 

[74].  Adaptations of the well-established AdaBoost method exist, namely RUSBoost 

and SMOTEBoost, in which random undersampling or SMOTE is applied to the 

training data of each base classifier, along with the reweighting phase in accordance 

with the Adaboost algorithm, previously explored in a study conducted by [139].  

Both RUSBoost and SMOTEBoost introduce a great level of variability through 

creating or eliminating data samples, leading to enhanced robustness to noise.   

Contrarily, Bagging involves calculating the average of outputs generated by 

each base classifier, where each model is trained with diverse training sets 

comprising of data produced through sampling with replacement [129].  Well-

established bagging-based techniques to partitioned data include OverBagging, 

UnderBagging and SMOTEBagging.  Specifically, the SMOTEBagging method has 

been recommended for applications in multi-class imbalanced data problems where 
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the data samples contained within each bag are considerably diverse [140].  In a 

recent study, [141], two bagging-based hybrid methods were proposed to deal with 

imbalanced datasets, namely ADASYNBagging and RSYNBagging.  The 

ADASYNBagging method involved implementing the bagging algorithm as well as 

the ADASYN-based oversampling method.  Contrarily, the RSYNBagging method 

involved implementing the ADASYN-based oversampling technique as well as 

random undersampling alongside the bagging algorithm.  The classification 

performances of the proposed hybrid approaches were subsequently compared 

against UnderBagging and SMOTEBagging techniques and evaluated on twelve 

datasets, with promising experimental results obtained.  The effectiveness of the 

proposed hybrid methods were demonstrated as they achieved superior performances 

in comparison to the considered benchmark methods on eight of the twelve datasets 

evaluated. 

Another approach considered during ensemble generation is to manipulate 

the inputs of the base classifiers at a feature level, for example, training the base 

models on various diverse feature subsets [138].  A common approach in achieving 

diverse feature subsets involves implementing the Random Subspace method, in 

which the full feature vector is decomposed into smaller subsets at random, thus each 

base model is subsequently trained on a diverse, randomly generated feature subset 

[142].  In [142], various ensemble generation methods were implemented including 

Random Subspace, Bagging, Ensembles of Nested Dichotomies (END), Rotation 

Forest and AdaBoost, which were evaluated with two base models, namely, an SVM 

and Random Forest, for the purpose of HAR.  Six common activities were 

considered, including walking, ascending stairs, descending stairs, standing, lying 

down and sitting, which were acquired through an accelerometer-embedded 

smartphone.  Experimental results demonstrated the effectiveness of the Random 

Subspace method which outperformed all remaining considered methods, achieving 

99.22% accuracy.  Another study [143], proposed a novel feature grouping technique 

which utilised Localised Generalisation Error Model (L-GEM) to evaluate the 

proposed Multiple Classifier System (MCS) for the purpose of HAR. Within the 

proposed approach, the Genetic Algorithm method was utilised to select random 

subsets of features.  Experimental results demonstrated the effectiveness of the 

proposed feature grouping technique, achieving an accuracy of 87.35%, which 
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outperformed the Random Subspace benchmark method, which achieved 83.78% 

accuracy. 

 

2.5.3.2 Ensemble Integration 

 

During the ensemble integration phase, the output predictions produced by 

each base model are combined in attempt to enhance classification performance by 

attaining a single outcome [129].  Several integration strategies exist, which may be 

explored at either a class label level, a support level, or a trainable level, according 

to [137].  Integration techniques at a class label level typically involve voting 

strategies, within which each base classifier may vote for a particular class, thus the 

final output prediction is determined through employing either a majority voting or 

weighted majority voting strategy.  Majority voting determines the final output 

prediction based upon the class label that has been selected most frequently, or 

unanimously, by the base models.  Contrarily, weighted majority voting involves 

assigning weight values to each base model, often based upon their classification 

performances during training, where the classifier attaining the highest output after 

weight assignments is awarded the overall class prediction [137].  In a study 

conducted by [144], majority voting was implemented to ascertain the final outputs 

of an ensemble approach based on AdaBoost.  Three weak classifiers were used, 

namely a DT, LR, and Linear Discriminant Analysis (LDA).  In addition to 

AdaBoost, Bagging and Stacking methods were also explored, with the best 

performance produced by the Bagging approach.  Another study [131], used 

weighted majority voting with an ensemble of Random Forest classifiers.  Each 

classifier was assigned different weights per activity, with the final outcome attained 

through combining the classification outcomes from each base model via the 

weighted votes.   

Integration techniques at a trainable level consider the chosen fusion weights 

during the learning process and implement optimization strategies to increase 

classification performance whilst also reducing computation cost [137].  These 

include weighted summations of hypotheses where higher weights are assigned to 

those with lower error rates, and the Dempster-Shafer theory to handle uncertainty in 

the decision-making process.  In [145] the output predictions of multiple SVM 
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models, trained on diversely generated feature subsets, were subsequently integrated 

using the Dempster-Shafer fusion strategy.  The four-step method involved creating 

decision templates for all training instances, calculating the proximity between 

decision templates and classifier outputs, computing the belief degrees for each 

output class, and finally, applying the Dempster rule to integrate the degrees of belief 

derived from each base classifier.            

Finally, the support function integration method involves computing an 

output decision score for each base classifier, which is derived from the estimated 

likelihood of a class [138].  This class estimation may be computed as an a posteriori 

probability obtained through probabilistic models, using fuzzy membership 

functions, or through combining NN outputs according to their performance.  In 

[146], five base models were generated and combined using an average of 

probabilities fusion method to recognise six activities.  This method involved using 

the average of the probability distributions for each base classifier to make a final 

class decision, which achieved the best HAR performance in comparison to a 

majority voting method that was also implemented during this study.  Another study 

[89], explored support function integration in which a Naïve Bayesian fusion method 

was compared to a majority voting approach to fuse the outputs of multiple HMM 

base classifiers.  The Naïve Bayesian method involved calculating the posterior 

probabilities of the HMM outputs, which achieved the best HAR performance during 

the study.      

Through reviewing the literature, it has been recognised that many well-

established classifiers have been implemented within HAR studies.  Particularly, 

NNs have been attracting more attention recently due to advances in technology 

enabling the implementation of more complex architectures, in addition to simpler 

architectures providing benefits in modelling complex, non-linear relationships, 

which has been deemed valuable for application within the realms of HAR.  Further 

to this, ensemble methods have been attracting considerable research interest due to 

their ability in improving classification performance, in addition to their perceived 

benefits in comparison to individual classifiers.  Thus, ensemble methods 

demonstrate scope for further exploration.  
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2.6 HAR Challenges 

 

Taking into consideration the body of research reviewed, many research 

challenges associated with HAR have previously been identified due to the complex 

nature of human activities and available data sources.  These challenges include 

Intraclass Variability, Interclass Similarity, and Class Imbalance.  The ability to 

recognise concurrent and interleaved activities are also challenges associated with 

HAR.     

 

2.6.1 Intraclass Variability  

 

 Intraclass Variability is a challenge introduced during data collection and 

occurs as the same activity may be performed differently by different individuals 

[70], and a single individual never performs a particular activity in the same exact 

way, as the performance of an activity can be influenced by factors such as fatigue 

or stress [147].  For example, an individual’s walking style may vary depending on 

the time of day.  Walking may be more dynamic in the morning following a long rest 

and less energetic in the evening following a long and stressful day at work, leading 

to a variation in the individual’s walking style [70].  This challenge may be addressed 

through increasing the quantity of training data and ensuring this data contains as 

many variations as possible of each activity being performed.  

 In a study conducted by [87], a 3-phase framework was proposed to exploit 

multi-level feature learning in an attempt to improve HAR performance on a dataset 

exhibiting the intraclass variability problem.  The Skoda dataset was evaluated, 

which contains accelerometry data gleaned through movements performed by a 

single person.  The produced signal was interpreted during each phase of the 

framework to extract representative features of activities performed.  In Phase 1, the 

extraction of low-level features transpired which included those extracted from both 

time and frequency domains.  Subsequently in Phase 2 of the implemented 

framework, the focus was aimed at learning structural compositions to derive mid-

level features, which involved implementing the BOW learning method.  Finally, in 

Phase 3, MLPL was applied to gain semantic interpretation of the signal at a high-

level, thus exploiting the intraclass variations of each performed activity.  The 
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proposed framework was evaluated on 3 classifiers, namely, kNN, SVM, and Nearest 

Centroid Classifier (NCC).  Experimental results demonstrated the effectiveness of 

the MLPL method in recognising activities exhibiting intraclass variability, with 

results attaining state-of-the-art on the Skoda dataset.  Another recent study [148], 

proposed the implementation of a margin mechanism to handle intraclass variability 

within 3 HAR datasets, namely, Opportunity, PAMAP2 [149] and UniMiB-SHAR 

[150].  The effectiveness of the proposed margin mechanism was evaluated with 4 

NN classifiers exploiting deep learning.  The aim of this was to expose superior 

discriminative features, thus diminishing the adverse effects of intraclass variations.  

The resulting method was defined as Margin-based Loss function, as the 

implemented softmax function was adapted with the margin mechanism.  

Experimental results demonstrated the effectiveness of the proposed approach, as the 

performances achieved had outperformed comparative experiments. 

 

2.6.2 Interclass Similarity 

 

Interclass Similarity is a common HAR challenge that occurs when certain 

activities generate similar sensor characteristics, though they are physically different.  

For example, the activities of walking upstairs and walking downstairs both produce 

similar sensor characteristics.  Thus, they can be difficult to discriminate between 

during classification, causing diminished classification performance [70].  

Consequently, the interclass similarity problem is deemed an imperative issue in the 

realms of sensor-based HAR that requires substantial consideration, according to 

[103].   

A study conducted by [151] found that their approach to HAR was successful 

in discriminating between similar activities.  Their investigations considered both 

moving and stationary activities, namely walking, walking upstairs, walking 

downstairs, sitting, standing and lying down.  Data to represent these activities was 

collected by 30 participants using a smartphone embedded accelerometer and 

gyroscope.  A CNN was used in this study, with results being compared to other state-

of-the-art approaches to classification.  Results for classifying the three similar 

moving activities using the proposed CNN achieved 99.66% accuracy, and results 

for classifying both moving and stationary activities achieved an accuracy of 94.79%.  
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Further to this, in [103] a method to deal with the interclass similarity problem was 

proposed, which involved decomposing the multiclass HAR task into manageable 

binary classification tasks.  The One-Versus-All (OVA) method was implemented in 

an attempt to enhance discriminative abilities between activities that exhibit similar 

sensor characteristics.  The proposed approach was evaluated upon 2 HAR datasets, 

namely WISDM and PSRG, and 3 well-established classifiers, namely RF, kNN and 

DT.  Experimental results obtained during this study outperformed those reported 

within identified benchmark studies in terms of classification accuracies attained, 

particularly whilst classifying similar activities.  Optimal performance was achieved 

through implementing the OVA decomposition method in conjunction with the RF 

classifier.       

 

2.6.3 Class Imbalance  

 

Class Imbalance is a term used to describe a large quantity of data that is unevenly 

distributed [152].  Imbalanced datasets usually contain majority classes that contain 

a substantial number of instances, and minority classes that contain fewer instances 

[152].  Majority classes can overwhelm standard classifiers, consequently leading to 

minority classes being neglected during classification, thus achieving poor 

performance.  The class imbalance problem arises within the HAR domain as some 

activities occur often or continuously whereas others occur infrequently or 

periodically [70].  Figure 2.8 presents an example of imbalanced class data within a 

HAR dataset.   

 

Figure 2.8. Example of class imbalance existing within HAR data produced for the UCAmI Cup [79] 
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Various techniques have been identified and investigated to address this HAR 

challenge.  Many imbalanced data handling techniques focus on data pre-processing, 

for example, sampling methods such as undersampling, oversampling and synthetic 

sampling, whilst other techniques focus on the classification stage and model 

evaluation [153]. 

In a recent study conducted by [154], an undersampling technique based upon 

clustering was implemented, namely Fast-CBUS.  This method involved clustering 

the minority classes of each of the 11 evaluated datasets, and constructing a classifier 

per cluster, namely an SVM.  Following this, majority classes existing within close 

proximity to each clustered minority class were undersampled to achieve a balance 

within each clustered model.  The classification performance achieved by the 

proposed method was compared to that of 4 other undersampling techniques, as well 

as an oversampling approach, namely SMOTE.  Experimental results revealed the 

Fast-CBUS method outperformed all other undersampling techniques, however, the 

SMOTE oversampling technique achieved better performance than the proposed 

technique.  Nevertheless, a substantial trade-off existed between performance 

achieved and computational costs.  Other recent studies focusing on handling the 

class imbalance problem include those by [155], [156].  In [155], clustering-based 

undersampling was proposed.  During data pre-processing, clustering was 

implemented within which the quantity of majority class clusters was to be equivalent 

to the quantity of minority class instances.  Two methods were propsoed: the first 

involved representing the majority class using cluster centers, whereas the second 

method involved representing the majority class using the cluster centers’ nearest 

neighbours.  The second method proved most effective during experimentation, 

where the proposed approach outperformed 5 benchmarked techniques, involving 3 

UnderBagging methods, SMOTEBagging, and RUSBoost.  Contrarily, in [156] a 

two-phase resampling technique is proposed.  Within the first phase, OVO is applied 

to remove noisy data, thus ensuring the resampling method only samples data of 

higher quality.  Subsequently, within phase 2 each minority class was oversampled 

to balance the distribution of classes across the dataset.  During experimentation, 

various levels of noise were investigated.  The proposed method performed 

reasonably well with increasing levels of noise, in addition to outperforming the 

benchmarked methods, which included 5 variations of the SMOTE technique, 

particularly as noise levels continued to increase.                   
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The literature suggests that the class imbalance challenge has received more 

research attention than the other identified HAR challenges, as a larger amount of 

previous works have been found with the aim of addressing the class imbalance 

problem.  According to [153], the number of research efforts pertaining to class 

imbalance has been continually increasing. 

 

2.6.4 Recognition of Interleaved and / or Concurrent Activities 

 

The recognition of concurrent and interleaved activities are complex 

challenges associated within HAR.  Many approaches to HAR make the assumption 

that individuals perform activities sequentially, one at a time, however, approaches 

to HAR in a more naturalistic, real-world setting are anticipated due to the act of 

multitasking existing as an inherent characteristic in unsupervised daily routines 

[157].  Daily activities performed by inhabitants in naturalistic settings are very often 

concurring, interchanging, and occasionally abandoned.  Concurrent activities 

describe those in which several activities are performed simultaneously, whereas 

interleaved activities describe those performed in an interwoven manner [157].  

Figure 2.9 presents examples of both interleaved and concurrent activities, in which 

interleaved activities involved cooking, then pausing the cooking activity to answer 

the telephone, and subsequently resuming the cooking activity.  The example of 

concurrently performed activities presented involved reading a book whilst drinking 

coffee at the same time.  
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Figure 2.9. Examples of interleaved and concurrently performed activities, adapted from [157] 

 

Previous efforts have been made in handling interleaved and concurrent 

activities.  In a study conducted by [157] this problem was addressed with the 

proposed data-driven approach.  A Strong Jumping Emerging Patterns (SJEP)-based 

feature discovery method was implemented to distinguish both simplistic and 

intricate activities in Phase 1 of the framework.  Subsequently, fuzzy set theory was 

introduced in Phase 2.  The proposed approach was evaluated upon 2 datasets, 

namely the CASAS Interleaved Activities of Daily Living and the SICA (Sequential, 

Interleaved, and Concurrent Activities) dataset.  The SJEP method was compared 

against well-established classifiers, namely SVM, kNN, NB, HMM, and DT models.  

Experimental results had proven the effectiveness of the implemented method on 

both datasets through outperforming all other considered methods, whilst also 

demonstrating its supremacy in comparison to previous state-of-the-art approaches.  

Further to this, a study conducted by [158] addressed the problem of handling 

concurrent and interleaved activities through activity profiling within the data pre-
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processing phase.  For example, expert knowledge pertaining to specific activities 

and their associated sensors were defined to enable the recognition of activity sub-

tasks occurring out of sequence.  Temporal relationships were also considered to 

provide additional activity context.  Following this, a dynamic windowing method 

was implemented to adaptively select appropriate window sizes per activity.  The 

proposed approach was evaluated on 3 HAR datasets using 3 well-established 

classifiers, namely NB, SVM and DT models.  Experimental results of this study 

demonstrated substantial performance improvements in recognising interleaved and 

concurrent activities through implementing the proposed approach, in comparison to 

the baseline method applied.     

 

2.7 Conclusion  

 
This Chapter has provided a review of the literature regarding HAR.  As 

stated, due to the identified limitations of knowledge-driven approaches, the work in 

this Thesis will focus on data-driven approaches to HAR.  Particularly, sensor-based 

HAR will be the focus of this work to eliminate privacy concerns and ethical issues, 

whilst also being lightweight and relatively low energy.  This Chapter has identified 

HAR application domains, which predominantly included Smart Environments.  A 

number of dedicated Smart Environments were identified which focus on producing 

and exploring AAL scenarios, for example the CASAS project, which also provide 

publicly available HAR datasets for the research community to avail of to conduct 

their own investigations.   

Through reviewing the literature, it appears the more prevalent method of 

acquiring data is through body-worn sensors, rather than through environmentally 

deployed sensors.  According to [17], the ease of access to wearable sensors and their 

relative low cost may have made them more appealing than more expensive 

environmental sensors.  Nevertheless, publicly available, environmental sensor-

based HAR datasets exist, and will be explored.  Through explorations of the 

literature in this Chapter, it was also found that data pre-processing is an imperative 

aspect to consider during the HAR process, as data-driven approaches are reliant 

upon good quality data to achieve optimal classification.  Furthermore, according to 

[18], large scope for investigation into data quality exists, including explorations into 
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noise detection and handling mechanisms.  Another important aspect to consider 

within the HAR process is feature selection, according to the reviewed literature.  

Previous efforts seem to have focused more on features derived through wearable 

sensor signals, whereas it has been acknowledged that relatively less effort exists on 

feature selection based upon environmental sensors, such as binary sensors.  

Additionally, hybrid feature selection techniques have emerged more recently, 

indicating an opportunity for further exploration.  A range of well-established 

classifiers were discussed, as well as the recent emergence of ensemble methods.  

Ensemble methods have revealed promising results in comparison to individual 

classifiers, thus also demonstrating an opportunity for further exploration.  Finally, a 

number of HAR challenges were identified and research efforts into these areas were 

reviewed, including the problem of intraclass variability, interclass similarity, class 

imbalance and the challenge of recognising interleaved and / or concurrent activities.  

It was recognised that class imbalance had received considerable research attention 

in comparison to the remaining identified challenges as more previous efforts 

pertaining to this had been discovered.   
 



   
 

   

 

 

 

 

 

Chapter 3  

 

The Impact of Dataset Quality on 

the Performance of Data-Driven 

Approaches to HAR 

 

 

3.1 Overview 

 

Within the realms of data-driven approaches to HAR, data quality is a 

significant consideration.  Nevertheless, data quality considerations are seemingly 

disregarded quite regularly as many researchers deliberate more specifically on the 

classifiers and techniques, whilst assuming the quality of data is sufficient [159].  

Consequently, it is a common occurrence that data-driven classifiers are constructed 
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using low quality, suboptimal data that adversely impacts upon their performance 

[160].      

This Chapter discusses and presents the impact that data quality has on 

activity classification using data-driven approaches.   These approaches rely on good 

quality training data which has been the motivating factor for this study.  A range of 

data-driven classifiers have been applied to generate models for activity 

classification, where the importance of data quality is highlighted by analysing the 

effects of noisy data through comparing the classification performances of raw 

(noisy) and subsequently cleaned data.  A secondary factor motivating this work 

involved addressing the importance of developing a clear HAR data collection 

protocol to ensure the prevalence of noise and outliers are minimalised.  Data 

collection is becoming a critical consideration amongst the numerous challenges in 

the HAR domain, and it is recognised that a large majority of effort and time 

consumption spent in this domain is focused on data preparation, which involves 

acquiring, cleaning and interpreting the available data [80].  Furthermore, according 

to a recent review [18], explorations into noisy data have significant scope for further 

research.         

The remainder of this Chapter is presented as follows: Section 3.2 generally 

describes data quality, Section 3.3 describes data cleansing within machine learning, 

including types of noise that may emerge within the data, Section 3.4 details the 

methodology undertaken to investigate the impact of noise within HAR data, and 

Section 3.5 presents experimental results and discussion.  Following this, Section 3.6 

concludes this Chapter.   

 

3.2 Data Quality 

 
 
 Assessing the quality of data for machine learning tasks, particularly data-

driven approaches, is a vital consideration.  Data quality may be evaluated using 

various measures, including accuracy, completeness, uniqueness, consistency, 

timeliness and validity [161].  Evaluating the accuracy of data involves assessing 

whether it is correct or incorrect, for example determining whether data values reflect 

their related objects.  Within the realms of machine learning for HAR, accuracy 
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issues may arise, for example, with incorrect annotation of the activity data in which 

an incorrect class label may have been assigned to a specific data instance during 

acquisition, thus adversely affecting performance attained during classification.  The 

completeness factor relates to whether all expected data has been recorded and is 

therefore entirely present, whereas the consistency measure involves evaluating 

whether data is consistent amongst all data stores and systems.  For example, 

inconsistencies in naming conventions may occur during HAR data collection when 

several participants are involved in the data acquisition process, such as class names 

being recorded as “1,2,3” by one participant, and “A,B,C” by another.  The 

uniqueness measure ascertains whether data records can be uniquely identified 

through ensuring no duplicates exist, whereas the data validity measure determines 

whether data abides by any procedures and policies in place, for example, assessing 

whether data collected is truly representative of the phenomenon measured through 

determining a range of acceptable values and ensuring the data analysed has 

conformed with this acceptable range.  Data timeliness involves evaluating whether 

data is up to date and available at the time required, for example determining whether 

the necessary data is accessible at the time expected to be processed.  

 

3.3 Data Cleansing 

 

 Data cleansing can be defined as the process of removing errors or 

inconsistencies such as noise and/or outliers from a dataset [162].  The presence of 

noise and outliers in data is an important issue to address as these can have a 

substantial influence on the results produced by data-driven techniques, according to 

[163].  Nevertheless, [164] states the border between normal and abnormal 

(noise/outlier) data is often unclear, where a large “grey area” may exist. 

  

3.3.1 Outliers 

 

 The presence of outliers in data structures represent observations that exist 

far from other data values such as an abnormally large distance from other 

observations.  For example, outliers may emerge as arbitrary values that do not 
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conform with the underlying trend.  Within most domains, expected data values 

possess a “normal” model, where deviations from this model are identified as 

abnormal, thus outlier detection methodologies output either an outlier score, or a 

binary label indicating whether data samples are normal or abnormal [165].  The 

outlier score determines the level of abnormality of each data sample evaluated, 

which can then be ranked.  Ascertaining the level of abnormality reached to consider 

the data as an outlier is often a subjective decision [165].  Additionally, weak or 

strong outliers can be determined.  Weak outliers often identify as noise such as data 

samples existing outside the defined ad-hoc threshold of normal data, whereas strong 

outliers typically possess a much larger score [165]. 

Many clustering tools exist to detect outliers, such as the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) tool.  DBSCAN is 

valuable in handling clusters and outliers in that clusters may be established as 

arbitrary shapes, sensitivity to noise and outliers is substantial, and simplistic 

parameters are involved [166].  Other outlier detection methodologies include the use 

of probabilistic and statistical models [13], [167], linear regression models [165], or 

other distance-based models [168] where the identified outliers are subsequently 

removed.  For example, in [167] researchers proposed calculating the absolute 

deviation around the median (MAD) as an alternative to the commonly implemented 

method of calculating the standard deviation around the mean, due to identified 

limitations of the latter approach such as the assumption of normal distribution, and 

the problem that outliers are very unlikely to be detected within small samples of data 

whilst utilising standard deviation around the mean.  Further to this in [165], linear 

models were explained, where linear correlations are utilised to allow for data 

modelling along low-dimensional subspaces.  An optimal hyperplane is determined 

to represent normal data; thus, outlier scores can be determined for data samples that 

deviate far from this normal data.  In [168] common distance-based outlier detection 

methods were explained, which included defining outliers as those data samples 

whose distance pertaining to a k-nearest neighbour was largest, or whose average 

distance in relation to a k-nearest neighbour was largest, for example.  In [169], 

outliers were detected through the Boxplot method, which discovers outliers and 

portrays data distributions based upon the following criteria: minimum value, 

maximum value, lower quartile, median value and upper quartile.  Further to this, in 

a recent HAR study conducted by [170], an outlier detection method based on deep 
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recurrent NNs was proposed to detect outliers within sensor data derived through 

wearable devices.  Outliers were detected within two HAR datasets comprising 

activities such as walking, running, ascending stairs and descending stairs.  The 

proposed method involved 2 stages of outlier detection.  Stage 1 involved data 

cleansing during pre-processing to remove initially detected outliers and stage 2 

involved training the deep recurrent NN and performing final, enhanced outlier 

detection.  Promising results were attained proving the effectiveness of the proposed 

method in detecting outliers, which outperformed the benchmark comparative studies 

by 3%.                    

 

3.3.2 Missing Values 

 

 As stated, missing values refer to the completeness measure in data quality.  

Incomplete data pertains to attribute noise as the expected data does not exist, for 

example a missing attribute value within a dataset due to equipment failure, or human 

negligence in entering data due to uncertainty or misinterpretation, thus omitting the 

required value [161].  Various methods of handling missing values exist, including 

either removing the entire record of data, or imputing the missing values based upon 

other data observations.  Removing an entire record of data is not recommended, as 

there may be a large amount and therefore the complete dataset would be drastically 

reduced in size.  Additionally, the remaining data within the record may be of good 

quality, thus if the entire record was removed, a large quantity of valuable data would 

be unnecessarily omitted [19].  Consequently, imputing the missing values is 

preferential.  Handling missing numeric data may involve imputing a value based 

upon the attribute mean or median, whereas handling missing categorical data may 

involve adding a new category, such as a global constant as a new class [161].  For 

example, a common occurrence in large, free-living smart environment datasets is to 

impute a new “other” category to describe instances without an assigned class label 

as this may be data occurring between target activities.  Many useful, open source 

tools exist in dealing with missing values, for example the Python Data Analysis 

(PANDAS) library is a powerful data analysis and manipulation resource utilised to 

improve data quality.  In a study conducted by [43], a well-established HAR dataset, 

namely Aruba, generated within the CASAS smart home was processed for the 
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purpose of improving the following stages of the HAR process: feature extraction 

and classification.  It was recognised that over half of the dataset contained unlabelled 

activity instances, thus the researchers labelled this data as “other” during the pre-

processing stage.  Furthermore, the Aruba dataset was processed within [85], within 

which the researchers also described the unlabelled activity instances as “other”. 

 

3.3.3 Inconsistent or Incorrect values 

 

 The presence of inconsistent or incorrect values within data relate to the 

aforementioned consistency and accuracy data quality measures.  For example, 

inconsistent data may comprise of discrepancies in naming conventions or 

representative codes, as developing an “A, B, C” convention within one data store 

could be unintentionally adapted to “1, 2, 3” in another, thus resulting in 

inconsistencies across data stores [161].  Incorrect values involve any data that does 

not conform to their related objects, for example, if a Surname is entered into a Title 

field within a data record.  Data recognised as inconsistent or incorrect may be 

enhanced through the utilisation of data quality tools.  A number of open source tools 

exist for improving data quality, such as OpenRefine.  This visualisation and 

manipulation tool supports both the detection and correction of data inconsistencies 

through transforming data from one format to another.  For example, incorrect text 

inputs can be identified through using a Text Facet within OpenRefine, which allows 

a user to view data more simplistically, such as data within a specific column, through 

displaying their unique inputs along with the frequency of their occurrence.  

Consequently, potentially incorrect inputs can be visually identified.  Additionally, 

incorrect values may be amended or removed.  In a study conducted by [171], a 

platform aimed towards supporting the independence of elderly smart home 

inhabitants was proposed.  The HAR dataset utilised contained 16 ADLs gleaned 

through over 80 environmentally deployed reed switches.  Data pre-processing was 

emphasised during this study, including the process of data transformation to ensure 

consistency within the data.  For example, all date formats were transformed to 

achieve consistency.    
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3.4 Methodology 

 

The dataset utilised in the current study was collected by 141 students 

enrolled in the Pervasive Computing in Healthcare module at Ulster University using 

a triaxial accelerometer [13].  The students were each assigned a HAR scenario 

containing 3 activities, and were subsequently tasked to collect, process, and classify 

data as part of the module assessment. In total, there were 6 scenarios and 18 

activities recorded amongst the cohort.  Table 3.1 presents details of the dataset, 

including the number of participants assigned to collect activity data per scenario.   

 

Table 3.1. Dataset description including the number of participants assigned to each HAR scenario, and the 

activities involved within each of the 6 scenarios 

Scenario No. of participants Activities 

Self-Care 24 
Hair grooming, brushing 

teeth, washing hands 

Cardio 23 Walking, running, jogging 

House Cleaning 25 
Wash windows, ironing, 

wash dishes 

Food Preparation 23 
Mixing food, chopping 

veg, sieving flour 

Sports 25 Pass, catch, bounce 

Weights 21 
Arm curls, lateral arm 

raises, deadlift 

 

To investigate the impact of noise on HAR performance, a subset of the data 

was considered which consisted of the Self- care scenario involving hair grooming, 

hand washing and teeth brushing activities.  This scenario was chosen for initial 

consideration as [13] states hair grooming and hand washing activities were most 

difficult to discriminate between of the 18 activities recorded.  The selected scenario 

contained recordings produced by 24 participants, thus there were 72 activity files as 

each participant individually recorded the 3 activities specified in the self-care 

scenario. 
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3.4.1 Data Acquisition  

 

Data utilised for experimentation in this Chapter was previously collected as 

reported in [13].  As previously mentioned, data was collected using a triaxial 

accelerometer, specifically a Shimmer device placed on the participants’ dominant 

wrist to record data for each activity, presented in Figure 3.1.  The students were 

instructed to follow a data collection protocol and were given video examples clearly 

demonstrating how the activities should be recorded, presented in Appendix 1.  

Students were also provided with well-defined guidelines as to how the sensor should 

be configured and calibrated, as data acquisition was performed unsupervised.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Shimmer device where (a) presents the Shimmer device axis, and (b) presents an example of the 

correct Shimmer device placement on a wrist. 

(b) Shimmer device attached to wrist 

(a)  Shimmer device with the X, Y, and Z axis displayed 
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The Shimmer device was initially to be calibrated using the Shimmer 9D0F 

Calibration software, presented in Figure 3.2, to determine the sensitivity and offset 

of the sensor.  The offset depicts the sensor value observed when the true value is 

zero, whereas the sensitivity is determined by the chosen accelerometer range.  The 

smaller the range, the more sensitive the sensor will be.  Considering the triaxial 

accelerometer utilised, 6 observations were required to calibrate the X, Y and Z axis, 

as each axis possesses two degrees of freedom. 

Figure 3.2. Shimmer Calibration software 

Data was collected using the Shimmer wireless sensor platform.  Prior to 

recording, the device was configured with a sampling rate of 51.2Hz and a sensitivity 

range of ±1.5g.  During each activity recording the data for the X, Y and Z axis is 

streamed and stored in a .csv file format along with a timestamp.  Due to this, 

approximately 6120 samples were expected to be recorded per activity, per person as 

each of the participants were tasked to collect 2 minutes of data per activity.  Figure 

3.3 presents the Shimmer Connect software used to record activity data, 

demonstrating movement along the X, Y and Z axis, along with an example of the 

full activity recording produced through the teeth brushing activity.   
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Figure 3.3. (a) presents an example of the Shimmer Connect software used to record activity data from the 

accelerometer and (b) presents a full example of the produced activity recording (approximately 2 minutes 

duration). 

 
 

(b)  A full activity recording example of the teeth brushing activity performed by one participant 

(a)  The Shimmer Connect software used to record activity data 
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3.4.2 Data Cleaning   

 

As presented within Section 3.3, many established tools and techniques exist 

for the purpose of analysing and enhancing the quality of data, as well as recognised 

methods in detecting noise.  It was decided to conform with a manual cleaning 

technique for data quality explorations within this work, recommended within the 

Pervasive Computing in Healthcare module offered at Ulster University, presented 

in Appendix 2.  This technique involved visualisation of the accelerometer signals 

for manual inspection and quality enhancement.  The purpose of visually inspecting 

activity data was to provide support in gaining valuable experience, whilst also 

developing knowledge, upon accelerometry-based data validation.                

Thus, activity data was visually inspected through plotting the individual 

graphs of the participants recorded data files to ensure that the data collection 

protocol had been adhered to and also to identify potential noisy portions of 

recordings.  The data was cleaned based on errors (noise) introduced by participants 

that recorded data incorrectly, which can be easily visually identified.  The purpose 

of data cleaning was to detect outliers, for example, random large spikes and issues 

such as poor calibration of the Shimmer device, or a sensitivity range outside of the 

measurable capacity of the sensor.  Additionally, each participant’s activity files were 

examined to check for the possible existence of brief time delays between 

starting/ending the recordings, and performing the target activity as these portions of 

data are not representative of the target activity.  Figure 3.4 demonstrates the steps 

taken to assess the quality of each data recording, within which the sources of noise 

are either handled by discarding the activity file or enhancing its quality by removing 

noisy portions of data, thus resulting in a sufficiently representative activity recording 

to proceed to the next stage of the HAR process. 
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Figure 3.4. Data cleaning process within which sources of error (noise) are identified and handled 
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Figure 3.5 presents an example of removing time delays from an activity 

recording, indicating the removal of noise as this additional data is irrelevant to the 

activity being performed and may cause confusion during classification.  This is an 

example of ensuring data validity, as the time delayed portions of data are not 

representative of the activity being recorded, thus, this data is invalid.      

 

 
Figure 3.5. Displaying a signal before and after the removal of noise, caused by a time delay at the beginning 

of a recording. 

 
 
 As mentioned, outliers which were clearly distinguished during data 

inspection were removed to attain a better quality signal.  Figure 3.6 presents an 

example of a random spike existing in an activity file, which was subsequently 

removed from the file.  This is an example of an outlier, as the data spike presented 

in Figure 3.6 has largely deviated from the data trend observed, demonstrating this 

abnormal data value exists far from all other values recorded. 
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Figure 3.6. Random large spike to be removed from the signal 

 

A large majority of data issues detected, specifically noisy portions of signals, 

could simply be removed from the activity data to improve quality, as the remainder 

of these signals possessed good quality, representative activity data.  Certain activity 

files were fully discarded from the dataset due to issues such as a signal having a 

range outside the measurable capability of the sensor.  For example, if the range was 

correctly set during configuration to +-6G, and the target activities were correctly 

recorded, an abnormally large axis would not exist on the activity graph, as presented 

in Figure 3.7.  This is an example of discovering invalid data, as the data being 

recorded is not representative of the phenomenon being measured (the target 

activity).    

 

Figure 3.7. Displaying a signal with a range outside the measurable capability 
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As a result of cleaning the data, 9.44% of instances were removed from the 

dataset as these were deemed noisy or erroneous samples (the raw dataset contained 

2891 instances before cleaning, and subsequently contained 2618 instances following 

this).   

 

3.4.3 Segmentation 

 

Data was segmented using time-based windowing to identify segments of the 

data streams that were likely to contain information regarding activities.  Time 

windowing is a commonly utilised technique pertaining to accelerometers where 

sensor data is sampled at a sustained rate [9],  although no clear consensus has been 

identified as to which window size should be implemented [172].  If the window size 

employed is too small, there may not be enough relevant activity information 

obtained to make a beneficial decision, however, if the window size is too broad, the 

measurements made may have too few variations to result in appropriate decisions 

for activity classification [173].  A non-overlapping window size of 3 seconds was 

deemed appropriate as [172] states energetic activities such as walking, jogging and 

running can be optimally detected between 1 and 3.25 seconds, while more complex 

activities may require longer time windows. 

  

3.4.4 Feature Extraction 

 

A compilation of standard time domain features were extracted from the 

windowed data to obtain relevant information and to represent the characteristics of 

the various activity signals.  Extracted features included the mean, maximum, 

minimum, standard deviation, variance, root mean square (RMS), signal magnitude 

area (SMA), range, and median for the X, Y, and Z axis and signal magnitude vector 

(SMV), and the cross correlation for each axis, as [70] suggests these features are 

suitable for activity recognition.  A total of 39 features were extracted, as presented 

in Table 3.2. 
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Table 3.2. Features extracted from the windowed data 

Feature No. Feature Name Description 

1-4 Mean 
Mean value of the X, Y, Z 

and SMV 

5-8 Maximum 
Maximum value of the X, 

Y, Z and SMV 

9-12 Minimum 
Minimum value of the X, 

Y, Z and SMV 

13-16 Standard Deviation 
Standard deviation of the 

samples X, Y, Z and SMV 

17-20 Variance 
Variance of the X, Y, Z 

and SMV 

21-24 Root Mean Square 
Root mean square of the 

X, Y, Z and SMV 

25-28 
Signal Magnitude Area 

(SMA) 

SMA across the 

acceleration signal in X, Y, 

and Z axis 

29-32 Range 
Range of the samples of 

SMV in the window 

33-36 Median 
Median of the X, Y, Z and 

SMV 

37-39 Cross Correlation 
Cross correlation of the X, 

Y and Z axis 

 

 The statistical features mentioned are common due to their simplistic nature 

and significant performance across a variety of activity recognition problems [70].  

The maximum, minimum and range features can assist in differentiating between 

activities that contain movements comprised of different ranges [74].  SMA has 

proven beneficial when employing triaxial accelerometers for activity recognition as 

it can suitably differentiate between static and dynamic activities [174].  SMV signals 

are independent of the orientation of the sensor [175] and were consequently valuable 

to include as the dataset contained a large number of participants, each placing the 

sensor on their dominant wrist. 
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3.4.5 Activity Classification  

 

Four standard classifiers were chosen to make decisions on the activities 

being performed, namely NB, DT, kNN and an MLP.  The classifiers were 

constructed using Weka and configured using the recommended default parameters 

within Weka.  These classifiers were chosen as NB, DT and kNN are recognised 

within [176] as effective classifiers, and MLP is recognised as effective for HAR 

tasks according to [47], [177].  10-fold cross validation was used for training and 

testing the models, and classification accuracy was measured to assess model 

performance.  Classification accuracy is calculated as the number of correctly 

classified instances divided by the total number of instances.  Model performance 

was first evaluated on the raw data with the four classification algorithms, where both 

the training and test sets included noise (N-N).  Following this, the four classification 

models evaluated were retrained with cleaned data through applying the cleaning 

method described in Section 3.3.2.  In this case, both the training and test sets 

consisted of data with improved quality (C-C).  Nevertheless, to simulate a real-life 

application another case was introduced to ascertain whether the models were able to 

retain their capability of generalising; consequently, each model was trained on a 

cleaned set and tested on a noisy set (C-N).  Another case was initially considered 

where the models would be trained on noisy data and tested on cleaned data (N-C), 

however this was not employed as the N-C combination was deemed to be an invalid 

scenario for evaluation.  Significance testing was applied to determine whether the 

comparisons made were of statistical importance using t-testing with a 95% 

confidence.  Thus, a p- value of less than 0.05 was believed to be statistically 

significant.  

 

3.5 Results and Discussion  

 

 The obtained results demonstrate the importance of conducting a data quality 

assessment during the data preparation stage in relation to HAR, particularly when 

the acquired activity data has been collected via a large number of unsupervised 

participants.  Whilst implementing the data cleaning methodology described in 
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Section 3.4.2, various sources of noise were identified and subsequently rectified, 

thus, the obtained results reflect the adverse impact these issues had on classification 

performance when comparing the original data to the improved quality data.  Sources 

of error that were identified and removed, which evidently had an impact on 

classification performance, predominantly included the removal of time delays, for 

example, portions of recordings with non-representative data incorrectly recorded 

before or after performing the target activity, random spikes existing within activity 

files, and issues such as having a signal range outside the measurable capability of 

the employed accelerometer.  Table 3.3 provides the classification accuracies 

produced by the four evaluated algorithms for the activity recognition problem, 

within which N-N indicates a noisy training set paired with a noisy test set, C-C 

indicates a cleaned training set paired with a cleaned test set, and C-N indicates a 

cleaned training set paired with a noisy test set.  The kNN model achieved 

consistently superior performance across all considered cases (N-N, C-C, and C-N), 

whereas the Naïve Bayes model performed least effectively, in comparison to the 

remaining evaluated classification models. 

 

 

Table 3.3. Accuracies of four algorithms for the classification of activities included in the Self-Care scenario. 

 
N-N 

(%) 

C-C 

(%) 

C-N 

(%) 

MLP 89.688 90.939* 89.272 

DT 84.516 85.935 85.502 

kNN 90.862 92.202* 92.522** 

NB 67.240 80.207*** 75.887*** 

 

Note: The table displays comparisons between whether there was a significant difference N-N & C-C cases, 

and N-N and C-N cases through T-Testing.  *p<0.05. **p<0.01. ***p<0.001. 

 

 

The results in Table 3.3 demonstrate the effectiveness of the data cleaning 

methodology undertaken, as cleaning the data through visual inspection lead to an 
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improvement in performance of all four classifiers when generating comparisons 

between the N-N & C-C cases, with significant improvements made by the MLP, 

kNN and the NB models.  The NB model improved most substantially in terms of 

classification accuracy, demonstrating an increase of 12.967% from 67.240% to 

80.207%, whilst comparing the N-N to C-C cases.  The remaining three models, 

namely kNN, DT, and MLP improved by 1.340%, 1.420%, 1.250%, respectively.  

This outcome proves the benefits of training and testing models on cleaned data and 

suggests that noise has an apparent negative impact on classification accuracy.  

In terms of robustness to noise, the results produced by each classifier were 

individually analysed.  For example, considering the NB model had improved most 

substantially between the N-N and C-C cases, which indicated its poor ability to 

handle the impact of noise.  This may be due to the classical NB model being 

sensitive to outliers, as reported in [104].  Some studies suggest the NB model is 

relatively robust to noise due to its conditional independence assumption (naivety), 

in relation to the various input features [178], [179], yet it was also stated that model 

robustness may be dependent upon several factors such as the level of noise present 

within the dataset, as well as the characteristics of the data, for example, whether 

class imbalance exists.  Nevertheless, the obtained results in Table 3.3, along with 

investigations conducted in [104], indicate poorer robustness to attribute noise.  

Furthermore, the DT and MLP models performed moderately well in terms of 

robustness to noise during the experiments conducted.  According to [110], [180], an 

advantage of DTs include their tolerance of outliers.  Nevertheless, it was also 

mentioned in [110] that overfitting may occur, particularly whilst evaluating a small 

dataset, which may adversely affect its ability to handle noise.  The overfitting 

problem is also commonly acknowledged whilst implementing NNs, as they are able 

to learn complex decision boundaries during training.  Yet, the obtained results have 

demonstrated an avoidance of overfitting, as both the MLP and DT models had 

retained their ability to generalise.  Finally, the kNN model initially demonstrated 

sufficient robustness to noise through obtaining the optimal classification 

performance before implementing the data cleaning methodology.  This conforms 

with [102], [181], which stated an advantage of the kNN classifier is its ability to 

tolerate noisy data.  Additionally, whilst comparing the N-N and C-C cases, the kNN 

classifier achieved a small increase in performance which indicates that whilst 
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demonstrating adequate robustness to noise, the adverse effects of noisy data 

remained. 

A more realistic case to consider is the C-N circumstance, as a model can be 

trained on cleaned data, though the prevalence of a clean test set is highly unlikely in 

a more naturalistic, real-world setting.  This case evaluated whether the models were 

capable of generalising if tested with noisy data. When generating comparisons 

between the N-N & C-N situations, the NB and kNN classifiers improved 

significantly and retained their ability to generalise.  Again, the NB model 

demonstrated the largest improvement in classification accuracy, increasing from 

67.240% to 75.887%.  The MLP and DT did not significantly improve, yet they did 

not perform worse or lose their generalisation capability, even after being trained on 

a smaller dataset (as 9.44% of instances were removed during cleaning).  As 

previously stated, there may be an unclear border between normal and abnormal data, 

which indicates some instances may have been removed that were seemingly outliers 

though may have actually been useful to remain within the dataset; therefore, the 

MLP and DT may have been affected as a result.  

The obtained results indicate that a revised and refined data collection 

protocol would benefit the quality of the diverse dataset gleaned by a large number 

of unsupervised participants, as the identified data issues adversely impacting HAR 

classification performance were introduced during data collection and may have been 

avoided.  For example, consider the brief time delays that had occurred before/after 

performing the target activity during some recordings that were irrelevant and 

unrepresentative of the activity.  Through examining the data collection protocol, it 

had been observed that during the calibration stage, participants were instructed to 

leave the sensor untouched for 5 seconds prior to calibrating each orientation.  This 

may have caused some confusion to participants during the activity recording stage, 

in which they may have assumed a 5 second time delay was also required at this 

stage.  Thus, the data collection methodology should be updated to clearly distinguish 

no time delays should occur during activity recordings.  Additionally, calibration and 

configuration of the accelerometer was clearly defined within the protocol yet issues 

still transpired.  Therefore, the protocol should be updated to emphasise the 

commonly occurring data collection issues to ensure participants are particularly 

attentive in avoiding those.  For example, ensuring the correct sensitivity range is 

chosen during configuration. 



The Impact of Dataset Quality on the Performance of Data-Driven Approaches to HAR 

        

   

68 

3.6 Conclusion 

 

 As stated, data quality is an imperative consideration pertaining to the 

classification performance of data-driven classifiers.  Thus, data gleaning is also 

becoming a critical concern in the realms of machine learning as noise and outliers 

are commonly introduced during this stage.  Noise and outliers may particularly 

occur in unsupervised, large-scale data collection scenarios, in which participants 

may introduce avoidable data issues due to lack of understanding or naive negligence, 

thus leading to suboptimal activity recordings. 

The impact of data quality on activity classification using data-driven models 

has been evaluated during experimentation in this Chapter.  An effort in generating 

performance comparisons between noisy and cleaned data for HAR has been 

presented, using a diverse dataset collected by multiple participants in an 

unsupervised setting.  Data was gleaned using a triaxial accelerometer located upon 

the dominant wrist of each participant and segmented through time-based 

windowing.  Additionally, 39 features were extracted to represent the characteristics 

of activity signals, subsequently evaluated with four common data-driven classifiers, 

namely DT, NB, kNN and MLP.  As ascertained, data-driven approaches rely on 

good quality data which has been demonstrated through the experimental results 

obtained.  The data cleaning methodology undertaken had demonstrated its 

effectiveness as various sources of noise were discovered and removed, which 

enhanced the classification performance achieved by all four classifiers.  The 

performance of each classifier was evaluated on the raw data, specifically the N-N 

case, and subsequently evaluated on the improved quality data, namely the C-C case.  

Lastly, the C-N case was evaluated to simulate a real-life scenario and to ascertain 

whether the models were able to retain their capability of generalising.  The NB 

model demonstrated the most significant improvements whilst generating 

comparisons in both N-N to C-C and N-N to C-N cases, followed by the kNN model.   

Since noise was introduced during the data acquisition stage, experimental 

results highlighted the importance of following a data collection protocol attentively 

and recommend ensuring activity recordings contained high quality data for 

classification purposes.  Additionally, findings from experimentation indicated that 

a further refined data collection protocol may be beneficial as the presence of noise 
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was largely due to participants failing to adhere to the data collection protocol 

attentively1.  According to [182], numerous challenges exist in collecting HAR data, 

which have currently led to low availability of publicly disseminated HAR datasets.  

Furthermore, the quality of these publicly available datasets is often unclear [81].  

Some repositories, for example UCI Machine Learning Repository, contain some 

information concerning attribute types and missing values, nevertheless, data 

requires screening to confirm its suitability for classification [182].  Thus, Chapter 4 

will assess the quality of a publicly available HAR dataset and prepare this data for 

use in succeeding Chapters.    

 

 

 

 

 

 

 

 
1 The results in this Chapter were published in [205] 



   
 

   

 
 

 

 

 

 

Chapter 4 

 

Recommendations for Pre-

Processing Publicly Available 

HAR Datasets 

 

 

 

 

4.1 Overview 

  

As previously introduced in Chapter 3, data collection is recognised as a 

crucial concern amongst the numerous challenges in machine learning, largely due 

to limited amounts of training data being available to researchers in their respective 

fields, and the quality of the data being collected [80].  In the realms of machine 

learning, it is known that the majority of time and effort is consumed through data 

preparation, which includes gleaning, cleansing, and interpreting the data, as well as 

performing feature engineering [80].  The performance of data driven methods are 
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largely reliant upon the quality of data introduced during the training phase, thus, 

data quality is a vital consideration whilst implementing data-driven methods to 

HAR.  Nevertheless, according to [13], the progression of HAR research is still being 

hindered by the scarcity of publicly available datasets that include a large quantity of 

accurately annotated and high quality data.  Furthermore, according to [81], the need 

for investigations into developing high quality, accurate, refined pervasive health 

study protocols remains crucial in efforts towards providing more availability of 

shared research testbeds.  Determining the reliability of collected data has been 

identified as a challenge regarding shared pervasive health datasets, with concerns 

raised pertaining to data collection and management [81].  Thus, the development of 

standards is required to ensure the effective sharing and re-use of pervasive health-

related data [81].     

This Chapter assesses the quality of a publicly available HAR dataset and 

prepares the data for use in succeeding Chapters.  Section 4.2 describes the publicly 

available HAR dataset analysed within this Chapter, Section 4.3 details the 

preprocessing stage conducted, Section 4.4 provides recommendations for pre-

processing data to ensure adequate quality, and finally Section 4.5 concludes this 

Chapter. 

 

4.2 Dataset for Data-Driven HAR 

 
Within the realms of data-driven HAR, a number of common data quality 

issues have emerged that adversely affect classification performance.  These include 

annotation scarcity/incorrectness, issues with combining multimodal data sources, 

data inconsistency, heterogeneity of sensor data, and large imbalance of data existing 

within many HAR datasets [183],[13].  Due to the nature of human activities, class 

imbalance is a widely reported issue as some activities occur frequently throughout 

a typical day, whereas other activities occur occasionally.  In a study conducted by 

[184] the adverse effects of imbalanced data were revealed in which classification 

performance was evaluated before, and subsequently after, the application of a 

resampling technique.  Initial experiments demonstrated the adverse effects of 

imbalanced data as the minority classes, specifically transitional activities, performed 

much worse than the majority classes, specifically standard static and dynamic 



Recommendations for Pre-Processing Publicly Available HAR Datasets  

       

   

72 

activities.  Subsequently, following the implementation of a resampling technique, 

classification performance had significantly improved.  Thus, concluding that 

unbalanced data has a negative impact on performance during classification.        

 An overview of the explored HAR data is presented in this Section with 

emphasis upon the quality of data.  The UCAmI Cup challenge is also described as 

the dataset utilised in this Chapter was derived from this competition.  Section 4.2.1 

outlines details of the original dataset, Section 4.2.2 highlights the problems 

identified and Section 4.2.3 details the restructured dataset created as a result of the 

encountered problems and to demonstrate more realistic capabilities of binary 

datasets for HAR in smart environments.  The data used in this Chapter was generated 

for the 1st UCAmI Cup challenge, within which participants were encouraged to 

apply their tools and techniques to explore a HAR dataset with the ambition of 

attaining the highest classification accuracy upon an unseen test set.  The challenge 

coordinators comprehensively describe the HAR dataset provided to participants in 

[79].   

 

4.2.1 UCAmI Cup Dataset 

 

The HAR dataset was collected over 10 days by researchers in the UJAmI 

Smart Lab [79].  The UJAmI Smart Lab is divided into five regions: an entrance, a 

workplace, a living room, a bedroom with an integrated bathroom, and a kitchen, 

which combined measures approximately 25 square meters, as presented in Figure 

4.1.  The dataset was captured and manually annotated by a single male inhabitant 

completing morning, afternoon and evening routines, representing 246 occurrences 

of 24 activity classes, as presented in Table 4.1.  The training set consisted of 7 days 

of labelled data, with the remaining 3 days of data being provided as an unlabelled 

test set.  
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                Figure 4.1. Location of binary sensors in the UJAmI Smart Lab [79] 

 

Table 4.1. Activity classes in the UCAmI Cup dataset [60], where M, A and E indicate the Morning, Afternoon 

and Evening routines, respectively. 

ID Name Instances Routine 

Act01 Take medication 52 A, E 

Act02 Prepare breakfast 63 M 

Act03 Prepare lunch 118 A 

Act04 Prepare dinner 76 E 

Act05 Breakfast 78 M 

Act06 Lunch 101 A 

Act07 Dinner 86 E 

Act08 Eat a snack 12 A 

Act09 Watch TV 70 A, E 

Act10 Enter smart lab 21 A, E 

Act11 Play a videogame 28 M, E 

Act12 Relax on the sofa 85 M, A, E 

Act13 Leave smart lab 33 M, A 

Act14 Visitor to smart lab 7 M, A 

Act15 Put waste in the bin 75 A, E 

Act16 Wash hands 22 M 

Act17 Brush teeth 132 M, A, E 

Act18 Use the toilet 44 M, A, E 

Act19 Wash dishes 13 A, E 

Act20 Put washing in machine 20 M, A 

Act21 Work at the table 20 M 

Act22 Dressing 86 M, A, E 

Act23 Go to bed 30 E 

Act24 Wake up 32 M 
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A set of 30 binary sensors consisting of magnetic contact switches, PIR 

motion detectors, and pressure sensors were deployed in the UJAmI Smart Lab to 

capture human interactions within the environment, as presented in Figure 4.1.  The 

two changeable states of the magnetic contact switches were open/close, which were 

attached to, or integrated within, doors and objects such as the medication box.  The 

motion detectors generated and recorded movement/no movement states to identify 

whether an inhabitant had moved in or out of the 7-meter sensing range.  Finally, the 

pressure sensors deployed generate either pressure/no pressure states and was present 

in the bed and the sofa to detect any interactions.  A comprehensive description of 

each binary sensor is presented in Table 4.2.  

Table 4.2. Description of binary sensors [35] 

ID Object Type States 

SM1 Kitchen area Motion Movement/No movement 

SM3 Bathroom area Motion Movement/No movement 

SM4 Bedroom area Motion Movement/No movement 

SM5 Sofa area Motion Movement/No movement 

M01 Door Contact Open/Close 

TV0 TV Contact Open/Close 

D01 Refrigerator Contact Open/Close 

D02 Microwave Contact Open/Close 

D03 Wardrobe Contact Open/Close 

D04 Cups cupboard Contact Open/Close 

D05 Dishwasher Contact Open/Close 

D07 WC Contact Open/Close 

D08 Closet Contact Open/Close 

D09 Washing machine Contact Open/Close 

D10 Pantry Contact Open/Close 

C01 Medication box Contact Open/Close 

C02 Fruit platter Contact Open/Close 

C03 Cutlery Contact Open/Close 

C04 Pots Contact Open/Close 

C05 Water bottle Contact Open/Close 

C07 XBOX Remote Contact Present/Not present 

C08 Trash Contact Open/Close 

C09 Tap Contact Open/Close 

C10 Tank Contact Open/Close 

C12 Laundry basket Contact Present/Not present 

C13 Pyjamas drawer Contact Open/Close 

C14 Bed Pressure Pressure/No pressure 

C15 Kitchen faucet Contact Open/Close 

H01 Kettle Contact Open/Close 

S09 Sofa Pressure Pressure/No pressure 
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4.2.2 Data Challenges 

 

As stated, the data utilised within this Chapter was collected for the purposes 

of the 1st UCAmI Cup challenge [185].  It was reported that knowledge-driven, rule-

based approaches outperformed the data-driven approaches to the activity 

recognition task, with several participants highlighting issues and limitations 

discovered within the data [39], [108], [186], [187].  The technique applied by [186] 

incorporated a domain knowledge-based solution inspired by a Finite State Machine, 

which achieved 81.3% accuracy on the unseen test set.  In [108], a hybrid model was 

proposed using a hidden markov chain and logic model.  The researchers combined 

their knowledge-driven and probabilistic models using a weighted averaging method, 

however, they reported they had expected a better result than 45.0% accuracy on the 

test set.  Further to this, [39] used a Naïve Bayes approach with emphasis on location-

aware, event-driven activity recognition.  The applied method interpreted events as 

soon as they became available in real-time, omitting the need of an explicit 

segmentation phase, and generated activity estimations using an activity prediction 

model.  Reported results show mean accuracies of around 68%, with the researchers 

stating that given the high number of activity classes, the outcome achieved was 

reasonable.  Another approach implemented in [187] used various common machine 

learning algorithms, including a DT, kNN, SVM, and three ensemble approaches 

including a Random Forest, Boosting and Bagging.  The researchers reported a 

training set accuracy of 92.1%, however, their approach achieved 60.1% on the 

provided test data which demonstrated poor generalization.  Their suggested cause 

for the low outcome was the high imbalance of classes in the training set and stated 

the training algorithm required more labelled training data to perform better.  Table 

4.3 presents an overview of the techniques implemented along with the performances 

achieved by UCAmI Cup participants, and the reported data challenges. 
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Table 4.3. UCAmI Cup Challenge: Implemented techniques, performances achieved, and data challenges 

reported by participants 

Publication 
Implemented 

Technique 

Train  

Accuracy  

(%) 

Test 

Accuracy 

(%) 

Reported Data 

Challenges 

[39] 

Recursive Naïve Bayes 

method with emphasis 

on location-aware, 

event-driven HAR 

68 Undisclosed 

Large number 

of activity 

classes 

[108] 

Hybrid knowledge-

driven and probabilistic 

model using a weighted 

averaging method 

Reported per 

routine: 

Morning 65.4 

Afternoon 60.8 

Evening 59.4 

45.0 

Imbalanced 

dataset and poor 

distribution of 

activities within 

train and test 

sets 

[186] 

Domain knowledge-

based solution inspired 

by a Finite State 

Machine 

Undisclosed 81.3 

Low quantity of 

available data 

and missing 

sensor values 

[187] 

Comparisons of various 

classification models 

including DT, kNN, 

SVM, Random Forest, 

and ensemble methods 

92.1 60.1 

High imbalance 

of classes in the 

training set, and 

low quantity of 

available data. 

[38] 

Multi-Event Naïve 

Bayes Classifier using 

activity sequences and 

sensor events 

68.0 60.5 

Large number 

of activity 

classes 

[188] 
Random Forest 

classifier 
94.0 47.0 

Imbalanced 

dataset and poor 

distribution of 

the train and test 

sets 

 

4.2.3 Acknowledged Limitations 

 

The limitations and issues discovered within the original binary dataset that 

hindered classification performance whilst recognising ADLs in a smart environment 

setting, comprehensively included:    

 

• Number of classes   

The number of classes in the original dataset were very high given the low 

number of instances per activity and low amount of data overall.  As discussed 

previously, data-driven approaches rely on large amounts of good quality data.  
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Furthermore, certain classes were too closely related to one another to recognise with 

binary data alone.  For example, the following activities relied on one door sensor: 

Act 10 enter smart lab, Act13 leave smart lab, and Act14 visitor to smart lab.  Binary 

sensors are limited in inferring activities in that they provide information at an 

abstract level [189], therefore Act08 eating a snack was difficult to distinguish 

compared to Act03 prepare breakfast, Act04 prepare lunch and Act05 prepare dinner 

as these activities all used similar sensors within the kitchen.  Thus in order to capture 

activities at a finer level, the presentation and interpretation of binary data often 

requires further knowledge of the environment [190].  This issue was discussed by a 

UCAmI Cup participant in [39], where conclusions had stated that their achieved 

activity recognition performance was reasonable given the large number of activity 

classes present in the dataset.       

         

• Imbalanced dataset   

The distribution of instances per class in the original dataset were highly 

diverse, which may have caused minority classes to be overlooked by the 

classification model.  For example, Act19 wash dishes was represented by 13 

instances of data, whereas other activities such as Act17 brush teeth had more than 

100 instances.  Furthermore, the distribution of instances per class in the provided 

training and test sets were highly varied.  For example, Act09 watch TV was very 

under-represented in the training set, yet the test set included a large number of Act09 

instances.  Noteworthy, Act09 watch TV also produced very similar sensor 

characteristics to Act12 relax on the sofa, which was problematic in the initial 

experiments as the training set included large amounts of Act12 data.  This issue was 

discussed in [108] where researchers stated that their approach also found difficulty 

in classifying Act12 due to the poor representation of this activity in the training set, 

and suggested the data should be better distributed to improve HAR performance.   

 

• Quantity of data 

As previously stated, data-driven approaches require a large amount of data 

during the training phase to learn activity models, and to ensure these models can 

generalize well to new data.  Thus, more labelled training data may have improved 

initial experiments.  In [187], UCAmI Cup participants suggested the cause for their 
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low HAR performance was the high imbalance of classes in the training set, and 

stated the training algorithm required more labelled training data to perform better.     

 

• Missing sensors 

Act21, work at table, had no binary sensor located near the table to distinguish 

this activity, as demonstrated in Figure 4.1.  This issue caused confusion as the sensor 

firing for Act21 in the labelled training set was seen to be a motion sensor located in 

the bedroom, which was irrelevant to Act21 and therefore seen as erroneous.  In 

addition to missing sensors, there were also missing values from sensors that were 

expected to fire during certain activities.  As previously stated, some researchers 

participating in the UCAmI Cup challenge reported they found missing values or 

mislabeling of some activities within the training set.  In [186] this issue was 

discussed where participants stated that during one instance of Act10 enter smart lab, 

the only binary sensor that was expected to fire (M01), did not change states.   

 

• Interclass similarity 

This is a common HAR challenge that occurs when certain activities generate 

similar sensor characteristics, though they are physically different [70].  Table 4.4 

presents the activities that produced similar sensor characteristics, resulting in 

difficulties arising in discriminating between these activities during classification.    

 

 

Table 4.4. Activities producing similar sensor characteristics within the UCAmI Cup data 

Activity 

Group 
Activity Name Common Sensors 

Act10 Act13 

Act14 

Enter Smart Lab, Leave Smart Lab, 

and Visitor to Smart Lab 
M01 Door 

Act23 Act24 Go to Bed and Wake Up C14 Bed 

Act09 Act12 Watch TV and Relax on Sofa 
S09 Pressure Sofa 

SM5 Sofa Motion 

Act02 Act03 

Act04 Act08 

Prepare Breakfast, Prepare Lunch, 

Prepare Dinner, Prepare Snack 

SM1 Kitchen Motion 

D10 Pantry 

C03 Cutlery 
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As a result of assessing the quality of data and others identifying various 

problems within the dataset, it was decided to restructure the data to reveal the 

potential of using binary sensors alone within smart environments.   

 

4.2.4 Restructured Dataset of Improved Quality 

 

The first step towards improving the quality of data by restructuring the 

dataset involved combining the provided training and test sets to better represent each 

activity class within the training data, thus striving to generate more robust models.  

Figure 4.2 presents the distribution of the combined 10 days of 24 activity classes for 

all the available data in the UCAmI Cup.  As can be observed in Figure 4.2, some 

classes were exceedingly under-represented, with a third of all activity classes 

containing less than 30 instances.  These classes were fully removed from the dataset 

as they would be highly under-represented during the training phase, and therefore 

would demonstrate poor generalisation to unseen data.  Consequently, 8.82% of 

instances were removed, which comprised the following classes: Act08 eat a snack, 

Act11 play a videogame, Act16 wash hands, Act19 wash dishes, Act20 put washing 

in machine and Act21 work at the table.   

An opportunity to combine certain similar activity classes emerged so that the 

data could be used effectively.  For example, Act10 enter smart lab, Act13 leave 

smart lab and Act14 visitor to smart lab were combined to produce ActN1 door, as 

they all made use of a single door sensor, and Act09 watch TV and Act12 relax on 

the sofa were combined to produce ActN2 watch TV on sofa, as they mainly 

consisted of the inhabitant sitting on the sofa.  Furthermore, Act02 prepare breakfast 

and Act05 breakfast, Act03 prepare lunch and Act06 lunch and finally Act04 prepare 

dinner and Act07 dinner were combined to produce ActN3 breakfast, ActN4 lunch 

and ActN5 dinner, respectively, as these sets of activities were similar.  Table 4.5 

presents the restructured dataset. 
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Figure 4.2. Distribution of the 24 UCAmI Cup activity classes with threshold of <30 instances presented as 

dotted line. 

 
 

Table 4.5. Activity Classes in the Restructured Dataset, where underrepresented activities in the original 

dataset have been either removed or merged 

ID Name Instances Routine 

Act01 Take medication 52 A, E 

Act15 Put waste in the bin 75 A, E 

Act17 Brush teeth 132 M, A, E 

Act18 Use the toilet 44 M, A, E 

Act22 Dressing 86 M, A, E 

Act23 Go to bed 30 E 

Act24 Wake up 32 M 

ActN1 Door 61 M, A, E 

ActN2 Watch TV on sofa 155 M, A, E 

ActN3 Breakfast 141 M 

ActN4 Lunch 219 A 

ActN5 Dinner 162 E 

 

4.3 Data Pre-Processing   
 

Given that the data restructuring process involved combining the provided 

train and test sets to produce a set of data that better represented activity classes in 

the training data, it was subsequently required to extract a new test set.  Thus, 15% 

of the data was randomly selected and removed to generate an unseen test set.  The 

raw data files containing data streams produced by binary sensors included a 
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timestamp, the sensor ID, the sensor state, and the inhabitant name, as presented in 

Figure 4.3.       

 

Figure 4.3. Excerpt from a raw binary data file 

 

The data was segmented into 30 second non-overlapping time windows to 

identify the segments of data that are likely to contain information regarding 

activities.  Time-based windowing involves dividing the entire dataset equally into 

fixed time segments that can include a varied quantity of data (sensor activations) 

occurring within each time window [74].  It is a common approach for segmenting 

data streams collected through environmental sensors, however, no clear consensus 

exists for choosing the optimal window size for ADL recognition [172], therefore a 

30 second window size was chosen as this was the recommended value in the UCAmI 

Cup challenge.  A total of 31 features were included, which consisted of one feature 

per binary sensor, and an additional time routine feature representing whether the 

activity had occurred in the morning, afternoon, or evening, to help distinguish 

between the similar activities previously outlined.  For example, as Act23 go to bed 

and Act24 wake up use the same pressure sensor located in the bed, the inclusion of 

a time routine feature can help distinguish these activities due to the human nature of 

habitually waking up in the morning and going to bed in the evening. 

 

4.4 Recommendations 

  

 Based upon the findings through conducting investigations within Chapters 3 

and 4, various recommendations have been outlined for screening and pre-processing 

HAR data, which can be used as guidelines to support data collection protocols.  

Thus, ensuring the collection of good quality data and encouraging data sharing.  
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Various sources of attribute noise within a time-series accelerometry dataset were 

identified and handled within Chapter 3, which subsequently led to enhanced 

performance.  In addition to this, Chapter 4 involved collectively identifying data 

challenges within an environmentally collected sensor-based dataset.  In addition to 

considerations encompassing all sensor-based HAR data, data type-specific issues 

have been identified, for example the issues identified within Chapter 3 were more 

specified to time-series data collected through a data collection protocol.  Table 4.6 

provides recommendations in handling the identified issues. 

 

 
Table 4.6. Recommendations for pre-processing HAR data 

Data type Data Issue Recommended Action 

All HAR data 

Low quantity of data 

Avoid classifiers that require 

large amounts of data such as 

deep learning methods 

Class imbalance Apply re-sampling techniques 

Poor distribution of train and 

test data 

Re-distribute the train and test 

sets, if possible.  Alternatively, 

apply periodic training / model 

update 

Interclass similarity Extract discriminative features 

Sensor failure leading to 

missing values 

Imputation or removal of missing 

data instances 

Time-series 

accelerometry 

data 

Poor/no sensor calibration Discard data 

Incorrect sensitivity range Discard data 

Time delays before/after 

activity recordings 
Remove the noisy portion of data 

Irregular data spikes Remove the noisy portion of data 

 

 

 The low availability of HAR data is a recognised challenge within this 

domain.  Furthermore, some of the obtainable HAR datasets, for example that of the 

UCAmI Cup, contain low quantities of data which can hinder the performance of 

data-driven classifiers.  Consequently, in this case, it is recommended to avoid 

classifiers that require large amounts of data for effective performance, for example, 
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deep learning methods.  Another challenge, specifically class imbalance, is a widely-

acknowledged and extensively researched HAR challenge that should be addressed 

during pre-processing to diminish the adverse classification effects.  Numerous well-

established resampling techniques exist in handling class imbalance [154], [155], 

[156], thus the application of these techniques is recommended such as 

undersampling of the majority classes and oversampling of the minority classes to 

achieve an even distribution of data.  Furthermore, the distribution of training and 

test data is an important aspect for researchers to take into consideration, which will 

impact upon classification performance.  The training set must contain an adequate 

amount of representative data to train each activity class, otherwise the chosen 

classifier will be unable to effectively recognise the unseen test data.  An example of 

this scenario was demonstrated within the UCAmI cup challenge, as Act09 watch TV 

was highly under-represented in the training set, yet the test set included a large 

number of Act09 instances.  Thus, it is recommended to assess the distribution of 

training and test sets, and redistribute the data, if required, to avoid this issue.  

Another commonly emerging issue within HAR datasets is that of interclass 

similarity.  This issue hinders classification performance, thus, it is recommended to 

resolve this issue through extracting more discriminative features.  For example, 

within the UCAmI dataset, Act23 go to bed, and Act24 get up, both involved the 

same sensor, therefore the inclusion of an additional time feature could discriminate 

between these activities.  Finally, sensor failure has been identified as an issue to 

consider during pre-processing, which could result in missing values within the 

dataset and therefore hinder classification performance.  It is recommended to handle 

missing values through either imputation or removal of the data instance, depending 

on the scenario.  For example, if a large amount of data is missing, it could be 

beneficial to impute data to preserve the dataset, whereas if a large amount of data is 

available, and only a small amount of data is missing, it is recommended to remove 

the data instances containing missing values [19]. 

 Considering time-series data similar to that of Chapter 3, various 

recommendations are outlined to avoid the identified data quality issues and therefore 

improve classification performance.  It is recommended to discard data that has been 

collected with a poorly calibrated or entirely uncalibrated sensor, or that has been 

poorly configured through selecting an incorrect sensitivity range.  Furthermore, 

considering data containing only portions of noise, it is recommended to only remove 



Recommendations for Pre-Processing Publicly Available HAR Datasets  

       

   

84 

these noisy portions, thus preserving the remaining good quality, representative 

activity data.  For example, time delays before or after recordings and irregular data 

spikes within the data should be removed.  The data collection protocol should also 

be carefully reviewed to ensure that users are fully aware of their responsibilities 

during unsupervised data collection, thus minimalising the introduction of noise.  

 

4.5 Conclusion 

 

As stated, data preparation is a vital consideration within machine learning, 

where a large proportion of time consumption is expended on data collection, 

cleansing and interpretation [80].  Particularly, generating data-driven classification 

models require high quality data during training to produce optimally performing and 

robust models.  Yet, the recognised shortage of large, high quality and correctly 

annotated publicly available datasets continues to delay further advancements in 

HAR research.        

This Chapter assessed the quality of a publicly available HAR dataset and 

prepared this data for use in succeeding Chapters.  A number of challenges were 

discovered upon initial exploration of the data.  Consequently, this Chapter involved 

improving the quality of an openly available HAR dataset for the purpose of data-

driven HAR, as previously recognised in Chapter 3, data quality is a significant 

consideration whilst exploring data-driven approaches to HAR.  The importance of 

adhering to good data preparation practices was also highlighted, as restructuring the 

data will support and enhance HAR performance.  The data issues discovered in this 

Chapter may aid the refinement of further data collection protocols.  Findings within 

this Chapter support and reinforce the need for investigations that will aid the 

development of high quality and refined study protocols, as according to [81], this 

remains vital in providing publicly available, effective research datasets.  

Additionally, ascertaining the reliability and quality of pervasive health datasets has 

been recognised as a challenge, as no clear standards exist in effectively 

disseminating and re-using these research testbeds [81].  Thus, clear standards need 

to be developed to ensure the effective collection and sharing of data. 

According to [80], another important consideration for completing HAR tasks 

includes performing feature engineering.  Selecting an optimal feature vector is a 
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crucial, yet time consuming, stage in knowledge discovery [92], which includes the 

reduction or removal of redundant features as these may cause implications such as 

needlessly increasing computation time during classification, and adversely affecting 

classification performance  [91].  Furthermore, according to [184] feature 

engineering can have a substantial influence on the performance of classifiers.  Thus, 

Chapter 5 will investigate the impact of various feature selection techniques for the 

optimisation of HAR. 

 

 

 
 



   
 

   

 

 

 

 

 

 

Chapter 5  

 

Selecting an Optimal Subset of 

Features 

 

 

 

 

5.1 Overview 

 

Feature selection is a fundamental stage of the HAR process which involves 

distinguishing an optimal subset of features required to classify activities most 

effectively.  The discovery and removal of irrelevant features may improve 

prediction quality and classification performance, whilst also reducing the 

complexity of the data, computation time and data storage requirements [20].                

Common feature selection approaches include the application of filter and 

wrapper techniques.  Many studies conclude that wrappers outperform filter methods 

in reducing feature dimensionality with accelerometry-based datasets [21]–[25].  

Nevertheless, it was recognised that relatively less effort has been made in exploring 
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the most suitable approach to feature selection with binary datasets within smart 

environment settings.  Thus, a motivating factor for studies conducted in this Chapter 

is to investigate the impact of both filter and wrapper techniques with binary sensor-

based activity data.  Furthermore, hybrid approaches for selecting the most effective 

subset of features have been explored recently.  These hybrid methods involve the 

combination of common feature selection techniques in an attempt to exploit the 

advantages of each, thus achieving higher classification performance with the 

resulting feature subset.  The opportunity of exploring a hybrid approach to ascertain 

an optimal subset of features emerged during experiments conducted within this 

Chapter and was explored.  The predominant contribution of this Chapter 

subsequently involved the development of a new hybrid approach to feature 

selection. 

  The remainder of this Chapter is structured as follows:  Section 5.2 details the 

methodology undertaken, Section 5.3 presents the results of initial experimentations 

conducted, and a hybrid feature selection method is explored in Section 5.4.  Finally, 

Section 5.5 concludes this Chapter.    

 

5.2 Methodology 

 

 The dataset utilised in experiments within this Chapter was previously 

introduced and described in Chapter 4.  It comprised of a multi-dimensional dataset 

generated in a smart apartment, consisting of 31 features and 12 activity classes.  

These features were largely derived from binary sensor states, previously presented 

in Table 4.2, in addition to a time routine feature distinguishing whether the activity 

occurred in the Morning, Afternoon or Evening. 

Various feature selection techniques were explored in Weka to discover an 

optimal subset of the features described, thus redundant or irrelevant features were 

to be removed in an attempt to increase classification accuracy of the 12 activity 

classes.  The explored techniques included both filter and wrapper methods, which 

were each evaluated on 4 classifiers, namely kNN, SVM, NN and LR, as this 

collection of classifiers were evaluated across previous feature selection studies [25], 

[92], [93], [96].  The 4 classifiers were constructed within Matlab.  Matlab 

recommend various configurations per classifier within the Classification Learner 
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application, thus each recommended configuration was implemented, and 

consequently the best performing configuration, per model, was utilised.  The chosen 

evaluation metric for research endeavours conducted within Chapters 5, 6 and 7 is 

classification accuracy.  Due to the HAR dataset utilised within these study chapters 

deriving from the UCAmI Cup competition, it was decided to conform with their 

chosen evaluation metric.  Classification accuracy is an extensively utilised 

evaluation metric used in many HAR studies [85], [86], [98], [106], [184].  As 

described in Chapter 4, an unseen test set was extracted from the restructured dataset.  

Extracting an unseen test set, also described as holdout data, is a technique utilised 

to provide an unbiased evaluation during classification, as the performance of the 

models are evaluated upon data that has not been used during the training phase.  

Thus, the models were evaluated with 10-fold cross validation, then the unseen test 

set was subsequently introduced to produce the final classification performance.  The 

same evaluation technique has been utilised in succeeding Chapters.   

All filter methods adopted have utilised the ranking search method.  With 

ranking, all features are ordered according to a calculated measure of feature ‘value’ 

[94].  The wrapper methods have utilised the Best First search method, which 

involves searching various feature subsets through greedy hillclimbing that is further 

enhanced with a backtracking capability, which enables this search method to revert 

back to a previously evaluated subset if the subsequent feature subsets during 

evaluations do not improve consecutively [191].  Furthermore, the attribute selection 

mode chosen was cross-validation for both the filter and wrapper techniques. 

Sections 5.2.1 to 5.2.4 describe each of the feature selection methods explored 

during the experiments conducted in this Chapter.  These Sections also include the 

outputs produced following the implementation of each method. 

   

5.2.1 Information Gain 

 

Information Gain is a well-established entropy-based feature selection 

method, commonly explored in the realms of machine learning to measure the 

dependence amongst two variables [192].  Implementing this method involves 

calculating the information gain provided by each attribute individually in relation to 

the output class, where attributes with higher information gain values provide more 
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information and are therefore more relevant.  In terms of classification, the number 

of times each feature occurs per category are counted to calculate the information 

gain contributed per feature [192].  Each feature is ranked in order of importance 

(determined by the level of information provided), thus the least relevant features can 

be removed.  

The average merit values produced by this method range from 0 to 1, with a 

score of 0 indicating that no information was obtained from the feature and a score 

of 1 indicating that maximum information was obtained.  Figure 5.1 presents the 

outputs produced by the Information Gain filter when evaluated on the considered 

dataset. 

 

Figure 5.1. Output values produced by Information Gain 

 

5.2.2 Correlation 

 
The correlation-based method of selecting optimal features assesses the 

relevance of each by observing intercorrelation between features as well as 

examining their ability to predict the output class [86].  The optimal subset of features 

Valuable 

features 

Irrelevant 

features 
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chosen through correlation include those that present high correlation with the output 

class and no intercorrelation with other attributes in the feature space.  Features that 

are highly intercorrelated may demonstrate the problem of multicollinearity, in that 

if two or more features are too closely related to one another, the performance of 

some classification models can diminish due to excessive complexity, thus resulting 

in unstable models [193]. 

The Correlation filter produces average merit values ranging from -1 to 1.  A 

score of -1 indicates negative correlation whereas a score of 1 indicates positive 

correlation.  Additionally, features with no correlation to the target class will produce 

a merit value of 0.  Figure 5.2 presents the average merit values produced by the 

Correlation filter when evaluated on the considered dataset. 

 

 

Figure 5.2. Output values produced by Correlation 

5.2.3 Relief-F 

 

The Relief-F method of selecting features is an extended form of the Relief 

algorithm developed to deal with multiclass problems [192].  The Relief algorithm 
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features 

Irrelevant 
features 
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ranks features by applying weights to each based upon the correlation between each 

feature and class.  According to [94], filtering algorithms based on variations of 

Relief, such as Relief-F, are the only filters possessing the ability to detect 

dependencies of features indirectly through their adoption of the nearest neighbour 

concept.  This method discovers the nearest “hits” as data observations belonging to 

the same class, and “misses” as data observations belonging to different classes, 

rather than directly and exhaustively searching through countless feature 

combinations [192].  Subsequently, the features are ranked based upon their 

relevance which is determined by how well data observations from the same class, 

and those from different classes, are distinguished.  Figure 5.3 presents the concept 

of nearest neighbours in the Relief-F algorithm, with the number of neighbours set 

to 3 for illustrative simplicity.  It can be seen that there are 3 nearest “hits” as well as 

3 nearest “misses” in the feature space that are highlighted in relation to the target 

class.   

 

 

Figure 5.3. Relief-F concept illustrating the neighbour selection [94] 

 

The main parameter to consider with this filtering algorithm is setting the 

number of neighbours.  During the establishment of the Relief-F variation, initial 

empirical testing of the algorithm recommended the use of 10 nearest neighbours 

which has since been recognised as the default setting due to its extensive application 

[94].  Relief-F is capable of assigning different weights per instance using a distance-

based measure in relation to the target.  This measure is known in Weka as the Sigma 

value, which regulates the pace at which weights decrease for instances situated 
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further in distance from the target.  The recommended Sigma value to adopt is stated 

as being between 1/5 to 1/10 of the quantity of nearest neighbours specified, with the 

default value provided set as 2.  Due to the reviewed literature, the default parameters 

for Relief-F were chosen for experimentation. 

The Relief-F filter produces average merit values for each feature ranging 

from 1 to -1, calculated through summing the weighted differences in the same class 

and different classes.  A higher merit value indicates that the feature being assessed 

is differentially conveyed, meaning greater differences are expressed for data 

instances from different classes.  Figure 5.4 presents the outputs produced by the 

Relief-F filter when evaluated on the considered dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Output values produced by Relief-F 

5.2.4 Sequential Selection: Forward and Backward 

 
The two wrapper approaches used were sequential forward selection (SFS) 

and sequential backward selection (SBS).  SFS generates an optimal subset of 

features based on the chosen classifier by incrementally adding features to the 

selection.  The process begins with an empty selection, which develops by increasing 

Valuable 
features 

Irrelevant 
features 
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this selection by one feature per round.  During each round, per each added feature, 

the model performance is evaluated where the feature contributing to the best 

performance is retained and added to the optimal subset [95].  SBS operates in the 

reverse direction to SFS in that the process begins with the full feature vector, with 

the selection of features subsequently decreasing by one feature per round.  As with 

the previous approach, the model performance is evaluated per round, per each 

removed feature, where the feature providing the least diminishing performance is 

removed from the final chosen subset [95].  

Unlike the filter methods, there are no rankings produced by the wrapper 

methods.  Instead, the output produced by wrapper methods present the number of 

folds in which each feature was selected for retention in the dataset, as the attribute 

selection mode was cross-validation.  Figure 5.5 presents an example of the output 

produced by the kNN wrapper method in conjunction with the SFS search technique. 

 

 

Figure 5.5. Output produced by Wrapper method 
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5.2.5 Rationale for Feature Selection Threshold 

 

According to [94], no clear consensus exists as to which features should be 

retained/removed from the feature space.  Instead, they recommend the 

implementation of an ad-hoc threshold which can be ascertained by either a statistical 

or subjective likelihood of feature significance, or merely a preferred quantity of 

features to be retained/removed from the final chosen subset.   

As stated by [94], the removal of presumably irrelevant or redundant features 

should be performed with caution, as they may still provide useful information 

through their inclusion.  This may be the case with certain features in the considered 

dataset.  The merit values were very low for many of the ranked features.  Thus, 

based upon the aforementioned literature, and also through analysing the dataset and 

ranked feature merits with subjective likelihood in relation to identified primary 

sensors required to recognise certain activities, it was intuitively decided to employ 

a cut-off threshold of 0.  Due to this threshold decision, as many useful features as 

possible were retained, as caution was taken to avoid the removal of any potentially 

valuable sensor features.   

Table 5.1 presents the features retained and removed for each feature 

selection method based upon this threshold.  Considering all feature selection 

methods collectively, there were 23 features chosen for retention within the feature 

space in all scenarios, whereas the remaining 8 features were deemed irrelevant by 

one or more method.  These features included: C02 fruit platter, C03 cutlery, C07 

XBOX remote, C12 laundry basket, C15 kitchen faucet, D05 dishwasher, D09 

washing machine and H01 kettle.  A clear distinction of the 4 least relevant features 

emerged, as C02 fruit platter, C03 cutlery, C15 kitchen faucet and D09 washing 

machine were only chosen for retention by 1 or 2 methods each.  Furthermore, the 

Relief-F filter and the kNN SFS wrapper had chosen to remove the most features, 

with each removing 7 from the feature space.    

Considering only the filter methods, namely Information Gain, Correlation 

and Relief-F, it was seen that features C02 fruit platter, C03 cutlery, C15 kitchen 

faucet, and D09 washing machine were deemed irrelevant as these features were 

never chosen for retention with any filter methods.  As for feature H01 kettle, it was 

recognised that all filter methods had chosen to retain this, thus supporting its 
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relevance.  Notably, features C07 XBOX remote, C12 laundry basket, and D05 

dishwasher were chosen for removal by the Relief-F algorithm, whereas the 

Information Gain and Correlation filters had retained these features. 

Considering only the wrapper methods, more variation occurred in which 

methods chose to retain or remove certain features.  Features H01 kettle and C07 

XBOX remote were equal in that 3 wrapper methods chose to retain, and the 

remaining 5 wrapper methods chose to remove them.  As for features C02 fruit 

platter, C03 cutlery, and D09 washing machine, these were only chosen for retention 

twice each, and C15 kitchen faucet was only chosen for retention once.  Finally, 

considering D05 dishwasher, and C12 laundry basket, all wrapper methods had 

chosen to retain these features apart from 1 method each, namely the SFS NN method 

in relation to D05 dishwasher and the SFS kNN method in relation to C12 laundry 

basket.           



   
 

   

Table 5.1. Features considered in each experiment, where Y indicates inclusion in the subset and N indicates removal of the feature  

 Filters Wrappers  

 Ranking search method SFS Best First search method SBS Best First search method  

Feature 
Information 

Gain 
Correlation Relief-F kNN SVM NN LR kNN SVM NN LR Total 

C01 medication box Y Y Y Y Y Y Y Y Y Y Y 11 

C02 fruit platter N N N N N Y N N N Y N 2 

C03 cutlery N N N N N Y N N N Y N 2 

C04 pots Y Y Y Y Y Y Y Y Y Y Y 11 

C05 water bottle Y Y Y Y Y Y Y Y Y Y Y 11 

C07 XBOX remote Y Y N N N Y N N Y Y N 5 

C08 trash Y Y Y Y Y Y Y Y Y Y Y 11 

C09 tap Y Y Y Y Y Y Y Y Y Y Y 11 

C10 tank Y Y Y Y Y Y Y Y Y Y Y 11 

C12 laundry basket Y Y N N Y Y Y Y Y Y Y 9 

C13 pyjamas drawer Y Y Y Y Y Y Y Y Y Y Y 11 

C14 bed Y Y Y Y Y Y Y Y Y Y Y 11 

C15 kitchen faucet N N N N N Y N N N N N 1 

D01 refrigerator Y Y Y Y Y Y Y Y Y Y Y 11 

D02 microwave Y Y Y Y Y Y Y Y Y Y Y 11 

D03 wardrobe Y Y Y Y Y Y Y Y Y Y Y 11 

D04 cups cupboard Y Y Y Y Y Y Y Y Y Y Y 11 

D05 dishwasher Y Y N Y Y N Y Y Y Y Y 9 

D07 WC Y Y Y Y Y Y Y Y Y Y Y 11 

D08 closet Y Y Y Y Y Y Y Y Y Y Y 11 

D09 washing machine N N N N N Y N N N Y N 2 

D10 pantry Y Y Y Y Y Y Y Y Y Y Y 11 

H01 kettle Y Y Y N N Y N N N Y Y 6 

M01 door Y Y Y Y Y Y Y Y Y Y Y 11 

SM1 kitchen area Y Y Y Y Y Y Y Y Y Y Y 11 

SM3 bathroom area Y Y Y Y Y Y Y Y Y Y Y 11 

SM4 bedroom area Y Y Y Y Y Y Y Y Y Y Y 11 

SM5 sofa area Y Y Y Y Y Y Y Y Y Y Y 11 

S09 sofa Y Y Y Y Y Y Y Y Y Y Y 11 

TV0 TV Y Y Y Y Y Y Y Y Y Y Y 11 

Time Routine Y Y Y Y Y Y Y Y Y Y Y 11 

Total Features 27 27 24 24 25 30 25 25 26 30 26  
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5.3 Initial Experimental Results 

 
Table 5.2 provides a baseline for experiments conducted in this Chapter, 

presenting the classification accuracies in which the suite of classifiers have 

recognised activities based upon the full original feature vector, where no feature 

selection has been applied.  The LR classifier performed best during the testing phase 

with the full feature vector, whereas the kNN model performed least effectively.           

 

Table 5.2. No feature selection applied. All original 31 features are included. 

Exp. Classifiers Train Accuracy (%) Test Accuracy (%) 

All 

Features 

kNN 75.10 70.95 

SVM 77.90 76.54 

NN 83.47 80.45 

LR 82.57 81.01 

 

 

Table 5.3 presents the results of the wrapper approaches applied to the binary 

dataset.  The LR model performed best with both wrapper methods, namely SFS and 

SBS, whereas the kNN classifier performed least effectively across both methods.  In 

comparison to Table 5.2, the LR model increased both train and test performances 

with the SFS and SBS methods, whilst also reducing the number of features by 6 and 

5, respectively.  Considering the kNN model, a larger number of features were 

removed, specifically 7 and 6 per method, respectively, whilst also maintaining test 

performance and exhibiting slight variation in train performance.  The SVM model 

demonstrated more variation whilst generating comparisons between the SFS and 

SBS methods.  Considering the SFS method with the removal of 6 features, the SVM 

training performance decreased whilst presenting the ability to maintain performance 

on the unseen test data.  Comparatively, reflecting upon the SBS method with the 

removal of 5 features, the SVM training performance increased, whilst the test 

performance decreased slightly.  Contrarily, only 1 feature was removed with both 

wrapper methods on the NN model, with classification accuracies decreasing slightly 

with the training set and increasing when evaluated on the unseen test set.   
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Based upon this analysis, the SFS method was deemed most effective in 

comparison to the SBS method in terms of reducing data dimensionality slightly 

more, whilst either maintaining or enhancing the unseen test performances across the 

suite of classifiers.  The training performances had decreased slightly across more of 

the classifiers with SFS, in comparison to demonstrating more increases with SBS, 

nevertheless, the SFS models had proven their enhanced stability on the test data.  

 

 

 
Table 5.3. Feature selection applied via Wrapper techniques, where the values in brackets indicate the 

comparative difference between the current performance and the performances achieved with no feature 

selection applied (Table 5.2) 

Exp. Classifiers 
No. of Features 

Removed 

Train Accuracy 

(%) 

Test Accuracy 

(%) 

Sequential 

Forward 

Search 

(SFS) 

kNN 7 75.00 (-0.10) 70.95 

SVM 6 77.40 (-0.50) 76.54 

NN 1 83.17 (-0.30) 81.01 (+0.56) 

LR 6 83.56 (+0.99) 82.12 (+1.11) 

Sequential 

Backward 

Search 

(SBS) 

kNN 6 75.20 (+0.10) 70.95 

SVM 5 78.50 (+0.60) 76.34 (- 0.20) 

NN 1 83.07 (-0.40) 81.01 (+0.56) 

LR 5 83.56 (+0.99) 82.12 (+1.11) 

 

 

Table 5.4 presents the results of the filter approaches applied to the binary 

dataset.  The LR model performed best across all methods, whereas the kNN model 

performed least effectively.  Whilst generating comparisons to Table 5.2 (the full 

feature vector), the entire suite of classifiers either maintained or enhanced their 

classification performance on the unseen test data across all filter methods.  A total 

of 4 features were removed with the Information Gain filter, with results exhibiting 

improved performance on 3 out of 4 classifiers during training, whilst maintaining 

performance with the remaining classifier, namely the NN model.  As for the test 

data, the filtered feature vector derived through Information Gain improved the 

performance of 2 classifiers whilst maintaining performance for the remaining 

models.  Considering the Correlation filter, 4 features were removed following its 

implementation.  Results demonstrated enhanced performance on 3 models during 
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training and 2 models during the test phase, with the remaining models maintaining 

their performance.  As for the Relief-F algorithm, a total of 7 features were removed.  

During training, 2 classifiers improved their performance, whilst the NN model 

decreased, and the remaining model, namely kNN, was able to maintain its 

performance.  Additionally, during the testing phase all models had improved their 

classification performance.  

Based upon this analysis, Relief-F was deemed the most effective filtering 

method as the highest number of features were removed as well as all 4 classifiers 

improving their performance on the unseen test set.  Comparatively, the Information 

Gain and Correlation methods improved their performance on the unseen test data on 

2 out of 4 classifiers, with less features removed.   

 

 
Table 5.4. Feature selection applied via Filter techniques, where the values in brackets indicate the 

comparative difference between the current performance and the performances achieved with no feature 

selection applied (Table 5.2) 

Exp. Classifiers 
No. of Features 

Removed 

Train Accuracy 

(%) 

Test Accuracy 

(%) 

Information 

Gain 

kNN 

4 

75.60 (+0.50) 70.95 

SVM 78.60 (+0.70) 76.54 

NN 83.47 81.56 (+1.11) 

LR 83.56 (+0.99) 82.57 (+1.56) 

Correlation 

kNN 

4 

75.60 (+0.50) 70.95 

SVM 78.60 (+0.70) 76.54 

NN 83.47 81.56 (+1.11) 

LR 83.56 (+0.99) 82.57 (+1.56) 

Relief-F 

kNN 

7 

75.10 71.50 (+0.55) 

SVM 78.10 (+0.20) 77.10 (+0.56) 

NN 82.87 (-0.60) 81.01 (+0.56) 

LR 82.97 (+0.40) 81.56 (+0.55) 

 

 

 Considering both wrapper and filter approaches collectively, it was concluded 

that the filter methods outperformed the wrappers.  Through analysing Tables 5.3 and 

5.4, the best performing wrapper was deemed the SFS method and the best 

performing filter was deemed the Relief-F algorithm.  Thus, comparisons were 

ultimately generated upon these approaches.  As stated, the Relief-F filter removed a 
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total of 7 features, whereas the SFS method varied between removing 1-7 features 

across all classifiers.  Additionally, the training performances based on the Relief-F 

algorithm increased with 2 models and decreased with the NN, whereas with the SFS 

wrapper method the training performances increased only with the LR model and 

decreased with 3 models.  The testing performances based on the Relief-F algorithm 

increased with all 4 classification models, whereas with the SFS wrapped method, 

only 2 models achieved an increase in test performance.            

 In summary, the benefits of performing feature selection, and thus reducing 

data dimensionality, were demonstrated across all methods evaluated.  The obtained 

experimental results indicated that redundant features may be removed from the 

dataset without hindering classification performance.  Instead, the performances may 

be either maintained or improved with less features included.        

 

5.4 Hybrid-Filter Approach 

 

 As previously stated, hybrid approaches to feature selection have been 

explored more recently in several research domains due to their perceived benefits.  

The combination of established methods aims to exploit the positive characteristics 

of each, whilst potentially diminishing their limitations.    

Section 5.4.1 provides the rationale for the proposed hybrid-filter approach, 

Section 5.4.2 describes the methodology undertaken and Section 5.4.3 presents the 

experimental results obtained through implementation of the proposed approach and 

also provides a comprehensive discussion of results.   

 

5.4.1 Rationale  

 

 Since examining the features removed through filtering approaches 

collectively, previously presented in Table 5.4, it was realised that each filter method 

had removed 4 common features, namely C02 fruit platter, C03 cutlery, C15 kitchen 

faucet, and D09 washing machine, with the only differences between Information 

Gain and Correlation, and the Relief-F algorithm being that Relief-F had removed an 

additional 3 features, namely D05 dishwasher, C12 laundry basket and C07 XBOX 
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remote.  Furthermore, the classification performance had decreased slightly on some 

classifiers with Relief-F in comparison to the other filtering approaches.  Thus, 

through deliberating over whether the 7 features removed through Relief-F were truly 

optimal, it was decided to combine the filters to generate new hybrid feature subsets.  

According to [192], combining filter methods demonstrated benefits over 

their individual forms as the advantages of each method were heightened through 

positively complementing one another.  In [192], a hybrid-filter method was 

proposed through combining Information Gain and Relief-F.  Conclusions stated that 

the proposed hybrid-filter was able to prevent the Relief-F algorithm from neglecting 

the underrepresented minority classes by enhancing feature impact on those, whilst 

preserving the impact of features on classes with a larger number of instances, 

specifically the overrepresented majority classes.  Other cited benefits of combining 

these filters included the avoidance of excessively irrelevant or redundant features, 

the efficient reduction of valuable information loss, and finally, the reduction in time 

consumption required in comparison to wrapper methods.                 

Based upon this analysis, the opportunity emerged to combine the feature 

vectors from different filter approaches, and therefore the potential of a hybrid-filter 

method was explored, thus a main contribution of this Chapter involved the 

development of a new hybrid feature selection method that produced an optimal 

subset of features. 

 

5.4.2 Methodology 

 

 The first stage of combining filter methods involved defining a base set of 

features to be removed.  These base features were derived through identifying the 

common features chosen for removal from each filter method through exploration of 

the AND operator, as these were deemed extensively redundant.  Subsequently, the 

remaining features were organised upon the XOR operator which represented 

features chosen for removal by one filter method, and not chosen by the other method, 

as these were deemed seemingly redundant whilst also possessing the potential of 

providing valuable information.  As a result, two feature pools were established, 

presented in Figure 5.6, in which the AND features comprised of C02 fruit platter, 
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C03 cutlery, C15 kitchen faucet, and D09 washing machine, and the XOR features 

comprised of D05 dishwasher, C07 XBOX remote and C12 laundry basket.   

 

Figure 5.6. Filter feature pools demonstrating the AND and XOR features 

 

 Based upon the generated feature pools, 6 new feature subsets were derived.  

All newly formed subsets initially involved the removal of the 4 base features, 

namely C02 fruit platter, C03 cutlery, C15 kitchen faucet and D09 washing machine.  

Further to this, an exhaustive search method was implemented to evaluate the 

ascertained XOR features, namely D05 dishwasher, C12 laundry basket and C07 

XBOX remote, in combination with the base set to explore all hybrid-filter subset 

eventualities, thus potentially discovering an optimal combination of features.  Table 

5.5 presents the hybrid-filter feature subsets.  

 

Table 5.5. Newly generated feature subsets based upon combined filters 

Subset # Features removed 

1 
(-5) 

4 base features + C07 

2 
(-5) 

4 base features + C12 

3 
(-5) 

4 base features + D05 

4 
(-6) 

4 base features + C07 & C12 

5 
(-6) 

4 base features + C07 & D05 

6 
(-6) 

4 base features + C12 & D05 
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The feature subsets presented in Table 5.5 were then evaluated on the suite of 

classifiers defined with the previously evaluated feature selection methods to 

generate performance comparisons.     

 

5.4.3 Results and Discussion 

 

Table 5.6 presents the results of the proposed hybrid-filter method applied to 

the binary dataset, where values presented in brackets indicate comparisons to results 

presented in Table 5.2 with no feature selection applied.  Whilst considering Subsets 

1-3, each had removed a total of 5 features, whereas Subsets 4-6 had each removed 

6 features.  During training, all hybrid feature subsets had increased performance 

with all 4 classification models.  As for the test performances, Subsets 1, 2, and 4 had 

demonstrated an increase in accuracies on 2 classifiers, with the remaining models 

maintaining their performance.  Contrarily, Subsets 3, 5 and 6 had exhibited an 

increase in accuracies with all 4 classifiers.  Of these, Subsets 5 and 6 had removed 

an additional feature in comparison to Subset 3, thus indicating their further 

effectiveness.  Subset 6 had shown larger increases in classification accuracy 

compared to those in Subset 5, therefore it was deemed the most effective hybrid 

approach. 

In comparison to Table 5.4 comprising the individual filter results, many of 

the classification performances with the newly generated hybrid subsets had 

improved, with additional features also removed.  Subsets 3, 5 and 6 outperformed 

both Information Gain and Correlation in terms of more features being removed in 

addition to achieving enhanced performance with all 4 classifiers on the test set.  

Subset 6 of hybrid filtering also outperformed the Information Gain and Correlation 

methods in terms of achieving higher classification accuracies on 3 of the 4 classifiers 

with regards to both training and test sets.  Overall, the best performing hybrid 

filtering approach was Subset 6.         
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Table 5.6. Classification performances based on newly generated feature subsets, where the values in brackets 

indicate the comparative difference between the current performance and the performances achieved with no 

feature selection applied (Table 5.2)  

Exp. Classifiers 
No. of Features 

Removed 

Train Accuracy 

(%) 

Test Accuracy 

(%) 

Subset 1 

kNN 

5 

75.35 (+0.25) 70.95 

SVM 78.32 (+0.42) 76.54 

NN 84.87 (+1.40) 82.68 (+2.23) 

LR 83.56 (+0.99) 82.12 (+1.11) 

Subset 2 

kNN 

5 

75.25 (+0.15) 70.95 

SVM 78.61 (+0.71) 76.54 

NN 86.00 (+2.53) 82.68 (+2.23) 

LR 83.66 (+1.09) 82.12 (+1.11) 

Subset 3 

kNN 

5 

75.45 (+0.35) 71.50 (+0.55) 

SVM 78.61 (+0.71) 77.10 (+0.56) 

NN 85.15 (+1.68) 82.12 (+1.67) 

LR 83.66 (+1.09) 82.12 (+1.11) 

Subset 4 

kNN 

6 

75.35 (+0.25) 70.95 

SVM 78.12 (+0.22) 76.54 

NN 85.01 (+1.54) 83.24 (+2.79) 

LR 83.66 (+1.09) 82.12 (+1.11) 

Subset 5 

kNN 

6 

74.85 (-0.25) 71.51 (+0.56) 

SVM 78.42 (+0.52) 77.10 (+0.56) 

NN 86.00 (+2.53) 81.56 (+1.11) 

LR 83.66 (+1.09) 82.12 (+1.11) 

Subset 6 

kNN 

6 

75.54 (+0.44) 71.51 (+0.56) 

SVM 79.01 (+1.11) 77.10 (+0.56) 

NN 84.87 (+1.40) 83.24 (+2.79) 

LR 83.76 (+1.19) 82.12 (+1.11) 

 

 

Comparisons were then made between the Relief-F algorithm and Subset 6, 

presented in Table 5.7.  Previously, Relief-F was distinguished as the best performing 

filter method as all 4 classifiers improved accuracies on the test set, having also 

removed 7 features.  Comparatively, 6 features were removed with Subset 6, however 

a considerable trade-off existed between the number of features removed and the 

accuracies achieved with the optimal feature vector removed in Subset 6.  

Considering the training performances, Relief-F improved with 2 classifiers and 

decreased performance with 1 model, whereas Subset 6 improved with all 4 

classifiers.  Furthermore, the test set performances for both approaches included 

improvements on all 4 classifiers.  The accuracy values with Subset 6, however, 

outperformed those of the Relief-F algorithm whilst considering both the train and 

test sets, thus demonstrating its effectiveness. 
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Table 5.7. Comparison of all features, Relief-F and Subset 6 

Exp. Classifiers 
No. of Features 

Removed 

Train Accuracy 

(%) 

Test Accuracy 

(%) 

All features 

kNN 

0 

75.10 70.95 

SVM 77.90 76.54 

NN 83.47 80.45 

LR 82.57 81.01 

Relief-F 

kNN 

7 

75.10 71.50 

SVM 78.10 77.10 

NN 82.87 81.01 

LR 82.97 81.56 

Subset 6 

kNN 

6 

75.54 71.51 

SVM 79.01 77.10 

NN 84.87 83.24 

LR 83.76 82.12 

 
 
 Considering knowledge of the sensor types, the results provided by the 

feature selection methods were consistent.  The 4 common features for removal, 

namely C02 fruit platter, C03 cutlery, C15 kitchen faucet and D09 washing machine 

were not deemed integral to related activities.  For example, C02 fruit platter may 

rarely trigger within the ActN3 Breakfast, ActN4 Lunch and ActN5 Dinner activities, 

and therefore may provide minimal information.  Furthermore, the D09 washing 

machine sensor may provide minimal information in recognising the Act22 Dressing 

activity, as an inhabitant may only rarely perform this activity and subsequently place 

their clothes in the washing machine.  As for the XOR features, namely D05 

dishwasher, C12 laundry basket and C07 XBOX remote, knowledge of the activities 

would indicate that D05 dishwasher would be most redundant given that the ActN3 

Breakfast, ActN4 Lunch and ActN5 Dinner activities may not involve the inhabitant 

washing their dishes, or perhaps they manually wash their dishes.  Considering the 

C12 laundry basket sensor in relation to the Act22 Dressing activity, knowledge 

would suggest that this sensor would be largely involved, however, it was deemed 

irrelevant through feature selection.  Finally, the C07 XBOX remote sensor could be 

deemed relevant in relation to the ActN2 Watch TV on Sofa activity as this remote 

can control the TV, however, it may not be essential as the TV0 sensor is identified 

as the integral sensor required to perform this activity. 
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5.5 Conclusion 

 
 As presented, the detection and removal of redundant features is an important 

consideration due to their possible effects on predictive quality and classification 

accuracy.  Reducing data dimensionality also reduces the complexity of the data, 

computational capacities required, and time consumption expended on computation.   

In this Chapter, a number of well-established feature selection techniques 

were evaluated on a binary sensor-based HAR dataset, which included exploration 

upon both filter and wrapper methods.  Initial experimentation revealed better 

classification performances with filter methods in comparison to the wrapper 

techniques, with the Relief-F filter outperforming all other methods in terms of the 

largest number of redundant features identified and removed, as well as the 

attainment of enhanced classification accuracies.  Subsequently, the opportunity of 

implementing a hybrid-filter approach was investigated due to the perceived benefits 

of combining well-established feature selection techniques.  Thus, further 

experiments were conducted with the proposed hybrid-filter method, where newly 

generated feature subsets were derived and evaluated.  Comparisons were then made 

between the performance achieved through implementing the hybrid method and the 

original Relief-F filter, where a considerable trade-off existed between the number 

of features removed and the accuracies achieved.              

 Since conducting experiments in this Chapter, the benefits of performing 

feature selection were demonstrated.  It was observed that reducing the 

dimensionality of the data, through evaluating performance with the exclusion of 

redundant features, lead to the classifiers either maintaining their performance or 

achieving a positive influence on their predictive quality and classification accuracy.  

The benefits of combining feature selection methods was also demonstrated through 

implementation of the proposed hybrid-filter approach, where the combined methods 

complemented one another to ultimately achieve an optimal subset of features, and 

therefore classification performance was further improved.  

 The benefit of combining techniques extend into the classification stage of 

the HAR process, in which combining classifiers through ensemble methods have 

been explored recently due to their perceived effectiveness in enhancing 

classification performance [48].  Rather than exclusively depending upon the 

performance of one classifier, generating an ensemble method comprising of multiple 
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models may compensate for the recognised limitations of single models through 

successful combination methods [50].  Thus, Chapter 6 will investigate the potential 

of ensemble methods in an endeavour to optimise HAR performance.  Notably, the 

findings within Chapter 5, specifically the optimally selected feature subset, has not 

been utilised within succeeding Chapters.  Instead, research endeavours conducted 

within succeeding Chapters have utilised the original full feature set. 

 

 



   
 

   

 

 

 

 

  

Chapter 6  

 

Homogeneous Neural Network 

Ensemble for Human Activity 

Recognition 

 

 

6.1 Overview 

 

Ensemble methods have acquired considerable research interest recently due 

to their ability to improve the performance of classification models [48].  According 

to [50], the fundamental aim of enhancing generalization capabilities exists as the 

primary motivation to explore ensemble methods.  A motivating factor for studies 

conducted in this Chapter is to investigate the efficiency of complex NNs by 
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exploring ensemble learning for sensor-based HAR.  As outlined in Section 2.5.3, 

ensemble generation and integration are two important considerations whilst 

exploring ensemble methods, thus experimentation within this Chapter involved 

investigations into both aspects.  A new ensemble of NNs is proposed, in addition to 

exploring various approaches to resolving conflicts that occur between base models 

within ensembles.  Specifically, studies involved data gleaned through binary sensors 

that have been deployed within a smart environment.   

The remainder of this Chapter is structured as follows:  Section 6.2 provides 

the rationale for implementing a homogeneous NN ensemble method, Section 6.3 

describes the materials and methods implemented, including the proposed HAR 

classification model and model conflict resolution.  Finally, Section 6.4 presents the 

results and discussion, and Section 6.5 concludes this Chapter.   

 

6.2 Rationale for Homogeneous NN Ensemble 

 

Ensemble learning for HAR has been explored within this Chapter due to its 

perceived benefits, such as its ability to enhance classification performance in 

addition to improving generalisation capabilities.  According to [177], NNs are a 

popular base model choice in generating homogeneous ensembles, and for HAR 

tasks in particular, due to their ability to learn complex, non-linear decision 

boundaries [47], thus supporting the decision to implement a homogeneous ensemble 

of NNs within this Chapter.  An ensemble of NNs were explored, though due to a 

lack of high-quality data in ADL datasets, and the low quantity of available data, it 

was decided to employ lighter weight models rather than exploring deeper 

architectures.  The literature has suggested that shallow NNs have previously 

achieved similar performance to deep NN architectures for HAR tasks, with provided 

recommendations to use shallow architectures particularly in cases where a small 

number of training samples are available [44], [128].  As stated in [194], one of the 

crucial problems to consider with ensemble learning is the combination rule 

employed to determine a final class decision amongst the base models.  In this work, 

a support function integration method was used to fuse the base models, and various 

approaches to effectively resolve conflicts that occur between the base models were 

investigated to determine a final output decision.    
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6.3 Methodology  

 

The materials and methods implemented are described within this Section, 

the proposed ensemble approach is presented in Section 6.3.1, and conflict resolution 

techniques are described in Section 6.3.2.       

 

6.3.1 Proposed HAR Classification Model   

 
 

Recently, ensemble methods for classification tasks have been explored due 

to their potential to enhance robustness, improve performance and also increase 

generalisation capabilities in comparison to single model methods [128].  The 

proposed classification method within this study comprised of combining several NN 

base classifiers to generate a homogeneous ensemble.  The UCAmI cup dataset was 

utilised for experiments conducted within this Chapter, which was introduced 

previously in Chapter 4.  A base model was created per time routine to increase 

diversity at a data level: Morning, Afternoon and Evening models were generated 

due to some activities exclusively occurring within specific routines.  Furthermore, a 

Mixed model was generated to consider and represent activities that transpire 

arbitrarily throughout a typical daily routine.  Each NN base model was constructed 

in Matlab with two hidden layers as [128] states the implementation of a simplistic 

NN architecture with 2/3 layers can be most effective for HAR tasks.  In determining 

the number of hidden neurons required per base model, a grid search method was 

utilised.  A “rule of thumb” in selecting hidden neurons is that the selection for the 

first layer should be half of the size of the model inputs, and the selection for the 

second layer should be halved again, according to [195].  For example, with 31 inputs 

these values would be around 16 and 8 hidden neurons for layers 1 and 2, 

respectively.  Consequently, the ad-hoc grid search values for layer 1 were between 

10 and 20 neurons, and layer 2 were between 5 and 15 neurons, per base model.  

Figure 6.1 presents the 4 base models where n indicates the number of classes per 

model.  M, A, and E represent the Morning, Afternoon and Evening models, 

respectively, and finally, MI represents the Mixed model.   
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Figure 6.1. Four base classifiers presented per time routine, where n indicates the number of classes per model. 

M, A, and E represent the Morning, Afternoon, and Evening models, respectively, and finally MI represents the 

Mixed model. 

 

 

The morning base model contained two main activity classes, namely Act24 

wake up and ActN3 breakfast, as these activities occur in a typical morning routine.  

ActN4 lunch was the only main class within the afternoon base model as lunch 

usually occurs in the afternoon.  The evening base model contained two main classes, 

namely Act23 go to bed and ActN5 dinner, as these activities habitually occur during 

an evening routine.  Finally, the mixed base model contained seven main activity 

classes that do not regularly occur within a specific time routine.  For example, Act15 

put waste in the bin and Act22 dressing are activities commonly performed at any 

time throughout a typical day.  The activity class outputs per model are presented in 

Table 6.1.  
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Table 6.1. Activity class outputs per model. 

#output Model ID Name Activity Classes 

m1 = 3 M1 Morning 

𝐶1 = [Act24, ActN3]← 2 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝐶1̃ = [ActN4, Act23, ActN5, Act01, Act15, Act17, 

Act18, Act22, ActN1, ActN2]← 1 𝑐𝑙𝑎𝑠𝑠 

m2 = 2 M2 Afternoon 

𝐶2
 = [ActN4]← 1 𝑐𝑙𝑎𝑠𝑠 

𝐶 2̃
 = [Act24, ActN3, Act23, ActN5, Act01, Act15, 

Act17, Act18, Act22, ActN1, ActN2]← 1 𝑐𝑙𝑎𝑠𝑠 

m3 = 3 M3 Evening 

𝐶3
 = [Act23, ActN5]← 2 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝐶 3̃
 = [Act24, ActN3, ActN4, Act01, Act15, Act17, 

Act18, Act22, ActN1, ActN2]← 1 𝑐𝑙𝑎𝑠𝑠 

m4 = 8 M4 Mixed 

𝐶4
 = [Act01, Act15, Act17, Act18, Act22, ActN1 

ActN2]← 7 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝐶 4̃
 = [Act24, ActN3, ActN4, Act23, ActN5]← 1 𝑐𝑙𝑎𝑠𝑠 

 

 

Each NN base classifier needed to be trained with the inclusion of an 

additional class, namely the complement, due to each model containing non-

overlapping classes.  Thus, the complement class, per model, consisted of 

representative activity samples from each of the main classes contained within the 

remaining base models.  The aim of the complement class was to support each model 

in identifying whether or not new, unseen activity instances belonged to that 

particular model.  Thus, when an unseen input of an activity class is presented to the 

considered base model, that exists within its complement, the model should have 

recognised that the activity does not exist as a main class within that particular model 

and should, consequently, exclude itself from the decision process.  For example, 

consider the morning model, M1, was presented with an activity instance contained 

in the 𝐶1̃ class, such as ActN4 lunch, as presented in Table 6.1.  This model should 

have ideally recognised that ActN4 lunch belonged to the complement class and 

should therefore have eliminated itself from the decision-making process. 

 

Definitions of the models are described as follows: 

 

Input data X: 

𝑋 =  [𝑥1, 𝑥2, … , 𝑥𝑁]𝑅  ∈  𝐵𝑁×𝑑, 
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where N is the number of instances, d is the number of features, d=31. 

  

𝑥𝑖 = [𝑥i
1, 𝑥i

2, … , 𝑥𝑖
𝑑] where 𝑥𝑖

𝑑 ∈ [0,1]. 

 

Output: 

𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝑅  ∈ [1, … , 12]. 

 

Base Models: 

 

Base models M1, M2, M3, and M4 represent the Morning, Afternoon, Evening, and 

Mixed base models, respectively, in the proposed ensemble approach. 

 

Given the instance 𝑥𝑖 base model output 𝑀𝑗 is given by 

 

𝑓𝑖
𝑗

=  𝑓𝑗(𝜑𝑗(𝑥𝑖)), 

 

where index j = [1, … , 4]; 𝜑𝑗(𝑥𝑖) is the input to the activation function of base model 

𝑀𝑗 and 𝑓𝑗  is the output of each base model 𝑀𝑗. 

 

For simplicity, the output can be represented as 𝑓𝑖
𝑗

= [𝑝1
𝑗
, … , 𝑝𝑚𝑗

𝑗
], where 𝑚𝑗 

represents the number of outputs from base model 𝑀𝑗 . 

 

Predicted class �̂�𝑖
𝑗

 ∈ [1, … , 12] from base model 𝑀𝑗 is the class represented by the 

output with maximum p values 𝑝𝑖
𝑗,1

= max [𝑝1
𝑗
, … , 𝑝𝑚𝑗

𝑗
].  The second largest value 

in the output vector is notated as 𝑝𝑖
𝑗,2

.  

 

 

Base Model Compositions: 

 

Universal set C represents the set of all classes of activities; 𝐶𝑗 represents activity 

classes represented by the time domain of each base model 𝑀𝑗. 
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𝐶�̃� is the complement class for base model 𝑀𝑗 and it combines the activity classes not 

in the 𝐶𝑗 denoted as 

 

{𝑘 ∈ 𝐶 ∶ 𝑘 ∉  𝐶𝑗} 

 

Example: Morning Base Model 𝑀1 contains activities from classes 

 

𝐶1 = [𝐴𝑐𝑡24, 𝐴𝑐𝑡𝑁3] 

𝐶1̃  = [{𝐴𝑐𝑡𝑁4, 𝐴𝑐𝑡23, 𝐴𝑐𝑡𝑁5, 𝐴𝑐𝑡01, 𝐴𝑐𝑡15,

𝐴𝑐𝑡17, 𝐴𝑐𝑡18, 𝐴𝑐𝑡22, 𝐴𝑐𝑡𝑁1, 𝐴𝑐𝑡𝑁2}] 

 

There are mj = 3 number of classes, where all but one class, the complement, are in 

C1. 

  

 

A comprehensive framework pertaining to the implemented homogeneous 

ensemble method is presented in Figure 6.2, within which each of the conflict 

resolution techniques were compared.  Each NN base classifier was presented with 

an input feature vector consisting of 31 features.  These features comprised data 

produced by 30 environmental binary sensors, and an additional time routine feature.  

Each of the base classifiers produced output predictions obtained from the estimated 

likelihood of each activity class, which were subsequently combined through the 

support function fusion method [138] during the ensemble integration phase. 
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Figure 6.2. Framework for the homogeneous ensemble approach.  M1, M2 and M3 represent the Morning, 

Afternoon and Evening models, respectively, and M4 represents the Mixed model. 
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As mentioned, each NN base classifier was trained with the inclusion of a 

complement class.  To analyse the effects on model conflicts of various data 

distributions that construct the complement classes per model, two approaches 

towards generating these classes were explored.  Section 6.3.1.1 explains the 

generation of the complement class data at a model level, where activity instances 

were distributed evenly between the remaining models, and Section 6.3.1.2 explains 

the generation of the complement class data at a class level, where activity instances 

were distributed evenly between the remaining classes. 

 

6.3.1.1 Complement Class Generation at a Model Level 

 

 Distributing instances at a model level involved balancing the complement 

class data equally between the remaining models.  The first step in the process was 

to calculate how many instances this class should contain, in total.  Per base model, 

this was calculated as the average number of main class instances.  This number was 

then divided by the number of remaining models to achieve an equal distribution of 

activity instances per time routine.  Following this, the class distributions were 

calculated by dividing the number of instances per model by the number of main 

classes within each model.  Table 6.2 presents the distribution of instances at a model 

level. 
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Table 6.2. Model level-distribution of instances for complement class compositions, where M, A, E, and MI 

within the class distributions indicate classes belonging to the Morning, Afternoon, Evening, and Mixed 

models, respectively. 

Complement 
Model Distribution 

(No. of Instances) 

Class Distribution 

(No. of Instances) 

complement class 

𝐶1̃ of M1 

Afternoon (24) 

Evening (24) 

Mixed (25) 

A: ActN4 (24) 

E: Act23 (12) 

E: ActN5 (12) 

MI: Act01 (03) 

MI: Act15 (03) 

MI: Act17 (03) 

MI: Act18 (04) 

MI: Act22 (04) 

MI: ActN1 (04) 

MI: ActN2 (04) 

complement class 

𝐶 2̃ of M2 

Morning (62) 

Evening (62) 

Mixed (62) 

M: Act24 (31) 

M: ActN3 (31) 

E: Act23 (31) 

E: ActN5 (31) 

MI: Act18 (08) 

MI: Act15 (09) 

MI: Act17 (09) 

MI: Act01 (09) 

MI: Act22 (09) 

MI: ActN1 (09) 

MI: ActN2 (09) 

complement class 

𝐶 3̃ of M3 

Morning (27) 

Afternoon (27) 

Mixed (27) 

M: Act24 (13) 

M: ActN3 (14) 

A: ActN4 (27) 

MI: Act18 (03) 

MI: Act01 (04) 

MI: Act15 (04) 

MI: Act17 (04) 

MI: Act22 (04) 

MI: ActN1 (04) 

MI: ActN2 (04) 

complement class 

𝐶 4̃ of M4 

Morning (24) 

Afternoon (24) 

Evening (25) 

M: Act24 (12) 

M: ActN3 (12) 

A: ActN4 (24) 

E: Act23 (12) 

E: ActN5 (12) 

 

 

6.3.1.2 Complement Class Generation at a Class Level 

 

Distributing instances at a class level involved balancing the complement 

class data equally between the remaining classes within the models.  As with the 

previous approach, the first step involved calculating the average number of main 

class instances per model to attain the number of instances for each complement 

class.  Following this, the previously calculated number was divided by the number 

of remaining classes across the remaining models to achieve an equal distribution of 

instances per class.  Finally, all instances per class were multiplied by 2 to better 

represent each class.  For example, to generate the M1 complement class, the average 

number of main class instances was calculated first, resulting in 74.  Subsequently, 

to achieve an equal distribution of instances per class within the complement class, 

74 was divided by the 10 remaining classes, resulting in 7.4 instances required per 

class.  Finally, to better represent each class during training, this number was 
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multiplied by 2, resulting in 14.8 (15) instances per class.  Table 6.3 presents the 

distribution of instances at a class level.  

 

Table 6.3. Class level-distribution of instances for complement class compositions, where M, A, E, and MI 

within the class distributions indicate classes belonging to the Morning, Afternoon, Evening, and Mixed 

models, respectively. 

Complement 
Model Distribution 

(No. of Instances) 

Class Distribution 

(No. of Instances) 

complement class 𝐶1̃ 

of M1 

Afternoon (15) 

Evening (30) 

Mixed (105) 

A: ActN4 (15) 

E: Act23 (15) 

E: ActN5 (15) 

MI: Act01 (15) 

MI: Act15 (15) 

MI: Act17 (15) 

MI: Act18 (15) 

MI: Act22 (15) 

MI: ActN1 (15) 

MI: ActN2 (15) 

complement class 𝐶 2̃ 

of M2 

Morning (68) 

Evening (68) 

Mixed (238) 

M: Act24 (34) 

M: ActN3 (34) 

E: Act23 (34) 

E: ActN5 (34) 

MI: Act18 (34) 

MI: Act15 (34) 

MI: Act17 (34) 

MI: Act01 (34) 

MI: Act22 (34) 

MI: ActN1 (34) 

MI: ActN2 (34) 

complement class 𝐶 3̃ 

of M3 

Morning (32) 

Afternoon (16) 

Mixed (112) 

M: Act24 (16) 

M: ActN3 (16) 

A: ActN4 (16) 

MI: Act18 (16) 

MI: Act01 (16) 

MI: Act15 (16) 

MI: Act17 (16) 

MI: Act22 (16) 

MI: ActN1 (16) 

MI: ActN2 (16) 

complement class 𝐶 4̃ 

of M4 

Morning (58) 

Afternoon (29) 

Evening (58) 

M: Act24 (29) 

M: ActN3 (29) 

A: ActN4 (29) 

E: Act23 (29) 

E: ActN5 (29) 

 

 

6.3.2 Model Conflict Resolution 

 

As previously mentioned, support function integration [138] was applied to 

combine the output predictions generated by each NN base classifier during the 

ensemble integration phase.  Subsequently, conflict analysis was performed upon the 

combined output predictions to ascertain whether a single base model had chosen the 

final class output, indicating that all models except one had chosen the complement 

class.  If this did not occur, and more than one model had chosen a main class output, 

a conflict had transpired between these models during the decision-making process, 

as demonstrated in Algorithm 6.1.   
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Algorithm 6.1. Process of finding conflicts between models 

1: For Each instance �⃗�𝑖  ∈ 𝐵1×𝑑 

2:     𝑖𝑓  ∃𝑗(�̂�𝑖
𝑗 ∈ 𝐶𝑗) ⋀ ∃𝑗𝑗  (�̂�𝑖

𝑗𝑗 ∈  𝐶𝑗𝑗  ⋀ 𝑗 ≠ 𝑗𝑗) 

3: 
Then apply conflict resolution approaches in Algorithms 2/3/4/5 as there are 

conflicting cases between base models Mj and Mjj 

 

 

Several methods to resolve conflicts occurring between base models were 

explored to ascertain the final output class per activity instance.  The first conflict 

resolution method, presented in Algorithm 6.2, was simply to award the final decision 

to the model with the highest output prediction.  This approach had previously been 

established as a soft-level combiner [196], as it makes use of the output predictions 

given by the classifiers as the posterior probabilities of each output class.  A 

limitation of this method, however, was that it provided limited confidence of the 

output prediction.  For example, consider the two largest output values of one base 

model were 0.52 and 0.48, respectively.  If the final class decision had been awarded 

according to the highest output value in this case, there is less confidence in the 

quality of classification, which implies a less secure output prediction.  

To overcome this, another technique, presented in Algorithm 6.3, was 

proposed to calculate the difference between the highest and second highest 

predictions per conflicting model, where subsequently the final decision was given 

to the model with the highest differential value, as this was deemed the model with 

the strongest class prediction.  

Following this, the impact of a weighting technique was investigated in 

Algorithm 6.4 on the basis of the number of classes per model, as each base model 

contained a different number of unique classes.  This approach considered the output 

predictions from each conflicting base classifier and the number of classes the base 

models were trained on, specifically, the output predictions from each base model 

were multiplied by the number of classes within those base models.  For example, if 

a conflict occurred between model M2 and model M4, which contained two and eight 

classes, respectively, the two class problem may be less complex than the eight class 

problem, and therefore a lower weighting was specified for M2.  

Finally, the potential of another weighted method in Algorithm 6.5 was 

explored, which built upon the previous approach.  Weightings were implemented 
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on the basis of the number of classes, as well as the training performance per model, 

specifically, the output predictions from each conflicting base classifier were 

multiplied by the number of classes in that model and the training performance 

achieved.  According to [197], a base classifier that outperforms other base classifiers 

in an ensemble approach should be given a higher confidence when deciding upon 

the final output prediction, as the training performance measure is indicative of the 

classifier’s effectiveness in predicting the correct output class.  The training 

performance measure in Algorithm 6.5 was the classification accuracy obtained by 

each conflicting model when exposed to the training set. 

 

Repeated notations: 

The largest value in the output vector is notated as 𝑝𝑖
𝑗,1

 . 

The second largest value in the output vector is notated as 𝑝𝑖
𝑗,2

. 

 

 
Algorithm 6.2. Conflict resolution approach 1, where the model with highest prediction is 

awarded the output decision 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑝𝑖
𝑟,1  >  𝑝𝑖

𝑠,1
 

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

 

 

Algorithm 6.3. Conflict resolution approach 2, where the model with the highest 

differential value is awarded the output decision   

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 (𝑝𝑖
𝑟,1  −  𝑝𝑖

𝑟,2
) >  (𝑝𝑖

𝑠,1  − 𝑝𝑖
𝑠,2

) 

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

 

Algorithm 6.4. Conflict resolution approach 3, where the model with the highest value 

through multiplying the output prediction by the number of classes is awarded the output 

decision   

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑝𝑖
𝑟,1 × 𝑚𝑟  >  𝑝𝑖

𝑠,1 × 𝑚𝑠 

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 
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Algorithm 6.5. Conflict resolution approach 4, where the model with the highest value through 

multiplying the output prediction by the number of classes and the training performance is 

awarded the output decision   

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑟  represents training performance for base model 𝑀𝑟 

2: 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑠  represents training performance for base model 𝑀𝑠 

3: 𝑖𝑓 𝑝𝑖
𝑟,1 × 𝑚𝑟  ×  𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛

𝑟  >  𝑝𝑖
𝑠,1 × 𝑚𝑠  ×  𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛

𝑠  

4: Then 𝑦𝑖 = �̂�𝑖
𝑟 

5: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 
 

6.4 Results and Discussion 

 

The obtained results demonstrated that the class level distribution technique, 

described in Section 6.3.1.2, greatly reduced the number of conflicts that occurred 

between the various base models, in comparison to the model level distribution 

technique, as presented in Table 6.4.  This was due to improved representations of 

activities within the complement classes per model during the training phase of the 

base classifiers.  For example, with the class level distribution technique, activity 

instances were distributed evenly between classes, therefore evenly representing each 

activity within the complement class.  Contrarily, the model level distribution 

technique involved balancing the complement class data equally between the 

remaining models, which meant the class distributions within these models were 

imbalanced.  For example, with the model level distribution technique, the 𝐶1̃ 

complement class contained 24 instances of ActN4 lunch and only 03 instances of 

Act17 brush teeth, whereas with the class level distribution technique, the 𝐶1̃ 

complement class contained 15 instances each of ActN4 lunch and Act17 brush teeth.  

Consequently, with the implementation of the latter distribution technique, the base 

classifiers were stronger at deciding when an unseen instance belonged to their 

complement class, eliminating themselves from the decision-making process, and 

therefore reducing the number of conflicts that occurred.  
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Table 6.4. Number of conflicts occurring, per fold, through each data distribution of the complement class. 

 No. of Conflicts Per Fold  

 1 2 3 4 5 6 7 8 9 10 Avg. 

Complement 

Class – Model 

Level Approach 

76 57 69 52 49 35 60 45 62 56 56.1 

Complement 

Class – Class 

Level Approach 

21 37 11 13 13 42 29 39 11 17 23.3 

 

Figure 6.3 presents the classification performances achieved through each of 

the data distribution techniques, which were analysed before and after the application 

of conflict resolution methods.  Considering the complement class generation at a 

model level, the preliminary classification accuracy of 60.28% was much less than 

that of the complement class generation at a class level, which achieved a preliminary 

accuracy of 72.12%.  This was due to less model conflicts occurring in the latter 

approach, which demonstrated that the base models were stronger during the 

decision-making process.  As for the final accuracies produced after conflict 

resolution techniques had been applied, the class level approach outperformed the 

model level approach in all four cases.  Finally, overall, the best HAR performance 

of 80.39% was achieved using complement data generated at a class level in 

conjunction with the conflict resolution approach presented in Algorithm 6.3 as 

described in Section 6.3.2. 

 

Figure 6.3. Human Activity Recognition (HAR) performance per conflict resolution approach. 
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Table 6.5 presents an analysis of incorrectly classified instances with regards 

to the first data distribution approach where complement class data was generated at 

a model level, as discussed previously in Section 6.3.1.1, whereas Table 6.6 presents 

an analysis of incorrectly classified instances with regards to the second data 

distribution approach, where complement class data was generated at a class level, 

as discussed previously in Section 6.3.1.2.  The “incorrect” instances reported 

describe those that were incorrectly classified by the target model, for example, there 

may not have been any conflicting models, yet the incorrect class was chosen by the 

base classifier.  The number of incorrectly classified instances were important to 

consider when analyzing the effectiveness of each conflict resolution approach, as 

these cases would have been permanently incorrect, regardless of the application of 

conflict resolution techniques.     

The “right but incorrect” cases were those that were correctly classified by 

the target base model, though were not chosen during the final decision-making 

process after applying the conflict resolution approaches.  These cases were 

considered when evaluating the most effective approach of the four explored, as they 

could have resulted in a correct classification, given the application of an effective 

conflict resolution technique.   

 

Table 6.5. Ensemble approach 1 - Analysis of incorrect instances, where A.6.2, A.6.3, A.6.4 and A.6.5 represent 

the Algorithm number 

  Fold  

  1 2 3 4 5 6 7 8 9 10 Avg. 

A.6.2 

Incorrect 22 22 21 29 29 20 30 22 20 22 23.7 

Right but 

Incorrect 
17 18 21 12 17 16 9 14 20 20 16.4 

A.6.3 

Incorrect 23 22 21 29 29 22 29 22 20 24 24.1 

Right but 

Incorrect 
10 14 10 9 12 12 9 12 14 11 11.3 

A.6.4 

Incorrect 22 23 21 29 29 22 29 22 20 22 23.9 

Right but 

Incorrect 
31 22 13 23 11 15 23 18 10 21 18.7 

A.6.5 

Incorrect 22 22 21 29 29 22 29 22 20 22 23.8 

Right but 

Incorrect 
14 10 13 7 13 15 9 17 14 11 12.3 
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Table 6.6. Ensemble approach 2 – Analysis of incorrect instances, where A.6.2, A.6.3, A.6.4 and A.6.5 

represent the Algorithm number 

  Fold  

  1 2 3 4 5 6 7 8 9 10 Avg. 

A.6.2 

Incorrect 33 26 35 33 25 32 27 28 40 26 30.5 

Right but 

Incorrect 
6 9 2 6 4 11 8 10 2 8 6.6 

A.6.3 

Incorrect 33 26 35 33 25 31 27 28 40 26 30.4 

Right but 

Incorrect 
5 7 3 2 6 7 6 5 0 6 4.7 

A.6.4 

Incorrect 33 26 35 33 25 31 27 28 40 25 30.3 

Right but 

Incorrect 
8 21 4 3 6 6 11 7 1 5 7.2 

A.6.5 

Incorrect 33 26 34 33 25 31 27 28 40 25 30.2 

Right but 

Incorrect 
8 8 5 2 6 5 6 7 1 5 5.3 

 

 

 

The conflict resolution approach presented in Algorithm 6.3 was the most 

effective when applied to both data distributions, as there were the lowest number of 

“right but incorrect” instances (on average 11.3 and 4.7, respectively), closely 

followed by the approach in Algorithm 6.5.  The lower the number of “right but 

incorrect” cases helped to determine which conflict resolution approach was most 

effective in deciding upon which base model should be awarded the final class 

decision.  For example, consider the conflict resolution technique in Algorithm 6.3 

with ensemble approach 2, as presented in Table 6.6.  There were 23.3 conflicts 

occurring on average (refer to Table 6.4). Upon analysis of the incorrectly classified 

instances, 30.4, on average, were incorrectly classified, whereas 4.7, on average, 

could have been correctly classified, though an incorrect base model won the final 

decision after applying conflict resolution.  Finally, this meant that as a result of 

applying Algorithm 6.3, an average of 18.6 conflicting cases were correctly resolved, 

improving the final HAR performance. 

As presented in Figure 6.3, the best HAR performance of 80.39% was 

achieved using complement data generated at a class level in conjunction with the 

conflict resolution approach presented in Algorithm 6.3.  This optimally performing 

ensemble method was subsequently benchmarked against the suite of classifiers 
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previously introduced in Chapter 5, namely kNN, SVM, NN and LR models.  Figure 

6.4 presents the performance of the proposed ensemble approach in comparison to 

the defined suite of classifiers.  The kNN model had achieved an accuracy of 70.95%, 

whereas the SVM model achieved 76.54%, thus demonstrating that the proposed 

ensemble approach outperformed 2 of the 3 considered non-parametric classifiers.  

The NN model had very slightly outperformed the ensemble method, comparatively 

demonstrating a performance increase of 0.06%.  Finally, the LR model had slightly 

outperformed the proposed method by 0.62%.   

 

Figure 6.4. HAR performance of the proposed ensemble NN approach compared to kNN, SVM, NN, and 

Logistic Regression classifiers, in terms of accuracy (%). 

 

6.5 Conclusion  

 
As stated, the widely acknowledged desire to explore ensemble methods 

derives from their ability to enhance classification performance and their potential to 

improve generalisation capabilities through diminishing the limitations of individual 

classifiers.  Ensemble generation and integration are two primary aspects to consider 

whilst exploring ensemble methods, thus experimentation within this Chapter 

involved investigations into both aspects.  A novel ensemble approach was proposed 

to recognize ADLs within a smart environment setting, with four NN base classifiers 

created to represent time routines throughout a typical day, including Morning, 
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Afternoon, and Evening routines.  Additionally, a Mixed routine was included to 

represent activities occurring throughout the day.  Particular emphasis was made 

upon analyzing the effects of various data distributions that generate the complement 

class per base model during the ensemble generation phase, and exploring various 

approaches to resolving conflicts that occur between base models during the 

ensemble integration phase.  Thus, two data distribution techniques were explored, 

including the generation of complement class data at a class level, and at a model 

level.  Furthermore, four conflict resolution techniques were investigated, including 

awarding the final output decision to the model with the highest output prediction, 

the highest differential value, or weighting techniques involving the number of 

classes per model, and training performance achieved2.        

Through analysis of experimental results, it was observed that distributing 

data at a class level greatly reduced the number of conflicts that occurred between 

the base models, leading to an increased preliminary performance before the 

application of conflict resolution techniques.  It was also found that the best method 

of resolving conflicts, in comparison to other approaches explored, was to award the 

final decision to the model with the highest differential value between the highest 

and second highest predictions per conflicting model.  The proposed HAR 

classification model, the ensemble NN method, was evaluated through comparing 

the achieved HAR performance with three non-parametric benchmark classifiers, 

namely SVM, NN and kNN models, and an LR model.  The ensemble NN method 

outperformed both the kNN and SVM benchmark classifiers, demonstrating the 

effectiveness of the proposed ensemble approach, however, the remaining 

benchmark classifiers very slightly outperformed the proposed ensemble method.  

Thus, Chapter 7 further explores ensemble classifiers in terms of increasing diversity, 

as ensemble diversity has been recognised as an essential condition in generating an 

adequate ensemble [51] and according to [130] the diversity introduced through 

constructing heterogeneous ensembles appeared promising.  Thus, Chapter 7 will 

explore the potential of heterogeneous ensemble classifiers to enhance HAR 

classification performance.  

 
2 The results in this Chapter were published in [206] 



   
 

   

 

 

 

 

 

Chapter 7  

 

Heterogeneous Ensembles for 

Human Activity Recognition 

 

 

7.1 Overview 

 
Research explorations conducted within this Chapter extend upon the 

previously implemented ensemble works conducted in Chapter 6.  Previously, a 

homogeneous NN ensemble was implemented due to the perceived benefits of 

ensemble learning, which conclusively demonstrated their superiority in comparison 

to two of the benchmarked single classification models, however, the remaining two 

benchmarked models had very slightly outperformed the proposed homogeneous 

ensemble.  Diversity was achieved at a data level through diversifying the input data 

to each NN base classifier, however, it has since been recognised that achieving 

diversity through generating diverse base classifiers within heterogeneous 
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ensembles, has demonstrated additional benefits in comparison to homogeneous 

ensemble methods [198], [199].  According to [51], diversity is a critical condition 

in constructing adequate ensembles, thus, a motivating factor for experimentation 

conducted within the current Chapter has been to further increase diversity through 

also varying the choice of base classifiers in an endeavour to further enhance HAR 

performance. 

Within this Chapter, diversity has been achieved at both a data and classifier 

level.  The models previously created though decomposing the HAR activity classes 

into base models per time routine, specifically, Morning, Afternoon, Evening, and 

Mixed, were retained within the current work, along with also generating diverse 

base classifiers.  Two different methods of generating heterogeneous ensembles were 

explored.  The first method involved generating five base classifiers, per base model, 

within which the best performing base classifier was chosen per time routine.  

Following this, the output class derived through each base model were evaluated and 

combined, and finally, conflict analysis and resolution were performed.  The second 

method involved the implementation of a 2-phase heterogeneous ensemble 

framework.  In Phase 1, a heterogeneous ensemble was generated and combined 

using a hard-level combination method within the existing base models: Morning, 

Afternoon, Evening, and Mixed.  In Phase 2, the output class from each base model, 

per time routine, was evaluated and combined.  Following this, conflict analysis and 

resolution techniques were applied to decide upon the final output class across the 4 

unique base models.     

The remainder of this Chapter is structured as follows: Section 7.2 provides 

the rationale for the exploration of heterogeneous ensembles, Section 7.3 provides 

the methodology undertaken to implement the proposed heterogeneous ensembles, 

and Section 7.4 presents the experimental results obtained.  Finally, Section 7.5 

concludes this Chapter. 

 

7.2 Rationale for Heterogeneous Ensemble 

 
Heterogeneous ensembles have recently attracted considerable research 

interest due to their performance superiority in comparison to homogeneous methods 

[177], as generating diverse base classifiers offer additional benefits through 
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providing different biases and internal representations [200].  According to [130], 

less exploration had been made with heterogeneous ensembles in the research 

community due to difficulties existing in controlling interactions between the various 

learning processes of diverse base classifiers, yet [130] also stated the diversity 

introduced through constructing heterogeneous ensembles appeared promising.  In 

[201], a heterogeneous ensemble approach was implemented to recognise various 

activities within the CASAS smart home testbeds.  The ensemble included four base 

classifiers, which included a Hidden Markov Model (HMM), a NN, an SVM, and 

Conditional Random Fields (CRF).  The results were promising and revealed 

performance improvements over the use of a single classification model.  Further to 

this, [200] implemented an ensemble classification approach to activity recognition 

using several heterogeneous base classifiers.  The five common base classifiers 

included an SVM, DT, kNN, NN, and NB.  Results demonstrated that the ensemble 

approach combined through majority voting performed extremely well in classifying 

twelve activities.  In a study conducted by [198], efficiency comparisons were made 

between heterogeneous and homogeneous ensembles for the purpose of cancer 

diagnosis.  The implemented homogeneous ensembles included those generated 

through combining multiple NNs, Random Forest, SVM and Genetic Algorithms, 

whereas the heterogeneous ensemble involved combining all four of the 

aforementioned base classifiers.  Experimental results demonstrated the superior 

classification performance obtained by the heterogeneous ensemble in comparison to 

all evaluated homogeneous methods, which outperformed each homogeneous 

method in terms of classification accuracy by at least 2% during experiments 

pertaining to breast cancer and melanoma diagnosis.  As for respiratory system 

cancer diagnosis, the heterogeneous ensemble and the homogeneous NN ensemble 

performed equally best in comparison to all other ensemble compositions explored.  

Additionally, in [199], adaptive heterogeneous ensemble methods based upon DT, 

NB and kNN classifiers were explored, and performance comparisons were made to 

the homogeneous methods.  Within the proposed adaptive framework, both the size 

of the generated heterogeneous ensembles (determined by the number of base models 

included) and the classifier combinations were optimized during training.  

Experimental results of this study demonstrated the effectiveness of heterogeneous 

ensembles in comparison to their homogeneous counterparts, whilst suggesting their 

superiority was due to the complementary nature of combining diverse classifiers, 
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particularly when evaluated on multiclass classification tasks consisting of more than 

3 class labels.                

More recently, introducing diversity has been recognised as an essential 

condition in generating an adequate ensemble [51].  Nevertheless, according to [51] 

no formal definition pertaining to diversity exists, and no clear consensus exists as to 

how diversity can be measured.  It has, however, been recognised that generating 

dissimilar decisions through achieving diversity, may occur through either altering 

the training data and/or classifiers [51].  Given that diversity was previously achieved 

through altering only the data in Chapter 6, an opportunity has emerged to increase 

diversity further by also varying the choice of base classifiers.        

 

7.3 Proposed Heterogeneous Ensemble Methods 

 
As presented in Chapter 6, diversity was achieved through organising the 

training data uniquely amongst the base models, which were constructed based upon 

time routines: Morning (M1), Afternoon (M2), Evening (M3), and Mixed (M4).  As 

each model contained unique activity classes, each was trained with an additional 

complement class comprising data samples used to train the remaining models.  Thus, 

the proposed heterogeneous ensemble methods extend the level of diversity 

introduced by generating diverse base classifiers.  Previously, two methods of 

generating the complement class per model were explored: generating complement 

data at a class level, and at a model level.  Nevertheless, experimental results 

demonstrated the effectiveness of the class-level distribution method, which involved 

generating the complement class instances through balancing them equally amongst 

the remaining classes.  Thus, this technique will be implemented with the proposed 

heterogeneous approaches within this Chapter. 

The 5 chosen base classifiers to introduce diversity are well-established 

classification algorithms [200], namely an SVM, NN, NB, DT, and kNN.  This same 

group of diverse classifiers had been assembled in a recently conducted heterogenous 

ensemble study, with promising results achieved through a majority voting 

combination method [200].  Thus, suggesting the range of base classifiers involved 

in this work may prove complementary.  The base classifiers were trained within 

Matlab through employing 10-fold cross-validation and performance was measured 
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in terms of classification accuracy obtained.  Each classifier was configured to 

conform with previous Chapters through employing the same configuration method 

of selecting the optimally performing model parameters recommended within 

Matlab.  Figure 7.1 presents the heterogeneous ensemble process undertaken per base 

model, M1 to M4, to generate the diverse base classifiers, particularly, an example of 

the ensemble process for base model M1 is described within which 5 base classifiers 

were generated, specifically M11 to M15.  This process was repeated to select the base 

classifiers for M2, M3, and M4. 

Figure 7.1. The heterogeneous ensemble generation process for M1, where n indicates the number of classes 

per model. 
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Two diverse methods were explored to produce the output decision vector of 

the heterogeneous ensemble.  Thus, Section 7.3.1 describes the initially explored 

method of generating a heterogeneous ensemble (Ensemble Method 1).  Section 7.3.2 

builds upon this and describes the second method considered (Ensemble Method 2). 

 

7.3.1 Ensemble Method 1 

 

 The first heterogeneous ensemble method initially involved generating the 5 

aforementioned diverse base classifiers, per time routine, to build the base models 

M1 to M4.  The training performances achieved by each classifier were then compared 

in terms of classification accuracy achieved to ascertain which of the five evaluated 

base classifiers would be chosen to represent the considered base model, M1 to M4 

respectively, as the performance achieved during the training phase is indicative of 

the base classifiers’ competence in predicting the accurate class label during testing.  

For example, during base model composition for M1, the best performing classifier 

was the SVM, thus, the SVM was chosen as the base classifier for the M1 base model, 

and the remaining classifiers were disregarded.  Figure 7.2 depicts the heterogeneous 

ensemble implemented through Method 1, which as an example demonstrates how 

the base classifier for base model M1 was chosen.  This process was repeated to select 

the base classifier for models M2, M3, and M4. 

 

 

Figure 7.2. Heterogeneous Ensemble Method 1 
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Table 7.1 presents the training performances achieved by each evaluated 

classifier.  As stated, the classifier achieving the best performance was chosen to 

represent each base model.  Consequently, an SVM was chosen to represent the M1 

model, a NB was chosen to represent the M2 model, an NN was chosen to represent 

the M3 model, and finally, a DT was chosen to represent the M4 model.  Models M1, 

M2 and M3 all achieved substantially high training accuracies in comparison to model 

M4, which achieved a considerably lower performance.  This may be due to the 

number of classes involved per base model.  For example, M2 contains 2 classes 

whereas M4 contains 8 classes, thus the 2-class problem is deemed substantially less 

intricate than the 8-class problem.  

 

 

Table 7.1. Training performances achieved by each base classifier 

Base Model Base Classifier Train Performance (%) 

M1 

SVM (M11) 98.32 

kNN (M12) 97.64 

NN (M13) 96.93 

DT (M14) 97.60 

NB (M15) 97.98 

M2 

SVM (M21) 95.89 

kNN (M22) 94.82 

NN (M23) 95.89 

DT (M24) 95.18 

NB (M25) 96.43 

M3 

SVM (M31) 94.14 

kNN (M32) 93.83 

NN (M33) 95.07 

DT (M34) 94.44 

NB (M35) 93.21 

M4 

SVM (M41) 74.36 

kNN (M42) 71.17 

NN (M43) 74.96 

DT (M44) 75.27 

NB (M45) 73.60 
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The predicted class outputs of the unseen test data per base model were 

subsequently combined and analysed to ascertain whether conflicts had occurred 

between each model, indicating that more than one base model had chosen its unique 

main class output.  In the previously implemented homogeneous ensemble approach, 

four conflict resolution algorithms were implemented and compared based upon the 

output prediction value of the estimated class likelihood.  The conflict resolution 

approaches in the current heterogeneous work vary from those previously explored 

as only the class output per classifier is considered as a hard-level combiner, rather 

than the prediction value of the output class as a soft-level combiner.  This was to 

avoid difficulties in controlling the interactions between each base classifier, as this 

is recognised as a challenge in integrating heterogeneous base models, according to 

[130].  Thus, within Ensemble Method 1, 3 conflict resolution techniques were 

explored based upon adaptions of the previous algorithms. 

 Conflict resolution approach 1, presented in Algorithm 7.1.1, involved 

awarding the final output decision to the base model achieving the best classification 

performance during training, as according to [197], higher confidence should be 

given to the base model outperforming others during training whilst determining the 

final output decision.  The second conflict resolution approach, presented in 

Algorithm 7.1.2, involved awarding the final output decision to the base model 

containing the largest number of activity classes, as each model comprised of various 

unique classes, and the more classes involved indicate a more complex problem was 

considered.  For example, considering a conflict emerging between models M3 and 

M4, containing 3 and 8 classes, respectively, the final output decision would be 

awarded to M4, as previously identified, the 3-class problem may be less intricate 

than the 8-class problem.  The final conflict resolution approach, presented in 

Algorithm 7.1.3, builds upon both Algorithms 7.1.1 and 7.1.2 by awarding the final 

output decision based upon both criteria, specifically the training performance 

multiplied by the number of classes per model.     

 

Algorithm 7.1.1 Conflict resolution approach 1, Ensemble Method 1. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖 

1: 𝑖𝑓 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑟  >  𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛

𝑠  

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 



Heterogeneous Ensembles for Human Activity Recognition    

     

 

135 

 

Algorithm 7.1.2 Conflict resolution approach 2, Ensemble Method 1. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖 

1: 𝑖𝑓 𝑚𝑟  >  𝑚𝑠 

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

 

Algorithm 7.1.3 Conflict resolution approach 3, Ensemble Method 1. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖 

1: 𝑖𝑓 𝑚𝑟  ×  𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑟  >  𝑚𝑠  ×  𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛

𝑠  

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

 

7.3.2 Ensemble Method 2 

 

This ensemble method extends the previous approach through the inclusion 

of well-established hard-level combination techniques to determine the output 

predictions per base model.  Previously in Method 1, only the base classifier 

achieving the highest classification performance was chosen to represent each base 

model, per time routine.  Nevertheless, a limitation to this approach was identified in 

that through disregarding the output class predictions of the remaining classifiers, 

potentially valuable information provided by those could be lost.  Consequently, this 

method involves the implementation of hard-level combination techniques to 

combine the predictions of each of the 5 base classifiers, thus strengthening the initial 

output decision per base model.  Given that this method involves two ensemble 

integration stages, a two-phase framework has been proposed.   

Within Phase 1 of the proposed heterogeneous ensemble, 5 diverse base 

classifiers were generated per time routine and subsequently combined using hard-

level combination methods.  Figure 7.3 depicts heterogeneous ensemble method 2, 

in which voting schemes are used to generate a decision vector for M1.  This process 

was repeated for models M2, M3 and M4.  
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Figure 7.3. Heterogeneous Ensemble Method 2 

 

In the previously implemented homogeneous study within Chapter 6, 

ensemble integration using a soft-level fusion combination technique was 

implemented (support function fusion) based upon the output prediction values of the 

base classifiers.  In the proposed heterogeneous approach, hard-level combination 

methods were implemented to diminish any difficulties existing in controlling 

interactions between the diverse learning processes of each base classifier.  For 

example, the range of output values differ amongst the diverse base classifiers, as the 

NN output prediction values vary between 0 and 1 representing the likelihood of each 

class output, whereas the SVM outputs are represented as posterior probabilities of 

the class likelihood ranging between -1 and 1.  Soft-level combiners are those that 

consider the likelihood of the output class label as the predictive score, and utilise 

methods such as sum, max, and min [196].  Whereas, hard-level combiners utilise 

the output class labels of each base model, for example, through majority voting 

[196].  The well-established hard-level combination methods to be implemented and 

compared in Phase 1 are Majority Voting [49] and Weighted Majority Voting [49], 

[196].   

Majority Voting is a commonly implemented ensemble integration method 

due to its simplicity and effectiveness.  This method was designed to fuse the output 

predictions derived through each base model into a single output whilst taking all 

base models into consideration [49].  The output class per data instance is compared 

across all base models, namely the SVM, NN, DT, NB and kNN, thus the final output 
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class is chosen as that with the largest number of votes.  According to [202], majority 

voting is beneficial in reducing bias and variance, thus improving classification 

performance.  An example of the majority voting implementation is provided in 

Figure 7.4, within which the class outputs produced by each base classifier were 

passed into the majority voting module to ascertain the final majority voted output 

class.       

 

Figure 7.4. Majority Voting implementation where the class outputs from each base classifier are passed into 

the majority voting module to ascertain the final voted output class 

 

Weighted Majority Voting is an extension of the previously described voting 

method in which additional weighting is applied to the output predictions of each 

base classifier.  Weightings are commonly assigned based upon the strengths of each 

classifier within the ensemble, for example the classification performance achieved 

by each model during training is indicative of their predictive power, thus further 

supporting the decision upon the final output class [49].  Due to this, the weightings 

applied within this ensemble were based upon the training performances in terms of 
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accuracy achieved of each classifier.  According to [202], if each base classifier has 

been assigned very similar weight values, their votes may result in equal value, 

however, if varied weights are applied according to each base classifier, the model 

with the largest weight value is more prone to influence the final vote.  Figure 7.5 

presents the weighted majority voting implementation, within which weightings are 

applied to the base classifier outputs.   

Figure 7.5. Weighted Majority Voting implementation where W represents the weights being applied to the 

outputs of each base classifier, and n represents the number of classes per model. 

 

In Phase 2 of the proposed framework, the preliminary class decisions 

produced by each base model, M1 to M4, were combined to integrate the outputs of 

the 4 time routines.  Subsequently, conflict analysis was performed to ascertain 
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whether more than one model had chosen a main class output, resulting in a conflict 

requiring resolution.  Table 7.2 presents an example of the combined outputs derived 

from each base model, demonstrating a conflict occurring between base models M2 

and M3, as M2 had chosen output class 4 and M3 had chosen output class 7 which 

were both main activity classes.   

 
 
 

Table 7.2. Example of a conflict occurring between Base Models M2 and M3 

 
Base Model 

M1  

Base Model 

M2 

Base Model 

M3  
Base Model M4 

 𝐶1 𝐶1̃ 𝐶2 𝐶 2̃ 𝐶3 𝐶 3̃ 𝐶4 𝐶 4̃ 

Class 

label 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Chosen 

Class 
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 

 

 

  Following initial conflict analysis, conflict resolution subsequently occurred 

to decide upon which model would be awarded the final output class decision.  As 

previously mentioned, the 4 methods used in the previously implemented 

homogeneous ensemble do not apply to the current work, as the combination 

techniques differed.  In the previous approach, the output prediction values of each 

base classifier were used to compute a score per model through awarding the final 

decision to the model achieving the highest prediction value, the highest differential 

value, or through weighting the output prediction values by the no. of classes and 

training performances achieved.  Since hard-level combination was implemented in 

Phase 1 of the current heterogeneous method, 5 newly constructed conflict resolution 

techniques were implemented to ascertain the final output decision based upon the 

following criteria: the strength of votes, the number of classes per base model, and 

the average training performance of the 5 classifiers per routine.    

The first conflict resolution approach, presented in Algorithm 7.2.1, involved 

awarding the final output decision to the base output with the highest average training 

performance achieved through generating the 5 diverse base classifiers during Phase 

1, as this is indicative of the predictive power of each base model (M1 to M4).  The 
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second conflict resolution approach, Algorithm 7.2.2, involved awarding the final 

output decision to the base model comprising the largest number of classes as the 

higher the number of classes, the more complex the problem.  An extension of the 

aforementioned methods was explored in the third approach, presented in Algorithm 

7.2.3, within which both the average training performance achieved through 

generating the 5 diverse base classifiers and the number of classes per routine were 

considered, specifically the highest value produced by the average performances 

multiplied by the number of classes was awarded the final decision.  Following this, 

the strength of the votes during ensemble integration in Phase 1 were considered in 

the fourth method, presented in Algorithm 7.2.4, where the average training 

performance achieved through generating the 5 diverse classifiers was multiplied by 

the strength of the vote.  For example, considering the majority voting scenario, the 

strength was determined as the number of models producing the same vote.  A vote 

strength of 4 was applied if 4 out of 5 classifiers had chosen the same output class, 

whereas a vote strength of 5 was applied if a unanimous class decision was reached 

across the suite of base classifiers.  Finally, the last conflict resolution approach, 

presented in Algorithm 7.2.5, involved a combination of each criteria, within which 

the final class decision was awarded to the base model with the highest value attained 

through multiplying the average training performance achieved through generating 

the 5 diverse classifiers, the number of classes per base model, and the strength of 

the vote achieved during Phase 1.  

 

Algorithm 7.2.1 Conflict resolution approach 1, Method 2. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟 =  

∑ 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑟𝑗5

𝑗=1

5
; 𝐴𝑐𝑐̅̅ ̅̅ ̅

𝑡𝑟𝑎𝑖𝑛
𝑠 =  

∑ 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑠𝑗5

𝑗=1

5
  

2:  If 𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟 > 𝐴𝑐𝑐̅̅ ̅̅ ̅

𝑡𝑟𝑎𝑖𝑛
𝑠  

3: Then 𝑦𝑖 = �̂�𝑖
𝑟 

4: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

where 𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟  is the average training models of the 5 classifiers in Base Model Mr, and 

𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛
𝑟𝑗

, 𝑗 = 1, … ,5 represent the training performance of the model built using SVM, NN, 

NB, DT and kNN respectively in Base Model Mr.  
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Algorithm 7.2.2 Conflict resolution approach 2, Method 2. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑚𝑟  >  𝑚𝑠 

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

Algorithm 7.2.3 Conflict resolution approach 3, Method 2. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑚𝑟  ×  𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟  >  𝑚𝑠  ×  𝐴𝑐𝑐̅̅ ̅̅ ̅

𝑡𝑟𝑎𝑖𝑛
𝑠  

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

Algorithm 7.2.4 Conflict resolution approach 4, Method 2. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑤𝑟  ×  𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟  >  𝑤𝑠  ×  𝐴𝑐𝑐̅̅ ̅̅ ̅

𝑡𝑟𝑎𝑖𝑛
𝑠  

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

where 𝑤𝑟  is the strength of the vote for the majority class for base model Mr defined by the 

number of classifiers with the majority class output in the base model.  

 

Algorithm 7.2.5 Conflict resolution approach 5, Method 2. 

Input: �⃗�𝑖, base models Mr, Ms 

Output: class 𝑦𝑖  

1: 𝑖𝑓 𝑚𝑟  ×  𝑤𝑟  ×  𝐴𝑐𝑐̅̅ ̅̅ ̅
𝑡𝑟𝑎𝑖𝑛
𝑟  >  𝑚𝑠  × 𝑤𝑠  ×   𝐴𝑐𝑐̅̅ ̅̅ ̅

𝑡𝑟𝑎𝑖𝑛
𝑠  

2: Then 𝑦𝑖 = �̂�𝑖
𝑟 

3: Else 𝑦𝑖 = �̂�𝑖
𝑠 

 

 

Figure 7.6 presents Phase 2 of the proposed heterogeneous approach in which 

the class decision outputs of each base model, M1 to M4, generated during Phase 1 

were combined through classifier fusion.  Following this, conflict analysis and 

resolution occurred, and the performances of each conflict resolution approach were 

compared to ascertain the most effective technique. 
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Figure 7.6. Phase 2 of the proposed heterogeneous approach, within which new conflict resolution algorithms 

were implemented. 
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7.4 Results and Discussion 

 
The results obtained have demonstrated the effectiveness of heterogeneous 

ensemble methods.  In terms of the number of conflicts occurring between base 

models, these were drastically reduced in comparison to the previously implemented 

homogeneous ensemble in Chapter 6, which contained 56.1 conflicting occurrences 

on average for the model-level complement class approach, and 23.3 on average for 

the class-level complement class approach.  Table 7.3 presents the number of 

conflicts occurring per heterogeneous ensemble method.  Method 1 proved most 

effective in minimizing the number of conflicts emerging, with only 9.7 on average, 

followed by the weighted majority voting approach in Method 2 with only 10.7 

conflicts occurring on average.  The low number of conflicts occurring within 

Method 1 was due to the output class decision of each base model relying solely upon 

the best performing classifier.  As stated, the training performances achieved by each 

base classifier was indicative of their predictive power upon classifying the unseen 

test data.  Thus, the decision to award the output class decision to the highest 

performing base classifier, whilst disregarding the remaining diverse classifiers 

proved beneficial in reducing the number of conflicts occurring.  This evaluation is 

reinforced whilst considering the low number of conflicts occurring through applying 

the weighted majority voting method, as the weightings applied were based upon the 

training performances achieved by each diverse classifier.   

 

 

Table 7.3. Conflicts occurring between base models 

 No. of Conflicts Per Fold  

 1 2 3 4 5 6 7 8 9 10 Avg. 

Method 1 6 19 10 10 12 11 6 9 6 8 9.7 

Method 2 via 

Majority Voting 
10 19 12 8 27 20 17 24 17 21 17.5 

Method 2 via 

Weighted 

Majority Voting 

6 13 6 8 23 14 5 20 4 8 10.7 
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Classification performances were evaluated before conflict analysis occurred 

to obtain the preliminary performance per method, and subsequently evaluated 

following the implementation of each conflict resolution method explored to 

determine their effectiveness.  Figure 7.7 presents the HAR performances achieved 

through the implementation of heterogeneous ensemble method 1.  Due to the 

predictive power of the chosen diverse classifiers and low number of conflicts 

occurring, method 1 performed reasonably well before conflict analysis and 

resolution, achieving a preliminary classification accuracy of 78.60%.  Following 

this, the final performances achieved through the implementation of conflict 

resolution algorithms 7.1.1 to 7.1.3 resulted in classification accuracies of 80.84%, 

80.45% and 80.45%, respectively.    

 

 

 
 

Figure 7.7. HAR performances achieved through Heterogeneous Ensemble Method 1 

 

Figure 7.8 presents the classification performances achieved through 

heterogeneous ensemble method 2.  The preliminary performances achieved through 

majority voting and weighted majority voting during Phase 1 were 77.88% and 

79.89%, respectively.  This demonstrated the effectiveness of applying additional 
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weighting to votes through also considering the average training performances 

achieved by each diverse classifier during training.  Following the implementation of 

Phase 2, which involved combining the outputs from each base model, M1 to M4, an 

optimal final classification accuracy of 84.13% was achieved through applying 

conflict resolution algorithm 7.2.4, previously described in Section 7.3.2.  

Furthermore, the next best performing method involved applying the same conflict 

resolution technique, algorithm 7.2.4, in conjunction with Method 2 via majority 

voting.  Thus, demonstrating the effectiveness of considering both the average 

training performances and the strength of the votes provided by each base classifier.   

The least effective conflict resolution approach was that of algorithm 7.2.1, 

previously described in Section 7.3.2, attaining 81.34% accuracy in conjunction with 

majority voting technique, and 83.13% accuracy in conjunction with the weighted 

majority voting method.  This demonstrated that during Phase 2, considering training 

performance alone was insufficient when using algorithm 7.2.1 in conjunction with 

the majority voting technique, and additional support was required through factoring 

in further information to obtain optimal performance.  For example, considering only 

the training performances at this stage resulted in models M1 to M3 attaining 

advantage in comparison to M4, as they achieved much higher classification 

accuracies due to their more simplistic classification task in that they each comprised 

a low number of classes.  The classification task conducted by model M4 was more 

intricate due to the larger number of classes involved, yet, this model would have 

been disregarded during conflict resolution whilst in resolve against any of the 

remaining models. 
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Figure 7.8. HAR performances achieved through Heterogeneous Ensemble Method 2 

  

Tables 7.4, 7.5 and 7.6 present an analysis of incorrect instances pertaining to each 

implemented heterogeneous method.  The “incorrect” instances represent those that 

were incorrectly classified, regardless of any combination techniques or conflict 

resolution, as these describe misclassified instances by the target model which are 

important to reflect upon in evaluating the most effective conflict resolution methods.  

The “right but incorrect” instances represent those that were classified accurately by 

the target model, yet were disregarded due to the application of conflict resolution 

approaches.  

  

 
Table 7.4. Ensemble method 1 - Analysis of incorrect instances 

  Fold  

  1 2 3 4 5 6 7 8 9 10 Avg. 

A 7.1.1 

Incorrect 29 37 36 33 37 36 35 35 30 35 34.3 

Right but 

Incorrect 
3 12 6 6 9 7 2 5 2 5 5.7 

A 7.1.2 

Incorrect 30 34 38 35 35 38 37 38 32 33 35.0 

Right but 

Incorrect 
4 9 8 8 7 9 4 8 4 3 6.4 

A 7.1.3 

Incorrect 30 34 38 35 35 38 37 38 32 33 35.0 

Right but 

Incorrect 
4 9 8 8 7 9 4 8 4 3 6.4 
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Through analysis of Table 7.4, conflict resolution algorithm 7.1.1 was 

deemed the optimally performing technique, applied during Method 1.  This was due 

to algorithm 7.1.1 resulting in the least number of “right but incorrect” cases (5.7 on 

average) in comparison to the remaining evaluated techniques.  Nevertheless, 

algorithms 7.1.2 and 7.1.3 closely followed this by equally resulting in 6.4 “right but 

incorrect” cases, on average.  The average number of conflicts that had occurred with 

algorithm 7.1.1 were then compared to the pertaining “right but incorrect” cases to 

ascertain the number of instances that were correctly resolved as a result of applying 

this technique.  For example, there were 9.7 base model conflicts on average, and 

through application of algorithm 7.1.1 there were an average of 34.3 incorrect 

instances.  Yet, an average of 5.7 of those could have been resolved through an 

efficient resolution method.  Consequently, the final HAR performance achieved was 

enhanced by an average of 4 instances.   

 Subsequently, the conflict resolution techniques explored during Method 2 

were evaluated through analysis of Tables 7.5 and 7.6.  The most effective conflict 

resolution technique was algorithm 7.2.4 in conjunction with the weighted majority 

voting method, as a low average of 4.4 instances were deemed “right but incorrect”.  

The number of occurring conflicts on average during this technique were then 

compared to the associated “right but incorrect” cases to determine the number of 

instances that were correctly resolved.  An average of 10.7 conflicts emerged on 

average, and through applying algorithm 7.2.4, an average of 28.4 incorrect instances 

transpired.  Thus, considering an average of 4.4 instances may have been resolved, 

the final HAR performance was consequently enhanced by 6.3 instances, on average.  

Algorithm 7.2.5 in conjunction with the weighted majority voting method 

was deemed the next best performing approach, as an average of 5.3 instances were 

deemed “right but incorrect”.  Furthermore, the least effective conflict resolution 

approach was that of Algorithm 7.2.1 which attained an average of 11.3 “right but 

incorrect” cases.  As previously mentioned, this demonstrated that relying on training 

performance alone was inadequate during Phase 2, when used in conjunction with 

majority voting.   
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Table 7.5. Ensemble method 2 via majority voting – Analysis of incorrect instances 

  Fold  

  1 2 3 4 5 6 7 8 9 10 Avg. 

A 7.2.1 

Incorrect 32 33 36 31 35 35 31 32 34 35 33.4 

Right but 

Incorrect 
5 11 8 4 19 14 11 15 12 14 11.3 

A 7.2.2 

Incorrect 32 31 32 31 27 29 28 28 29 30 29.7 

Right but 

Incorrect 
5 9 4 4 11 8 8 11 7 9 7.6 

A 7.2.3 

Incorrect 31 30 31 30 26 28 27 27 28 29 28.7 

Right but 

Incorrect 
4 8 3 3 10 7 7 10 6 8 6.6 

A 7.2.4 

Incorrect 28 29 30 28 27 29 26 29 31 29 28.6 

Right but 

Incorrect 
1 7 2 1 11 8 6 12 9 8 6.5 

A 7.2.5 

Incorrect 31 30 31 30 26 27 27 27 28 29 28.6 

Right but 

Incorrect 
4 8 3 3 10 6 7 10 6 8 6.5 

 
 
 
 
 

Table 7.6. Ensemble method 2 via weighted majority voting – Analysis of incorrect instances 

  Fold  

  1 2 3 4 5 6 7 8 9 10 Avg. 

A 7.2.1 

Incorrect 29 30 31 32 32 30 28 30 29 31 30.2 

Right but 

Incorrect 
2 8 3 5 16 9 2 13 1 3 6.2 

A 7.2.2 

Incorrect 31 28 31 34 26 28 29 27 31 33 29.8 

Right but 

Incorrect 
4 6 3 7 10 7 3 10 3 5 5.8 

A 7.2.3 

Incorrect 31 31 31 34 26 28 29 27 31 33 30.1 

Right but 

Incorrect 
4 11 3 7 10 7 3 10 3 5 6.3 

A 7.2.4 

Incorrect 28 30 28 28 28 27 26 30 29 30 28.4 

Right but 

Incorrect 
1 8 0 1 12 6 0 13 1 2 4.4 

A 7.2.5 

Incorrect 31 28 31 30 26 27 29 27 31 33 29.3 

Right but 

Incorrect 
4 6 3 3 10 6 3 10 3 5 5.3 
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In Figure 7.9, comparisons of each ensemble method were made in terms of 

the final classification accuracies achieved following implementation.  Both 

heterogeneous ensemble methods explored outperformed the homogeneous 

approach, demonstrating the effectiveness of generating further diversity amongst 

various classifiers.  Thus, the obtained results indicate generating diversity at both 

data and classifier levels has proven more effective than solely generating diversity 

at a data level.  According to [200], this is due to diverse base classifiers providing 

additional benefits through offering different biases and internal representations.  

Significance testing was applied through T-testing with a 95% confidence to 

ascertain whether the obtained results were statistically significant during 

performance comparisons amongst the homogeneous and heterogeneous ensemble 

classifiers presented in Figure 7.9.  Thus, a p-value of <0.05 was deemed significant.  

Results demonstrated insignificance when comparing the homogeneous ensemble to 

heterogeneous method 1 (p-value of 0.554739455), however, statistical significance 

was achieved whilst comparing the homogeneous ensemble to heterogenous method 

2 (p-value of 0.00000759158).        

 

 

 

Figure 7.9. Comparisons of each ensemble method, including the homogeneous method, and heterogeneous 

methods 1 & 2 
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The best performing heterogeneous ensemble method was that of the 2-phase 

technique, Method 2 via weighted majority voting, which achieved a final 

classification accuracy of 84.13%.  This demonstrated an accuracy increase of 3.74% 

in comparison to the homogeneous ensemble, and an increase of 3.29% in 

comparison to heterogeneous ensemble method 1.  Through interpretation of the 

obtained heterogeneous results within this Chapter, Method 2 outperformed Method 

1 due to the enhanced predictive power provided by retaining valuable information 

offered by each of the 5 diverse classifiers, through voting.  Method 1 involved 

comparing the training performances achieved by each diverse classifier, per time 

routine, to ascertain which of the 5 would be selected to represent the base model.  

The classifier achieving the highest training performance was retained, whereas the 

remaining 4 classifiers were disregarded.  A limitation of this approach was identified 

in that potentially valuable information may have been provided by the remaining 4 

classifiers.  Consequently, Method 2 was proposed to overcome this limitation, 

through combining the output predictions of all 5 diverse classifiers via voting.  This 

approach subsequently had the effect of strengthening the predictions which were 

obtained and retaining all potentially valuable information.  The heterogeneous 

ensemble results have supported this evaluation.  Notably, the heterogeneous 

ensemble Method 2 results had also successfully outperformed all benchmark 

classifiers defined in previous Chapters, namely the kNN, NN, SVM and LR models 

which had attained accuracies of 70.95%, 80.45%, 76.54% and 81.01%, respectively.  

Further to this, heterogeneous ensemble Method 1 successfully outperformed all 3 

non-parametric benchmark classifiers, whilst the remaining classifier had 

demonstrated a very slight performance increase of 0.17%.  Thus overall, largely 

demonstrating the effectiveness of heterogeneous ensembles, and particularly 

demonstrating the comprehensive superiority of the proposed heterogeneous Method 

2.       

 

7.5 Conclusion 

 
This Chapter provided further exploration upon ensemble methods initially 

introduced within Chapter 6.  In Chapter 6, homogeneous ensembles were the focus, 

whereas the opportunity to explore heterogeneous ensembles has been exploited 
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within the current Chapter.  As previously mentioned, it has been recognised that 

achieving diversity may transpire through either altering the training data and/or base 

classifiers, however, no clear consensus exists in defining or measuring diversity 

[51].  In the previously implemented homogeneous ensemble, diversity was explored 

at a data level only through diversifying the inputs of each NN base classifier.  Within 

the current work, diversity was explored at both a data level and a classifier level 

through additionally generating diverse classifiers, namely an SVM, NB, NN, kNN 

and DT, as the literature suggested heterogeneous ensembles may provide additional 

benefits through diversifying the classifiers employed [130], [200].  

Two methods of generating heterogeneous ensembles were explored.  

Method 1 involved generating 5 base classifiers per time routine, within which the 

best performing classifier in terms of accuracy was selected to represent the 

considered base model, M1 to M4.  Consequently, an SVM represented the M1 model, 

an NB represented the M2 model, an NN represented the M3 model and a DT 

represented the M4 model.  Following this, the output class predictions were 

combined, and finally, conflict resolution approaches were applied and evaluated.  

Contrarily, Method 2 involved a two-phase approach within which two levels of 

ensemble integration were explored.  Within Phase 1, both majority voting and 

weighted majority voting were applied to combine the output class predictions of all 

5 diverse classifiers, per time routine, and were then subsequently compared.  Within 

Phase 2, the resultant output class predictions were combined, and lastly, conflict 

resolution techniques were applied and evaluated.   

The experimental results obtained through the exploration of heterogeneous 

ensembles demonstrated their effectiveness in comparison to the homogeneous 

method in Chapter 6, indicating that introducing additional diversity was an effective 

approach.  Additionally, heterogeneous method 2 outperformed method 1, with 

algorithm 7.2.4 proving the most effective conflict resolution approach in 

conjunction with the weighted majority voting method.  Algorithm 7.2.4 involved 

awarding the final decision to the model with the highest value attained through 

multiplying the average training performance of the 5 diverse base classifiers by the 

strength of the votes within each conflicting base model, which ultimately proved 

most superior.    

 



   
 

   

 

 

 

 

 

 

Chapter 8  

 

Conclusions and Future Work 

  

8.1 Overview 

 

 This Chapter discusses the key findings and conclusions generated as a result 

of the research conducted throughout this Thesis.  The overarching research 

endeavour of this Thesis intended on exploring methods to enhance HAR 

performance within smart environments.  This endeavour was achieved through 

establishing an end-to-end methodology for the optimisation of HAR which focused 

on enhancing HAR performance at various stages of the process, from data 

acquisition through to activity classification.  Upon reflection, the end-to-end 
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methodology consisted of 3 main components, specifically pre-processing, feature 

extraction, and classification.  Performance enhancements were demonstrated within 

each component, however, within the classification stage the developed 

homogeneous ensemble did not perform as well as had been anticipated.  

Nevertheless, the developed heterogeneous ensemble classifier demonstrated notable 

success.      

A comprehensive literature review was initially conducted to assess the 

current state of the art and to identify research opportunities/future trends pertaining 

to HAR within smart environments.  This review considered the 5 stage activity 

recognition process, involving data acquisition, pre-processing, segmentation, 

feature extraction and selection, and classification, as well as considering various 

application domains for HAR research and identifying predominant research 

challenges associated with HAR.  Consequently, research studies were designed and 

conducted throughout this Thesis to enhance HAR performance within smart 

environments at each stage of the process, with particular focus and contributions 

upon pre-processing, feature extraction and selection and classification.   

 Section 8.2 presents a discussion of the work, Section 8.3 presents a summary 

of the key research contributions, Section 8.4 outlines identified limitations of the 

research studies conducted and Section 8.5 proposes future work and highlights 

future research directions.  Finally, Section 8.6 ultimately concludes this Thesis.    

   

8.2 Discussion 

 

The fundamental aim of this Thesis was to explore methods of enhancing 

HAR performance within smart environments.  This has been achieved through 

establishing an end-to-end methodology for the optimisation of HAR which focused 

on enhancing HAR performance at various stages of the process, from data 

acquisition through to activity classification. 

 The following research questions were defined to help achieve the aim of this 

Thesis and have been addressed through reviewing the literature and conducting 

research studies:  

1. What are the research challenges associated with HAR that may hinder 

classification performance? 
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2. To what extent does data quality impact upon HAR performance? 

3. Can hybrid feature selection methods offer additional benefits in producing 

an optimal subset of features for HAR? 

4. Can generating diversity within ensemble learners effectively enhance HAR 

performance? 

 

The first research question was considered within Chapter 2.  A critical challenge 

that continues to hinder HAR performance has been identified as the lack of 

available, high quality datasets to evaluate research studies [13].  Furthermore, the 

challenges of class imbalance, interclass similarity, intraclass variability and 

recognising interleaved and concurrent activities were identified and discussed.   

The second research question was investigated within Chapter 3 through 

conducting a study where HAR performance was evaluated before, and after, data 

cleaning to ascertain the impact of noise upon classification, conclusively 

demonstrating the adverse impact of noise.   

Following this, the third research question was investigated within Chapter 5 

through exploring a suite of well-established feature selection methods, in addition 

to developing a new hybrid feature selection method which demonstrated its 

effectiveness and benefits in comparison to the initially explored techniques.   

Finally, the fourth research question was investigated within Chapters 6 and 7 

which demonstrated the performance enhancing capabilities of ensemble classifiers 

by developing novel homogeneous and heterogeneous classifiers.  Particularly, the 

experimental results obtained through the exploration of heterogeneous ensembles 

demonstrated their effectiveness in comparison to the homogeneous method, 

indicating that introducing additional diversity was an effective approach.  

Generally, sensor-based HAR is approached through implementing either data-

driven or knowledge-driven classifiers.  Research studies conducted within this 

Thesis focussed upon data-driven classification.  Nevertheless, knowledge has been 

inferred throughout various stages of the end-to-end methodology which enhanced 

the quality of inputs to each data-driven classifier generated.  For example, the data 

restructuring process within Chapter 4 was driven through knowledge of the available 

sensors and the activities to be classified.  Several challenges were identified, such 

as the large quantity of activity classes with regards to the low amount of information 

provided by binary sensors at an abstract level.  It was recognised that certain 
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activities were indistinguishable with the available sensors, such as Act21 work at 

the table, and certain activities were too complex to recognise with binary sensors 

alone.  For example, Act10 enter smart lab, Act13 leave smart lab and Act14 visitor 

to smart lab were indistinguishable given that only one binary sensor was available 

at the smart lab doorway region.  Further to this, knowledge was also inferred at the 

feature selection stage through analysing the initial results and discovering common 

features chosen for removal by all filter methods, in addition to observing the 

differences in performances achieved by each filter method and deliberating whether 

a truly optimal feature subset had been discovered.  Consequently, a new hybrid 

feature selection method was developed.  Finally, knowledge was also inferred at the 

classification stage, in that each base model within the ensemble classifiers were 

organised according to which activities habitually occurred within each time routine.  

Thus, knowledge of daily routines was inferred as humans habitually get up in the 

morning, prepare a meal in the morning, afternoon and evening, and also go to bed 

in the evening, for example.   

It is recognised that a solely data-driven approach would be capable of providing 

more valuable information given an additional range of sensor features.  For example, 

the inclusion of a binary sensor in the table region would support the recognition of 

Act21 work at the table, or perhaps more sensor modalities such as the inclusion of 

proximity data to distinguish between Act10 enter smart lab, Act13 leave smart lab.  

Nevertheless, a solely data-driven approach is not recommended with the original 

data containing 24 classes as certain activities could not be distinguished with binary 

sensors alone, and the original data was highly imbalanced.  Instead, the data was 

restructured based on inferred knowledge to reveal the potential of binary sensors 

within a smart environment setting.  Another interesting approach could have 

involved recapturing the activity data with the inclusion of additional sensors to 

enhance the level of information provided per activity class, thus also improving the 

end-to-end methodology.  

  

8.3 Summary of Contributions  

 

An end-to-end methodology was established within this thesis to ascertain 

means in which HAR performance could be enhanced at various stages of the HAR 
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process to achieve the overarching research aim of this Thesis of improving the 

performance of HAR within smart environments.  A publicly available HAR dataset 

containing data streams of several common ADLs was taken through the proposed 

end-to-end methodology, with particular focus upon exploring methods to enhance 

performance.  Through conducting a comprehensive literature review of the HAR 

process, various promising opportunities of enhancing performance within each stage 

were identified and explored, rather than solely focussing on enhancing performance 

within the classification stage alone.  It was recognised that whilst various research 

endeavours within the HAR community focus upon enhancing overall performance 

at the classification stage alone, the overall HAR performance within smart 

environments could be enhanced incrementally by investigating various stages of the 

process.  Figure 8.1 highlights the HAR stages explored within this Thesis, which 

included data cleaning, scrubbing and wrangling, feature extraction and selection, 

and constructing a classification model.   

 

 

Figure 8.1. The HAR process, adapted from [16], which highlights, in red, the key areas explored within this 

Thesis  
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This thesis has provided the following contributions: 

 

• Recommendations for pre-processing data to improve the performance of 

data-driven approaches to HAR 

 

Chapter 3 presented an experimental study which was conducted to explore 

the impact of dataset quality upon classification using data-driven models.  This 

study was based on the premise that data quality is a crucial consideration for the 

development of data-driven classification models.  An endeavour to generate 

performance comparisons between noisy, and subsequently cleaned data, was 

presented within Chapter 3.  The methodology undertaken to clean the data 

demonstrated its effectiveness as results revealed performance enhancements 

during classification with the entire suite of classifiers evaluated, namely a NN, 

DT, kNN and NB, through discovering and removing noisy portions of data.   

Findings from this work have proven the benefits of generating classifiers 

with cleaned data, and also suggested that the presence of noise in accelerometery 

data has a negative impact on the performance of data-driven classifiers, thus 

supporting their need for high quality data.  This subsequently led to the 

production of a set of guidelines of how to clean accelerometery data for the 

purposes of HAR.  This work highlighted the importance of adhering attentively 

to a data collection protocol to minimise the introduction of noise during data 

acquisition, and recommended that data should be initially screened to verify its 

quality for classification purposes.  Experimental findings also lead to a 

recommendation of further refining the data collection protocol to minimise the 

introduction of noise, as the existence of noise was predominantly due to failure 

in following the protocol. 

Chapter 4 involved identifying data challenges within a publicly available 

HAR dataset and provided recommendations as to how these challenges should 

be solved.  Findings from both Chapters 3 and 4 reinforced the need to develop 

refined study protocols and standards for the collection and storage of datasets to 

ensure the effective collection and dissemination of high quality HAR datasets.  

Furthermore, the produced recommendations can be used as guidelines for 

supporting data collection protocols, which will ensure the collection of good 

quality data and also encourage data sharing.        
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• Produced a new approach to select an optimal subset of features for HAR 

 

Chapter 5 presented the details of a research study conducted to discover an 

optimal subset of features for HAR within smart environments using 

environmentally deployed binary sensors.  Following initial experiments with 

conventional techniques, the opportunity emerged to implement a hybrid-filter 

technique to further enhance classification performance as the literature had 

indicated the potential of hybrid methods to further enhance performance.  Thus, 

Chapter 5 presented a novel hybrid-filter feature selection method, which 

generated new subsets of features for removal.  The hybrid-filter demonstrated 

enhanced HAR performance and revealed a considerable trade-off between the 

classification performances achieved and the number of redundant features 

identified and removed, in comparison to all initially evaluated conventional 

techniques.  Experimental results demonstrated that reducing data dimensionality 

through removing redundant features, had either maintained or enhanced HAR 

performance amongst the full suite of evaluated classifiers.  The advantages of 

combining feature selection methods were also demonstrated through 

implementing the proposed hybrid-filter, as the combined filtering methods had 

complemented each other to achieve an ultimately superior subset of features for 

ADL recognition. 

 

• A new homogeneous ensemble classification model that introduces diversity 

at a data level 

 

Chapter 6 presented a research study conducted to enhance HAR 

classification performance by exploring ensemble methods due to their perceived 

benefits over individual models.  A novel approach to generating data diversity 

was presented within Chapter 6, within which 4 NN base models were generated 

to represent activities per time routine, specifically the Morning, Afternoon, 

Evening and Mixed routines.  The Mixed model was generated to represent 

activities that habitually occur throughout a typical daily routine.  During the 

ensemble generation stage, explorations were made to analyse the effects of 
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various complement class data compositions amongst the base models as each 

model had been trained with unique activity classes.   

Further to this, various conflict resolution techniques were designed to 

resolve conflicts occurring between base models during the ensemble integration 

stage.  The designed techniques included either awarding the final output decision 

to the model with the largest probability output prediction, the largest differential 

output value between the conflicting models, or weighting techniques using the 

training performances attained and the number of classes per conflicting model.  

The most effective conflict resolution technique was that of Algorithm 6.3, which 

involved awarding the final output decision to the model with the largest 

differential value between the conflicting models, as this approach resulted in the 

least number of “right but incorrect” instances when applied to both data 

distributions.   

The performance of the proposed homogeneous NN ensemble was 

benchmarked against the suite of classifiers introduced in Chapter 5, namely 

kNN, SVM, NN and LR.  The proposed ensemble outperformed 2 from the 4 

classifiers considered, namely the kNN and SVM models, and was very slightly 

less effective than the NN and LR models, which outperformed the proposed 

approach by 0.06% and 0.62%, respectively. 

 

• A new heterogeneous ensemble classification model that introduces diversity 

at both data and classifier levels 

 

Chapter 7 presented a research study following the work introduced in 

Chapter 6 by further enhancing the level of diversity within an ensemble method, 

thus endeavouring to further enhance HAR performance.  Within Chapter 7, a 

novel heterogeneous ensemble classifier was designed.  Diversity was explored 

at both data and classifier levels, utilising the previously explored data diversity 

method, in addition to diversifying the base classifiers through exploiting the 

benefits of a number of diverse classifiers, namely kNN, NB, SVM, NN and DT 

models, as these models were identified as complementary within previous works 

[200].   

Two heterogeneous ensemble generation methods were explored.  Method 1 

involved generating 5 base classifiers per base model M1 to M4 (representing the 
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Morning, Afternoon, Evening and Mixed routines, respectively), where the 

classifier achieving the highest training performance was chosen to represent 

each base model.  Contrarily, Method 2 involved a two-phase ensemble 

integration approach, in which voting schemes, namely majority voting and 

weighted majority voting, were implemented and compared within Phase 1 to 

combine the outputs from each of the diverse classifiers, and subsequently the 

resulting base model decisions were combined, per base model M1 to M4, in 

Phase 2.   

Conflict resolution techniques were applied to both Method 1 and Method 2 

to combine the outputs of each base model.  Within Method 1, there were 3 

suitable conflict resolution techniques explored, whereas within Method 2, the 

opportunity of exploring 5 conflict resolution techniques had emerged.  The 

optimally performing heterogeneous ensemble method was that of Method 2 via 

weighted majority voting, in conjunction with conflict resolution algorithm 7.2.4, 

which involved awarding the final output decision to the model with the highest 

value through multiplying the average training performance achieved through 

generating the 5 diverse classifiers, by the strength of the vote attained.  Both 

heterogeneous ensemble methods outperformed the homogeneous NN ensemble 

proposed in Chapter 6, in addition to the heterogeneous Method 2 outperforming 

all other benchmark classifiers considered within previous Chapters, namely the 

kNN, SVM, NN and LR classifiers by 13.18%, 7.59%, 3.68% and 3.12%, 

respectively, which had ultimately proven its superiority.              

  

8.4 Limitations 

 

 One sensor-based HAR dataset has been taken through the proposed end-to-

end framework with thorough evaluations performed at each stage of the process.  A 

limitation of this Thesis has been identified in that only one HAR dataset was utilised 

to evaluate the end-to-end framework.  It is acknowledged that the inclusion of 

another dataset would further support the findings produced through conducting 

experimental studies.  Nevertheless, the low availability of good quality, accurately 

annotated HAR datasets remains a challenge, as recognised in Chapters 3 and 4. 
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 Another identified limitation is that the optimal feature subset discovered 

within Chapter 5 was not progressed into the succeeding Chapters of the end-to-end 

methodology.  The experimental work conducted within Chapter 5 was retrospective 

to the succeeding Chapters, thus the full feature set was used as input to each base 

classifier within the ensemble Chapters.      

 It is appreciated that in the domain of smart environments, a number of data 

types are available.  Within Chapter 3, continuous data was evaluated whereas binary 

data was considered within Chapters 4-7.  A limitation is identified in that the 

conclusions derived from the research study evaluating continuous data may not be 

generally applicable to binary data, and vice versa.  It is unclear whether the same, 

or similar, conclusions would be generated.  Thus, further experimentation would be 

required to ascertain whether the conclusions generated are transferrable amongst 

both data types. 

 It is recognised that several performance metrics exist and are employed for 

various classification tasks.  The accuracy and F-measure metrics have been utilised 

in various HAR studies [13], [85], [106], [203], [204], demonstrating their common 

employment.  Within the studies conducted in this thesis, accuracy was chosen as the 

sole performance metric as the utilised data was originally generated for the UCAmI 

Cup competition, which had specified accuracy as the sole performance metric to 

evaluate the participants’ proposed methods.  Thus, the decision upon choice of 

evaluation metric was influenced by the UCAmI Cup guidelines to facilitate 

comparison with other approaches using the same data.  Nonetheless, upon reflection, 

it is acknowledged that the inclusion of additional performance metrics may have 

been beneficial in evaluating the proposed methods.  For example, due to the 

common existence of class imbalance within HAR datasets, it has since been 

recognised that including the F-measure metric could provide additional benefit in 

that it presents an unbiased measure of accuracy in imbalanced environments by 

combining precision and recall scores [204].   

 

8.5 Proposed Future Work 

 

 Various areas demonstrating potential for further exploration have been 

identified to extend the contributions made within this Thesis: 
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Given that Chapters 3 and 4 emphasised the importance of data quality for 

data-driven HAR and highlighted that data collection for HAR purposes is becoming 

a critical challenge within this domain, it has been recognised that clear data 

collection and dissemination standards should be developed for researchers to 

effectively evaluate their research.  Data collection protocols should adhere to the 

developed standards to minimise the introduction of noise and avoid the production 

of suboptimal quality datasets that adversely affect HAR performance.  Providing 

such standards would encourage researchers to effectively collect and disseminate 

high quality datasets, thus eliminating the current challenge of HAR research being 

hindered by the low availability of publicly available datasets that include a large 

quantity of accurately annotated and high quality data.  Further to this, it has also 

been recognised through findings within Chapter 4 that the quality of publicly 

available datasets is unclear [81], with many researchers expressing concerns 

pertaining to the quality of the UCAmI Cup dataset, for example.  It was also found 

that data quality has a significant impact on the performance of data-driven 

approaches to HAR.  Thus, a clear data quality assessment process should be 

established for researchers to benefit from, in that each publicly disseminated HAR 

dataset is labelled with a single value, based upon identified assessment criteria, 

which represents the overall quality of each HAR dataset.   

Given that the results obtained within Chapter 5 were not utilised within 

succeeding Chapters, future work should investigate the impact of the optimally 

selected features discovered within Chapter 5 upon the classification methods 

explored within Chapters 6 and 7.  This could potentially further enhance overall 

classification performance as the benefits of applying feature selection upon 

performance have been demonstrated through exploring several feature selection 

techniques.  

Chapter 6 investigated various conflict resolution techniques to combine the 

homogeneous NN base models.  The best performing technique was that of 

Algorithm 6.3, in which the highest differential value between the highest and second 

highest predictions, per conflicting base model, was awarded the final output 

decision, as this was deemed the model with the strongest class prediction.  An 

opportunity to investigate an adaption of this algorithm exists, in that it would be 

interesting to consider this method only in the occurrence that the highest and second 

highest values exist within a certain range.   
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Chapters 6 and 7 investigated ensemble methods for HAR.  Diversity was 

explored at a data level only in Chapter 6 through the implementation of a 

homogeneous method, and diversity was explored at both data and classifier levels 

in Chapter 7 through the implementation of a heterogeneous method.  The 

heterogeneous ensemble method in Chapter 7 ultimately proved most superior, 

nevertheless, it would be interesting to further explore ensembles by developing a 

heterogeneous ensemble attaining diversity at a classifier level only to have explored 

diversity at all levels.  Further to this, means of optimising the computational 

complexity of the models developed in Chapters 6 and 7 would be explored to reduce 

the computation time required and increase efficiency.  For example, the chosen 

number of hidden layers could be adjusted whilst monitoring any potential impact 

upon performance.    

Finally, the developed ensemble classifiers within Chapters 6 and 7 should be 

evaluated with another dataset as this would provide additional benefit in that the 

findings would be further supported and reinforced, in addition to further 

generalising the findings obtained.  Particularly, a dataset with a larger quantity of 

high-quality data would be beneficial as providing more labelled training data could 

enhance the prediction quality of data-driven classification techniques.  

 

8.6 Conclusion and Future Direction 

 

 This Chapter has concluded this Thesis through providing a summary of each 

of the research contributions made, outlining limitations encountered, and finally, 

outlining areas for potential future work.  It has been recognised that significant 

advancements in sensor technology and wireless sensor networks have been made in 

recent years, which have supported the progression of HAR [14].  Nevertheless, the 

widely acknowledged lack of available data is continuing to hinder the development 

of (data-driven) HAR research [13].  Data collection remains a critical challenge 

obstructing the progression of activity recognition solutions within smart 

environments.  Thus, an increase in shared data resources would vastly facilitate 

HAR research and particularly support the development and evaluation of HAR 

technologies within smart environments.  Furthermore, there is benefit in enhancing 

other stages of the HAR process, which have been demonstrated within this Thesis. 
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Data collection protocol 

 
This document summarises the data collection protocol you must follow when 
collecting the experimental data for assignment 2. 
You will have already been assigned to one of the following scenario groups. 
Please ensure that you collect data for the activities you have been assigned. 
We have produced a video to show how the shimmer should be calibrated and 
configured and how the data should be collected for each of the activities: 
https://youtu.be/e_WN_hlh_xo  

Please read the following instructions carefully. 

Data collection 
Data collection can be split into 2 components; Calibration and Scenario 
activities. The first component is a verification of the calibration procedure all 
groups must collect this data. You will then collect data during three different 
activities depending on the group below.  

Collection of Calibration Data 
The purpose of the calibration data is to allow you to assess whether the 
shimmer has been correctly calibrated or not.  Following appropriate 
calibration of the Shimmer, you should collect one continuous file of data. 
During this time, you should place the shimmer on a flat surface, and leave it 
untouched for 5 seconds. You should orientate the shimmer in each of the 6 
orientations below. Once plotted, the data should look something like that 
plotted in Fig 1. Save the file as B001234567_Calibration.csv. 

 
Fig 1. Expected output of calibrated accelerometer in each orientation. 

Collection of Scenarios 
1. Self-care Scenario (hair grooming, washing hands and teeth brushing) 

2. Exercise Scenario (cardio) (walking, jogging, stepping) 

https://youtu.be/e_WN_hlh_xo
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3. House cleaning Scenario (ironing, window washing and dish washing) 

4. Exercise Scenario (weights) (arm curls, deadlift and lateral arm raise) 

5. Sport Scenario (pass, bounce, catch) 

6. Food Preparation Scenario (mixing food in a bowl, chopping vegetables, 

sieving flour) 

Methodology 
Data for all scenarios will be collected using the same methodology. Only the 
activities will be different. 

1. Calibrate the shimmer as outlined in the week 2 practical and the video. 

Double check the calibration to ensure it is correct. 

 
2. Data will be collected using a single shimmer placed on the Dominant 

wrist. The orientation will be fixed using strapping/ elastic bands. The 

shimmer should be fixed to the wrist with the shimmer logo facing 

upward and inwards as shown by the images below (Fig2). 

  
(A) (B) 

Fig 1. Image shown the Shimmer attached to a) the Left and b) the Right 
wrist. In both cases the shimmer logo should face upwards and inwards. 
 

3. Data will be collected through Shimmer Connect. The shimmer should be 

configured in the following manner. This is demonstrated in Fig. 3. 

 
a. Accelerometer should be the only sensor recorded 

b. A sampling rate of 51.2Hz should be used 

c. The Range should be set to +-6g 

d. Logging Delimiter format: Comma 
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Fig. 3. Screenshot of Shimmer Connect showing the Configuration 
screen. Note only the Accelerometer sensor is selected. The Sampling 
Rate is 51.2Hz. The Range is set to +-6g. The Logging Delimiter is Comma. 
 

4. The shimmer is now configured to collect data. Before starting, ensure 

you have selected to save the data to file (Tools -> Save to CSV) and that 

you are saving the file in a safe place. 

The File name for the CSV should follow the following format: 
B001234567_X_ActivityName.csv 
Where B001234567 Should be your Student B number. X should be the 
Scenario you have been assigned to (i.e. 1 for Self care) and the 
ActivityName should be the name of the activity you are recoding in that 
file (i.e. HairGrooming) 
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Fig.4. Check Save to CSV prior to streaming the data. Save the file with 
the appropriate file name B001234567_X_ActivityName.csv 
 

5. We can now begin to collect data for the first activity. Click Start 

Streaming and begin undertaking the First activity in the manner 

described previously in the videos. 

Each activity should be recorded for 2 minutes each. We recommend 
you time this on your phone. Once you have finished collecting the data 
for the first activity click Stop Streaming. 
 

 
Fig.5. Stop streaming between each activity.  
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Navigate to where the File is saved. Open the file in excel and ensure 
that the Format matches the one below. Note, Only the Raw and 
Calibrated Accelerometer data is collected. If the format of your file does 
not match this, check the configuration settings. 
 

 
 

Fig.6. Screen shot of the data in Excel. Note only the Raw and Calibrated 
Accel data is recorded. 

 
6. Before collecting data for the next activity, uncheck and recheck Save to 

CSV. Ensure you provide a new Filename with the same structure as 

before. 

 

 
Fig. 7. Uncheck and Recheck the Save to CSV button. Provide a New 

filename 
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7. Repeat the data collection steps for the Second and Third activity. 

Making sure you name the files appropriately. 

 
 

8. Data Collection is now complete. You should Check that you have 4 

separate files, 1 for the calibration data and 1 for each of the 3 activities. 

These files should be appropriately named and structured. 

DATA SUBMISSION GUIDANCE 
This section describes how to upload your data and submit it through the 
TurnItIn. 

Submission Preparation 
A text-based readme files should accompany the submission of your 
collected data. The readme should briefly describe the data collected, verify 
the activities collected, the hand / wrist to the shimmer was attached, the 
duration of the recording as well as to confirm the details regarding the 
sampling rate and sensitivity set for the Shimmer used.  
 
Uploading Data 
The submission system can only accept a single file upload therefore, at this 
point, the readme text file and four separate.csv recording should be 
compressed into a single .zip file, named appropriately as prescribed 
previously in this guide. 
 
The data should be submitted via the Data Collection Dropbox link (Figure 7), 
located within the Assignment 2 Folder that can be accessed from the 
Assignments 2017 Link, present on the module contents page. Within this 
folder, you should click on the TurnItIn Dropbox Link and follow the 
onscreen guidance. 
 

 
Figure 7. Collected Data should be submitted via the Collection Dropbox. 

 
Once you’ve uploaded the approach .zip file via the TurnItIn interface, it is 
essential that you click the Submit button to process the submission. 
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Post Submission and Accessing Other Datasets 
 
Following the submission of your work, staff will create a second TurnItIn 
dropbox within the Assignment 2 Folder. Here, you will be provided with 
access to datasets collected by 20 other students who were working within 
the same data collection scenario. This access is grant via the Peer Review 
feature within TurnItIn. Upon accessing the Peer Review Dropbox, you will 
be presented with a list of available submissions (Fig 8). For each submission, 
will be able to access and download the respective .zip file (Fig 9). 
 

 
Figure 8. The Peer Review System in TurnItIn will list available student 

dataset submissions. 
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Data cleaning and wrangling 

This week, the lab class will cover concepts surrounding data validation/ 
cleaning and data aggregation/ wrangling. You will be provided with a number 
of datasets that will support you to gain experience in data aggregation and 
data validation. 

 

Sources of Error 

During the data collection process, a number of errors may be introduced into 
the data that either require the data to be cleaned (i.e. some sections of the 
data must be removed or the signal filtered) or that the data must be discarded. 
You will more than likely come across many of these errors as you aggregate 
data from various other student data collection submissions. 

Common sources of error within activity recognition experiments include: 

• Incorrect activity name/ labelling 

• Poor calibration/ not calibrated data 

• Incorrect / inconsistent orientation of the sensor on the body 

• Incorrect / inconsistent location of the sensor on the body 

• Additional sources of noise within the signal i.e. data not reflective of 

the activity being performed 

• Data clipping due to the wrong Sensitivity calibration being used. 

 

Data Collection Scenario 

The data files contained within the practical folder on Blackboard contain 
accelerometer data collected from Shimmer whilst a person completed a 
number of activities. Specifically, walking, descending stairs, climbing stairs 
and standing activities were undertaken. The data collection protocol 
surrounding this experiment specified that data should be collected from a 
Shimmer using a sampling frequency of 51.2Hz and a Sensitivity of +-4g. The 
Shimmer was to be placed on the left wrist in the orientation shown in Figure 
1. Prior to data collection, the Shimmer should have been calibrated. Note that 
the orientation of the device on the body is such that if the participant stands 
still, with their arms at their side, the gravitational vector will be sensed in -Y 
direction, meaning the signal will vary around -9.87 (Approx. 10m/s2) 
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Fig 1. The proposed placement and axis orientation of the shimmer.
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Data files 

The data from each of the activities was saved to separate .csv files. The type 
of activity is reflected in the file name. Each file contains raw and calibrated 
accelerometer data, plus the timestamp, milli-seconds and raw units. In total, 
each file therefore contains 8 columns. The raw and calibrated data can be 
identified using the header row. Columns 6-8 represents the calibrated 
accelerometer data for the X, Y and Z axis, respectively. 

Practical Lab Tasks 

The following sections outline the processing steps for obtaining, cleaning and 
wrangling data. 

Obtaining and cleaning data 
• Download and unzip the data from blackboard. 

• For each of the files, plot the “calibrated data” in Excel or Matlab. Take 

a screenshot of the data and save this for future reference. 

• Using the Excel plot of the calibrated data for each file and your 

developing knowledge of accelerometry data, determine whether or 

not the data under investigation is usable or not. 

o In cases where you can clean the data (by removing sections of 

noise, irrelevant segments to the target activity), proceed to do 

so and then save the cleaned data to file (i.e. 

#filename_clean.csv). 

o If data cannot be cleaned (i.e. you suspect bad calibration, 

wrong orientation etc.) then discard the data and do not 

include it in any further analysis. 

• Complete the table below to provide a data summary of the cleaning 

process for each file. 

 

 

File Name 

 
Data Quality 

(Good/Poor) 

 

Comments on Data 
Cleaning 

Decision (Keep/ 
Discard) 

Example 1 Good Noise at end from sample 
2564. Data to be trimmed 

Keep 

Example 2 Poor Data not calibrated 
correctly 

Discard 

Walking 1 
   

Walking 2 
   

Walking 3 
   

Walking 4 
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Upstairs 1 
   

Upstairs 2 
   

Upstairs 3 
   

Upstairs 4 
   

Standing 1 
   

standing 2 
   

standing 3 
   

standing 4 
   

Downstairs 1 
   

Downstairs 2 
   

Downstairs 3 
   

Downstairs 4 
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