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Abstract. The attention assessment of an individual in following the
motion of a target object provides valuable insights into understand-
ing one’s behavioural patterns in cognitive disorders including Autism
Spectrum Disorder (ASD). Existing frameworks often require dedicated
devices for gaze capture, focus on stationary target objects, or restrict
the analysis to a single image obstructing a temporal analysis of the par-
ticipant’s response. This drives the motivation to address the persisting
research gap in the analysis of the video capture of a visual tracking task
of a dynamic physical object, over a time frame. To this end, this paper
proposes a novel framework to analyse the temporal relationship between
the 3D head pose angles and object displacement, and demonstrates its
validity via application on the EYEDIAP video dataset. The conducted
multivariate time-series analysis is two-fold; the statistical correlation
computes the similarity between the time series as an overall measure
of attention; and the Dynamic Time Warping (DTW) algorithm aligns
the sequences of the target trajectory and the gaze, and computes rel-
evant temporal metrics. It was proven that the correlation and metrics
relevant to DTW corroborated each other. Additionally, the latency and
maximum time of focus retention extracted as temporal characteristics,
enabled an intragroup comparison between the performance of the par-
ticipants. An extension to the analysis of the behavioural response con-
cluded that the response to horizontal motion generally outperformed
that of vertical motion, and that 56.3% of participants improved their
retention of focus on the vertical motion of the target over time, implying
that following a vertical target initially proved a challenging task.

Keywords: Automated gaze analysis · Multivariate time-series analysis
· Head Pose.

1 Introduction

The analysis of human gaze with respect to a dynamic target is vital to the
perception of one’s attention and engagement as per clinical documentation [7].
In contrast to manual qualitative evaluation, merits of automated analysis in-
clude an unbiased judgement of the resultant gaze, enhanced by metrics to allow
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further prediction based on the level of attention. Frameworks for analysis of
this calibre have been applied in a variety of domains ranging from social be-
haviour of adults [8, 20, 21] and infants [13], classroom environments [4], [3] to
human-robot interaction [17] and industrial environments [6].

Whilst gaze analysis on static images have been attempted with the aid of the
line of sight [4] and heat maps [3,17] between the participant and target objects,
only limited challenges in analysing a sequence of frames have been previously
tackled. Lemaignan et al. [12] studied one’s focus time on a target, determined
by a broad field of attention estimated by the head pose, limiting the accurate
alignment of the gaze to a small dynamic target. A study of joint attention [20]
estimates the latency between the instruction and the resulting look, based on
the presence of the gaze dot within the expected field of attention, whilst the
latency, longest and shortest look for each object of interest has been previously
assessed [21]. However, these work [20,21] rely on specialised sensors to capture
the gaze and object position, as opposed to a single video feed.

To date, computer vision-based eye gaze estimation remains challenging due
to variations in head pose, illumination, occlusions and the requirement for the
capture of high-resolution images of the eye [10]. Thus, the input modality of a
majority of work in this domain constitutes of dedicated devices to facilitate eye
tracking, which deviates from a natural interaction and contributes towards one’s
discomfort and expense of data collection. The aforementioned impracticality in
eye tracking within a resource-restricted environment has recently expedited the
approach of gaze estimation via head pose. Prior work has extensively proven
the feasibility of robust head pose estimation in a wild environment from 2D
images [16]. In addition, the reliability of this gaze estimation has been ade-
quately demonstrated by experiments [18] which concluded that the head pose
contributes to an average of 88.7% to one’s focus of attention. Therefore, the
model proposed in this paper focuses on exploiting the relationship between the
3D head pose angles and position of the object within a visual tracking task.

Furthermore, the analysis of attention over a time frame in response to a
dynamic physical target is a persisting research gap in the domain of attention
analysis, given the invalidity of prior approaches primarily focusing on stationary
targets [12,20,21]. As per the Diagnostic and Statistical Manual of Mental Disor-
ders [2], children displaying prodromal symptoms of Autism Spectrum Disorder
(ASD) show deficits in following another’s pointing, eye gaze or movement of a
target object. For instance, the Autism Observation Scale for Infants (AOSI) [5],
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Fig. 1. System overview diagram of the proposed framework for the analysis of an
object following task.



The Aut. Temporal Analysis of Gaze Following in a Visual Tracking Task 3

a standard set of semi-structured activities designed to detect and monitor early
signs of autism, incorporates a visual tracking task which assesses the ability to
track the trajectory of a rattle. The AOSI scoring system considers the smooth-
ness of tracking the target object, the resultant delay in response, and ability to
track the vertical movement of an object; factors which would be quantitatively
assessed in the proposed approach.

Thus, an automated behavioural analysis of response to a dynamic target
enhances the identification of symptoms of attention based disorders, and subse-
quent intervention to improve cognitive behaviour in children. To the best of the
authors’ knowledge, only a qualitative evaluation of a visual tracking task has
been previously attempted [11], which visualises the variation of the estimated
yaw to evaluate the smoothness of the participant’s response. Furthermore, it
fails to analyse the similarity between the head pose and the trajectory of the
target object to assess how closely the target is followed, does not model the
response to the vertical motion of the target, and is void of a temporal analysis
of the response.

To address the aforementioned research gaps in the evaluation of an indi-
vidual’s engagement within a captured video of an object following task, the
framework presented in Fig. 1 is proposed. The time-series data pertaining to
the gaze and position of the target is subject to a multivariate time-series analy-
sis, which employs statistical correlation to compute the similarity between the
series, and the Dynamic Time Warping (DTW) algorithm [14] to further analyse
the temporal dynamics. The DTW algorithm was applied to compute the time
lag, and therefore parameters vital to draw a conclusion on the attention ex-
tended by an individual, in contrary to the application of DTW as an exclusive
similarity measure between time series in domains including gesture recogni-
tion [1] and gait analysis [19]. The attention in response to the motion of the
stimulus along the horizontal and vertical planes is based upon the relationship
between the yaw and x displacement; and pitch and y displacement.

The potential for application of the framework in a clinical behavioural study
of a group within a low-resource environment is demonstrated via the study on
the EYEDIAP dataset [9]. To the best of our knowledge, we are the first to
propose a simple computational framework of this calibre, with the following
contributions:

– A multivariate time-series analysis between the head pose angles and ob-
ject displacement for periodic motion, based on statistical correlation and
Dynamic Time Warping.

– An intragroup analysis of the retention of focus and latency of gaze following,
based on the deviation between the resulting and expected warping paths.

– An intragroup study of the behavioral response in following a visual target
horizontally and vertically.

The rest of the paper is organized as follows: Sections 2 and 3 detail the
methodology followed in the proposed framework. The analysed results and dis-
cussion is presented in Section 4. Finally, the paper is concluded in Section 5
with directions for future work.
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2 Extraction of data and Pre-processing

2.1 EYEDIAP Dataset

The EYEDIAP video dataset, to the best of the authors’ knowledge, is the
only available annotated video dataset which captures participants gazing at
a dynamic visual target (Fig. 2). The sessions of participants following a 3-
D floating target (FT), while performing head movements (denoted as Mobile
case, M) were extracted. The selected video input consisted of a standard RGB
stream at resolution 640× 480 and frame rate of 30 fps. The dataset comprises
of 16 participants yielding a total of 18 videos as a result of participants 15 and
16 being recorded under two conditions. Video of participant 4 was discarded
since 60.9% of frames lacked annotations.

2.2 Extraction of gaze and object displacement data

The fine-grained head pose of an individual is interpreted as a continuous angular
measurement across multiple Degrees of Freedom (DOF) [15]. The interpretation
of 3 DOF is adopted in this work, where,motion about a vertical, horizontal
and longitudinal axis, is denoted by the change in yaw(θ), pitch(ψ) and roll(ϕ),
respectively. Therefore, a proportional change in yaw and pitch is expected in
response to the motion of the target along the horizontal and vertical planes.

The dataset comprises of gaze annotations in the form of a 3D rotational
matrix for each frame. The relationship between the R and the gaze angles is
defined by (1) which was manipulated to extract the head pose angles of yaw
and pitch. Furthermore, the coordinates of the spatial center of the ball along
the horizontal (x) and vertical (y) axes for each frame, were extracted as a
representation of the displacement.

R =


cosψ cosϕ

cosψ sin θ sinϕ
− sinψ cosϕ

cosψ sin θ cosϕ
+sinψ sin θ

sinψ cosϕ
sinψ sin θ sinϕ
+cosψ cosϕ

sinψ sin θ cosϕ
− cosψ sin θ

− sin θ cos θ sinϕ cos θ cosϕ

 (1)

A proportional relationship between the pitch and y displacement, and inversely
proportional relationship between the yaw and x displacement was evident as in
Fig. 3(a), (b)-1, (b)-2. Thus, an inverted version of the yaw was considered for
further analysis.

2.3 Pre-processing

Data interpolation In addition to instances where the target exceeded the
frame of view (Fig. 2(b), (d)), the displacement lacked a significant quantity
of annotations. On average, 20% of frames per video lacks annotations as a
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(a) (b) (c) (d)

Fig. 2. Sample frames of video 10, with images modified to maintain privacy of par-
ticipants: (a), (b) Following the horizontal motion of the target; (c), (d) Following the
vertical motion of the target.

result. Therefore, available data was interpolated as seen in Fig. 3(b)-1, (b)-2 to
generate the x and y coordinates of the missing segments taking into account the
gradients of the adjoining segments which represent the velocity of the target.

For a segment between [t1, t2], midpoint t, and gradients of adjoining seg-
ments m1 and m2, the interpolated displacement value dint[t] at a time instant
t was generated by (2). For additional lacking annotations within the linear
regions of displacement, linear interpolation was applied via (3).

dint[t] =

m1 − m1.(t−t1)

t−t1
+ d[t− 1], if t1 < t < t.

m2.(t−t)

t2−t
+ d[t− 1], if t ≤ t < t2.

(2)

dint[t] = d[t1](1− µ) + d[t2]µ (3)

where µ = t−t1
t2−t1

. Segments exceeding 90 frames were not interpolated since the
approximations made over a larger number of frames may be compromised.

Periodicity detection and segmentation In order to analyse the attention of
an individual over periodic motion of the target, the segments of strictly periodic
motion along the horizontal or vertical axis were identified (Fig. 3(c)-1, (c)-2).
All local maxima were identified by simple comparison with the neighboring
values. The minimal horizontal distance between samples was restricted to 75,
and the prominence was limited to 200 to eliminate minor peaks. A threshold of
360 frames was applied in identifying the consecutive peaks, since it was evident
that the period of cycles of motion in the video dataset did not exceed this value.

Standardization Given that the gaze angles and displacement lie within dis-
similar ranges, all data segments were standardized by (4) where µ and σ denote
the mean and standard deviation of the segment, respectively.

xstd =
x− µ

σ
(4)
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Fig. 3. Extracted data and pre-processing for video 9: (a) Extracted yaw and pitch
angles; (b) Original and interpolated displacement; (c) Automatic periodicity detection
and segmentation of displacement. Segments of horizontal and vertical motion are
denoted as H1-H3, and V1-V2, respectively.; (d) Relationship between standardized
data for selected segments H2 and V2 from (c).

3 Time-series analysis between the gaze and object
displacement

3.1 Statistical correlation

The Pearson’s correlation coefficient r, computed by (5) evaluates the linear
relationship between two continuous variables, x and y:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2)
(5)

The coefficients between the yaw and x displacement, and pitch and y displace-
ment, evaluated for each identified segment, served as an overall measure of
the attention extended by the participant over the considered time frame. The
coefficients for segments H2 and V2 in Fig. 3(d) are 0.941 and 0.816, respectively.

3.2 Dynamic Time Warping (DTW)

The Dynamic Time Warping (DTW) algorithm yields the optimal alignment
between two non-linearly warped time-series by computing the corresponding
points bearing the least cost between the two series. Thus, it facilitates further
analysis of the time lag between the gaze and trajectory of the target.
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Implementation Let the two sequences be defined as X = (x1, ..., xn) and
Y = (y1, ..., ym). The generated cost matrix dn×m is computed as di,j = |xi−yj |
where i and j refer to the indices on the sequences X and Y , respectively. The
warping path, W of length k, is defined as the sequence of points of minimum
overall cost and is represented as:

W = (w1, ..wt, .., wk), wt = (it, jt) (6)

where wt refers to a point lying on the warping path, W at time, t. The following
restrictions apply in generating the warping path as in Fig. 4(a):

– Boundary condition: The path begins and ends with the starting and ending
points of both signals, respectively, such that w1 = (1, 1), wk = (n,m).

– Monotonicity condition: The time order is preserved such that it−1 ≤ it and
jt−1 ≤ jt.

– Continuity condition: The translation of the path is restricted to adjacent
points in the matrix. Therefore, it − it−1 ≤ 1 and jt − jt−1 ≤ 1.

– Warping window constraint: The window length (w), the maximum deviation
of the warping path from the diagonal is restricted such that |i − j| ≤ w.
Based on empirical evidence, a window of 150 was applied.
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Fig. 4. Results of the DTW algorithm for segment V2 of video 9: (a) Generated cost
matrix, expected warping path for perfect mapping, and the resultant warping path
of minimum overall cost; (b) Original and modified alignment between the gaze and
displacement sequences; (c) Time lag analysis of focus retention time and latency.
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Analysis of DTW metrics The accumulated cost of the warping path is
a measure of the association between the two sequences aligned by the DTW
approach. Therefore, a metric, Normalised Accumulated Cost (NAC) was defined
as the derived cost normalised by the length of the warping path to account for
sequences of varied lengths. Based on the continuity condition, the warping path
includes all indices of each sequence, implying the repetition of indices and a
path of variable length which hinders an accurate temporal analysis. Therefore,
considering the displacement as the baseline, a modified warping path included
only the corresponding index of minimum cost for each index of the displacement,
as visualised in Fig. 4(b). Thereafter, the difference between the corresponding
indices, normalised by the length of the warping path is calculated, which is
interpreted as the time lag. The retention of focus and latency is evaluated
(Fig. 4(c)) based on this metric termed as Normalised Time Deviation (NTD).

The time of focus retention refers to the maximum duration an individual
maintains a reasonable level of focus on the target object. Therefore, this was
obtained by identifying the maximum number of consecutive frames of time lag
less than a threshold of 45 frames, or 1.5s within this framework. In addition,
the percentage of focus retention over the number of frames of the segment was
computed. This is similar in concept to the normalized ratio of time that the
human interactant focuses its attention on the target, denoted as ’with-me-ness’
in Lemaignan et al. [12]. The latency is the time elapsed prior to the gaze of
the individual aligning closely with the path of the target object with certain
accuracy, during which the time lag, or deviation should remain 0 over a time
period of at least 1.5s. However, a threshold equal to the 1st quartile of the time
lag was considered to account for minor fluctuations. Interpreting Fig. 4(c), the
individual retained the focus for the complete duration of 770 frames, i.e. 25.6s.
Furthermore, a latency of 3.23s was recorded given the that 97 frames elapsed
prior to the target being accurately followed. While the latency was computed
for each segment, the overall latency of a participant was considered as that of
the initial segment of the task.

4 Results and Discussion

A detailed study of the results obtained via the application of the framework on
the EYEDIAP dataset is presented in this section. The study is further extended
to comment on the discernible behavioural characteristics of the participants.

4.1 Multivariate time-series analysis metrics

The metrics relevant to correlation and the DTW algorithm were compared
to ensure the validity of the chosen approaches for the multivariate time-series
analysis. It was hypothesised that an inverse relationship would result between
the correlation coefficient, and the DTW metrics of NAC and NTD since a well-
matched head pose series to the displacement yields a high correlation, and a
minimum NAC and NTD. The scatter plot in Fig. 5 which includes metrics of all
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extracted segments in the dataset depicts an inversely proportional relationship
between the relevant metrics, validating our hypothesis.

While it is understood that the two selected approaches of time-series analysis
within this application corroborate each other, the significance of the approaches
lie in their interpretation. The correlation coefficient, a single metric in the range
[-1, +1] is an overall measure of the similarity between the head pose and the
position of the target. The NAC is an enhanced similarity measure yielding
the average cost between the sequences following the alignment by the DTW
approach, and denotes how closely the trajectory of the head pose aligns with
that of the target, removing dependancy on time. In contrast, the NTD is the
average time lag between the aligned sequences, serving as a temporal measure
between the time-series.

4.2 Intragroup comparison of temporal characteristics

A comparison between the performance of the participants in terms of the tempo-
ral features was conducted to further analyse the participants’ level of attention.
This considered the maximum percentage of focus retention amongst all seg-
ments within the video, and the latency of the initial segment as in Fig. 6. The
focus retention measures the maximum time a participant is capable of main-
taining focus on the target, with a minimal lag. It was evident that participants
1, 5, 8, 12 and 16 B were unable of maintaining focus for more than 50% of a
segment. In contrast, the latency is a strict measure of the time taken for the
gaze of the participant to align with the expected trajectory of the target. The
latency of the initial segment was utilised to extract the behaviour prior to any
training the participant may accumulate during the task. Here, participants 1, 2,
5, 10, 15 B recorded comparably high latency values denoting that a significant
time elapses prior to the gaze strictly aligning with the target position.

Taking into account both these factors, participants 1 and 5 were less suc-
cessful in gaze following, bearing a low retention of focus and relatively high
latency. Participants 6, 11 and 16 A showed 100% of focus retention and negligi-
ble latency depicting excellent performance. Participant 10 showed an interesting
outcome with a focus retention of 100% and the maximum latency of the group,
implying the maintenance of moderate focus throughout while failing to strictly
follow the target.

An analysis of the latency and focus retention time of all segments revealed
that in 58.8% of segments, the latency occurred before the focus retention time,
signifying that individuals are more likely to retain focus continuously after hav-
ing reached the expected trajectory even for a short period of time. In contrary,
the latency occurred within the focus retention time in 29.4% of segments. This
implies that certain individuals needed to focus on the target for a certain period
of time prior to reaching the expected trajectory. The latency was not recorded
in 11.8% segments indicating that participants failed to closely follow the target.

A comparison of the percentage of focus retention between the initial and
final segments along the horizontal and vertical planes saw an increase in focus
retention for vertical motion in 56.1% of participants. This notable improvement
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may imply that participants were involuntarily trained to focus on the target
object over the time frame of the task. In contrast, a 42.9% of participants
showed a declining focus retention percentage for horizontal motion.

4.3 Intragroup comparison of response to horizontal and vertical
motion

A study of the association between the metrics and the plane of motion of the tar-
get (Fig. 7) indicated that in general, participants were more responsive towards
motion along a horizontal plane. Horizontal motion has resulted in a notably
higher correlation coefficient and lower NAC throughout the dataset observing
the 1st and 3rd quartiles in Fig. 7(a). The results of sample videos in Fig. 7(b)
confirm the same. This observation, along with the improvement in focus reten-
tion by the completion of the task may indicate that the vertical motion of the
stimulus proves challenging, leading to reduced attention. In contrast, the de-
clining or relatively constant focus could be justified by the monotonous nature
of the horizontal motion, given that the object lies upon a constant level of sight.

It is also worth noting that the NTD metric shows a less significant bias
towards horizontal motion as evident through the median value of the boxplot
figures. This is further highlighted by the sample results which depict that hor-
izontal motion in videos 6 and 7 has yielded a higher NTD. This occurs since
this metric emphasizes completely on the resulting time gap between the aligned
sequences, whereas the correlation and NAC measures the similarity between the
sequences. This suggests that the gaze of participants 6 and 7 follow the hori-
zontal trajectory of the target, albeit with a significant lag.

5 Conclusion and Future Works

This paper proposes a novel framework for the automated evaluation of parame-
ters pertaining to one’s gaze response to the motion of a physical target, address-
ing the research gaps in the lack of an approach for gaze analysis focusing on
a dynamic physical target, conducting a temporal analysis of the performance
and void of wearables for gaze capture. The time-series analysis between the
head pose and the object displacement resulted in the correlation coefficient as
an overall similarity measure. The analysis was enhanced by the similarity mea-
sure following the alignment of the time-series via the DTW algorithm, and the
resultant time gap, upon which the time of focus retention and latency was com-
puted. The application of the algorithm to the EYEDIAP video dataset showed
that the correlation and the metrics of DTW corroborated each other. Based on
the temporal features, the gaze responses of participants were compared. While
an increasing trend in focus retention between the initial and final segments of
vertical motion was observed amongst participants, the response towards hor-
izontal motion of the target outperformed that of vertical motion, as evident
through all metrics.
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Given the necessity of only a single video capture, the proposed framework
shows prospects for implementation in low-resource environments such as ASD
screening centers for children in developing countries. Thus, future work includes
the application of the model on collected clinical data to evaluate the gaze re-
sponse of children in the identification of deficits pertaining to ASD. A deep
learning model for head pose estimation and a combination of object detection
and tracking algorithms would replace the phase of extracting dataset annota-
tions of gaze and displacement as done in this study. Furthermore, the proposed
algorithm would incorporate an alternative framework based on the analysis of
eye gaze angles, facilitating a comparison between the two modes for gaze anal-
ysis. Finally, the development of a model for the automated categorisation of a
child’s gaze response according to the AOSI standard, based on the computed
correlation and temporal metrics, is worth investigating.
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