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Abstract (200 words) 7 

Rising energy demands and net-zero targets have led to development and implementation of renewable 8 

technologies. Rooftop photovoltaic (PV) solar panels offer a viable solution while minimising complex 9 

construction or excessive infrastructure development.  However, critical physical factors influence building 10 

suitability to maximise cost-benefit requirements. This research adopted a Geographic Information System 11 

(GIS) approach to identify building suitability by analysing and comparing Digital Surface Models (DSM) derived 12 

from Light Detection and Ranging (LiDAR) and orthophotography data using UK standardised PV formulas. 13 

Geospatial workflows processed rooftop features and modelled outputs for solar irradiation, panel type, kWh, 14 

CO2, payback and costs while 3D models and solar web applications were used to validate results. Both models 15 

suggested a range of between 14.2 and 15.2 GWh potential for an installed capacity of between 21.1 and 22.3 16 

MW. Residential models met between 62.1% (LiDAR) and 66.6% (orthophotography) of average consumer 17 

demand with PV potential exceeding 94% of residential dwellings. LiDAR and orthophotography models had 18 

strong agreement with existing PV installations. The methodology can be scaled to a regional level and 19 

expanded for larger PV capacity. Moreover, the process can assist policymakers with informed decisions on 20 

renewable technologies alongside developments such as Peer to Peer (P2P) solar trading.   21 



Graphical abstract 22 

Highlights 24 

• LiDAR and orthophotography DSMs were compared for solar modelling.  25 

• High agreement between orthophotography DSM and LiDAR solar modelling outputs.   26 

• DSM modelling outputs were compared to web tools and detailed 3D models. 27 

• 3D models produce detailed roof solar analysis identifying obstructions at roof level.  28 

• Web solar tools overestimate solar irradiance compared to 3D models. 29 

 30 
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1 Introduction 33 

To mitigate the impact of climate change, governments across the world are developing policies that foster an 34 

energy transition from fossil fuels to renewable energy sources. Increasing demand for energy has encouraged 35 

the technological development and promotion of sustainable and reliable energy sources (Gielen et al., 2019). 36 

Furthermore, a move away from fossil fuels is associated with better air quality (Mac Kinnon et al., 2018), 37 

reduced energy prices (Jacobson et al., 2017) and energy security (Escribano et al., 2013). Transitions in energy 38 

systems include solar PV in China (Huang et al., 2019), district heating in Denmark and heat pumps in Finland 39 

(Sovacool and Martiskainen, 2020). Approximately 25% of the world’s electricity is sourced via clean energy, 40 

yet the shift is too slow to meet net zero targets (Gielen et al., 2019). While wind is a significant contributor to 41 

renewable electricity in the UK and Ireland (Brodny and Tutak, 2020), solar PV has grown in popularity as it can 42 

be retrofitted to homes and offers financial rewards for their installation (Chesser et al., 2018) while also reducing 43 

carbon emissions (Liu et al., 2019). The scientific advancement of PV is growing (Kausika et al., 2015) and a 44 

reduction in PV costs has encouraged an increase in solar panel fittings in the UK (Balta-Ozkan et al., 2015). 45 

The price of homeowner solar technology has fallen since 2008 (Lloyd, 2018), with an average 4 kWp system 46 

costing around £6,856 to install (Green Business Watch, 2019).  47 

Solar renewables take the form of PV panels which harness radiation from the sun using photovoltaic cells.  48 

Typical installations include building facades, large sites and, commonly for homeowners, at roof level. At 49 

homeowner level, panels are measured in kilowatt peak (kWp) with the smallest system at 1 kWp (Palmer et 50 

al., 2018) and an upper threshold (for UK domestic properties) at 4 kWp (McKenna et al., 2018). Panels do not 51 

require direct sunlight and can operate in overcast conditions, albeit with diminished performance 52 

(Microgeneration Certification Scheme, 2020). Surplus electricity can be sold back to the grid, providing a 53 

revenue stream for the household.  Therefore, a viable return on investment is dependent on the system rating, 54 

homeowner electricity usage and amount of exported electricity (Energy Saving Trust, 2020a).  55 

While solar PV represents a significant form of renewable energy, suitable sites and buildings must be selected 56 

to ensure a feasible return on investment. The ability to make informed decisions on PV suitability is critical for 57 

property owners, network suppliers and strategic outcomes (Boz et al., 2015). A roof’s feasibility for solar panels 58 

can involve physical inspections of the building by solar specialists, although this is inappropriate for large scale 59 

applications (Brumen et al., 2014). Homeowners can calculate solar potential by providing property data to 60 

websites such as the European Commission Photovoltaic Geographic Information System EU PVGIS (2019) 61 

and the Energy Saving Trust (2020b). While these tools consider the regional and technical aspects entered by 62 



the individual, they are on a building by building basis and depend on homeowner proactivity. Developing a 63 

system that highlights potential solar energy generation without homeowner data could incentivise homeowners, 64 

or local councils, to install solar PV panels on roof structures. Geospatial technologies and remotely sensed 65 

datasets offer considerable potential to identify suitable sites across regional scales (Martín et al., 2015).  66 

1.1 GIS and Photogrammetry 67 

Geographic Information Systems (GIS) is technology that connects location and attributes, which facilitates 68 

spatial investigation, data capture, presentation and analysis (Goodchild, 2009). Photogrammetry techniques, 69 

such as Light Detection and Ranging (LiDAR) and orthoimagery, can be used to generate 3D models at 70 

individual building level from which solar capacity can be quantified in a GIS (Palmer et al., 2016; Buffat et al., 71 

2018; Moudrý et al., 2019).  72 

Kausika et al. (2015) analysed 0.5m LiDAR data to estimate PV potential in Apeldoorn, the Netherlands, which 73 

consisted of mostly residential buildings. The study identified ‘viable’ and ‘partial’ regions of roofs that exceeded 74 

the city’s electricity requirements. However, total capacity assumed that 100% of the classified usable area 75 

would support PV.  Kodysh et al. (2013) used 1.0m LiDAR to identify optimal roof positions for PV for 212,000 76 

buildings in Knox County, Tennessee. Within the UK, Jacques et al. (2014) developed a scalable procedure 77 

using 2m LiDAR to quantify solar potential across 75,000 roof types in Leeds. The model had an estimated 78 

accuracy of 81% and could be used to estimate annual yield for kWh per kWp and cumulative GWh. While the 79 

studies by Kodysh et al. (2013) and Jacques et al. (2014) clearly indicate the potential of 3D models, they did 80 

not calculate panel outputs, payback or potential CO2 savings per building. While LiDAR is effective, other forms 81 

of DSM data, such as orthophotography produced data, have been used to model PV potential. 82 

Orthophotography has a rapid turnaround at reduced costs and is popular with National Mapping Agencies 83 

(Rabiu and Wariri, 2014). Agugiaro et al. (2012) compared 1m LiDAR and 50cm orthophotography across 1250 84 

buildings in Italy and found that orthophotography DSMs outperformed LiDAR in mapping roof features, thus 85 

yielding reliable solar results at building level. While other research (e.g. Moudrý et al., 2019) identifies that 86 

high-resolution building models offer only marginal gains in predicting solar potential, there is a clear need for 87 

further research in the potential of high-resolution 3D models.  88 

Roof suitability depends on several factors, including appropriate adequate solar energy, panel orientation, 89 

optimal slope position and impact of shadowing (Centre for Alternative Technology, 2020). While different 90 

techniques exist to calculate PV potential at roof level from web tools, this is often done on an individual building 91 



level which is difficult to replicate across large spatial scales (Kodysh et al., 2013). GIS workflows and 92 

photogrammetry can rapidly identify solar PV potential across large spatial scales (Melius et al., 2013). These 93 

models can then be used by homeowners, local councils or government agencies to identify areas that have 94 

maximum potential for solar PV installations (Jakubiec and Reinhart, 2013).  95 

This study compares LiDAR and orthophotography DSM models for the identification of suitable buildings for 96 

solar PV panels for several study areas in Northern Ireland. Northern Ireland’s renewable energy generation 97 

has increased annually since 2010 with green energy production at 47.7% (Northern Ireland Statistics and 98 

Research Agency (NISRA) and Department for the Economy, 2020). Of this 47.7%, renewables are mostly 99 

Wind (84.8%), followed by Biogas (5.4%) and Biomass (4.0%) with PV only representing (3.6%) above a smaller 100 

amount of Landfill Gas (1.6%) and other solutions (0.6%). However, there was a notable expansion in the official 101 

number of PV sites from 246 connections in 2010 to 24,662 in 2020, including small scale residential 102 

(Department for Business, Energy and Industrial Strategy, 2020). Using rural and urban study areas, the specific 103 

objectives of this study were to (i) develop a GIS PV modelling process for roof structures to compare LiDAR 104 

and orthophotography; (ii) develop a model output including PV potential, annual yield in kWh, CO2 savings, 105 

and payback period per building and; (iii) compare the results from the remotely-sensed datasets to UK web-106 

based methods of calculation and modelled building samples.   107 

2 Methodology 108 

2.1 Overview 109 

The research applied raster spatial analysis workflows in ArcGIS to derive solar potential from LiDAR, and 110 

national mapping DSMs at roof level. The conditional analysis factored roof pitch, building orientation and 111 

minimum threshold to identify a suitable panel type and averaged yearly solar irradiation value in kWh/m2. UK 112 

government approved formulas were adjusted and applied to each building to determine kWh, CO2 savings and 113 

payback. For validation and assessment of the procedure, three properties were identified to generate Revit 3D 114 

models and compute estimated solar potential. The DSM produced outputs were compared to the 3D models 115 

and standardised PV websites by entering data related to the specific building. Figure 1 illustrates the ArcGIS 116 

workflow and analysis.   117 



Figure 1: ArcGIS workflow and Python workflow 119 



2.2 Study Areas 120 

DSM datasets are available across Northern Ireland and are provided by Land and Property Services at 40cm 121 

resolution (LPS, 2018c) yet LiDAR is restricted to open source provision. LiDAR data at 1m resolution was set 122 

as the upper threshold for acceptable GIS PV studies (Kodysh et al., 2013; Palmer et al., 2018). The study area 123 

had two locations in Belfast and the third location in Dunseverick (Figure 2).  124 

Figure 2: Study data regions in North Belfast, East Belfast and Dunseverick. 126 

 127 



The main building types in each study area were residential dwellings while some large buildings (e.g. schools) 128 

were present in the Belfast study areas.  129 

2.3 Solar Irradiance Modelling 130 

To estimate PV potential in kWh, solar irradiation is required by determining the available roof area and structure 131 

(Melius et al., 2013) which can be generated from remotely sensed data (Hofierka and Zlocha, 2012; Palmer et 132 

al., 2018). This study’s rooftop solar calculation builds on ubiquitous geospatial computing principles of DSM 133 

assessment for irradiation in context to pitch, azimuth and external building envelope (Boz et al., 2015; Song et 134 

al., 2018). The research encompasses ESRI (2017) solar calculation principles and Khanna (2020) technical 135 

workflows adopted by NVRC (Khan, 2017). The procedure calculated yearly irradiation from the DSM building 136 

footprint, isolating regions based on aspect, roof slope and minimum criteria, producing an output per building. 137 

Further calculations were rationalised for UK suitability.  138 

2.4 Technical Workflows  139 

Each dataset was edited and cropped to the extent of the study regions.  Solar area analysis in ArcGIS uses 140 

direct and diffuse radiation (ESRI, 2017) and considers detailed roof arrangements from the terrain (Chow et 141 

al., 2014). The solar area radiation settings were set for a year based on the latitude of each study area with a 142 

14-day hourly interval. A sky size of 200 was appropriate with 32 calculation directions, eight zenith and azimuth 143 

divisions and a z factor of 1. A vector building outline was used as an input mask to calculate the yearly 144 

irradiation on the surface models based on the Irish Grid coordinate system (LPS, 2019). The mask ensured 145 

the outputs were constrained to the building whilst still accounting for roof obstacles and terrain. The process 146 

produced irradiation values based on yearly calculations in Wh/m2 which were adjusted to kWh/m2 (Khanna, 147 

2020).  148 

A range of permissible roof slopes have been identified ranging from 30° (Energy Saving Trust, 2014) to 60° 149 

(Margolis et al., 2017; Palmer et al., 2018) with prime angles between 39-40° in NI (Invest NI, 2013). Based on 150 

the evidence, this study executed conditional raster analysis on the solar outputs concerning building pitch, 151 

removing slopes greater than 60°. A review of the modelling scenarios determined that setting a threshold of 152 

700 kWh/m2 (Figure 1) predominately removed north-facing roofs. Moreover, solar irradiation below this value 153 

would be economically unviable, particularly for smaller PV installations without significant financial incentives. 154 

A minimum threshold of 700 kWh/m2 was used as a baseline (Cole et al., 2016) with lower irradiation values 155 

removed although this accounted for the removal of a very small percentage of buildings (<5%). Additional 156 



conditional exclusions were executed on orientations between 337.5° and 22.5°. Exceptions were applied to 157 

roofs less than 10° (Boz et al., 2015; Khanna, 2020) and over 700 kWh/m2, which could have adjustable panels 158 

installed. 159 

Identifying the appropriate aspect is important in determining solar PV potential with north considered as low 160 

potential (Kouhestani et al., 2018; Tiwari et al., 2020). The output models were pooled using zonal statistics to 161 

determine an overall yearly average irradiation value (Groppi et al., 2018; Kouhestani et al., 2018) which 162 

produced an average kWh/m2 per building.  163 

Studies in Europe have used 1kWp (Groppi et al., 2018; Palmer et al., 2018), while 4kWp represents a typical 164 

UK configuration (Ofgem, 2020). PV panel formation and numbers vary depending on the available rooftop area 165 

and suitability, which influences the output ranging from a minimum of 1.3 kWp to typical 4 kWp (Energy Saving 166 

Trust, 2015). A Python script was developed to calculate panel size and assess suitability for 1.3 kWp to 4 kWp 167 

based on the Energy Saving Trust (2015) roof areas from 9.6m2 to 29.5m2 (Table 1). Estimated installation costs 168 

were accumulated from a review of the Energy Saving Trust costings combined with a review of UK suppliers 169 

and the Department for Business, Energy and Industrial Strategy (2019) figures for micro-PV systems per kWp 170 

(Table 1).  171 

 172 

Table 1: Panel sizing guide adopted in the Python script to determine the appropriate kWp. Panels based on the Energy 173 
Saving Trust (2015) sizing guide, which was adjusted to consider 20% of regions not usable. 174 

Roof area (m2) kWp Estimated 
Panels 

Estimated cost 
including VAT 

>0<9.6 Not suitable for Solar - - 
>9.6<16.5 1.3 6 £2095 
>16.5<20 2.2 10 £3766 
>20<27 2.6 12 £4360 

>27<29.5 3.5 16 £5769 
>29.5 4 18 £6376 

 175 

 176 

In the UK, based on the Standard Assessment Procedure (SAP) guidelines, the Building Research 177 

Establishment (BRE) uses the following formula for annual kWh electricity production for PV: 178 

Electricity Production in kWh/Year = 0.8 x kWp x S x Zpv (BRE, 2014, p.86) 179 



Where kWp is the highest output of the panel, 0.8 is an empirical performance factor, S is yearly irradiation in 180 

kWh/m2 available from climate charts which applies to the pitch and orientation. Zpv is a shading ratio from four 181 

variables ranging from no shadowing (1.0) to a high impact of shadowing (0.5).  The Energy Saving Trust adopts 182 

the formula, yet the user determines the shading impact ‘S’ based on their observations of obstructions on the 183 

property. In contrast, the Microgeneration Certification Scheme (MCS) uses the following formula to calculate 184 

yearly kWh:  185 

Annual AC Output (kWh) = kWp x Kk x SF (MCS, 2012, p.59) 186 

Where kWp is panel output, SF is the shading ratio, and Kk is the total kWh/kWp available from climate-SAF-187 

PVGIS charts based on pitch, orientation and pre-factored performance values of 0.8. BRE (2016) compared 188 

the MCS and SAP methodology and concluded that the equations are the same. However, shading is a foremost 189 

negative contributor on performance with MCS yielding a more comprehensive approximation due to the sun 190 

tracking charts (BRE, 2016). Application of the SAP process using the shading factor tables can reduce the total 191 

yearly kWh by 50% (BRE, 2014). Furthermore, Levinson et al. (2009) emphasise the need for an apt 192 

methodology in solar studies due to the impact of tree canopies, structures and other external features which 193 

could degrade results. The geospatial workflow in ArcGIS provides comprehensive spatial processing on 194 

remotely-sensed data, factoring elevation, location, and shadowing effects (ESRI, 2017).  Therefore, the BRE 195 

Zpv and MCS SF shading factors were excluded (i.e. considered as 1.0) as ArcGIS calculated the impact of 196 

shading. The overall performance factor of 0.8 was retained deriving the following formula for the project 197 

electricity output:  198 

Annual kWh output = kWp (ArcGIS)a x S (ArcGIS)b x 0.8 performance ratio 199 

a kWp, derived by a Python script based on suitable roof areas for 1.3, 2.2, 2.6, 3.5 and 4 kWp. 200 

b Yearly solar irradiation (kWh/m2) derived from ArcGIS zonal statistics calculated workflows.  201 

 202 

PV solutions deliver a green option, and the fabrication process can yield a carbon payback within three years 203 

(Centre for Alternative Technology, 2020). CO2 savings were calculated based on the Department of Agriculture, 204 

Environment and Rural Affairs (DAERA) carbon intensity factors at 406g/kWh (DAERA, 2019) with a deduction 205 

of three years to accommodate emissions from the manufacturing process. The following calculation was 206 

applied, assuming a 25-year lifespan:  207 



CO2 Tonnes saved = Calculated PV Electricity Production in kWh/Year x 406x10-6 T/kWh x 22 years 208 

There is a challenge in estimating how PV saves electricity in the UK as there is a variance in household 209 

consumption and export amounts to the grid (McKenna et al., 2019) with estimates of consumption between 210 

37% (McKenna et al., 2018) and 55% (Action Renewables, 2020). Based on previous studies, this research 211 

adopted 50% as the operating figure. The study regions presented a small number of commercial properties 212 

and factors for businesses were excluded from different PV assessment models. Payback periods required tariff 213 

export rates and standard electricity consumption rates from Power NI (2020a) at £0.051 and £0.1874 (Power 214 

NI, 2020b), respectively. PV technology is relatively maintenance-free; however, a typical planned cost of £800 215 

should be allocated for inverter replacement (Centre for Alternative Technology, 2020). The study payback 216 

equation was based on Invest NI’s (2013) formula with the removal of expired renewable credits (Department 217 

for the Economy, 2020), and inclusive invertor costs:   218 

Simple Pay Back = (Capital Cost + Inverter replacement) / (Replaced power value + Export value) 219 

The payback and the CO2 calculations were performed on the output tables in ArcGIS and spatially joined to 220 

the vector building data with all other outputs.  221 

2.5 Methodology Validation  222 

A validation process was developed to verify the outputs of the DSM workflows. Autodesk InfraWorks was used 223 

by inputting the DSM into a model with draped orthophotography creating an aggregated 3D output. The time 224 

and date could be adjusted in real-time with spatial correctness for sun and sky to identify regions which had 225 

unexpected low results for south-facing properties (Figure 3).  226 

  
 227 



Figure 3: Left – solar calculation for a south-facing roof with low potential due to the tree canopy. Right illustrates the 228 
DSM in Autodesk InfraWorks. The time of day and year can be adjusted to review the shadow effect and verify any 229 
negative impact from surrounding vegetation.  230 

 231 

As the data had temporal and resolution differences, a review of the surfaces for any distinguishing changes 232 

was appropriate (Gehrke et al., 2010; Alganci et al., 2018). This was achieved at two levels by reviewing overlaid 233 

cross and long sections of the data in Autodesk Civil 3D and by creating differences in the LiDAR and DSM 234 

datasets using map algebra tools in ArcGIS.   235 

2.6 Solar Model Verification  236 

Two approaches were adopted to verify the solar DSM calculated outputs: firstly, a 3D model was developed in 237 

Autodesk Revit and analysed using Autodesk Insight, and secondly, building data were validated on PV 238 

websites. Prior to constructing the 3D models and applying web-based calculations, a property from each study 239 

region was identified based on typical household installations of 4 kWp (Ofgem, 2020). For a fair comparison, 240 

the selection of the buildings confirmed that temporal disparities in the datasets did not exist due to changes in 241 

the surrounding environment caused by vegetation or structure. The building measurements were constructed 242 

from an external site verification, Google street maps and a photograph raster-to-vector process using Civil 3D. 243 

The process generated known dimensions of the building elevations, roof pitch and other measurements such 244 

as chimney details. The dimensions were used to develop parametric models in Autodesk Revit.  245 

PV web-based evaluation tools were reviewed to authenticate the ArcGIS and Revit outputs namely NREL 246 

PVWatts (2020), EU PVGIS (2019) and the Energy Saving Trust (2020b). The data related to the three sample 247 

properties for building location, orientation and roof slope were manually entered with default efficiency losses.  248 

2.7 Analysis 249 

IBM SPSS V25 tests for Q-Q plots, Kolmogorov-Smirnov and Shapiro-Wilk’s were performed to identify if the 250 

solar PV estimates were normally distributed. The results indicated the data were non-parametric and not 251 

normally distributed; therefore, Wilcoxon tests were applied to compare the LiDAR and DSM solar irradiation 252 

outputs for the three different resolutions.   253 

3 Results 254 

Table 2 summaries the classification of PV modelling of 9436 buildings over three regions. 76.3% (LiDAR) and 255 

77.2% (DSM) of all buildings were identified as being suitable within the banding with a high level of agreement 256 

between the LiDAR and DSM data.   257 



Table 2: Summary of analysed buildings and corresponding panel type. 258 

Panel Type/Region North Belfast 
(8605 buildings) 

East Belfast 
(671 buildings) 

Dunseverick  
(160 buildings) 

LiDAR DSM LiDAR DSM LiDAR DSM 
Failed to meet modelling criteria 308 292 64 48 6 6 
No Panel 1700 1643 135 147 23 16 
1.3 kWp 1303 1036 59 71 25 21 
2.2 kWp 773 600 30 21 13 11 
2.6 kWp 1578 1443 39 37 26 22 
3.5 kWp 414 523 9 9 7 3 
4 kWp 2529 3068 335 338 60 81 
Total buildings with potential 
 1.3-4 kWp 

6597 6670 472 476 131 138 

 259 

4 kWp was the primary system for both data types while 3.5 kWp was the minority configuration with an average 260 

of 22.9% of buildings in both Belfast regions failing to meet the minimum PV suitability.  The modelled LiDAR 261 

data had a lower capacity than the modelled DSM data, both in terms of GWh capacity and buildings satisfying 262 

PV modelling criteria. However, there is a strong agreement between the LiDAR and DSM model outputs, 263 

particularly for East Belfast (Table 3).  264 

Table 3: Summary of GWh for 1.3 – 4 kWp systems calculated from LiDAR and DSM datasets. 265 

Region/Output Collective yearly 
GWh capacity up to 
4 kWp 

Difference 
GWh LiDAR - 
DSM 

Number of 
potential 
buildings 

Difference 
Buildings 
LiDAR - DSM 

Belfast LiDAR 12.90 -7.21% 6597 -1.11% 
Belfast DSM 13.83 6670 
East Belfast LiDAR 1.059 -0.50% 472 -0.85% 
East Belfast DSM 1.064 476 
Dunseverick LiDAR 0.26 -11.54% 131 -5.34% 
Dunseverick DSM 0.29 138 

 266 

Variation in LiDAR and DSM irradiation values were relatively low across all three study areas (Table 4) with 267 

North Belfast showing the highest variation (0.55%) and East Belfast showing lowest variation (-0.25%). Again, 268 

North Belfast had the highest mean difference in kWh while East Belfast had the lowest scores. Despite East 269 

Belfast having the lowest average irradiation, lifetime CO2 and kWh/year were the highest compared to all 270 

regions. The elevated CO2 and kWh for East Belfast was associated with a high proportion of 4 kWp panels for 271 

both datasets at 71%. An appraisal of the carbon footprint signified comparable totals and saving in CO2 272 

emissions over 25 years of 127,028T CO2 (LiDAR) and 135,681T CO2 (DSM). Payback periods ranged from 273 

19.7 (North Belfast) to 32.6 (East Belfast).  274 



Table 4: Solar irradiation, kWh, CO2 25-year saving, and payback calculated from LiDAR and DSM models.  275 

 
Output/Dataset 

North Belfast  East Belfast  Dunseverick  

LiDAR DSM Diff % LiDAR DSM Diff % LiDAR DSM Diff % 

Average 
kWh/m2 

833.9 829.3 4.6 0.55% 804.9 806.9 -2 -
0.25% 

820.6 823.3 -2.7 -0.33% 

Average 
building kWh 

1956 2074 -118 -
6.03% 

2244 2234 10 0.45% 1990 2123 -133 -6.68% 

Total CO2 
saved 25 Years 
(Tonnes) 

115238 123564 -
8326 

-
7.23% 

9462 9500 -38 -
0.40% 

2328 2617 -
289.4 

-
12.43% 

Average CO2 
saved 25 Years 
(Tonnes) 

17.5 18.52 -
1.02 

-
5.83% 

20.04 19.96 0.08 0.40% 17.8 19 -1.2 -6.74% 

Average 
payback (years) 

24.5 24.2 0.3 1.22% 24.3 24.2 0.1 0.41% 24.8 24.4 0.4 1.61% 

Minimum 
payback (years) 

19.7 19.7 0 0.00% 20.5 20.5 0 0.00% 20.3 20.7 -0.4 -1.97% 

Maximum 
payback (years) 

32.4 32.5 0.1 -
0.31% 

32.6 32.4 0.2 0.61% 31.5 31.1 0.4 1.27% 

 276 

There were very few commercial, recreational or religious buildings as residential dwellings made up 66.4% 277 

and general buildings 30.3% of all regions. General buildings (e.g. garages) were prevalent under the ‘no panel’ 278 

category with many of these buildings having small roof areas. Residential dwellings represented most 279 

properties in North and East Belfast. Isolating residential buildings for 1.3–4 kWp detected a 94%+ and 88%+ 280 

suitability for North and East Belfast respectively for LiDAR and DSM data. Dunseverick is coastal and most 281 

buildings were classified as general, predominately due to farm structures. The residential analysis of 282 

Dunseverick determined PV suitability at 96.61% (LiDAR) and 98.31% (DSM), albeit based on a lower number 283 

of observations.  284 

3.1 Non-Parametric Testing  285 

Wilcoxon signed-rank tests were applied to evaluate any statistically significant differences in the modelled 286 

outputs.  While there were significant differences between the modelled DSM and LiDAR data, most variables 287 

in East Belfast were not significantly different apart from solar irradiance and solar area. Significant differences 288 

occurred in North Belfast and Dunseverick. The results suggest that the DSM data were aligned with the high-289 

resolution 0.2m LiDAR data for solar analysis as were the calculated outputs of the lower resolution (1.0m) data 290 

for East Belfast (Table 5).  291 

 292 



Table 5: Wilcoxon signed‐rank test results for North Belfast, East Belfast and Dunseverick.  293 

 North Belfast East Belfast Dunseverick 
0.5m LiDAR, 0.4m DSM 1.0m LiDAR, 0.4m DSM 0.2m LiDAR, 0.4m DSM 

Test result Z Sig. (2-tailed) Z Sig. (2-tailed) Z Sig. (2-tailed) 
Solar irradiation -18.713 0.00 -3.888 0.00 -0.999 0.318 
kWh -18.327 0.00 -0.629 0.53 -5.366 0.000 
Panel type -23.141 0.00 -0.070 0.94 -4.730 0.000 
Payback -15.296 0.00 -1.116 0.26 -4.730 0.000 
CO2 -18.327 0.00 -0.629 0.53 -4.832 0.000 
Solar area -40.966 0.00 -4.442 0.00 -8.895 0.000 

  294 

3.2 3D Models and PV Web Analysis 295 

Constructing the 3D models aided in isolating pockets of lower solar energy. However, any deviations in solar 296 

outputs were due to obstructions at roof level and not the surrounding terrain as this was not modelled. The 297 

main roof surfaces produced uniformly distributed peak isolation values of 928 kWh/m2 (North Belfast), 957 298 

kWh/m2 (East Belfast), and 969 kWh/m2 (Dunseverick).  299 

PV Websites observed higher solar irradiation values over the LOD models and DSM outputs exceeding 1000 300 

kWh/m2 except for PV Watts (East Belfast). In contrast, none of the 9436 buildings modelled in ArcGIS reached 301 

this threshold. Dunseverick’s 3D model recorded a low value as it was segmented over two roofs. Autodesk 302 

Insights recorded the 3D model’s irradiation as 781.27 kWh/m2, with an average on the primary roof at 951.5 303 

kWh/m2 and the secondary roof at 624.54 kWh/m2. If a proportionate approach were executed based on the 304 

average surface isolation value and corresponding roof surface area, a figure of approximately 814 kWh/m2 305 

would be substituted. Not all PV websites had the ability to estimate CO2, annual benefit or installation costs; 306 

therefore, kWh and irradiation were the only comparable variables. kWh was inflated for the LOD models as the 307 

calculation used a methodology to derive output based on area, solar irradiation and panel efficiency. PVGIS 308 

reported a yearly variation in kWh/m2 based on the standard deviation (EU PVGIS, 2020); however, no 309 

adjustment was factored in the kWh calculation (Table 6).  310 

  311 



Table 6: PV comparison of assessments methods applied to the three sample buildings.  312 

Property Source System CO2 
(Kg/Year)  

Installation 
Cost (£) 

kWh Annual 
Benefit 
(£) 

Assessment Irradiation 
(kWh/m2) 

BT15, North 
Belfast 

Energy Saving 
Trust 

4 kWp 1036 5970 3375 218.00 SAP 2012 1054.69 

PVWatts 4 kWp Not calculated 3088 578.00 NREL 1000.79 
EU PVGIS 4 kWp Not calculated 3275 NA CM SAF 1074.40 
LiDAR 4 kWp 1094 6376 3063 365.11 ArcMAP/MCS 957.27 
DSM 4 kWp 1080 6376 3022 360.22 ArcMAP/MCS 944.24 
LOD200 Revit Not Calculated  4423 840.00 Perez 920.40 

BT57, 
Dunseverick 

Energy Saving 
Trust 

4 kWp 1047 5970 3412 220.00 SAP 2012 1066.25 

PVWatts 4 kWp Not calculated 3240 608.00 NREL 1037.31 
EU PVGIS 4 kWp Not calculated 3177 NA CM SAF 1046.70 
LiDAR 4 kWp 1006 6376 2817 335.79 ArcMAP/MCS 880.30 
DSM 4 kWp 994 6376 2781 331.50 ArcMAP/MCS 869.08 
LOD200 Revit Not Calculated 4542 863.00 Perez 781.27 

BT4, East 
Belfast 

Energy Saving 
Trust 

4 kWp 1020 5970 3324 216.00 SAP 2012 1038.75 

PVWatts 4 kWp Not calculated 3053 573.00 NREL 989.83 
EU PVGIS 4 kWp Not calculated 3339 NA CM SAF 1093.69 
LiDAR 4 kWp 1020 6376 2854 340.20 ArcMAP/MCS 891.79 
DSM 4 kWp 1043 6376 2921 348.18 ArcMAP/MCS 912.68 
LOD200 Revit Not Calculated 4574 869.00 Perez 928.32 

 313 

3.3 Validation  314 

Visual verification of installed PV systems identified from the orthophotography corroborates the model outputs 315 

and methodology. Several sites were discovered, ranging from larger installations to smaller outhouse 316 

arrangements (Figure 4).  317 

Panel – 4.0 kWp
Solar – 854.8 kWh/m2 
Yearly Output - 2735 kWh

Panel – 4.0 kWp
Solar – 854.0 kWh/m2 
Yearly Output - 2733 kWh

18 Panels

 318 



Figure 4: North Belfast detached house with highly comparable outputs for LiDAR (left), and DSM (Right) 319 
overlaid on the installation.  320 

 321 

A comparison in level changes between LiDAR and DSM revealed that the Belfast datasets had substantial 322 

fluctuations while Dunseverick had the least difference.  The DSM data elevations are closer for the East Belfast 323 

data as the mean difference in DSM is 0.22m despite the high outliers. The Dunseverick mean difference was 324 

-0.26m, although numerous pitted areas and post-processing of coastal boundaries of the datasets could 325 

influence the results (Table 7).   326 

Table 7: LiDAR - DSM statistics for changes in level (m). 327 

Descriptive/Datasets North Belfast East Belfast Dunseverick 
Minimum -33.60 -33.93 -14.56 
Mean -1.03 0.22 -0.26 
Maximum 44.03 37.28 10.29 
SD 3.10 3.38 0.55 

 328 

A long section examination facilitated a quality review between building profiles. In specific dense locations the 329 

50cm LiDAR data for Belfast had a greater difference between detached houses than the DSM. Despite East 330 

Belfast’s overall mean level difference being 0.22m, a detailed visual inspection indicated a consistent gap in 331 

the building profiles of 0.5m. The 40cm DSM proved capable of identifying detailed roof profiles and was well 332 

aligned with Dunseverick’s LiDAR (Figure 5). Irregularities in the Dunseverick LiDAR data included ‘pitted’ 333 

regions, lowering solar clusters of single-pixel values (Figure 5).  334 



 335 

Figure 5: Top: Long section of farm buildings in Dunseverick. Pitted regions in the LiDAR influencing solar 336 
results are visible. Bottom: Long section in East Belfast of detached houses with a notable consistent difference 337 
in level (LiDAR – DSM) of approximately +0.5m. 338 

 339 

The results above suggest a strong agreement between the DSM and the LiDAR model, particularly for the 340 

East Belfast study area. The results also suggest significant capacity to install solar PV panels on many 341 

residential dwellings across all three study areas.  342 

4 Discussion  343 

This study investigated the extent to which LiDAR and orthophotography produced DSMs could be used to 344 

locate solar PV panels on buildings. The study found a high level of agreement between LiDAR models and 345 

DSM orthophotography models, suggesting that LiDAR may not be necessary for accurate estimates of PV 346 

potential on buildings. Both models identified that approximately 94%+ of all residential buildings could 347 

accommodate PV panels between 1.3 kWp to 4 kWp. While panel sizes can be adjusted, this study used a 348 

range between 1.3 kWp to 4 kWp which yielded an overall potential of approximately 14.7 GWh/year for a 21.7 349 



MW installation. The models calculated a significant potential annual saving of residential CO2 of approximately 350 

5,236 Tonnes based on DAERA (2019) carbon intensity figures. The research and methodology demonstrate 351 

that widely available low-cost photogrammetric national mapping data can determine the capacity to install PV 352 

panels on rooftops across vast spatial scales derived from government-approved formulae without the need to 353 

commission complex and expensive LiDAR studies.  354 

4.1 Comparison of LiDAR and Orthophotography Modelled Solar Outputs 355 

LiDAR data has been a particularly effective dataset for estimating PV potential on buildings (Kodysh et al., 356 

2013; Boz et al., 2015; Kausika et al., 2015) and suitable land (Finn and McKenzie, 2020). However, LiDAR 357 

remains costly with elongated timeframes to capture (Nelson and Grubesic, 2020) which could restrict its 358 

application in PV site selection. Conversely, aerial photogrammetry has developed significantly over recent 359 

years with increased spatial resolution (Pan et al., 2019) along with improved photogrammetric techniques 360 

(Rabiu and Waziri, 2014). Furthermore, aerial photogrammetry is often collected on a routine basis by national 361 

mapping agencies, thus providing regular updates at lower costs than LiDAR. Aerial photogrammetry offers a 362 

distinct advantage over other datasets, such as UAV photogrammetry (Moudrý et al., 2019), as it is collected 363 

over very large spatial scales in a short timeframe.  364 

This study investigated the level of agreement between both LiDAR and DSM photogrammetry to determine if 365 

PV estimates were significantly different. Results (Table 5) showed significant differences for North Belfast and 366 

Dunseverick yet high agreement for East Belfast. One of the main factors that caused significant differences for 367 

North Belfast and Dunseverick was temporal differences in the datasets. Accessing remote sensing data at 368 

similar timeframes is challenging, so it is vital to identify constant areas within DSMs for comparison (Alganci et 369 

al., 2018). Wong et al. (2016) observed the difficulty in processing LiDAR solar analysis due to temporal 370 

differences as structures change over time through new developments or building removal. The study relied on 371 

the accuracy of the building footprint aligned with DSM. A review of Dunseverick’s buildings demonstrated that 372 

124 of 160 building footprints matched both DSMs. The remaining buildings presented pitted regions in the 373 

LiDAR, or the structure was not aligned with the DSM due to building demolition or construction. This work 374 

demonstrates that future studies that seek to analyse multiple datasets should have a verification process by  375 

comparing the DSM to building outlines, then eliminating buildings where the DSM does not match both 376 

datasets, making the models more comparable.  377 



Brumen et al. (2014) illustrated the reduction in PV capability due to tall vegetation in proximity to buildings post-378 

analysis. Comparing the North Belfast modelled kWh/m2 differences in relation to changes in level verified the 379 

positive and negative impact vegetation had on both data models, with several regions presenting extensive 380 

changes in structure and tree canopies. The corresponding orthophotography by closest date was overlaid in 381 

InfraWORKS with contours to validate the differences. Whilst there was a good agreement between LiDAR and 382 

DSM modelled outputs, discrepancies could easily be identified by the changes in mature vegetation growth 383 

from the 2006 LiDAR to the 2018 DSM data.   384 

Jochem et al. (2009) applied transparency factors on LiDAR solar modelling to foliage respecting the natural 385 

way of daylight penetration which could be beneficial as the DSM data is more solid in appearance compared 386 

to LiDAR. However, the validation process used in this study supports the use of recent data when executing 387 

an analysis of vegetation areas prone to growth spurts. The process could consider future growth scenarios 388 

(Levinson et al., 2009), yet this is a complicated procedure and issues in this study were only evident in isolated 389 

areas. 390 

Figure 6 reveals the detail of the 20cm LiDAR on a chimney in the Dunseverick model, which was not 391 

identified in the DSM model due to resolution. While this level of detail is valuable, there was only a -1.3% 392 

difference between the DSM irradiation and LiDAR. This agreed with Lingfors et al. (2017) and Moudrý et al. 393 

(2019) who both found that lower-resolution models performed well in contrast to higher-resolution models 394 

when classifying roof structure faces for PV. Furthermore, Moudrý et al. (2019) observed that less than 1m 395 

resolution data is not required for dependable solar irradiance values on plain roofs with no or marginal 396 

obstructions when comparing an actual PV installation to modelled outputs. This study highlights the value of 397 

widely available orthophotography in mapping suitable roofs for PV installations.  398 
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 399 

Figure 6: (1) Illustrates the model with LiDAR overlaid. (2) Analysis of the model with low irradiation regions 400 
due to the modelled chimney. (3) LiDAR data with the chimney region nearly removed as part of the ArcGIS 401 
workflows. (4) DSM does not have the resolution to consider the chimney. 402 

 403 

Visual examination of imagery can authenticate existing PV fittings on buildings (Latif et al., 2012; Mainzer et 404 

al., 2017). Notwithstanding the limitations in significance testing, and temporal differences in datasets, the 405 

confirmation of several solar installations per study area supported the methodology and data agreement for 406 

LiDAR and the DSM. Furthermore, verification of long sections compared relatively well to identify roof features 407 

from both datasets although the DSM offered advantages over the LiDAR data.  408 

4.2 Estimation of PV Potential, CO2, Savings and Payback 409 

While other studies have used models to estimate the potential energy that PV could produce, this study 410 

provides additional results on cost recovery, CO2 savings and PV panel sizing based on UK government 411 

restrictions. We demonstrate that remotely sensed datasets, such as LiDAR or ortho DSMs, can be successfully 412 

used to determine solar PV suitability at the individual household level (Kausika et al., 2015; Wong et al., 2016; 413 

Song et al., 2018) or at aggregated census scales (Palmer et al., 2016). While Kausika et al. (2015) suggested 414 

that surplus electricity could be generated for Apeldoorn, this study, based on UK formulas (MCS, 2012) 415 

estimated yearly output of approximately 2,181 kWh/year for suitable residential buildings. The Northern Ireland 416 

Authority for Utility Regulation (NIAUR) indicates the average homeowner consumes 3200 kWh/year (NIAUR, 417 

2019), suggesting that solar could generate almost 70% of residential demand which agrees with other studies 418 



(Hofierka and Kaňuk, 2009). This is based on current regional restrictions on solar panels which, if relaxed, 419 

could further reduce energy costs.  420 

The study’s 700 kWh/m2 threshold assisted in eliminating low regions along with roof pitch and building 421 

orientation constraints. Kausiki et al. (2015) applied a 70% rule to annual irradiation in the Netherlands, 422 

identifying 600 kWh/m2 as the lower limit. A similar application to Northern Ireland could improve workflows 423 

based on yearly global horizontal irradiation values of 801-1000 kWh/m2 (MCS, 2012) which would determine 424 

a limit of 561 – 700 kWh/m2. A lower limit could elevate panels on borderline categories or promote previously 425 

unsuitable buildings (i.e. small outbuildings) to the minimum 1.3 kWp (Boz et al., 2015), thus increasing energy 426 

estimates.  427 

The second possible improvement is the consideration of contiguous roof areas (Boz et al., 2015; Gagnon et 428 

al., 2016). PV panels are positioned in arrays at optimal roof positions for maximum performance. Therefore, 429 

the spatial process could be enhanced to identify the single largest contiguous area on the roof with zonal 430 

statistics applied. Yet, it was noted that many modelled outputs were predominately contiguous when processed 431 

with some sporadic pixels.  432 

A selection of larger buildings in both Belfast regions calculated a lower kWh/year due to the 4 kWp limit and 433 

flat roofs. Moreover, under normal installation conditions, it is expected that panels on flat roofs would be 434 

optimised for a suitable angle (Mainzer et al., 2017) generating a higher yearly return. The parameters used in 435 

this study mean that none of the study areas meet the NIAUR (2019) estimated yearly average households’ 436 

electricity consumption of 3200 kWh. However, altering parameters could significantly increase potential 437 

power generation from PV. For instance, a 5.3 kWp system in Northern Ireland could generate enough 438 

electricity to sustain household demand throughout the spring to summer months (MacIntyre, 2019). 439 

Therefore, considering the 4 kWp limit, accommodating a higher system would generate greater opportunity 440 

and output provided policy changes would facilitate a change in threshold. Indeed, while calculating the 441 

maximum 4kWp for domestic buildings in Belfast, additional roof areas were deemed suitable for PV at 58.5% 442 

(DSM) and 54.3% (LiDAR). Applying the extended validated areas would breach current regional restrictions 443 

but clearly illustrates the significant potential of solar PV if current policy was changed.  444 

While capital costs of solar panels are reducing (Balta-Ozkan et al., 2015) the average project payback for all 445 

datasets and regions fell within 25 years with maximum periods extending to 32.6 years and minimum return 446 

on investment at 19.7 years. The Northern Ireland Renewables Obligation (NIRO) ceased in March 2017 447 



(Department for the Economy, 2020) which allocated payments for every MWh of electricity generated 448 

regardless if consumed or exported (Green Business Watch, 2014). Current Renewable Obligation Certificates 449 

(ROC) payments are available for panels installed within the qualifying period (Department for the Economy, 450 

2020). Eligible panels falling within the timeframe which are valid to collect ROC credits receive an additional 451 

variable rate per kWh (Power NI, 2020c). As the study defined an opportunity for new solar panels, the ROC 452 

payments cannot be applied, essentially removing an estimated additional income of £200+ per year per 453 

household. The lack of incentive or grant being applied to the payback periods lengthened the return period, 454 

and arguably, the surplus could reduce the return period by up to 14 years. However, Reid and Wynn (2015) 455 

found the future domestic solar market in the UK for PV in 2025 is sustainable without financial incentives based 456 

on higher homeowner consumption, and the potential introduction of battery storage could change payback 457 

between 8 to 14 years depending on location. Determining solar electricity savings for households is challenging 458 

(McKenna et al., 2019) with assumptions made for export/import figures. Furthermore, MCS (2019) has advised 459 

that owner daytime and evening occupancy require an appraisal to calculate accurate export estimates. Chesser 460 

et al. (2018) discovered that PV demand has a potential risk of increasing UK electricity prices due to ongoing 461 

infrastructure and operational costs of energy companies which are not in balance with decreased demand. 462 

However, the recent surge in energy market prices may rise further in 2022 due to market volatility (Ofgem, 463 

2021), thus supporting the justification for self-sustaining energy generation.        464 

4.3 Comparison of Remotely Sensed Results to Solar Websites and Modelled 3D Buildings 465 

The three sampled buildings revealed that the web PV tools generated higher outputs compared to ArcGIS and 466 

the Revit models. The role of shadowing is important in accurately estimating solar values along roofs with 467 

websites, such as NREL, not accounting for shadowing (Nelson and Grubesic, 2020). Furthermore, Cole et al. 468 

(2016) explained that shadows decrease efficiency and acquiring the correct PV position is a profound 469 

undertaking with homeowners not having the capability to recognise output problems. Manual input is required 470 

on PV web sites to apply values which will degrade the overall results due to shadowing (Dean et al., 2009). In 471 

the case of the sample buildings, no shading factor was applied, illustrating that the process is open to user 472 

interpretation. The Energy Saving Trust website has two issues that users need to account for: firstly, estimates 473 

are based on SAP 2012 calculations therefore inaccurate estimates of shading could adjust the yearly kWh by 474 

as much as 50%. Secondly, the SAP 2012 method is applied using a fixed latitude of 54.6° and 72m elevation 475 

for Northern Ireland calculations (BRE, 2014). Latitude and level are known factors influencing solar irradiation 476 

(Hofierka and Súri, 2002), and Dunseverick is at 55.2°, coastal with a height of approximately 47m AOD. A more 477 



northerly location can expect a lower PV yield with approximate mapped variations from Belfast to Dunseverick 478 

between 0 and 149 kWh/m2 (MCS, 2012) meaning that northerly estimates could be overstated. The potential 479 

of the models to provide accurate energy estimates, with less input from users, represents a significant strength 480 

of the methodology.  481 

There was strong agreement between the 3D models and both the LiDAR and DSM datasets compared to the 482 

web analysis outputs with yearly solar radiation falling between -4% to 11.24%.  However, the kWh productions 483 

for the DSMs are more correlated with the PV websites compared to the Revit models due to calculation 484 

limitations in Revit.   485 

There is a high level of confidence in using the DSM, which provides cost-effective benefits and regular updates. 486 

This project could be scaled to an all Northern Ireland analysis and aggregated to an online mapping system 487 

similar to Jakubiec and Reinhart (2013) and NVRC (2019) who published electricity potential, emission reduction 488 

and financial savings. NVRC set limitations on the minimum roof area, whereas this research set a low threshold 489 

considering smaller outbuildings capable of 1.3 kWp. A regional model could incentivise policymakers to make 490 

informed decisions and foster uptake for planning initiatives in relation to fuel poverty (Walker et al., 2014), off-491 

grid homes in rural locations and carbon alleviation. Making such applications publicly accessible would appeal 492 

to community residential groups when considering initiatives such as Peer to Peer (P2P) sharing networks which 493 

provide an opportunity for domestic PV owners to become ‘prosumers’ (Gall and Stanley, 2019). P2P offers 494 

economic potential for residents without the need for high organisational overheads for households (Johnson 495 

and Mayfield, 2020).  However, if the onus is on homeowners to fund energy schemes, affordability will prohibit 496 

low-income homes from benefiting (Walker et al., 2014) and strategic consideration is required of infrastructure 497 

to ease energy poverty (Robinson et al., 2019).  498 

5 Conclusion 499 

A UK rationalised methodology was presented for analysing and comparing remotely sensed datasets at roof 500 

level for PV. The research identified the potential for an approximate 21.7MW installation at 14.7 GWh capacity 501 

on all buildings. This represents 37.7% of the current small PV configurations in Northern Ireland installed over 502 

the past ten years (Department for Business, Energy and Industrial Strategy, 2020). The domestic generation 503 

could sustain approximately 64.35% of residential demand for the 6263 houses in this research. Furthermore, 504 

a scalable framework is presented which could be applied to ‘off the shelf’ DSM data and utilised at a regional 505 

level for published public consultation. The study modelled open-source LiDAR data which is static and 506 



published through open portals and seen as ‘data for the public good’ (National Infrastructure Commission, 507 

2017). In contrast, national mapping datasets are regularly updated, capturing critical changes in infrastructure, 508 

buildings and vegetation. Temporal changes in the datasets influenced outputs, although the validation process 509 

indicated a strong agreement between orthophotography produced 0.4m DSMs and 0.2m, 0.5m and 1.0m 510 

LiDAR solar models. The high level of agreement between the DSM and LiDAR models means that DSMs 511 

generated from orthoimagery offer significant advantages in modelling solar PV across large spatial scales. 512 

While LiDAR is useful, the added costs and timescales involved in processing and collecting the data make it 513 

less attractive for frequently updated solar PV maps. The workflows could be enhanced to compute a higher 514 

kWp capacity for larger roof areas. Consideration could also be applied for contiguous roofs to eliminate 515 

erroneous cells and a lower irradiation threshold. The research has proven successful for residential buildings 516 

at 94%+ for UK configurations whilst highlighting the compatibility for low PV installation potential of smaller 517 

buildings. Moreover, the reduction in PV costs and increasing effectiveness are appealing for smaller roofs as 518 

higher outputs can be generated (Kouhestani et al., 2018). As the research primarily focused on residential 519 

buildings, there is potential for application to agricultural, industrial and commercial buildings for large scale roof 520 

configurations.  Web modelling is beneficial on an individual basis, although this study found the results higher 521 

in comparison to modelled 3D and geospatial workflows. 3D solar modelling captures the intricate detail at roof 522 

level but requires the surrounding terrain and structures for a fair and comparable analysis. While the 523 

methodology is based on UK parameters, it could be modified to be suitable to other regions across the world. 524 

The predicted increase in energy demands (Institution of Civil Engineers et al., 2016) and policymakers’ 525 

obligation to address climate change (UK Government, 2020) clearly illustrates the importance and substantial 526 

opportunity for PV to contribute towards a reduction in carbon burden.   527 



6 References  528 

Action Renewables. (2020). Domestic Solar. How much am I saving on my bills? Belfast: Action 529 

Renewables. Available at: https://actionrenewables.co.uk/services/domestic-solar [Accessed 1st  530 

May 2020].  531 

Agugiaro, G., Nex, F., Remondino, F., De Filippi, R., Droghetti, S., and Furlanello, C. (2012). Solar 532 

radiation estimation on building roofs and web-based solar cadastre. ISPRS Annals of the 533 

Photogrammetry, Remote Sensing and Spatial Information Sciences. 2012 XXII ISPRS Congress. 534 

Melbourne, 25th August–1st September 2012. Trento, Italy: 3D Optical Metrology unit, (1-2), pp. 535 

177-182. https://doi.org/10.5194/isprsannals-I-2-177-2012. 536 

Alganci, U., Besol, B., and Sertel, E. (2018). Accuracy assessment of different Digital Surface 537 

Models. Internal journals of Geo-Information, 7(3). https://doi.org/10.3390/ijgi7030114. 538 

Balta-Ozkan, N., Yildirim, J., and Connor, P, M. (2015). Regional distribution of photovoltaic 539 

deployment in the UK and its determinants: A spatial econometric approach. Energy Economics, 540 

51(1), pp. 417-429. https://doi.org/10.1016/j.eneco.2015.08.003. 541 

Boz, M.B., Calvert, K., and Brownson, J.R.S. (2015). An automated model for rooftop PV systems 542 

assessment in ArcGIS using LiDAR. AIMS Energy, 3(3), pp 401-420. 543 

https://doi.org/10.3934/energy.2015.3.401. 544 

Brodny, J., and Tutak, M. (2020). Analysing Similarities between the European Union Countries in 545 

Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. 546 

Energies, 13(4).  https://doi.org/10.3390/en13040913. 547 

Brumen, M., Lukač, N., and Žalik, B. (2014). GIS Application for Solar Potential Estimation on 548 

Buildings Roofs. The Second International Conference on Building and Exploring Web Based 549 

Environments. Chamonix, France, 20th–24th April 2014. Maribor, Slovenia: University of Maribor, 550 

Faculty of Electrical Engineering and Computer Science. Available at: 551 

https://actionrenewables.co.uk/services/domestic-solar
https://ui.adsabs.harvard.edu/link_gateway/2012ISPAn..I2..177A/doi:10.5194/isprsannals-I-2-177-2012
https://doi.org/10.3390/ijgi7030114
https://doi.org/10.1016/j.eneco.2015.08.003
https://doi.org/10.3934/energy.2015.3.401
https://doi.org/10.3390/en13040913


https://www.researchgate.net/publication/271830059_GIS_Application_for_Solar_Potential_Estimati552 

on_on_Buildings_Roofs [Accessed 4th March 2020]. 553 

Buffat, R., Grassi, S., and Raubal, M. (2018). A scalable method for estimating rooftop solar 554 

irradiation potential over large regions. Applied Energy, 216, pp. 389-401. 555 

https://doi.org/10.1016/j.apenergy.2018.02.008. 556 

Building Research Establishment. (2014). SAP 2012. The Government’s standard assessment 557 

procedure for energy rating of dwellings. 2nd Edition. Watford: BRE. Available at: 558 

https://www.bre.co.uk/filelibrary/SAP/2012/SAP-2012_9-92.pdf [Accessed 8th February 2020].  559 

Building Research Establishment. (2016). Consultation paper: CONSP:12. SAP calculation of 560 

electricity generated by solar PV systems. Watford: BRE. Available at: 561 

https://www.bre.co.uk/filelibrary/SAP/2016/CONSP-12---Treatment-of-solar-PV-systems---V1_0.pdf 562 

[Accessed 1st March 2020].  563 

Centre for Alternative Technology. (2020). Photovoltaic (PV) solar panels. Machynlleth, Wales: 564 

Centre for Alternative Technology. Available at: https://www.cat.org.uk/info-resources/free-565 

information-service/energy/solar-photovoltaic/ [Accessed 16th February 2020].  566 

Chesser, M., Hanly, J., Cassells, D., and Apergis, N. (2018). The positive feedback cycle in the 567 

electricity market: Residential solar PV adoption, electricity demand and prices. Energy Policy, 122 568 

pp. 36–44. https://doi.org/10.1016/j.enpol.2018.07.032. 569 

Chow, A., Fung, A.S., and Li, S. (2014). GIS Modeling of Solar Neighborhood Potential at a Fine 570 

Spatiotemporal Resolution. Buildings 2014, 4(1), pp. 195-206. 571 

https://doi.org/10.3390/buildings4020195. 572 

Cole, I.R., Palmer, D., Betts, T.R., and Gottschalg, R. (2016). A fast and effective approach to 573 

modelling solar energy potential in complex shading environments. Proceedings of 2016 32nd 574 

European photovoltaic solar energy conference (EU-PVSEC). Munich, 20-24th June 2016. 575 

https://www.researchgate.net/publication/271830059_GIS_Application_for_Solar_Potential_Estimation_on_Buildings_Roofs
https://www.researchgate.net/publication/271830059_GIS_Application_for_Solar_Potential_Estimation_on_Buildings_Roofs
https://doi.org/10.1016/j.apenergy.2018.02.008
https://www.bre.co.uk/filelibrary/SAP/2012/SAP-2012_9-92.pdf
https://www.bre.co.uk/filelibrary/SAP/2016/CONSP-12---Treatment-of-solar-PV-systems---V1_0.pdf
https://www.cat.org.uk/info-resources/free-information-service/energy/solar-photovoltaic/
https://www.cat.org.uk/info-resources/free-information-service/energy/solar-photovoltaic/
https://doi.org/10.1016/j.enpol.2018.07.032
https://doi.org/10.3390/buildings4020195


Loughborough, UK: Loughborough University. pp. 1802-1807. Available at: 576 

https://hdl.handle.net/2134/24191 [Accessed 4th March 2020].  577 

Dean, J., Kandt, A., Burman, K., Lisell, L., and Helm, C. (2009). Analysis of web-based solar 578 

photovoltaic mapping tools. Proceedings of the 3rd International Conference on Energy 579 

Sustainability. San Francisco, California, July 19th - 23rd 2009. Golden, Colorado. National 580 

Renewable Energy Lab.  https://doi.org/10.1115/ES2009-90461. 581 

Department for Business, Energy and Industrial Strategy. (2019). Solar photovoltaic (PV) cost data. 582 

London: Department for Business, Energy and Industrial Strategy. Available at: 583 

https://www.gov.uk/government/statistics/solar-pv-cost-data [Accessed 20th April 2020].  584 

Department for Business, Energy and Industrial Strategy. (2020). Solar photovoltaics deployment. 585 

London: Department for Business, Energy and Industrial Strategy. Available at: 586 

https://www.gov.uk/government/statistics/solar-photovoltaics-deployment [Accessed 20th April 587 

2020].  588 

Department for Infrastructure (Rivers). (2019). LiDAR Belfast city 2006, OpenData NI. Belfast: 589 

OpenData NI.  https://www.opendatani.gov.uk/dataset/lidar-belfast-city-2006 [Accessed 23rd 590 

February 2020].  591 

Department for the Economy. (2020). Northern Ireland Renewables Obligation. Belfast: NIDirect. 592 

Available at: https://www.economy-ni.gov.uk/articles/northern-ireland-renewables-obligation 593 

[Accessed 14th April 2020].  594 

Department of Agriculture Environment and Rural Affairs. (2019). Northern Ireland carbon intensity 595 

indicators 2019. Belfast: NIDirect. Available at: https://www.daera-ni.gov.uk/publications/northern-596 

ireland-carbon-intensity-indicators-2019 [Accessed 20th April 2020].  597 

Energy Networks Association. (2014). Distributed generation connection guide. A Guide for 598 

connecting generation to the distribution network that falls Under G59/3 and is 50kW or Less 3-599 

Phase or 17kW or Single-Phase. London. Energy Network Association. Available at: 600 

https://hdl.handle.net/2134/24191
https://doi.org/10.1115/ES2009-90461
https://www.gov.uk/government/statistics/solar-pv-cost-data
https://www.gov.uk/government/statistics/solar-photovoltaics-deployment
https://www.opendatani.gov.uk/dataset/lidar-belfast-city-2006
https://www.economy-ni.gov.uk/articles/northern-ireland-renewables-obligation
https://www.daera-ni.gov.uk/publications/northern-ireland-carbon-intensity-indicators-2019
https://www.daera-ni.gov.uk/publications/northern-ireland-carbon-intensity-indicators-2019


https://www.ukpowernetworks.co.uk/internet/asset/ab62c3e0-285b-40e6-b909-601 

389ba22ee1eK/A+guide+for+connecting+generation+to+the+distribution+network+G59-602 

3+50kW+or+less+.pdf [Accessed 3rd January 2021].   603 

Energy Saving Trust (2014). Choosing a site and getting planning permission. London: Energy 604 

Saving Trust.  Available at: 605 

https://energysavingtrust.org.uk/sites/default/files/Choosing%20a%20site%20and%20getting%20pla606 

nning%20permission.pdf [Accessed 7th February 2020].  607 

Energy Saving Trust. (2015). Solar energy calculator sizing guide. London: Energy Saving Trust. 608 

Available at: 609 

https://www.pvfitcalculator.energysavingtrust.org.uk/Documents/150224_SolarEnergy_Calculator_S610 

izing_Guide_v1.pdf [Accessed 19th March 2020].  611 

Energy Saving Trust. (2020a). Solar Panels. London: Energy Saving Trust. Available at: 612 

https://energysavingtrust.org.uk/advice/solar-panels/  [Accessed 15th July 2020].  613 

Energy Saving Trust. (2020b). Solar energy calculator. London: Energy Saving Trust. Available at: 614 

https://www.pvfitcalculator.energysavingtrust.org.uk/ [Accessed 15th July 2020].  615 

ESRI. (2017). Modelling solar radiation. ArcMap 10.5. Redlands, California: ESRI. Available at: 616 

https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-toolbox/modeling-solar-617 

radiation.htm [Accessed 31st May 2020].  618 

European Commission PVGIS. (2019). Photovoltaic Geographic Information System. Interactive 619 

Tools. Available at: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP [Accessed 16th July 2020].  620 

European Commission PVGIS. (2020). Photovoltaic Geographic Information System. PVGIS User 621 

Manual. Available at: https://ec.europa.eu/jrc/en/PVGIS/docs/usermanual [Accessed 1st August 622 

2020]. 623 

https://www.ukpowernetworks.co.uk/internet/asset/ab62c3e0-285b-40e6-b909-389ba22ee1eK/A+guide+for+connecting+generation+to+the+distribution+network+G59-3+50kW+or+less+.pdf
https://www.ukpowernetworks.co.uk/internet/asset/ab62c3e0-285b-40e6-b909-389ba22ee1eK/A+guide+for+connecting+generation+to+the+distribution+network+G59-3+50kW+or+less+.pdf
https://www.ukpowernetworks.co.uk/internet/asset/ab62c3e0-285b-40e6-b909-389ba22ee1eK/A+guide+for+connecting+generation+to+the+distribution+network+G59-3+50kW+or+less+.pdf
https://energysavingtrust.org.uk/sites/default/files/Choosing%20a%20site%20and%20getting%20planning%20permission.pdf
https://energysavingtrust.org.uk/sites/default/files/Choosing%20a%20site%20and%20getting%20planning%20permission.pdf
https://www.pvfitcalculator.energysavingtrust.org.uk/Documents/150224_SolarEnergy_Calculator_Sizing_Guide_v1.pdf
https://www.pvfitcalculator.energysavingtrust.org.uk/Documents/150224_SolarEnergy_Calculator_Sizing_Guide_v1.pdf
https://energysavingtrust.org.uk/advice/solar-panels/
https://www.pvfitcalculator.energysavingtrust.org.uk/
https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-toolbox/modeling-solar-radiation.htm
https://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-toolbox/modeling-solar-radiation.htm
https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP
https://ec.europa.eu/jrc/en/PVGIS/docs/usermanual


Escribano, F.G., Marín-Quemada, J. M., and San Martín, G, E. (2013). RES and risk: Renewable 624 

energy’s contribution to energy security. A portfolio-based approach. Renewable and Sustainable 625 

Energy Reviews, 26, pp. 549–559. https://doi.org/10.1016/j.rser.2013.06.015. 626 

Finn, T. and McKenzie, P. (2020). A high-resolution suitability index for solar farm location in 627 

complex landscapes, Renewable Energy, 158, pp. 520-533. 628 

https://doi.org/10.1016/j.renene.2020.05.121.  629 

Gagnon, P., Margolis, R., Melius, J., Phillips, C., and Elmore, R. (2016). Rooftop solar photovoltaic 630 

technical potential in the United States: A detailed assessment. Golden, Colorado: National 631 

Renewable Energy Laboratory. Available at: https://www.nrel.gov/docs/fy16osti/65298.pdf 632 

[Accessed 18th August 2020].   633 

Gall, N., and Stanley, G. eds. (2019). Trading sunlight: prospects for peer to peer energy trading in 634 

the UK solar industry. Solar Trading Association: London, UK. Available at: https://www.solar-635 

trade.org.uk/wp-content/uploads/2019/12/STA-report-WEB.pdf [Accessed 14th August 2020].  636 

Gehrke, S., Morin, K., Downey, M., N, Boehrer, N., and Fuchs, T. (2010). Semi-global matching: An 637 

alternative to LiDAR for DSM generation? International Archives of the Photogrammetry, Remote 638 

Sensing and Spatial Information Sciences – ISPRS. 38(1). Available at: 639 

https://pdfs.semanticscholar.org/5b36/5279c5ac32a3dc158b57a37f6827011b1be4.pdf [Accessed 640 

1st May 2020].  641 

Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., and Gorini, R. (2019). The role of 642 

renewable energy in the global energy transformation.  Energy Strategy Reviews, 24, pp. 38–50. 643 

https://doi.org/10.1016/j.esr.2019.01.006. 644 

Goodchild, M.F. (2009). Geographic information systems and science: today and tomorrow. Annals 645 

of GIS, 15(1), pp. 3-9. https://doi.org/10.1080/19475680903250715. 646 

Green Business Watch. (2014). FIT in Northern Ireland. Northern Ireland Renewables Obligation 647 

(NIRO) – FIT in Northern Ireland. London: Green Business Watch. Available at: 648 

https://doi.org/10.1016/j.rser.2013.06.015
https://doi.org/10.1016/j.renene.2020.05.121
https://www.nrel.gov/docs/fy16osti/65298.pdf
https://www.solar-trade.org.uk/wp-content/uploads/2019/12/STA-report-WEB.pdf
https://www.solar-trade.org.uk/wp-content/uploads/2019/12/STA-report-WEB.pdf
https://pdfs.semanticscholar.org/5b36/5279c5ac32a3dc158b57a37f6827011b1be4.pdf
https://doi.org/10.1016/j.esr.2019.01.006
https://doi.org/10.1080/19475680903250715


https://greenbusinesswatch.co.uk/feed-in-tariff-in-northern-ireland-649 

niro#:~:text=2.,export%20it%20to%20the%20grid [Accessed 28th August 2020].  650 

Green Business Watch. (2019). Photovoltaic Solar Panels. Solar panels can give you cost savings 651 

and earn you income. London: Green Business Watch. Available at: 652 

https://greenbusinesswatch.co.uk/guides/solar-panels-guide#solar-costs [Accessed 1st September 653 

2020]. 654 

Groppi, D., de Santoli, L., Cumo, F., and Garcia, D.A. (2018). A GIS-based model to assess 655 

buildings energy consumption and usable solar energy potential in urban areas. Sustainable Cities 656 

and Society, 40(1), pp. 546-558. https://doi.org/10.1016/j.scs.2018.05.005. 657 

Historic Environment Division. (2016). Historic Environment Division LiDAR 2014 notes. Belfast: 658 

OpenData NI. Available at: https://www.opendatani.gov.uk/dataset/historic-environment-division-659 

lidar-2014 [Accessed 27th February 2020].  660 

Hofierka, J. and Súri, M. (2002). The solar radiation model for Open source GIS: implementation 661 

and applications. Open source GIS - GRASS users conference. Trento, Italy, 11th–13th September 662 

2002. Ispra (VA), Italy: European Commission Joint Research Centre, Institute for Environment and 663 

Sustainability. Available at: 664 

http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hofierka_Jar665 

oslav.pdf [Accessed 1st September 2020]. 666 

Hofierka, J., and Kaňuk, J. (2009). Assessment of photovoltaic potential in urban areas using open-667 

source solar radiation tools. Renewable energy, 34(1), pp. 2206-2214. 668 

https://doi.org/10.1016/j.renene.2009.02.021. 669 

Hofierka, J., and Zlocha, M. (2012). A new 3-D solar radiation model for 3-D city models. 670 

Transactions in GIS. 16(5), pp. 681-690. https://doi.org/10.1111/j.1467-9671.2012.01337.x. 671 

https://greenbusinesswatch.co.uk/feed-in-tariff-in-northern-ireland-niro#:%7E:text=2.,export%20it%20to%20the%20grid
https://greenbusinesswatch.co.uk/feed-in-tariff-in-northern-ireland-niro#:%7E:text=2.,export%20it%20to%20the%20grid
https://greenbusinesswatch.co.uk/guides/solar-panels-guide#solar-costs
https://doi.org/10.1016/j.scs.2018.05.005
https://www.opendatani.gov.uk/dataset/historic-environment-division-lidar-2014
https://www.opendatani.gov.uk/dataset/historic-environment-division-lidar-2014
http://www.ing.unitn.it/%7Egrass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hofierka_Jaroslav.pdf
http://www.ing.unitn.it/%7Egrass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hofierka_Jaroslav.pdf
https://doi.org/10.1016/j.renene.2009.02.021
https://doi.org/10.1111/j.1467-9671.2012.01337.x


Huang, J., Tian, Z., and Fan, J. (2019). A comprehensive analysis on development and transition of 672 

the solar thermal market in China with more than 70% market share worldwide. Energy, 174, pp. 673 

611–624. https://doi.org/10.1016/j.energy.2019.02.165. 674 

Institution of Civil Engineers, Atkins, and Infrastructure Transition Research Consortium. (2016). 675 

National needs assessment. A vision for UK infrastructure. London: ICE, Atkins, and ITRC. 676 

Available at: https://www.ice.org.uk/getattachment/news-and-insight/policy/national-needs-677 

assessment-a-vision-for-uk-infrastr/National-Needs-Assessment-PDF-678 

(1).pdf.aspx#_ga=2.47982311.1543128247.1583607692-1684163932.1581950782 [Accessed 27th 679 

February 2020].  680 

Invest Northern Ireland. (2013). Solar Photovoltaics. A best practice guide for businesses in 681 

Northern Ireland. Belfast: Invest NI. Available at: https://www.elementconsultants.co.uk/wp-682 

content/uploads/2018/02/solar-photovoltaics-a-best-practice-guide-for-businesses-in-northern-683 

ireland1.pdf [Accessed 8th September  2020].  684 

Jacobson, M.Z., Delucchi, M.A., Bauer, Z.A., Goodman, S.C., Chapman, W.E., Cameron, M.A., 685 

Bozonnat, C., Chobadi, L., Clonts, H.A., Enevoldsen, P., and Erwin, J.R., (2017) 100% Clean and 686 

Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. 687 

Joule, 1(1), pp. 108–121. https://doi.org/10.1016/j.joule.2017.07.005. 688 

Jacques, D. A., Goodling, J., Giesekam, J.J., Tomlin, A.S., and Crook, R. (2014). Methodology for 689 

the assessment of PV capacity over a city region using low-resolution LiDAR data and application to 690 

the City of Leeds (UK). Applied Energy, 124, pp. 28–34. 691 

https://doi.org/10.1016/j.apenergy.2014.02.076. 692 

Jakubiec, J.A., and Reinhart, C.F. (2013). A method for predicting city-wide electricity gains from 693 

photovoltaic modules based on LiDAR and GIS data combined with hourly Daysim simulations. 694 

Solar Energy, 93, pp. 127–143. https://doi.org/10.1016/j.solener.2013.03.022. 695 

Jochem, A., Höfle, B., Hollaus, M., and Rutzinger, M. (2009). Object detection in airborne LIDAR 696 

data for improved solar radiation modeling in urban areas. In: Bretar, F., Pierrott-Deseilligny, M., and 697 

https://doi.org/10.1016/j.energy.2019.02.165
https://www.ice.org.uk/getattachment/news-and-insight/policy/national-needs-assessment-a-vision-for-uk-infrastr/National-Needs-Assessment-PDF-(1).pdf.aspx#_ga=2.47982311.1543128247.1583607692-1684163932.1581950782
https://www.ice.org.uk/getattachment/news-and-insight/policy/national-needs-assessment-a-vision-for-uk-infrastr/National-Needs-Assessment-PDF-(1).pdf.aspx#_ga=2.47982311.1543128247.1583607692-1684163932.1581950782
https://www.ice.org.uk/getattachment/news-and-insight/policy/national-needs-assessment-a-vision-for-uk-infrastr/National-Needs-Assessment-PDF-(1).pdf.aspx#_ga=2.47982311.1543128247.1583607692-1684163932.1581950782
https://www.elementconsultants.co.uk/wp-content/uploads/2018/02/solar-photovoltaics-a-best-practice-guide-for-businesses-in-northern-ireland1.pdf
https://www.elementconsultants.co.uk/wp-content/uploads/2018/02/solar-photovoltaics-a-best-practice-guide-for-businesses-in-northern-ireland1.pdf
https://www.elementconsultants.co.uk/wp-content/uploads/2018/02/solar-photovoltaics-a-best-practice-guide-for-businesses-in-northern-ireland1.pdf
https://doi.org/10.1016/j.joule.2017.07.005
https://doi.org/10.1016/j.apenergy.2014.02.076
https://doi.org/10.1016/j.solener.2013.03.022


Vosselman, G. eds. Proceedings of the workshop Laser scanning 2009, International Archives of 698 

Photogrammetry, 38 part3/W8. Paris, France, 1st–2nd September 2009. Available at:  699 

https://www.isprs.org/PROCEEDINGS/XXXVIII/3-W8/papers/1_laserscanning09.pdf [Accessed 20th 700 

September 2020] . 701 

Johnson, R, C., and Mayfield, M. (2020). The economic and environmental implications of post 702 

feed-in tariff PV on constrained low voltage networks. Applied Energy, 279. 703 

https://doi.org/10.1016/j.apenergy.2020.115666. 704 

Kausika, B. B., Dolla, O., Folkerts, W., Siebenga, B., Hermans, P., and van Sark, W.G.J.H.M. 705 

(2015). Bottom-up Analysis of the Solar Photovoltaic Potential for a City in the Netherlands - A 706 

Working Model for Calculating the Potential using High Resolution LiDAR Data. SMARTGREENS 707 

2015 - 4th International Conference on Smart Cities and Green ICT Systems, Proceedings, pp. 129-708 

135. https://doi.org/10.5220/0005431401290135.  709 

Khan, S, B. (2017). Web app sheds light on solar energy potential. ESRI. California: ESRI. Available 710 

at: https://www.esri.com/about/newsroom/wp-content/uploads/2018/09/web-app-sheds-light-on-711 

solar-energy-potential.pdf [Accessed 31st May 2020].  712 

Khanna, D. (2020). Learn ArcGIS. Estimate solar power potential. Determine how much electricity 713 

could be generated from solar power in a city neighbourhood. ESRI. California: ESRI. Available at: 714 

https://learn.arcgis.com/en/projects/estimate-solar-power-potential/ [Accessed 31st January 2020]. 715 

Kodysh, J.B., Omitaomu, O.A., Bhaduri, B.L. and Neish, B.S. (2013). Methodology for estimating 716 

solar potential on multiple building rooftops for photovoltaic systems. Sustainable Cities and 717 

Society, 8 (1), pp. 31-41. Available at: https://doi.org/10.1016/j.scs.2013.01.002. 718 

Kouhestani, F.M., Byrne, J., Johnson, D., Spencer, L., Hazendonk, P., and Brown, B. (2018). 719 

Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of 720 

Lethbridge, Canada. International Journal of Energy and Environmental Engineering (2019), 10, pp. 721 

13–32. https://doi.org/10.1007/s40095-018-0289-1. 722 

https://www.isprs.org/PROCEEDINGS/XXXVIII/3-W8/papers/1_laserscanning09.pdf
https://doi.org/10.1016/j.apenergy.2020.115666
https://doi.org/10.5220/0005431401290135
https://www.esri.com/about/newsroom/wp-content/uploads/2018/09/web-app-sheds-light-on-solar-energy-potential.pdf
https://www.esri.com/about/newsroom/wp-content/uploads/2018/09/web-app-sheds-light-on-solar-energy-potential.pdf
https://learn.arcgis.com/en/projects/estimate-solar-power-potential/
https://doi.org/10.1016/j.scs.2013.01.002
https://doi.org/10.1007/s40095-018-0289-1


Land and Property Services. (2016a). East Belfast_29_05_2013. Belfast: OpenDataNI. Available at:  723 

https://www.opendatani.gov.uk/dataset/osni-open-data-river-basin-lidar-2013-dtms-and-724 

dsms/resource/b946bf37-e8a1-4c98-b907-f501f0a19f4b [Accessed 13th April 2020].  725 

Land and Property Services. (2016b). OSNI open data largescale boundaries – NI outline.  Belfast: 726 

OpenData NI. Available at: https://www.opendatani.gov.uk/dataset/osni-open-data-50k-boundaries-727 

ni-outline [Accessed 10th February 2020].  728 

Land and Property Services. (2018a). Ordnance Survey of Northern Ireland Mapping the way to 729 

digital excellence. OSNI Product Guide Booklet. Belfast: Land and Property Services. Available at: 730 

https://support.spatialni.gov.uk/nima/DownloadDocs/Products/OSNI-Product-Guide-booklet.pdf 731 

[Accessed 13th April 2020]. 732 

Land and Property Services. (2018b). OSNI orthophotography OSNI Digital Library. Belfast: Land 733 

and Property Services. https://mapshop.nidirect.gov.uk/Catalogue/Digital-734 

products/Orthophotography [Accessed 13th April 2020]. 735 

Land and Property Services. (2018c). OSNI DSM, OSNI Digital Library. DSM Belfast: Land and 736 

Property Services. [Accessed 25th March 2020]. 737 

Land and Property Services. (2019). OSNI fusion basemap, OSNI Digital Library. Belfast: Land and 738 

Property Services. https://mapshop.nidirect.gov.uk/Catalogue/Digital-products/OSNI-Large-Scale-739 

Mapping/OSNI-Large-scale-tiles [Accessed 25th March 2020]. 740 

Land and Property Services. (2020a). Workshop facilitated by Land and Property Services 741 

photogrammetry team: Belfast. Land and Property Services.  18th February 2020.  742 

Land and Property Services. (2020b). OSNI Open Data - 1:10,000 Raster - Mid Scale Raster. 743 

Belfast: OpenDataNI. Available at:  https://www.opendatani.gov.uk/dataset/osni-open-data-1-10000-744 

raster-mid-scale-raster [Accessed 19th February 2020].  745 

https://www.opendatani.gov.uk/dataset/osni-open-data-river-basin-lidar-2013-dtms-and-dsms/resource/b946bf37-e8a1-4c98-b907-f501f0a19f4b
https://www.opendatani.gov.uk/dataset/osni-open-data-river-basin-lidar-2013-dtms-and-dsms/resource/b946bf37-e8a1-4c98-b907-f501f0a19f4b
https://www.opendatani.gov.uk/dataset/osni-open-data-50k-boundaries-ni-outline
https://www.opendatani.gov.uk/dataset/osni-open-data-50k-boundaries-ni-outline
https://support.spatialni.gov.uk/nima/DownloadDocs/Products/OSNI-Product-Guide-booklet.pdf
https://mapshop.nidirect.gov.uk/Catalogue/Digital-products/Orthophotography
https://mapshop.nidirect.gov.uk/Catalogue/Digital-products/Orthophotography
https://mapshop.nidirect.gov.uk/Catalogue/Digital-products/OSNI-Large-Scale-Mapping/OSNI-Large-scale-tiles
https://mapshop.nidirect.gov.uk/Catalogue/Digital-products/OSNI-Large-Scale-Mapping/OSNI-Large-scale-tiles
https://www.opendatani.gov.uk/dataset/osni-open-data-1-10000-raster-mid-scale-raster
https://www.opendatani.gov.uk/dataset/osni-open-data-1-10000-raster-mid-scale-raster


Latif, Z.A., Zaki, N, A, M., and Salleh, S, A. (2012). GIS-based Estimation of Rooftop Solar 746 

Photovoltaic Potential using LiDAR. 2012 IEEE 8th International Colloquium on Signal Processing 747 

and its Applications, pp. 388-392, https://doi.org/10.1109/cspa.2012.6194755. 748 

Levinson, R., Akbari, H., Pomerantz, M., and Gupta, S. (2009). Solar access of residential rooftops 749 

in four California cities. Solar Energy, 83(1), pp. 2120-2135. 750 

https://doi.org/10.1016/j.solener.2009.07.016. 751 

Lingfors, D., Bright, J.M., Engerer, N.A., Ahlberg, J., Killinger, S., and Widén, J. (2017). Comparing 752 

the capability of low- and high-resolution LiDAR data with application to solar resource assessment, 753 

roof type classification and shading analysis. Applied Energy, 205. pp. 1216-1230. 754 

http://dx.doi.org/10.1016/j.apenergy.2017.08.045. 755 

Liu, D., Liu, J., Wang, S., Xu, M., and Akbar, S, J. (2019). Contribution of international photovoltaic 756 

trade to global greenhouse gas emission reduction: the example of China. Resources, Conservation 757 

and Recycling, 143, pp. 114–118. https://doi.org/10.1016/j.resconrec.2018.12.015. 758 

Lloyd, H. (2018). A Distributed Energy Future for the UK. Buckingham Street, London: Institute for 759 

Public Policy Research. Available at: https://www.ippr.org/research/publications/a-distributed-760 

energy-future [Accessed 22nd February 2020].  761 

MacIntyre, S. (2019). The Utility of Solar Photovoltaic Panels at 55 Degrees North: Solar PV Utility 762 

in Northern Ireland. Belfast: Ulster University. Available at: 763 

https://pure.ulster.ac.uk/en/publications/the-utility-of-solar-photovoltaic-panels-at-55-degrees-north-764 

sola [Accessed 1st May 2020].  765 

Mac Kinnon, M. A., Brouwer, J., and Samuelsen, S. (2018). The role of natural gas and its 766 

infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable 767 

resource integration. Progress in Energy and Combustion Science, 64, pp. 62–92. 768 

https://doi.org/10.1016/j.pecs.2017.10.002. 769 

https://doi.org/10.1109/cspa.2012.6194755
https://doi.org/10.1016/j.solener.2009.07.016
http://dx.doi.org/10.1016/j.apenergy.2017.08.045
https://doi.org/10.1016/j.resconrec.2018.12.015
https://www.ippr.org/research/publications/a-distributed-energy-future
https://www.ippr.org/research/publications/a-distributed-energy-future
https://pure.ulster.ac.uk/en/publications/the-utility-of-solar-photovoltaic-panels-at-55-degrees-north-sola
https://pure.ulster.ac.uk/en/publications/the-utility-of-solar-photovoltaic-panels-at-55-degrees-north-sola
https://doi.org/10.1016/j.pecs.2017.10.002


Mainzer, K., Killinger, S., McKenna, R., and Fichtner, W. (2017). Assessment of rooftop photovoltaic 770 

potentials at the urban level using publicly available geodata and image recognition techniques. 771 

Solar Energy, 155(2017), pp. 561-573. https://doi.org/10.1016/j.solener.2017.06.065. 772 

Margolis, R., Gagnon, P., Melius, J., Philip, C., and Elmore, R. (2017). Using GIS-based methods 773 

and LiDAR data to estimate rooftop solar technical potential in US cities. Environmental research 774 

letters, 12(7). https://doi.org/10.1088/1748-9326/aa7225. 775 

Martín, A, M., Domínguez, J., and Amador, J. (2015). Applying LiDAR datasets and GIS based 776 

model to evaluate solar potential over roofs: a review. AIMS Energy, 3(3), pp. 326-343. 777 

https://doi.org/10.3934/energy.2015.3.326. 778 

McKenna, E., Pless, P., and Darby, S. (2018). Solar photovoltaic self-consumption in the UK 779 

residential sector: new estimates from a smart grid demonstration project. Energy Policy, 124(1), pp. 780 

482-491. https://doi.org/10.1016/j.enpol.2018.04.006. 781 

McKenna, E., Webborn, E., Leicester, P., and Elam, S. (2019). Analysis of international residential 782 

solar PV self-consumption. ECEEE 2019 Summer Study on energy efficiency: Is efficient sufficient? 783 

Belambra Presqu'île de Giens, France, 3rd–14th June 2019. Stockholm: European Council for an 784 

Energy Efficient Economy. Available at: 785 

https://www.researchgate.net/publication/333756616_Analysis_of_international_residential_solar_P786 

V_self-consumption [Accessed 1st May 2020].  787 

Melius, J., Margolis, R., and Ong, S. (2013). Estimating rooftop suitability for PV: A review of 788 

methods, patents, and validation techniques. Golden, Colorado: National Renewable Energy 789 

Laboratory. Available at: https://www.nrel.gov/docs/fy14osti/60593.pdf [Accessed 18th August 2020].  790 

Microgeneration Certification Scheme. (2012). Guide to the installation of photovoltaic systems. 791 

London: MCS. Available at: https://mcscertified.com/wp-content/uploads/2019/08/PV-Book-792 

ELECTRONIC.pdf [Accessed 1st March 2020].  793 

https://doi.org/10.1016/j.solener.2017.06.065
https://doi.org/10.1088/1748-9326/aa7225
https://doi.org/10.3934/energy.2015.3.326
https://doi.org/10.1016/j.enpol.2018.04.006
https://www.researchgate.net/publication/333756616_Analysis_of_international_residential_solar_PV_self-consumption
https://www.researchgate.net/publication/333756616_Analysis_of_international_residential_solar_PV_self-consumption
https://www.nrel.gov/docs/fy14osti/60593.pdf
https://mcscertified.com/wp-content/uploads/2019/08/PV-Book-ELECTRONIC.pdf
https://mcscertified.com/wp-content/uploads/2019/08/PV-Book-ELECTRONIC.pdf


Microgeneration Certificate Scheme. (2019). Determining the electrical self-consumption of 794 

domestic solar photovoltaic (PV) installations with and without electrical energy storage. London: 795 

MCS. Available at: https://mcscertified.com/wp-content/uploads/2019/08/MGD-003-Guidance-Note-796 

Self-Consumption_.pdf [Accessed 14th April 2020].  797 

Microgeneration Certificate Scheme. (2020). Solar Photovoltaic (PV). Daresbury, UK: 798 

Microgeneration Certificate Scheme. Available at: https://mcscertified.com/ [Accessed 14th April 799 

2020].  800 

Moudrý, V., Beková, A., and Lagner, O. (2019) Evaluation of a high resolution UAV imagery model 801 

for rooftop solar irradiation estimates. Remote Sensing Letters, 10(11), pp.1077–1085. 802 

https://doi.org/10.1080/2150704X.2019.1649735.  803 

National Infrastructure Commission. 2017. Data for public good. London: National Infrastructure 804 

Commission. Available at: https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.pdf 805 

[Accessed 25th April 2020].  806 

National Renewable Energy Laboratory. (2020). Welcome to the new PVWatts. Golden, Colorado: 807 

NREL. Available at: https://pvwatts.nrel.gov/version_6.php [Accessed 19th February 2020].  808 

Nelson, J, R., and Grubesic, T, H. (2020). The use of LiDAR versus unmanned aerial systems 809 

(UAS) to assess rooftop solar energy potential. Sustainable Cities and Society, 61. 810 

https://doi.org/10.1016/j.scs.2020.102353. 811 

Northern Ireland Authority for Utility Regulation (2019). Utility Regulator comments on Power NI’s 812 

tariff increase. Belfast: NIAUR. Available at: https://www.uregni.gov.uk/news-centre/utility-regulator-813 

comments-power-nis-tariff-increase [Accessed 8th May 2020].  814 

Northern Ireland Electricity Networks. (2014). Decision tree for distributed generated connections. 815 

Belfast: NIE Networks. Available at: https://www.nienetworks.co.uk/documents/generation/decision-816 

treev3 [Accessed 3rd January 2022].  817 

https://mcscertified.com/wp-content/uploads/2019/08/MGD-003-Guidance-Note-Self-Consumption_.pdf
https://mcscertified.com/wp-content/uploads/2019/08/MGD-003-Guidance-Note-Self-Consumption_.pdf
https://mcscertified.com/
https://doi.org/10.1080/2150704X.2019.1649735
https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.pdf
https://pvwatts.nrel.gov/version_6.php
https://doi.org/10.1016/j.scs.2020.102353
https://www.uregni.gov.uk/news-centre/utility-regulator-comments-power-nis-tariff-increase
https://www.uregni.gov.uk/news-centre/utility-regulator-comments-power-nis-tariff-increase
https://www.nienetworks.co.uk/documents/generation/decision-treev3
https://www.nienetworks.co.uk/documents/generation/decision-treev3


Northern Ireland Electricity Networks. (2021). Help and Advice. Generation connections. Belfast: 818 

NIE Networks. Available at: https://www.nienetworks.co.uk/help-advice/faqs/generation-connections 819 

[Accessed 3rd January 2022].  820 

Northern Ireland Statistics and Research Agency and Department for the Economy. (2020). 821 

Electricity consumption and renewable generation in Northern Ireland: Year ending June 2020. 822 

Belfast: Department for the Economy. Available at: https://www.economy-823 

ni.gov.uk/sites/default/files/publications/economy/Issue-16-Electricity-consumption-renewable-824 

generation-northern-ireland-july-2019-june-2020.pdf [Accessed 5th September 2020].  825 

Northern Virginia Regional Commission. (2019). Northern Virginia Solar Map. Virginia: NVRC. 826 

Available at: 827 

https://nvrc.maps.arcgis.com/apps/webappviewer/index.html?id=ef5c5dc969f341cc986cd431d94cdf828 

e9 [ Accessed 24th January 2020].  829 

Ofgem. (2020). Microgeneration Certification Scheme (MCS): Small installations. London: Ofgem. 830 

Available at: https://www.ofgem.gov.uk/environmental-programmes/fit/applicants/microgeneration-831 

certification-scheme-mcs-small-installations [Accessed 18th August 2020].  832 

Palmer, D., Cole, I., R., Betts, T., and Gottschalg, R. (2016). Assessment of potential for 833 

photovoltaic roof installations by extraction of roof tilt from light detection and ranging data and 834 

aggregation to census geography. 11th Photovoltaic Science, Application and Technology 835 

Conference (PVSAT-11). Leeds, UK, 15th–17th April 2015. London: The Institution of Engineering 836 

and Technology. IET Renewable power generation, 1(4), pp. 467-473. https://doi.org/10.1049/iet-837 

rpg.2015.0388. 838 

Palmer, D., Cole, I., R., Betts, T., and Gottschalg, R. (2018). Estimating rooftop capacity for PV: Are 839 

we asking the right question? Proceedings of the 14th Photovoltaic Science, Applications and 840 

Technology Conference (PVSAT-14). London, 18th–19th April 2018. Oxfordshire, UK: The Solar 841 

Energy Society. Available at: https://hdl.handle.net/2134/33086 [Accessed 14th April 2020].  842 

https://www.nienetworks.co.uk/help-advice/faqs/generation-connections
https://www.economy-ni.gov.uk/sites/default/files/publications/economy/Issue-16-Electricity-consumption-renewable-generation-northern-ireland-july-2019-june-2020.pdf
https://www.economy-ni.gov.uk/sites/default/files/publications/economy/Issue-16-Electricity-consumption-renewable-generation-northern-ireland-july-2019-june-2020.pdf
https://www.economy-ni.gov.uk/sites/default/files/publications/economy/Issue-16-Electricity-consumption-renewable-generation-northern-ireland-july-2019-june-2020.pdf
https://nvrc.maps.arcgis.com/apps/webappviewer/index.html?id=ef5c5dc969f341cc986cd431d94cdfe9
https://nvrc.maps.arcgis.com/apps/webappviewer/index.html?id=ef5c5dc969f341cc986cd431d94cdfe9
https://www.ofgem.gov.uk/environmental-programmes/fit/applicants/microgeneration-certification-scheme-mcs-small-installations
https://www.ofgem.gov.uk/environmental-programmes/fit/applicants/microgeneration-certification-scheme-mcs-small-installations
https://doi.org/10.1049/iet-rpg.2015.0388
https://doi.org/10.1049/iet-rpg.2015.0388
https://hdl.handle.net/2134/33086


Pan, X., Yang, F., Gao, L., Chen, Z., Zhang, B., Fan, H., Ren, J. (2019) Building Extraction from 843 

High-Resolution Aerial Imagery Using a Generative Adversarial Network with Spatial and Channel 844 

Attention Mechanisms. Remote Sensing, 11. https://doi.org/10.3390/rs11080917 845 

 846 
Power NI. (2020a). Sell your electricity. Current prices. Belfast: Power NI. Available at: 847 

https://powerni.co.uk/business/products-services/renewables/sell-electricity11/ [Accessed 7th May 848 

2020].  849 

Power NI. (2020b). Unit rate prices. Standard rate. Belfast: Power NI. Available at: 850 

https://powerni.co.uk/plan-prices/compare-our-plans/tariff-rates/ [Accessed 7th May 2020].  851 

Power NI. (2020c). Microgeneration tariff. Sell your electricity. Belfast: Power NI. Available at: 852 

https://powerni.co.uk/products--services/renewableenergy/sell-electricity/ [Accessed 21st October 853 

2020].  854 

Rabiu, L., and Waziri, D.A. (2014). Digital Orthophoto Generation with Aerial Photographs. Academic 855 

Journal of Interdisciplinary Studies, 3. http://dx.doi.org/10.5901/ajis.2014.v3n7p133  856 

Reid, G., and Wynn, G. (2015). The future of solar power in the United Kingdom. Energies, (8) 1, pp. 857 

7818-7832 Available at: https://doi.org/doi:10.3390/en8087818. 858 

Robinson, C. Lindley, S., and Bouzarovski, S. (2019). The Spatially Varying Components of 859 

Vulnerability to Energy Poverty. Annals of the American Association of Geographers, 4452, pp. 860 

1188-1207. https://doi.org/10.1080/24694452.2018.1562872. 861 

Song, X., Huang, Y., Zhao, C., Liu, Y., Lu, Y., Chang, Y., and Yang, J. (2018). An approach for 862 

estimating solar photovoltaic potential based on rooftop retrieval from remote sensing images. 863 

Energies. 11(11). https://doi.org/10.3390/en11113172. 864 

Sovacool, B.K., and Martiskainen, M. (2020). Hot transformations: Governing rapid and deep 865 

household heating transitions in China, Denmark, Finland and the United Kingdom. Energy Policy, 866 

139. https://doi.org/10.1016/j.enpol.2020.111330. 867 

https://doi.org/10.3390/rs11080917
https://powerni.co.uk/business/products-services/renewables/sell-electricity11/
https://powerni.co.uk/plan-prices/compare-our-plans/tariff-rates/
https://powerni.co.uk/products--services/renewableenergy/sell-electricity/
http://dx.doi.org/10.5901/ajis.2014.v3n7p133
https://doi.org/doi:10.3390/en8087818
https://doi.org/10.1080/24694452.2018.1562872
https://doi.org/10.3390/en11113172
https://doi.org/10.1016/j.enpol.2020.111330


Tiwari, A., Meir, I, A., and Karnieli, A. (2020). Object-based image procedures for assessing the 868 

solar energy photovoltaic potential of heterogenous rooftops using airborne LiDAR and orthophoto. 869 

Remote Sensing, 12(2). https://doi.org/10.3390/rs12020223. 870 

UK Government. (2020). PM launches UN climate summit in the UK. Press Release, 4th February 871 

2020. Available at: https://www.gov.uk/government/news/pm-launches-un-climate-summit-in-the-uk 872 

[Accessed 5th February 2020].  873 

Walker, R., Liddell, C., McKenzie, P., Morris, C., and Lagdon, S. (2014). Fuel poverty in Northern 874 

Ireland: Humanizing the plight of vulnerable households. Energy Research and Social Science 875 

Elsevier. 4, pp. 89–99. https://doi.org/10.1016/j.erss.2014.10.001. 876 

Wong, M, S., Zhu, R., Liu, Z., Lu, L., Peng, J., Tang, Z., Lo, C, H., and Chan, W, K. (2016). 877 

Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies. 878 

Renewable Energy. 99 (2016), pp. 325-335. https://doi.org/10.1016/j.renene.2016.07.003. 879 

https://doi.org/10.3390/rs12020223
https://www.gov.uk/government/news/pm-launches-un-climate-summit-in-the-uk
https://doi.org/10.1016/j.erss.2014.10.001
https://doi.org/10.1016/j.renene.2016.07.003

	Abstract (200 words)
	1 Introduction
	1.1 GIS and Photogrammetry

	2 Methodology
	2.1 Overview
	2.2 Study Areas
	2.3 Solar Irradiance Modelling
	2.4 Technical Workflows
	2.5 Methodology Validation
	2.6 Solar Model Verification
	2.7 Analysis

	3 Results
	3.1 Non-Parametric Testing
	3.2 3D Models and PV Web Analysis
	3.3 Validation

	4 Discussion
	4.1 Comparison of LiDAR and Orthophotography Modelled Solar Outputs
	4.2 Estimation of PV Potential, CO2, Savings and Payback
	4.3 Comparison of Remotely Sensed Results to Solar Websites and Modelled 3D Buildings

	5 Conclusion
	6 References

