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ABSTRACT
In the present study, an improved iteratively reweighted multivariate alteration detection (IR-
MAD) algorithm was proposed to improve the contribution of weakly correlated bands in
multi-spectral image change detection. In the proposed algorithm, each image band was given
a different weight through single-band iterative weighting, improving the correlation between
each pair of bands. This method was used to obtain the characteristic difference in the
diagrams of the band that contain more variation information. After removing Gaussian
noise from each feature-difference graph, the difference graphs of each band were fused
into a change-intensity graph using the Euclidean distance formula. Finally, unsupervised
fuzzy C-means (FCM) clustering was used to perform binary clustering on the fused difference
graphs to obtain the change detection results. By comparing the original multivariate altera-
tion detection (MAD) algorithm, the IR-MAD algorithm and the proposed IR-MAD algorithm,
which used a mask to eliminate strong changes, the experimental results revealed that the
multi-spectral change detection results of the proposed algorithm are closer to the actual value
and had higher detection accuracy than the other algorithms.
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Introduction

Remote sensing image change detection technology
has been applied in many fields, such as environmen-
tal monitoring (Zhuang, Deng, & Fan, 2016), urban
research (Zhuang, Deng, Yu, & Fan, 2017), land use
(Yonezawa, 2007), sand cover monitoring (Yan-Hong,
Pei, Wang, & Yun-Peng, 2010), forest monitoring
(Zhuang, Deng, Fan, & Ma, 2018), agricultural inves-
tigation (Shi, Gao, & Shen, 2016), and disaster assess-
ment (Chen & Chen, 2016). The change detection of
remote sensing images is based on the multiple remote
sensing images acquired at different time points in the
same region to extract the features and process the
changes in the ground objects. Because there are dif-
ferent structures and components between the objects,
different features have different spectral characteris-
tics, which means that the reflection spectra of differ-
ent features are different. If the reflectance spectra of
different objects are similar in some bands, the reflec-
tance spectra of these objects in other bands will
greatly differ. Single-band remote sensing image
change detection can identify an object in a band but
cannot extract the features of other wavelength change
information. Furthermore, the multi-spectral remote
sensing images of multiple wavelengths can reflect the
characteristics of features under different wave bands
and make good use of the spectral correlation.

Moreover, the difference, as well as the change in the
reaction features, can be more realistic (Hichri, Bazi,
Alajlan, & Malek, 2013).

Due to the use of multi-spectral images for change
detection, abundant spectral information can improve
the credibility of identifying multiple types of changes.
Hence, some targets that cannot be detected in a single
band are more likely to be detected in multiple bands,
which would be more conducive to understanding the
change information of ground objects. The most critical
part of change detection is change information discovery,
andmost studies have explored this issue (Zhang&Yang,
2005). To solve the deficiency of single-band change
detection methods, such as the image ratio method (Xu,
Zhang, He, & Guo, 2009), change vector analysis (CVA)
(Liang, Wang, Sun, & Ying, 2017), and principal compo-
nent analysis (PCA) (Hui, 2008), for multi-band remote
sensing image change detection (suppressing noise,
improving the detection accuracy, etc.), Nielsen et al.
proposed the concept and method of MAD (Bai et al.,
2012). The MAD algorithm is based on canonical corre-
lation analysis (CCA) (Lei & Run-Geng, 2007). However,
the algorithm could still not fully improve the deficiency
of noise suppression and accuracy improvement in cur-
rent multivariate remote sensing image processing
schemes. Based on the MAD method, Nielsen also pro-
posed the IR-MAD algorithm (Canty & Nielsen, 2008).
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A subsequent study (Nielsen & Canty, 2009) indicated
that nuclear principal component analysis and nuclear
MAF (the largest correlative factor) can further enhance
the results after the implementation of the IR-MAD
algorithm. In a prior study (Niemeyer, Marpu, &
Nussbaum, 2008), the application of IR-MAD on image
fragments, rather than on pixels, was demonstrated. In
another study (Marpu, Gamba, & Canty, 2011), the IR-
MADmethod was proposed to eliminate strong changes
to improve results. Strong changes refer to pixels that
have clearly changed and are easily distinguishable.
Strong changes can be obtained by the histogram differ-
encemethod. By eliminating strong changes with amask,
the algorithm can better identify the background without
changes. Themask here refers to the initial binary change
mask calculated by identifying strong variations. By mul-
tiplying them by the image data matrix, the strongly
varying pixels can be set to zero to eliminate the influence
of strong changes on multi-spectral change detection in
subsequent detection and reduce the amount of data
processed. Although the iteration time and detection
accuracy were improved, they could not make full use
of the variation information of each band.

The IR-MAD algorithm has been considered themost
advanced change detection algorithm for multi-spectral
images due to its excellent change detection accuracy and
varying stability. The main idea of IR-MAD is to assign
an initial value of 1 to each pixel in the remote sensing
images. During each iteration, a new weight is assigned
to the two images by calculating the chi-square distribu-
tion probability. In the next iteration, weights are con-
sidered in the calculation of the mean and variance.
Through these calculations, the pixels that do not change
have large weights, and the weight of each pixel tends to
be stable after iterative convergence. At this time, accu-
rate change detection results can be obtained by compar-
ing the weight and threshold of each pixel. Another
theoretical explanation for IR-MAD was proposed in
the literature (Wu & Du, 2015): multivariate change
detection is the feature that seeks the strongest image
correlation. This algorithm makes full use of the band
with a strong correlation, while the band with a weaker
correlation is given a smaller weight, which contributes
less to the calculation of variation strength. Therefore,
the IR-MAD algorithm fails to make full use of the
variation characteristics of each band, resulting in the
incomplete detection of the details of changed areas.
Therefore, the algorithm has broken patches, much
noise, and small change areas that are difficult to detect,
and the overall detection rate is low (Xu, Liu, Li, Ren, &
Yang, 2016). In recent years, with the development of
machine learning methods, neural networks have also
been applied to change detection in multi-spectral
images. A common method is to take the difference
image as the training labels and input them into
a neural network, such as a convolutional neural network

(CNN) (Jian, Fang, & Ghamisi, 2018; Maggiori,
Tarabalka, Charpiat, & Alliez, 2016; Song, Li, Fang, &
Lu, 2018), a generative adversarial network (GAN)
(Gong, Niu, Zhang, & Li, 2017), a deep neural network
(DNN) (Gong, Zhao, et al., 2017), a deep belief network
(DBN) (Qiao, Pan, & Han, 2015), or a restricted
Boltzmann machine (RBM) (Roux & Bengio, 2008).
A novel recurrent convolutional neural network
(ReCNN) architecture was later proposed to learn the
combined spectral-temporal feature representation in
a unified framework (Mou, Bruzzone, & Xiao, 2018).
A generative discriminatory classified network (GDCN)
consists of a discriminant classification network (DCN)
and a generator (Gong, Yang, Zhan, Niu, & Li, 2019).
These neural network models usually need to be trained
by inputting a large amount of labelled data, which
enables them to learn key feature representations from
the input data. It is difficult and expensive to label a large
amount data. Due to the lack of training data, network
structure and high computational complexity, the appli-
cation of neural networks inmulti-spectral change detec-
tion is still being explored.

In the present study, a new, improved IR-MAD
method for multi-spectral image change detection
is proposed. In this algorithm, the image weights
of each band were set to different weights to
improve the correlation between each pair of
bands of multi-spectral images. This method was
used to obtain the characteristic difference dia-
grams of each band that contain more variation
information. Because the noise in a multi-spectral
image is mainly additive noise (such as Gaussian
noise, Poisson noise, etc.), the Gaussian denoising
algorithm is selected in this paper for the simple
denoising of each feature-difference graph. (The
comparison algorithm in this paper also includes
the processing of Gauss filtering.) After Gaussian
noise removal of each feature-difference graph, the
difference graphs of each band were fused into
a change-intensity graph using the Euclidean dis-
tance formula. Finally, unsupervised FCM binary
clustering (Mishra, Ghosh, & Ghosh, 2012) was
performed to obtain the change detection results.
The results of experiments with the Landsat image
dataset prove the superiority of the algorithm pro-
posed in the present study. Moreover, compared
with the detection results of the IR-MAD algo-
rithm using MAD, IR-MAD and the latter-
published IR-MAD algorithm using a mask to
eliminate strong changes, the results reveal that
the algorithm in the present study has a higher
variation detection accuracy. Finally, the algorithm
is discussed in terms of universality. The experi-
ments of multiple sets of Landsat multi-spectral
remote sensing datasets show that the proposed
algorithm has good universality.
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Methodology

The algorithm proposed in the present study com-
prises five steps:

Step 1: The original multi-spectral images are regis-
tered by ENVI software, and single-band
images are separated.

Step 2: The single band is successively weighted by
iterations to obtain the optimal projection
vector of the upper two time phases of each
band. The weight is calculated by Equation
(7), and the optimal projection vector is cal-
culated by Equations (1) and (2):

Step 3: Equation (5) is used to obtain the difference
images of each band. Then, the obtained dif-
ference images are processed by Gaussian
filtering;

Step 4: The difference image after filtering in each
band is written into a matrix by Equation
(8), and Equation (9) is used to convert the
difference matrix into the MAD change-
intensity matrix;

Step 5: Binary clustering analysis is performed with
FCM clustering to obtain the change detec-
tion results.

The flow chart is shown in Figure 1.

The registration method

After acquiring multi-temporal remote sensing images
for change detection, the most important pre-processing

procedure is precise geometric registration. Because
almost all remote sensing change detection research is
based on the premise of image registration, a pixel in the
image corresponds to the same geographical location in
the real world. There are twomain geometric registration
methods formulti-temporal images: absolute registration
of all images into real geographic coordinates and relative
registration of corrected images. Absolute registration is
more suitable for the change detection of large-scale
multi-temporal data involving a large amount of data,
but the accuracy of inter-image registration is affected by
the cumulative accuracy of each individual correction.
Relative registration is a method of relative correction by
selecting the same points between images. Thismethod is
more suitable for the study of changes in terrain features
with small amounts of data. This paper uses ENVI image
registration and geometric correction tools to register
pairs of images acquired in different time phases in the
same area. The method is simple to operate, and the
specific steps are as follows:

The flow chart is shown in Figure 2.
It should be noted that in the specific operation of

generating matching points, the matching points
should be found according to the default settings. In
the specific operation of checking matching points, the
generated matching points are sorted according to the
error from largest to smallest. Matching Points with
larger errors need to be deleted, or in the operation
window, matching points should fine-tuned by
a crosshair cursor until the total RMS value is less
than 1 pixel and the matching points are evenly dis-
tributed. Finally, the output path and file name are
selected to output the registered image.

Figure 1. Flowchart of the designed framework.

Figure 2. Flowchart for registration by ENVI.
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Single band iterative weighting algorithm

The idea of single-band iterative weighting is as fol-
lows: First, the single-band image is extracted from the
multi-spectral image. Second, the image is individually
weighted by iteration for each band to obtain
a projection vector that maximizes the correlation
coefficient of each single-band image. Third, the opti-
mal MAD variable of the band is obtained. In this way,
the obtained MAD variables have the most abundant
change information in each band. Finally, the final
change-intensity map is generated after the fusion of
the change intensities. The specific implementation
method is as follows:

(1) Extract a single-band image from multi-spectral
images F1;F2; . . . FK and a single-band image
from multi-spectral images G1;G2; . . .GK .

(2) Find a projection vector that maximizes the
correlation coefficient of each single-band
image. Let the vector of the Pth band image be
optimally projected as UP and VP, as shown in
Equations (1) and (2):

UP ¼ aTPFP (1)

VP ¼ bTPGP P ¼ 1 . . .K (2)

where P is the corresponding number of bands, and
aPand bP represent the projection vectors of the
P-band images F and G, respectively. The projection
vectors aP and bP can be found through Equations (3)
and (4):

X
FPGP

X�1

GPGP

X
GPFP

aP ¼ ρ2
X

FpFp
aP (3)

X
GPFP

X�1

FPGP

X
GPGP

bP ¼ ρ2
X

GPGP
bP (4)

where ρ ¼ Corr aTPFP; bTPGP
� �

represents the correla-
tion of two eigenvectors.

P
FPFP

is the covariance
matrix of the P-band image between the multi-
spectral image F.

P
GPGP

is the covariance matrix of
the P-band image of the multi-spectral imageP

FPGP
and

P
GPFP

is the cross-covariance matrix
between two P-band images. The MAD variable MP

generated by a single band is expressed as shown in
Equation (5):

MP ¼ UP � VP ¼ aTPFP � bTPGP (5)

The MAD feature satisfies the properties of the
Gaussian distribution. Hence, the chi-square distance
of the difference image can be calculated, which satis-
fies a chi-square distribution with n degrees of free-
dom, as shown in Equation (6):

Tij ¼
MP

ij

σP

 !2

2 x2 nð Þ (6)

where σP is the variance of the P-th band, and the
weight is calculated by the probability density quantile
of the chi-square distribution:

ωij ¼ P Tij > t
� � ¼ P x2 nð Þ>Tij

� �
(7)

In the next iteration of the corresponding P-band
image, the calculation of the mean and variance con-
siders the effect of the weight. When the set number of
iterations is reached, or the difference between the
maximum eigenvalue before and after the iteration is
less than 10�6, the iteration will be stopped.That is, the
image of each band uses the respective correlation
coefficients to find the projection vector and weight
in the iterative calculation process.

3. Calculate the MAD variable intensity matrix.
After iterative convergence, the optimal MAD variable
of the P-band can be obtained. The best difference
image MP of each band can be obtained through this
algorithm. After Gaussian filtering and denoising, the
obtained difference matrix is adjusted into the column
vector by band. In matrix M (Equation (8)):

M ¼ M1;M2; . . . MKð Þ (8)

MAD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

K¼1
M �Mð Þ

r
(9)

The Euclidean distance (Equation (9)) is used to con-
vert the difference matrix into the MAD change-
intensity matrix, and the intensity of the change in
the pixels in each band is unified.

Difference map

For images of different time phases in the same area,
how to accurately acquire the difference image of
two-phase remote sensing images is very important
in the multi-spectral remote sensing image change
detection algorithm. The quality of different images
will directly affect the accuracy of the classification
results. The IR-MAD algorithm has been considered
the most advanced change detection algorithm for
multiphase images due to its excellent change detec-
tion accuracy and varying stability. However, the IR-
MAD algorithm is a change detection algorithm
based on the maximum variance of the projection
difference, and the algorithm still has some short-
comings. In the process of calculation, bands with
a weak correlation are positioned in front to assign
small weights, while bands with a strong correlation
were positioned at the back to assign large weights. If
the weight is taken as the step length for adjusting the
correlation coefficient, a band with a strong correla-
tion will converge more rapidly due to the large
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correlation coefficient. Moreover, a band with a small
step length and weak correlation will stop the itera-
tion due to the convergence of the band with the
strong correlation. Therefore, the band with a weak
correlation cannot converge to a large correlation
coefficient, and the change information contained in
the band cannot be fully utilized. Hence, a band with
a weak correlation contributes less when the differ-
ence graph is obtained. The single-band iterative
weighting algorithm can avoid this disadvantage
and enhance the correlation coefficients of weak cor-
relation bands, making full use of the change infor-
mation of each band to improve the change detection
accuracy. Data II is taken as an example to compare
the feature-difference maps of each band obtained by
the IR-MAD algorithm and the algorithm in this
paper under the same number of iterations. The
experimental results are as follows:

Figure 3 is the characteristic difference image of
the six bands obtained after 10 iterations of the IR-
MAD algorithm in Data II. The output bands are
arranged from smallest to largest according to the
characteristic correlation of the band. That is,
Figure 3(a) corresponds to the band with the mini-
mum correlation coefficient, and Figure 3(f) corre-
sponds to the band with the maximum correlation
coefficient. Panels (a), (b), (c), (d), (e) and (f) in
Figure 3 correspond to the original bands for Band
3, Band 4, Band 5, Band 6, Band 2 and Band 1. In
Figure 4(a), the RGB images were synthesized from

the first three bands in Figure 3. Figure 4(b) is the
RGB image synthesized in the last three bands in
Figure 3. From Figure 3, it can be seen that the
lower the MAD feature ranking was, the more abun-
dant the change information became. That is, the
larger the feature correlation ρ was, the more abun-
dant the change information became. Figure 4 shows
that the feature-difference of the band with a small
correlation coefficient in the front contains more
noise and background information, while the band
with a large correlation coefficient in the back con-
tains more change information and less noise.
Therefore, there is a need to increase the correlation
coefficient of each wave band through iterations.

Figure 5 is the feature-difference image of each
band after 10 iterations using the single-band iterative
weighting method. The serial number of the image is
consistent with the band number. Figure 6(a) shows
the RGB image synthesized by Band 3, Band 4 and
Band 5. Figure 6(b) shows the RGB image synthesized
by Band 6, Band 2 and Band 1 (consistent with the
bands used in Figure 4). Table 1 is the first correlation
value of each band after 10 iterations using the IR-
MAD algorithm and the single-band iterative weight-
ing method, respectively, in Data II. As shown in
Figure 5, after single-band iterative weighting, the
change information of each band is very clear.
Compared with Figure 4, Figure 6(a) presents the
clearer colour composite image, which was originally
vague with change information. The single-band

Figure 3. Output characteristic difference obtained using the IR-MAD algorithm (feature band 1–6).
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iterative weighted method significantly enhanced the
correlation of Band 3, Band 4 and Band 5, which were
originally weak in correlation. The data in Table 1 are
also very good for proving this relationship. Therefore,
the single-band iterative weighting method can effec-
tively enhance the correlation coefficient of the bands
with weak correlation. Hence, the change information
of the band can also be fully utilized to improve the
accuracy of change detection.

FCM clustering algorithm

To extract change information from different images,
traditional algorithms include thresholding and cluster-
ing, which take into account the statistical characteristics
of images and can complete the classification well. In this
paper, the FCMclustering algorithm is used to cluster the
acquired MAD difference image to obtain the final
change detection map. This clustering algorithm aims at
minimizing the objective function, which is defined as:

Figure 4. (a) Color synthesis map of the first three characteristic bands of the IR-MAD algorithm, and (b) Color synthesis of the last
three characteristic bands.

Figure 5. Output characteristic difference obtained by the single-band iterative weighting algorithm (feature band 1–6).

6 L. MA ET AL.



Jm ¼
Xc
i

Xn
j

uij
� �mjjyj � zijj2 ¼

Xc
i

Xn
j

uij
� �m

d2ij

(10)

where Y ¼ y1; y2; . . . ; ynð Þis a set of n-dimensional
data samples, Z ¼ z1; z2; . . . ; zcð Þ is the clustering
centre of the fuzzy group, U ¼ uij

� �
c�nis the member-

ship matrix of Y and uij� 0; 1½ �.dij ¼ jjzi � yjjj is the
Euclidean distance between the ith clustering centre
and the jth data point, and m ¼ 1;1½ Þis a weighted
index, which represents the fuzzy index. Its size is
proportional to the degree of blurring. Generally, its
standard value is 1.5. The necessary conditions for
reaching the minimum value of Jm can be obtained
by the Lagrange multiplier:

zi ¼
Pn

j¼1 u
m
ij yjPn

j¼1 u
m
ij

; 1 � i � c (11)

uij ¼ 1Pc
k¼1

dij
dkj

� � 2
m�1ð Þ

; 1 � i � c; 1 � j � n (12)

where,

Xc
i¼1

uij ¼ 1;"j ¼ 1; . . . ; n (13)

It can be seen from the two necessary conditions above
that the FCM clustering algorithm is an iterative pro-
cess. Equations (11) and (12) are iteratively repeated to
satisfy the condition and obtain the final clustering
result.

Experimental results and comparisons

To verify the superiority of the proposed algorithm,
this paper uses three sets of Landsat multi-spectral
remote sensing data for experimental verification.
The detection results obtained by different algo-
rithms were compared from subjective and objec-
tive indicators. The objective indicators include the
number of false negatives (FN), the number of false
positives (FP), the overall error (OE), the percen-
tage correct classification (PCC) (Gao, Liu, Dong,
Zhong, & Jian, 2017), and the Kappa coefficient
(KC) (Rosin & Ioannidis, 2003). FN indicates the
number of pixels that were originally a changed
class and are detected as an unchanged class; FP
indicates the number of pixels that were originally
an unchanged class and are detected as a changed
class; OE represents the sum of the number of false
alarms and missed detections; PCC indicates the
proportion of correctly classified samples to the
total number of samples. The closer the PCC is to
1, the better the change detection performance. KC
is a more accurate measurement of the classifica-
tion accuracy. The value of the parameter is pri-
marily used to measure the similarity between the
change result graph and the reference image. The
ideal value is 1, which means that the test result is
completely consistent with the reference image
(Gong, Zhou, & Ma, 2012).

Figure 6. Color synthesis map of the single-band iterative weighting algorithm: (a) shows the RGB image synthesized by band 3,
band 4 and band 5; (b) shows the RGB image synthesized by band 6, band 2 and band 1.

Table 1. The correlation coefficient values of each band after
processing.

Band3 Band4 Band5 Band6 Band2 Band1

10 iterations by
IR-MAD (ρ)

0.475 0.6811 0.78 0.8886 0.9696 0.9872

10 iterations by
single-band
weighting (ρ)

0.9978 0.9988 0.9989 0.9981 0.9971 0.9967
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Experimental data I

Data I is a manual simulation data set.The remote
sensing image of phase 1 was taken by Landsat 5 TM
in 2011, and it is a multi-spectral image of the Changji
region in Xinjiang. The remote sensing image of phase
2 was simulated by manually adding changing regions
to the multi-spectral remote sensing image of phase 1.
The specific method of addition is as follows: A region
A of a certain size is captured from the Band 1 image,
and A is replaced by region B, which contains different
ground object information (i.e., A is the same size as
B and contains different ground object information) to
simulate the changing region. This method is used to
obtain the Band 1 images of phase two and process the
remaining bands equally (the positions of the inter-
cepting and replacement regions are completely con-
sistent with Band 1). In this way, single-band
processing can guarantee the consistency of the
ground features of each band. Then, the simulated
phase two multi-spectral images can be obtained.
The obtained multi-temporal Landsat multi-spectral
image has many advantages. (1) They are not affected
by clouds, weather, etc. Hence, registration is not
required. (2) Since the pixel values are completely
consistent, except for the change area, the detection
is almost completely free from noise. (3) As the change
area is manually added, it is convenient to make the

change reference graph for the objective analysis of the
test results. Therefore, the simulation of multi-spectral
image change with this method can be used to identify
the advantages and disadvantages of the algorithm.
Figure 7(a) shows the pseudo-colour composite
image of size 250 × 250 pixels of the multi-spectral
data in the Changji area of Xinjiang in 2011.
Figure 7(b) shows the pseudo-colour composite
image after manually adding the change area to
Figure 7(a). The change reference map is presented
in Figure 7(c).

The data set was used for change detection
experiments, and the detection results of the pro-
posed algorithm are compared with the detection
results of MAD, IR-MAD, and the mask elimina-
tion strong-change method.The experimental
results were as follows. Figure 8 shows the MAD
algorithm, IR-MAD algorithm, mask elimination
strong-change method, and the single-band itera-
tive weighting method proposed in the present
study. From the results graph, we can see that
there are more broken plaques in the MAD algo-
rithm detection results, and some details of the
changes are not well detected. The IR-MAD algo-
rithm and the algorithm with masking have slightly
improved the effect, but there are still more broken
plaques. The detection result of the proposed
method is closest to the reference picture.

Figure 7. (a) Pseudo-color composite image of the multispectral data. (b) Pseudo-color composite image of (a) the multispectral
data change simulation. (c) The reference change image.

Figure 8. Change detection image obtained for the Changji simulated data set: (a) MAD; (b) IR-MAD; (c) masking to eliminate
strong changes; (d) single-band iterative weighting.
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Table 2 presents the objective evaluation values of
the obtained detection results (the overall detection
accuracy of each algorithm is relatively high due to the
no noise and registration errors). In Table 2, it can be
seen that the total numbers of missed detections FN
and false alarms FP in the detection result of the
single-band iterative weighting algorithm was the low-
est and are much less than those of the other three
algorithms. The PCC and KC values were also the
highest. From Data I and the present test results, the
algorithm proposed in the present study exhibited
a higher detection precision, both in the detection of
large-change regions and more detailed regions.

Experimental data II

Date II was acquired by Landsat 7 on 17 March 2000,
and 6 February 2003. The region of interest was
located in Taizhou City, Jiangsu Province, China.
The image size was 400 × 400 pixels, including six
bands. The two remote sensing images shown in
Figure 9(a and b) are the pseudo-colour synthesis of
Band 4 (red band), Band 3 (green band), and Band 2
(blue band). The change reference map is presented in
Figure 9(c).

As shown in Figure 10, it can be seen from the
experimental results that with (a), the numbers of
missed detections FN and false alarms FP of the algo-
rithm are relatively large. Hence, the value of OE is
relatively large, and PCC and KC are both relatively
low. The error in the test results is relatively large.
When (b) was compared with (a), the algorithm exhib-
ited a great improvement in leak detection and false
alarms, and the accuracy of the PCC and KC values
improved, but the detection accuracy was still not high
overall. Through the experimental results in (c), it can
be seen that the changes were under the circumstances
of fewer pixels, and the use of a mask to eliminate the
variation in the improved algorithm allowed for more
recognition and did not change the pixels.
Furthermore, the PCC and KC values improved, but
the total number of fault detection OE was on the large

Table 2. The multi-spectral image change detection results
evaluated by different algorithms.
Method Used FN FP OE PCC(%) KC

MAD 162 553 715 0.9886 0.9389
IR-MAD 23 185 208 0.9967 0.982
With Mask 17 168 185 0.997 0.9839
Proposed Method 13 1 14 0.9998 0.9989

Table 3. The multi-spectral image change detection results
evaluated by different algorithms.
Method Used FN FP OE PCC(%) KC

MAD 599 28445 29044 0.8185 0.1607
IR-MAD 560 18455 19015 0.8812 0.2448
With Mask 906 9018 9924 0.938 0.3764
Proposed Method 391 7581 7972 0.9502 0.47

Figure 9. Taizhou ETM+ data pseudo-color composite image. (a) 2000 and (b) 2003; (c) Test sample of the Taizhou image. The
background samples were black, the unchanged samples were gray, and the change samples were white.

Figure 10. The change detection image obtained for the Taizhou data set: (a) MAD; (b) IR-MAD; (c) masking to eliminate strong
changes; (d) single-band iterative weighting.
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side. Hence, considering the accuracy, it could not
achieve an obvious improvement. The experimental
results of Table 3 show that the single-band iterative
weighting algorithm (d) was considered. The PCC was
0.07 higher than that of the original algorithm (b). The
KC value was 0.23 higher than that of the original
algorithm (b). From the detection accuracy, it can be
seen that the change detection result was significantly
higher than that of (b), which shows a better,
improved algorithm.

Experimental data Ⅲ

Data III was acquired in Changji, Xinjiang. The phase
one image is a multi-spectral image taken by Landsat 5
TM (Sulla-Menashe, Friedl, & Woodcock, 2016) in
2011. There are seven bands in total, and six visible
and near-infrared bands, except for the thermal infrared
band (TM6), were selected. During phase two of the
images taken in 2014 by Landsat 8 OLI (Wei & Yan-
Tao, 2015), there were a total of 11 bands, which were
chosen corresponding to the cross section (Band 2),
green band (Band 3), red band (Band 4), near-infrared
band (Band 5), shortwave infrared band 1 (Band 6), and
shortwave infrared band 2 (Band 7). Then, the original
image was geometrically registered, and an extraction
area of 500 × 500 pixels was used as the research object.
Figure 11(a) presents the standard pseudo-colour

image synthesized with Band 4 (red band), Band 3
(green band), and Band 2 (blue band) in the multi-
spectral image taken by Landsat 5 TM in 2011. In
Figure 11(b), a standard pseudo-colour image synthe-
sized with Band 5 (near-infrared band), Band 4 (red
band), and Band 3 (green band) in a multi-spectral
image taken by Landsat 8 OLI in 2014 is shown. To
facilitate the comparison of the test results, a typical area
was selected for comparison, as shown in Figure 11(c),
in which the red mark represents the change area, while
the blue mark represents the unchanged area.

As shown in Figure 12, it can be seen from the
detection results that algorithm (a) classifies many
unchanging pixels as changing pixels (the reference
region of blue markings), and the detection results are
greatly affected by noise. Algorithm (b) iterates 20
times, and the convergence detection effect is better
than that of (a), but the changes in the details are not
detected. At the same time, there are some false alarm
points in the detection results. Algorithm (c) con-
verges after five iterations, which is much less than
those of (b), and the convergence speed is faster. It can
be seen from the experimental results that the mask
used in the case of a large number of changed pixels
can significantly accelerate the convergence speed and
better converge to the unchanging background.
However, some minor changes were missed.
Algorithm (d) was weighted by 20 iterations in

Figure 11. Pseudo-color composite image of multi-spectral data in Changji, Xinjiang. (a) 2011 and (b) 2014; (c) labeled reference area.

Figure 12. Change detection image obtained for the Changji data set: (a) MAD; (b) IR-MAD; (c) masking to eliminate strong
changes; (d) single-band iterative weighting.
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a single band, allowing each band to make a great
contribution to the acquisition of the change-
intensity graph. From the experimental results, it can
be seen that even small changes can be detected, and
better detection results can be obtained, which indi-
cates a good, improved algorithm.

Discussion

To discuss the influence of Gauss denoising on the detec-
tion accuracy before and after the improvement of the IR-
MAD algorithm, we take Data II as an example.
Experiments were also carried out under the condition
of 10 iterations and the FCM clustering algorithm. To
improve the accuracy of the data, the average PCC and
KC values obtained by 20 change detections were taken.
The histogram obtained from the experimental results is
shown in Figure 13.

Comparing the results of the IR-MAD and GS IR-
MAD algorithms in the comparison chart (Figure 8)
and the detection results of SBIW and GS SBIW, it can
be seen that under the same detection algorithm,
Gaussian denoising can perform simple denoising on
the image to a certain extent, and it can improve the
detection accuracy. Comparing the detection results of
the IR-MAD and SBIW algorithms and the detection
results of the GS IR-MAD and GS SBIW algorithms, we
can see that the single-band iterative weighting algo-
rithm has obvious advantages in acquiring the differ-
ence graph, which proves that the proposed algorithm

has a higher detection accuracy than the other
algorithms.

To verify the universality of the algorithm, 100 sets
of Landsat 5 TM datasets were created by manually
adding varying regions. Change detection was con-
ducted by the proposed method, and a comparison
was made between the original MAD algorithm, the
IR-MAD algorithm and the proposed IR-MAD algo-
rithm, which used a mask to eliminate strong
changes. The average PCC and KC values of the 100
datasets were obtained, and the results are shown in
Table 4.

Table 4 shows that the average total error detection
(OE) of the proposed algorithm was the lowest. It can
be seen from the mean of the PCC and KC values that
the single-band iterative weighting method is superior
to other algorithms in terms of the detection accuracy.
The KC value of the proposed method is 5% higher
than that of the MAD algorithm, 3.53% higher than
that of the IR-MAD algorithm, and 2.52% higher than
that of the masking algorithm. Through the experi-
ment with 100 sets of data, the superiority of the
single-band iterative weighting algorithm was fully

Figure 13. Accuracy comparison histogram.

Table 4. Results of detecting the average change of multi-
spectral remote sensing images.
Method Used FN FP OE PCC(%) KC

MAD 120 275 395 0.984 0.9372
IR-MAD 113 195 308 0.9882 0.9519
With Mask 158 70 228 0.9912 0.962
Proposed Method 72 8 80 0.9968 0.9872
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verified. Hence, the single-band iterative weighting
method exhibits good universality.

Conclusion

A new multi-spectral change detection algorithm is
proposed in this article to improve the contribution
of weakly correlated bands in multi-spectral image
change detection. The image weights of each band
were set to different weights to improve the correlation
between each pair of bands of multi-spectral images.
This method was used to obtain the characteristic
difference diagrams of each band that contained more
variation information. After removing Gaussian noise
in each feature-difference graph, the difference graphs
of each band were fused into a change-intensity graph
using the Euclidean distance formula. Finally, unsuper-
vised FCM binary clustering was used to divide the
difference map into two categories. Experiments on
real multi-spectral image datasets show that our
approach can improve change detection results.
Compared with the detection results obtained by the
reference methods, the detection results obtained by
the proposed algorithm are greatly improved in terms
of the visual effect and objective quantitative indices.
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