Abstract
This paper deals with the design and implementation of avisual kinematic control scheme for a redundant manipulator.The inverse kinematic map for a redundant manipulatoris a one-to-many relation problem; i.e. for each Cartesianposition, multiple joint angle vectors are associated. Whenthis inverse kinematic relation is learnt using existinglearning schemes, a single inverse kinematic solution isachieved, although the manipulator is redundant. Thus anew redundancy preserving network based on the selforganizingmap (SOM) has been proposed to learn theone-to-many relation using sub-clustering in joint anglespace. The SOM network resolves redundancy using threecriteria, namely lazy arm movement, minimum angle normand minimum condition number of image Jacobian matrix.The proposed scheme is able to guide the manipulator endeffectortowards the desired target within 1-mm positioningaccuracy without exceeding physical joint angle limits. Anew concept of neighbourhood has been introduced toenable the manipulator to follow any continuous trajectory.The proposed scheme has been implemented on a sevendegree-of-freedom (7DOF) PowerCube robot manipulatorsuccessfully with visual position feedback only. Thepositioning accuracy of the redundant manipulator usingthe proposed scheme outperforms existing SOM-basedalgorithms
Original language | English |
---|---|
Pages (from-to) | 795-810 |
Journal | Robotica |
Volume | 28 |
DOIs | |
Publication status | Published (in print/issue) - 2009 |
Bibliographical note
Reference text: 1. V. R. Angulo and C. Torras, “Speeding up the learning of robotkinematics through function decomposition,” IEEE Trans.
Neural Networks 16(6), 1504–1512 (Nov. 2005).
2. G. A. Barreto, A. F. R. Araujo and H. J. Ritter, “Selforganizing
feature maps for modeling and control of robotic
manipulators,” J. Intell. Rob. Syst. 36, 407–450 (2003).
3. L. Behera and N. Kirubanandan, “A hybrid neural control
scheme for visual-motor coordination,” IEEE Control Syst.
Mag. 19(4), 34–41 (1999).
4. F. Chaumette, “Image moments: A general and useful set of
features for visual servoing,” IEEE Trans. Rob. 20(4), 713–723
(Aug. 2004).
5. F. Chaumette and E. Marchand, “A redundancy-based iterative
approach for avoiding joint limits: Application to visual
servoing,” IEEE Trans. Rob. Automat. 17(5), 719–730 (Oct.
2001).
6. J. T. Feddema, C. S. George Lee and O. W. Mitchell,
“Weighted selection of image features for resolved rate visual
feedback control,” IEEE Trans. Rob. Automat. 7(1), 31–47
(Feb. 1991).
7. M. Han, N. Okada and E. Kondo, “Coordination of an
uncalibrated 3-d visuo-motor system based on multiple selforganizing
maps,” JSME Int. J. Ser. C 49(1), 230–239
(2006).
8. S. Hutchinson, G. D. Hager and P. I. Corke, “A tutorial on
visual servo control,” IEEE Trans. Rob. Automat. 12(5), 651–
670 (Oct. 1996).
9. P. Jiang, L. C. A. Bamforth, Z. Feng, J. E. F. Baruch and Y. Q.
Chen, “Indirect iterative learning control for a discrete visual
servo without a camera-robot model,” IEEE Trans. Syst. Man
Cybernet. Part B: Cybernet. 37(4), 863–876 (Aug. 2007).
10. T. Kohonen, Self Organization and Associative Memory
(Springer-Verlag, Berlin, Germany, 1984).
11. D. Kragic and H. I. Christensen, Survey on Visual Servoing
for Manipulation Technical Report (Stockholm, Sweden:
ComputationalVision and Active Perception Laboratory, KTH,
2002).
12. N. Kumar and L. Behera, “Visual motor coordination using
a quantum clustering based neural control scheme,” Neural
Process. Lett. 20, 11–22 (2004).
13. S. Kumar and L. Behera, “Implementation of a Neural
Network Based Visual Motor Control Algorithm for a 7 dof
Redundant Manipulator,” International Joint Conference on
Neural Networks (IJCNN), Hong Kong, China (June 2008)
pp. 1344–1351.
14. S. Kumar, N. Patel and L. Behera, “Visual motor control of
a 7 dof robot manipulator using function decomposition and
sub-clustering in configuration space,” Neural Process. Lett.
28(1), 17–33 (Aug. 2008).
15. L. Li,W. A. Gruver, Q. Zhang and Z. Yang, “Kinematic control
of redundant robots and the motion optimizability measure,”
IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 31(1),
155–160 (Feb. 2001).
16. Y. Li and S. H. Leong, “Kinematics control of redundant
manipulators using a CMAC neural network combined with
a genetic algorithm,” Robotica 22, 611–621 (2004).
17. T. Martinetz, H. Ritter and K. Schulten, “Learning of
visuomotor-coordination of a robot armwith redundant degrees
of freedom,” In Proceedings of the International Conference on
Parallel Processing in Neural Systems and Computers (ICNC),
(Elsevier, Dusseldorf and Amsterdam 1990) pp. 431–434.
18. T. M. Martinetz, H. J. Ritter and K. J. Schulten, “Threedimensional
neural net for learning visual motor coordination
of a robot arm,” IEEE Trans. Neural Networks 1(1), 131–136
(Mar. 1990).
19. R. I.V. Mayorgaa and P. Sanongboone, “Inverse kinematics and
geometrically bounded singularities prevention of redundant
manipulators: An artificial neural network approach,” Rob.
Auton. Syst. 53, 164–176 (2005).
20. R. Sharma and S. Hutchinson, “Optimizing Hand/Eye
Configuration for Visual-Servo Systems,” Proceedings of the
International Conference on Robotics and Automation (ICRA),
Nagoya, Japan (May 1995) pp. 172–177.
21. M.W. Spong andM.Vidyasagar, Robot Dynamics and Control,
New York, USA (John Wiley, 1989).
22. G. Tevatia and S. Schaal, “Inverse Kinematics of Humanoid
Robots.” Proceedings of the IEEE International Conference
on Robotics and Automation, San Francisco, CA (Apr. 2000)
pp. 294–299.
23. R. Y. Tsai, “A versatile camera calibration technique for highaccuracy
3d machine vision metrology using off-the-shelf tv
cameras and lenses,” IEEE J. Rob. Automat. RA-3(4), 323–344
(Aug. 1987).
24. J. A. Walter and K. J. Schulten, “Implementation of selforganizing
neural networks for visual-motor control of an
industrial robot,” IEEE Trans. Neural Networks 4(1), 86–95
(Jan. 1993).
25. R. Wilson, “Tsai Camera Calibration Software,” available at
http://www.cs.cmu.edu/ rgw/TsaiCode.html.
26. Y. Xia and J. Wang, “A dual neural network for kinematic
control of redundant robot manipulators,” IEEE Trans. Syst.
Man Cybernet. Part B: Cybernet. 31(1), 147–154 (Feb. 2001).
27. H. Zha, T. Onitsuka and T. Nagata, “A self-organization learning
algorithm for visuo-motor coordination in unstructured
environment,” Artif. Life Rob. 1(3), 131–136 (Sep. 1997).
28. X.-Z. Zheng and K. Ito, “Self-organized learning and its
implementation of robot movements,” IEEE International
Conference on SMC, “Computational Cybernetics and
Simulation,” Orlando, FL (1997) pp. 281–286.
Keywords
- Visual motor control
- Self-organizing map
- Sub-clustering
- Redundancy resolution
- Inverse kinematics.