Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network

Indrani Kar, Laxmidhar Behera

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)


    A fuzzy self-organizing map (SOM) network isproposed in this paper for visual motor control of a 7 degreesof freedom (DOF) robot manipulator. The inverse kinematicmap from the image plane to joint angle space of a redundantmanipulator is highly nonlinear and ill-posed in the sensethat a typical end-effector position is associated with severaljoint angle vectors. In the proposed approach, the robotworkspace in image plane is discretized into a number offuzzy regions whose center locations and fuzzy membershipvalues are determined using a Fuzzy C-Mean (FCM)clustering algorithm. SOM network then learns the inversekinematics by on-line by associating a local linear map foreach cluster. A novel learning algorithm has been proposedto make the robot manipulator to reach a target position. Anyarbitrary level of accuracy can be achieved with a numberof fine movements of the manipulator tip. These fine movementsdepend on the error between the target position and thecurrent manipulator position. In particular, the fuzzy modelis found to be better as compared to Kohonen self-organizingmap (KSOM) based learning scheme proposed for visualmotor control. Like existing KSOM learning schemes, theproposed scheme leads to a unique inverse kinematic solutioneven for a redundant manipulator. The proposed algorithmshave been successfully implemented in real-time on a7 DOF PowerCube robot manipulator, and results are foundto concur with the theoretical findings.
    Original languageEnglish
    Pages (from-to)49-60
    JournalIntelligent Service Robotics
    Issue number1
    Publication statusPublished (in print/issue) - 2010

    Bibliographical note

    Reference text: 1. Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual
    servo control. IEEE Trans Robot Autom 12(5):651–670
    2. Kragic D et al. Survey on visual servoing for manipulation. http://
    3. KupersteinM(1987) Adaptive visual-motor coordination inmultijoint
    robots using parallel architecture. Proc IEEE Int Conf Robot
    Autom 4:1595–1602
    4. Martinetz TM, Ritter HJ, Schulten KJ (1990) Three-dimensional
    neural net for learning visual motor coordination of a robot arm.
    IEEE Trans Neural Netw 1(1):131–136
    5. Walter JA, Schulten KJ (1993) Implementation of self-organizing
    neural networks for visual-motor control of an industrial robot.
    IEEE Trans Neural Netw 4(1):86–95
    6. Behera L, Kirubanandan N (1999) A hybrid neural control scheme
    for visual-motor coordination. IEEE Control Syst Mag 19(4):
    7. Tsai RY (1987) A versatile camera calibration technique for highaccuracy
    3d machine visionmetrology using off-the-shelfTVcameras
    and lenses. IEEE J Robot Autom RA-3(4):323–344
    8. Nakamura Y, Hanafusa H (1984) Task priority based redundancy
    control of robot manipulators. In: Proceedings of the 2nd internationl
    symposium on robotic research, Kyoto, Japan
    9. Seraji H (1989) Configuration control of redundant manipulators:
    theory and implementation. IEEE Trans Robot Autom 5(4):472–
    10. Seraji H, Long MK, Lee TS (1993) Motion control of 7-dof arms:
    the configuration control approach. IEEE Trans Robot Autom
    11. Kohonen T (1990) The self-organizing map. In: Proceedings of the
    IEEE, vol 78, September, pp 1464–1480
    12. Kumar N, Behera L (2004) Visual motor coordination using a
    quantum clustering based neural control scheme. Neural Process
    Lett 20:11–22
    13. Martinetz T, Ritter H, Schulten K (1990) Learning of visuomotorcoordination
    of a robot arm with redundant degrees of freedom.
    In: Proceedings of the international conference on parallel processing
    in neural systems and computers (ICNC). Dusseldorf, Elsevier,
    Amsterdam, pp 431–434
    14. Hesselroth T, Sarkar K, Smagt PP, Schulten K (1994) Neural network
    control of a pneumatic robot arm. IEEE Trans Syst Man
    Cybernet 24(1):28–38
    15. Kumar S, ShuklaA,Dutta A, Behera L (2007)Amodel-free redundancy
    resolution technique for visual motor coordination of a 6
    dof robot manipulator. In: IEEE 22nd international symposium on
    intelligent control, 1–3 Oct 2007, pp 544–549
    16. Walter J, Ritter H (1996) Rapid learning with parametrized selforganizing
    maps. Neurocomputing 12:131–153
    17. Walter J,NolkerC,RitterH(2000) ThePSOMalgorithm and applications.
    In: Proceedings of the international ICSC symposium on
    neural computation, pp 758–764
    18. Oh PY, Allen PK (2001) Visual servoing by partitioning degrees
    of freedom. IEEE Trans Robot Autom 17(1):1–17
    19. Roberts RG, Maciejewski AA (1993) Repeatable generalized
    inverse control strategies for kinematically redundant manipulators.
    IEEE Trans Autom Control 38(5):689–699
    20. English JD, Maciejewski AA (2000) On the implementation of
    velocity control for kinematically redundant manipulators. IEEE
    Trans SMC 30(3):233–237
    21. Giuseppe RD, Taurisano F, Distante C, Anglani A (1999) Visual
    servoing of a robotic manipulator based on fuzzy logic controller.
    In: Proceedings of the international conference on robotics and
    automation. IEEE, Detroit, Michigan, pp 1487–1494
    22. Kim CS, Seo WH, Han SH, Khatib O (2001) Fuzzy logic control
    of a robot manipulator based on visual servoing. In: Proceedings
    of the international symposium on industrial electronics. IEEE,
    Pusan, South Korea, pp 1597–1602
    23. Kragic D, Christensen HI (2001) Cue integration in visual servoing.
    IEEE Trans Robot Autom 17(1):18–27
    24. Kumaresan S, Li H, min Li X (1995) Robot hand-eye coordination
    based on fuzzy logic. In: Fuzzy logic and intelligent systems.
    Springer, Netherlands, pp 245–269
    25. Prochazka A (1996) The fuzzy logic of visuomotor control. Can J
    Physiol Pharmacol 74(4):456–462
    26. Prochazka A, Gillard D (1997) Sensory control of locomotion.
    In: Proceedings of the American control conference. Albuquerque,
    New Mexico, pp 2846–2850
    27. Dunn JC (1973) A fuzzy relative of the isodata process and its use
    in detecting compact well-separated clusters. J Cybernet 3:32–57
    28. Bezdek JC (1981) Pattern recognition with fuzzy objective function
    algoritms. Plenum Press, New York
    29. D’SouzaA,Vijayakumar S, Schaal S (2001) Learning inverse kinematics.
    In: International conference on intelligent robots and systems.
    IEEE, Maui, Hawai, pp 298–303
    30. Open source computer vision library,
    31. Amtec robotics,
    32. Craig JJ (1989) Introduction to robotics. Pearson Education Inc.,
    New Jersey
    33. KiviluotoK(1996) Topology preservation in self-organizing maps.
    In: Proceedings of IEEE international conference on neural networks,
    vol 1, pp 294–299
    34. TevatiaG, Schaal S (2000) Inverse kinematics for humanoid robots.
    In: IEEE international conference on robotics and automation,
    vol 1, 24–28 April 2000, pp 294–299
    35. Kumar S, Behera L (2008) Visual motor control of a 7dof robot
    manipulator using function decomposition and sub-clustering in
    configuration space. Neural Process Lett 28(1):17–33
    36. Everest vit,


    • Redundant manipulator
    • Inverse kinematics
    • Visual motor control
    • Fuzzy self-organizing map network


    Dive into the research topics of 'Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network'. Together they form a unique fingerprint.

    Cite this