Abstract
Several integrate-to-threshold models with differing temporal integration mechanisms have been proposed to describe the accumulation of sensory evidence to a prescribed level prior to motor response in perceptual decision-making tasks. An experiment and simulation studies have shown that the introduction of time-varying perturbations during integration may distinguish among some of these models. Here, we present computer simulations and mathematical proofs that provide more rigorous comparisons among one-dimensional stochastic differential equation models. Using two perturbation protocols and focusing on the resulting changes in the means and standard deviations of decision times, we show that for high signal-to-noise ratios, drift-diffusion models with constant and time-varying drift rates can be distinguished from Ornstein-Uhlenbeck processes, but not necessarily from each other. The protocols can also distinguish stable from unstable Ornstein-Uhlenbeck processes, and we show that a nonlinear integrator can be distinguished from these linear models by changes in standard deviations. The protocols can be implemented in behavioral experiments.
Original language | English |
---|---|
Pages (from-to) | 2336-2362 |
Journal | Neural Computation |
Volume | 21 |
Issue number | 8 |
DOIs | |
Publication status | Published (in print/issue) - 21 Aug 2009 |