Abstract
In a real-world environment, business processes are complex and challenging to monitor for potential irregularities. Service-oriented organisations rely primarily on the effectiveness of their processes to maintain the quality of their offered services and prefer to be notified in advance if an ongoing business process is not executing as expected. Process mining techniques analyse business processes, but heterogeneity & variability in the real-world event logs make it challenging and time-consuming to mine using standard methods. Trace clustering divides event logs into sub-logs with similar properties based on the case and event attributes. However, given the size of the event logs collected from heterogeneous information systems, it is difficult to identify meaningful clusters in actual business process logs. This paper proposes a hybrid technique to decompose large event logs into several smaller sub-logs, making it easier and more time efficient to analyse. Each sub-log is independently investigated to gain valuable insights into the process's underlying behaviour. Non-traditional process mining techniques are applied to identify possible behavioural correlations and discrepancies between simulated and observed process execution by extracting features from the log segment. We used a real-world case study to depict our framework's usefulness in prediction accuracy and timeliness. Furthermore, we compared our findings to those of previously proposed methodologies from the literature. We demonstrated that the framework improved the fitness quality of the resultant business process models.
Original language | English |
---|---|
Title of host publication | Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 34-40 |
Number of pages | 7 |
ISBN (Electronic) | 9781665487719 |
DOIs | |
Publication status | Published (in print/issue) - 2022 |
Event | 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 - Al-Khobar, Saudi Arabia Duration: 4 Dec 2022 → 6 Dec 2022 |
Publication series
Name | Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
---|
Conference
Conference | 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
---|---|
Country/Territory | Saudi Arabia |
City | Al-Khobar |
Period | 4/12/22 → 6/12/22 |
Bibliographical note
Funding Information:This research is supported by the BTIIC (BT Ireland Innovation Centre) project, funded by BT and Invest Northern Ireland.
Publisher Copyright:
© 2022 IEEE.
Keywords
- Automated Information System
- Business processes
- Confor-mance Analysis
- End-state prediction
- Feature Engineering
- Process Mining
- Process Prediction