TY - JOUR
T1 - Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds
AU - Smyth, T.A.G.
AU - Jackson, Derek
AU - Cooper, Andrew
PY - 2013/6/6
Y1 - 2013/6/6
N2 - Wind flow within blowouts is extremely complex as streamline compression, expansion and reversal may occur over and around a single landform. As a result high resolution temporal and spatial measurements are required during a range of incident wind conditions to resolve near surface airflow patterns and turbulent structures. This study examined three-dimensional airflow within a coastal dune trough–bowl blowout using 15 ultrasonic anemometers (UAs) and a high resolution computational fluid dynamics model.Measured total wind speed and vertical wind speed behaved consistently through 5 Beaufort wind scales ranging from ‘fresh breeze’ to ‘strong gale’, increasing relative to incident wind speed, whilst wind direction at each UA did not alter. Due to the agreement of modelled and measured data, ‘hurricane’ (37 m/s) incident winds were also simulated and were consistent with modelled and measured wind direction at lower wind speeds. Modelled wind turbulence data was not compared with measured as only average conditions were simulated. However, the standard deviation of measured wind directionremained constant at each anemometer throughout the range of incident wind speeds, whilst the standard deviation of wind speed and turbulent kinetic energy increased relative to incident wind speed.This paper demonstrates that wind flow behaviour within blowouts throughout this range of wind speeds is governed by topography and is relative to, but does not change structurally with incident wind speed. As a result the extent of streamline compression, expansion, steering and reversal remain constant.
AB - Wind flow within blowouts is extremely complex as streamline compression, expansion and reversal may occur over and around a single landform. As a result high resolution temporal and spatial measurements are required during a range of incident wind conditions to resolve near surface airflow patterns and turbulent structures. This study examined three-dimensional airflow within a coastal dune trough–bowl blowout using 15 ultrasonic anemometers (UAs) and a high resolution computational fluid dynamics model.Measured total wind speed and vertical wind speed behaved consistently through 5 Beaufort wind scales ranging from ‘fresh breeze’ to ‘strong gale’, increasing relative to incident wind speed, whilst wind direction at each UA did not alter. Due to the agreement of modelled and measured data, ‘hurricane’ (37 m/s) incident winds were also simulated and were consistent with modelled and measured wind direction at lower wind speeds. Modelled wind turbulence data was not compared with measured as only average conditions were simulated. However, the standard deviation of measured wind directionremained constant at each anemometer throughout the range of incident wind speeds, whilst the standard deviation of wind speed and turbulent kinetic energy increased relative to incident wind speed.This paper demonstrates that wind flow behaviour within blowouts throughout this range of wind speeds is governed by topography and is relative to, but does not change structurally with incident wind speed. As a result the extent of streamline compression, expansion, steering and reversal remain constant.
KW - aeolian CFD blowouts Ireland
U2 - 10.1016/j.aeolia.2013.03.002
DO - 10.1016/j.aeolia.2013.03.002
M3 - Article
VL - 9
SP - 111
EP - 123
JO - Aeolian Research
JF - Aeolian Research
ER -