The subglacial imprint of the last Newfoundland Ice Sheet, Canada.

Maureen McHenry, Paul Dunlop

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The former Newfoundland Ice Sheet was situated on the fringes of the northeast Atlantic Ocean during the Wisconsinan glaciation (∼80–10 ka BP). Its geographic position indicates that it was likely to have been influenced by a number of external and internal forcing mechanisms including configuration changes in the Laurentide Ice Sheet with which it converged during the last glacial maximum, ice streams, changes in oceanic circulation and fluctuating sea levels. This makes Newfoundland a key location for investigating the dynamic response of ice sheets to these types of internal and external drivers. An established methodology for investigating ice sheet dynamics is to use the landform record to reconstruct the dynamic behaviour and configuration of the ice sheet. This provides a relative chronology of former ice sheet events during glacial cycles. A fundamental requirement of this approach is a detailed glacial geomorphology map that records the spatial distribution of individual subglacial bedforms across the former ice sheet bed. This paper presents a new subglacial bedform map of the Island of Newfoundland. It was produced as part of a mapping programme which used 10 m resolution Satellite Pour l'Observation de la Terre satellite imagery, Shuttle Radar Topography Mission and Canadian Digital Elevation Data. The map records the spatial distribution of ∼126,000 individually mapped glacial lineations and ribbed moraines and extends the number and spatial extent of each landform across the island. It is a new data set which has the potential to provide important insights into former ice sheet behaviour in this region.
LanguageEnglish
Pages1-22
JournalJournal of Maps
DOIs
Publication statusPublished - 12 May 2015

Fingerprint

last ice sheet
ice sheet
bedform
landform
spatial distribution
Shuttle Radar Topography Mission
oceanic circulation
Laurentide Ice Sheet
ice stream
lineation
dynamic response
Last Glacial Maximum
satellite imagery
geomorphology
glaciation
chronology
sea level
methodology
ocean

Keywords

  • subglacial bedforms
  • glacial lineation
  • ribbed moraine
  • Newfoundland Ice Sheet
  • remote sensing
  • palaeoglaciology

Cite this

@article{e1080a8215e34d65beab468c8f900086,
title = "The subglacial imprint of the last Newfoundland Ice Sheet, Canada.",
abstract = "The former Newfoundland Ice Sheet was situated on the fringes of the northeast Atlantic Ocean during the Wisconsinan glaciation (∼80–10 ka BP). Its geographic position indicates that it was likely to have been influenced by a number of external and internal forcing mechanisms including configuration changes in the Laurentide Ice Sheet with which it converged during the last glacial maximum, ice streams, changes in oceanic circulation and fluctuating sea levels. This makes Newfoundland a key location for investigating the dynamic response of ice sheets to these types of internal and external drivers. An established methodology for investigating ice sheet dynamics is to use the landform record to reconstruct the dynamic behaviour and configuration of the ice sheet. This provides a relative chronology of former ice sheet events during glacial cycles. A fundamental requirement of this approach is a detailed glacial geomorphology map that records the spatial distribution of individual subglacial bedforms across the former ice sheet bed. This paper presents a new subglacial bedform map of the Island of Newfoundland. It was produced as part of a mapping programme which used 10 m resolution Satellite Pour l'Observation de la Terre satellite imagery, Shuttle Radar Topography Mission and Canadian Digital Elevation Data. The map records the spatial distribution of ∼126,000 individually mapped glacial lineations and ribbed moraines and extends the number and spatial extent of each landform across the island. It is a new data set which has the potential to provide important insights into former ice sheet behaviour in this region.",
keywords = "subglacial bedforms, glacial lineation, ribbed moraine, Newfoundland Ice Sheet, remote sensing, palaeoglaciology",
author = "Maureen McHenry and Paul Dunlop",
note = "Reference text: 1. Aylsworth, J. M., & Shilts, W. W. (1989). Bedforms of the Keewatin ice sheet, Canada. Sedimentary Geology, 62(2–4), 407–428. doi:10.1016/0037-0738(89)90129-2 [CrossRef], [Web of Science {\circledR}] 2. Batterson, M. J., & Catto, N. R. (2001). Topographically-controlled deglacial history of the Humber River Basin, Western Newfoundland. G{\'e}ographie Physique et Quaternaire, 55(3), 213–228. doi: 10.7202/006851ar [CrossRef] 3. Batterson, M. J., & Taylor, D. M. (2009). Till geochemistry of the Burin Peninsula, Newfoundland (NTS map areas 1L/13, 1L/14, 1M/2, 1M/3, 1M/4, 1M/6, 1M/7, 1M/10 and 1M/11). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File NFLD/3043, 155 pages. Retrieved May 25, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/openfiles/OFNFLD3043.pdf 4. Batterson, M., Taylor, D., Bell, T., Brushett, D., & Shaw, J. (2006). Regional ice-flow mapping, surficial geology and till geochemistry of the northern Burin Peninsula and adjacent Placentia Bay. Current research, Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 06-1. 161-176. Retrieved April 9, 2013, from https://www.mun.ca/geog/people/faculty/tbell/CR_Batterson_et_al_2006.pdf 5. Bell, R. A. (1884). Observations on the geology, mineralogy, zoology and botany of the Labrador coast, Hudson's Strait and Bay. Geological Survey of Canada, Report of Progress, 1(D), 5–62. doi:10.5962/bhl.title.61363 [CrossRef] 6. Benn, D. I., & Evans, D. J. A. (2010). Glaciers and glaciation (2nd ed.). Hodder Education. doi:10.4324/9780203785010 [CrossRef] 7. Blundon, P., Bell, T., & Batterson, M. (2010). Ice streaming in the Newfoundland Ice Cap: Implications for the reconstruction of ice-flow and drift prospecting. Current Research (2010) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 10-1, 143–157. Retrieved November 23, 2013, from https://www.mun.ca/geog/people/faculty/tbell/2010_Blundon-Bell-Batterson.pdf 8. Bouchard, M. A. (1989). Subglacial landforms and deposits in central and northern Qu{\'e}bec, Canada, with emphasis on Rogen moraines. Sedimentary Geology, 62(2–4), 293–308. doi:10.1016/0037-0738(89)90120-6 [CrossRef], [Web of Science {\circledR}] 9. Boulton, G. S. (1976). The origin of glacially fluted surfaces - observations and theory. Journal of Glaciology, 17(76), 287–309. 10. Boulton, G. S. (1987). A theory of drumlin formation by subglacial sediment deformation. In J. Menzies & J. Rose (Eds.), Drumlin Symposium (pp. 25–80). Balkema: Rotterdam. 11. Boulton, G. S., & Clark, C. D. (1990). A highly mobile Laurentide ice sheet revealed by satellite images of glacial lineations. Nature, 346(6287), 813–817. doi:10.1038/346813a0 [CrossRef], [Web of Science {\circledR}] 12. Boulton, G. S., Dongelmans, P., Punkari, M., & Broadgate, M. (2001). Palaeoglaciology of an ice sheet through a glacial cycle: The European ice sheet through the Weichselian. Quaternary Science Reviews, 20(4), 591–625. doi:10.1016/S0277-3791(00)00160-8 [CrossRef], [Web of Science {\circledR}] 13. Brookes, I. A. (1982). Ice marks in Newfoundland: A history of ideas. G{\'e}ographie Physique et Quaternaire, 36(1-2), 139. doi:10.7202/032474ar [CrossRef] 14. Brushett, D. (2012). Quaternary geology and till geochemistry of the Carmanville (NTS 2E / 08), Wesleyville (NTS 2F/04) and Musgrave Harbour (NTS 2F/05) Map Areas. Current Research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report, 179–190. Retrieved February 23, 2014, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2012/Brushett_2012.pdf 15. Brysse, K., Oreskes, N., O'Reilly, J., & Oppenheimer, M. (2013). Climate change prediction: Erring on the side of least drama? Global Environmental Change, 23(1), 327–337. doi:10.1016/j.gloenvcha.2012.10.008 [CrossRef], [Web of Science {\circledR}] 16. Carlson, A. E., & Winsor, K. (2012). Northern hemisphere ice-sheet responses to past climate warming. Nature Geoscience, 5(9), 607–613. doi:10.1038/ngeo1528 [CrossRef], [Web of Science {\circledR}] 17. Catto, N. R. (1998). The pattern of glaciation on the Avalon Peninsula of Newfoundland. G{\'e}ographie Physique et Quaternaire, 52(1), 23–45. doi:10.7202/004778ar [CrossRef] 18. Catto, N. R., Scruton, D. A., & Ollerhead, L. M. N. (2003). The coastline of eastern Newfoundland: Canadian technical report of fisheries and aquatic sciences No. 2495, 252 pages. Retrieved November 23, 2011, from http://www.dfo-mpo.gc.ca/Library/276332.pdf 19. Clark, C. D. (1997). Reconstructing the evolutionary dynamics of former ice sheets using multitemporal evidence, remote sensing and GIS. Quaternary Science Reviews, 16, 1067–1092. doi:10.1016/S0277-3791(97)00037-1 [CrossRef], [Web of Science {\circledR}] 20. Clark, C. D. (1999). Glaciodynamic context of subglacial bedform generation and preservation. Annals of Glaciology, 28(1), 23–32. doi:10.3189/172756499781821832 [CrossRef], [Web of Science {\circledR}] 21. Clark, C. D., Evans, D. J. A., Khatwa, A., Bradwell, T., Jordan, C. J., Marsh, S. H., … Bateman, M. D. (2004). Map and GIS database of glacial landforms and features related to the last British ice sheet. Boreas, 33(4), 359–375. doi:10.1080/03009480410001983 [CrossRef], [Web of Science {\circledR}] 22. Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Spagnolo, M., & Ng, F. S. L. (2009). Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws. Quaternary Science Reviews, 28(7–8), 677–692. doi:10.1016/j.quascirev.2008.08.035 [CrossRef], [Web of Science {\circledR}] 23. Clark, C. D., Knight, J. K., & Gray, J. T. (2000). Geomorphological reconstruction of the Labrador sector of the Laurentide ice sheet. Quaternary Science Reviews, 19, 1343–1366. doi:10.1016/S0277-3791(99)00098-0 [CrossRef], [Web of Science {\circledR}] 24. Clark, C. D., & Meehan, R. T. (2001). Subglacial bedform geomorphology of the Irish ice sheet reveals major configuration changes during growth and decay. Journal of Quaternary Science, 16(5), 483–496. doi:10.1002/jqs.627 [CrossRef], [Web of Science {\circledR}] 25. Clark, J., McCabe, A. M., Bowen, D. Q., & Clark, P. U. (2012). Response of the Irish ice sheet to abrupt climate change during the last deglaciation. Quaternary Science Reviews, 35, 100–115. doi:10.1016/j.quascirev.2012.01.001 [CrossRef], [Web of Science {\circledR}] 26. Dowdeswell, J. A., Cofaigh, C. {\'O}., & Pudsey, C. J. (2004). Thickness and extent of the subglacial till layer beneath an Antarctic paleo–ice stream. Geology, 32(1), 13. doi:10.1130/G19864.1 [CrossRef], [Web of Science {\circledR}] 27. Dunlop, P., & Clark, C. D. (2006). The morphological characteristics of ribbed moraine. Quaternary Science Reviews, 25(13–14), 1668–1691. doi:10.1016/j.quascirev.2006.01.002 [CrossRef], [Web of Science {\circledR}] 28. Dyke, A. S. (2004). Quaternary glaciations-extent and chronology – Part II: North America. Developments in quaternary sciences (Vol. 2, pp. 373–424). Elsevier. doi:10.1016/S1571-0866(04)80209-4 [CrossRef] 29. Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J., & Veillette, J. J. (2002). The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews, 21(1–3), 9–31. doi:10.1016/S0277-3791(01)00095-6 [CrossRef], [Web of Science {\circledR}] 30. Dyke, A. S., & Prest, V. K. (1987). Late Wisconsinan and Holocene history of the Laurentide ice sheet. G{\'e}ographie Physique et Quaternaire, 41(2), 237–263. doi:10.7202/032681ar [CrossRef] 31. Fisher, T. G., & Shaw, J. (1992). A depositional model of Rogen moraine, with examples from the Avalon Peninsula. Canadian Journal Earth Sciences, 29(4), 669–686. doi:10.1139/e92-058 [CrossRef], [Web of Science {\circledR}] 32. Geobase Orthoimage 2005-2010 Canadian Council on Geomatics. (2010). Retrieved October 10, 2011, from http://www.geobase.ca/ 33. Glasser, N. F., & Bennett, M. R. (2004). Glacial erosional landforms: Origins and significance for palaeoglaciology. Progress in Physical Geography, 28(1), 43–75. doi:10.1191/0309133304pp401ra [CrossRef], [Web of Science {\circledR}] 34. Glasser, N. F., & Jansson, K. N. (2005). Fast-flowing outlet glaciers of the last glacial maximum Patagonian icefield : Fast-flowing outlet glaciers of the last glacial maximum Patagonian. Quaternary Research, 63(2), 206–211. doi:10.1016/j.yqres.2004.11.002 [CrossRef], [Web of Science {\circledR}] 35. Gordon, J. E. (1981). Ice-scoured topography and its relationship to bedrock structure and ice movement in parts of northern Scotland and west Greenland. Geografiska Annaler, 63(1/2), 55–65. doi:10.2307/520564 [CrossRef] 36. Grant, D. R. (1970). Quaternary geology, Great Northern Peninsula, Island of Newfoundland. In Report of Activities, Part A, Geological Survey of Canada, Paper 70–1 A (pp. 172–174). Retrieved February 5, 2012, from http://wmsmir.cits.rncan.gc.ca/index.html/pub/geott/ess_pubs/119/119858/pa_70_1a.pdf 37. Grant, D. R. (1974). Prospecting in Newfoundland and the theory of multiple shrinking ice caps. Geological Survey of Canada, Paper 74-1, 215–216. doi:10.4095/119837 [CrossRef] 38. Grant, D. R. (1977). Glacial style and ice limits, the quaternary stratigraphic record, and changes of land and ocean level in the Atlantic Provinces, Canada. G{\'e}ographie Physique et Quaternaire, 31(3–4), 247. doi:10.7202/1000276ar [CrossRef] 39. Grant, D. R. (1989). Quaternary geology of the Atlantic Appalachian region of Canada. In R. J. Fulton (Ed.), Quaternary geology of Canada and Greenland (pp. 391–440). Geological Survey of Canada. doi:10.4095/127905 [CrossRef] 40. Grant, D. R. (1994). Quaternary geology of Port Saunders Map Area, Newfoundland. Geological Survey of Canada, Paper no. 91-20, 64 pages (1 sheet). doi:10.4095/194038 [CrossRef] 41. Greenwood, S. L., & Clark, C. D. (2009a). Reconstructing the last Irish Ice Sheet 1: Changing flow geometries and ice flow dynamics deciphered from the glacial landform record. Quaternary Science Reviews, 28(27–28), 3085–3100. doi:10.1016/j.quascirev.2009.09.008 [CrossRef], [Web of Science {\circledR}] 42. Greenwood, S. L., & Clark, C. D. (2009b). Reconstructing the last Irish Ice Sheet 2: A geomorphologically-driven model of ice sheet growth, retreat and dynamics. Quaternary Science Reviews, 28(27–28), 3101–3123. doi:10.1016/j.quascirev.2009.09.014 [CrossRef], [Web of Science {\circledR}] 43. Greenwood, S. L., & Kleman, J. (2010). Glacial landforms of extreme size in the Keewatin sector of the Laurentide ice sheet. Quaternary Science Reviews, 29(15–16), 1894–1910. doi:10.1016/j.quascirev.2010.04.010 [CrossRef], [Web of Science {\circledR}] 44. H{\"a}ttestrand, C., & Kleman, J. (1999). Ribbed moraine formation. Quaternary Science Reviews, 18, 43–61. doi:10.1016/S0277-3791(97)00094-2 [CrossRef], [Web of Science {\circledR}] 45. Hillier, J. K., Smith, M. J., Armugam, R., Barr, I., Boston, C. M., Clark, C. D., … Wooldridge, K. (2014). Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness. Journal of Maps (4), 1–11. doi:10.1080/17445647.2014.957251 [Taylor & Francis Online] 46. Honarvar, P., Nolan, L. W., Crispy-Whittle, K. M., & Morgan, K. (2013). The Geoscience atlas. Current research. Newfoundland and Labrador Department of Natural Resources Geological Survey. Report 13–1, 1–3. Retrieved February 23, 2014, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2013/Honarvar_2013.pdf 47. Jansson, K. N., & Glasser, N. F. (2005). Using Landsat 7 ETM+ imagery and digital terrain models for mapping glacial lineaments on former ice sheet beds. International Journal of Remote Sensing, 26(18), 3931–3941. doi:10.1080/01431160500106900 [Taylor & Francis Online], [Web of Science {\circledR}] 48. Jansson, K. N., Kleman, J., & Marchant, D. R. (2002). The succession of ice-flow patterns in north-central Qu{\'e}bec-Labrador, Canada. Quaternary Science Reviews, 21(4–6), 503–523. doi:10.1016/S0277-3791(01)00013-0 [CrossRef], [Web of Science {\circledR}] 49. Khan, S. A., Kj{\ae}r, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., … Muresan, I. S. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change. doi:10.1038/nclimate2161 [CrossRef], [Web of Science {\circledR}] 50. Kleman, J. (1990). On the use of glacial Striae for reconstruction of Paleo-Ice sheet flow patterns. Geografiska Annaler, 72(3–4), 217–236. doi:10.2307/521150 [CrossRef] 51. Kleman, J. (1992). The palimpsest glacial landscape in northwestern Sweden: Late Weichselian deglaciation landforms and traces of older west-centered ice sheets. Geografiska Annale, Series A, Physical Geography, 74(4), 305–325. doi:10.2307/521429 [CrossRef], [Web of Science {\circledR}] 52. Kleman, J. (1994). Preservation of landforms under ice sheets and ice caps. Geomorphology, 9(1), 19–32. doi:10.1016/0169-555X(94)90028-0 [CrossRef], [Web of Science {\circledR}] 53. Kleman, J., & Borgstr{\"o}m, I. (1996). Reconstruction of palaeo–ice sheets: The use of geomorphological data. Earth Surface Processes and Landforms, 21(10), 893–909. doi:10.1002/(SICI)1096-9837(199610)21:10<893::AID-ESP620>3.0.CO;2-U [CrossRef], [Web of Science {\circledR}] 54. Kleman, J., & Glasser, N. (2007). The subglacial thermal organisation (STO) of ice sheets. Quaternary Science Reviews, 26(5–6), 585–597. doi:10.1016/j.quascirev.2006.12.010 [CrossRef], [Web of Science {\circledR}] 55. Kleman, J., & H{\"a}ttestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature, 402(6757), 63–66. doi:10.1038/47005 [CrossRef], [Web of Science {\circledR}] 56. Kleman, J., H{\"a}ttestrand, C., Borgstrom, I., & Stroeven, A. (1997). Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology, 43(144), 283–299. [Web of Science {\circledR}] 57. Kleman, J., Jansson, K., De Angelis, H., Stroeven, A. P., H{\"a}ttestrand, C., Alm, G., & Glasser, N. (2010). North American ice sheet build-up during the last glacial cycle, 115–21kyr. Quaternary Science Reviews, 29(17–18), 2036–2051. doi:10.1016/j.quascirev.2010.04.021 [CrossRef], [Web of Science {\circledR}] 58. Knight, J., & McCabe, A. M. (1997). Identification and significance of ice-flow-transverse subglacial ridges (Rogen moraines) in northern central Ireland. Journal of Quaternary Science, 12(6), 519–524. doi:10.1002/(SICI)1099-1417(199711/12)12:6<519::AID-JQS313>3.0.CO;2-Q [CrossRef], [Web of Science {\circledR}] 59. Lindstrom, E. (1988). Are Roche Moutonnees mainly preglacial forms. Geografiska Annaler. Series A, Physical Geography, 70(4), 323–331. doi:10.2307/521265 [CrossRef] 60. Liverman, D., Batterson, M., & Bell, T. (2006). Digital elevation models from shuttle radar topography mission data–new insights into the quaternary history of Newfoundland. Current Research Newfoundland and Labrador Department of Natural Resources Geological Survey. Report 06–1, 177–189. Retrieved March 19, 2012, from http://www.mun.ca/geog/people/faculty/tbell/CR_Liverman_et_al_2006.pdf 61. Lundqvist, J. (1969). Problems of the so-called Rogen moraine. Swedish Geological Survey, Series C(648), 32 pp. 62. Lundqvist, J. (1989). Rogen (ribbed) moraine: Identification and possible origin. Sedimentary Geology, 62(2–4), 281–292. doi:10.1016/0037-0738(89)90119-X [CrossRef], [Web of Science {\circledR}] 63. Marich, A., Batterson, M., & Bell, T. (2005). The morphology and sedimentological analyses of Rogen moraine morianes, Central Avalon Peninsula, Newfoundland. Current Research Newfoundland and Labrador Department of Natural Resources, Report 05-1, 1–14. Retrieved May 25, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr2005/marich.pdf 64. McCabe, A., & Clark, P. (1998). Ice-sheet variability around the North Atlantic Ocean during the last deglaciation. Nature, 392, 373–377. doi:10.1038/32866 [CrossRef], [Web of Science {\circledR}] 65. Milne, J. (1876). Ice and ice-work in Newfoundland. Geological Magazine, 3(2), 303–308. doi:10.1017/s0016756800154871 [CrossRef] 66. Murray, A. (1882). Glaciation in Newfoundland. Proceedings and Transactions of the Royal Society of Canada, 1, 55–76. doi:10.1144/transed.4.2.227 [CrossRef] 67. Oppenheimer, M., & Alley, R. B. (2004). The West Antarctic ice sheet and long term climate policy. Climate Change, 64(1–2), 1–10. doi:10.1023/B:CLIM.0000024792.06802.31 [CrossRef], [Web of Science {\circledR}] 68. Prest, V. K., Grant, D. R., & Rampton, V. N. (1968). Glacial map of Canada. Geological Survey of Canada Map, 1253A, Scale 1:5 000 000. doi:10.4095/108979 [CrossRef] 69. Pritchard, H. D., Arthern, R. J., Vaughan, D. G., & Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–5. doi:10.1038/nature08471 [CrossRef], [PubMed], [Web of Science {\circledR}] 70. Putt, M. M., Bell, T., Batterson, M. J., & Smith, J. S. (2010). Late Wisconsinan ice-flow history on the tip of the Northern Peninsula, Northwestern Newfoundland. Current Research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 10-1, 171–182. Retrieved August 11, 2012, from https://www.mun.ca/geog/people/faculty/tbell/2010_Putt-Bell-Batterson-Smith.pdf 71. Roberts, D. H., & Long, A. J. (2005). Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, West Greenland: Implications for ice stream and ice sheet dynamics. Boreas, 34(1), 25–42. doi:10.1080/03009480510012818 [CrossRef], [Web of Science {\circledR}] 72. Rose, J. (1987). Drumlins as part of a glacier bedform continuum. In J. Menzies & J. Rose (Eds.), Drumlin symposium (pp. 103–116). Rotterdam: Balkema. doi:10.1002/jqs.3390030211 [CrossRef] 73. Shaw, J. (2003). Submarine moraines in Newfoundland coastal waters: Implications for the deglaciation of Newfoundland and adjacent areas. Quaternary International, 99–100, 115–134. doi:10.1016/S1040-6182(02)00125-8 [CrossRef], [Web of Science {\circledR}] 74. Shaw, J. (2006). Palaeogeography of Atlantic Canadian continental shelves from the last glacial maximum to the present, with an emphasis on Flemish cap. Journal of Northwest Atlantic Fishery Science, 37, 119–126. doi:10.2960/J.v37.m565 [CrossRef] 75. Shaw, J., Piper, D. J. W., Fader, G. B. J., King, E. L., Todd, B. J., Bell, T., … Liverman, D. G. E. (2006). A conceptual model of the deglaciation of Atlantic Canada. Quaternary Science Reviews, 25(17–18), 2059–2081. doi:10.1016/j.quascirev.2006.03.002 [CrossRef], [Web of Science {\circledR}] 76. Shepherd, A., & Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315(5818), 1529–1532. doi:10.1126/science.1136776 [CrossRef], [PubMed], [Web of Science {\circledR}] 77. Smith, J. S. (2012). The paleogeography of Glacial Lake Shanadithit, Red Indian Lake Basin, Newfoundland: Implications for drift prospecting. Current Research Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 12–1, 207–227. Retrieved September 21, 2013, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2012/Smith_2012.pdf 78. Smith, M. J., & Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes and Landforms, 30(7), 885–900. doi:10.1002/esp.1210 [CrossRef], [Web of Science {\circledR}] 79. Smith, M. J., Clark, C. D., & Wise, S. M. (2001). Mapping glacial lineaments from satellite imagery: An assessment of the problems and development of best procedure. Slovak Geological Magazine, 7(3), 263–274. 80. Smith, M. J., & Knight, J. (2011). Palaeoglaciology of the last Irish ice sheet reconstructed from striae evidence. Quaternary Science Reviews, 30(1–2), 147–160. doi:10.1016/j.quascirev.2010.09.019 [CrossRef], [Web of Science {\circledR}] 81. Smith, M. J., & Wise, S. M. (2007). Problems of bias in mapping linear landforms from satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 9(1), 65–78. doi:10.1016/j.jag.2006.07.002 [CrossRef], [Web of Science {\circledR}] 82. Spagnolo, M., Clark, C. D., Hughes, A. L. C., & Dunlop, P. (2011). The topography of drumlins; assessing their long profile shape. Earth Surface Processes and Landforms, 36, 790–804. doi:10.1002/esp.2107 [CrossRef], [Web of Science {\circledR}] 83. St. Croix, L. S., & Taylor, D. M. (1991). Regional striation survey and deglacial history of the Notre Dame Bay area, Newfoundland. Current Research. Newfoundland and Labrador Department of Mines and Energy, Geological Survey Branch., Report 91–1, 61–68. Retrieved October 10, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr1991/StCroix.pdf 84. St. Croix, L. S., & Taylor, D. (1992). Ice flow in west-central Newfoundland. Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 92-1, Report 92, 51–54. Retrieved November 23, 2013, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/1992/stcroix.pdf 85. Stokes, C., & Clark, C. (2001). Palaeo-ice streams. Quaternary Science Reviews, 20, 1437–1457. doi:10.1016/S0277-3791(01)00003-8 [CrossRef], [Web of Science {\circledR}] 86. Stokes, C., & Clark, C. (2002). Are long subglacial bedforms indicative of fast ice flow? Boreas, 31, 239–249. doi:10.1080/030094802760260355 [CrossRef], [Web of Science {\circledR}] 87. Stokes, C. R., Lian, O. B., Tulaczyk, S., & Clark, C. D. (2008). Superimposition of ribbed moraines on a palaeo ice stream bed: Implications for ice stream dynamics and shutdown. Earth Surface Processes and Landforms, 33(4), 593–609. doi:10.1002/esp.1671 [CrossRef], [Web of Science {\circledR}] 88. Stokes, C. R., Tarasov, L., & Dyke, A. S. (2012). Dynamics of the North American ice sheet complex during its inception and build-up to the Last Glacial Maximum. Quaternary Science Reviews, 50, 86–104. doi:10.1016/j.quascirev.2012.07.009 [CrossRef], [Web of Science {\circledR}] 89. Taylor, D. M. (2001). Newfoundland striation database. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File NFLD/2195, Version 4. 90. Taylor, D. M., Bell, T., Brushett, D., & Shaw, J. (2009). Regional till-geochemistry sampling and ice flow mapping along the southern shore of the Avalon Peninsula. Current research Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 09-1, 357–365. Retrieved August 11, 2012, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr2009/Taylor.pdf 91. Trommelen, M. S., Ross, M., & Ismail, A. (2014). Ribbed moraines in northern Manitoba, Canada: Characteristics and preservation as part of a subglacial bed mosaic near the core regions of ice sheets. Quaternary Science Reviews, 87, 135–155. doi:10.1016/j.quascirev.2014.01.010 [CrossRef], [Web of Science {\circledR}] 92. Tucker, C. M. (1974). A series of raised Pleistocene deltas; Halls Bay, Newfoundland. Maritime Sediments, 10(1), 1–7. doi:10.4138/1444 [CrossRef]",
year = "2015",
month = "5",
day = "12",
doi = "10.1080/17445647.2015.1044038",
language = "English",
pages = "1--22",
journal = "Journal of Maps",
issn = "1744-5647",

}

The subglacial imprint of the last Newfoundland Ice Sheet, Canada. / McHenry, Maureen; Dunlop, Paul.

In: Journal of Maps, 12.05.2015, p. 1-22.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The subglacial imprint of the last Newfoundland Ice Sheet, Canada.

AU - McHenry, Maureen

AU - Dunlop, Paul

N1 - Reference text: 1. Aylsworth, J. M., & Shilts, W. W. (1989). Bedforms of the Keewatin ice sheet, Canada. Sedimentary Geology, 62(2–4), 407–428. doi:10.1016/0037-0738(89)90129-2 [CrossRef], [Web of Science ®] 2. Batterson, M. J., & Catto, N. R. (2001). Topographically-controlled deglacial history of the Humber River Basin, Western Newfoundland. Géographie Physique et Quaternaire, 55(3), 213–228. doi: 10.7202/006851ar [CrossRef] 3. Batterson, M. J., & Taylor, D. M. (2009). Till geochemistry of the Burin Peninsula, Newfoundland (NTS map areas 1L/13, 1L/14, 1M/2, 1M/3, 1M/4, 1M/6, 1M/7, 1M/10 and 1M/11). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File NFLD/3043, 155 pages. Retrieved May 25, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/openfiles/OFNFLD3043.pdf 4. Batterson, M., Taylor, D., Bell, T., Brushett, D., & Shaw, J. (2006). Regional ice-flow mapping, surficial geology and till geochemistry of the northern Burin Peninsula and adjacent Placentia Bay. Current research, Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 06-1. 161-176. Retrieved April 9, 2013, from https://www.mun.ca/geog/people/faculty/tbell/CR_Batterson_et_al_2006.pdf 5. Bell, R. A. (1884). Observations on the geology, mineralogy, zoology and botany of the Labrador coast, Hudson's Strait and Bay. Geological Survey of Canada, Report of Progress, 1(D), 5–62. doi:10.5962/bhl.title.61363 [CrossRef] 6. Benn, D. I., & Evans, D. J. A. (2010). Glaciers and glaciation (2nd ed.). Hodder Education. doi:10.4324/9780203785010 [CrossRef] 7. Blundon, P., Bell, T., & Batterson, M. (2010). Ice streaming in the Newfoundland Ice Cap: Implications for the reconstruction of ice-flow and drift prospecting. Current Research (2010) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 10-1, 143–157. Retrieved November 23, 2013, from https://www.mun.ca/geog/people/faculty/tbell/2010_Blundon-Bell-Batterson.pdf 8. Bouchard, M. A. (1989). Subglacial landforms and deposits in central and northern Québec, Canada, with emphasis on Rogen moraines. Sedimentary Geology, 62(2–4), 293–308. doi:10.1016/0037-0738(89)90120-6 [CrossRef], [Web of Science ®] 9. Boulton, G. S. (1976). The origin of glacially fluted surfaces - observations and theory. Journal of Glaciology, 17(76), 287–309. 10. Boulton, G. S. (1987). A theory of drumlin formation by subglacial sediment deformation. In J. Menzies & J. Rose (Eds.), Drumlin Symposium (pp. 25–80). Balkema: Rotterdam. 11. Boulton, G. S., & Clark, C. D. (1990). A highly mobile Laurentide ice sheet revealed by satellite images of glacial lineations. Nature, 346(6287), 813–817. doi:10.1038/346813a0 [CrossRef], [Web of Science ®] 12. Boulton, G. S., Dongelmans, P., Punkari, M., & Broadgate, M. (2001). Palaeoglaciology of an ice sheet through a glacial cycle: The European ice sheet through the Weichselian. Quaternary Science Reviews, 20(4), 591–625. doi:10.1016/S0277-3791(00)00160-8 [CrossRef], [Web of Science ®] 13. Brookes, I. A. (1982). Ice marks in Newfoundland: A history of ideas. Géographie Physique et Quaternaire, 36(1-2), 139. doi:10.7202/032474ar [CrossRef] 14. Brushett, D. (2012). Quaternary geology and till geochemistry of the Carmanville (NTS 2E / 08), Wesleyville (NTS 2F/04) and Musgrave Harbour (NTS 2F/05) Map Areas. Current Research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report, 179–190. Retrieved February 23, 2014, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2012/Brushett_2012.pdf 15. Brysse, K., Oreskes, N., O'Reilly, J., & Oppenheimer, M. (2013). Climate change prediction: Erring on the side of least drama? Global Environmental Change, 23(1), 327–337. doi:10.1016/j.gloenvcha.2012.10.008 [CrossRef], [Web of Science ®] 16. Carlson, A. E., & Winsor, K. (2012). Northern hemisphere ice-sheet responses to past climate warming. Nature Geoscience, 5(9), 607–613. doi:10.1038/ngeo1528 [CrossRef], [Web of Science ®] 17. Catto, N. R. (1998). The pattern of glaciation on the Avalon Peninsula of Newfoundland. Géographie Physique et Quaternaire, 52(1), 23–45. doi:10.7202/004778ar [CrossRef] 18. Catto, N. R., Scruton, D. A., & Ollerhead, L. M. N. (2003). The coastline of eastern Newfoundland: Canadian technical report of fisheries and aquatic sciences No. 2495, 252 pages. Retrieved November 23, 2011, from http://www.dfo-mpo.gc.ca/Library/276332.pdf 19. Clark, C. D. (1997). Reconstructing the evolutionary dynamics of former ice sheets using multitemporal evidence, remote sensing and GIS. Quaternary Science Reviews, 16, 1067–1092. doi:10.1016/S0277-3791(97)00037-1 [CrossRef], [Web of Science ®] 20. Clark, C. D. (1999). Glaciodynamic context of subglacial bedform generation and preservation. Annals of Glaciology, 28(1), 23–32. doi:10.3189/172756499781821832 [CrossRef], [Web of Science ®] 21. Clark, C. D., Evans, D. J. A., Khatwa, A., Bradwell, T., Jordan, C. J., Marsh, S. H., … Bateman, M. D. (2004). Map and GIS database of glacial landforms and features related to the last British ice sheet. Boreas, 33(4), 359–375. doi:10.1080/03009480410001983 [CrossRef], [Web of Science ®] 22. Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Spagnolo, M., & Ng, F. S. L. (2009). Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws. Quaternary Science Reviews, 28(7–8), 677–692. doi:10.1016/j.quascirev.2008.08.035 [CrossRef], [Web of Science ®] 23. Clark, C. D., Knight, J. K., & Gray, J. T. (2000). Geomorphological reconstruction of the Labrador sector of the Laurentide ice sheet. Quaternary Science Reviews, 19, 1343–1366. doi:10.1016/S0277-3791(99)00098-0 [CrossRef], [Web of Science ®] 24. Clark, C. D., & Meehan, R. T. (2001). Subglacial bedform geomorphology of the Irish ice sheet reveals major configuration changes during growth and decay. Journal of Quaternary Science, 16(5), 483–496. doi:10.1002/jqs.627 [CrossRef], [Web of Science ®] 25. Clark, J., McCabe, A. M., Bowen, D. Q., & Clark, P. U. (2012). Response of the Irish ice sheet to abrupt climate change during the last deglaciation. Quaternary Science Reviews, 35, 100–115. doi:10.1016/j.quascirev.2012.01.001 [CrossRef], [Web of Science ®] 26. Dowdeswell, J. A., Cofaigh, C. Ó., & Pudsey, C. J. (2004). Thickness and extent of the subglacial till layer beneath an Antarctic paleo–ice stream. Geology, 32(1), 13. doi:10.1130/G19864.1 [CrossRef], [Web of Science ®] 27. Dunlop, P., & Clark, C. D. (2006). The morphological characteristics of ribbed moraine. Quaternary Science Reviews, 25(13–14), 1668–1691. doi:10.1016/j.quascirev.2006.01.002 [CrossRef], [Web of Science ®] 28. Dyke, A. S. (2004). Quaternary glaciations-extent and chronology – Part II: North America. Developments in quaternary sciences (Vol. 2, pp. 373–424). Elsevier. doi:10.1016/S1571-0866(04)80209-4 [CrossRef] 29. Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J., & Veillette, J. J. (2002). The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews, 21(1–3), 9–31. doi:10.1016/S0277-3791(01)00095-6 [CrossRef], [Web of Science ®] 30. Dyke, A. S., & Prest, V. K. (1987). Late Wisconsinan and Holocene history of the Laurentide ice sheet. Géographie Physique et Quaternaire, 41(2), 237–263. doi:10.7202/032681ar [CrossRef] 31. Fisher, T. G., & Shaw, J. (1992). A depositional model of Rogen moraine, with examples from the Avalon Peninsula. Canadian Journal Earth Sciences, 29(4), 669–686. doi:10.1139/e92-058 [CrossRef], [Web of Science ®] 32. Geobase Orthoimage 2005-2010 Canadian Council on Geomatics. (2010). Retrieved October 10, 2011, from http://www.geobase.ca/ 33. Glasser, N. F., & Bennett, M. R. (2004). Glacial erosional landforms: Origins and significance for palaeoglaciology. Progress in Physical Geography, 28(1), 43–75. doi:10.1191/0309133304pp401ra [CrossRef], [Web of Science ®] 34. Glasser, N. F., & Jansson, K. N. (2005). Fast-flowing outlet glaciers of the last glacial maximum Patagonian icefield : Fast-flowing outlet glaciers of the last glacial maximum Patagonian. Quaternary Research, 63(2), 206–211. doi:10.1016/j.yqres.2004.11.002 [CrossRef], [Web of Science ®] 35. Gordon, J. E. (1981). Ice-scoured topography and its relationship to bedrock structure and ice movement in parts of northern Scotland and west Greenland. Geografiska Annaler, 63(1/2), 55–65. doi:10.2307/520564 [CrossRef] 36. Grant, D. R. (1970). Quaternary geology, Great Northern Peninsula, Island of Newfoundland. In Report of Activities, Part A, Geological Survey of Canada, Paper 70–1 A (pp. 172–174). Retrieved February 5, 2012, from http://wmsmir.cits.rncan.gc.ca/index.html/pub/geott/ess_pubs/119/119858/pa_70_1a.pdf 37. Grant, D. R. (1974). Prospecting in Newfoundland and the theory of multiple shrinking ice caps. Geological Survey of Canada, Paper 74-1, 215–216. doi:10.4095/119837 [CrossRef] 38. Grant, D. R. (1977). Glacial style and ice limits, the quaternary stratigraphic record, and changes of land and ocean level in the Atlantic Provinces, Canada. Géographie Physique et Quaternaire, 31(3–4), 247. doi:10.7202/1000276ar [CrossRef] 39. Grant, D. R. (1989). Quaternary geology of the Atlantic Appalachian region of Canada. In R. J. Fulton (Ed.), Quaternary geology of Canada and Greenland (pp. 391–440). Geological Survey of Canada. doi:10.4095/127905 [CrossRef] 40. Grant, D. R. (1994). Quaternary geology of Port Saunders Map Area, Newfoundland. Geological Survey of Canada, Paper no. 91-20, 64 pages (1 sheet). doi:10.4095/194038 [CrossRef] 41. Greenwood, S. L., & Clark, C. D. (2009a). Reconstructing the last Irish Ice Sheet 1: Changing flow geometries and ice flow dynamics deciphered from the glacial landform record. Quaternary Science Reviews, 28(27–28), 3085–3100. doi:10.1016/j.quascirev.2009.09.008 [CrossRef], [Web of Science ®] 42. Greenwood, S. L., & Clark, C. D. (2009b). Reconstructing the last Irish Ice Sheet 2: A geomorphologically-driven model of ice sheet growth, retreat and dynamics. Quaternary Science Reviews, 28(27–28), 3101–3123. doi:10.1016/j.quascirev.2009.09.014 [CrossRef], [Web of Science ®] 43. Greenwood, S. L., & Kleman, J. (2010). Glacial landforms of extreme size in the Keewatin sector of the Laurentide ice sheet. Quaternary Science Reviews, 29(15–16), 1894–1910. doi:10.1016/j.quascirev.2010.04.010 [CrossRef], [Web of Science ®] 44. Hättestrand, C., & Kleman, J. (1999). Ribbed moraine formation. Quaternary Science Reviews, 18, 43–61. doi:10.1016/S0277-3791(97)00094-2 [CrossRef], [Web of Science ®] 45. Hillier, J. K., Smith, M. J., Armugam, R., Barr, I., Boston, C. M., Clark, C. D., … Wooldridge, K. (2014). Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness. Journal of Maps (4), 1–11. doi:10.1080/17445647.2014.957251 [Taylor & Francis Online] 46. Honarvar, P., Nolan, L. W., Crispy-Whittle, K. M., & Morgan, K. (2013). The Geoscience atlas. Current research. Newfoundland and Labrador Department of Natural Resources Geological Survey. Report 13–1, 1–3. Retrieved February 23, 2014, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2013/Honarvar_2013.pdf 47. Jansson, K. N., & Glasser, N. F. (2005). Using Landsat 7 ETM+ imagery and digital terrain models for mapping glacial lineaments on former ice sheet beds. International Journal of Remote Sensing, 26(18), 3931–3941. doi:10.1080/01431160500106900 [Taylor & Francis Online], [Web of Science ®] 48. Jansson, K. N., Kleman, J., & Marchant, D. R. (2002). The succession of ice-flow patterns in north-central Québec-Labrador, Canada. Quaternary Science Reviews, 21(4–6), 503–523. doi:10.1016/S0277-3791(01)00013-0 [CrossRef], [Web of Science ®] 49. Khan, S. A., Kjær, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., … Muresan, I. S. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change. doi:10.1038/nclimate2161 [CrossRef], [Web of Science ®] 50. Kleman, J. (1990). On the use of glacial Striae for reconstruction of Paleo-Ice sheet flow patterns. Geografiska Annaler, 72(3–4), 217–236. doi:10.2307/521150 [CrossRef] 51. Kleman, J. (1992). The palimpsest glacial landscape in northwestern Sweden: Late Weichselian deglaciation landforms and traces of older west-centered ice sheets. Geografiska Annale, Series A, Physical Geography, 74(4), 305–325. doi:10.2307/521429 [CrossRef], [Web of Science ®] 52. Kleman, J. (1994). Preservation of landforms under ice sheets and ice caps. Geomorphology, 9(1), 19–32. doi:10.1016/0169-555X(94)90028-0 [CrossRef], [Web of Science ®] 53. Kleman, J., & Borgström, I. (1996). Reconstruction of palaeo–ice sheets: The use of geomorphological data. Earth Surface Processes and Landforms, 21(10), 893–909. doi:10.1002/(SICI)1096-9837(199610)21:10<893::AID-ESP620>3.0.CO;2-U [CrossRef], [Web of Science ®] 54. Kleman, J., & Glasser, N. (2007). The subglacial thermal organisation (STO) of ice sheets. Quaternary Science Reviews, 26(5–6), 585–597. doi:10.1016/j.quascirev.2006.12.010 [CrossRef], [Web of Science ®] 55. Kleman, J., & Hättestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature, 402(6757), 63–66. doi:10.1038/47005 [CrossRef], [Web of Science ®] 56. Kleman, J., Hättestrand, C., Borgstrom, I., & Stroeven, A. (1997). Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology, 43(144), 283–299. [Web of Science ®] 57. Kleman, J., Jansson, K., De Angelis, H., Stroeven, A. P., Hättestrand, C., Alm, G., & Glasser, N. (2010). North American ice sheet build-up during the last glacial cycle, 115–21kyr. Quaternary Science Reviews, 29(17–18), 2036–2051. doi:10.1016/j.quascirev.2010.04.021 [CrossRef], [Web of Science ®] 58. Knight, J., & McCabe, A. M. (1997). Identification and significance of ice-flow-transverse subglacial ridges (Rogen moraines) in northern central Ireland. Journal of Quaternary Science, 12(6), 519–524. doi:10.1002/(SICI)1099-1417(199711/12)12:6<519::AID-JQS313>3.0.CO;2-Q [CrossRef], [Web of Science ®] 59. Lindstrom, E. (1988). Are Roche Moutonnees mainly preglacial forms. Geografiska Annaler. Series A, Physical Geography, 70(4), 323–331. doi:10.2307/521265 [CrossRef] 60. Liverman, D., Batterson, M., & Bell, T. (2006). Digital elevation models from shuttle radar topography mission data–new insights into the quaternary history of Newfoundland. Current Research Newfoundland and Labrador Department of Natural Resources Geological Survey. Report 06–1, 177–189. Retrieved March 19, 2012, from http://www.mun.ca/geog/people/faculty/tbell/CR_Liverman_et_al_2006.pdf 61. Lundqvist, J. (1969). Problems of the so-called Rogen moraine. Swedish Geological Survey, Series C(648), 32 pp. 62. Lundqvist, J. (1989). Rogen (ribbed) moraine: Identification and possible origin. Sedimentary Geology, 62(2–4), 281–292. doi:10.1016/0037-0738(89)90119-X [CrossRef], [Web of Science ®] 63. Marich, A., Batterson, M., & Bell, T. (2005). The morphology and sedimentological analyses of Rogen moraine morianes, Central Avalon Peninsula, Newfoundland. Current Research Newfoundland and Labrador Department of Natural Resources, Report 05-1, 1–14. Retrieved May 25, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr2005/marich.pdf 64. McCabe, A., & Clark, P. (1998). Ice-sheet variability around the North Atlantic Ocean during the last deglaciation. Nature, 392, 373–377. doi:10.1038/32866 [CrossRef], [Web of Science ®] 65. Milne, J. (1876). Ice and ice-work in Newfoundland. Geological Magazine, 3(2), 303–308. doi:10.1017/s0016756800154871 [CrossRef] 66. Murray, A. (1882). Glaciation in Newfoundland. Proceedings and Transactions of the Royal Society of Canada, 1, 55–76. doi:10.1144/transed.4.2.227 [CrossRef] 67. Oppenheimer, M., & Alley, R. B. (2004). The West Antarctic ice sheet and long term climate policy. Climate Change, 64(1–2), 1–10. doi:10.1023/B:CLIM.0000024792.06802.31 [CrossRef], [Web of Science ®] 68. Prest, V. K., Grant, D. R., & Rampton, V. N. (1968). Glacial map of Canada. Geological Survey of Canada Map, 1253A, Scale 1:5 000 000. doi:10.4095/108979 [CrossRef] 69. Pritchard, H. D., Arthern, R. J., Vaughan, D. G., & Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–5. doi:10.1038/nature08471 [CrossRef], [PubMed], [Web of Science ®] 70. Putt, M. M., Bell, T., Batterson, M. J., & Smith, J. S. (2010). Late Wisconsinan ice-flow history on the tip of the Northern Peninsula, Northwestern Newfoundland. Current Research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 10-1, 171–182. Retrieved August 11, 2012, from https://www.mun.ca/geog/people/faculty/tbell/2010_Putt-Bell-Batterson-Smith.pdf 71. Roberts, D. H., & Long, A. J. (2005). Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, West Greenland: Implications for ice stream and ice sheet dynamics. Boreas, 34(1), 25–42. doi:10.1080/03009480510012818 [CrossRef], [Web of Science ®] 72. Rose, J. (1987). Drumlins as part of a glacier bedform continuum. In J. Menzies & J. Rose (Eds.), Drumlin symposium (pp. 103–116). Rotterdam: Balkema. doi:10.1002/jqs.3390030211 [CrossRef] 73. Shaw, J. (2003). Submarine moraines in Newfoundland coastal waters: Implications for the deglaciation of Newfoundland and adjacent areas. Quaternary International, 99–100, 115–134. doi:10.1016/S1040-6182(02)00125-8 [CrossRef], [Web of Science ®] 74. Shaw, J. (2006). Palaeogeography of Atlantic Canadian continental shelves from the last glacial maximum to the present, with an emphasis on Flemish cap. Journal of Northwest Atlantic Fishery Science, 37, 119–126. doi:10.2960/J.v37.m565 [CrossRef] 75. Shaw, J., Piper, D. J. W., Fader, G. B. J., King, E. L., Todd, B. J., Bell, T., … Liverman, D. G. E. (2006). A conceptual model of the deglaciation of Atlantic Canada. Quaternary Science Reviews, 25(17–18), 2059–2081. doi:10.1016/j.quascirev.2006.03.002 [CrossRef], [Web of Science ®] 76. Shepherd, A., & Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315(5818), 1529–1532. doi:10.1126/science.1136776 [CrossRef], [PubMed], [Web of Science ®] 77. Smith, J. S. (2012). The paleogeography of Glacial Lake Shanadithit, Red Indian Lake Basin, Newfoundland: Implications for drift prospecting. Current Research Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 12–1, 207–227. Retrieved September 21, 2013, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/2012/Smith_2012.pdf 78. Smith, M. J., & Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes and Landforms, 30(7), 885–900. doi:10.1002/esp.1210 [CrossRef], [Web of Science ®] 79. Smith, M. J., Clark, C. D., & Wise, S. M. (2001). Mapping glacial lineaments from satellite imagery: An assessment of the problems and development of best procedure. Slovak Geological Magazine, 7(3), 263–274. 80. Smith, M. J., & Knight, J. (2011). Palaeoglaciology of the last Irish ice sheet reconstructed from striae evidence. Quaternary Science Reviews, 30(1–2), 147–160. doi:10.1016/j.quascirev.2010.09.019 [CrossRef], [Web of Science ®] 81. Smith, M. J., & Wise, S. M. (2007). Problems of bias in mapping linear landforms from satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 9(1), 65–78. doi:10.1016/j.jag.2006.07.002 [CrossRef], [Web of Science ®] 82. Spagnolo, M., Clark, C. D., Hughes, A. L. C., & Dunlop, P. (2011). The topography of drumlins; assessing their long profile shape. Earth Surface Processes and Landforms, 36, 790–804. doi:10.1002/esp.2107 [CrossRef], [Web of Science ®] 83. St. Croix, L. S., & Taylor, D. M. (1991). Regional striation survey and deglacial history of the Notre Dame Bay area, Newfoundland. Current Research. Newfoundland and Labrador Department of Mines and Energy, Geological Survey Branch., Report 91–1, 61–68. Retrieved October 10, 2013, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr1991/StCroix.pdf 84. St. Croix, L. S., & Taylor, D. (1992). Ice flow in west-central Newfoundland. Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 92-1, Report 92, 51–54. Retrieved November 23, 2013, from http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/currentresearch/1992/stcroix.pdf 85. Stokes, C., & Clark, C. (2001). Palaeo-ice streams. Quaternary Science Reviews, 20, 1437–1457. doi:10.1016/S0277-3791(01)00003-8 [CrossRef], [Web of Science ®] 86. Stokes, C., & Clark, C. (2002). Are long subglacial bedforms indicative of fast ice flow? Boreas, 31, 239–249. doi:10.1080/030094802760260355 [CrossRef], [Web of Science ®] 87. Stokes, C. R., Lian, O. B., Tulaczyk, S., & Clark, C. D. (2008). Superimposition of ribbed moraines on a palaeo ice stream bed: Implications for ice stream dynamics and shutdown. Earth Surface Processes and Landforms, 33(4), 593–609. doi:10.1002/esp.1671 [CrossRef], [Web of Science ®] 88. Stokes, C. R., Tarasov, L., & Dyke, A. S. (2012). Dynamics of the North American ice sheet complex during its inception and build-up to the Last Glacial Maximum. Quaternary Science Reviews, 50, 86–104. doi:10.1016/j.quascirev.2012.07.009 [CrossRef], [Web of Science ®] 89. Taylor, D. M. (2001). Newfoundland striation database. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File NFLD/2195, Version 4. 90. Taylor, D. M., Bell, T., Brushett, D., & Shaw, J. (2009). Regional till-geochemistry sampling and ice flow mapping along the southern shore of the Avalon Peninsula. Current research Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 09-1, 357–365. Retrieved August 11, 2012, from http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/cr2009/Taylor.pdf 91. Trommelen, M. S., Ross, M., & Ismail, A. (2014). Ribbed moraines in northern Manitoba, Canada: Characteristics and preservation as part of a subglacial bed mosaic near the core regions of ice sheets. Quaternary Science Reviews, 87, 135–155. doi:10.1016/j.quascirev.2014.01.010 [CrossRef], [Web of Science ®] 92. Tucker, C. M. (1974). A series of raised Pleistocene deltas; Halls Bay, Newfoundland. Maritime Sediments, 10(1), 1–7. doi:10.4138/1444 [CrossRef]

PY - 2015/5/12

Y1 - 2015/5/12

N2 - The former Newfoundland Ice Sheet was situated on the fringes of the northeast Atlantic Ocean during the Wisconsinan glaciation (∼80–10 ka BP). Its geographic position indicates that it was likely to have been influenced by a number of external and internal forcing mechanisms including configuration changes in the Laurentide Ice Sheet with which it converged during the last glacial maximum, ice streams, changes in oceanic circulation and fluctuating sea levels. This makes Newfoundland a key location for investigating the dynamic response of ice sheets to these types of internal and external drivers. An established methodology for investigating ice sheet dynamics is to use the landform record to reconstruct the dynamic behaviour and configuration of the ice sheet. This provides a relative chronology of former ice sheet events during glacial cycles. A fundamental requirement of this approach is a detailed glacial geomorphology map that records the spatial distribution of individual subglacial bedforms across the former ice sheet bed. This paper presents a new subglacial bedform map of the Island of Newfoundland. It was produced as part of a mapping programme which used 10 m resolution Satellite Pour l'Observation de la Terre satellite imagery, Shuttle Radar Topography Mission and Canadian Digital Elevation Data. The map records the spatial distribution of ∼126,000 individually mapped glacial lineations and ribbed moraines and extends the number and spatial extent of each landform across the island. It is a new data set which has the potential to provide important insights into former ice sheet behaviour in this region.

AB - The former Newfoundland Ice Sheet was situated on the fringes of the northeast Atlantic Ocean during the Wisconsinan glaciation (∼80–10 ka BP). Its geographic position indicates that it was likely to have been influenced by a number of external and internal forcing mechanisms including configuration changes in the Laurentide Ice Sheet with which it converged during the last glacial maximum, ice streams, changes in oceanic circulation and fluctuating sea levels. This makes Newfoundland a key location for investigating the dynamic response of ice sheets to these types of internal and external drivers. An established methodology for investigating ice sheet dynamics is to use the landform record to reconstruct the dynamic behaviour and configuration of the ice sheet. This provides a relative chronology of former ice sheet events during glacial cycles. A fundamental requirement of this approach is a detailed glacial geomorphology map that records the spatial distribution of individual subglacial bedforms across the former ice sheet bed. This paper presents a new subglacial bedform map of the Island of Newfoundland. It was produced as part of a mapping programme which used 10 m resolution Satellite Pour l'Observation de la Terre satellite imagery, Shuttle Radar Topography Mission and Canadian Digital Elevation Data. The map records the spatial distribution of ∼126,000 individually mapped glacial lineations and ribbed moraines and extends the number and spatial extent of each landform across the island. It is a new data set which has the potential to provide important insights into former ice sheet behaviour in this region.

KW - subglacial bedforms

KW - glacial lineation

KW - ribbed moraine

KW - Newfoundland Ice Sheet

KW - remote sensing

KW - palaeoglaciology

U2 - 10.1080/17445647.2015.1044038

DO - 10.1080/17445647.2015.1044038

M3 - Article

SP - 1

EP - 22

JO - Journal of Maps

T2 - Journal of Maps

JF - Journal of Maps

SN - 1744-5647

ER -